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Predictive and prescriptive analytics for multi-site modelling of frail 
and elderly patient services

Elizabeth Williams , Daniel Gartner and Paul Harper 

School of Mathematics, Cardiff University, Cardiff, United Kingdom 

ABSTRACT 
Many economies are challenged by the effects of an ageing population, particularly in sec-
tors where resource capacity planning is critical, such as healthcare. This research addresses 
the operational challenges of bed and staffing capacity planning in hospital wards by using 
predictive and prescriptive analytical methods, both individually and in tandem. We applied 
these methodologies to a study of 165,000 patients across a network of 11 hospitals in the 
UK. Predictive modelling, specifically Classification and Regression Trees, forecasts patient 
length of stay based on clinical and demographic data. On the prescriptive side, determinis-
tic and two-stage stochastic optimisation models determine optimal bed and staff planning 
strategies to minimise costs. Linking the predictive models with the prescriptive optimisation 
models, generates demand forecasts that inform the optimisation process, providing accur-
ate and practical solutions. The results demonstrate that this integrated approach captures 
real-world variations in patient LOS and offers a 7% cost saving compared to average-based 
planning. This approach helps healthcare managers make robust decisions by incorporating 
patient-specific characteristics, improving capacity allocation, and mitigating risks associated 
with demand variability. Consequently, this combined methodology can be broadly 
extended across various sectors facing similar challenges, showcasing the versatility and 
effectiveness of integrating predictive and prescriptive analytics.
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1. Introduction

Ageing populations put pressure on both the econ-
omy and healthcare resources worldwide with med-
ical care expenditures on the rise (United Nations, 
2019). Ageing is one of the most common and well- 
known risk factors for most chronic diseases 
(Macnee et al., 2014). According to the United 
Nations (2019), an elderly person can be defined as 
65 years old and over, whilst a frail person is classi-
fied as one who is at high risk of falling into 
dependency as a result of a negative event, such as 
an injury, fall or disability (Xue, 2011). Care for frail 
and elderly patients has more challenges and bar-
riers in providing care due to a lack of resources or 
specialised models for care delivery (Heydari et al., 
2019). Frail and elderly patients often suffer from 
multi-morbidity and can take longer to recover in a 
hospital with more staffing hours and resources 
required. These patients not only share resources 
with other patient types but are unique in terms of 
having their own service specialty within hospitals, 
known as care of the elderly (COTE). There is often 
difficulty in grouping these patients together for 

length of stay (LOS) prediction, as there are many 
different factors which cause longer lengths of stay.

To address the challenges to healthcare services 
caused by ageing populations and the medical com-
plexities of caring for frail and elderly patients, 
healthcare analytics has proven beneficial. While 
analytical techniques have been reported to yield up 
to 25% reductions in annual healthcare costs (Dash 
et al., 2019), our study focuses on a specific oper-
ational domain-hospital bed and staff capacity plan-
ning. Within this context, our integrated predictive 
and prescriptive models achieve a 7% cost reduction 
compared to traditional average-based approaches.

The recent COVID-19 pandemic has demonstrated 
the crucial need for analytics to be used and continually 
developed within the healthcare setting to provide highly 
beneficial results (Charles et al., 2024). The main chal-
lenges faced by healthcare managers are the hundreds of 
beds and staff to manage, which creates an excessive 
number of options for decisions (Best et al., 2015; 
Proudlove et al., 2007). Demand and capacity are further 
complicated because no two patients are exactly alike. 
Because bed capacity planning typically relies on aver-
ages, it fails to take into consideration the stochastic 
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nature of the healthcare industry (Abdelaziz & 
Masmoudi, 2012; Harper & Shahani, 2002). This 
research contributes to the literature by incorporating 
natural variability through the use of classification and 
regression trees (CART).

This research was motivated by collaboration with a 
large healthcare network that manages frail and elderly 
patients across multiple hospitals. Healthcare administra-
tors highlighted significant challenges in bed and staffing 
capacity planning, where reliance on average-based pre-
dictions led to inefficiencies, resource shortages and 
increased costs. The aim of this study was to develop 
integrated predictive and prescriptive analytics models 
that address these operational issues by incorporating 
patient-specific variability, thereby enhancing planning 
accuracy and reducing costs.

To the best of our knowledge, this is the first study to 
examine the value of linking predictive and prescriptive 
analytics for the capacity planning of frail and elderly 
healthcare resources. We approach the problem as 
follows:

1. We begin by utilising CART methodologies 
with a large dataset consisting of over 165,000 
patient records. This analysis focuses on identi-
fying groupings of patients aged 65 and over 
who share similar clinical and demographical 
attributes that affect the LOS in hospital. CART 
was chosen for this analysis because of its abil-
ity to handle large datasets effectively and pro-
duce easily interpretable visual representations 
of decision rules. These groupings help us 
understand the factors that influence LOS and 
form the basis for our predictive modelling.

2. Next, we develop both deterministic and sto-
chastic mixed-integer programming models to 
plan bed and staffing resources. The determinis-
tic model assumes that future demand is known 
and fixed, while the stochastic model accounts 
for uncertainty in patient admissions and LOS 
by incorporating multiple scenarios into the 
planning process. These models aim to optimise 
resource allocation to minimise costs while 
meeting patient care requirements.

3. We then integrate the CART-based groupings 
into our optimisation models. By using the 
demand forecasts generated from the predictive 
models, we inform the deterministic and two- 
stage stochastic optimisation models. This step 
ensures that the variations and uncertainties 
captured by the predictive analysis are directly 
utilised in the resource planning process, lead-
ing to more accurate and practical solutions.

4. Finally, we analyse the value of the stochastic solution 
(VSS), to assess the benefits of implementing the sto-
chastic model over the traditional deterministic 

model. VSS measures the improvement in decision- 
making that results from considering uncertainty in 
the optimisation process. By comparing the outcomes 
of both models, we demonstrate the advantages of 
incorporating stochastic elements into capacity plan-
ning, such as better handling of demand variability 
and improved resource allocation.

The goal of this research is to develop and evalu-
ate decision models that enhance capacity planning 
for frail and elderly patients in hospital settings. The 
CART models aim to forecast patient LOS based on 
clinical and demographic data, facilitating more 
accurate demand prediction and grouping patients 
by shared characteristics that influence LOS. These 
predictions serve as inputs to the optimisation mod-
els, which determine optimal bed and staffing levels 
under both deterministic and stochastic conditions. 
The integration of these predictive and prescriptive 
models enables healthcare managers to make 
informed decisions that minimise costs, accommo-
date demand variability and ensure the delivery of 
high-quality patient care. By understanding the 
value of predictive and prescriptive analytics, health-
care managers can avoid traps by planning resources 
based on averages. This, in turn, can lead to better 
health outcomes and more efficient use of resources.

The remainder of the paper is structured as follows. 
Section 2 provides an overview of current literature in 
terms of CART analysis with a particular focus on frail 
and elderly patients. Moreover, deterministic and sto-
chastic optimisation models for hospital bed planning 
are compared and contrasted with our work. In Section 
3, we first introduce CART, followed by the introduction 
of our deterministic and two-stage stochastic models. 
Then, we introduce an illustrative example to demon-
strate the models’ functionality. In Section 4, we apply 
our models to real-world data from a network of hospi-
tals, introducing variation into the model by utilising 
CART predictions for demands. Then, we provide com-
parisons between the deterministic and two-stage sto-
chastic models by calculating the VSS. We offer a 
detailed discussion in Section 5, providing managerial 
insights, discussing the generalisability of our results and 
outlining directions for future research. Our paper con-
cludes with Section 6.

2. Related work

This section aims to provide insight into existing 
operational research (OR) literature specifically 
focusing on hierarchical CART methodologies along 
with deterministic and stochastic modelling techni-
ques. The first subsection will focus on CART ana-
lysis applied to frail and elderly patients and the 
second subsection will focus on deterministic and 
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stochastic modelling techniques applied to health-
care settings.

Ensuring healthcare facilities possess adequate 
resources like staff, equipment, and beds to meet 
patient demand efficiently is essential for effective 
healthcare operations management (Ardakani et al., 
2023; Costa et al., 2003; Harper, 2002). Within oper-
ational research, capacity planning employs predictive 
modelling and optimisation techniques to anticipate 
patient flow, regulate hospital bed occupancy, and 
allocate resources effectively. Previous literature 
reviews have delved into these methodologies, focus-
ing on their application in optimising healthcare 
resource utilisation (Chanchaichujit et al., 2019; 
Humphreys et al., 2022). Various mathematical mod-
els, including queueing theory and simulation, are 
utilised to analyse patient arrival patterns, LOS and 
resource utilisation, enabling healthcare providers to 
make informed decisions regarding staffing levels, 
facility expansions, and resource allocation. Capacity 
planning plays a crucial role in optimising healthcare 
delivery, minimising wait times, and enhancing 
patient satisfaction while ensuring cost-effectiveness 
and resource utilisation (Bhattacharjee & Ray, 2014; 
Erhard et al., 2018; Grange et al., 2024; Liping et al., 
2018; Nasrabadi et al., 2020).

