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A B S T R A C T

Wave breaking is a multifaceted physical phenomenon that is not fully understood and remains challenging to
model. An effective method for investigating wave breaking involves utilising the two-phase Reynolds-averaged
Navier–Stokes (RANS) equations to directly simulate breaking waves. In this study, we apply a RANS model
with an adaptively refined mesh to simulate breaking waves in deep water using the stabilised RANS model
proposed by Larsen and Fuhrman. This approach enables a more efficient simulation of the physics of breaking
waves compared to Direct Numerical Simulations, as it places less stringent demands on grid resolution. Our
findings demonstrate that the RANS model compares well with deep water wave breaking experiments in terms
of surface elevation. We also give estimates of the breaking strength parameter of our RANS simulations and
compared them with the literature.
1. Introduction

Wave breaking is an important phenomenon in the ocean, yet
many aspects of it remain poorly understood. Wave breaking domi-
nates energy dissipation in the ocean [1]. Energy dissipation related
to breaking involves a complex combination of energy transfer and
energy dissipation mechanisms. In order to understand these mecha-
nisms, many Computational Fluid Dynamics (CFD) methods including
Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES), and
Reynolds-Averaged simulation (RANS) have been used to solve the
two-phase Navier–Stokes equations. Although DNS and LES simulations
have become feasible given increasing computing resources, it is still
very expensive to perform parametric studies with these methods. Full-
scale DNS simulation is difficult and resource-demanding even for
systems at laboratory scale. Hence, the focus of this paper is on RANS
simulation as a relatively cheap way to study wave breaking that can
ultimately be used to generate a large ensemble of simulations, suitable,
for example, for machine-learning applications.

A well-known issue affecting RANS simulations is that all standard
turbulence models, such as 𝜅 − 𝜖 or 𝜅 −𝜔, overestimate the generation
of turbulent kinetic energy (TKE) in the near-potential flow region. The
overproduction of TKE can cause an underestimated wave height at
the onset of the breaking or during the breaking. This underestimation
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has been reported in existing studies [2–4]. Many numerical studies of
breaking waves adopt the non-stabilised 𝜅 − 𝜖 or 𝜅 − 𝜔 model [5–8].
However, in recent years, this issue has been successfully addressed by
switching to a modified 𝜅 − 𝜔 model or to a Reynolds Stress Equation
Model (RSM) [9,10]. Specifically, the unbounded growth of TKE leads
to unphysical damping of surface waves. This issue appears due to an
incorrect prediction of the generation of turbulence from the potential-
flow motion. The conditional stability of 𝜅 − 𝜔 models was shown
by Mayer and Madsen [11]. Wilcox [12] proposed a revised 𝜅−𝜔 model
with a stress limiter to improve the prediction of TKE in anisotropic
regions such as shock wave boundary layers and stagnation points.
Following their work, Larsen and Fuhrman [9] investigated the stability
of several RANS models including the revised models [11,12] under
(potential-flow) gravity-wave perturbations, leading to the proposal of
a new 𝜔-limiter to stabilise the 𝜅 − 𝜔 model of Wilcox [12,13].

Several studies of breaking waves [14–17] have been performed
with the revised turbulence model of Larsen and Fuhrman [9] and re-
port close agreement between experiments and simulations for shallow-
water breaking waves. In very recent work, simulations with Wilcox’s
stress-𝜔 model [18] have been performed for modulated plane waves
in deep water. These simulations compare well with experimental
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measurements in terms of spectral downshifting. To our knowledge,
deep water wave breaking has not been successfully studied.

The goal of this paper is to introduce an implementation of the
RANS model for the purpose of near-energy-conserving (in the absence
of breaking) simulation of breaking surface gravity waves on deep
water with Adaptive Mesh Refinement (AMR) to enable relatively
cheap computation of large ensembles of 2D simulations of breaking
waves. We show that the stabilised 𝜅−𝜔 model proposed by Larsen and
uhrman [9] works well with AMR, and the result agrees satisfactorily
ith experimental measurements by Eeltink et al. [19]. Estimates of the
reaking parameter [20] obtained from our RANS simulations are in
easonable agreement with the parametrisation by Romero et al. [21].
oreover, we show that the total energy loss outside of the breaking

hase is less than 2% in most cases and that viscous dissipation has a
egligible contribution.

This paper will be organised as follows. In Section 2 we introduce
he numerical model that we use to perform the RANS simulations.
n Section 3 we discuss the convergence of the simulation for Stokes
aves and a focused wave group case. In Section 4 we will analyse

he results we obtained from the model and compare to experimental
easurements from Eeltink et al. [19] for three different types of waves

modulated plane waves, focussed wave groups and random waves).
e conclude and discuss the validity of the model in Section 5.

. Methodology

.1. Navier–Stokes equations

We use the open-source numerical package ‘Basilisk’ [22] to solve
wo-phase Reynolds-Averaged Navier–Stokes (RANS) equations on a
D grid that uses AMR. Momentum conservation is achieved by ap-
lying the momentum-conserving volume-of-fluid (VOF) scheme. Mass,
omentum and volume conservation are described by:

𝜕𝜌
𝜕𝑡

+
𝜕(𝜌𝑢𝑖)
𝜕𝑥𝑗

= 0, (1)

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+
𝜕(𝜌𝑢𝑗𝑢𝑖)
𝜕𝑥𝑗

= −
𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜎𝑖𝑗
𝜕𝑥𝑖

+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑔𝑖, (2)

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (3)

here 𝑢 is the mean velocity field, 𝜌 is the fluid density, 𝑝 is the
ressure, 𝑔 is gravity force vector, 𝜎 is the viscous stress tensor in
ncompressible flow that is defined as 𝜎𝑖𝑗 = 2𝜇𝑆𝑖𝑗 , 𝜇 is the fluid dynamic
iscosity, 𝑆𝑖𝑗 = (𝜕𝑢𝑗∕𝜕𝑥𝑖 + 𝜕𝑢𝑖∕𝜕𝑥𝑗 )∕2 (as defined in Eq. (7)), 𝜏𝑖𝑗 is
he Reynolds stress tensor. In this study, the effect of surface tension
s ignored. The density 𝜌 and the viscosity 𝜇 change according to the
olume fraction field 𝑐(𝐱, 𝑡), where 𝑐 is bounded within the range [0, 1].

