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Abstract 14 

Community-based forest restoration has the potential to sequester large amounts of 15 

atmospheric carbon, avoid forest degradation, and support sustainable development. However, if 16 

partnered with international funders, such projects often require robust and transparent 17 

aboveground carbon measurements to secure payments, and current monitoring approaches are not 18 

necessarily appropriate due to costs, scale, and complexity. The use of consumer-grade drones in 19 

combination with open source structure-from-motion photogrammetry may provide a solution. In 20 

this study, we tested the suitability of a simplified drone-based method for measuring aboveground 21 

carbon density in heavily degraded tropical forests at a 2 ha restoration site in Sabah, Malaysia, 22 

comparing our results against established field-based methods. We used structure-from-motion 23 

photogrammetry to generate canopy height models from drone imagery, and applied multiple pre-24 

published plot-aggregate allometric equations to examine the importance of utilising regionally 25 

calibrated allometric equations. Our results suggest that this simplified method can produce 26 

aboveground carbon density measurements of a similar magnitude to field-based methods, quickly 27 

and only with a single input metric. However, there are greater levels of uncertainty in carbon 28 

density measurements due to errors associated with canopy height measurements from drones. Our 29 

findings also highlight the importance of selecting regionally calibrated allometric equations for this 30 

approach. At scales between 1 and 100 ha, drone-based methods provide an appealing option for 31 

data acquisition and carbon measurement, balancing trade-offs between accuracy, simplicity, and 32 

cost effectiveness and coinciding well with the needs of community-scale aboveground carbon 33 

measurement. Of importance, we also discuss considerations relating to the accessibility of this 34 

method for community use, beyond purchasing a drone, that must not be overlooked. Nevertheless, 35 

the method presented here lays the foundations for a simple workflow for measuring aboveground 36 

carbon density at a community scale that can be refined in future studies. 37 



Introduction 38 

Small-scale, community-based forest restoration can sequester large amounts of 39 

atmospheric carbon, reduce emissions from deforestation and degradation, and support sustainable 40 

development [1–5]. Community-scale projects typically cover tens of hectares or less and are 41 

implemented by stakeholders including community groups, villages, and NGOs. Numbering in the 42 

tens of thousands globally, such projects are important for two key reasons. Firstly, they involve 43 

indigenous and rural communities in forest management, which is a key factor in enhancing both the 44 

ecological and social outcomes of restoration activities [6–8]. Empowering communities increases 45 

local engagement with projects [9], incorporates local knowledge, and assures rural populations 46 

receive their desired benefits from global restoration initiatives [5]. Secondly, forests restored in this 47 

manner are more likely to persist into the long-term (decades to centuries) than large-scale tree 48 

planting projects developed without community support [10,11]. Industrial carbon sequestration 49 

projects can fail due to poor site and species selection, mismanagement, and an over-focus on 50 

planting versus long-term maintenance [12–15], leading to negligible changes in canopy cover or 51 

carbon storage [16,17]. By accommodating local knowledge and needs, such as the provision of food 52 

or firewood, community-scale projects are able to avoid these pitfalls, increasing forest cover and 53 

maintaining long-term local support [18]. 54 

Many community-scale projects partner with funders from developed nations who provide 55 

financial compensation to support climate and sustainability-oriented goals such as carbon offsetting. 56 

These financial mechanisms require projects to provide robust biomass measurements to verify 57 

baseline carbon values at restoration sites [19,20]. However, current established methods for 58 

measuring aboveground carbon density (ACD, often reported in Mg C ha-1) are not necessarily 59 

appropriate for use at the community scale, are time consuming, and require specialist training. 60 

Several methods are currently used to quantify ACD in forest stands including field-based or 61 

remote sensing surveys of tree metrics. Remotely-sensed variables are used to calculate ACD via a 62 



series of empirical allometric equations, which predict tree biomass from easier-to-measure 63 

variables such as height or diameter and are supported by statistical analysis based on ACD values 64 

from permanent field plots [21–24]. The increasing availability and accessibility of remote sensing 65 

data make this an important tool for forest restoration. The benefit of using remote sensing is that it 66 

can be employed over large scales and in remote areas, and is often cheaper and more feasible than 67 

extensive ground surveys. While such an approach has been employed extensively by academics and 68 

commercial foresters, it presents challenges for use at a community scale. The cost of procuring high-69 

resolution (<3 m) remote sensing imagery suitable for community-scale carbon quantification can be 70 

prohibitively expensive for community-scale actors. Freely available datasets (e.g., Landsat, GEDI) 71 

may have too coarse a resolution for meaningful or timely analysis, with low resample rates 72 

exacerbated by persistent cloud cover in the tropics [25,26]. 73 

Lightweight, low-cost, consumer-grade drones (also known as unmanned [sic] aerial vehicles 74 

(UAVs) [although see 27]) offer a potential solution to these data acquisition issues. Consumer-grade 75 

drones are relatively cheap (to purchase and to operate) compared to other data collection methods; 76 

they can be piloted with minimal training and a smartphone; they have high spatial and temporal 77 

resolution; and they grant autonomy over data collection, an important step in empowering and 78 

engaging local people in conservation initiatives [28,29]. In addition, the optical imagery that drones 79 

generate can be combined with structure-from-motion (SfM) photogrammetry – which produces 3D 80 

point clouds from sets of overlapping 2D images [30] – to calculate canopy height and, subsequently, 81 

carbon values in a similar manner to other remote sensing approaches [31–33]. Drone-based SfM is 82 

a good potential fit for community-scale ACD measurement as it does not require information on 83 

camera location and orientation, enabling the use of inexpensive platforms and sensors [30,34,35]. 84 

