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Leasing Business Model for Trunk Mobile Charging 

Stations: From the View of Operators 
 

Kecheng He, Hongjie Jia, Senior Member, IEEE, Yunfei Mu, Member, IEEE, Xiaodan Yu, Member, IEEE, Yue 

Zhou, Member, IEEE, Jianzhong Wu, Fellow, IEEE and Xiaohong Dong, Member, IEEE 

Abstract—Truck mobile charging stations (TMCS) are 

emerging as an effective solution to bridge the gap between supply 

and demand for electric vehicle (EV) charging. However, 

traditional business models face barriers due to high initial costs 

and low utilization rates, hindering operator participation. To this 

end, this paper introduces a bi-level optimization model for TMCS 

leasing to balance the TMCS operator (TMCO) and charging 

facility operators (CFOs). The upper-level objective maximizes the 

profit of TMCO, focusing on TMCS fleet size, differentiated 

pricing for long-term and short-term rentals, and scheduling grid 

energy arbitrage during idle periods. The lower level aims to 

maximize the profit of CFOs by determining rental quantities and 

durations based on leasing offers. A distributionally robust 

optimization (DRO) approach is employed to address the 

uncertainties in EV charging demand, using chance constraints 

with the Wasserstein distance to capture forecast errors. The 

probabilistic constraints are transformed into tractable linear 

constraints through conditional value-at-risk (CVaR) 

approximation. The model is solved by the genetic algorithm (GA) 

at the upper layer and the nested column-and-constraint 

generation (NC&CG) algorithm at the lower layer. Case studies 

show that the model effectively balances the objectives of TMCO 

and CFOs. With adaptive pricing and TMCS allocation strategies, 

the model ensures the TMCO’s profitability while improving 

CFOs’ economics. 

 

Index Terms—Truck mobile charging station, leasing business 

model, rental packages, distributionally robust chance 

constrained, profitability 

NOMENCLATURE 

Sets and indexes 

ΩJ
L Set of TMCS 

Ωj,t
c  Set of TMCS of CFO j 

ΩJ
sp

 Subsets for short-term rentals 

ΩJ
lp
 Subsets for long-term rentals 

Ωj,t
sp

 Subsets for short-term rental of CFO j 

Ωj
lp

 Subsets for long-term rental of CFO j 

t Leasing period  

th Scheduling time 

T Planning horizon 

H Scheduling horizon 
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ω Index of TMCS 

rc Index of battery replacement 

κ Index of year since deployment 

m, u Operational locations for EV charging service 

n, v Operational locations for energy arbitrage 

ne 
Corresponding depot location when TMCS 

ends service 

Δ Ambiguity set of charging demand 

Ξ2 Support set of the random variables 

μ̂ Sample mean 

ξ1, ξ2 Random variables 

W(⋅) Wasserstein distance 

Π 
Joint distribution of ξ1 and ξ2, with marginal 

distributions 1 and 2 

ev Potential distribution in the ambiguity set 

a, b Coefficient vectors 

y, d1 
Binary variables in the first and second stages 

of the original problem 

d2 
Continuous decision variables in the second 

stage 

D(y, β) Feasible region of variable d 

F, G, 

L1-L7 
Coefficient matrices 

J1-J2, 

S1-S3 
Coefficient matrices 

V1-V3 Coefficient matrices 

1-7 Constant column vectors 

Parameters 

ω,t
L  Leasing revenue 

ω,t
ch

 EV charging service revenue 

ω,t
ea

  Profit of energy arbitrage 

CIOM 
Investment, operation and maintenance (O&M) 

costs 

Cω,t
L  Leasing g cost of TMCSs 

Cω,t
OM Operating cost of TMCSs 

cω
bt TMCS battery costs 

cω
b,f

 TMCS battery replacement costs 
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cω
pl

