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How does artificial intelligence change carbon emission intensity? A firm lifecycle 
perspective
Qiang Wua and Peng Zhou b

aSchool of Insurance, University of International Business and Economics, Beijing, China; bCardiff Business School, Cardiff University, Cardiff, UK

ABSTRACT
Artificial intelligence (AI) is crucial in achieving the carbon peak and neutrality goals and mitigating 
climate change. Although previous studies have explored cross-sectional differences in corporate 
carbon emissions, temporal heterogeneities in firm lifecycles have been overlooked. Therefore, this 
study investigates the effect of AI adoption on carbon emission intensity over firm lifecycles and 
the micro-level mechanisms of this effect. This study examines panel data from Chinese listed 
companies (2010–2021) using a two-way fixed-effects model and the difference-in-differences 
method. The empirical results demonstrate that AI significantly reduces enterprises’ carbon emis-
sion intensity. However, this effect is mainly observed in growth-stage enterprises and not in 
decline-stage enterprises. The mechanism analysis reveals that AI primarily reduces enterprises’ 
carbon emission intensity by improving productivity and promoting innovation. The effect on 
productivity is particularly evident in growth-stage enterprises, whereas the effect on innovation is 
dominant in decline-stage enterprises. Heterogeneity tests indicate that the effect on state-owned 
enterprises, medium-sized enterprises, the manufacturing sector, heavily polluting industries, non- 
high-tech industries, and capital-intensive industries is more pronounced than that on other 
enterprises. These findings suggest that enterprises should actively adopt AI, and differentiated 
AI adoption strategies should be formulated based on the needs of enterprises at different lifecycle 
stages.
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I. Introduction

As climate change has become a global challenge, 
enterprises are compelled to take proactive mea-
sures to meet carbon reduction targets 
(Hoogerbrugge, van de Kaa, and Chappin 2023). 
Among these measures, artificial intelligence (AI), 
a key component of the digital economy, has 
become a powerful tool in China, which is the 
world’s largest carbon emitter (Z. Wang and 
Zhang 2024; Xu et al. 2024). As shown in 
Figure 1, before 2014, few enterprises used AI tech-
nologies (<100 enterprises). This number has 
increased since 2015. In 2021, 2,184 enterprises 
(nearly half of all listed companies in China) 
reported using AI technologies. This burgeoning 
trend is seen worldwide and is driven by recent 
breakthroughs in AI-related applications (Kinkel, 
Baumgartner, and Cherubini 2022).

AI helps enterprises achieve efficient and sus-
tainable operations through data analysis, 

optimization, and automation (Y. Liu, Zhu, and 
Seuring 2020). However, whether AI can effectively 
reduce corporate carbon emissions remains deba-
table (Zhong et al. 2024). AI can optimize energy 
management and resource utilization, thereby 
reducing emissions (Zhou et al. 2021). However, 
the development of AI technologies can increase 
the demand for computational capacity, which is 
a source of carbon emissions (Dhar 2020).

Current research on corporate carbon emissions 
often considers cross-sectional differences among 
enterprises, neglecting temporal heterogeneities 
over the firm lifecycle. According to the theory of 
firm lifecycles, enterprises exhibit significant differ-
ences in size, profitability, growth potential, invest-
ment and financing decisions, and strategic 
objectives at various developmental stages (Miller 
and Friesen 1984). This provides a crucial perspec-
tive for understanding AI’s effect on firm-level 
capability to reduce carbon emissions. Accounting 
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for corporate lifecycles may help resolve the debate 
and mixed findings on AI’s impact on carbon 
emissions. To fill the gap in the existing literature, 
this study examines the effect of AI adoption on 
corporate carbon emission intensity and aims to 
identify the underlying mechanisms of this effect. 
We pose the following research questions (RQs):

RQ1: What effect does AI have on the carbon 
emission intensity at different lifecycle stages?

RQ2: What are the mechanisms underlying these 
effects?

The study aims to make the following contribu-
tions to existing literature. First, while previous 
research has mainly adopted a static perspective 
(e.g. Zhang and Yu 2024), our paper is among the 
first to systematically examine AI’s role in carbon 
reduction through the lens of Firm Lifecycle 
Theory. By distinguishing between growth-stage, 
mature, and decline-stage firms, this research 
moves beyond static analyses and develops 
a dynamic framework that captures the heteroge-
neous effects of AI adoption on corporate carbon 
emission intensity. Second, this study novelly 

identifies two distinct mechanisms – improving 
productivity and fostering innovation, through 
which AI reduces carbon emission intensity. We 
further reveal that growth-stage firms benefit more 
from productivity improvements, while decline- 
stage firms benefit more from innovation enhance-
ment. This refinement helps resolve the divergent 
results at industrial or regional levels in prior lit-
erature (e.g. Chen et al. 2022; Yu et al. 2023). Firm- 
level evidence also provides practical insights to 
develop more targeted AI application strategies 
for firms across different lifecycles.

II. Literature review

Existing studies on AI and carbon emission inten-
sity primarily focus on the industrial and regional 
levels (see the Supplementary Materials for 
a detailed literature review). At the industry level, 
proxies such as industrial robots and AI publica-
tions indicate reduced carbon intensity (J. Liu et al.  
2022). In contrast, regional analyses present mixed 
findings. Proxies based on industrial robots have 
shown lower carbon intensity at provincial and 
municipal levels than at regional levels (Tao, 
Wang, and Zhai 2023), whereas those using AI 

Figure 1. Number of AI-adopting enterprises in the A-share market.
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publications have revealed rebound effects, such as 
initial increases in electricity use and carbon emis-
sions followed by declines (Xue, Liu, and Fu 2022). 
However, firm-level analyses remain scarce, despite 
evidence indicating that lifecycle stages influence 
AI adoption, innovation, firm value, and risk (Song 
and Xie 2022). Our study fills this gap in the litera-
ture by adopting a firm-level perspective to inves-
tigate the dynamic impact of AI on carbon 
intensity. We develop testable hypotheses by com-
bining two strings of literature on carbon intensity 
emissions and corporate lifecycles.

AI can achieve real-time monitoring and fine 
management of carbon emission sources through 
data analysis and machine learning algorithms, 
thereby promoting scientific management and 
control of carbon emissions in enterprises (Xue, 
Liu, and Fu 2022). This influence has been vali-
dated in various fields, such as helping enterprises 
achieve efficient energy utilization and manage-
ment, promoting transitions to low-carbon eco-
nomic models, optimizing energy consumption, 
and encouraging green energy use (Huang and 
Zhou 2025). In smart manufacturing, smart grids 
improve energy efficiency and provide timely 
power at optimal costs (Palomares et al. 2021). 
Therefore, we propose the following hypothesis:

H1: AI significantly reduces carbon emission 
intensity.

AI use does not necessarily directly change carbon 
emission intensity; it requires adjustments in 
related production processes, technologies, and 
even personnel, which may entail additional costs 
and risks. Enterprises at different lifecycle stages 
have varying attitudes towards costs and risks, 
leading to varying impacts of AI on carbon emis-
sion intensity. According to the enterprise lifecycle 
theory, companies have diverse operational goals 
and methods at various developmental stages 
(Miller and Friesen 1984).