However, remote sensing-based ACD quantification methods often involve generating novel 85 

allometric equations [24,36] which may be challenging for community-scale projects with low levels 86 

of external support. The use of pre-published allometric equations offers an alternative option and 87 

they are frequently used in field-based individual tree crown (ITC) measurements, either out of 88 



convenience or necessity [37]. Yet, to date, there have been few studies investigating the accuracy 89 

and uncertainties surrounding the use of pre-published plot-aggregate allometric equations with 90 

drone-derived SfM data for small-scale ACD measurements.  91 

In this study we assess the suitability of a simplified method for measuring ACD within the 92 

context of community-scale forest restoration, using a consumer-grade drone and open source SfM 93 

software. We compare our results against field-based measurements of ACD to examine their biases 94 

and uncertainties. We use a restoration site in Sabah (Malaysian Borneo) as a case study site, 95 

representing a real-world restoration project where this method would be applicable. In this context, 96 

this study not only fills a gap in the literature regarding drone-based ACD measurements at the 97 

community scale, but also contributes to practical insights for restoration practitioners in tropical 98 

forest restoration. 99 

Materials and methods 100 

Study region 101 

We calculated different drone-derived carbon metrics within a 2-ha forest restoration plot in the Pin 102 

Supu Forest Reserve (4,696 ha), part of the Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia 103 

(5°25′15″ N 117°58′05″ E) (Fig 1). The restoration site, known as Kaboi Lake, is managed by the 104 

charity Regrow Borneo (www.regrowborneo.org), the Danau Girang Field Centre (DGFC), and the 105 

Community Ecotourism Co-operative of the Batuh Puteh Community (KOPEL). Located within the 106 

Kinabatangan floodplain, the site is a seasonally flooded freshwater swamp forest. The site has an 107 

average annual rainfall of 2700 mm with an average temperature of 25.7 °C [38], and total relief 108 

across the site is <1 m. Kaboi Lake lacks any dipterocarps (Dipterocarpaceae family), a numerically 109 

dominant and carbon-dense tree family in Borneo [39,40], due to selective logging in the 1980s [41]. 110 

Kaboi Lake and the surrounding forest were gazetted by the Sabah Forestry Department (SFD) in 111 

1984 and have since been left to regenerate naturally [42]. In 2020, KOPEL team members cleared 112 

http://www.regrowborneo.org/


the site for replanting, removing elephant grass (Pennisetum purpureum), climbing bamboo 113 

(Dinochloa spp.) and various vines to make way for flood-resistant Bongkol (Nauclea spp.) and other 114 

native saplings. Figure 1 shows areas of bare soil where clearing took place. Within the restoration 115 

site a 50 m x 50 m botanical plot was also established, which we used to compare drone- and field-116 

derived ACD measurements. The project received permission to conduct drone surveys and field 117 

data collection in Pin Supu from the Sabah Biodiversity Centre (SaBC) (access license number 118 

JKM/MBS.1000-2/2 JLD.11 (11)). 119 

Fig 1. Orthomosaic of the Kaboi Lake restoration site. 120 

Kaboi Lake is located in the Lower Kinabatangan Wildlife Sanctuary in eastern Sabah, Malaysia, at the 121 

northern end of the Southeast Asian island of Borneo (see inset maps). Red line indicates the 2-ha 122 

restoration site boundary; green line indicates the 50 m x 50 m botanical plot boundary. 123 

Aboveground carbon density measurements from drone data 124 

Drone data collection 125 

We collected drone imagery of the Kaboi Lake site on 22nd March 2021 using a DJI Phantom 4 126 

Pro V2.0 quadcopter equipped with a 20-megapixel optical camera (DJI, Shenzhen, China). Flight 127 

planning was conducted with a tablet and DroneDeploy planning software (www.dronedeploy.com). 128 

The flights were fully autonomous and followed two ‘lawnmower’ patterns, overlapping at 90°, to 129 

increase redundancy and reduce occlusions for the SfM processing [35]. Flight altitude was set at 70 130 

m above ground level, resulting in a ground sampling distance of approximately 5 cm, with a flight 131 

speed of 5 m s-1 and front and side image overlap of 80%. Three flights of ≈15 minutes each were 132 

required to gather a total of 597 images for the 2-ha site.  133 

Structure-from-motion processing of images 134 

We performed all SfM image processing using OpenDroneMap (ODM) [43], an open source 135 

software ecosystem developed for processing aerial imagery. ODM utilises embedded Exchangeable 136 

http://www.dronedeploy.com/


Image File Format (EXIF) tags within image files to access information on geolocation and camera 137 

parameters. The processing pipeline in ODM consisted of five key processes and algorithms [44]: 138 

structure-from-motion, producing a spare point cloud; multi-view stereo, generating a dense point 139 

cloud; meshing, to create 3D polygonal surfaces from the point cloud; texturing, to then colour the 140 

polygons using the relevant input images; and finally georeferencing, which transforms the local 141 

coordinate system using geolocation data embedded in the input images.  142 

We conducted all processing on a desktop PC with an Intel Core i7 CPU and 16GB RAM, 143 

although more memory is recommended for processing >200 images [44]. All ODM parameters were 144 

left as default apart from the following two: input images were resized to a width of 4096 pixels 145 

(from 4864) to decrease processing time whilst maintaining high resolution; and the minimum 146 

number of features to be extracted from each image for matching in the SfM process was increased 147 

from 8,000 to 28,000 due to the lack of distinguishable features in forest canopies. Processing 597 148 

images took 3.5 hours. 149 

Point cloud processing into canopy height models 150 

Adapting the workflow outlined by Mlambo et al. [45], we post-processed the georeferenced 151 

point cloud using the LAStools suite of LiDAR processing tools [46] in QGIS (version 3.14.16) [47]. 152 

Several steps were required to produce a digital elevation model (DEM), digital surface model (DSM), 153 

and canopy height model (CHM) from the data, as outlined in Fig 2. Due to the file size limitations of 154 