A wide variety of literature reviews have been 
published within the healthcare OR field. Typically, 
literature reviews are more focused on specific meth-
ods (Fildes et al., 2008), specific problems 
(Marynissen & Demeulemeester, 2019), or specific 
patient types (Williams et al., 2021). Fildes et al. 
(2008) explored different forecasting techniques in 
the OR domain whilst, Marynissen and 
Demeulemeester (2019) focused on different methods 
but applied to the context of appointment scheduling 
within hospitals. Williams et al. (2021) presented a 
literature review highlighting the use of Operational 
Research and Management Science (OR/MS) meth-
odologies in addressing the challenges associated with 
the care of frail and elderly patients. These reviews 
demonstrate a wide variety of research taking place 
within the healthcare domain. Our research aims to 
overlap between these reviews, by applying OR meth-
odologies to elderly and frail patient care.

2.1. CART analysis applied to frail and elderly

CART is a machine learning method for construct-
ing prediction models from data. The algorithm 
constructs a decision tree which is structured hier-
archically. The decision tree asks a series of ques-
tions that decide groups into which the data is 
sorted, in the form of binary recursive partitioning, 
where each node is split into two groups. CART 
analysis has often been applied to healthcare for 

predictive analytics, covering a wide range of med-
ical settings. Within frail and elderly care, the litera-
ture can be grouped into two subgroups. The first 
grouping focuses on illnesses typically suffered by 
these patients, with the second grouping having a 
more generic medical setting however using elderly 
and frail as the patient groups of interest.

2.1.1. Use of CART within hospitals
The works of Byeon (2015), Ius et al. (2020) and 
Watanabe et al. (2018) demonstrated the use of 
CART models within hospitals, focusing on age as a 
predictive factor or limiting the analysis to older 
populations. Byeon (2015) developed a CART-based 
tool to predict endocrine disorders in the elderly, 
identifying higher prevalence categories for depres-
sion and obesity. Ius et al. (2020) applied random 
forests to analyse treatment outcomes, using age as 
a continuous variable to show it influenced survival, 
though not as the strongest factor. Watanabe et al. 
(2018) applied CART to determine different risk 
factors of rotator cuff tears between elderly and 
young patients,find age to be the most significant 
predictor. The next category of splitting is then dif-
ferent depending on the age group of the patient. 
These studies highlight CART’s effectiveness across 
diverse age-related health conditions.

2.1.2. Use of CART across hospitals and commu-
nity care
Expanding to hospital and community-wide care, 
Kuo et al. (2019), Lam et al. (2019) and Passmore 
et al. (2011) demonstrate the broader application of 
CART models. Kuo et al. (2019) used CART models 
to develop a system for identifying social frailty in the 
elderly, incorporating 15 variables (e.g., age, BMI, 
income). Random forests and C5.0 classification mod-
els were found to have the highest prediction accuracy 
of 0.97. Lam et al. (2019) used CART to identify 
whether frailty would be an indicator of recurrent fall-
ers over the age of 65 in the community. The results 
showed that certain frailty indexes did have a high 
predictive ability of recurrent falls, although were only 
significant in female patients. Passmore et al. (2011) 
identified that a sickness impact profile (SIP) score 
was the most influential factor in predicting 
unplanned hospital admissions among elderly 
patients. Additionally, the number of medications pre-
scribed was found to influence hospitalisation, sug-
gesting opportunities for preventative measures.

These six papers demonstrate the success of 
applying CART to frail and elderly patients when 
considering both the care setting and the medical 
condition suffered. This research aims to build upon 
the previous literature in this field by considering 
how different hospital locations determine a 
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patient’s LOS. Additionally, a further variety of data 
types which may have an impact on patient stays 
within hospitals, such as radiological data, will be 
incorporated.

2.2. Multi-site deterministic and stochastic 
healthcare modelling

Deterministic modelling is popular within healthcare 
settings due to its ease of application, however, tra-
ditionally many healthcare services are stochastic in 
nature (Mandelbaum et al., 2020).

2.2.1. Deterministic models
Hare et al. (2009) and Segall (1992) analysed deter-
ministic modelling within healthcare settings. Hare 
et al. (2009) developed a deterministic multi-state 
Markov model to plan for services within home and 
community care, incorporating five age groups, 
three of which represent the elderly. The authors 
incorporated the changing age and health demo-
graphics of the patient groups to determine how 
service use will change over time. Segall (1992) 
extended a disaggregated resource allocation model 
to include a demand constraint, to determine spatial 
allocation of resources. Applying to 16 acute care 
hospitals and then to the entire state of 
Massachusetts, the author was able to determine 
occupancy rates and demands for hospitals, and spe-
cialties and predict the average LOS.

2.2.2. Stochastic models
The works of Abdelaziz and Masmoudi (2012), Guo 
et al. (2021), Levis and Papageorgiou (2004), 
Shehadeh and Padman (2022) and Thompson et al. 
(2009) applied stochastic modelling techniques to 
healthcare settings. Abdelaziz and Masmoudi (2012) 
used a multi-objective stochastic program to deter-
mine optimal bed and staffing allocations in 157 
public hospitals. The authors considered random 
demand in order to minimise costs across specialty 
levels. Guo et al. (2021) applied logic-based benders 
decomposition and binary decision diagram-based 
approaches to optimise surgery scheduling, incorpo-
rating uncertainties such as cancellations and pro-
cedure durations. These methods successfully 
generated more robust schedules, reducing cancella-
tions and improving operating room utilisation. 
Levis and Papageorgiou (2004) applied stochastic 
capacity planning to the pharmaceutical industry, 
addressing multi-site, multi-period problems with 
uncertain clinical trial outcomes and customer 
demand. The authors provided five examples of 
planning problems which are solved with uncertain 
clinical trial outcomes and customer demand. 
Shehadeh and Padman (2022) used stochastic 

optimisation for elective surgery scheduling, empha-
sising that ignoring uncertainties in surgery dura-
tions and postoperative recover times results in 
suboptimal schedules and higher costs. The paper 
discusses the complexity of modelling these uncer-
tainties due to limited data, and the conflicting 
objectives of various stakeholders. Thompson et al. 
(2009) used Markov decision processes to plan 
short-term allocation of patients during demand 
surges. The authors aimed to determine the best 
patient assignments and reduce the cost of transfer-
ring patients.

2.2.3. Deterministic and stochastic models
Mestre et al. (2015) used location-allocation models 
with both deterministic and stochastic approaches 
for the planning and designing of a network of hos-
pitals. The authors aim to inform decision-makers 
on how to improve access to different healthcare 
services and specialties whilst minimising costs. The 
authors were able to successfully conclude that by 
including both location and allocation within the 
first stage, the model was more flexible in terms of 
hospital network planning, allowing the second stage 
to incorporate unsatisfied demand and extra capaci-
ties. Restrepo et al. (2020) presents a two-stage sto-
chastic model for integrated staffing and scheduling 
in home healthcare, demonstrating that it reduces 
under-covering and over-covering costs compared 
to a deterministic model using average demand. The 
study demonstrates that accounting for demand 
variability through stochastic modelling leads to 
more robust and cost-effective staffing and schedul-
ing decisions in home healthcare services. Dehghani 
et al. (2021) proposed both deterministic and sto-
chastic programming models for proactive trans-
shipment in blood supply chains to balance the 
wastage and shortage of blood units. The determin-
istic model provided a baseline by assuming known 
and fixed demand, while the stochastic model 
accounted for demand uncertainty across a network 
of hospitals. Using a two-stage stochastic approach 
with Quasi-Monte Carlo sampling, the study opti-
mised blood orders and hospital transfers, demon-
strating significant cost reductions, improved 
inventory management, and potential savings com-
pared to current and no-transshipment policies. 
Galli et al. (2021) used prescriptive analytics for 
healthcare inventory management, proposing a 
novel method that combines machine learning with 
stochastic optimisation to optimise drug replenish-
ment. The study demonstrates the effectiveness of 
this technique in providing robust and cost-efficient 
inventory solutions tailored to the dynamic and 
uncertain nature of healthcare environments.
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These papers display the variety of both determin-
istic and stochastic modelling applications within 
healthcare. These models will be built upon to deter-
mine where specific specialties should be located 
based on demand locations when focusing on a sub-
group of patients. The benefits will be determined by 
using either deterministic or stochastic modelling.

2.3. Literature summary

In conclusion, our search of the literature has 
revealed gaps in linking predictive and prescriptive 
analytics to optimise resource allocation under 
uncertainty in healthcare. While existing studies 
often use deterministic models, our approach inte-
grates data-driven predictive modelling with sto-
chastic optimisation. We employ CART to forecast 
demand in a two-stage stochastic program, offering 
a robust optimisation model. Unlike previous stud-
ies focused on single-site models, our work empha-
sises an integrated network of hospitals, specifically 
in elderly care. We uniquely optimise staffing and 
bed capacity jointly and explicitly account for the 
specialty and acuity mix of frail elderly patients. 
These aspects, including multi-site planning, pre-
dictive forecasting, stochastic optimisation, and a 
focus on elderly care, constitute our key contribu-
tions to the healthcare operations literature.