Growth-stage enterprises aim to increase their 
market share and diversify their product lines by 
continuously expanding their production, sales 
forces, and distribution systems. They are willing 
to diversely experiment, take risks, and face 
many investment opportunities (Zhang and Yu  
2024). These enterprises may adopt new 

technologies to improve efficiency, reduce costs, 
and meet market demand. Therefore, growth- 
stage enterprises are likely to invest resources in 
new technologies, thereby achieving environ-
mental and economic benefits. From a financing 
perspective, growth-stage enterprises have signif-
icant capital needs. To attract external investors, 
they may focus on efficiency and resource utili-
zation, optimize production processes, and 
reduce material waste, thereby lowering carbon 
emission intensity. Therefore, we propose the 
following hypothesis:

H2a: AI effectively reduces carbon emission 
intensity in growth-stage enterprises.

In the mature stage, enterprises achieve stable 
growth, profitability, and cash flow, usually by 
securing a specific market share. Their opera-
tional goals are often to maintain market share 
and profitability, pursue product differentiation, 
maximize profits, and focus on stability more 
than on aggressive expansion. Therefore, mature- 
stage enterprises may not be willing to invest in 
environmental technologies and practices. 
Established production and operational modes, 
institutionalized management processes, and for-
mal organizations hinder the implementation of 
AI and carbon reduction technologies without 
encountering internal resistance and adaptation 
issues (Gu and Peng 2022), thus reducing the 
likelihood and degree of lowering carbon emis-
sion intensity. Therefore, we propose the follow-
ing hypothesis:

H2b: AI does not effectively reduce carbon emis-
sion intensity in mature-stage enterprises.

In the decline stage, products or services become 
outdated, and market share and sales decrease. 
These enterprises may face outdated production 
equipment, lagging technology, reduced flexibility, 
and institutional rigidity (J. Liu et al. 2022). 
Survival is the primary concern when facing the 
risk of restructuring or market exit. Enterprises 
may adopt conservative or radically transformative 
strategies. They may focus on survival and financial 
stability, deprioritize environmental considera-
tions, and lack sufficient resources to invest in 
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environmental technologies. Therefore, we pro-
pose the following hypothesis:

H2c: AI does not effectively reduce carbon emis-
sion intensity in decline-stage enterprises.

Labour productivity is a crucial indicator of eco-
nomic performance. By improving labour produc-
tivity, enterprises can achieve higher output with 
the same labour input, reduce costs, use resources 
and energy more efficiently, and promote sustain-
able economic growth. AI fundamentally substi-
tutes and supplements human capital; enables 
automation and robotics to replace labour in repe-
titive, tedious, or dangerous tasks; reduces material 
waste; enhances production efficiency; and lowers 
carbon emissions per unit output (X. Li and Tian  
2023). For instance, automated sorting systems 
using robots and intelligent conveyers reduce man-
ual handling, retention time, energy consumption, 
and carbon emissions and increase logistics effi-
ciency. Therefore, we propose the following 
hypothesis:

H3a: AI reduces carbon emission intensity by 
improving labour productivity.

From the enterprise lifecycle perspective, growth- 
stage enterprises actively explore new markets and 
expand rapidly, requiring labour and capital to 
meet market demands. In the mature and decline 
stages, productivity has reached high levels, and 
enterprises may not prioritize productivity due to 
operational goals. This limits the potential of AI to 
reduce carbon emission intensity through produc-
tivity improvements. Therefore, we propose the 
following hypothesis:

H3b: AI significantly affects carbon emission 
intensity of growth-stage enterprises by improving 
their productivity.

AI fosters innovation by improving R&D effi-
ciency, accelerating innovation, optimizing sys-
tems and processes, and providing predictive 
and decision support. It enables enterprises to 
complete complex tasks, allowing employees to 
focus on creativity and innovation, and enhances 
carbon emission management. Innovation 

accelerates the adoption and use of renewable 
energy and equipment, improve traditional 
energy efficiency, and enhance new energy utili-
zation, thereby contributing to carbon reduction 
(Huang and Zhou 2025). By introducing AI, 
enterprises can develop efficient low-carbon pro-
ducts, improve their energy-use patterns, and 
optimize their production processes to reduce 
energy consumption and carbon emission inten-
sity. Therefore, we propose the following 
hypothesis:

H3c: AI reduces carbon emission intensity by 
promoting innovation.

In the decline stage, enterprises face market pres-
sure and must re-evaluate their strategies and 
operations, undergoing strategic transformations 
to adapt to changing market demands. AI can 
trigger innovation and help enterprises find new 
opportunities during difficult periods. New pro-
ducts and services resulting from innovation tend 
to be environmentally friendly. Therefore, we pro-
pose the following hypothesis:

H3d: AI significantly affects carbon emission 
intensity of decline-stage enterprises by improving 
their innovation.

Although previous studies have focused on the life-
cycle stages of enterprises, their cross-sectional het-
erogeneity must also be considered. AI’s impact on 
carbon emission intensity may vary depending on 
enterprise and industry characteristics. For 
instance, state-owned enterprises may receive gov-
ernment support, bear social responsibility, and 
invest in AI to reduce carbon emissions and 
enhance sustainable development. Medium-sized 
enterprises that balance expansion and stability 
may leverage AI to optimize production and 
improve efficiency. Small enterprises with limited 
resources may not be able to afford the high costs 
of implementing environmental technologies, 
whereas large enterprises with established systems 
may face integration challenges. Manufacturing 
enterprises involve complex processes that can be 
optimized using AI to reduce energy consumption 
and carbon emissions. High-pollution industries 
face strict environmental regulations and policies, 
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which drive them to adopt AI to reduce their car-
bon emissions. Non-high-tech industries that rely 
on traditional energy sources may benefit from AI 
optimization to reduce waste. Capital-intensive 
industries that rely on significant capital equip-
ment may use AI to reduce their energy consump-
tion. Therefore, we propose the following 
hypothesis:

H4: The impact of AI on carbon emission inten-
sity varies based on enterprise and industry char-
acteristics at different lifecycle stages.

III. Research design

Models

This study follows Moser and Voena (2012) and 
employs a two-way fixed-effects model comple-
mented by a difference-in-differences (DID) 
approach. This methodological framework is 
widely used in empirical studies to assess policy 
interventions and technological adoption effects, 
as it effectively accounts for time-invariant firm 
heterogeneity and common shocks over time 
(Angrist and Pischke 2009; Wooldridge 2010). 
The following baseline econometric model is used: 

where CIi;t is the carbon emission intensity of 
enterprise i in year t; α0 is the constant term; 
Treati is a dummy variable indicating whether 
enterprise i has applied AI at least once between 
2010 and 2021 (1 = yes, 0 = no); Postt is a dummy 
variable indicating whether year t is after the AI 
adoption (1 = yes, 0 = no); the interaction term 
Treati � Postt indicates the treatment effect (impact 
of AI adoption on carbon emission intensity); 
Xi;t� 1 represents control variables at the enterprise 
level, lagged by one period; αn is the coefficient for 
the control variables; δt represents year fixed effects 
to control for time-specific effects; ui represents 
enterprise fixed effects to control for time- 
invariant unobserved heterogeneity across enter-
prises; and vi;t is the error term representing the 
overall market random disturbances. Notably, 

Treati and Postt are absorbed by the enterprise 
fixed effects ui and year fixed effects δt and do 
not appear separately in the model. This helps 
mitigate unobserved heterogeneity and omitted 
variable bias, strengthening the causal interpreta-
tion of AI’s impact (Imbens and Wooldridge 2009).