LAStools algorithms, the point cloud was first split into smaller tiles and then cleaned with the 155 

lasnoise tool. Lasnoise identifies and removes isolated points that have few other points within a 156 

three-dimensional search grid centred on that respective point. Cleaned points were then classified 157 

as either ground or non-ground returns using lasground and lasclassify, tools developed for 158 

extracting bare-earth points from airborne LiDAR data. The tiles were then thinned, with only the 159 

highest points within a 0.05 m x 0.05 m grid (half the intended final resolution) being used to 160 

generate DEM tiles, and with only the lowest points used for DSM tiles. Finally, the tiled DEM and 161 



DSM rasters were merged to create a single DEM and DSM for the whole site, both at 0.1 m 162 

resolution. 163 

Fig 2. Workflow for creating a canopy height model (CHM) from point cloud data. 164 

The DEM produced in the previous step was very uneven, especially towards the edges of 165 

the target site and in places where vegetation cover was high, which did not correspond with the 166 

known minimal relief across the site. To resolve this issue, we produced a planar, flat DEM by taking 167 

the 15th percentile value of the original DEM as a proxy for the true ground elevation across the site. 168 

We verified this assumption by examining the histogram of values for the original DEM and 169 

confirming that the chosen ground elevation was a peak value – the most common elevation was 170 

very likely to be the floodplain surface given the large areas of exposed ground at the site (Fig 1). This 171 

approach has been previously used to generate DEMs in other biomass studies of similar tropical 172 

forests with little relief, such as mangrove areas [31]. We created a CHM raster layer by subtracting 173 

the flat DEM from the DSM (Fig 2), thereby normalising the heights of the DSM. 174 

Validating the canopy height model 175 

We validated the CHM-derived height values by comparing them to field-measured tree 176 

heights within the botanical plot (field methods described below). Although the trees in the 177 

botanical plot had been surveyed, no geolocation information was recorded, preventing direct 178 

extraction of specific tree heights from the CHM. To overcome this, we located individual trees within 179 

the CHM using the Python package PyCrown [48]. PyCrown uses local maxima within the CHM to 180 

locate tree top positions and delineates tree crowns using region-growing algorithms adapted from 181 

[49]. We produced five different estimates of tree numbers and locations using various input 182 

parameters, as outlined in S1 Text. We used multiple estimates because field measurements could 183 

not be matched directly to the CHM, and different input parameters resulted in over- or 184 

underestimates of tree numbers in the botanical plot. Aside from those in S1 Text, all other PyCrown 185 

settings were left as default. 186 



Error propagation in canopy height models 187 

Biomass measurements from allometric equations are subject to various sources of 188 

uncertainty, from model parameter estimates to field measurement errors. These errors are thought 189 

to represent over 20% of the measured biomass at a plot level [50,51]. To account for uncertainties 190 

in drone-derived measurements of biomass (and therefore carbon), we first calculated the mean top-191 

of-canopy height (TCH in m), a key value for the plot-aggregate equations used below, by averaging 192 

the pixel values within the CHM for the botanical plot. We propagated uncertainty using the Monte 193 

Carlo method. Root mean square errors (RMSEs) associated with drone measurements of canopy 194 

height can range from less than 0.5 m [52,53] to over 5 m [32,54], though sparse ground coverage 195 

[55] and lower canopy heights (<24 m) [54,56] generally contribute to more accurate results. Since 196 

the botanical plot had relatively small trees (<20 m) and large areas of bare ground (leading to 197 

potentially more accurate measurements), we used two separate error distributions to model 198 

different measurement error scenarios: one smaller error distribution with a small standard 199 

deviation (σ = 1.5 m) and a more conservative distribution with larger errors (σ = 4 m). 1,000 values 200 

of mean TCH were generated using each error distribution, yielding 2,000 values for mean TCH for 201 

the botanical plot. 202 

Plot-aggregate allometric equations 203 

From a literature review, we identified five suitable plot-aggregate allometric equations to 204 

generate ACD measurements from the drone-derived CHM (Table 1). Equations I [57] and IV [36] are 205 

simple power functions which suggest a relationship between canopy height and ACD, and calculate 206 

ACD from mean TCH. Equation I was calibrated with data from pantropical forests and equation IV 207 

was based on samples from peat swamp forests in Kalimantan. Equations II, III [58] and V [24] are 208 

differently calibrated versions of an additional model developed by Asner and Mascaro [57], in which 209 

ACD is measured using TCH as well as estimates of basal area (cross-sectional area of all stems; BA in 210 

m2 ha-1) and wood density (WD in g cm-3). To apply these equations to areas where measurements of 211 



basal area and wood density are not available, sub-models are used to calculate BA and WD from 212 

TCH, meaning ACD can be measured using the single metric TCH. Equations II and III were calculated 213 

by fitting data from 36 forest plots in Kabili-Sepilok Forest Reserve, a remnant of old-growth tropical 214 

forest in eastern Sabah, to Asner and Mascaro’s [57] generalised model. Equation II used sub-models 215 

to estimate BA and WD from TCH, while equation III used field measurements instead (equations in 216 

Table 1 simplified by authors). Equation V was calibrated using plot inventories from five forest 217 

reserves across the state of Sabah (including Kabili-Sepilok Forest Reserve), and used sub-models to 218 

estimate BA and WD. We applied the five equations to the 2,000 mean TCH values, resulting in 219 

10,000 separate plot-aggregate ACD measurements for the botanical plot, which were categorised by 220 

both the degree of error associated with height measurements within the drone data, and by 221 

allometric equation. 222 

Table 1. Selected plot-aggregate aboveground carbon density (ACD) allometric equations for use 223 

with remotely-sensed height measurements.  224 



Equation Forest type Sample data range ACD equation Reference 

I Pantropical 
forests 

n plots = 754 𝐴𝐶𝐷 = 6.85 × 𝑇𝐶𝐻0.952 [57] 

II Lowland tropical 
rainforest, Sabah 

n = 45,214;  
n plots = 36; 
DBH range: 12-165 cm; 
H range: 16-72 m 

𝐴𝐶𝐷 = 7.37 × 𝑇𝐶𝐻0.87 [58] 