2.2. The 𝜅 − 𝜔 turbulence model

This subsection sets out the equations for the turbulence model we
consider in this paper. More details and theoretical background can
be found in Wilcox [12]. We implement a RANS turbulence model to
approximate the Reynolds stress tensor 𝜏𝑖𝑗 in Eq. (2) based on the 𝜅−𝜔

wo-Equation Model [12]. Using the Boussinesq approximation [23]
or incompressible flow, we define 𝜏𝑖𝑗 = 2𝜌𝜈𝑡

[

𝑆𝑖𝑗 − 1∕3
(

𝜕𝑢𝑘∕𝜕𝑥𝑘
)

𝛿𝑖𝑗
]

−
2∕3𝜌𝜅𝛿𝑖𝑗 , where 𝜈𝑡 is the turbulent eddy viscosity and 𝜅 is the turbu-
ence kinetic energy. The −1∕3𝜕𝑢𝑘∕𝜕𝑥𝑘 term vanishes in incompressible

flow. In practice, the turbulent normal stress (2∕3𝜌𝜅𝛿𝑖𝑗 term) can be
either absorbed by the pressure term in the momentum Eq. (2), or ne-
glected in linear two-equation turbulence models. Following practical
notes of Rumsey [24], we choose to neglect the turbulent normal stress
in the momentum equation. Therefore, only the deviatoric anisotropic

stress components are involved in the simulation.
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It has been shown by Larsen and Fuhrman [9] that the ‘standard’
version of the 𝜅−𝜔 model [12] is unstable to perturbations in the near-
potential-flow region. The turbulence kinetic energy (TKE) is subject
to unbounded growth under the influence of a Stokes wave. Hence, we
adopt a modified version of this model with a specific stress limiter that
has been introduced to solve this problem [9]. The conservative form
of the 𝜅 −𝜔 model in incompressible flow with buoyancy correction is
written as follows [9], given that 𝜅 is the modelled TKE and 𝜔 is the
modelled turbulence dissipation rate:

𝜕(𝜌𝜅)
𝜕𝑡

+
𝜕(𝜌𝑢𝑗𝜅)
𝜕𝑥𝑗

= 𝑃 − 𝜌𝛼∗𝑏𝑁
2 − 𝛽∗𝜌𝜔𝜅 + 𝜕

𝜕𝑥𝑗

[

(

𝜇 + 𝜎𝜅
𝜌𝜅
𝜔

) 𝜕𝜅
𝜕𝑥𝑗

]

, (4)

𝜕(𝜌𝜔)
𝜕𝑡

+
𝜕(𝜌𝑢𝑗𝜔)
𝜕𝑥𝑗

=
𝛾̄𝜔
𝜅
𝑃 − 𝛽𝜌𝜔2 + 𝜕

𝜕𝑥𝑗

[

(

𝜇 + 𝜎𝜔
𝜌𝜅
𝜔

) 𝜕𝜔
𝜕𝑥𝑗

]

+
𝜌𝜎𝑑
𝜔

𝜕𝜅
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

,

(5)

here

𝑃 = 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

, (6)

𝑆𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

, (7)

𝜇𝑡 =
𝜌𝜅
𝜔̃
, (8)

̃̃𝜔 = max
⎡

⎢

⎢

⎣

𝜔̃, 𝜆1

√

2𝑆𝑖𝑗𝑆𝑖𝑗 − 𝛼∗𝑏𝑁
2

𝛽∗

⎤

⎥

⎥

⎦

, (9)

𝜔̃ = max
[

̃̃𝜔, 𝜆2
𝛽
𝛽∗𝛾̄

𝑆𝑖𝑗𝑆𝑖𝑗
𝛺𝑖𝑗𝛺𝑖𝑗

𝜔
]

, (10)

𝑁2 =
𝑔𝑖
𝜌
𝜕𝜌
𝜕𝑥𝑖

, (11)

and the constants and other parameters are:

𝜎𝜅 = 0.6, 𝜎𝜔 = 0.5, 𝛽∗ = 0.09, (12)

𝛾̄ = 13
25
, 𝛽0 = 0.0708, 𝛽 = 𝛽0𝑓𝛽 , (13)

𝜆1 = 0.875, 𝜆2 = 0.05, 𝛼∗𝑏 = 1.36, (14)

𝑓𝛽 =
1 + 85𝜒𝜔
1 + 100𝜒𝜔

, 𝜒𝜔 =
|

|

|

|

|

|

𝛺𝑖𝑗𝛺𝑗𝑙𝑆̂𝑙𝑖
(𝛽∗𝜔)3

|

|

|

|

|

|

, (15)

̂𝑙𝑖 = 𝑆𝑙𝑖 −
1
2
𝜕𝑢𝑚
𝜕𝑥𝑚

𝛿𝑙𝑖, 𝛺𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

)

, (16)

𝑑 =

⎧

⎪

⎨

⎪

⎩

0 for 𝜕𝜅
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

≤ 0,

0.125 for 𝜕𝜅
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

> 0.
(17)

For the 2D problem we examine, we turn off the ‘Pope Correction’
[25,26] and set 𝜒𝜔 = 0.