In terms of the deterministic and stochastic models, 
our approach builds upon the work of Maggioni and 
Wallace (2012). Our work extends this two-fold: first, 
by extending the formulation which provides a health-
care example and second, by incorporating CART 
models into the demand function to create real-world 
variation in the formulation. We extend this work by 
providing a healthcare example and incorporating 
CART models into the modelling formulation.

Second, we research an area of healthcare which 
has been under-researched, despite the increased 
demand and medical needs of these patients 
(Williams et al., 2021).

Finally, with respect to methodology, we provide 
a different perspective on how this could be mod-
elled. Previous bed and staffing capacity models 
have focused on neural networks (Kutafina 
et al., 2019), queueing theoretical approaches (de 
V�ericourt & Jennings, 2011; Ghayoomi 
et al., 2023; Yankovic & Green, 2011), simulation 
(Amelia et al., 2021; Lu et al., 2021). Our method-
ology builds on traditionally used deterministic 
methods in healthcare by demonstrating the benefits 
of using stochastic models by calculating the VSS.

3. Methods

This section will discuss the approaches used within 
this paper, providing the notation used to allow the 

reader to apply the theories to their own work. 
There is a large amount of variation in terms of hos-
pital LOS. We have carefully chosen these methods 
to allow easy incorporation of this variation. CART 
was chosen over other predictive methodologies 
because it offers a visual representation. This makes 
it possible for healthcare practitioners to comprehend 
and trust the model’s output, with the potential for 
collaboration to create clinically and statistically 
meaningful groupings. Due to the complexity of our 
problem, a mixed integer programming approach is 
used, allowing the LOS variation to be integrated 
into the bed and staffing planning simultaneously.

3.1. Classification and regression trees

CART is a non-parametric, supervised machine 
learning technique that can be used for both classifi-
cation and regression tasks. It works by recursively 
partitioning the data into smaller subsets based on 
predictor variable values. The partitioning process 
creates a tree-like model of decisions and possible 
consequences, which are the terminal nodes or leaf 
nodes of the tree.

One common criterion utilised in the regression 
side of CART is the mean squared error (MSE) to 
determine the optimal split at each node (Zanakis & 
Becerra-Fernandez, 2005), shown in Equation (1).

MSE ¼
1
n

Xn

i¼1
ðYi − Ŷ iÞ

2, (1) 

where n is the number of observations, Yi is the 
actual value and Ŷ i is the predicted value.

Algorithm 1 has been formulated to demonstrate 
the process of regression tree building within the 
sklearn package within Python.

Algorithm 1: Regression Tree
Determine stopping criteria:
max depth, min samples split, min samples leaf ,
min weight fraction leaf , max leaf nodes,
min impurity decrease
Start with a single node n containing all points.
Calculate MSEn

while MSEn > 0 or stopping criterion not met do
k ¼ number of binary splits
for a¼ 1 to k do

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Calculate MSEn
a

xa ¼ MSEn − MSEn
a

��
�
�
�

end
Set MSEn ¼ maxðxaÞ

Create two new nodes, n’ and n”, and calculate 
new MSEn for each.

end

The Gini index is a common criterion used 
within the classification side of CART and is used 
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to determine the optimal split at each node. The 
formulation is given in Equation (2).

Gini Index ¼ 1 −
Xn

i¼1
p2

i , (2) 

where i is the number of classes and pi is the prob-
ability of an object that is being classified to a par-
ticular class.

The respective algorithm for building a classifica-
tion tree using the Gini index as the splitting criter-
ion is given in Algorithm 2.

Algorithm 2: Classification Tree
Determine stopping criteria:
max depth, min samples split, min samples leaf ,
min weight fraction leaf , max leaf nodes,
min impurity decrease
Start with a single node n containing all points.
Calculate Gini-Indexn

while Gini-Indexn > 0 or stopping criterion not  
met do

k ¼ number of binary splits
for a¼ 1 to k do

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Calculate Gini-Indexn
a

xa ¼ Gini-Indexn − Gini-Indexn
a

��
�
�
�

end
Set Gini-Indexn ¼ maxðxaÞ

Create two new nodes, n’ and n”, and calculate 
new Gini-Index for each.

end

CART offers several advantages that make it an 
attractive choice for both classification and regres-
sion problems. One of the primary benefits is its 
interpretability. CART models produce intuitive 
decision trees that are easy to understand and 
explain, even for non-experts. The hierarchical 
structure of the trees provides a clear visualisation 
of the decision-making process, allowing for 
straightforward interpretation of the relationships 
between predictors and the target variable. 
Healthcare professionals, often not trained exten-
sively in mathematics or statistics, find CART par-
ticularly appealing due to its user-friendly 
interpretability (Bertsimas et al., 2021). The simpli-
city of the decision trees generated by CART allows 
these professionals to grasp the underlying logic 
without needing advanced mathematical expertise. 
This accessibility empowers healthcare practitioners 
to not only utilise CART effectively but also to con-
fidently communicate its findings and implications 
to patients and colleagues.

Another significant advantage of CART is its 
ability to handle non-linear relationships and com-
plex interactions between variables. Unlike linear 
models, CART can effectively capture intricate pat-
terns and decision boundaries, making it suitable 

for a wide range of problems involving non-linear 
relationships. Additionally, CART algorithms per-
form automatic feature selection during the tree- 
building process, identifying the most important 
predictors and reducing the need for manual feature 
engineering.

CART models are also robust to missing data, as 
they can handle incomplete datasets by incorporat-
ing surrogate splits or imputation techniques during 
the tree-building process. Furthermore, CART does 
not require any assumptions about the underlying 
data distribution, making it a non-parametric and 
flexible method applicable to a variety of data types 
and distributions.

3.2. Deterministic and two-stage stochastic 
programming

Within this section the deterministic and stochastic 
mathematical programs will be discussed, providing 
the notation used to allow the reader to apply the 
theories to their own work. The aim of the model is 
to determine the number of beds and nursing staff 
required for each specialty within each hospital. The 
motivation for choosing these resources stems from 
their pivotal roles in shaping healthcare service 
delivery. Beds directly influence patient capacity, 
while nursing staff are instrumental in ensuring 
high-quality patient care and operational efficiency. 
Importantly, the allocation of these resources is 
inherently intertwined, as the number of beds 
required directly affects the staffing needs, and vice 
versa. This research extends on the framework used 
by Mestre et al. (2015) and Maggioni and Wallace 
(2012).

3.2.1. General formulation
Let us define the two-stage stochastic problem, 
where a decision-maker takes the decision x of solu-
tion space X to minimise expected costs:

min
x2X

Enzðx, nÞ ¼ min
x2X

f1ðxÞ þ En h2ðx, nÞ½ �
� �

, (3) 

where x are the first-stage decision variables 
restricted to the set X � Rn and f1ðxÞ is the value of 
the first stage problem. En indicates the expectation 
with respect to a random vector denoted n defined 
on the probability space ðX,A, pÞ; with X 2 Rn and 
probability distribution p on the r-algebra A:

The function h2ðx, nÞ is the value function of the 
second stage of the stochastic problem, defined as 
follows:

h2ðx, nÞ ¼ min
y2Yðx, nÞ

f2ðy : x, nÞ, (4) 

where y is the second-stage solution which is 
restricted to the set Y 2 Rn:
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Equation (4) reflects the costs associated with the 
information being revealed through the realisation 
of n from the random vector n: The term h2ðx, nÞ½ �;

is known as the recourse function.
The solution obtained is defined as the “here and 

now solution” (RP) and is the optimal value of the 
objective function:

RP ¼ Enzðx�, nÞ: (5) 

Equation (3) can be considered where the deci-
sion-maker replaces the random variables with their 
expected values and in turn, solves a deterministic 
model. This is also known as the expected value 
(EV) problem.

EV ¼ min
x2X

zðx, nÞ, (6) 

where n ¼ EðnÞ; which is the expected value of the 
random vector n and z is the objective value.

3.2.2. Sets
The sets used within the deterministic and two-stage 
stochastic models are pivotal for defining the 
parameters and variables within the model. Each set 
serves a distinct purpose. Firstly, B represents the 
set of nursing bands, encompassing different skill 
levels and experiences of nurses. Secondly, S
denotes the set of specialties, where each specialty 
must be assigned to at least one hospital (S � H). 
Thirdly, H signifies the set of hospitals, with each 
hospital being associated with at least one region 
(H � R). Moreover, R stands for the set of regions, 
ensuring geographical coverage across the healthcare 
system. Regions, in this context, could be defined as 
counties or districts, each comprising of multiple 
hospitals operating within the same healthcare sys-
tem organisation. Therefore jHj � jRj: Lastly, K
indicates the set of scenarios, capturing various 
potential circumstances or conditions (Table 1).