 TMCS chargers and converters costs 

cω
tk TMCS trucks and container components 

cdp Costs related to the TMCS depot 

cω
mt TMCS maintenance costs 

ηs Amortization coefficients for the TMCS system 

ηb Amortization coefficients for the batteries 

ηb,f 
Amortization coefficients for the battery 

replacement 

ηmt 
Amortization coefficients for the maintenance 

costs 

ηj Adjustment coefficient 

ηch,ω, 

ηdch,ω 
Charging and discharging efficiency of TMCS 

Kb Service life of batteries 

Ks Service life of TMCS system 

r0
T Discount rate converted to the planning horizon 

Nrc Total number of battery replacements 

Wmax
tmc  Maximum number of TMCSs 

Wj,t
c  Total number of TMCSs leased by CFO j 

λj
max

 Upper price limit of CFO j 

λn
th

 Nodal price in the day-ahead energy market 

λm
ch

 EV charging fee per kWh 

the End time of TMCS scheduling 

va Average speed of TMCS 

Dω
e , Dω

c
 

Total distance traveled during the scheduling 

period 

cω,j
H  

Amortized self-owned cost through the 

scheduling horizon 

ce
tmc Energy consumption per kilometer 

cω
la Labor cost 

cMDC Life-cycle marginal degradation cost 

Pch,ω
max , 

Pdch,ω
max  

Maximum charging and discharging power of 

TMCS ω 

Pm
th EV charging demand at node m 

Pcs,ω
max  

Maximum power of TMCS ω in EV charging 

service 

Eω
tmc Capacity of TMCS ω 

SOCmax, 

SOCmin 
Maximum and minimum SOC levels of TMCS 

qth 
Calendar degradation parameter of TMCS 

battery packs 

γ
j
c EV charging demand satisfied ratio 

α, Dε, 

φ1, φ2, sl 
Auxiliary variables 

ε Radius of Wasserstein ball 

ρε Confidence level of ambiguity set 

ρev Confidence level of chance constraint 

β 
Uncertain parameter related to EV charging 

demand 

Variables 

υω,t
sp
 

Binary variables, 1 if TMCS ω is in short-term 

leasing status at time t, and 0 otherwise 

υω,t
lp

 
Binary variables, 1 if TMCS ω is in long-term 

leasing status at time t, and 0 otherwise 

υω,t
ea  

Binary variables, 1 if TMCS ω is in energy 

arbitrage status at time t, and 0 otherwise 

λj
sp

 Short-term rental package prices 

λj
lp

 Long-term rental package prices 

Wtmc Total number of TMCS 

Pch,ωn
th ,

Pdch,ωn
th  

Charging and discharging power of TMCS ω at 

node n 

ζω,n
th

, 

ζω,nv
th

 

Binary variables, 1 if TMCS ω is on node n, or 

on path (n, v) at time th, and 0 otherwise 

ζω,mu
th

, 

ζω,mn
th

 

Binary variables, 1 if TMCS ω is on path (m, u), 

or on path (m, n) at time th, and 0 otherwise 

Ich,ω
th  

Binary variables, l if TMCS ω is charging at 

time th, and 0 otherwise 

I. INTRODUCTION 

lectric vehicles (EVs) have become an essential solution 

for reducing the carbon footprint in the transportation 

sector. With the widespread application of EVs, the 

demand for available charging facilities and convenient 

charging solutions is growing rapidly. The latest Global EV 

Outlook 2024 report issued by the International Energy Agency 

(IEA) shows that EV sales continue to rise. They could reach 

about 17 million by 2024, accounting for more than one-fifth of 

global vehicle sales. Meanwhile, the number of public charging 

facilities remains insufficient, necessitating a sixfold increase 

by 2035 [1]. The fact is that some limitations remain 

challenging for conventional public fixed charging stations 

(FCS). Firstly, the ability to deploy FCS is limited by the power 

available on the grid, which can take a long time to upgrade [2]. 

In addition, the uncertainty of EV charging demand may lead 

to polarization of FCS in practice. For example, some FCSs on 

highways may be crowded during holidays but quiet on 

weekdays [3]. Moreover, the return on FCS investment is often 

insufficient due to high upfront costs, challenges in expansion 

or relocation, and a lack of flexible and efficient utilization 

schemes [4]. As a result, FCS may not be feasible in some 

locations. These barriers hinder the further expansion of FCS. 

Truck mobile charging station (TMCS) is expected to offer 

novel solutions to address the above challenges. TMCS 

operates similarly to the power banks for EVs instead of 

smartphones. It consists of a certain number of chargers and a 

utility-scale battery storage bank carried by truck [4]. As an 

effective complement, TMCS is more flexible and scalable than 

FCS [2][4]. It has attracted much attention in the industry. 

Power Sonic is a company that provides energy storage and EV 

charging facilities in the UK and France. The company has 

launched several mobile charging facilities to help users with 

their temporary charging needs [5]. Chinese automaker NIO 

announced plans to deploy 120 high-capacity TMCSs on 

highways in northwest and northeast China by the end of 2024 

[6]. Porsche released a new mobile charging solution similar to 

the Tesla Megapack. The system consists of a trailer with a 2.1 

MWh battery system that can charge up to 10 EVs 

simultaneously [7]. 