2.3. Adaptive mesh refinement

We solve the above mentioned Navier–Stokes equations in con-
junction with the RANS model with an adaptively refined mesh. An
adaptively refined mesh refines or coarsens elements in different re-
gions according to specific criteria, such as the error estimates of the
solution or the presence of steep gradients. Basilisk adopted a quadtree
data structure to efficiently traverse the 2D mesh at different resolution
levels. A quadtree is a tree data structure in which each node has
exactly four children. In the context of 2D adaptive mesh refinement,
a quadtree divides a 2D domain into four quadrants recursively. Each
node in the quadtree represents a square region of the domain, and
each division into four children corresponds to a refinement of that
region. Further details of the mesh refinement scheme used are given
in Popinet [22].

An error estimator assesses the local error in the solution across the
mesh. Based on the error estimates, the quadtree structure is refined
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Fig. 1. A snapshot of the mesh during breaking. The mesh is refined adaptively based on the local error of velocity and volume fraction. The interface and the bottom boundary
is enforced to maximum resolution at all time. The maximum resolution of this simulation is 0.0032𝜆0, where 𝜆0 is the carrier wave length.
by subdividing nodes into regions with high error and potentially
coarsened by merging nodes in regions with low error. This results in a
new, adaptively refined mesh. The process iterates, solving the partial
differential equations on the refined mesh, reestimating the error, and
further refining the mesh until the solution meets the desired accuracy
criteria. In this study, we evaluated the local error of the velocity and
volume fraction. In addition, we enforce the grid resolution near the
air–water interface and the bottom boundary to the maximum (Fig. 1).
We also performed a validation study to help determine the appropriate
maximum grid resolution.

Prolongation and restriction of field variables are required when
coarsening and refining the mesh. Prolongation transfers information
from a coarse mesh to a fine mesh, and restriction is its complementary
process. They must be processed with care to ensure that the adapted
solution still satisfies the conservation of mass and momentum. We
adopt default settings of Basilisk for velocity and volume fraction
field [22]. For the turbulence variables 𝜅 and 𝜔, we use the bilinear
interpolation method for prolongation and the volume average method
for restriction.

2.4. Wave parameters

We perform simulations for three types of wave conditions:

1. Modulated plane waves;
2. Focused wave groups;
3. Random waves.

We compare our numerical simulation with the experiments of Eeltink
et al. [19]. We choose 4 modulated plane wave cases, 2 focused wave
213 
group cases, and 4 random wave cases to investigate. Then, we study
300 random simulations generated by the same sets of parameter
ranges for these three wave types used in laboratory experiments
in Eeltink et al. [19], and a brief summary is given as follows.

2.4.1. Modulated plane waves
We initialise our modulated plane wave case following Eeltink et al.

[19] as

𝜂(𝑥, 0) = 𝑎0
[

√

𝑏𝑐 sin(𝑘0𝑥) +
√

𝑏+ sin(𝑘+𝑥 + 𝜓) +
√

𝑏− sin(𝑘−𝑥 + 𝜓)
]

, (18)

where the upper and lower sideband frequencies are set according to
𝜔± = 𝜔0 ± 𝛥𝜔 with 𝛥𝜔 the modulational frequency, and 𝜓 is the phase
shift of the sidebands compared to the carrier wave. The sideband
wavenumbers 𝑘± are calculated using the linear dispersion relationship
𝜔2
± = 𝑔𝑘± tanh(𝑘±𝑑). The amplitudes of the carrier wave and the upper

and lower sidebands are set according to 𝑎𝑐 = 𝑎0
√

𝑏𝑐 , 𝑎+ = 𝑎0
√

𝑏+ and
𝑎− = 𝑎0

√

𝑏−, where 𝑏𝑐 = 1 − 𝑏𝐹 , 𝑏+ = (1 − 𝑏𝑐 )∕2, and 𝑏− = (1 − 𝑏𝑐 )∕2,
respectively, and 𝑏𝐹 is the sideband fraction. The water depth 𝑑 = 0.8
m. In Table 1 we list the specific cases we investigate in Section 4.1.

2.4.2. Focused wave groups and random waves
Focused wave groups and random waves were generated from the

JONSWAP [27] spectral density 𝑆(𝜔):

𝑆(𝜔) =
𝐾0𝑔2

𝜔5
exp

[

−5
4

(𝜔0
𝜔

)4
]

𝛾𝑟, (19)

𝑟 = exp

[

−
(𝜔 − 𝜔0)2

2 2

]

, (20)

2𝜎 𝜔0
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Table 1
Input parameters for the modulated plane wave cases.
Case 𝑓0 [Hz] 𝑎0 [m] 𝛥𝜔 [rad/s] 𝑏𝐹 𝜓 𝜖 Breaking?

MPW1 1.4 0.051 0.98 0.09 𝜋 0.20 Yes
MPW2 1.5 0.031 1.05 0.06 𝜋 0.14 No
MPW3 1.5 0.055 1.05 0.01 𝜋 0.25 Yes
MPW4 1.6 0.039 1.60 0.05 𝜋 0.20 Yes
T
r

f

Table 2
Input parameters for the focused wave groups and random waves based on the
JONSWAP spectrum. Cases for which a focussing distance 𝑥𝑓 is given correspond to
focused wave groups, others to random waves.

Case 𝑓0 [Hz] 𝐻0 [m] 𝛾 𝑥𝑓 [m] Breaking?