To address the endogeneity issue, this study 
employs instrumental variable and event study 
methods. First, the probabilities of AI adoption in 
the industry and industry region (both excluding 
the focal firm) are used as instrumental variables 
for the firm’s AI adoption (Quan et al. 2023). This 
approach examines the impact of omitted variables 
and reverse causality on the regression results.

Subsequently, we use the event study method to 
confirm the parallel trends assumption. Following 
Xu and Yao (2015), we use the event study method 
to assess the distribution of AI’s impact. An enter-
prise’s AI adoption is defined as the event of inter-
est. The year of AI adoption is defined as year 0, 
with the years before and after adoption labelled 
−1, −2, and −3 and 1, 2, and 3, respectively. This 
generates a dummy variable, Treati;t, which repre-
sents whether enterprise i adopted AI in year t. 
Substituting this into Model (2) allows us to esti-
mate the dynamic changes in AI’s impact over the 
years surrounding the adoption event. 

Based on a theoretical analysis, AI may impact 
carbon emission intensity through increased 
labour productivity and innovation. To further 
explore the mechanisms of AI’s impact, this study 
constructs mediation effect models drawing on 
Jiang’s (2022) methodology. The following econo-
metric models are used: 

where Mi;t represents the mediator variables, speci-
fically labour productivity and innovation. The 
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models aim to test whether the impact of AI on 
carbon emission intensity is mediated by these 
variables.

Measures

This defines the dependent, independent, and 
mediating variables. A detailed description of the 
control variables is presented in the Supplementary 
Materials.

Dependent variable
Following the mainstream method in the existing 
literature, we measure corporate carbon emission 
intensity as the ratio of total carbon emissions to 
operating revenue (J. Wang, Wang, and Wang  
2022). According to the greenhouse gas protocol, 
a company’s carbon emissions are categorized into 
three scopes:

● Scope 1: Direct greenhouse gas emissions 
from sources owned or controlled by the com-
pany. These include stationary combustion 
from boilers for heating buildings, mobile 
combustion from vehicle fuel use, fugitive 
emissions such as methane from coal mines 
and ventilation systems, and process emissions 
from industrial manufacturing.

● Scope 2: Indirect greenhouse gas emissions 
from consumption of purchased electricity, 
steam, heating, and cooling.

● Scope 3: Other indirect emissions not covered 
in Scope 2, including emissions from upstream 
and downstream activities such as transporta-
tion of purchased fuels, employee commuting, 
and using sold products and services.

Scope 1 and 2 emissions must be disclosed under 
the greenhouse gas protocol, and their sum is typi-
cally reported as the company’s total carbon emis-
sions. This study adopts this measure to calculate 
total corporate carbon emissions.

Independent variable
Listed companies typically disclose significant 
operational information in their annual reports. 
This study conducts a text analysis of annual 
reports to extract information on AI technology 
applications. Keywords such as ‘artificial 

intelligence’, ‘AI’, and ‘intelligent manufacturing’ 
are used to identify relevant disclosures. The 
selection of artificial intelligence technology key-
words mainly refers to the White Paper on 
Artificial Intelligence Standardization (2018 edi-
tion) issued by the China Institute of Electronic 
Technology Standardization. Subsequently, we 
conduct a manual review to verify whether the 
company implemented AI in a given year. The 
constructed binary AI variable indicates whether 
a company implemented AI in a particular year, 
corresponding to the interaction term 
Treati � Postt in the baseline model. If 
a company applied AI at any point during the 
sample period, the variable is set to one for 
that year and subsequent years; otherwise, it is 
set to zero for all years.

Two critical concerns regarding the AI variable 
derived from text analysis are the reliability of 
keyword search results and potential biases in 
manual verification. To mitigate the first issue, 
this study constructs a keyword list based on 
a comprehensive review of relevant literature 
and industry reports, ensuring its relevance and 
accuracy in identifying AI applications. 
Moreover, sensitivity tests are conducted by vary-
ing keyword combinations, confirming the 
robustness of the results. For the second issue, 
a double-blind review process is implemented 
during manual verification. Two independent 
reviewers assess the identified AI-related texts, 
and any discrepancies are resolved through dis-
cussion or, if necessary, by consulting a third 
reviewer. This approach minimizes subjective 
bias and enhances the reliability of the manual 
verification process.

Mediating variables
Labour productivity (LP) is measured using the 
natural logarithm of the per capita operating 
revenue (Niu, Chen, and Lin 2023). Labour pro-
ductivity represents the value or output generated 
by a company per unit of time, reflecting the 
company’s production efficiency and operational 
performance. Innovation (RD) is measured using 
the natural logarithm of R&D expenditure. 
Companies’ R&D expenditures reflect the inten-
sity of their investments in innovative activities. 
Higher R&D expenditures indicate higher levels 
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of innovation. Although some studies have used 
the number of patent applications as an outcome 
measure of innovation, this indicator often has 
many missing values, and the absence of patent 
applications does not necessarily imply a lack of 
innovation. Therefore, this study uses a process- 
based indicator instead of an outcome-based one 
(C. Li et al. 2023).

Corporate lifecycles
Following the cash flow pattern method, compa-
nies are categorized into three lifecycle stages: 
growth, maturity, and decline (Zhang and Yu  
2024). Cash flow characteristics at each stage are 
presented in Table 1.

Data

This study uses data from Chinese A-share listed 
companies on the Shanghai and Shenzhen stock 
exchanges from 2010 to 2021. The main sources of 
sample data are the Global Trade Analysis database, 
annual disclosure data from listed companies, and the 
National Bureau of Statistics of China. Operating, 
scale, and innovation data are obtained from the 
Global Trade Analysis database. Carbon emission 
data are sourced from annual reports, corporate social 
responsibility reports, company websites, environ-
mental department websites, and the annual 

disclosure data of listed companies. The other vari-
ables are sourced from the China Statistical Yearbook, 
China Environmental Statistical Yearbook, China 
City Statistical Yearbook, and China Energy 
Statistical Yearbook. Samples with missing financial 
data, special treatment, and particular transfer are 
excluded, and all continuous variables in the regres-
sion are winsorized at the top and bottom 1% to 
mitigate the influence of outliers.

Table 2 presents the descriptive statistics of the 
main variables. Carbon emission intensity is approxi-
mately 475 kg per 10,000 yuan of operating revenue 
over the past decade. The average value of AI adop-
tion is 0.23, indicating that approximately 23% of 
firm-years implemented AI. The descriptive statistics 
of other variables fall within reasonable ranges.

Table 3 categorizes firms into growth, mature, 
and decline stages; reports observations and mean 
values for the key variables; and presents the results 
of independent t-tests between groups. Growth- 
stage firms are the most numerous and exhibit 
the highest carbon emission intensity, whereas 
mature-stage firms are the least numerous and 
have the lowest intensity. Mature-stage firms rank 
the highest in AI adoption, labour productivity, 
innovation, employment scale, asset turnover, and 
return on assets. Firm age increases from growth to 
decline. The t-test results identify significant differ-
ences in these variables across lifecycle stages.