III Lowland tropical 
rainforest, Sabah 

n = 45,214;  
n plots = 36; 
DBH range: 12-165 cm; 
H range: 16-72 m 

𝐴𝐶𝐷 = 1.03 × 𝑇𝐶𝐻1.535 [58] 

IV Peat swamp pole 
forest, 
Kalimantan 

n plots = 22 𝐴𝐶𝐷 = 0.47 × 𝑇𝐶𝐻1.87 [36] 

V Lowland tropical 
rainforest, Sabah 

n = 261,937;  

n plots = 173 

𝐴𝐶𝐷 = 0.567 × 𝑇𝐶𝐻0.554

× 𝐵𝐴1.081

×𝑊𝐷0.186 
where BA = 1.112 x TCH, 
WD = 0.385 x TCH0.097 

[24] 

ACD in Mg C ha-1; TCH, mean top of canopy height in m; BA, stand basal area in m2 ha-1; WD, 225 

community-weighted mean wood density in g cm-3. Forest types and underlying sample data ranges 226 

are given where available. H, crown height in m; DBH, diameter at breast height in cm. 227 

Aboveground carbon density measurements from field data 228 

Field data collection 229 

Field-based tree inventory data was collected for the 50 m x 50 m botanical plot (Fig 1) in 230 

October 2021. The team recorded the boundaries of the restoration site and the botanical plot using 231 

a Garmin GPSMAP 64s (± 3.7 m accuracy; Garmin, Olathe, USA). Diameter at breast height (DBH in 232 

cm) was measured for each tree (n = 24), as well as crown height (H in m) using a clinometer and 233 

tape measure. Wood density (WD in g cm-3) was not directly measured, and field staff were unable to 234 

identify trees to the species or genus level. This meant that wood density estimates could not be 235 

obtained from species-specific databases, a common alternative to direct measurements in biomass 236 

studies [37]. Instead, we identified a range of plausible community mean WD values from published 237 



ecological studies of Southeast Asian rainforests [59–61], which informed the WD distributions used 238 

in the following error propagation steps. 239 

Error propagation in field measurements 240 

Adapting the workflow of Réjou-Méchain et al. [62], we propagated uncertainty in field-241 

based measurements of DBH and H using the Monte Carlo method. To calculate uncertainty in WD, 242 

values were assigned from a normal distribution with a mean of 0.54 g cm-3 and a standard deviation 243 

of 0.11 g cm-3. Using the above terms, we ran 1,000 simulations for each tree within the plot (n = 24), 244 

resulting 1,000 sets of plot measurements.  245 

Individual tree allometric equations 246 

We used 27 different allometric equations to calculate the average ACD value for the 247 

botanical plot using the field data (S1 Table). Since most community organisations lack the capacity 248 

for direct sampling, we sought to understand the magnitude of over- or underestimation in ACD 249 

values derived from preexisting equations not calibrated with on-site sampling or based on different 250 

empirical datasets [37], necessitating a large selection of equations. We identified the 27 equations 251 

based on their applicability to the study site; they ranged in specificity from pantropical moist forests 252 

to individual forest reserves. All site-specific equations were derived from forests in Borneo or the 253 

neighbouring Indonesian island of Sumatra. As individual tree allometries calculate aboveground 254 

biomass (AGB in kg), plot-level AGB values were converted to ACD by combining the AGB values of all 255 

trees (n = 24) for each simulation, dividing by the plot area (0.25 ha), and using a carbon content 256 

conversion factor of 0.47 [63]. This process resulted in a total of 27,000 ACD calculations for the 257 

botanical plot. 258 



Results 259 

Structure-from-motion outputs 260 

The DSM and initial DEM produced from the point cloud had a final resolution of 0.1 m x 0.1 261 

m. The DEM showed a large variation in elevation across the restoration site (21.4 m) and within the 262 

botanical plot (6.9 m; Fig 3). As mentioned previously, this variation did not correspond with the 263 

known elevation profile of the site (<1 m). Height variations were more pronounced towards the 264 

edge of the site and underneath denser vegetation and, though less prominent, also occurred in the 265 

botanical plot. 266 

Fig 3. Digital elevation model of the restoration site generated from classified point cloud. 267 

0.1 m resolution. Red line indicates the restoration site; green line indicates the botanical plot. 268 

Elevation is significantly higher towards the perimeter of the sire due to poor canopy penetration in 269 

the drone imagery. 270 

Canopy height values for the normalised CHM (corrected using a planar DEM; Fig 4) ranged 271 

from 0.38 m to 30.63 m. The mean TCH across the restoration site was 7.19 m (σ = 6.19 m; median = 272 

5.72 m). Canopy height within the botanical plot had a much smaller range, from 0.20 m to 22.60 m, 273 

with a mean TCH of 3.90 m (σ = 4.41 m; median = 2.01 m). 274 

Fig 4. Normalised canopy height model of the restoration site. 275 

0.1 m resolution. Red line indicates the restoration site; green line indicates the botanical plot. A flat, 276 

planar digital elevation model was used to normalise the point cloud-derived digital surface model. 277 

Crown identification from our drone images required considerable field calibration. Figure 278 

5A shows the locations of all tree crown tops >3 m found in the CHM by PyCrown, using estimate 5 279 

(S1 Text) as an example. In Fig 5B, which focuses on the botanical plot, the grey lines indicate the 280 

delineated boundaries of the tree crowns found using the same parameters. The crown locations and 281 

extents identified in estimate 5 were generally accurate, albeit with some errors towards the edges 282 



of the restoration site. This pattern was typical of all five estimates. The field team identified 24 283 

individual trees between 3 and 19 m high for analysis within the botanical plot. None of the five 284 

estimates produced using PyCrown returned the same number of tree crowns as the field team, with 285 

estimates ranging from 17 to 30 crowns. The crown heights derived from the drone data were similar 286 

to those measured in the field (Fig 6). The mean and median crown heights for the drone estimates 287 

ranged from 6.65 m to 8.25 m and 4.43 m to 5.81 m, respectively, while the field measurements had 288 

a mean height of 8.16 m and a median of 7.25 m. The drone estimates showed clear groupings of 289 

crowns <10 m, with fewer larger individuals. A similar pattern was observed in the field 290 

measurements, although with a greater number of crowns <13 m and only two crowns >15 m (Fig 6). 291 