FGW1 0.91 0.01 3.30 18 No
FGW2 0.91 0.02 3.30 20 Yes
RDW1 1.11 0.02 3.30 – No
RDW2 1.11 0.04 3.30 – Rare
RDW3 1.11 0.06 3.30 – Mild
RDW4 1.11 0.10 3.30 – Extreme

𝜎 =

{

0.07 𝜔 ≤ 𝜔0,
0.09 𝜔 > 𝜔0,

(21)

where 𝐾0 is a scaling parameter to obtain appropriate wave height by
the characteristic height 𝐻0 and 𝑔 (m/s2) is the gravitational constant.
or focused wave groups, phases are assigned by computing a linear
hase shift from a given focussing distance 𝑥𝑓 based on linear theory.

For random waves, phases are randomised by a fixed random number
seed and we follow the approach of Tucker et al. [28]. We recom-
mend Eeltink et al. [19]’s article for further details. In Table 2 we list
the focused wave group and the random wave cases that we investigate
in Section 4.1.

The parameters for the randomly sampled focused wave group cases
in Section 4.2 are drawn from the following ranges: 𝛾 ∈ [2, 5], 𝐻0 ∈
[0.01, 0.06] m, 𝑓0 ∈ [0.5, 1.25] Hz, and 𝑥𝑓 ∈ [10, 24] m.

2.5. Numerical configuration

2.5.1. Numerical domain
We use two types of domains:

1. a non-periodic domain with wave inlet and zero-gradient outlet
for comparison to experimental measurements in Section 4.1, the
depth of the water is 0.8 m;

2. a periodic domain for focused wave group simulations with
randomly sampled parameters in Section 4.2.

We keep all parameters the same between domains in order to maintain
consistency between periodic and non-periodic simulations. The non-
periodic simulation is for validation purposes only, and wherever a
non-periodic domain is applied instead of its periodic counterpart, we
will highlight this.

The periodic domain spans [−26, 26]𝜆0 horizontally, where 𝜆0
s the length of the carrier wave or the spectral peak calculated by
he linear dispersion relation 𝜔2

0 = 𝑘0 𝑔tanh(𝑘0𝑑). The depth of the
water 𝑑 is determined by 𝑘0𝑑 = 5, so that the water is considered
to be deep. We use a square 2D domain, spanning [−𝑑, 52𝜆0 − 𝑑]
vertically. We only perform 2D simulations. By default, we restrict the
Courant–Friedrichs–Lewy (CFL) number of the simulation to 0.1.

For the non-periodic domain, we use linear wave theory to deter-
mine the surface elevation 𝜂 and the velocity vector 𝐮 at the input
boundary. We apply a Fourier Transform to decompose the measured
surface elevation profile 𝜂(𝑡) at the first gauge in the experiment to
obtain the amplitude and phase of the wave components. Then we
compute the surface elevation and velocity vector using linear wave
theory. We note that the error of linear wave theory increases rapidly
when the input wave becomes steeper, and such a wave inlet boundary
214 
should be used with care. The non-periodic domain spans 52𝜆0 in the
horizontal direction, and the wave inlet boundary aligns with the first
gauge in the experiment.

We apply a zero-gradient condition for the top boundary and a no-
slip condition for the bottom boundary. For the bottom boundary, we
apply the Dirichlet condition for both 𝜅 and 𝜔 on a wall recommended
in Menter [29]:

𝜅𝑤𝑎𝑙𝑙 = 0, (22)

𝜔𝑤𝑎𝑙𝑙 = 10
6𝜇

𝜌𝛽0(𝛥𝑥)2
. (23)

o properly resolve 𝜔 near the bottom boundary, we enforce the
esolution at the bottom boundary to the maximum (see Fig. 1).

The computational domain is always mapped via an affine trans-
ormation to the unit square [0, 1] × [0, 1] in 2. The refinement level
𝐿 is defined as the number of subdivisions needed to reach the given
cell starting from the unit square. By default, we set the grid refinement
level in all simulations to 𝐿 = 14, and we use three levels of refinement
𝐿 = 14, 15, 16 to verify the convergence of the simulation. The corre-
sponding grid width is calculated as 𝛥𝑥 = 𝐿0∕2𝐿 where 𝐿0 is the width
of the computation domain. The impact of the maximum refinement
level to the solution will be examined in Section 3. Through validation
study, we find the minimum resolution required for our breaking wave
study is 𝐿 = 14. This will be a default setting in Section 4.

2.5.2. Characterising wave breaking
In order to perform simulations for which energy dissipation has

converged (and numerical dissipation is thus negligible), the minimum
length and time scales that need to be resolved must be determined in
advance. Energy dissipation can be thought of as having two compo-
nents: the effect of viscosity outside of wave breaking and dissipation
during wave breaking. We aim at minimising viscous dissipation out-
side of wave breaking, because even in the laboratory-scale system,
dissipation due to viscosity is insignificant as the Reynolds number of
the system is of the order of 107. We do not model side-wall dissipation.
To align with the experimental data, we will run the RANS simulations
with Reynolds numbers as high as possible. In doing so, the aim is
for viscous dissipation to be negligible outside of wave breaking, and
dissipation due to breaking to dominate the energy evolution.

Wave-breaking dissipation is a highly non-linear process with differ-
ent physical mechanisms coupled strongly with each other. To simplify
the discussion, we follow Babanin [1] and split the process into two
effects that contribute to the energy dissipation involved in breaking:

1. instant, transient (occuring within one wave period) breaking
dissipation due to the mechanical failure of the breaking crest
and bubble dynamics, and;

2. delayed, persistent dissipation (spans several wave periods) due
to the turbulence formed during breaking.