Table 1. Cash flow combinations at different lifecycle stages.
Growth Decline

Cash Flow Type Introduction Growth Maturity Decline Decline Decline Elimination Elimination

Operating Cash Flow � þ þ � þ þ � �

Investing Cash Flow � � � � þ þ þ þ

Financing Cash Flow þ þ � � þ � þ �

Table 2. Descriptive statistics.
Variable Definition Obs. Mean Std. Dev. Min Max

CI Carbon Emission Intensity 24,755 475.3 206.2 152.9 1870.6
AI Artificial Intelligence (0 or 1) 24,755 0.23 0.42 0 1
lnLP Labor Productivity (log) 24,332 4.60 0.76 2.90 6.96
lnRD Technological Innovation (log) 18,401 17.85 1.37 13.59 21.90
AGE Firm Age (years) 24,755 9.61 7.46 0 31
lnEM Employment Scale (log) 24,755 7.73 1.23 4.73 11.24
lnTA Total Assets (log) 24,755 21.16 3.16 11.62 26.16
LEV Leverage Ratio 24,755 0.42 0.20 0 0.89
DTR Asset Turnover Ratio 24,755 0.64 0.39 0 2.34
ROA Return on Assets 24,755 0.06 0.07 −0.16 0.37
REVE Revenue Growth Rate 24,755 0.18 0.37 −0.50 2.47
CR Ownership Concentration 24,755 0.35 0.15 0.09 0.73
CAID Capital Intensity 24,755 60.25 98.10 1.78 682.13
ER Environmental Regulation Intensity 24,755 0.002 0.002 0.000 0.008
IS Industrial Structure (%) 24,755 41.91 8.68 16.16 55.57
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IV. Empirical analysis

Baseline results

Table 4 presents baseline regression results on the 
impact of AI on corporate carbon emission inten-
sity. As shown in Column (1), after controlling for 
time and firm fixed effects, AI adoption signifi-
cantly reduces carbon intensity. AI lowers carbon 
emissions by approximately 9 kilograms per 10,000 
yuan of revenue on average, supporting H1. This 
micro-level evidence supports previous findings at 
the industrial and regional levels (Tao, Wang, and 
Zhai 2023).

Columns (4)–(6) report the baseline regressions by 
firm lifecycle stage. For growth-stage firms, AI sig-
nificantly reduces carbon intensity by approximately 
15 units, supporting H2a. In contrast, the effects on 
mature- and decline-stage firms are not significant, 
supporting H2b and H2c. This variation across stages 
aligns with regional patterns of inverted U-shaped 
effects and ‘initial increase followed by decline’ 
(Meng and Zhao 2023), likely reflecting regional het-
erogeneity in firm characteristics.

Notably, AI adoption significantly reduces car-
bon emission intensity among growth-stage firms, 
whereas decline-stage firms experience a much 
weaker effect. This disparity arises from differ-
ences in financial resources, investment beha-
viours, and strategic priorities. Growth-stage 
firms invest in AI to boost productivity, cut 
costs, and improve energy efficiency through 
automation and optimized resource allocation, 

thereby lowering emissions. In contrast, decline- 
stage firms face financial constraints, outdated 
technology, and organizational rigidity, which 
limit AI’s effectiveness despite occasional innova-
tion. This suggests the need for tailored strategies 
of AI implementation, such as enhancing produc-
tivity in growth-stage firms and providing tar-
geted support to decline-stage firms.

Table 3. Descriptive statistics by firm life cycle.
Growth Maturity Decline Growth-Maturity Growth-Decline Maturity-Decline

Variable Obs. Mean Obs. Mean Obs. Mean t-stat

Carbon Emission Intensity 11,527 496.0 8,855 445.9 4,273 480.2 17.253*** 3.888*** −10.539***
Artificial Intelligence (0 or 1) 11,527 0.21 8,855 0.24 4,273 0.23 −5.124*** −1.806* 2.138**
Labor Productivity (log) 11,345 4.57 8,730 4.62 4,157 4.62 −4.467*** −3.679*** −0.257
Technological Innovation (log) 8,834 17.84 6,594 17.96 2,917 17.63 −5.730*** 7.115*** 10.890***
Firm Age (years) 11,527 8.28 8,855 10.38 4,273 11.47 −20.416*** −24.247*** −7.845***
Employment Scale (log) 11,527 7.76 8,855 7.89 4,273 7.34 −7.655*** 19.449*** 24.208***
Total Assets (log) 11,527 21.33 8,855 21.17 4,273 20.69 3.685*** 11.508*** 7.814***
Leverage Ratio 11,527 0.45 8,855 0.39 4,273 0.40 19.309*** 12.393*** −2.468**
Asset Turnover Rat. 11,527 0.65 8,855 0.67 4,273 0.55 −2.790*** 15.007*** 16.671***
Return on Assets 11,527 0.06 8,855 0.07 4,273 0.05 −11.505*** 15.627*** 21.827***
Revenue Growth 11,527 0.23 8,855 0.14 4,273 0.12 17.467*** 15.990*** 3.876***
Ownership Concentration 11,527 0.35 8,855 0.37 4,273 0.34 −9.160*** 3.420*** 10.000***
Capital Intensity 11,527 57.69 8,855 70.01 4,273 47.21 −8.531*** 6.596*** 12.097***
Environmental Regulation Intensity 11,527 0.002 8,855 0.002 4,273 0.002 1.061 5.190*** 4.162***
Industrial Structure 11,527 42.44 8,855 41.80 4,273 40.73 5.215*** 11.044*** 6.600***

***p < 0.01, **p < 0.05, *p < 0.1.

Table 4. Baseline regression results.
(1) (2) (3) (4)

Variables Full Sample Growth Maturity Decline

AI −9.404* −15.460* −1.851 −21.042
(−1.906) (−1.708) (−0.305) (−1.499)

AGE 4.911 −1.357 −1.381 19.910
(1.039) (−0.175) (−0.167) (1.544)

lnEM −30.276*** −33.294*** −9.260 −23.664
(−4.830) (−3.330) (−0.912) (−1.641)

lnTA 13.703** 8.088 −1.680 26.682*
(2.271) (0.815) (−0.158) (1.682)

LEV 37.819** 15.365 102.831*** −23.115
(2.249) (0.569) (3.693) (−0.434)

DTR −40.016*** −48.528*** −53.697*** −69.520**
(−4.325) (−3.252) (−4.297) (−2.547)

ROA 150.352*** 279.822*** −47.078 27.915
(4.724) (4.481) (−1.038) (0.370)

REVE 93.174*** 81.673*** 108.350*** 134.847***
(15.330) (8.976) (8.901) (8.072)

CR 45.171 55.867 11.797 8.793
(1.561) (1.271) (0.237) (0.097)

CAID −0.116*** −0.159*** −0.031 0.022
(−3.190) (−2.804) (−0.543) (0.185)

ER −890.624 −40.744 586.697 −785.991
(−0.697) (−0.017) (0.368) (−0.199)

IS −0.549 −0.799 0.213 1.098
(−0.719) (−0.607) (0.204) (0.446)

Constant 419.141*** 630.612*** 517.751** −31.062
(3.369) (3.163) (2.371) (−0.081)

Time FE 
Firm FE

YES 
YES

YES 
YES

YES 
YES

YES 
YES

Observations 24,755 11,527 8,855 4,273
R2 0.056 0.060 0.063 0.088

***p < 0.01, **p < 0.05, *p < 0.1; t-values in parentheses.
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Endogeneity issues

This study faces two main endogeneity issues: 
omitted variables and reverse causality. The for-
mer arises because unobservable variables may 
influence firms’ AI adoption and carbon emission 
intensity. The latter pertains to the bidirectional 
relationship, in which AI adoption may promote 
energy conservation and emission reduction, 
while the pressure to reduce carbon emissions 
may incentivize firms to adopt AI. We address 
the impact of endogeneity issues using two meth-
ods: instrumental variables and parallel trend 
tests.