Fig 5. Location and extent of tree crowns within the restoration site. 292 

Tree crowns identified using PyCrown; figure shows results of PyCrown estimate 5. (A) Location of all 293 

tree crowns >3 m tall within the restoration site. (B) Location and extent of tree crowns >3 m tall 294 

within the botanical plot.  295 

Fig 6. Field- and drone-derived individual tree crown height measurements.  296 

Samples 1-5 are measurements extracted from the canopy height model using different input 297 

parameters for PyCrown. Height measurements from field data shown in orange. Number of 298 

individual tree crowns >3 m identified by each sample is shown at the bottom. 299 

Aboveground carbon density measurements from drone data 300 

Drone-derived estimates of biomass have significantly higher uncertainty compared to those 301 

based on field data. The distribution of ACD measurements for the botanical plot produced using five 302 

different plot-aggregate equations (Table 1) are shown in Fig 7. For comparison, Fig 7 also shows the 303 

combined distribution of all field-derived ACD measurements using 27 different allometric equations 304 

(S1 Table). Across all five drone-derived distributions, a fivefold variation in mean and median ACD 305 

values was observed. The ACD values calculated using the larger modelled height measurement 306 

errors (σ = 4 m; Fig 7B) showed substantial differences in distribution ranges. The variation within the 307 



measurements for each equation was significantly greater with larger height measurement errors 308 

compared to the smaller errors (σ = 1.5 m; Fig 7A). 309 

Fig 7. Distributions of field- and drone-derived aboveground carbon density (ACD) values for the 310 

botanical plot. 311 

For drone data, combined ACD values for all five allometric equations are shown in dark green, with 312 

individual equations in light green. For field data, combined ACD values from 27 allometric equations 313 

are shown in orange. (A) ACD distributions calculated using small-modelled errors in drone height 314 

measurements (σ = 1.5 m). (B) ACD distributions using large-modelled errors (σ = 4 m). 315 

With larger errors, the combined mean ACD value for all five equations was 16.78 Mg C ha-1 316 

(σ = 17.79 Mg C ha-1), compared to a field-derived mean ACD value of 6.05 Mg C ha-1 (σ = 2.07 Mg C 317 

ha-1; all 27 equations) (Fig 7B). For smaller error estimates, the mean ACD was 14.06 Mg C ha-1 (σ = 318 

10.64 Mg C ha-1) (Fig 7A). There was a clear difference between the measurements produced by 319 

equations I and II, and equations III-V. Under both measurement error scenarios, equations I and II 320 

produced mean ACD values approximately four times higher than those derived from field data. The 321 

mean ACD values for equations III-V were lower, and those using smaller measurement errors more 322 

closely resembled field measurements. When equations III-V were combined, the mean ACD value 323 

was 7.19 Mg C ha-1 (σ = 4.68 Mg C ha-1) with smaller errors, and 10.95 Mg C ha-1 (σ = 13.20 Mg C ha-1) 324 

with larger errors. However, the range of ACD values for equations III-V exceeded that of the field 325 

measurements under both error distributions. 326 

When applying the plot-aggregate equations across the whole restoration site and averaging 327 

the results, the carbon density value was twice that of the botanical plot. Using the smaller height 328 

error distribution, mean ACD was 29.28 Mg C ha-1 (σ = 13.61 Mg C ha-1), and using large errors it was 329 

31.27 Mg C ha-1 (σ = 22.63 Mg C ha-1). When just equations III-V were combined, mean ACD values 330 

were 20.24 Mg C ha-1 (σ = 7.50 Mg C ha-1) using small errors and 23.95 Mg C ha-1 (σ = 20.67 Mg C ha-1) 331 

using large errors. 332 



Discussion 333 

Aboveground carbon density measurements 334 

Drone-based ACD calculations for our field plots were systematically higher than field-based 335 

measurements and had wider uncertainties (Fig 7). The mean drone-derived ACD measurements for 336 

the plot were approximately double the field-based carbon density, which we assume is a true-to-337 

reality benchmark. Two commonly used pantropical allometric equations, equations 1 [64] and 20 338 

[65] in S1 Table, frequently serve as ‘general allometric equations’ in individual tree AGB studies 339 

[37,66–68] or as the basis for new allometric models [24,58]. These equations produced ACD 340 

distributions either side of the mean field-derived ACD value from all 27 equations. This increased 341 

our confidence that the distribution of ACD values across the 27 equations represented a plausible 342 

range which contained the true ACD value for the plot making it suitable for comparison with the 343 

drone measurements. 344 

Three of the drone-derived values (equations III-V) were more similar to the field-based 345 

values, albeit with greater variability. A key factor here is the underlying datasets for these equations: 346 

all were calibrated using field plots that share general geographical and ecological similarities with 347 

Kaboi Lake. In contrast, the generalised pantropical allometric equation I was developed using 348 

primarily Neo- and Afrotropical forest plots, which are structurally distinct from the forests of Borneo 349 

[69]. While equations II and III were both derived from Sepilok-Kabili Forest Reserve, equation II used 350 

sub-models to predict diameter at breast height and wood density, whilst III used field 351 

measurements. Both equations I and II overestimated carbon densities for the plot by a greater 352 

degree than regionally calibrated equations III-V. These results indicate that the selection of 353 

allometric equations significantly influences the accuracy of ACD calculations from SfM data, with a 354 

generalised equation overestimating carbon density values by four times. However, drone-derived 355 

