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The borrowing hydrogen (BH) ap-
proach enables commodity alcohols 
to be employed as alkylating agents, 
generating water as the sole by-
product. Recently, Fe-based cata-
lysts have been utilized in combina-
tion with visible light irradiation to 
enable alkylation processes at near 
room temperature, which improves 
sustainability metrics while present-
ing opportunities for further reaction 
development. 
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Figure 1. Overview of borrowing hydrogen C-alkylation of ketones. See [7,8]. Abbreviation: LED, light 
emitting diode. 
BH, sometimes referred to as hydrogen 
autotransfer, is a powerful synthetic strat-
egy that combines transfer hydrogenation 
with a reaction on the in situ-generated 
intermediate [1]. A popular application 
of the BH approach is to utilize commod-
ity alcohols as alkylating agents, which 
generate water as the sole by-product. 
This process provides a more sustainable 
alternative to traditional alkylation 
methods, which often employ hazardous 
reagents and produce significant quantities 
of waste. Considering the α-C-alkylation 
of ketones as an illustrative example 
(Figure 1, left), the BH sequence begins 
with dehydrogenation of an alcohol by a 
metal catalyst [M] to form a reactive 
carbonyl intermediate. This unsaturated 
species undergoes an aldol condensation 
with an enolizable ketone to generate an 
enone. Subsequent hydrogenation by 
the [MH2] species generated in the initial de-
hydrogenation step forms the alkylated 
ketone product and regenerates [M], com-
pleting the catalytic cycle. 

Traditionally, homogeneous BH reactions 
have employed organometallic catalysts 
based on precious second and third row 
transition metals, such as Ru, Rh, and Ir, 
to promote hydrogen transfer. However, 
with the increasing global emphasis on 
the development of more sustainable 
synthetic methodologies, catalysts based 
on earth-abundant first row transition 
metals have also been employed for 
various C–C and C–N bond-forming BH 
alkylation processes [2]. Among these, 
(cyclopentadienone)iron carbonyl com-
plexes have demonstrated notable effec-
tiveness in the BH alkylation of different 
(pro)nucleophiles, including ketones, in-
doles, oxindoles, and amines [3]. Despite 
the diversity of catalysts available, BH alkyl-
ation processes are typically performed at 
high reaction temperatures (90–150°C), 
which requires significant energy input, limits 
substrate compatibility, and makes the 
development of enantioselective variants 
challenging. As such, the development of 
new strategies that allow BH alkylation pro-
cesses to be performed at lower tempera-
tures represents a primary goal in this field. 

Pioneering studies by Knölker and co-
workers demonstrated that photoirradiation 
using a 150 W medium-pressure mercury 
lamp can promote CO-ligand exchange 
with acetonitrile within (cyclopentadienone) 
iron carbonyl complexes [4]. This obser-
vation encouraged further investigation 
into the use of photoirradiation in combi-
nation with (cyclopentadienone)iron 
carbonyl complexes for BH alkylation 
processes [5,6]. In 2022, the research 
groups led by Renaud and Sundararaju in-
dependently reported complementary pro-
tocols for the Fe-catalyzed α-C-alkylation 
of ketones that proceed at near room tem-
peratures using (cyclopentadienone)iron 
carbonyl complexes with visible light [7,8] 
(Figure 1, right). While Renaud, Poater, and 
coworkers employed blue light emitting di-
odes (LEDs) for alkylation with primary alco-
hols, the Sundararaju work focused on α-
methylation with methanol using white 
LEDs. 

The protocol developed by Renaud, Poater, 
and coworkers employed the well-defined 
bench stable (cyclopentadienone)iron 
carbonyl complex 1 as a precatalyst 
(2.5 mol %) (Figure 2A), which contains a 
more electron-rich cyclopentadienone 
framework in comparison to precatalyst 2 
(c.f. Figure 2B). The reactions were 
performed using NaOH (0.4–2 equiv.) as 
a base in tert-butanol as solvent under 
450 nm blue light (40 W) for 16–72 h. This 
enabled the α-C-alkylation of a diverse 
range of (aromatic/aliphatic) ketones using 
various primary (benzylic/aliphatic) alcohols, 
with the alkylated ketone products obtained
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Figure 2. Methods overview. (A) The Renaud, Poater approach [7]. (B) The Sundararaju approach [8]. (C) Selected scope entries. (D) Simplified proposed reaction
mechanisms. Abbreviations: LED, light emitting diode; rt, room temperature. 
in moderate to high yields (Figure 2C). The 
reaction occurs at room temperature, 
which indicated that there is no observable 
increase in temperature due to heat 
generated by the blue LEDs employed. 
In the absence of 450 nm blue light 
photoirradiation, comparable reactions 
were previously reported to require heating 
at 90°C to achieve high product yields [6]. 
The Sundararaju procedure employed 
precatalyst 2 (4 mol %) and t-BuOK (2 
2 Trends in Chemistry, Month 2025, Vol. xx, No. xx
equiv.) as base in MeOH under white 
LEDs (4 × 7 W) to efficiently promote α-C-
methylation across a broad range of aro-
matic ketones in high yields (Figure 2B,C). 
The authors stated that the temperature 
increases to a maximum of 42°C due to 
heat generated by the white LEDs. The α-
C-methylation of ketones using precatalyst 
2 in the absence of photoirradiation was 
previously reported at temperatures of 
60–80°C [9]. 
 