In recent years, research on the field of TMCS has also been 

very active. Relevant studies can be divided into the following 

three categories. The first is the integrated design of TMCS, 
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which includes considerations such as cost [4], technical 

limitations [8], and battery lifespan [9]. A holistic review of the 

different implementations, technical routes and application 

perspectives of mobile charging technologies were presented 

[4][9]. A TMCS-based business model for the energy supply of 

EVs was presented using South Korea as an example [10]. The 

second involves the strategical deployment and planning of 

TMCS, specifically the selection of service locations and 

determination of station capacity [11][12]. The effect of 

integrating mobile charging into an urban EV charging network 

and user behaviors were simulated [13]. For the combination of 

FCS and TMCS, the author presented a bilevel coordinated 

planning framework to improve the utilization and economy of 

charging facilities [12]. Similarly, a coordinated planning 

model was proposed based on weekday and holiday traffic 

flows [14]. A mixed-integer linear programming (MILP) model 

was developed to combine TMCS with integrated energy 

systems, where TMCS were charged at photovoltaic power 

plants [15]. The third relates to the optimization of TMCS 

scheduling, focusing on how to utilize its flexibility to reduce 

operating costs[16], improve equipment utilization [17] and 

operator revenues [18][19]. A MILP model was established for 

TMCS scheduling and operator profit optimization and solved 

using an improved genetic algorithm [18]. The peak load of 

FCS was significantly reduced by scheduling TMCS to move 

to specific areas [17]. TMCS was scheduled to charge during 

low electricity price periods and deployed to FCS during peak 

hours to provide EV charging services [20][21]. The results 

show that the deployment of TMCS can significantly reduce the 

average user waiting time [20]. Pricing mechanism and 

business models based on FCS and TMCS was designed [22]. 

As can be observed that research in this area have yielded 

notable results. However, few studies have fully explored the 

challenges associated with sustainable business models for 

TMCS operations [23]. This is one of the main gaps between 

current academic research and practical applications [9]. In 

particular, few studies have investigated the operation strategies 

of TMCS from a more comprehensive multi-stakeholder 

perspective. Despite the many benefits of TMCS, its current 

promotion faces key challenges such as high initial cost and low 

utilization, which hinder operators' participation [4][19]. 

Currently, charging facility operators typically follow two 

main business modes in practice. The first model is “self-build”, 

in which the operator funds and manages the charging stations 

themselves. Companies such as Tesla in the U.S., NIO and Star 

Charge in China [23]. This mode involves high capital expense, 

but grants complete control over operations and profits. Tesla, 

for example, has integrated its Supercharger network globally 

[24]. NIO’s mode emphasizes its Battery-as-a-Service (BaaS). 

That is, it allows customers to obtain battery swapping services 

on a subscription basis, thereby reducing initial vehicle costs 

and facilitating upgrades [25][26]. The second mode is known 

as “owner-operator”, where charging facilities and outsourced 

services are provided by owners to operators, e.g., companies 

such as EVgo [27]. This allows the owner to secure revenue 

while transferring operational risk to the operator, who faces 

uncertainty about charging demand and revenue. The operator, 

in turn, can expand its services without incurring significant 

upfront investments [28][29]. Despite the above-established 

business modes in the charging facilities sector, the 

commercialization of TMCS presents unique challenges. Since 

TMCS mainly serves as temporary support for FCS, this 

auxiliary role contributes to the difficulty of the widespread 

adoption of TMCS. TMCS suppliers often struggle with high 

initial costs, long payback periods, and uncertain demand 

patterns. These challenges can hinder the scalability and 

profitability of TMCS. 

To address the above barriers, this paper proposes a novel 

TMCS leasing framework from the TMCS operator (TMCO) 

perspective. Existing studies [10][14][22] focus on optimizing 

TMCS deployment from the charging facility operators (CFOs) 

perspective. In contrast, the proposed model allows a dedicated 

TMCO to own and manage TMCSs while leasing them to 

CFOs. By reducing the upfront investment for CFOs and 

providing a stable revenue flow to TMCO, the framework 

reallocates financial risk and increases operational flexibility. 

This in turn increases the adoption and utilization of TMCS. 

The contributions of this work are threefold: 

1) A flexible and adaptable TMCS leasing framework is 

proposed, in which TMCO offers both long-term and 

short-term leasing options to meet the various needs of 

CFOs. In addition, an energy arbitrage strategy is 

embedded during the idle periods to enhance the 

utilization and revenue of TMCS. The proposed 

framework improves resource allocation efficiency and 

economic feasibility. 

2) Given the exogenous uncertainties associated with EV 

charging demand, a distributionally robust chance-

constrained (DRCC) approach is applied. The model 

ensures the leasing framework is resilient under demand 

variability, leading to more reliable decision-making for 

both TMCO and CFOs. 