SfM can be a viable method for producing ACD values comparable to those of field-based methods at 356 

a community scale, provided the plot-aggregate allometric equations used were calibrated using 357 



ecologically and geographically appropriate datasets. Regionally-calibrated ITC allometric equations 358 

are readily available (e.g., S1 Table), but pre-published plot-aggregate equations are comparatively 359 

uncommon. The development of new regionally-calibrated plot-aggregate allometries for different 360 

ecoregions and species [e.g., 70–72] would greatly increase the applicability of this method for 361 

community use. 362 

Differences in calculation methods and assumptions between the field- and drone-based 363 

approaches may explain the observed bias towards larger drone-derived ACD values. ITC approaches, 364 

like our field-based methods, calculate carbon within discrete units (individual trees), excluding 365 

smaller trees (those <3 m), low-lying vegetation, and deadfall from total carbon density calculations. 366 

In contrast, the plot-aggregate method used in this study did not differentiate between trees and 367 

non-trees, and included all biomass within the CHM when calculating mean TCH. While this 368 

theoretically results in higher carbon values but, shorter trees and vegetation have a 369 

disproportionately small impact on total carbon in practice. Differences may also arise from large 370 

tree crowns that cross the plot boundary. These trees were not recorded by the field team as their 371 

trunks lay outside of the boundary but, due to the ‘cookie cutter’ methods used to extract values 372 

from the CHM, they did contribute to the overall carbon values calculated via plot-aggregate 373 

approach. These edge effects were perhaps amplified by the small relative size of the plot [57]. 374 

Differences may also arise from uncertainties in the drone-derived CHM, which are discussed below. 375 

Our calculated ACD values for Kaboi Lake are significantly lower than other published values 376 

for secondary forests in Borneo. Previously logged forests in Sabah can contain carbon densities of 377 

60-140 Mg C ha-1 [21], whilst for secondary peat forests in Kalimantan, ACD ranges from 40-100 Mg C 378 

ha-1 [36,73]. These values are approximately an order of magnitude greater than those measured at 379 

the botanical plot. The low carbon density at Kaboi Lake could feasibly be explained by both the 380 

historic logging of dipterocarps and the recent clearing, and Asner et al. [21] show that recently 381 



deforested lands in Sabah (<5 years) have significantly lower carbon densities (7 Mg C ha-1), more 382 

consistent with our results.  383 

Differences between our results and other published ACD values for secondary forest suggest 384 

a potential for overestimation of baseline carbon density values at restoration sites, especially if 385 

using remotely sensed imagery with low resolution relative to site size. The drone-based methods we 386 

outline here offer a more accurate solution for assessing the baseline carbon values for community-387 

scale ACD measurements compared to satellite-based methods. Further, the five plot-aggregated 388 

allometric equations (Table 1) were not necessarily developed and calibrated for use in severely 389 

degraded forest. The future use of drone SfM and plot-aggregate allometries specifically calibrated 390 

for severely degraded forest may reveal further differences between assumptions used in restoration 391 

planning and carbon accounting, and on-the-ground ACD values. 392 

Methodological limitations and uncertainties 393 

Uncertainties in the drone-derived ACD values arise from both the selection of allometric 394 

models and generation of the CHM. Mean ACD measurements varied by a factor of 4 between 395 

equations using the smaller height measurement errors, and by a factor of 3 when using larger errors 396 

(Fig 7). Clear groupings emerged among the equations, with equations III-V more closely matching 397 

field-derived measurements. This grouping is explained by the difference in underlying datasets used 398 

to produce the equations, highlighting the importance of equation selection for this method. 399 

However, all individual plot-aggregate equations exhibited a much broader distribution of 400 

results compared to field measurements, reflecting the height measurement errors associated with 401 

drones. These broader distributions were caused by the size of the error distributions used to 402 

propagate uncertainty in the mean TCH values relative to the CHM height. The mean TCH value for 403 

the botanical plot was 3.9 m, while the error distributions had standard deviations of 1.5 m and 4 m. 404 

Using ground control points (GCPs) in the data collection phase could reduce the uncertainties 405 

surrounding drone height measurements [52,54], but Fig 7A shows that even with the reduced errors 406 



expected from GCP correction (i.e., modelled using the smaller error distribution), large uncertainties 407 

in ACD measurements remain.   408 

The accuracy of the canopy height model is ultimately dependent on the digital surface and 409 

elevation models generated by SfM, with DEMs having a greater impact on accuracy due to the 410 

relative size of their measurement errors. Limited canopy penetration with optical imagery poses a 411 

challenge for SfM, resulting in fewer ground returns and poorer quality DEMs compared to LiDAR 412 

data [32,55,74–76]. Nevertheless, DEMs derived from optical drone imagery have been successfully 413 

used to measure forest biomass [31,77], especially in woodlands with relatively open canopies [78], 414 

similar to our study site. Although Kaboi Lake had visible bare ground, we achieved higher accuracy 415 

in our CHM by assuming a flat, low relief surface rather than using the DEM produced by SfM, which 416 

included a relief of 21.4 m. This approach is not feasible in regions of significant topographic relief or 417 

complex topography. Nevertheless, it avoids the issues of matching datasets from different sensors 418 

and platforms, making it a plausible technique for minimising errors in SfM-derived DEMs and CHMs, 419 

particularly when drone imagery is available from the pre-restoration forest clearance. 420 

Ground control points (GCPs) are usually an important part of the SfM workflow, used to 421 

accurately locate, orient and scale point clouds in space [79]. However, we experienced technical 422 

issues in the acquisition and integration of GCPs into the ODM software. Hence, we analysed the 423 

data without ground controls and examined the impact of omitting this data collection process. We 424 

used only the drone’s onboard global navigation satellite system (GNSS) receiver to provide 425 

geospatial data and scale the CHM, and used a comparison of tree heights from field measurements 426 

and the CHM to validate the scaling. The tree crown heights extracted using PyCrown followed 427 

similar distribution patterns to the field measurements, with the majority of individual crowns 428 

measuring <10 m across all measurements (Fig 6). However, clear differences emerged in the number 429 

of tree crowns identified in the botanical plot across PyCrown estimates. Increased numbers of taller 430 



trees (>10 m) identified within the plot may be explained by the presence of large, overhanging 431 

canopies from trees that are situated outside of the botanical plot.  432 

The maximum field-measured crown height was 18.8 m, and omitting the (presumed 433 

overhanging) trees taller than 18.8 m from estimates 1-4 produces distributions more closely aligned 434 

with the field measurements but also reduces mean heights. The discrepancy in mean heights may 435 

be due to the downscaling of the CHM for PyCrown processing, which reduces the ‘visibility’ of fine-436 

scale canopy peaks [80,81] and thereby reduces height measurements. The lower mean crown 437 

heights also follow other results showing a systematic underestimation of TCH using SfM 438 