3.2.3. Parameters
Table 2 displays the parameters used within the 
deterministic and two-stage stochastic models.

3.2.4. Decision variables
The decision variables introduced in Table 3 deter-
mine the number of beds and nursing staff required 
for each specialty within each hospital.

3.2.5. Mathematical models
In this section, we present novel deterministic and 
two-stage stochastic models derived from the intro-
duced sets, parameters, and decision variables. 
These models serve as the foundation for our ana-
lysis and provide a structured framework for 
addressing the problem at hand. The deterministic 
model can be defined as follows:

min
X

h2H

X

s2S
cbed

s, h xbed
s, h þ

X

b2B
cstaff

b xstaff
s, b, h

� �
, (7) 

subject to:
X

h2H
xbed

s, h � Ds, r 8s 2 S, r 2 R, (8) 

X

b02B:b0�b
xstaff

s, b0 , h � Rs,b � xbed
s, h 8s 2 S, b 2 B, h 2 H,

(9) 
xbed

s, h � Ks, h 8s 2 S, h 2 H, (10) 

0 �
X

s2S
xbed

s, h � UBmax, bed
h 8h 2 H, (11) 

0 �
X

s2S

X

h2H
xstaff

s, b, h � UBmax, staff
b 8b 2 B: (12) 

Objective function (7) minimises the cost of 
deploying beds and staff in each specialty and hos-
pital. Constraints (8) ensure the number of beds 
deployed satisfies the demand. Constraints (9) make 
sure the number of staff deployed to each specialty 
within each hospital meets the minimum require-
ments. Constraints (10) ensure the number of beds 
deployed cannot exceed the maximum available spe-
cialty beds within each hospital. Constraints (11)
and (12) denote the decision variables and their 
domains.

Similarly, the two-stage stochastic model can be 
defined as follows:

min
P

h2H
P

s2S cbed, 1st
s, h xbed

s, h þ
P

b2B cstaff , 1st
b xstaff

s, b, h

� �

þ
X

k2K

X

h2H

X

s2S
pk cbed, 2nd

s, h ubed
s, h, k þ

X

b2B
cstaff , 2nd

b ustaff
s, b, k, h

� �
,

(13) 

subject to:
X

h2H
ðxbed

s, h þ ubed
s, h, kÞ � Ds, r, k 8s 2 S, r 2 R, k 2 K,

(14) 
X

b02B:b0�b
xstaff

s, b0, h � Rs, b � xbed
s, h 8s 2 S, b 2 B, h 2 H,

(15) 
X

b02B:b0�b
ustaff

s, b0, k, h � Rs, b � ubed
s, h, k 8s 2 S, b 2 B, 

h 2 H, k 2 K, (16) 
xbed

s, h � Ks, h 8s 2 S, h 2 H, (17) 

ubed
s, h, k � Ks, h 8s 2 S, h 2 H, k 2 K, (18) 

Table 1. The sets used within the two-stage stochastic 
model where (B, S, H, R, K) represent the maximum number 
of nursing bands, specialties, hospitals, regions and sce-
narios, respectively.
Set Range Definition

B b¼ 1, … , B Set of nursing bands
H h¼ 1, … , H Set of hospitals
K k¼ 1, … , K Set of scenarios
R r¼ 1, … , R Set of regions
S s¼ 1, … , S Set of specialties
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0 �
X

s2S
xbed

s, h � UBmax, bed, 1st
h 8h 2 H, (19) 

0 �
X

s2S

X

h2H
xstaff

s, b, h � UBmax, staff , 1st
b 8b 2 B, (20) 

0 �
X

s2S
ubed

s, h, k � UBmax, bed, 2nd
h 8h 2 H, k 2 K,

(21) 

0 �
X

s2S

X

h2H
ustaff

s, b, k, h � UBmax, staff , 2nd
b 8b 2 B, k 2 K:

(22) 

The first sum in the objective function (13) is the 
cost of deploying both beds and staff to specialties 
within each hospital. The second sum represents the 
additional beds and staff within the same hospital or 
a different hospital in the same region. The first 
constraint, (14), assures the demand for each spe-
cialty and region is met by the number of hospital 
beds deployed. The demand is dependent on the 
scenario parameter. Constraints (15) ensures the 
number of staff deployed meets the minimum 
requirements for staff on each specialty ward in the 
first stage, whilst Constraints (16) ensures this 
requirement is met in the second stage. Constraints 
(17) and (18) ensure the beds deployed do not 
exceed the maximum number of beds available for 
each specialty within each hospital. Constraints 
(19)–(22) denote the decision variables and their 
domains.

3.2.6. Evaluation measures
Within prescriptive analytics, it is widely recognised 
that the EV solution can behave poorly in the sto-
chastic domain. Traditional evaluation tests can be 
carried out in order to determine how each of the 
EV, RP and EEV performs and determine their 
robustness. The EEV can be defined as the expected 
cost when using the solution xðnÞ: Maggioni and 
Wallace (2012) discussed four tests to determine the 
success of stochastic models. For this research, the 
first method of determining the VSS will be used.

If we let xðnÞ be the optimal solution to 
Equation (6), we can take values and fix these as the 
first stage, and then allow the second stage of the 
stochastic model to be performed.

EEV ¼ EnðzðxðnÞ, nÞÞ: (23) 

To determine the VSS, the difference between the 
EEV and RP can be calculated, measuring the 
expected increase in value from solving the stochas-
tic solution to the simple deterministic one:

VSS ¼ EEV − RP: (24) 

The VSS measures expected loss when using the 
deterministic solution. If we have hard constraints, 
the expected cost of the deterministic solution is 
often 1: Whereas if we use soft constraints, we can 
make the expected cost arbitrarily bad by setting 
penalties high using the deterministic solution. If 
the VSS is large, this could mean the wrong choice 
of variables has been chosen or the wrong values 
have been entered.

Table 2. The parameters used within the two-stage stochastic model where (b, s, h, r, k) represent the indices of nursing 
bands, specialties, hospitals, regions and scenarios, respectively.
Parameter Definition

cbed, 1st
s, h Cost of the first stage beds for specialty s 2 S; in hospital h 2 H

cbed, 2nd
s, h Cost of the second stage bed per day for specialty s 2 S; in hospital h 2 H

cstaff, 1st
b Cost of the first stage staff of band b 2 B

cstaff, 2nd
b Cost of the second stage staff of band b 2 B

Ds, r, k Demand for each specialty s 2 S; arriving from region r 2 R; for scenario k 2 K
Ks, h Number of beds available to open in each specialty s 2 S; in hospital h 2 H
pk Probability of scenario k 2 K
Rs, b Ratio of nursing staff of band b 2 B to patient for each specialty s 2 S
UBmax, bed, 1st

h Upper bound of the number of beds that are able to be deployed in hospital h 2 H in the 1st stage

UBmax, bed, 2nd
h Upper bound of the number of beds that are able to be deployed in hospital h 2 H in the 2nd stage

UBmax, staff, 1st
b Upper bound of the number of staff of band b 2 B that can be deployed in the 1st stage

UBmax, staff, 2nd
b Upper bound of the number of staff of band b 2 B that can be deployed in the 2nd stage

Table 3. The decision variables used within the two-stage stochastic model where (b, s, h, r, k) represent the indices of nurs-
ing bands, specialties, hospitals, regions and scenarios, respectively.
Decision variable Definition

xbed
s, h 2 N Number of beds planned in the 1st stage for specialty s 2 S; in hospital h 2 H

xstaff
s, b, h 2 N Number of staff planned in the 1st stage for specialty s 2 S; of band b 2 B; in hospital h 2 H

ubed
s, r, h, k 2 N Number of beds needed in the 2nd stage for specialty s 2 S; for patients arriving from

region r 2 R in hospital h 2 H; for scenario k 2 K
ustaff

s, b, h, k 2 N Number of staff needed in the 2nd stage for specialty s 2 S; of band b 2 B; in hospital h 2 H;
for scenario k 2 K
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3.2.7. Illustrative example
To demonstrate the applicability of our proposed 
model, a small example with fictional numerical val-
ues illustrates the optimisation models and key out-
puts. A small number of scenarios have been 
included within the second stage to provide a simple 
illustration of the stochastic programming approach 
while retaining computational traceability. A dataset 
of 15 patients demonstrates how the models per-
form in the application of elderly and frail patient 
care (Table 4).

Within the dataset there are two hospitals within 
the same region, each serving the same two special-
ties: care of the elderly (COTE) and trauma and 
orthopaedics (T&O). We assume there are two nurs-
ing staff band levels required on the wards, with dif-
fering staff/bed ratios depending on the specialty. 
Table 5 shows the parameters and their correspond-
ing values for the deterministic and stochastic 
models.