3) A bi-level optimization model based on Stackelberg game 

theory is established to capture the interaction between 

TMCO and CFOs. As a leader, TMCO optimizes lease 

pricing and fleet size. CFOs respond as followers by 

adapting their leasing decisions. The pricing strategy 

developed facilitates coordination among operators, 

promotes a balanced operation for TMCO, and brings 

mutual economic benefits to all participants. 

The remainder of this paper is organized as follows. The 

leasing framework is introduced in Section II. Section III 

elaborates the bi-level optimization model. The solving 

procedure is described in Section IV. Section V presents the 

case study. Section VI concludes the paper. 

II. FRAMEWORK OF THE LEASING BUSINESS MODEL 

Fig. 1 depicts the framework of the TMCS leasing business 

model, referred to as a "provider-leaser" system, similar to a car 

leasing model. CFOs typically own a certain number of FCSs. 

Due to the rapid growth in EV charging demand and its tidal 

nature, CFOs may face a shortage of charging facilities in some 

cases. TMCO invests in and owns some TMCSs, leasing them 

to CFOs for EV charging services. It allows TMCO to focus on 

asset ownership and maintenance, while CFOs can scale up 



 

 

operations without significant initial capital. 

Due to the dynamic nature of TMCS operations, including 

deployment, scheduling and on-the-go maintenance. A 

dedicated TMCO is necessary to ensure efficient management 

and smooth service delivery. TMCO can optimize asset 

deployment and operational efficiency through data analytics 

and fleet management. Meanwhile, CFOs can benefit from 

TMCS leasing by expanding services without taking on large 

investment and financial risk, focusing on charging services and 

operations. From a social welfare perspective, the proposed 

framework promotes resource-sharing and cost reduction by 

leveraging economies of scale, thereby improving overall social 

benefits. 

 
Fig. 1 The framework of the TMCS leasing business model. 

The proposed leasing model is divided into long-term and 

short-term rental packages to address the varying needs of 

CFOs. The long-term rental model is intended for CFOs with 

relatively more stable charging demands. TMCO offers long-

term rental packages with lower unit-time prices, inspiring 

CFOs to commit to these leases. This pricing structure ensures 

TMCS utilization and stable revenues for TMCO, while 

reducing ongoing costs for CFOs. In contrast, the short-term 

rental model provides flexibility for CFOs facing fluctuating or 

temporary demands. The two models complement each other, 

with long-term rentals focusing on stability and cost-

effectiveness, while short-term rentals prioritize flexibility and 

service adaptability. In addition, the idle TMCSs can act as 

price takers in the electricity spot market and participate in 

energy arbitrage by connecting to the distribution grid for 

additional profits.  

To enhance decision-making under uncertainty conditions, 

the proposed model integrates a two-stage DRCC optimization 

framework. This enables TMCO to manage uncertain EV 

charging demand and ensure high TMCS utilization while 

mitigating operational risks. The bilevel structure effectively 

captures the interaction between TMCO and CFOs, facilitating 

dynamic resource allocation and leasing optimization. Based on 

the Stackelberg game theory, the above process can be 

expressed as follows: 

                 ( )       T TTMCO , X , X , ,j jj J j J
L J

 
=   (1) 

The game-theoretic elements of the proposed TMCS leasing 

model can be summarized as follows: 

1) Operator set  ( )TMCOJ  , each CFO in set J act as a 

follower, and chooses the optimal leasing packages based on 

the rental prices set by the game leader TMCO. 

2) CFO strategy set {Xj}j∈J: For the j-th CFO, its strategy 

set Xj includes the number of TMCS for which it decides to 

make a lease and its lease duration (υω,t
sp

, υω,t
lp

). 

3) TMCO strategy set {XT}: Strategy set XT includes 

decisions on TMCS deployment quantities (Wtmc) and the 

pricing of long-term and short-term leases (λj
lp
, λj

sp
). 

4) CFO utility function {j}j∈J: The utility function j of 

CFO j aims to maximize operational profit while meeting the 

required quality of service (QoS). 

5) TMCO profit function T: The profit function T of 

TMCO represents the difference between total revenue from 

leasing and energy arbitrage, and costs of investment, 

operations, and depreciation. 

The objectives of the CFOs and TMCO are to maximize the 

utility and profit based on their chosen strategies respectively. 

A feasible solution to this game is the Stackelberg equilibrium, 

where the leader (TMCO) sets the optimal price taking into 

account the best response of the followers (CFOs). In turn, 

CFOs determine their optimal leasing combinations. At the 

equilibrium, no participant can unilaterally change their 

strategy to achieve a better outcome [30]. 