Instrument variables
This study follows Quan et al. (2023) and employs 
two instrumental variables to identify the impact of 
AI adoption. Instrumental variable 1 is the average 
probability of AI adoption among other firms in 
the same industry, excluding the focal firm. 
Instrumental variable 2 is the average probability 
of AI adoption among other firms in the same 
industry and region, excluding the focal firm. The 
fundamental logic behind these instrumental vari-
ables is identical: both metrics influence the like-
lihood of a single firm adopting AI without a direct 
effect on the carbon emission intensity of an indi-
vidual firm.

The regression results are presented in Columns 
(2) and (3) of Table 4. The regression coefficients of 
the instrumental variables are −9.402 and −11.000, 
respectively, and both are significant. Comparing 
these results with the two-way fixed-effects esti-
mates in Column (1), the regression results for 
instrumental variables are highly consistent in 
terms of both coefficient magnitude and statistical 
significance. This indicates that the endogeneity 
concerns raised earlier do not lead to severe esti-
mation bias.

Parallel trend test
If the parallel trend test is satisfied, the two-way 
fixed-effects model resembles a multi-period DID 
design. We define the year of AI adoption as Year 
0, with Years −1–-3 preceding and Years 1–3 fol-
lowing, using the pre-adoption year as the baseline. 
Figure 2(a–d) illustrate the changes in carbon emis-
sion intensity for the full sample and growth-, 

mature-, and decline-stage firms. Before AI adop-
tion, the yearly coefficients are insignificant, con-
firming the parallel trend. For the full sample, the 
coefficients are negative from Year 0 and signifi-
cant in Years 0 and 1; for growth-stage firms, they 
are negative and significant in Years 2 and 3, 
whereas mature- and decline-stage firms exhibit 
no significant changes.

Thus, no significant change in carbon emis-
sion intensity occurs before AI adoption. After 
AI adoption, carbon emission intensity signifi-
cantly decreases, particularly in growth-stage 
firms. This substantiates the parallel trend 
assumption, establishes a causal relationship 
between AI and carbon emission intensity, and 
partially excludes potential bidirectional causal-
ity issues. This further confirms the robustness 
of the baseline regression results estimated using 
the two-way fixed-effects model.

Recent studies have questioned the validity of 
the two-way fixed-effects model due to issues with 
selecting a control group. The control group 
includes all non-intervention samples in the cur-
rent period. In this study, if the control group 
comprises firms that do not newly apply AI in the 
current period, it may include firms that have pre-
viously applied AI. As the effects of AI can last for 
several years, the dependent variable of some sam-
ples in the control group would already be influ-
enced by AI, potentially underestimating AI’s 
impact. Callaway and Sant’anna (2021) proposed 
a new method to address this issue by excluding 
samples that had previously applied AI from the 
control group. Figure 3 presents the dynamic 
impact of AI on carbon emission intensity using 
the DID method. The results show a significant 
reduction in carbon emission intensity after AI 
adoption, with the parallel trend holding.

Robustness

The robustness of our conclusions is influenced by 
the reliability of the variables, rationality of the 
samples, and effects of other technologies. 
Drawing on the existing literature (J. Wang, 
Wang, and Wang 2022), we adopt the following 
methods to conduct robustness checks on the esti-
mation results.
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Replacing the dependent variable measure
To ensure comparability, carbon emission inten-
sity is recalculated using Scope 2 emissions 
(purchased electricity, steam, heating, and cool-
ing). Electricity is a major emission source. As 
shown in Panel A of Table 5, AI significantly 
reduces intensity for the full sample. The AI 
coefficient remains significant, which is consis-
tent with the baseline findings.

Changing the method of enterprise lifecycle division
Beyond the cash flow method, we classify lifecycles 
using a comprehensive index based on four indi-
cators: revenue growth, retained earnings, capital 
expenditure ratios, and enterprise age (J. Liu et al.  
2022). We rank expenditure and revenue growth 
from high to low, and retained earnings and age 
from low to high, scoring by percentiles and sum-
ming. Using cash flow proportions, we reclassify 

Figure 2. Dynamic impact of AI on carbon emission intensity. (a) Full sample, (b) Growth, (c) Maturity, (d) Decline.

Figure 3. Dynamic impact of AI on carbon emission intensity based on DID estimation.
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the lifecycles. As shown in Panel B of Table 5, the 
results confirm our conclusions.

Changing the sample
To address systematic differences in carbon emis-
sions, this study excludes samples from underde-
veloped regions (Qinghai Province, Tibet 
Autonomous Region, and Xinjiang Uyghur 
Autonomous Region) and non-industrial sectors 
(construction and real estate industries). Panels 
C and D of Table 5 present the results. The AI 
coefficients are negative and significant for the 
full sample and growth-stage firms, whereas they 
are not significant for mature- and decline-stage 
firms. These findings align with the baseline regres-
sion results.

Testing for omitted variables
To address the potential omitted variable bias, we 
examine additional factors affecting carbon emis-
sion intensity. First, we include enterprise own-
ership as a control variable, as state-owned firms 
often receive government support, assume social 
responsibility, and are inclined to invest in AI to 

reduce emissions. Second, we control for the 
adoption of other digital technologies, measured 
using a text search for ‘digital technology’, ‘digital 
network’, and ‘data mining’ in annual reports 
(Zhao et al. 2024). As shown in Panels E and 
F of Table 5, the AI coefficients for the full 
sample and growth-stage firms remain signifi-
cant, which is consistent with the baseline regres-
sion results.

Counterfactual methods

We employ three counterfactual methods for pla-
cebo tests to reinforce the robustness of our 
findings.

Shifting the year of initial AI adoption
We artificially change the treatment timing to two 
years before, one year before, one year after, and 
two years after the actual year of AI adoption as the 
supposed year of adoption. Using Econometric 
Model (1), we examine whether AI’s impact on 
carbon emission intensity remains significant. As 
shown in Table 6, none of the coefficients are sig-
nificant, confirming the identified treatment effect.

