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Abstract—This study establishes a two-layer data-driven 

robust optimal scheduling approach to deal with the significant 

computational complexity and uncertainties in scheduling 

industrial heating loads, bitumen tanks (BTs). First, a two-layer 

deterministic optimal scheduling model is proposed to address the 

computational burden of utilizing flexibility from a large number 

of BTs. The key feature of this model is the capability to reduce 

the number of control variables through analyzing and modeling 

the clustered temperature transfer of BTs. Second, to tackle the 

uncertainties in the scheduling problem, historical data regarding 

BTs are collected and analyzed, and an unsupervised learning 

method is employed to construct the uncertainty set with convex 

boundaries and adjustable conservatism, based on which robust 

optimization can be conducted. The case results indicate that the 

proposed methods enable the utilization of flexibility in BTs, 

improving the level of onsite photovoltaic consumption and 

reducing the aggregated load fluctuation. 

Index Terms—Bitumen tanks, demand response, industrial 

heating loads, robust optimization, uncertainty analysis. 

 

NOMENCLATURE 

Abbreviations 

IHL   Industrial heating loads 

BT   Bitumen tank 

NP-hard Non-deterministic polynomial-time hard 

SVC   Support vector clustering 

PLK   Piecewise linear kernel 

PV   Photovoltaic 

Parameters 

Pabsorb   Heat absorb rate 

Ploss   Heat loss rate 

Pnet   Heat transfer rate 

Prate   Rated heating power 

U    Overall heat transfer coefficient 

A Area of a BT 

T   Bitumen temperature 

Tamb   Temperature of outside ambiance 

cv    Heat capacity of the bitumen 

m    Mass of the bitumen in a BT 

Tup   Upper limit of bitumen temperature 

Tdown   Lower limit of bitumen temperature 
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H Number of time slots in the time horizon 

N Number of BTs 

Δt    Length of each time slot. 

ΔT   Magnitude of the gap 

ΔTup   temperature increase in a Δt period for a BT 

ΔTdown  temperature decrease in a Δt period for a BT 

ξm    the mth slack variable 

v    Regularization parameter 

α/β   Lagrange multiplier 

K    Dimension of the historical data sample 

M Number of historical data samples 

Um The mth historical data of U 

amb

mT    The mth historical data of Tamb 

Q Number of boundary support vectors 

State Variables 
Tn,h   Temperature of nth BT at time h 

BL

hP    Base load of the industrial site at time h 

PV

hP    Power generation of local PV at time h 

hT    Average temperature of BTs at time h 
q

hT  Average temperature of BTs corresponding to the qth 

boundary support vector at time h. 

Decision Variables 

x    ON/OFF state of a BT 

xn,h   State of the nth BT at time h 

xh    Total number of BTs turned ON at time h 

I. INTRODUCTION 

In the past decades, dispatchable loads have attracted vital 

attention due to their substantial potential for balancing power 

systems through management. In industrial sectors, industrial 

heating loads (IHLs) possess inherent operational flexibility due 

to their thermal storage capacity, enabling them to participate in 

demand response in power systems [1]. During the production 

processes of IHLs, a considerable amount of energy is required 

to maintain them within an appropriate temperature range for 

anytime use. Therefore, their efficient management suggests a 

significant opportunity for power system balancing [2]. 

In this paper, an industrial site with bitumen tanks (BTs) is 

researched as an example of IHLs. The global bitumen market 

was valued at around USD 105 billion in 2022, underscoring its 

substantial presence in the construction and infrastructure sectors 

worldwide [3]. In the UK, there are nearly 300 bitumen plants 

manufacturing over 20 million tonnes of bitumen annually [4]. 

To ensure the fluidity of bitumen for anytime use, BTs are 

needed to maintain the bitumen temperature within the required 

range. At present, there are mainly three heating methods for BTs, 
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namely fuel heating, thermal oil heating, and electric heating [5]. 

Electric heating utilizes an electric resistance assembly to heat 

the bitumen in the tank, which is widely applied, especially in 

applications where precise temperature control of bitumen is 

essential. According to a survey conducted by MBA Asphalt 

Plant Co [6], one of the largest companies in the bitumen 

industry, electric BTs account for approximately 15% of the total 

market share of BTs worldwide, with around 65% of them being 

used in European countries. Moreover, considering that electric 

BTs are environmentally friendly due to the absence of 

combustion of fossil fuels, the proportion of electric BTs is 

anticipated to continue rising in the low-carbon-oriented future. 

Electric BTs are typically equipped with electrical heating 

devices to maintain the bitumen within a certain temperature 

range, ensuring its fluidity for industrial applications in road 

construction, building infrastructure, petroleum, chemical, and 

various other fields [7]. By properly controlling the ON/OFF 

status of electrical switches, BTs act as thermal energy storage, 

providing the flexibility to respond to demand for the power 

grid. In recent years, there have been studies exploring the 

possibility of leveraging BTs to provide demand response 

services. For instance, researchers have developed control 

algorithms to alter the power consumption of BTs for real-time 

balancing between supply and demand in electric power 

systems [8]. Similar approaches have been applied to BTs for 

participating in enhanced frequency response within the Great 

Britain power system [9]. Existing studies have verified the 

significant potential of BTs to provide demand response and 

ancillary services to the grid. 