The demand from Table 4 can be calculated as 
follows to determine the average daily bed demand 
(ADBD):

ADBDs, h ¼ ALOSs, h � ADNAs, h, (25) 

where ALOS is equal to the average LOS and 
ADNA is equal to the average daily number of 
admissions. The demand in terms of scenarios and 
regions can then be calculated:

Ds, r ¼ ADBDs, r ¼
X

h2R
ADBDs, h: (26) 

This produces a value of 16.67 and 19.01 for the 
D0, 0 and D1, 0 parameters, respectively. For the two- 
stage stochastic model, a number of scenarios are 
required. For this example and to demonstrate the 
model’s functionality, we introduce three scenarios 
which average to the same deterministic demand: 
Average demand with a probability of 40%, demand 
increasing by 20% with a probability of 30%, 
demand decreasing by 20% with a probability 
of 30%.

Therefore the demand matrix Ds, r, k can be repre-

sented as: ½16:66, 19:99, 13:33�
½19:01, 22:80, 15:20�

� �

; where the first 

index refers to the row and the second index refers 
to the column. In this instance we only have one 
region, therefore only one column matrix is shown. 
The third index refers to the column inside the sub- 
matrix. Table 6 displays the optimal decision varia-
bles and objective function values for the illustrative 
example.

The results reveal that the deterministic model 
deploys fewer beds and nursing staff than the sto-
chastic model, leading to an EV solution that costs 
approximately two-thirds of the RP. The EEV value 
is calculated by fixing the first-stage decision varia-
bles in the two-stage stochastic model with the opti-
mal values from the deterministic model. This then 
calculates the values for the second-stage variables 
and the objective function value. The VSS is then 
calculated to be the difference between the EEV and 
RP, resulting in a value of £56, a saving of 2.5%, if 

Table 4. Illustrative example patient dataset with 15 patients.
Patient number Age Hospital LOS Specialty Admission method Admission source Frailty source

Patient 1 95 1 5 COTE Emergency Own Home 3
Patient 2 82 1 3 COTE Emergency Own Home 2
Patient 3 89 1 4 T&O Emergency Own Home 2
Patient 4 87 1 4 T&O Elective Own Home 2
Patient 5 85 2 3 COTE Elective Transferred 1
Patient 6 76 2 1 COTE Elective Transferred 1
Patient 7 71 2 1 T&O Emergency Transferred 1
Patient 8 96 1 5 T&O Emergency Own Home 3
Patient 9 70 2 1 COTE Emergency Transferred 1
Patient 10 67 2 1 T&O Elective Own Home 1
Patient 11 89 1 4 COTE Elective Transferred 3
Patient 12 70 2 1 COTE Elective Own Home 2
Patient 13 75 2 4 T&O Elective Transferred 3
Patient 14 72 2 2 COTE Elective Transferred 3
Patient 15 87 1 5 COTE Emergency Own Home 2

Table 5. The parameter values that were used within the 
deterministic and two-stage stochastic model specifically for 
the illustrative example.
Parameters Values

1st Stage Bed Costs (cbed, 1st
s, h )

20 30
30 40

� �

2nd Stage Bed Costs (cbed, 2nd
s, h )

22 33
33 44

� �

Ratio (Rs, b)
0:29 0:14
0:14 0:29

� �

Maximum Specialty Capacity (Ks, h)
20 25
20 25

� �

1st Stage Staff Costs (cstaff, 1st
b ) £50, £60 �

�

2nd Stage Staff Costs (cstaff, 2nd
b ) ½ £55, £66 �

Upper 2nd bed limit (UBmax, bed, 2nd
h, k )

20 20 20
25 25 25

� �

Upper 1st staff limit (UBmax, staff, 1st
b ) ½ 15, 25 �

Upper 2nd staff limit (UBmax, staff, 2nd
b:k )

15 15
25 25

� �

Probability of Scenarios (pk) ½ 0:4, 0:3, 0:3 �
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the stochastic solution were to be implemented. The 
results also show that the deterministic model is not 
robust, as the EEV is greater than the RP. This is 
due to the deterministic model not being able to 
account for the uncertainty in the demand.

4. Case study of a network of hospitals in 
the U.K

In this section, we apply the predictive and prescrip-
tive analytical methodologies to a case study involv-
ing a network of hospitals. We aim to demonstrate 
the practical application and benefits of our 
approach in a real-world setting. Three years’ worth 
of data covering the period from April 2017 to 
March 2020 was provided by a large NHS trust in 
the U.K. To ensure data integrity and avoid skewing 
from the COVID-19 pandemic, only data preceding 
the pandemic was utilised. The dataset comprises 
165,188 patient records of individuals aged 65 and 
over, encompassing 29 different specialties and 
spanning 11 hospital sites. This comprehensive data-
set forms the basis of our analysis and modelling 
efforts, enabling us to derive insights and optimise 
resource allocation effectively.

4.1. Results of CART analysis

This section discusses the development and results 
of the CART models. This section will be split into 
two subsections, the first for regression trees 
(Section 4.1.1) and the second for classification trees 
(Section 4.1.2). The results of the CART analysis 
will be used to inform the deterministic and sto-
chastic models.

4.1.1. Regression trees
Regression trees were developed to predict the LOS 
of patients. Admission method, admission source, 
age (as a continuous and grouped measure), day, 
diagnosis, frailty (as a continuous and grouped), 
hospital, number of scans and specialty were the 
nine variables used within the regression trees.

Age and frailty were included as continuous and 
grouped variables to determine which would be 
more appropriate for the regression trees. The mod-
els were trained on 80% of the data with a 20% test 
set being used to validate the models.

The “Scikit-learn” package within Python was 
used to generate the regression trees utilising the 

“DecisionTreeRegressor” function. The default 
parameters were utilised within the model with the 
exception of the “max_leaf_nodes” and the “min_ 
samples_leaf” parameters. The default parameters 
have been successfully employed in other studies 
(Hancock & Khoshgoftaar, 2022; Heyburn et al., 
2018; Kilincer et al., 2023). These “max_leaf_nodes” 
and the “min_samples_leaf” parameters underwent 
parameter optimisation through a step wise 
approach. This was to ensure underfitting and over-
fitting were avoided (Bramer, 2007). Additionally, 
we wanted to set the upper limit of the “max_leaf_ 
nodes” to a manageable amount of groupings. The 
parameters used have been provided within Table 2 
in the Supplementary Material and were selected 
based on the default values and parameter optimisa-
tion to determine the largest R2 score.

The largest R2 score was achieved by grouping age 
into five-year intervals and using frailty as a continu-
ous measure. This value was calculated to be 34.2%. 
Whilst this is a low R2 score, it is expected due to 
the large variation in LOS within the data (417 days). 
This result shows the model correctly assigns patients 
to the correct node 34.2% of the time.

The achieved R2 score of 34.2% by the regression 
trees in predicting the LOS of patients may appear 
low at first glance. However, several factors contrib-
ute to this result.

Firstly, the dataset exhibits a wide range of LOS 
values, with a maximum LOS of 417 days. Such vari-
ability in LOS can make accurate prediction chal-
lenging, as numerous factors, beyond those included 
in the model, may influence the length of a patient’s 
stay.

Secondly, despite including relevant variables 
such as admission method, source, diagnosis, and 
frailty, the predictive power of the model may be 
limited by the complexity of the LOS prediction 
task. Some nuances of patient stays may not be fully 
captured by the chosen variables, leading to inherent 
limitations in the model’s accuracy.

Moreover, while regression trees offer flexibility 
and interpretability, they may struggle to capture 
complex relationships or interactions between varia-
bles, especially in datasets with high variability like 
ours. To mitigate this, we carefully optimised model 
parameters, including “max_leaf_nodes” and “min_ 
samples_leaf”, to balance model complexity and 
performance.

Table 6. Deterministic and two-stage stochastic results for the illustrative example – results are recorded 
[(beds), (staff)].

s¼ 0, h¼ 0 s¼ 0, h¼ 1 s¼ 1, h¼ 0 s¼ 1, h¼ 1 Objective Function Value (£)

EV [(0), (0, 0)] [(17), (3, 5)] [(20), (3, 6)] [(0), (0, 0)] 2,050
RP [(20), (3, 6)] [(1), (1, 1)] [(24), (4, 8)] [(0), (0, 0)] 2,185
EEV [(4), (1, 2)] [(17), (3, 5)] [(24), (4, 8)] [(0), (0, 0)] 2,241
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Furthermore, it’s important to highlight that the 
utility of decision trees extends beyond predictive 
accuracy alone. Decision trees offer a transparent 
and interpretable framework for understanding the 
factors influencing patient LOS. Healthcare practi-
tioners can readily interpret decision trees, making 
them valuable tools for clinical decision-making and 
care management.

While the achieved R2 score may seem modest, 
the visual representation provided by decision trees 
empowers healthcare practitioners to identify critical 
decision points and understand the underlying fac-
tors contributing to patient LOS. This interpretabil-
ity can facilitate targeted interventions and resource 
allocation, ultimately improving patient outcomes 
and healthcare delivery efficiency.