[32,75,82,83]. However, additional studies have demonstrated SfM overestimating TCH in open 439 

canopy forest [81], or the bias shift changing with canopy height [84]. As this study utilised a flat 440 

DEM, it negated the impact of ground occlusion in the DEM which is often a major contributor to 441 

reported underestimations of canopy height. Of importance, then, is the fact that errors in field 442 

measurement methods were not considered in these comparisons and are another potential source 443 

of bias. Canopy height is the key uncertainty in field measurements; DGFC staff estimated 444 

uncertainty in canopy height measurements at approximately 3 m, exacerbated by taller trees or the 445 

use of novice surveyors. Despite differences between the sets of measurements, the coincident 446 

uncertainties between field and drone-derived data suggest that the CHM was scaled sufficiently 447 

during the SfM process to enable plausible ACD measurements to be produced, as the uncertainties 448 

here were smaller than those associated with allometric equation selection. 449 

Implications of method for community-scale carbon monitoring 450 

Our findings suggest that lightweight, low-cost, consumer-grade drones and open source 451 

software present a viable solution for generating ACD values within community-scale projects. There 452 

is an optimal scale for using drones for ACD measurements with regards to trade-offs between 453 

accuracy, simplicity, and cost-effectiveness. This optimal scale ranges between individual plot-level 454 

and regional-scale surveys, i.e., between approximately 1 and 100 ha. Between these bounds, drones 455 



offer an attractive option for data acquisition and carbon measurement, aligning well with the needs 456 

of community-scale ACD monitoring while bridging the gap between field-based and satellite-based 457 

measurements.  458 

At scales between 1 and 100 ha, drone-derived ACD estimates can be obtained without 459 

extensive field surveys and using only a single input metric. Our findings further support the idea 460 

that drones offer a fast and cost-effective option for data acquisition at scales of up to tens of 461 

hectares [35,85,86]. A team of two people were able to map the entire 2 ha restoration plot at a high 462 

resolution (5 cm) in a single morning, whereas collecting field-based measurements for each tree in 463 

the same plot would take two people several days. Due to the reduction in survey time per unit area 464 

surveyed, the drone-based method we demonstrate here is a promising option for scaling up carbon 465 

monitoring from a botanical plot level. For example, canopy height metrics for a 10-ha site can be 466 

measured using drones more quickly than gathering field measurements for a single 0.25-1 ha plot. 467 

While field plots remain necessary for calibration and verification, this approach significantly reduces 468 

total survey times.  469 

However, at smaller scales (<2 ha) and with one-off surveys, it is worth recognising that it 470 

may be simpler, faster, and cheaper to utilise field-based methods over drone-based SfM. Although 471 

field-based methods do require more input metrics and require certain surveying skills, they do not 472 

require training in piloting and data processing, nor the purchase of comparatively expensive 473 

hardware – the drone used here cost approximately £1,500 (field staff already had access to a 474 

smartphone for mission planning). Still, with larger areas or repeat surveys, the simplicity and 475 

potential accuracy benefits of field-based methods may be outweighed by the subsequent financial 476 

advantages (e.g., reduced labour costs) of drone-based SfM.  477 

Drone use encounters practical limitations at larger scales. The high temporal and spatial 478 

resolution of drone imagery allows for better detection of forest structure than freely available 479 

imagery that could be used for larger-scale (>100 ha) ACD measurements (e.g., Landsat or ESA’s CCI 480 



biomass dataset). Whilst drone-based SfM has been used over these scales [32], there are potential 481 

trade-offs between resolution, extent and labour costs (greater spatial resolution may require more, 482 

lower altitude flights). The relatively short range of drones also introduces issues concerning 483 

travelling to launch sites, both in terms of accessibility and total survey times. For surveys >100ha, 484 

purchasing high-resolution (30 cm) snapshot satellite imagery for a site, or even commissioning an 485 

airborne LiDAR survey, may become a more practical option (e.g., a WorldView-3 satellite image 486 

encompassing the site would have cost ≈£400). These approaches do, however, come with 487 

disadvantages related to temporal resolution and repeatability, and would still require field-based 488 

measurements of ACD within botanical plots to calibrate imagery. 489 

Access to drones and drone imagery also provides secondary benefits for restoration projects 490 

and forest communities alongside community-scale ACD monitoring. Orthomosaic images are an 491 

effective and transparent way of demonstrating tree planting and restoration progress, a task that is 492 

difficult with lower spatial or temporal resolution imagery. Although numbers of trees planted is not 493 

necessarily a strong measure of restoration success [18], it can be an important metric for funding 494 

partners. Drones can capture compelling images of a site and its surrounding landscape for use in 495 

social media and outreach campaigns run by restoration projects. In Borneo, some communities have 496 

used these images to create postcards and calendars to sell locally and to promote restoration 497 

projects as tourist attractions, providing additional sources of revenue [87]. Beyond restoration, the 498 

georeferenced maps produced from drone imagery can also be used to assert land rights and stop 499 

extractive industries from operating within community-owned forest [87,88]. 500 

Community groups often have limited technical and financial resources, making low-cost, 501 

accessible methods like the one presented here especially valuable for community-scale carbon 502 

monitoring. Nevertheless, there are several factors that may limit this method’s accessibility for 503 