Nowadays, for tapping the demand response potential of 

IHLs, there are mainly two research challenges. First, the 

scheduling of IHLs presents a significant computational 

challenge due to the strong nonlinearity and large number of 

integer variables involved [10]. This is a non-deterministic 

polynomial-time hard (NP-hard) problem with significant 

calculational complexity, and thus challenging. Second, the 

heating transfer rate of IHLs is nonlinear over time and easily 

affected by uncertainties, such as equipment parameters and 

environmental conditions [11]. Moreover, both model and data 

uncertainties propagate over time, making the scheduling of 

IHLs challenging to handle. The optimal scheduling of BTs is 

confronted with the aforementioned computational complexity 

and uncertainties issues. First, the optimal scheduling of the 

ON/OFF status of BTs is a complex integer programming 

problem. Second, since BTs are generally placed in the open air 

of an industrial site [12], the temperature change rate of a BT is 

easily influenced by weather conditions, such as temperature of 

outside ambiance. This could lead to the day-ahead schedule 

cannot be implemented in reality. 

Currently, exact methods and heuristic algorithms serve as 

the two primary categories of strategies to address the NP-hard 

problems. Many scholars have conducted extensive research on 

exact methods aimed at enhancing the solving efficiency of the 

NP-hard problems, including cutting plane-based methods [13], 

branch and bound-based methods [14], and methods based on 

Lagrange relaxation [15]. In addition, integer programming 

solvers, such as CPLEX and Gurobi, can automatically select 

and apply suitable exact methods to solve NP-hard problems, 

which are widely used in industry and academia [16]. However, 

while exact methods guarantee the global optimum, they may 

become impractical for large or complex problems due to their 

high computational demands. To solve the NP-hard problems 

in a more efficient manner, heuristic algorithms are generally 

employed. However, a major limitation of heuristic algorithms 

is that the optimality cannot be guaranteed [17]. Moreover, for 

all the aforementioned methods, solving efficiency decreases 

with the increasing scale of the NP-hard problems. 

To address the calculation complexity arising from a large 

number of BTs and attain the optimal solution, a two-layer 

control model is established in this paper, which decomposes a 

control problem into two hierarchical layers of sub-problems 

[18]. The upper-layer control reduces the scale of the model by 

clustering the control objects to decrease the number of control 

variables. The lower-layer control distributes the upper-layer 

control commands to each control object. For instance, a 

two-layer clustering algorithm is developed in [19] to improve 

the computing efficiency of coordinated scheduling for electric 

vehicles in multi-microgrid systems. The authors in [20] 

controlled the electric devices by aggregating them with similar 

physical properties to provide ancillary services and promote 

supply-demand balance. The authors in [21] introduced a 

clustering control approach for controllable household loads 

management, aimed at reducing peak consumption and 

achieving appropriate economic benefits. However, we have 

found no research focusing on the clustered analysis of IHLs, 

like BTs, for expedited scheduling purposes. This is because 

the temperature transfer process of BTs is nonlinear over time, 

and the temperature distribution in the population of BTs is 

discrete, leading to the analysis of clustered temperature 

transfer characteristics, especially in terms of average 

temperature constraint, challenging. 

Moreover, to the best of the author’s knowledge, there have 

been no studies considering the impact of external uncertainty 

factors on the temperature change rate of BTs in scheduling 

processes. To cope with uncertainties, robust optimization is 

widely used, which is a mathematical method aiming to develop 

models that generate solutions that are less sensitive to the 

uncertainties [22]. Previous studies typically describe 

uncertainty distributions using geometric shapes, such as box 

[23], ellipse [24], and polygon [25], which exhibit symmetrical 

spreading from the center. Therefore, they often encounter 

issues related to over-conservatism and reliance on a priori 

domain-specific knowledge. In real-world problems, 

uncertainty distributions can be extremely complex and 

challenging to accurately capture through the traditional 

shapes. Therefore, applying a technique that can adaptively 

construct the uncertainty set while adjusting the level of 

conservatism is highly valuable. In this paper, support vector 

clustering (SVC) [26] is adopted to construct the uncertainty set 

due to its ability to capture uncertainties more flexibly based on 

the real historical data. Notably, the partial derivatives of the 

bitumen temperature with respect to the external uncertainty 

factors are derived to ensure that each element of the historical 

data samples has the same unit for the SVC implementation. 
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Meanwhile, to address the computational burden caused by the 

soft margins of uncertain sets, a piecewise linear kernel (PLK) 

[27] is introduced in the SVC technique to approximate the 

uncertainty sets as convex polyhedrons. The implementation of 

the PLK-based SVC technique enables the flexible adjustment 

of the conservatism of the uncertainty set by modifying the 

regularization parameter. This adjustment is crucial for 

achieving the balance between the robustness and performance 

of the optimization results. 

The main contributions of this paper are provided as follows. 

1) The clustered temperature transfer characteristics of BTs 

are investigated with the aim of accelerating scheduling. 

2) A two-layer optimal scheduling model is proposed to 

speed up the solution efficiency for the scheduling of 

BTs. In this model, the number of control variables is 

significantly reduced and remains unaffected by the 

increasing scale of BTs. 

3) A data-driven PLK-based SVC technique is developed 

to deal with the uncertainties in the two-layer robust 

optimal scheduling of BTs. The shape of the uncertainty 

set can be adaptively constructed, and the level of its 

conservatism can be flexibly adjusted. 