Randomly changing the year of initial AI adoption
Assuming that the firms that adopted AI remain 
unchanged, we randomly select any year between 
2010 and 2021 as the initial AI adoption year for 
these firms. The AI impact coefficients in Model 
(1) are estimated using the new sample. This pro-
cess is repeated 1,000 times. As shown in 
Figure 4(a), the mean of the coefficients is close to 
zero and follows a normal distribution, indicating 
no significant effect.

Table 5. Robustness results.
(1) (2) (3) (4)
Full Growth Maturity Decline

Panel A
AI −1.524* −2.527* −0.834 −2.993

(−1.918) (−1.820) (−0.755) (−1.157)
Observations 24,751 11,529 8,848 4,274
R2 0.044 0.051 0.043 0.067
Panel B
AI −9.404* −9.585* −16.328 6.604

(−1.906) (−1.673) (−1.582) (0.328)
Observations 24,755 16,127 6,185 2,443
R2 0.056 0.061 0.052 0.076
Panel C
AI −9.195* −15.689* −1.778 −19.267

(−1.857) (−1.728) (−0.292) (−1.372)
Observations 24,556 11,449 8,784 4,226
R2 0.056 0.059 0.063 0.093
Panel D
AI −9.594* −16.763* −0.714 −19.313

(−1.936) (−1.802) (−0.120) (−1.499)
Observations 22,801 10,608 8,400 3,695
R2 0.053 0.06 0.059 0.083
Panel E
AI −9.336* −15.463* −1.6 −20.271

(−1.891) (−1.708) (−0.264) (−1.451)
Observations 24,751 11,526 8,854 4,271
R2 0.056 0.06 0.063 0.09
Panel F
AI −9.092* −15.078* −1.977 −20.472

(−1.838) (−1.662) (−0.326) (−1.453)
Observations 24,736 11,519 8,849 4,268
R2 0.056 0.06 0.063 0.089

***p < 0.01, **p < 0.05, *p < 0.1; t-values in parentheses. All regressions have 
control variables, time fixed effects, and firm fixed effects.

Table 6. Placebo test results.
(1) (2) (3) (4)

Carbon Emission Intensity

AI (Two Years Before) −1.641
(−0.325)

AI (One Year Before) −0.555
(−0.117)

AI (One Year After) −2.674
(−0.552)

AI (Two Years After) 1.584
(0.334)

Observations 24,755 24,755 24,756 24,756
R2 0.056 0.056 0.056 0.056

***p < 0.01, **p < 0.05, *p < 0.1; t-values in parentheses.
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Randomizing treatment and control groups
Firms in the original treatment group that have 
adopted AI are considered as the new control 
group. Random samples of firms are then drawn 
as the new treatment group based on the number of 
new AI adopters each year from 2010 to 2021. 
Model (1) is used to estimate AI’s impact, and 
this process is repeated 1,000 times. As shown in 
Figure 4(b), the mean of the coefficients is 2.93, 
which differs significantly from the baseline regres-
sion’s −9.404, and is approximately normally 
distributed.

Mechanism tests

We examine whether AI impacts productivity and 
innovation using Models (3) and (4). Table 7 shows 
the regression results for the mediation effects.

The productivity mechanism
For the full sample, Column (1) reports 
a significantly positive AI coefficient, whereas 
Column (2) shows a labour productivity coefficient 
of −78.163. This suggests that AI reduces carbon 
emission intensity by improving labour productiv-
ity, supporting H3a. For growth-stage firms, 
Column (3) indicates a significantly positive AI 

coefficient, whereas Column (4) reports a labour 
productivity coefficient of −105.678, supporting 
H3b. In contrast, labour productivity has no signifi-
cant effect on mature- and decline-stage firms, as 
shown in Columns (6) and (8). At the industry and 
regional levels, productivity improvements through 
process optimization (Bloomfield et al. 2021), labour 
substitution (X. Li and Tian 2023), increased output 
(J. Liu et al. 2022), and enhanced energy efficiency 
(Yu et al. 2023) are key to reducing emissions.

The innovation mechanism
As shown in Column (1), the AI coefficient for the 
full sample is significantly positive. As shown in 
Column (2), after controlling for innovation, the 
AI coefficient is significantly negative, with an inno-
vation coefficient of −8.462, supporting H3c. For 
decline-stage firms, Column (7) reports 
a significantly positive AI coefficient, whereas 
Column (8) indicates an insignificant AI effect and 
significantly negative innovation coefficient 
(−18.821), supporting H3d. Similarly, industry- 
and region-level mechanisms, whether through 
increased R&D (X. Li and Tian 2023) or structural 
optimization and green technology (Chen et al.  
2022), suggest that AI’s micro-level impact depends 
on enhancing innovation efficiency.

Figure 4. Placebo test (regression coefficient distribution). (a) Randomly changing the adoption year, (b) Randomly changing the 
treatment group.
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V. Heterogeneity analysis

Firm-level heterogeneity

Our results indicate that AI significantly reduces 
firms’ carbon emission intensity, particularly in 
growth-stage firms. We explore the heterogeneity 
of this impact considering firm- and industry-level 
characteristics. Table 8 presents the regression 
results for the firm-level heterogeneity effects of 
AI on carbon emission intensity.

Ownership
The AI coefficient is significantly negative for state- 
owned enterprises (SOEs) but not for non-SOEs, 
with no significant effects across the lifecycle stages. 
This may reflect the fact that SOEs, which are 
supported by government funding and dual eco-
nomic-social objectives, are willing to invest in AI 
for carbon reduction. In contrast, non-SOEs, which 
are driven by market competition and focus on 
short-term gains, are cautious about the substantial 
investments required to reduce emissions.

Firm size
The impact of AI on carbon emission intensity 
varies by firm size. Medium-sized firms exhibit 
a significantly negative AI coefficient, whereas 

small and large firms do not exhibit significantly 
positive coefficients. Moreover, AI reduces emis-
sions primarily during the growth stage of medium 
and large firms, likely reflecting a balance between 
expansion and stability. Mature-stage firms have 

Table 7. Mediation effect regression results.
Full Sample Growth Maturity Decline

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A lnLP CI lnLP CI lnLP CI lnLP CI

AI 0.028*** −7.354 0.024*** −12.600 0.007 −2.947 0.067*** −22.349
(4.466) (−1.487) (2.881) (−1.382) (0.874) (−0.491) (2.927) (−1.590)

lnLP −78.163*** −105.678*** −25.559 −21.861
(−7.368) (−6.308) (−1.329) (−0.874)

Control Variables YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Observations 24,727 24,332 11,537 11,345 8,822 8,730 4,263 4,157
R2 0.791 0.062 0.815 0.067 0.836 0.063 0.720 0.094

Full Sample Growth Maturity Decline

(1) (2) (3) (4) (5) (6) (7) (8)

Panel B lnRD CI lnRD CI lnRD CI lnRD CI

AI 0.042* −11.031* 0.045 −19.393* 0.031 −3.619 0.103* 7.883
(1.915) (−1.871) (1.512) (−1.773) (0.916) (−0.493) (1.785) (0.497)

lnRD −8.462*** −12.232** −2.797 −18.821*
(−2.732) (−2.096) (−0.627) (−1.951)

Control Variables YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Observations 18,677 18,401 8,977 8,834 6,662 6,594 2,980 2,917
R2 0.560 0.053 0.607 0.061 0.523 0.067 0.483 0.083