For both methods, various mechanistic 
experiments were performed to gain 
insight into the role of photoirradiation in 
facilitating the ketone α-C-alkylation pro-
cesses. Renaud, Poater, and coworkers 
found that no light-induced ligand exchange 
of precatalyst 1 occurred in the absence of 
base, which suggested a Hieber-type acti-
vation of 1 in the presence of NaOH at 
room temperature (Figure 2D). Control 
experiments also revealed that blue light
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photoirradiation was essential for the key hy-
drogenation and dehydrogenation steps of 
the BH cycle, with no conversion observed 
in the absence of light. As such, the authors 
proposed a light-mediated dehydrogenation 
of primary alcohols to form the correspond-
ing aldehydes alongside an iron hydride spe-
cies, followed by a base catalyzed aldol 
condensation and light-mediated hydroge-
nation of the resulting enone intermediate 
to generate the observed alkylated ketone 
products. Sundararaju and coworkers 
employed UV-Vis spectroscopy to deter-
mine that precatalyst 2 undergoes a red 
shift upon irradiation with white light, with 
an isosbestic point of 332 nm, which 
suggested that a carbon monoxide ligand 
can dissociate from 2 under these condi-
tions. A control reaction using optimized 
reaction conditions except at 40°C without 
photoirradiation resulted in no product 
formation, while a separate experiment 
involving photoirradiation for 1 h followed 
by stirring in the dark for 23 h produced 
the methylated product in only 14% yield. 
These experiments confirmed that 
photoirradiation by white light is crucial for 
product formation and that it must be 
maintained throughout the course of the 
reaction to obtain high product yields. 

These two independent studies highlighted 
how (cyclopentadienone)iron carbonyl com-
plexes can harvest light to enable the BH α-
C-alkylation of ketones at near room tem-
peratures. These advances have inspired 
related investigations that demonstrate 
the room temperature BH C-alkylation/ 
allylation of indoles, arylacetonitriles, 
oxindoles, and ketones using visible light 
irradiation [10–13]. In a complementary 
study, Quintard, Kochem, and coworkers 
have developed novel isonitrile-substituted 
(cyclopentadienone)iron complexes, which 
exhibit a bathochromic shift in the light 
absorption spectra in comparison to 
precatalyst 2 [14]. These modified 
precatalysts can be photoactivated using 
365 nm LEDs and used in combination 
with chiral enantiopure secondary amine 
organocatalysts for the enantioselective γ-
functionalization of allylic alcohols [15]. 

Looking forward, there are exciting oppor-
tunities for further development in this 
burgeoning area of sustainable synthesis. 
It has been clearly demonstrated that the in-
tegration of photoirradiation can enable im-
portant BH processes to occur under 
milder reaction conditions, further enhanc-
ing the sustainability metrics associated 
with this synthetic approach. It is anticipated 
that this strategy will be extended toward al-
ternative bond-forming BH processes at 
room temperature, in addition to enabling 
novel transformations that do not occur 
under thermal conditions. Furthermore, the 
development of novel catalysts that are ca-
pable of efficiently harvesting light, particu-
larly using lower energy visible light, may 
lead to the development of BH processes 
with broader substrate/product compatibil-
ity. Detailed studies into the mechanisms 
of these complex light-mediated catalytic 
processes will be important for further de-
velopment in addition to careful design of 
reaction setups to unambiguously differenti-
ate the impacts of photoirradiation and ther-
mal energy (due to heat generation from 
light sources) upon reaction outcomes. 
While this forum article highlights recent ad-
vances using (cyclopentadienone)iron car-
bonyl complexes in the presence of light, 
the continued investigation into alternative 
catalyst systems that utilize other transition 
metals and ligand scaffolds will undoubtedly 
feature prominently in future developments 
within this domain. 
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