The remainder of the paper is arranged as follows. Section II 

introduces the modeling and control of industrial BTs. Section 

III devises the two-layer optimization problem for scheduling 

industrial BTs. Section IV develops the two-layer model into a 

robust optimization format to deal with the uncertainties. 

Section V discusses the simulation results. Finally, Section VI 

concludes this paper and presents the future directions. 

II. MODELLING AND CONTROL OF BITUMEN TANKS 

A. Industrial Sites 

As shown in Fig. 1, an industrial site with BTs, base load and 

onsite power generation can be treated as a microgrid connected 

to the power grid. In this industrial site, the participation of BTs 

in demand response is of great significance to accommodate 

onsite photovoltaic (PV) generation and reduce the impact of 

peak load on the power grid. 

 
Fig. 1. An industrial site of BTs with base load and onsite PV generation. 

B. Temperature Control of Bitumen Tanks 

To ensure the availability of bitumen, it is necessary to keep it 

in BTs in a liquid state and, simultaneously, ensure that its 

temperature is within an allowable range [12]. When the 

electrical switch of an industrial BT is turned ON, the heating 

system is activated, causing the bitumen temperature to rise. 

Conversely, it naturally decreases when the electrical switch is 

turned OFF. Mathematically, the relationship between the heat 

transfer process of a BT and the ON/OFF state (x) of its heater is 

given below: 

 ( )net absorb loss rate ambP P P P x U A T T= − =  −   −  (1) 

In (1), x equals 1 if the heater is switched ON and 0 if OFF. 

Meanwhile, Pnet decides the temperature change rate within the 

BT, as presented below: 

 net

d

d
v

T
P c m

t
=    (2) 

By combining (1) and (2), the temperature change rate of the 

BT can be represented by its switching state: 

 
( )ambrated

d v v

U A T TP xT

t c m c m

  −
= −

 
 (3) 

Equation (3) shows that the rate of temperature change is also 

related to the current temperature of bitumen, so it is constantly 

changing, even with the same switching state. 

 
Fig. 2. Temperature control process of a BT. 

Fig. 2 illustrates the temperature control process of a BT. The 

bitumen temperature rises when the heater is activated, while it 

decreases when the heater remains OFF. In Fig. 2, the electrical 

heater is set to be automatically turned OFF when the bitumen 

temperature touches the upper limit Tup at time t1/3/5, while 

automatically turned ON when the bitumen temperature reaches 

the lower limit Tdown at time t2. Moreover, the heater can also be 

manually switched ON/OFF at any chosen time (e.g., t4). 

III. TWO-LAYER DETERMINISTIC OPTIMAL SCHEDULING 

MODEL 

A. Original Optimal Scheduling Model 

The objective of this study is to minimize the peak-to-valley 

difference of the electricity exchange between the industrial site 

and the external power grid: 

 
, rate BL PV , rate BL PV

11
1 1

min max min
N N

h h h h

n h n h
h Hh H

n n

f x P P P x P P P
  

= =

   
=  + − −  + −   

   
    

(4) 

The temperature transfer constraint of each BT and the limit 

of temperature in each BT are given as follows: 

 
( )rate , , 1 amb

, , 1 , ,
n h n h

n h n h

v

P x U A T T
T T t n h

c m

−

−

 −   −
= +   


 (5) 
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 down , up , ,n hT T T n h     (6) 

The original optimal scheduling model presented above is an 

integer programming problem, with the number of control 

variables being N × H. Therefore, the solution time grows 

exponentially as the number of BTs increases. 

B. Two-Layer Optimal Scheduling Model 

To deal with the computational burden as the number of BTs 

increases, a two-layer optimal scheduling model is proposed. 

1) Upper-Layer Clustered Optimization 

The upper-layer clustering optimization aims to decide the 

total number of BTs turned ON at each time slot, by contrast to 

deciding the ON/OFF status of each individual BT in the original 

optimal scheduling model. Therefore, the number of decision 

variables is much reduced and does not change with the 

increasing numbers of BTs. 

In this layer, the objective is formulated as: 

 ( ) ( )rate BL PV rate BL PV
11

min max minh h h h

h h
h Hh H

f x P P P x P P P
  

=  + − −  + −  (7) 

Accordingly, the constraints of all the individual BT are also 

replaced by the constraints specifying the change of average 

temperature of the whole BT population (i.e., the clustered 

temperature transfer process). Specifically, by summing (5) of 

each BT and calculating the mean, the constraint for the average 

temperature of the entire BT population is given below: 

 
( )rate 1 amb

1 ,

h
h

h h

v

x
P U A T T

NT T t h
c m

−

−

 −   −

= +   


 (8) 

The temperatures of BTs are actually discretely distributed 

around the average temperature. To ensure that the temperature 

of each BT does not go beyond the upper/lower limit (Tup/down), a 

certain gap needs to be kept between the average temperature of 

BTs and Tup/down, that is: 

 down up ,hT T T T T h+    −    (9) 

Remark: the control variables of this upper-layer clustered 

optimization model are  
1

H

h h
x

=
. The total number of these 

control variables is H, which will not be influenced by the 

number of BTs. Therefore, compared to the original optimal 

scheduling model, the calculation time can be significantly 

reduced when dealing with a large number of BTs. 