To resolve the first effect, we choose the finest grid resolution near
the wave surface to be close to the settings of the Mostert et al. [30]’s
DNS simulation in order to resolve the evolution of the breaking crest,
and we verify the convergence of our simulation by comparing the
crest shape at breaking onset under different resolutions. To resolve the
second effect, we use the RANS model to approximate the dissipation
caused by the underwater turbulence formed during breaking.
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Fig. 2. Validation of the RANS turbulence model, showing the evolution of TKE and turbulent eddy viscosity of a Stokes wave and comparing the approximate analytical solution
of decaying turbulence, Eqs. (28) and (29), in still water and RANS simulations.
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The Reynolds number of the simulation is bounded by the maximum
resolution that can be achieved with the available computational re-
sources. Wave Reynolds number is defined as (e.g., Mostert et al. [30]):

Re =

√

𝑔𝜆30
𝜈

, (24)

where 𝑔 = 9.81m∕s2 is gravitational constant, 𝜆0 is carrier wavelength
and 𝜈 is molecular viscosity. In previous studies, values of the wave
Reynolds number of Re = 4 × 104, 1 × 105 have been achieved in DNS
simulations [30–32]. In this study, we run Stokes wave simulations with
multiple Re numbers in Section 3 and we fix Re = 1,000,000 for all the
imulations discussed in Section 4. We emphasise that such a range
f Reynolds numbers is not reachable with fully resolved DNS at the
resent time.

We approximate the thickness of the viscous boundary layer to be
=
√

2𝜈∕𝜔0 where 𝜔0 is the angular velocity of the carrier wave [33].
The wave energy budget is made up of kinetic energy 𝐸𝑘 and poten-

ial energy 𝐸𝑝. The energy budget together with its energy dissipation
ver time 𝐸𝑑 (𝑡) due to molecular viscousity are obtained by integrating
ver the water phase (e.g., Mostert and Deike [34]):

𝐸𝑘 =
1
2 ∫𝛺

𝜌𝑤(𝐮 ⋅ 𝐮∕2)d𝛺, (25)

𝐸𝑝 = ∫𝛺
𝜌𝑤𝑔ℎd𝛺 − 𝐸𝑝,0, (26)

𝐸𝑑 (𝑡) = ∫

𝑡

0 ∫𝛺
𝜇
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑗
𝜕𝑥𝑖

d𝛺d𝑡′, (27)

where 𝛺 indicates the water domain, 𝑢, 𝑣 are horizontal and vertical
velocity, 𝜌𝑤 is the water density, ℎ is the height of a water element

ith respect to a reference level, and 𝐸𝑝,0 is the potential energy of
still water with respect to the same level. The total energy budget
𝐸𝑡 = 𝐸𝑘 + 𝐸𝑝 + 𝐸𝑑 .

3. Validation of the RANS turbulence model

3.1. Non-breaking Stokes waves

To validate the model, we perform simulations of a non-breaking
Stokes wave with different Reynolds numbers and examine energy
conservation. We initialise the wave field with a third-order Stokes
wave of amplitude 𝑎 and wavenumber 𝑘 , setting the wave length 𝜆 =
0 0 0 t
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2𝜋∕𝑘0 = 1.56 m, the period 𝑇0 = 1 s and steepness 𝜖 = 𝑎0𝑘0 = 0.02. The
domain spans [−𝜆0, 𝜆0] in both horizontal and vertical directions. The
simulation lasts 100𝑇0. We set Re = 60,000, CFL = 0.12 and 𝛿∕Δ𝑥 = 4,
where 𝛿 =

√

2𝜈∕𝜔0.

In Fig. 2 we plot the integrated TKE and the turbulent eddy viscosity
𝜈𝑡 in the water phase and compare them to an approximate analytical
solution for the decaying turbulence in still water. In still water, a
reduced 𝜅−𝜔 model with only the unsteady, production and dissipation
terms preserved leads to following analytical solution [35]:

𝜅 = 𝜅0
(

1 + 𝛽𝜔0𝑡
)− 𝛽∗

𝛽 , (28)

𝜈𝑡 =
𝜅0
𝜔0

(

1 + 𝛽𝜔0𝑡
)1− 𝛽∗

𝛽 , (29)

here 𝜅0, 𝜔0 are the initial condition for 𝜅 and 𝜔. For the standard 𝜅−𝜔
odel, the TKE grows to become unbounded under the perturbation of
otential-flow surface waves [14], but for the stabilised 𝜅 − 𝜔 model,
o unbounded TKE growth is observed. The decaying TKE and 𝜈𝑡 match

the analytical solution in Fig. 2.

In Fig. 3 we study the convergence of the wave energy budget
by comparing different Reynolds numbers, maximum resolutions, and
CFL numbers. In the top left panel we compare the energy budget for
different Reynolds numbers. For Re = 60,000, 5% of the total energy is
dissipated throughout the simulation. When an estimate of how much
energy should have been dissipated is added back (top right panel),
only 0.2% of the total energy is lost due to numerical dissipation,
showing good convergence of the energy budget. For Re = 600,000, the
nergy dissipation shows a similar trend, but the amount of dissipation
s much smaller. Adding an estimate of viscous dissipation leads to
onvergence at the level of 0.2%. For Re = 6,000,000, energy starts to
ncrease slowly. The increase in energy remains as low as 0.4% over
round 8 wave periods.

In the middle panels of Fig. 3, we compare the energy budget for
ifferent grid resolutions. The energy budget for 𝛿∕Δ𝑥 = 4 and 2
grees well, but not for 𝛿∕Δ𝑥 = 1, demonstrating that the resolution
f the viscous boundary layer should be at least 𝛿∕Δ𝑥 = 2 to achieve a
onverged energy budget.