***p < 0.01, **p < 0.05, *p < 0.1; t-values in parentheses.

Table 8. Firm-level heterogeneity results.
(1) (2) (3) (4)
Full Growth Maturity Decline

Panel A: State-Owned Enterprises
AI −16.130** −23.486 −8.498 −28.588

(−2.065) (−1.586) (−0.863) (−1.040)
Observations 8,586 3,574 3,447 1,517
R2 0.067 0.071 0.080 0.096

Panel B: Non-State-Owned Enterprises
AI −9.092 −14.01 −0.572 −6.049

(−1.413) (−1.212) (−0.074) (−0.369)
Observations 16,165 7,952 5,407 2,754
R2 0.060 0.070 0.055 0.102

Panel A: Small Firms
AI −0.710 −18.589 −102.190** 4.603

(−0.035) (−0.627) (−2.549) (0.081)
Observations 1,565 729 388 416
R2 0.103 0.139 0.203 0.236

Panel B: Medium Firms
AI −42.865** −62.295* −3.948 −48.086

(−2.365) (−1.664) (−0.178) (−1.320)
Observations 5,032 2,309 1,610 1,070
R2 0.058 0.095 0.074 0.136

Panel C: Large Firms
AI −7.647 −21.612** 3.758 0.142

(−1.464) (−2.232) (0.565) (0.009)
Observations 18,158 8,489 6,857 2,787
R2 0.058 0.055 0.065 0.088

***p < 0.01, **p < 0.05, *p < 0.1; t-values in parentheses. All regressions have 
control variables, time fixed effects, and firm fixed effects.
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established production systems that complicate AI 
integration, whereas small firms constrained by 
limited resources tend to focus on economic effi-
ciency over costly environmental technology 
investments.

Industry-level heterogeneity

Table 9 presents the effects of AI from an industry- 
level perspective.

Manufacturing versus non-manufacturing industries
The AI coefficient is significantly negative for man-
ufacturing firms, whereas it is not for non- 
manufacturing firms. Manufacturing processes, 
such as raw material handling and assembly, offer 
scope for AI to optimize operations, reduce energy 
use, and curb emissions. Non-manufacturing firms 
generally have low energy consumption and emis-
sion intensity; therefore, AI has a small effect. 
These results align with those of C. Li et al. (2023) 
and explain the regional differences noted by Tao, 
Wang, and Zhai (2023), as areas with higher man-
ufacturing shares show greater carbon reductions 
from AI adoption.

High-pollution versus low-pollution industries
For high-pollution industries, AI significantly 
reduces carbon emission intensity, whereas the 
effect is not significant for low-pollution industries. 
Across the lifecycle, this reduction appears mainly 
in the growth stage of high-pollution industries, 
which face strict regulations and high-emission 
processes. Low-pollution industries experience 
less regulatory pressure and have lower emissions, 
thus exhibiting a weaker AI effect. These findings 
provide micro-level evidence consistent with those 
of Yu et al. (2023) and C. Li et al. (2023), who 
report AI’s carbon-reducing impact at the industry 
level.

High-tech versus non-high-tech industries
In non-high-tech industries (Peng and Mao  
2017), AI significantly reduces carbon intensity; 
however, no similar effect is observed in high-tech 
industries. This reduction during the growth stage 
in non-high-tech sectors is likely because these 
firms rely on traditional energy, which can be 
optimized by AI, and have capital for AI invest-
ments. High-tech firms often operate with low 
emissions or use advanced low-carbon technolo-
gies, allowing little room for AI-driven cuts. This 
finding differs from that of L. Liu et al. (2021), 
whose 2006–2016 sample reflected AI as automa-
tion. By extending the sample to 2021, this study 
captures newer AI technologies, such as deep 
learning and big data, that may affect post- 
2016 high-tech firms differently.

Table 9. Industry-level heterogeneity results.
(1) (2) (3) (4)

Full Sample Growth Maturity Decline

Panel A: Manufacturing
AI −9.765* −13.112 −4.866 −15.810

(−1.847) (−1.329) (−0.778) (−1.235)
Observations 20,004 9,370 7,174 3,377
R2 0.053 0.060 0.064 0.081

Panel B: Non-Manufacturing
AI −10.579 −23.208 5.815 −88.478

(−0.801) (−1.007) (0.328) (−1.558)
Observations 4,751 2,157 1,681 896
R2 0.081 0.089 0.074 0.155

Panel A: High-Pollution Industries
AI −21.435*** −33.590** −12.257 −36.907

(−2.655) (−2.020) (−1.433) (−1.624)
Observations 8,734 3,965 3,543 1,199
R2 0.054 0.063 0.065 0.086

Panel B: Low-Pollution Industries
AI −2.929 −5.547 3.491 −16.118

(−0.466) (−0.500) (0.425) (−0.950)
Observations 16,021 7,562 5,312 3,074
R2 0.059 0.060 0.067 0.092

Panel A: High-Tech Industries
AI −8.929 −10.698 −6.344 −11.016

(−1.498) (−0.966) (−0.856) (−0.818)
Observations 15,793 7,572 5,521 2,639
R2 0.056 0.061 0.060 0.112

Panel B: Non-High-Tech Industries
AI −15.474* −28.104* 2.716 −46.358

(−1.756) (−1.697) (0.262) (−1.459)
Observations 8,934 3,941 3,325 1,630
R2 0.056 0.055 0.074 0.100

Panel A: Labor-Intensive Industries
AI −12.549 −26.247 6.111 −26.119

(−1.391) (−1.414) (0.539) (−0.773)
Observations 5,825 2,547 2,320 926
R2 0.061 0.064 0.079 0.123

Panel B: Capital-Intensive Industries
AI −28.229** −36.506* −17.972 −40.080

(−2.528) (−1.725) (−1.555) (−0.948)
Observations 7,110 3,328 2,551 1,212
R2 0.054 0.053 0.082 0.088

Panel C: Technology-Intensive Industries
AI 1.710 1.352 2.451 −2.748

(0.252) (0.109) (0.272) (−0.200)
Observations 11,818 5,650 3,984 2,135
R2 0.056 0.064 0.052 0.114

***p < 0.01, **p < 0.05, *p < 0.1; t-values in parentheses. All regressions have 
control variables, time fixed effects, and firm fixed effects.
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Factor intensity
Dividing the sample by factor intensity (Dong and 
Guo 2021) reveals that AI significantly lowers car-
bon emission intensity in capital-intensive indus-
tries, particularly during the growth stage. These 
firms rely on capital equipment, and AI allows 
precise resource allocation and energy use. 
During their growth, these firms have resources 
to invest in AI and environmental technologies. 
In contrast, labour-intensive firms have a limited 
capacity to reduce emissions, and technology- 
intensive firms that are already heavily automated 
gain less from AI implementation.