2) Lower-Layer State Distribution 

Based on the obtained upper-layer optimization results, the 

lower-layer state distribution aims to decide which specific BTs 

are turned ON at each time slot. Basically, it should be satisfied 

that the total number of BTs turned ON after state distribution 

equals the obtained upper-layer optimization results: 

 ,

1

,
N

h n h

n

x x h
=

=   (10) 

However, there are many feasible state distribution results 

under the satisfaction of (10). Therefore, this study proposes a 

lower-layer state distribution principle, where BTs with lower 

temperatures are preferentially turned ON at any time step. This 

ensures that the temperature of each BT remains as far from the 

temperature limits of Tup and Tdown as possible. 

 ( )
2

,

1

1
min ,

N

n h h

n

f T T h
N =

= −   (11) 

s.t. (5), (6), (10)  

Mathematically, the state distribution principle is equivalent 

to minimizing the variance of temperatures of BTs at different 

time periods, as presented above. 

C. Analysis of the Magnitude of the Gap 

In this subsection, a detailed analysis is provided to acquire 

the magnitude of the gap ΔT in (9). For a population of BTs, two 

arbitrary BTs are taken out for analysis. Based on the lower-layer 

state distribution, there are three combinations of the ON/OFF 

states for the two BTs at any time step: Scenario 1 – both BTs in 

the ON state, Scenario 2 – both BTs in the OFF state, and 

Scenario 3 – the BT with a lower temperature in the ON state 

while the BT with a higher temperature in the OFF state. 

 
Fig. 3. The temperature transfer process of the two BTs. 

In Scenario 1, the BT with a lower temperature will heat up 

faster, according to (5) and as shown in Fig. 3(a). In Scenario 2, 

the BT with a higher temperature will cool down faster, 

according to (5) and as shown in Fig. 3(b). Hence, in both 

Scenarios 1 and 2, the temperature difference between the two 

BTs will narrow down after the subsequent time slot. In Scenario 

3, assuming that the absolute value of the initial temperature 

difference between the two BTs is ΔTinitial. If ΔTinitial ≥ ΔT, the 

temperature difference will narrow down after the subsequent 

time slot, as shown in Fig. 3(c). On the contrary, if ΔTinitial < ΔT, 

the temperature difference may increase after the subsequent 

time slot, as shown in Fig. 3(d). From Fig. 3(d), it can be deduced 

that the maximum temperature difference between the two BTs 

after the subsequent time slot occurs when ΔTinitial ≈ 0, as 

depicted in Fig. 3(e). The value of this maximum temperature 

difference between the two BTs is represented as ΔT, derived by: 

 

( )

( )

rate 1, amb

up down

2, amb rate

h

v

h

v v

P U A T T
T T T t

c m

U A T T P t
t

c m c m

−   −
 =  +  =  



  −  
+   

 

 (12) 

where ΔTup is the temperature increase in the next Δt period for 

the BT with initial temperature T1,h, and ΔTdown is the temperature 

decrease for the BT with initial temperature T2,h. For the two 
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BTs, T1,h is less than and infinitely approaches T2,h, i.e., T1,h ≈ T2,h; 

hence, ( )2, 1,h h

v

U A T T

c m

  −



 ≈ 0, and therefore ΔT ≈ rate

v

P t

c m

 


. 

Summarizing Scenarios 1-3, it can be deduced that if ΔTinitial < 

ΔT, then the temperature difference between the two BTs after 

the subsequent time slot must be less than ΔT. Thus, as long as 

the very initial width of the temperature distribution of the BT 

population before the first time step is smaller than ΔT, it will not 

exceed ΔT at any time step. Therefore, the value of ΔT can be 

treated as the magnitude of the gap in (9). When the constraint (9) 

is respected and the lower-layer state distribution is applied, the 

temperature of each individual BT will not go beyond the 

temperature limits throughout the scheduling horizon. 

To conclude the formulation, the objective of the upper-layer 

clustered optimization is (7), which is subject to the constraints 

of (8), (9), and (12). After the upper-layer clustered optimization, 

the total number of ON switching states at each time step can be 

calculated, and then the lower-layer state distribution is executed. 

The objective of lower-layer state distribution is (11), which is 

subject to the constraints of (5), (6), and (10). 

IV. TWO-LAYER DATA-DRIVEN ROBUST OPTIMAL 

SCHEDULING MODEL 

A. Uncertainty Analysis 

The uncertainties of BTs lie in their clustered temperature 

transfer process. According to (8), there are two uncertain factors 

that influence the temperature change rate of BTs at an industrial 

site, specifically U and Tamb. For example, the U would be higher 

in rainy and snowy weather while lower in sunny and dry 

weather. In addition, there are also forecasting errors for Tamb. 

Unlike the uncertainties of PV and base load, the uncertainties of 

BTs may cause automatic ON/OFF switching of their electrical 

heaters, leading to significant deviations in the actual clustered 

temperature transfer process of BTs from the day-ahead schedule. 

This can result in fluctuations in the actual power consumption 

curve of BTs, deteriorating the execution results, which will be 

discussed in detail in Section V-B. 

B. SVC-based Uncertainty Set Construction 

To deal with the uncertainty of U and Tamb by using the robust 

optimal scheduling method, it is necessary to construct a convex 

two-dimensional uncertainty set for them. 