In the bottom panels of Fig. 3, we investigate the influence of the
FL number. We note that the CFL number has a limited impact on
he energy convergence at Re = 60,000. In the bottom right panel,
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Fig. 3. Validation of the RANS turbulence model, showing the energy budget for a Stokes wave. Top panels compare the energy budget for three different Reynolds numbers,
e = 60,000, 600,000, 6,000,000. Middle panels display the energy budget for Re 60,000 with different grid resolutions, 𝛿∕Δ𝑥 = 1, 2, 4, where 𝛿 is the boundary layer thickness.

Bottom panels plot the energy budget for Re 60,000 with CFL numbers CFL = 0.03, 0.06 and 0.12. In all panels, 𝐸𝑘, 𝐸𝑝 and 𝐸𝑑 (𝑡) are kinetic energy, potential energy and viscous
dissipation integrated over the water phase and the time, respectively.
t

it becomes evident that the CFL number affects the amount of nu-
merical dissipation. The smaller the CFL number, the more numerical
dissipation introduced into the simulation.

In general, we find that energy conservation is achieved to an
acceptable level throughout the simulation; the numerical error can be
controlled to be below 1%. We can thus conclude that our implementa-
tion of a RANS model in Basilisk should be able to perform high-fidelity
simulations for a reasonably large range of Reynolds numbers, given
sufficient time and space resolution.

3.2. Breaking focused wave group

The space–time plot (Fig. 4) shows the details of the surface el-
evation evolution in a RANS simulation for case FGW2. The surface
elevation profile 𝜂(𝑥, 𝑡) is shifted by its group speed. At 𝑥 ≈19 m, the
wave group experiences focusing and wave breaking event within a
short time. On the right side, three distinct panels (4b, 4c and 4d)
correspond to the three selected spatial positions (pre-breaking, post-
breaking and near-breaking positions) marked on the contour plot.
Comparisons on the grid refinement levels 𝐿 = 14, 15 and 16 indi-
cate a good agreement between RANS simulations with different grid
resolutions. By default, we use 𝐿 = 14 for all simulations in Section 4.1.

4. Numerical results

In this section, we first reproduce the experiments of Eeltink et al.
[19] listed in Table 2. We then compare the RANS simulation and
experimental measurements to study the confidence level of our RANS
method.
216 
4.1. Comparison to the experiments of Eeltink et al. [19]

To compare with experimental measurements, we apply nonperi-
odic simulations with wave input from experimental measurements of
the elevation profile of the surface on the first gauge (𝑥 = 3.79 m).
Then we compare the surface elevation profiles measured at gauges
located at position 3.79 m, 6.64 m, 8.82 m, 11.63 m, 13.73 m, 16.11 m,
18.78 m, 21.83 m, 24.53 m, 26.96 m, 29.10 m and 31.10 m, with the
corresponding experimental measurements.

In Fig. 5, we compare the surface elevation profile of the RANS
simulation with the gauge measurements of the experiment for the
two focusing wave group cases listed in Table 2. The surface elevation
profiles are shifted by its group speed. For case FGW1 (5a and 5b),
there is no breaking event triggered. We find that the RANS simulation
predicts surface elevation with satisfactory accuracy when compared
to experimental measurements. The MSE is below 10−4, suggesting a
perfect match between experiment and RANS simulation.

For case FGW2 (5c and 5d), a breaking event occurs around 𝑥
= 18.78 m, where the surface elevation becomes very steep. The
prediction of the RANS simulation for this breaking event is in good
agreement with the experimental observation. Although we only show
6 gauges near the breaking position in Fig. 5, in general we find
that the RANS result agrees well with the experimental measurements
at all gauges, and the RANS simulation is able to reproduce non-
breaking wave evolution accurately. The MSE of case FGW2 starts from
10−6, then grows rapidly during breaking, and ends up somewhere
slightly above 10−4. The 10−6 MSE level at the beginning indicates
hat our wave-inlet is able to reproduce the focused wave group input
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Fig. 4. This figure contains a space–time plot and wave height profiles at different locations for case FGW2 in Table 2. On the left (a), a space–time plot displays the evolution
of surface elevation for RANS simulation with maximum refine level 𝐿 = 14. The red dotted lines indicate the positions of the gauges. The right side contains three separate plots
(b-d) at specific 𝑥 locations (23.50 m, 19.50 m, 16.50 m), comparing the surface elevation over time as predicted by RANS simulations with different maximum refine level.
The red dashed line is RANS simulation with maximum refine level 𝐿 = 14, 𝐿 = 15 for the green dot-dashed line and 𝐿 = 16 for the blue dotted line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
accurately. The rapidly rising MSE level, however, suggesting that the
breaking events have potentially significant impact to the accuracy of
the RANS simulation. Despite that, 10−4 is still a very low MSE level
and the post-breaking surface elevation profiles (such as the measure-
ment at 𝑥 = 29.10 m in Fig. 5) agrees well with the experimental
measurements.

To investigate the performance of RANS simulation in more general
scenarios, we further study the RANS simulation of modulated plane
wave and random wave. In Fig. 6 we display the surface elevation
profiles measured in 4 positions (𝑥 = 3.79 m, 8.82 m, 13.73 m, 18.78 m)
for all 4 cases in Tables 1. The surface elevation profiles are shifted
by its group speed. For all modulated plane wave cases, we note that
the MSE starts from a relatively small value around 𝑂(10−4), however,
rapidly increases to 10−2. This is mainly due to the mismatch of the
wave breaking events. For case MPW1 (Fig. 6a), the breaking happens
around 𝑥 = 13.73 m, we find that the steepest crest in the surface
elevation profile does not match to the experiment, indicating that
the breaking happens in a different crest, or a different time in the
simulation. Similar mismatches can be found in case MPW3 (Fig. 6e)
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and MPW4 (Fig. 6g) where the steepest crest does not match the exper-
imental measurement. MSE of case MPW2 (Fig. 6d) increases slower
because waves are shallow and no breaking is triggered. We present
variance, skewness and kurtosis of the surface elevation profile at the
wave-input boundary and compare them to experiments in Appendix.
For modulated plane wave cases, the statistics of the wave agree well to
the experiment at the wave-input boundary, suggesting that the wave
profile is reproduced reliably. The mismatch may be caused by an
unknown error in the experiment or by chaotic behaviour during the
previous breaking procedure [36].