VI. Discussion

The results reveal that AI significantly reduces cor-
porate carbon emission intensity. The reduction is 
particularly pronounced during the growth stage, 
while the impact on mature- and decline-stage 
enterprises is insignificant. AI reduces corporate 
carbon emission intensity by improving productiv-
ity and promoting innovation, manifested mainly 
during the growth and decline stages, respectively. 
The impact of AI on corporate carbon emission 
intensity varies based on firm and industry attri-
butes. AI use significantly reduces carbon emission 
intensity in state-owned enterprises; growth-stage 
medium and large enterprises; manufacturing 
enterprises; and growth-stage enterprises in heavily 
polluting, non-high-tech, and capital-intensive 
industries.

In the context of sustainable business models, 
the resource-based perspective posits that firms can 
achieve competitive advantages by leveraging sus-
tainable resources and capabilities (Huang and 
Zhou 2025). AI serves as a strategic resource and 
dynamic capability that enhances operational effi-
ciency and environmental performance according 
to the Natural-Resource-Based View (Alkaraan 
et al. 2024). AI enables firms to optimize produc-
tion processes, reduce waste, and improve energy 
efficiency, thereby lowering carbon emissions. For 
instance, AI-driven predictive maintenance can 
anticipate equipment failures and reduce down-
time and energy consumption. In addition, AI 
algorithms can optimize supply chain logistics, 
leading to decreased fuel usage and associated 
emissions.

Furthermore, absorptive capacity, that is, the 
ability to recognize, assimilate, and apply new 
information, is critical to AI’s effectiveness in redu-
cing carbon emissions over a firm’s lifecycle. In the 
start-up phase, firms typically have limited 
resources and informal structures, resulting in 
low absorptive capacity (Phelps, Adams, and 
Bessant 2007) and challenges in adopting AI to 
achieve carbon reduction. External partnerships 
can help develop the necessary capabilities. As 
firms expand, they establish formal processes that 
enhance their capacity to integrate AI effectively, 
leading to improved energy efficiency and lower 
emissions. This is consistent with findings by 
C. Wang, Zhang, and Teng (2023) on green 
absorptive capacity and innovation. In contrast, 
decline-stage firms often exhibit rigid structures 
and diminished absorptive capacity, limiting AI 
adoption. Revitalization should focus on boosting 
absorptive capacity by fostering openness to exter-
nal knowledge and restructuring processes, thereby 
enabling the reintegration of AI solutions for car-
bon reduction and facilitating the return on 
growth.

The recent literature supports these interpreta-
tions. For instance, studies show that the AI- 
empowered technologies significantly reduce car-
bon dioxide emissions, particularly in the early 
stages of adoption (Kuang et al. 2024). This reduc-
tion is attributed to the improved resource utiliza-
tion and absorptive capacity of AI. However, the 
environmental costs associated with AI implemen-
tation at an aggregate level must be acknowledged. 
Training AI models can be energy-intensive, con-
tributing to increased carbon emissions. For 
instance, training large AI models consumes sub-
stantial amounts of energy, leading to a significant 
carbon footprint (Alzoubi and Mishra 2024). 
Therefore, firms must balance the benefits of AI 
adoption with strategies to mitigate its environ-
mental impacts, such as utilizing energy-efficient 
hardware and sourcing renewable energy for data 
centres.

We derive several policy implications based on 
the results of this study. First, considering the sig-
nificant negative relationship between AI adoption 
and carbon emission intensity, policymakers 
should actively promote AI-driven green technol-
ogies. Incentives such as tax reductions, R&D 
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subsidies, and financial support should be provided 
to encourage firms to integrate AI into their pro-
duction processes. Firms in high-carbon industries 
should focus on overcoming the initial adoption 
barriers.

Moreover, as AI adoption has the strongest car-
bon reduction effect on growth-stage firms, with 
negligible effects on mature- and decline-stage 
firms, policymakers should develop differentiated 
AI promotion strategies. For growth-stage firms, 
AI investments should be encouraged through tar-
geted financial incentives and training programmes 
to maximize productivity gains and reduce emis-
sions. For mature-stage firms, policymakers should 
support AI-driven business model innovations that 
enhance environmental efficiency. For decline-stage 
firms, AI’s role in fostering innovation should be 
assisted by offering transformation-oriented grants 
and industry-specific guidance to help firms reorient 
their strategies towards sustainable operations.

As AI primarily reduces carbon emissions 
through productivity improvements in growth- 
stage firms and innovation in decline-stage firms, 
government support should promote AI-driven 
operational efficiency by facilitating access to digital 
infrastructures, cloud computing, and AI-enabled 
energy management systems. In addition, policies 
should strengthen R&D investment incentives to 
support innovation in firms undergoing restructur-
ing or seeking to transition towards productive 
models (Foreman-Peck and Zhou 2022, 2023).

Furthermore, the carbon reduction benefits of AI 
are the most pronounced in state-owned, medium- 
sized, manufacturing, high-pollution, non-high- 
tech, and capital-intensive firms. Therefore, policies 
should prioritize AI deployment in manufacturing 
and high-emission industries by offering sector- 
specific incentives and environmental compliance 
benefits. Moreover, policies should encourage state- 
owned enterprises to adopt AI as role models in 
sustainable corporate practices. Governments 
should provide tailored AI adoption support for 
capital-intensive industries, in which AI can signifi-
cantly optimize energy and resource use.

VII. Conclusion

This study indicates that that AI can reduce corpo-
rate carbon emission intensity. Our findings 

contribute to the growing literature on digital tech-
nologies and environmental sustainability by intro-
ducing the firm lifecycle dimension. While previous 
research has mainly adopted a static perspective 
(Zhang and Yu 2024), this study is among the first 
to systematically examine AI’s role in carbon reduc-
tion through the lens of the firm lifecycle theory. 
Furthermore, by distinguishing among growth-, 
mature-, and decline-stage firms, this study moves 
beyond static analyses to develop a dynamic frame-
work that captures the heterogeneous effects of AI 
adoption on corporate carbon emission intensity and 
provides a nuanced understanding of AI implemen-
tation among firms with varying operational strate-
gies. Moreover, this study highlights the importance 
of firm and industry characteristics in determining 
the effectiveness of AI implementation. The observed 
heterogeneity across firm size, ownership structure, 
and industry type suggests that AI’s impact is non- 
uniform. These findings can be understood using 
two well-established theoretical paradigms: resource- 
based view and absorptive capacity. In addition, this 
study identifies two distinct mechanisms through 
which AI reduces carbon emission intensity: improv-
ing productivity, which particularly benefits growth- 
stage firms, and fostering innovation, which benefits 
decline-stage firms. This refinement helps resolve the 
divergent results at the industrial and regional levels 
in previous studies (Chen et al. 2022; Tao, Wang, 
and Zhai 2023; Yu et al. 2023). Firm-level evidence 
also provides practical insights into the development 
of targeted AI application strategies for firms across 
different lifecycles.

Although this study provides 
a comprehensive analysis, future research 
should address several limitations. First, future 
studies should examine the long-term effect of 
AI implementation on corporate sustainability 
to provide deeper insight into the persistence 
and dynamics of AI-induced carbon reduction. 
Second, integrating micro-level data on AI 
technologies, such as machine learning models 
and automation systems, could refine our 
understanding of AI’s specific role of AI in 
emission management. Third, cross-country 
comparisons could shed light on the roles of 
regulatory frameworks and market dynamics in 
the environmental effects of AI, thereby offer-
ing global policy recommendations.
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