1) Data-driven SVC Technique 

In specific, assuming that M historical data samples  
1

M

m m=
u  

of the uncertain parameters considered are available, the 

objective of the SVC model is to seek a sphere that tries to 

enclose all the data samples with minimal volume and acts as the 

uncertainty set [28]: 

 
2

, m

1

1
min

M

R

m

R
Mv

 
=

+   (13) 

s.t. ( )
2 2 ,m mR m −  + u P  (14) 

where P is the center of the sphere (i.e., the uncertainty set); R is 

the radius of the sphere;  
1

M

m m


=
 > 0 are the slack variables 

adapted as the soft margins to accommodate outliers of 

historical data samples; v > 0 is the regularization parameter 

used to penalize outliers; um is the mth historical parameter 

sample (the elements in um need to have the same unit); ( )   is 

a mapping function for achieving transformation from 

low-dimensional to high-dimensional space, and is designed to 

facilitate the enclosure of  
1

M

m m=
u . 

For solving the above SVC model, it is reformulated into a 

Lagrange function [29]: 

 

( )

( )( )

2

1

22

1 1

1
, , , ,

M

m

m

M M

m m m m m

m m

L R R
Mv

R

   

    

=

= =

= +

− + − − −



 

P

u P

 (15) 

To solve (15), the following Karush-Kuhn-Tucker (KKT) 

conditions [30] should be met: 

 
1

0 1
M

m

m

L

R


=


= → =


  (16) 

 ( )
1

M

m m

m

L
 

=


= → =


0 P u

P
 (17) 

 
1

0 m m

m

L

Mv
 




= → + =


 (18) 

Putting the KKT conditions into (15), the dual problem [31] 

can be obtained below: 

 
1 1 1

min ( ) ( ) ( ) ( )
M M M

T T

i j i j i i i

i j i

       
= = =

− u u u u  (19) 

s.t. 
1

0 ,m m
Mv

    (20) 

 
1

1
M

m

m


=

=  (21) 

Generally, to construct a convex two-dimensional uncertainty 

set, it is necessary to give the mapping function ( )  . However, 

in nonlinear classification problems, obtaining the appropriate 

mapping function from low-dimensional to high-dimensional 

space may be challenging, and sometimes even infeasible [32]. 

In this paper, the kernel function ( , )    is adopted to address 

this issue. Kernel function can solve the nonlinear classification 

problem in the low-dimensional space without explicitly giving 

the mapped function [33]. Here, the PLK is selected as the kernel 

trick to facilitate solving the above dual problem, which 

implicitly calculates the inner product between data points in (19) 

as follows [27]: 

  
1

( , ) ( ) ( ) min ,
K

T k k

i j i j i j

k

K u u 
=

= = u u u u  (22) 

where /

k

i ju  is the kth element of ui/j. 

After calculating the dual problem, the related correlations of 

the results are described below [26]: 
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 ( )

2

2 2

2

1
, if and 0

1 1
if 0 and 0 ,

1
, if 0 and

m m

m m m

m m

R
Mv

R m
Mv Mv

R
Mv

 

  

 


 = =




− =     



 = =


u P ,  (23) 

where ( )
2 2

m R − u P  indicates the um is an outlier outside the 

convex uncertainty set; ( )
2 2

m R − =u P  indicates the um is a 

boundary support vector, which forms the boundaries of the 

convex uncertainty set; ( )
2 2

m R − u P  indicates the um is a 

vector within the convex uncertainty set. 

Therefore, the convex uncertainty set can be obtained: 

 ( ) 2 2 ,m m R m −  u u P  (24) 

In robust scheduling, due to the convexity of the constructed 

uncertainty set, it is only needed to ensure that the boundary 

support vectors satisfy the constraints. 

2) Uncertainty Set Construction for the Industrial Site 

The above analysis is at the mathematical level. In actual 

industrial sites, the application of PLK-based SVC technique 

may encounter new issues. For example, as claimed in Section 

IV-B-1), um is a two-dimensional vector and its elements should 

have the same unit. However, this is not the case for U and Tamb 

in the scheduling of BTs. 

To address this issue, this study defines the um to consist of 

the variation of the bitumen temperature due to the variation of U 

and Tamb, i.e., (
mUT ,

amb
mT

T ), which is calculated as follows: 

 ( )
( )amb

mU m

v

A T T t
T U U

c m

 −  
 = − 


 (25) 

 ( )
amb

amb ambm

m

T
v

U A t
T T T

c m

  
 = − 


 (26) 

where Um and 
amb

mT  are the mth historical data of U and Tamb, 

respectively; ( )amb

v

A T T t

c m

 −  



 and 

v

U A t

c m

  


 are the partial 

derivatives of the bitumen temperature with respect to U and Tamb, 

respectively, calculated from (5); 
mUT  and 

amb
mT

T  are the 

obtained elements for um with the same unit (℃), which represent 

the temperature transfer deviation of BTs caused by the 

uncertainty of Um and 
amb

mT , respectively. 

Subsequently, the data-driven SVC technique is used to 

generate the convex uncertainty set for scheduling BTs. 

Assuming the obtained boundary support vectors are donated as 

 
amb 1

, q
q

Q

U T
q

T T
=

  , where Q is the number of boundary support 

vectors, the corresponding historical data  amb 1
,

Q
q

q q
U T

=
 can be 

used for two-layer robust optimal scheduling. 