Therefore, despite the relatively low R2 score, the 
inherent interpretability and actionable insights 
offered by decision trees make them a valuable asset 
for healthcare practitioners seeking to optimise 
patient care pathways and resource utilisation.

4.1.2. Classification trees
Classification trees were also developed to predict 
patients who were discharged on the same day or 
admitted overnight. In addition to the nine variables 
used within the regression trees, month was also 
included as a predictor, since it was found to be a 
significant variable within logistic regression ana-
lysis. Similar to the regression trees, the model was 
performed with both age and frailty as a continuous 
and grouped measure to determine which would be 
more appropriate. The models were trained on 80% 
of the data with a 20% test set being used to validate 
the models. The “DecisionTreeClassifier” function 
was used to develop the classification trees using the 
“Scikit-learn” package within Python. The parame-
ters used for the “DecisionTreeClassifier” function 
are shown in Table 2 in the Supplementary 
Material. The accuracy score was calculated to be 
89.9% when age was grouped and frailty was used 
as a continuous measure whilst using one minimum 
sample per leaf and 30 maximum leaf nodes. The 
groupings determined by the end nodes of the 
CART models can be used to determine the demand 
for each specialty within each hospital.

4.2. Aggregate results of the deterministic vs. 
stochastic multi-site model

This subsection will utilise the average demand for 
each specialty and each region from the three years’ 
worth of data, and feed this into the deterministic 
and two-stage stochastic model. All optimisation 
models were solved using both Microsoft Excel with 
OpenSolver and Python with the PuLP optimisation 

library. Python provided significantly faster compu-
tational times, demonstrating the efficiency and 
practical feasibility of the approach for real-world 
implementation and rapid decision support. In all 
cases, models were solved to optimality. The models 
have been provided open source via GitHub 
(Williams, 2023).

The 11 healthcare locations can be grouped into 
six different regions, offering 29 specialties across all 
hospitals. In practice, there are 90 combinations of 
where specialties can be located, with not all hospi-
tals offering every specialty. Within the NHS, there 
are different levels of nursing staff, ranging from 
band two to band eight. The higher the band, the 
more senior the staff member. Two levels of nursing 
bands will be used to develop the models (bands 
five and six). In order to gather costing figures, 
open source data from Public Health Scotland 
(2021) was used. The costing data and parameter 
values are shown in Table 1 in the Supplementary 
Material for reference.

In order to meet the demand and satisfy the con-
straints, the deterministic model utilised the first- 
stage variables only. The results yielded a yearly cost 
of £904,281. In total, 1,027 beds across different 
hospitals were deployed with Figure 1 displaying the 
precise locations of these beds. In order to satisfy 
demand a total of 414 NHS nurses across a 24-h 
period were required.

The two-stage stochastic model was considered 
with three different years of data in each scenario, 
with weightings based on the number of admissions 
per year. This approach aims to ascertain, drawing 
insights from past performance, the most effective 
strategies for future planning and decision-making. 
Compared to the deterministic model, the stochastic 
model deployed a higher total number of 1,278 beds 
across the two stages. The stochastic model also allo-
cated a number of more beds to specialties such as 
COTE, General Medicine and Rehabilitation. 
Additionally, the distribution of beds across hospitals 
differed for certain specialties between the two mod-
els, providing more flexibility and adaptability to 
varying demand patterns in the stochastic approach.

� Year one (2017–2018) with a probability 
of 32.2%

� Year two (2018–2019) with a probability 
of 34.0%

� Year three (2019–2020) with a probability 
of 33.8%

The average of all scenarios is equal to the deter-
ministic daily demands.

The results of the stochastic model yielded a yearly 
cost of £923,828. In total, 941 beds are deployed 
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within the first stage, with a maximum of 337 in the 
second stage. Similarly, 86 additional nursing staff 
are deployed across both stages of the model com-
pared to the deterministic counterpart. The location 
of the 1,278 beds can be seen within Figure 2.

To provide an understanding of why both models 
come to different values, we now investigate the 
robustness of the deterministic model. The VSS was 
calculated by fixing the results from the deterministic 
model as the first stage within the two-stage stochas-
tic model. The VSS was calculated to be £35,439 over 
a year period, a saving of � 3.8% (Table 7). This 

indicates that the deterministic model is not robust, as 
the EEV is greater than the RP. The primary reason 
for this difference is that the deterministic model 

Figure 1. Heatmap of bed locations for each specialty within each hospital for the deterministic model.

Figure 2. Heatmap of bed locations for each specialty within each hospital for the two-stage stochastic model.

Table 7. The EV, RP and EEV values for the 
xbed, xstaff , ubed and ustaff decision variables and the object-
ive function value.

Total beds Total staff
Objective function  

value (£)xbed ubed xstaff ustaff

EV 1,026 – 414 – 904,281
RP 941 337 346 154 923,828
EEV 1,026 186 414 104 959,267
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operates under the assumption of a fixed, known 
demand, which simplifies the decision making process 
but fails to incorporate the variability and uncertainty 
inherent in real-world scenarios.

In contrast, the two-stage stochastic model expli-
citly considers the uncertainty in demand by allow-
ing for multiple possible future scenarios. This 
enables more flexible and adaptive decision-making 
that can better respond to actual demand fluctua-
tions. Consequently, the stochastic model can opti-
mise decisions more effectively, leading to potential 
cost savings and improved performance.

4.3. Results broken down by specialty

In this subsection, we break down the results by 
specialty to understand why the deterministic and 
stochastic models yield different outcomes.

The variation in demand, especially for high- 
impact specialties such as COTE, plays a significant 
role in these differences. The COTE specialty often 
has high variability in patient demand and longer 
LOS, making it a critical factor in resource allocation.

To illustrate, consider the allocation of beds for 
the COTE specialty across all hospitals. The deter-
ministic model, which does not account for variabil-
ity in demand, assigns a fixed number of 210 beds 
for COTE (Figure 1). This fixed allocation is based 
on average demand and does not adjust for peak 
periods, potentially leading to shortages during 
times of high demand and under-utilisation during 
low-demand periods. In contrast, the stochastic 
model incorporates variability and dynamically 
adjusts resource allocation to better match real-time 
demand fluctuations. As shown in Figure 2, the sto-
chastic model allocates up to 247 beds for COTE 
when necessary, reflecting its flexibility in respond-
ing to peaks in demand. This dynamic adjustment 
capability allows the stochastic model to efficiently 
manage resources, reducing the likelihood of short-
ages and improving overall service delivery.

The stochastic model’s ability to handle variabil-
ity results in several benefits. Although it requires a 
higher initial deployment of resources, such as add-
itional beds, this approach ultimately leads to cost 
savings. By preventing bed shortages and ensuring 
that patient care needs are met during peak times, 
the stochastic model minimises the need for expen-
sive emergency measures and improves patient out-
comes. This proactive allocation strategy exemplifies 
the model’s superiority in handling high-impact spe-
cialties with significant demand variability.

Overall, the comparison between deterministic 
and stochastic models highlights the importance of 
incorporating demand variability into resource plan-
ning, particularly for specialties with high impact 
and variability like COTE. By dynamically adjusting 

resource allocation, the stochastic model demon-
strates its effectiveness in optimising resource use 
and enhancing the healthcare system’s responsive-
ness to patient needs.

4.4. Results of linking the two paradigms

To explore the relationship between patient character-
istics and LOS within the context of decision trees, we 
investigated multiple methods that can be employed to 
derive insights from both classification and regression 
tree results. These methods offer different perspectives 
on how patient attributes and healthcare facility factors 
contribute to LOS prediction.

The first method involved calculating the number 
of patients of each specialty and determining the 
overall average LOS for each end node. This 
approach provides a broad overview of LOS patterns 
across different patient populations and allows for 
the identification of specialties with particularly high 
or low LOS averages.

The second method utilised each end node and 
considered the specific LOS for each specialty and 
hospital within the node. By aggregating LOS data 
at this granular level, we obtained a more detailed 
understanding of the factors influencing LOS within 
specific patient groups and healthcare facilities.

Moreover, our analysis demonstrated that 
employing 30 end node groups, as opposed to tradi-
tional methods, offers significant benefits in captur-
ing nuanced relationships between patient 
characteristics, healthcare settings, and LOS predic-
tion. This approach provides a finer granularity of 
analysis, enabling more precise identification of fac-
tors influencing LOS and facilitating targeted inter-
ventions for improved patient outcomes.

Moving forward, we will focus on exploring uti-
lising the classification tree with specific LOS for 
each node, in more detail to demonstrate its applic-
ability in uncovering nuanced relationships within 
the British healthcare context. This deeper explor-
ation will shed light on the potential insights that 
can be gleaned from decision tree analyses in 
healthcare research and clinical practice.

The process for generating demands based on 
these specific LOS values is depicted in Equation 
(27), which accounts for both the number of patients 
and their LOS within each specialty and hospital.