community use. First is the need for, access to, and costs of pilot training. Piloting a multirotor drone 504 

may be straightforward, but precise flight planning is required to maximise the accuracy of any SfM 505 



outputs. Variables such as sun angle during image capture, camera angle, and image overlap 506 

significantly affect point cloud construction [35,89]. A few days of training should be sufficient to 507 

pilot a multirotor safely, set up and record GCPs, and collect imagery suitable for SfM, though more 508 

training may be needed for fixed wing drones. 509 

Second is the role of data processing; it is easy to focus on flying a drone, but this is only half 510 

the process of producing ACD measurements. Any community-scale groups or actors wishing to 511 

replicate these methods will need a good working knowledge of GIS, Python and relevant open 512 

source software, such as ODM. This, again, may require additional training but open source programs 513 

are increasingly packaged with accessible, user-friendly interfaces alongside more technical 514 

command line options. Data processing also takes a considerable time; processing ~600 images and 515 

producing point clouds took over 3 hours on a powerful desktop PC. Added to this are the multiple 516 

attempts over several days that failed part way through due to insufficient memory. Using lower-517 

resolution imagery reduces processing times, although in our experience this results in greater 518 

measurement errors due to ground occlusion and image matching issues [cf. 90]. In combination, 519 

lengthy data processing steps may further reduce time advantages over manual field sampling (albeit 520 

less so for larger sites). 521 

Finally, there are considerable additional expenses beyond just purchasing a drone. A laptop  522 

capable of running the SfM and data processing software may cost as much as the drone itself (up to 523 

approximately £1,000). However, like a drone, its applicability for other purposes may 524 

counterbalance these additional costs. A tablet is required to operate the drone, although 525 

smartphones, which can also be used, are becoming increasingly common even in rural areas. 526 

Surveys with consumer-grade drones often require additional hardware, such as handheld GNSS 527 

receivers for recording GCPs (≈£300 for a basic unit), and paid subscriptions to photogrammetry 528 

software (PIX4Dmapper, a popular photogrammetry program, currently costs ≈£220 per month; 529 

www.pix4d.com). As demonstrated in this study, open source photogrammetry software can reduce 530 

http://www.pix4d.com/


costs, as can forgoing GCPs and using geolocation data embedded in the input images. Additionally, 531 

there are the costs associated with obtaining permits or certificates required to fly in the region. The 532 

costs here may be small, but the legislation introduces an additional potential barrier, as community 533 

groups may find navigating the myriad forms and administrative requirements more difficult than 534 

academics with connections to local universities and forestry departments. 535 

One solution to overcoming these obstacles is for communities to partner with NGOs and 536 

research institutes to help with drone operations. For example, in Indonesia, Swandiri Institute are 537 

one of a handful of organisations providing community drone training and capacity building, while 538 

others like the Center for International Forestry Research (CIFOR) can conduct data collection and 539 

processing on a community’s behalf. Private organisations can also provide this service for a fee, 540 

which may be a cost-effective alternative to purchasing a drone, training courses, and permits for 541 

one-off surveys. However, such ‘drone outsourcing’ [87] can risk entrusting key ethical decisions 542 

around consent, privacy, data ownership, and the handling of potentially incriminating images to the 543 

contracted party, with potential negative impacts for the local community [91,92]. Outsourcing also 544 

restricts working knowledge of drones and data processing to a smaller number of individuals in a 545 

region. In situations where communities are proactive participants in drone mapping with NGO 546 

partners, they are still often dependent on NGOs for technical expertise [87,93–95]. Building local 547 

capacity is an important factor in increasing the long-term sustainability of community-based drone 548 

monitoring and reducing potentially negative impacts. 549 

Barriers to accessibility do not only apply to the use of drones for carbon monitoring, nor are 550 

they geographically limited to Borneo. Drones will always interact with real-world factors that can 551 

limit the accessibility of such methods. Conservation spaces differ significantly from controlled 552 

environments like testing laboratories or university campuses and can present unexpected 553 

challenges [96]. In our case, extreme temperatures limited the duration of drone surveys, whilst 554 

routine flooding delayed data collection for several months. It is worth considering how these 555 



environmental factors might affect the practical use of other conservation and remote sensing 556 

technologies. Additionally, factors like species identification skills or data-handling capacities may 557 

limit other participatory monitoring approaches, even when drones are not involved. Awareness of 558 

these factors is important for managing expectations around new remote sensing technologies and 559 

for making methodologies accessible and relevant to those who will benefit from them most, not 560 

only in Borneo, but in forest ecosystems and conservation spaces in general. 561 

Conclusions 562 

In this paper, we developed, applied, and analysed a new method for incorporating 563 

consumer-grade drones into community-scale aboveground carbon measurements, utilising open 564 

source software, drone-derived SfM, and pre-published plot-aggregate allometric equations. Our 565 

results show that this method presents a viable option for generating ACD measurements for 566 

community-scale conservation and restoration projects, producing results comparable to those 567 

obtained using established field-based methods. Drone-derived measurements were larger than 568 

field-derived measurements, but varied depending on the allometric models used. This highlights the 569 

importance of selecting regionally calibrated allometric equations when applying this method. The 570 

development of new models for a range of forest types across the tropics will greatly increase this 571 

method’s accuracy and applicability. 572 

The approach presented here offers several advantages over existing methodologies that 573 

could be used for community-scale ACD measurements, including a reduction in survey times and 574 

long-term costs. However, several factors may limit the accessibility of this method for community 575 

groups in practice. These barriers – analogous to those in other methodologies, technologies, and 576 

locations – may be resolved with relative ease, but should not be overlooked. Nevertheless, the 577 

method described here has established a foundation for a simple drone-based workflow to measure 578 

carbon, showing promise for real-world applications and potential refinement in future studies.  579 
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S1 Text. Processing parameters for tree crown location estimates generated using PyCrown. 863 

S1 Table. Selected allometric equations used to generate aboveground biomass (AGB) distributions 864 
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