C. Two-Layer Robust Optimal Scheduling Model 

The objective function of the upper-layer robust clustered 

optimization is the same as (7). The consideration of uncertain 

factors is mainly reflected in the constraints, which are provided 

as follows: 

 
( )rate 1 amb

1 , ,

q qh
q h

q q

h h

v

x
P U A T T

NT T t q h
c m

−

−

 −   −

= +    


 (27) 

 down up , ,q

hT T T T T q h+    −     (28) 

It should be noted that, the actual U and Tamb vary at different 

times, while the fixed parameter values are utilized in both the 

deterministic optimal scheduling model and each scenario of the 

robust optimal scheduling model. If the temporal variation 

characteristics of Uq and 
amb

qT  are considered within each time 

slot, the dimension of the constructed uncertainty set should be 2 

× H, resulting in too many scenarios to be considered in the 

robust model and making the computation more complex. In fact, 

the fixed values of Uq and 
amb

qT  in the uncertainty set can also 

achieve satisfactory performance in addressing the uncertainties 

of BTs in the robust model, as will be demonstrated in Section 

V-D. 

Here concludes the formulation of the two-layer robust 

clustered optimization. Firstly, the SVC-based uncertainty set 

construction is executed considering robustness. Secondly, based 

on the obtained boundary support vectors of the constructed 

uncertainty set, the two-layer robust clustered optimization is 

implemented. The objective of the upper-layer robust clustered 

optimization is (7), which is subject to the constraints of (12), 

(27), and (28). After obtaining the number of BTs turned ON at 

each time slot considering uncertainties, the lower-layer state 

distribution is then executed. The objective of lower-layer state 

distribution is (11), subject to the constraints of (5), (6), and (10). 

V. CASE STUDY 

In this section, the two-layer optimal scheduling model and 

the data-driven two-layer robust optimal scheduling model are 

applied to the industrial system introduced in Section II-A. All 

numerical simulations are conducted on a laptop equipped with 

a 2.60-GHz-i7 CPU processor and 8-GB RAM. The CPLEX 

solver is executed in MATLAB to solve the models. 

The parameter values used in the cases are listed in Table I, 

sourced from real data provided by the KVM UK Ltd [4]. 

TABLE I 

PARAMETER VALUES 

Parameter Value Parameter Value Parameter Value 

U (kWm-2K-1) 7.75 × 10-3 A (m2) 36 m (kg) 21500 

cv (kJkg-1K-1) 1.34 Prate (kW) 120 Δt (s) 900 

Tup (℃) 180 Tdown (℃) 150 H 96 

M 400 / / / / 

A. Deterministic Optimal Scheduling Results 

In this subsection, different existing methods for solving the 

original optimal scheduling model, such as the CPLEX solver 

(with the optimality gap set at 0.01) and the PSO algorithm (with 

acceleration coefficients c1 = 1.8, c2 = 2.2, and inertia weight w 
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= 0.3), are compared with the proposed two-layer optimal 

scheduling model, which is also solved by the CPLEX solver 

with the same optimality gap. Moreover, the penalty function 

method is utilized in the PSO algorithm to handle the constraints. 

TABLE II 

COMPARISON RESULTS OF DIFFERENT OPTIMAL SCHEDULING METHODS 

Indices N 
Methods 

CPLEX solver PSO algorithm Two-layer model 

Calculation 

times (s) 

10 214.38 6627.23 13.27 

15 968.47 18223.71 13.92 

20 7359.65 / 13.46 

Peak-to-valley 

differences 

(MW) 

10 0.3872 0.4335 0.4221 

15 0.1552 0.1871 0.1934 

20 0.1136 / 0.1136 

Table II presents the comparison results of different optimal 

scheduling methods for N = 10, 15, and 20, respectively. In terms 

of computation times, the CPLEX solver outperforms the PSO 

algorithm when solving the original optimal scheduling model. 

Nevertheless, when N = 20, the calculation time of the CPLEX 

solver exceeds 2 hours, which is difficult to execute in actual 

industrial processes (e.g., in a receding horizon control manner). 

The calculation times of the two-layer optimal scheduling model 

indicate that it not only has a much faster computation speed but 

also remains unaffected by the increasing scale of BTs. 

 
Fig. 4. (a) Two-layer deterministic optimal scheduling results of 20 BTs and (b) 

the corresponding temperature transfer process. 

The two-layer deterministic optimal scheduling results and 

the corresponding temperature transfer process of BTs when N = 

20 are provided in Fig. 4. Fig. 4(a) depicts the shape of the total 

consumption curve of 20 BTs, which is approximately 

consistent with the curve of net PV generation (PV generation 

subtracted by base load). Additionally, the curve of the power 

exchange with the main grid is almost flat, achieving the 

scheduling objective of minimizing the peak-to-valley difference. 

Fig. 4(b) exhibits the temperature transfer process of BTs. Each 

colored curve in Fig. 4(b) represents the temperature fluctuation 

of a BT. Meanwhile, the average temperature curve (represented 

by the black line) and the magnitude of the gap ΔT are also 

exhibited in Fig. 4(b). Between approximately 10:00 and 16:30, 

the average temperature of BTs is increasing, which coincides 

with a relatively higher power consumption of BTs during this 

period. On the contrary, during other periods, the decreasing 

average temperature of BTs coincides with relatively lower 

power consumption values. The ΔD0 in Fig. 4(b) shows the 

difference of the maximum and minimum temperatures of BTs 

during the entire temperature transfer process. Table II shows 

that, when N = 20, the two-layer optimal scheduling achieves the 

same peak-to-valley difference as the original optimal 

scheduling model. However, when N = 10 and N = 15, the 

two-layer optimal scheduling model achieves inferior 

peak-to-valley differences compared to the original optimal 

scheduling model. Moreover, as indicated in Table II, the 

peak-to-valley difference increases as N decreases. The reasons 

are analyzed below. 