Ds, r ¼
X

h2r
Ds, h

¼
Number of Patientss, h � Specific LOSs, h

Total Number of Days in Dataset
:

(27) 

These refined demand generation processes were 
used to understand how CART can be linked to 
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both deterministic and two-stage stochastic models, 
with the results presented in Table 8. Additionally, 
the EEV was computed to assess the VSS within the 
context of the models’ performance.

Calculating the VSS from the results in Table 8 pro-
duces a saving of £32,0423 per day (3.7%). Although 
the calculated VSS is a smaller value compared to the 
VSS from average based planning, the specific LOS 
model results in a lower overall EEV, with a 7% cost 
difference between the two EEV values. The model 
suggests deploying fewer beds and nursing staff in the 
first stage when comparing the RP to the EEV results, 
however, given the uncertainties of the second stage, it 
is more cost-efficient to maintain flexibility with fewer 
resources initially, resulting in long-term savings and 
improved cost efficiency.

The comparison between the deterministic and 
CART-linked models reveals significant advantages 
associated with integrating CART methods into 
healthcare planning processes. Firstly, the CART 
approach offers enhanced granularity and insight 
into LOS prediction compared to traditional deter-
ministic models. By considering specific LOS values 
for each specialty and hospital within each node, the 
CART model provides a more nuanced understand-
ing of the factors influencing LOS. This finer level 
of detail enables healthcare planners to tailor inter-
ventions and allocate resources more effectively, 
addressing the diverse needs of different patient 
populations and healthcare facilities.

Moreover, the CART-linked models present 
opportunities for cost savings through more robust 
decision-making. By leveraging predictive analytics 
and historical data, the CART model can identify 
patterns and trends in LOS that may not be appar-
ent in traditional deterministic approaches. This 
enables healthcare planners to make more informed 
decisions about resource allocation, optimising bed 
capacity, staffing levels, and other resources to meet 
patient demand more efficiently. As a result, health-
care organisations can potentially reduce operational 
costs while improving patient outcomes and 
satisfaction.

The VSS savings observed in the CART-linked 
models further emphasise the potential value of lev-
eraging CART techniques in healthcare resource 
management. The VSS analysis quantifies the 

potential cost savings associated with incorporating 
uncertainty into decision-making processes, high-
lighting the importance of considering both histor-
ical data and predictive analytics in strategic 
planning. By accounting for variability and uncer-
tainty in patient demand and LOS, the CART-linked 
models enable healthcare organisations to make 
more resilient and adaptable decisions, better posi-
tioning them to respond to changing healthcare 
needs and environmental factors.

Overall, the comparison of results between the 
deterministic and CART-linked models underscores 
the transformative potential of CART methods in 
healthcare planning. By providing enhanced granu-
larity, insight, and cost savings opportunities, CART 
techniques offer a powerful tool for optimising 
resource allocation, improving operational efficiency, 
and ultimately enhancing patient care delivery in 
healthcare settings.

5. Discussion

In this section, we synthesise the key findings of our 
research and outline their implications for health-
care resource planning. By linking predictive and 
prescriptive analytics, our research offers a compre-
hensive approach to optimising hospital bed and 
staffing allocations, particularly for frail and elderly 
patients. We will discuss the practical applications 
of our models, examine their limitations, and sug-
gest directions for future research. Our goal is to 
provide actionable insights and recommendations 
that can enhance decision making processes in 
healthcare management.

The integration of predictive and prescriptive 
analytics in the context of healthcare resource plan-
ning, specifically for frail and elderly patients, 
presents a robust approach to enhancing decision- 
making processes. Our research demonstrates the 
effectiveness of combining CART analysis with 
deterministic and stochastic programming models. 
By analysing over 165,000 patient records, CART 
analysis provided insights into patient groupings 
based on clinical and demographic attributes affect-
ing the length of stay (LOS). These insights were 
crucial in developing our predictive models, which 
in turn informed the resource allocation strategies 
in our optimisation models.

The deterministic and stochastic models we 
developed address both the certainty and uncer-
tainty inherent in healthcare demand. The determin-
istic model, while straightforward, operates under 
the assumption of fixed future demand, which is 
rarely the case in real-world settings. In contrast, 
the stochastic model incorporates multiple scenarios 
to account for the variability in patient admissions 

Table 8. The EV, RP and EEV values for the 
xbed, ubed, xstaff , ustaff decision variables and objective 
function using the classification tree and the specific LOS 
across all three years.

Total beds Total staff
Objective function  

value (£)xbed ubed xstaff ustaff

EV 1,002 – 422 – 840,245
RP 911 343 348 162 862,155
EEV 1,002 185 422 98 894,198

14 E. WILLIAMS ET AL.



and LOS, offering a more flexible and realistic plan-
ning tool. The integration of CART-based predic-
tions into these models ensures that variations and 
uncertainties are considered, leading to more accur-
ate and practical solutions.

Our findings underscore the value of the stochas-
tic approach. The VSS analysis revealed that incor-
porating uncertainty into the optimisation process 
significantly improves resource allocation, reducing 
costs while maintaining or enhancing patient care 
quality. This is particularly relevant in the healthcare 
sector, where demand is highly unpredictable, and 
the cost of over- or under-estimating resources can 
be substantial.

5.1. Bridging the literature gap

The literature search of Section 2.3 has revealed 
gaps in linking predictive and prescriptive analytics 
to optimise resource allocation under uncertainty in 
healthcare. Current literature relies heavily on deter-
ministic optimisation models for healthcare plan-
ning, which fail to capture inherent variability. We 
bridge this gap by integrating data-driven predictive 
modelling with stochastic optimisation. Specifically, 
we use CART to generate demand inputs for a two- 
stage stochastic program, creating a robust optimisa-
tion model. This combination of predictive and 
prescriptive analytics differentiates our work from 
existing literature. Additionally, our focus on an 
integrated network of hospitals providing elderly 
care contrasts with single-site models that dominate 
previous studies. Furthermore, our joint optimisa-
tion of staffing and bed capacity is unique compared 
to other papers that optimise these decisions separ-
ately. Finally, the explicit incorporation of specialty 
and acuity mix for frail elderly patients differs from 
previous studies.

Moreover, our contribution includes the develop-
ment of a novel model and a comprehensive pro-
cess/workflow that evaluates the quality of different 
models. This process ensures rigorous assessment 
of model performance, including predictive 
accuracy and optimisation effectiveness, by employ-
ing relevant metrics and validation techniques. This 
systematic approach enhances the reliability and 
applicability of our findings in real-world healthcare 
settings, marking a significant advancement in the 
field.

5.2. Limitations

Despite the promising results, our research has sev-
eral limitations that warrant consideration. Firstly, 
the CART analysis, while powerful, has inherent 
limitations. The method can be prone to overfitting, 

especially when dealing with highly complex data-
sets. Although we employed techniques to mitigate 
this risk, such as pruning and cross-validation, the 
potential for overfitting remains a concern.

Furthermore, the stochastic model’s accuracy is 
heavily dependent on the quality of the input data 
and the scenarios generated. Inaccurate or biased 
data can lead to suboptimal resource allocation deci-
sions. While our research utilised robust data and 
scenario generation techniques, the ever-changing 
nature of healthcare demand means that continuous 
updates and validations of the model are necessary.

Lastly, the computational complexity of the sto-
chastic model can be a barrier to its practical imple-
mentation. Solving such models requires significant 
computational resources and time, which may not 
be feasible for all healthcare institutions, particularly 
those with limited resources. Future research could 
focus on developing more efficient algorithms and 
exploring the use of advanced computing techni-
ques, such as parallel processing, to enhance the 
model’s practicality.

In conclusion, the results from our innovative 
approach bridging the world of predictive analytics 
with the prescriptive analytics paradigm provides 
valuable insights into the application of predictive 
and prescriptive analytics in healthcare resource 
planning, these limitations highlight the need for 
cautious interpretation of the results and suggest 
directions for future research. Addressing these limi-
tations will be crucial in refining the models and 
ensuring their broader applicability and effectiveness 
in diverse healthcare settings.

5.3. Managerial insights and generalisability of 
the results

The results discussed can provide guidance and rec-
ommendations for enhancing healthcare bed and 
staffing allocations. One key takeaway from the 
models is the clear demonstration of the drawbacks 
of planning solely based on averages. Specifically, 
the model outputs reveal that using average LOS- 
based demand predictions yields an EEV that is 7% 
higher than when using patient-specific LOS predic-
tions. This cost difference amounts to a potential 
saving of £34,425 per day by accounting for patient- 
level variability. Additionally, the VSS for the spe-
cific LOS model demonstrates that flexibility and 
scenario-based planning reduce daily operational 
costs by £32,042, further underscoring the financial 
and resource management benefits of avoiding aver-
age-based approaches. This eye-opening insight has 
underscored the importance of adopting more 
sophisticated and dynamic approaches to resource 
planning, steering the health board away from 
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potential pitfalls in their decision-making process. 
Perhaps the most impactful aspect of this project 
lies in its utilisation of predictive modelling, specif-
ically within the healthcare domain. For a healthcare 
provider who is accustomed to simpler average 
models, this research has showcased the true poten-
tial of mathematical modelling, revealing its power 
in unravelling complexities, optimising operations, 
and delivering data-driven insights into healthcare 
planning. The predictive models developed in this 
research were trained on data collected under the 
existing bed and staffing allocations, aiming to cap-
ture patterns in patient LOS and demand. While 
acknowledging the potential for endogeneity in 
demand generation, particularly in elective special-
ties, we argue that the observed demand patterns 
are largely exogenous to the staffing and bedding 
decisions. This consideration regarding the exogene-
ity of demand in relation to staffing and bedding 
decisions should be taken into account when apply-
ing the developed predictive models to other health-
care settings or similar problems.