In Fig. 7 we display the surface elevation profiles measured in 4
positions (same as the modulated plane wave cases) for all random
wave cases listed in Table 2. For random wave cases, the MSE scales
up quickly with the characteristic wave height 𝐻0 (also the significant
wave height for random wave cases). We also find that the MSE starts
from 𝑂(10−2), indicating that the wave input error is large. For case
RDW4 (Fig. 7g), the simulation deviates a lot from the experimental
measurement in the last 2 gauges. We believe this is due to the fact
that case RDW4 has an exceedingly high 𝐻 , resulting in frequent and
0
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Fig. 5. This figure plots the surface elevation profiles at multiple gauge positions for all focused wave cases in Table 2 and compares the experimental measurements and RANS
simulation at different gauge positions. The top panels (a and b) are for case FGW1 and the bottom panels (c and d) are for case FGW2.
intense breaking that deteriorates the quality of the simulation quickly.
A detailed discussion on the variance, skewness and kurtosis of the
surface elevation profile at the wave-input boundary is in Appendix. For
random wave cases, the variance does not align well with experimental
measurements and the error scales with the steepness. This is due to
the failure of the linear assumption of the input wave. The mismatch
of the breaking event may be caused by multiple factors that have been
discussed so far.

4.2. Random periodic domain simulations

Our aim is to perform high Reynolds number energy-resolving RANS
simulations in a periodic domain for purpose of generating high quality
training data for physics-based neural networks. We have built trust
in our numerical setup by examining the Stokes wave simulation. We
have shown that the simulation is in agreement with the experiment
for cases with a few breaking events by studying the non-periodic wave
simulations and comparing them to experimental data. In this section,
we apply RANS to study focused wave breaking in the periodic domain.

In Fig. 8 we plot 4 snapshots of the flow field in one of the periodic
simulations of focused wave group cases, showing the evolution of
the water-air interface and the turbulent eddy viscosity in the water
domain. We find that coherent structures such as overturning crests,
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jet splashing, and bubble formation during breaking are resolved suc-
cessfully. Turbulent cores with high turbulent eddy viscosity (≥ 100𝜈𝑤)
are produced during breaking events. The turbulent cores span around
1 carrier wavelength and have negligible drifting after settling down.

Fig. 9 shows the evolution of the kinetic energy, the potential energy
and the total energy of the simulation. We find that the total energy
is well conserved in the nonbreaking interval. The total energy loss
during the entire duration is around 2%. The potential energy oscillates
slightly because there are subgrid-scale waves brought by the initial
condition of surface elevation that interfere with each other.

Fig. 10 displays the nondimensional energy dissipation parameter 𝑏
as a result of breaking when plotted against 𝜖, where in focused wave
cases we define 𝜖 = ∑

𝑖 𝑎𝑖𝑘𝑖 as the max linear slope. We plot randomly
generated FGW cases with 𝜖 ∈ [0.28, 0.38] and other parameter ranges
provided in Section 2.4.2. 𝑏 is calculated with Drazen et al. [20]’s
approach:

𝑏 =
𝑔2𝑐𝑔 ∫

𝑡2
𝑡1
(𝜂21 − 𝜂

2
2 )𝑑𝑡

𝑇𝑏𝑐5𝑏
, (30)

where 𝑔 is gravitational constant, 𝑐𝑔 = 𝜔0∕2𝑘0 is the carrier group
speed, 𝜂1 and 𝜂2 is the surface elevation profile at far upstream and
downstream of the breaking event where we assume the wave is not
so steep and the equipartition of energy is valid. The control volume
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Fig. 6. This figure plots the surface elevation profiles at multiple gauge positions for all modulated plane wave cases in Table 1 and compares the experimental measurements
and RANS simulation at different gauge positions. Panels (a) and (b): case MPW1; Panels (c) and (d): case MPW2; Panels (e) and (f): case MPW3; Panels (g) and (h): case MPW4.
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in time 𝑡 ∈ [𝑡1, 𝑡2] wraps the wave group so that ∫ 𝑡2𝑡1 (𝜂21 − 𝜂22 )𝑑𝑡 ≈
+∞
−∞ (𝜂21−𝜂

2
2 )𝑑𝑡. The breaking onset is defined as when the local slope 𝜂𝑥

xceeds 0.5774 [1,37], and the active breaking interval 𝑇𝑏 is estimated
o be 0.5𝑇0 [38]. The breaking crest speed 𝑐𝑏 is estimated to be 80% of
he speed of the carrier phase speed 𝜔0∕𝑘0 [39].

We find that all the present RANS data fall within the range of ±1
tandard deviation, giving confidence to the energy dissipation resolved
n the RANS simulations. We note that in most cases the measured
reaking parameter 𝑏 is slightly lower than the empirical curve, but
219 
he deviation is lower than the uncertainties reported in the previous
tudy of Mostert et al. [30].