 
Fig. 5. (a) Two-layer deterministic optimal scheduling results of 10 BTs and (b) 

the corresponding temperature transfer process. 

Fig. 5 depicts the two-layer deterministic optimal scheduling 

results and the corresponding temperature transfer process of 10 

BTs. Due to the limited scheduling capacity of 10 BTs, the curve 

of the electricity exchange with the power grid (illustrated in Fig. 

5(a)) exhibits a larger peak-to-valley difference than that in Fig. 

4(a). Moreover, according to (9), the average temperature curve 

of BTs in the two-layer optimal scheduling results is confined 

between the dashed red lines. This leads to the temperature 

variation curve of each BT not being able to fall within the region 

of dashed black lines in Fig. 5(b). Thus, the temperature variation 

space of BTs in the two-layer model is a little smaller than the 

original optimal scheduling model, resulting in an inferior result 

in the peak-to-valley difference. Nevertheless, the gap in 

peak-to-valley difference between these two models is only 

0.0349 MW, which is certainly industrially acceptable given the 

significant drop in computing duration. Similar analysis can be 

applied to the optimal scheduling results when N = 15, which is 

not provided here. 

B. Influence of Uncertain Factors 

Due to the influence of uncertain factors, the day-ahead 

two-layer deterministic optimal schedule (xi,h) of BTs may lead 

to constraint violation. Fig. 6 depicts the empirical U and the 

forecasted Tamb on a rainy day, along with their respective actual 
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values. On this day, the actual values of U are higher than the 

empirical value due to the wet weather. 

 
Fig. 6. (a) The empirical U and (b) the forecasted Tamb on a rainy day. 

Fig. 7(a) illustrates the actual execution results of 20 BTs on 

this day, which are based on the day-ahead schedule obtained 

by the two-layer deterministic optimal scheduling model. Fig. 

7(b) displays the actual temperature variations of BTs. In the 

actual scenario depicted in Fig. 6, due to the higher U and lower 

Tamb before approximately 09:00, the heat of BTs dissipates 

faster than expected. Therefore, the actual temperatures of BTs 

drop more rapidly compared to the day-ahead scheduling results 

(as illustrated in Fig. 4(b)), leading to the temperatures of BTs 

approaching Tdown at about 09:00 (as shown in Fig. 7(b)). The 

electrical heater of some BTs automatically turns ON when their 

temperatures reach the Tdown, leading to obvious fluctuations 

during the following period in the actual power consumption 

curve of BTs, as circled in Fig. 7(a). 

 
Fig. 7. (a) Actual execution results of the schedule of 20 BTs obtained by the 

two-layer deterministic model under the uncertainty and (b) the corresponding 

temperature transfer process. 

C. Generation of Uncertainty Sets 

In this study, 400 historical data samples of um are collected 

from the KVM UK Ltd [4] and shown in Fig. 8. From Fig. 8, it 

can be seen that the uncertainty in U may cause a maximum 

deviation in the bitumen temperature of about 0.188°C per Δt = 

15 min, while the uncertainty in Tamb may result in a maximum 

deviation of about 0.034°C per Δt. This implies that compared 

to the uncertainty in Tamb, the uncertainty in U is likely to cause 

more deviations in the bitumen temperature. If these uncertain 

factors are not effectively considered in the day-ahead optimal 

scheduling model, they could lead to accumulated temperature 

deviations in actual execution (as illustrated in Fig. 7(b)). For 

example, on a rainy day, the rain may last for several hours (e.g., 

6 hours). During this rainy period, the higher U can lead to the 

accumulated temperature deviation reaching (0.188 × 24) = 

4.512°C. Considering that the allowable temperature range of 

BTs is from 150°C to 180°C, this accumulated temperature 

deviation is notable and may cause the bitumen temperature go 

beyond the allowable range. If that happens, the BTs, detecting 

this deviation via temperature sensors, would have to move 

away from the original optimal schedule to correct the bitumen 

temperature back to the allowable range, thus leading to larger 

power fluctuations of BTs, as analyzed in Section V-B. 

 
Fig. 8. Uncertainty sets of um with (a) v = 0.25 and (b) v = 0.125. 

Fig. 8 illustrates the generated uncertainty sets by using the 

PLK-based SVC technique. The conservatism of the uncertainty 

set can be increased by reducing the regularization parameter v, 

as introduced in (13). In Fig. 8, the red points represent the 

boundary support vectors of the uncertainty set, the blue points 

represent the outliers, and the black points represent the vectors 

within the uncertainty set. Through utilizing the boundary 

support vectors in the two-layer robust optimization, the 

influence of uncertain factors in the actual execution of 

day-ahead robust scheduling of BTs can be considered. 

D. Two-layer Robust Optimal Scheduling Results 

The actually executed power consumption curve of 20 BTs 

based on the two-layer robust optimal scheduling (with v = 0.25) 

is illustrated in Fig. 9(a). By considering the uncertainty set in 

the two-layer robust model, no BT is unexpectedly turned ON or 

OFF during the actual temperature transfer process, as shown in 

Fig. 9(b). 
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Fig. 9. (a) Actual execution results of two-layer robust optimal scheduling (with v 

= 0.25) of 20 BTs and (b) the corresponding temperature transfer process. 