For practitioners to adopt these models effect-
ively, several steps are necessary. First, robust data 
collection systems must be in place to capture real- 
time patient information, including clinical and 
demographic data for predictive modelling. Second, 
user-friendly decision-support tools need to inte-
grate predictive outputs with optimisation algo-
rithms, allowing healthcare managers to simulate 
scenarios and adjust resource plans dynamically. 
Third, training for healthcare decision-makers is 
essential to interpret model outputs and apply them 
in policy and operational contexts. Lastly, institu-
tional support for integrating predictive and pre-
scriptive analytics into routine planning processes 
can facilitate sustained improvements in efficiency 
and patient care.

Generalising results is a critical aspect of research 
that helps to ensure that the findings of a study are 
relevant and applicable beyond the specific context 
in which they were obtained. This makes it possible 
to guarantee that the research will be beneficial and 
instructive for other academics, professionals, and 
policymakers who could be working in other loca-
tions or with various populations. The deterministic 
and two-stage stochastic equations are able to be 
applied to any healthcare scenario. Whilst this 
research particularly focused on frail and elderly 
patients, due to the changing population demo-
graphics within the area, the equations can be 
extended to other age groupings. The benefit of 
using CART models is that researchers and clini-
cians can apply the theory to their own patient types 
and identify distinctive homogeneous clusters of 
patient features. As time passes and the 

demographic of patients changes, these models can 
be rerun to determine new patient clusters. The user 
can choose the number of hospitals in each region 
and the range of specialties they may provide 
because of the equations’ structure, which allows the 
models to be adjusted to fit any size region. Whilst 
these models were run with three levels of nursing 
bands, these can be increased or decreased to suit 
the user. Additionally, if decision-makers wanted to 
determine the needs for other hospital resources 
such as ventilators, these could be easily added to 
the model. The models are adaptable and reliable to 
suit a variety of healthcare situations.

5.4. Future work

This work could be extended in several ways based 
on the required application. One avenue could 
involve delving into causal models to establish 
deeper analytical frameworks for understanding the 
relationships between patient attributes and LOS. 
Additionally, exploring online algorithms for real- 
time resource management offers a promising 
avenue for dynamic allocation strategies, addressing 
day-to-day or specific time-to-time decisions in 
healthcare settings, especially considering factors 
such as hospital utilisation and seasonal demand 
changes. Implementing reinforcement learning strat-
egies based on Markov decision processes could fur-
ther enhance resource allocation approaches, 
particularly in managing dynamic patient demands 
and optimising resource utilisation. Furthermore, 
characterising the trade-offs between different 
methodological approaches, such as the two-stage 
stochastic program and alternative models like infin-
ite-horizon dynamic programming, will provide 
deeper insights into methodological choices and 
their implications for healthcare resource manage-
ment. Additionally, conducting a comprehensive 
sensitivity analysis to identify which parameters and 
modelling assumptions have the biggest potential 
impact on cost savings and resource optimisation 
will allow for the prioritisation of refinements aimed 
at further improving the predictive and prescriptive 
models.

6. Conclusion

By linking predictive and prescriptive analytics, 
decision-makers can obtain a comprehensive view of 
their data and use it to make better decisions. For 
example, if predictive analytics indicates there is a 
high likelihood of a certain event occurring in the 
future, prescriptive analytics can recommend spe-
cific actions that can be taken to mitigate the risk or 
take advantage of the opportunity. Furthermore, this 
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integration can also allow decision-makers to con-
tinuously improve their decision-making processes 
over time. By tracking the effectiveness of their deci-
sions and making adjustments based on new data 
and insights, they can optimise their operations and 
achieve better outcomes.

This research has discussed how predictive and 
prescriptive analytics could be used in combination 
for efficiently planning hospital specialty beds and 
staffing requirements for a network of hospitals in 
the U.K. By comparing the regression tree and clas-
sification results to the averages, it allowed differen-
ces to be determined and validation of the linked 
methods to take place. The results showed regres-
sion trees produced closer results to the averages. 
The validation of these regression trees paves the 
way for more complex scenario analysis to be able 
to take place.

Disclosure statement

The authors have no competing interests to declare that 
are relevant to the content of this article.

Funding

The authors would like to acknowledge the generous sup-
port and contributions from NHS staff in the Aneurin 
Bevan University Health Board as well as the financial 
contribution from the Knowledge Economy Skills 
Scholarship (KESS2) and the Leadership Engagement 
Acceleration & Partnership (LEAP). KESS2 is a pan- 
Wales higher level skills initiative led by Bangor 
University on behalf of the Higher Education sector in 
Wales. It is part funded by the Welsh Government’s 
European Social Fund (ESF) convergence programme for 
East Wales. LEAP is an EPSRC Digital Health Hub with 
award reference number [EP/X031349/1].

ORCID

Elizabeth Williams http://orcid.org/0000-0003-4515- 
441X 
Daniel Gartner http://orcid.org/0000-0003-4361-8559 
Paul Harper http://orcid.org/0000-0001-7894-4907 

References

Abdelaziz, F. B., & Masmoudi, M. (2012). A multiobjec-
tive stochastic program for hospital bed planning. 
Journal of the Operational Research Society, 63(4), 
530–538. https://doi.org/10.1057/jors.2011.39

Amelia, P., Lathifah, A., Haq, M. D., Reimann, C. L., & 
Setiawan, Y. (2021). Optimising outpatient pharmacy 
staffing to minimise patients queue time using discrete 
event simulation. Journal of Information Systems 
Engineering and Business Intelligence, 7(2), 102–111. 
https://doi.org/10.20473/jisebi.7.2.102-111

Ardakani, E. S., Larimi, N. G., Nejad, M. O., Hosseini, 
M. M., & Zargoush, M. (2023). A resilient, robust 
transformation of healthcare systems to cope with 

covid-19 through alternative resources. Omega, 114, 
102750. https://doi.org/10.1016/j.omega.2022.102750

Bertsimas, D., Pauphilet, J., Stevens, J., & Tandon, M. 
(2021). Predicting inpatient flow at a major hospital 
using interpretable analytics. Manufacturing & Service 
Operations Management, 24(6), 2797–3306. https://doi. 
org/10.1287/msom.2021.0971
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Appendix A: List of patient attributes

Table A1. List of patient attributes within the dataset used for analysis.
Attribute Data type Distinct attribute values or bins Documentation

Admission Date Ordinal 1,096 (e.g., 01/04/2017) Upon admission
Admission Method Nominal 17 (e.g., Elective waiting list) Upon admission
Admission Source Nominal 26 (e.g., Usual place of residence) Upon admission
Admission Time Continuous 1,440 (fhh:mmg) Upon admission
Borough Nominal 174 (e.g., Newport LHB, Monmouthshire LHB) Upon admission
Date of Birth Ordinal 12,037 (e.g., 01/01/1940) Upon admission
Diagnosis Nominal 2,758 (e.g., Fracture of neck of femur, Congestive heart failure) Upon admission
Discharge Date Ordinal 1,154 (e.g., 01/04/2017) On discharge
Discharge Destination Nominal 26 (e.g., Death, Own home, Patient transfer within same health board/trust) On discharge
Discharge Time Continuous 1,306 (fhh:mm:ssg) On discharge
Hospital Nominal 14 (e.g., Chepstow Community Hospital) Upon admission
NHS Number Nominal 66,251 (e.g., 4900000000) Upon admission
Postcode Nominal 13,819 (e.g., CF72 8XR) Upon admission
Registered GP Nominal 1,313 (e.g., G9041668) Upon admission
Registered GP Practice Nominal 618 (e.g., W93012) Upon admission
Scan Attendance Date Ordinal 1,097 (e.g., 01/04/2017) While admitted
Scan Attendance Time Continuous 11,417 (fhh:mm:ssg) While admitted
Scan Exam Nominal 293 (e.g., CT Neck and thorax) While admitted
Scan Exam Code Nominal 295 (e.g., XCHES, XABDO, CSKUH) While admitted
Scan Procedure Code Nominal 16 (e.g., R, CT, MR) While admitted
Scan Requested Date Ordinal 1,090 (e.g., 01/04/2017) While admitted
Scan Specialty Code Nominal 37 (e.g., Gastro, Neuro) While admitted
Specialty Nominal 30 (e.g., Care of the Elderly, Neurology) Upon admission
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