. Conclusions

This paper utilised RANS simulation with Basilisk to study the deep
ater wave breaking problem. We validated the numerical configu-

ations with Stokes wave simulation. We then used the RANS model
o simulate wave breaking in focused wave groups, modulated plane
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Fig. 7. This figure plots the surface elevation profiles at multiple gauge positions for all random wave cases in Table 2 and compares the experimental measurements and RANS
imulation at different gauge positions. Panels (a) and (b): case RDW1; Panels (c) and (d): case RDW2; Panels (e) and (f): case RDW3; Panels (g) and (h): case RDW4.
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aves, and random waves with JONSWAP spectrum. The RANS sim-
lation was found to be in agreement with the gauge measurements
rom the experiment. Additionally, we applied the RANS simulation
o perform a large number of focused wave group simulations in the
eriodic domain. We discovered that the energy was nearly conserved
n the nonbreaking region. We also studied the breaking parameter 𝑏,
howing that the breaking parameter in our simulation agrees well with
revious studies.
 O
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By verifying the RANS model, we can take advantage of the lim-
tation of the Reynolds number. Compared to the traditional DNS
pproach used in Basilisk, which is limited to a Reynolds number of
(104), RANS simulations can be conducted in a much broader range,

rom 104 to 107. This enables us to simulate a system on a laboratory
cale with reasonable computational resources.

During the preparation of this work the authors used ChatGPT and
verleaf AI text service in order to improve readability. After using this
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Fig. 8. The evolution of interface and turbulent visocity 𝜈𝑡,𝑤 in water domain.
Fig. 9. This figure plots the evolution of kinetic energy 𝐸𝑘, potential energy 𝐸𝑝 and total energy 𝐸𝑡 of the periodic simulation of a focused group wave case.
tool, the authors reviewed and edited the content as needed and take
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Appendix. Statistics of the non-periodic cases
We present the variance, skewness and kurtosis of all the non-

periodic cases investigated in this study. We analyse the surface eleva-
tion profiles measured at gauges located at position 3.79 m, 6.64 m,
8.82 m, 11.63 m, 13.73 m, 16.11 m, 18.78 m, 21.83 m, 24.53 m,
26.96 m, 29.10 m and 31.10 m, with the corresponding experimental
measurements. The part 𝑓 > 5.0𝑓0 and the part 𝑓 < 0.1𝑓0 of the profile
frequency spectrum are filtered, where 𝑓0 is the carrier frequency. We
then normalise the surface elevation profiles by dividing the standard
deviation of the first gauge of the experimental measurement. The
formulas to calculate variance, skewness and kurtosis are written as
follows:

Variance(𝜂) = 1
𝑁

𝑁
∑

𝑖=1
(𝜂𝑖 − 𝜂̄)2, (31)

Skewness(𝜂) =
1
𝑁

∑𝑁
𝑖=1(𝜂𝑖 − 𝜂̄)

3

(

1 ∑𝑁 (𝜂 − 𝜂̄)2
)3∕2

, (32)
𝑁 𝑖=1 𝑖
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Fig. 10. This figure plots breaking parameter 𝑏 against the max linear slope 𝜖. Blue solid line is a semi-empirical formula [21]. Red dot-dashed line is an exponential fit
𝑏 = 0.4(𝜖 − 0.08)𝑞 to the RANS data where 𝑞 = 2.62. Grey shaded region is standard deviation ±1𝜎𝑏 on the scaling for 𝑏. Black dots indicates calculated parameter 𝑏 of RANS data.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. This figure plots the variance, skewness and kurtosis of the normalised surface elevation profiles at multiple gauge positions for all focused wave cases in Table 2 and
compares the experimental measurements and RANS simulation at different gauge positions.
Kurtosis(𝜂) =
1
𝑁

∑𝑁
𝑖=1(𝜂𝑖 − 𝜂̄)

4

(

1
𝑁

∑𝑁
𝑖=1(𝜂𝑖 − 𝜂̄)2

)2
. (33)

In Fig. 11 we plot the variance, skewness, and kurtosis of the
focused wave cases in Table 2. We found that the statistics of the first
gauge (at the wave-inlet boundary) agree well with the experiment. The
fluctuation of the variance and skewness is around 10% for case FGW1.
The RANS variance of case FGW2 increases, while the experimental
measurement shows a decreasing trend. The skewness of case FGW2 is
severely underestimated when compared to the experiment. Kurtosis is
222 
excessively high, indicating that the focused wave cases do not comply
with the normal distribution. The kurtosis of the RANS simulation
agrees well with the experiment for both FGW1 and FGW2.

In Fig. 12 we plot the statistics of the modulated plane wave cases
in Table 1. We found that the statistics of the first gauge match well
with the experiment, indicating that the wave profile is reproduced
successfully at the wave-input boundary.

In Fig. 13 we plot the statistics of the random wave cases in Table 2.
We found that the variance of the first gauge is underestimated for
more than 10% compared to the experiment. The difference in variance
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Fig. 12. This figure plots the variance, skewness and kurtosis of the normalised surface elevation profiles at multiple gauge positions for all modulated plane wave cases in Table 1
and compares the experimental measurements and RANS simulation at different gauge positions.
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Fig. 13. This figure plots the variance, skewness and kurtosis of the normalised surface elevation profiles at multiple gauge positions for all random wave cases in Table 2 and
compares the experimental measurements and RANS simulation at different gauge positions.
exceeds 20% for steeper case, i.e., RDW4, indicating that our wave-
input boundary cannot produce very steep waves. The skewness does
not align well with the experimental data. We cannot identify any
patterns from the error, nor we can detect any consistent trend towards
either overestimation or underestimation. The kurtosis of the RANS
simulation exhibits slight overestimation and generally follows the
results of the experiment.
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