It is noteworthy that in the two-layer robust model, due to the 

consideration of the uncertainty set, the temperature difference, 

ΔD3 (shown in Fig. 9(b)), is reduced compared to ΔD0 (shown in 

Fig. 4(b)). This is because, to avoid violating the temperature 

limits in actual scenarios, the day-ahead two-layer robust 

optimization results turn ON more BTs before approximately 

10:00, and more BTs are turned OFF between approximately 

10:00 and 16:30. 

 
Fig. 10. (a) Actual execution results of two-layer robust optimal scheduling (with 

v = 0.125) of 20 BTs and (b) the corresponding temperature transfer process. 

Fig. 10(a) gives the actually executed power consumption 

curve of 20 BTs based on the day-ahead two-layer robust 

optimal scheduling (with v = 0.125). In this case, the 

conservatism of the uncertainty set is further increased 

compared to v = 0.25, leading to a further reduction in the 

temperature difference, ΔD4, compared to ΔD3. Consequently, 

more BTs are turned ON before approximately 10:00, and more 

are turned OFF between approximately 10:00 and 16:30. As a 

result, the actual electricity demand from the power grid obtained 

by the day-ahead two-layer robust model with v = 0.125 is higher 

than that with v = 0. 25 before approximately 10:00 and is lower 

than that between approximately 10:00 and 16:30. 

TABLE III 

COMPARISON OF ACTUAL PEAK-TO-VALLEY DIFFERENCES 

Two-layer optimal scheduling model 
Peak-to-valley 

difference (MW) 

Deterministic model 0.3820 

Robust model (with v = 0.4) 0.2181 

Robust model (with v = 0.35) 0.1847 

Robust model (with v = 0.3) 0.1695 

Robust model (with v = 0.25) 0.1741 

Robust model (with v = 0.2) 0.2208 

Robust model (with v = 0.125) 0.2914 

Robust model (with an ellipse as the uncertainty set) 0.4003 

Robust model (with a box as the uncertainty set) 0.4198 

Table III compares the actual peak-to-valley difference rates 

of two-layer robust optimal scheduling model under different 

levels of conservatism. When the ellipse is treated as the 

uncertainty set, the least squares method is employed to form an 

elliptical region that covers all historical data samples. 

Moreover, when the box is treated as the uncertainty set, the 

maximum and minimum values of  
1

M

m m=
u  in each dimension 

are considered as the boundaries of the box. Due to the 

traditional uncertainty sets (ellipse and box) covering all 

historical data samples, they are more conservative than the 

uncertainty sets generated by using the PLK-based SVC 

technique. Therefore, initially, with an increase in conservatism 

(decrease in v), the actual peak-to-valley difference decreases. 

However, as conservatism further increases (e.g., when v = 0.125 

or when the ellipse or box is used as the uncertainty set), the 

peak-to-valley characteristic gradually deteriorates due to 

over-conservatism. The comparison results show that when v = 

0.3, it is an appropriate level of conservatism that enables the 

proposed two-layer robust model to achieve a better actual 

peak-to-valley difference. 

Remark: all of the above two-layer robust models of BTs are 

executed under a specific actual scenario depicted in Fig. 6. To 

obtain the most suitable level of conservatism for the two-layer 

robust model, it is needed to examine its performance across 

various actual scenarios. 

 
Fig. 11. Number of actual scenarios achieving a better peak-to-valley difference 

under the two-layer robust model with different values of v. 

In this study, 100 historical data samples are randomly 

selected from the 400 samples depicted in Fig. 8. Then, the 

performance of two-layer robust model with different values of 

v is examined for various actual scenarios corresponding to the 

selected samples. In general, a robust model with lower 

conservatism exhibits superior performance in scenarios with 
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lower uncertainty; conversely, it performs better in scenarios 

with higher uncertainty when featuring higher conservatism. 

Fig. 11 illustrates that the two-layer robust model with v = 0.3 

outperforms other values of v in 35 out of 100 actual scenarios, 

making it the recommended choice in this study. 

VI. CONCLUSION 

In this article, a two-layer robust optimal scheduling model 

is proposed for tapping the flexibility contained in IHLs. To 

deal with the great calculation difficulty and uncertainties, the 

clustered temperature transfer process of BTs is investigated, and 

a data-driven PLK-based SVC technique is utilized to deal with 

the uncertainties in robust optimal scheduling. Compared with 

the original optimal scheduling model, the proposed two-layer 

optimal scheduling model can largely reduce the computation 

time of scheduling 20 BTs from over 2 hours to 13.46s, with 

both models being solved using the CPLEX solver. Moreover, 

by comparing the results of two-layer robust model in various 

actual scenarios, a recommended level of conservatism (v = 0.3) 

is adopted to mitigate the influence of uncertain factors in the 

actual execution of day-ahead schedules. 

The appropriate conservatism of the two-layer robust model 

varies across various actual scenarios (as shown in Fig. 11), and 

the characteristics of actual scenarios are correlated with 

external weather conditions. Therefore, combining the local 

weather monitoring system to establish an adaptive 

conservatism adjustment strategy may further enhance the 

effectiveness of the day-ahead two-layer robust model, which is 

considered a direction for future research. Moreover, given that 

BTs are equipped with real-time temperature sensors, it is 

possible to iteratively correct the accumulated temperature 

deviation of BTs within a receding-horizon framework (e.g., 

real-time predictive control). This presents another promising 

direction for future research. 
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