III. THE PROPOSED BI-LEVEL OPTIMIZATION MODEL 

A. TMCO model 

The objective of TMCO is to maximize its profits during the 

planning horizon, as shown in (2a)-(2d). 
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The first term in (2a) is the total revenue of the TMCO and 

the second term is the discounted value of investment and O&M 

costs. Items 1-3 in (2c) are the discounted values of charger, 

converter, truck and container component costs, battery 

investment and replacement costs, and maintenance costs, 



 

 

respectively. The set  ={(ω,t)∈ΩJ
sp

×T∣υω,t
ea =1} is defined as all 

(ω,t) pairs that satisfy the condition, where ΩJ
sp

×T denotes the 

Cartesian product of ω and t, i.e., all possible ( ω,t ) 

combinations. Therefore, the operational constraints can be 

expressed as follows: 
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where, Wmax
tmc  is determined by the TMCO budget; λj

max
 is 

determined by the deployment cost and leasing preference of 

CFO j. (3a) ensures the spatial-temporal constraint between 

TMCS short-term leasing and arbitrage. (3b) presents the 

leasing quantity limitations, while (3c)-(3d) indicate the price 

constraint. (3f)-(3g) guarantee the transfer constraints for 

TMCSs, and (3j)-(3k) define the charging and discharging 

constraints associated with the arbitrage mode. Finally, the 

SOC limitations are denoted in (3l) and (3m). 

B. Two-stage DRCC model for CFOs 

EV charging demand is an important exogenous variable that 

can have a significantly impact on the leasing strategies and 

scheduling arrangements of CFOs. Since historical charging 

load data provides certain probabilistic information. In this 

paper, the DRCC method is adopted to enable CFOs to make 

decisions by considering the worst-case probability distribution. 

As a result, the decision risk can be effectively reduced and the 

charging service quality can be ensured. The embedded chance 

constraints help to reduce the impact of extreme factors on the 

CFO’s profitability, thus realizing the trade-off between 

decision risk and economy. 

The optimization objective of CFO is shown in (4a)-(4d): 
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(4a) represents the revenue of TMCSs from the provision of 

EV charging services minus its leasing and operating costs. In 

this context, the outer "max" represents the objective of the first 

stage, i.e., determining its leasing strategy. The nested "min-

max" formulation addresses the second-stage problem. The 

"min" identifies the worst-case demand scenario under a 

particular leasing plan. In contrast, the “max” focuses on 

adjusting operational strategy to ensure that all constraints are 

met and profits are maximized under those conditions.  

In addition, the operational constraints of CFO can be 

expressed as follows: 

                       
sp lp c

, , ,1 ,   +     ，t t j t t T  (5a) 

                      
lp lp c

, , , , ,         t j t t T T，  (5b) 

                     
sp sp c

, , , , ,         t j t t T T，  (5c) 

                                    ( )
c
,

c sp lp

, , ,

j t

j t t tW  



 


+=   (5d) 

                      c

tmcmax c c

s, ,max th

m j j t
th t

P P W W 


 −  
  

 (5e) 

                    , , , , 1      
 

+ + + =   
th th th th

m n mu mn
m n m u m n

 (5f) 

                          
1

, , , ,      +

 

+  − 
th t th th

mu mn m m
m u m n

 (5g) 

                                   
1

, , ,    +



 −
th th th

mn n n
m u

 (5h) 

                           , ,

c

   
  





=


+ 


  
th th

a mu mn
th H m u m n

vD  (5i) 

                                             , 1 =e

e

th

n  (5j) 

                        
max

ch, , ch, ch,0 min( )     
th th th

n n
n

P I P,  (5k) 

                                       
max

dch, , cs,  th th

m mP P  (5l) 

                          ( )c max

dch, cs,maxth th

m m jP P P 


 − ，0    (5m) 

                                      ch, , 
th th

n
n

I  (5n) 

      
1 1 1 tmc

dch, dch, ch, ch,       + + +

 

 
= − − 

 
 

th th th th

n m
th H th H

SOC SOC P P E  (5o) 

                               min max thSOC SOC SOC  (5p) 

where, Pcs,ω
max   is mainly determined by the number and rated 

power of its chargers; γ
j
c reflects the charging service quality 



 

 

preference of CFO j. (5a)-(5c) establish the spatial-temporal 

constraints on the leasing operation, while (5d)-(5e) define the 

leasing quantity constraints. (5f)-(5h) guarantee the charging 

service and transfer constraints for TMCSs, and (5k)-(5m) set 

the power and QoS constraints. 

It is important to note that we assume that the total CFO 

demand does not exceed the TMCS capacity determined by 

TMCO. This is to ensure efficient allocation of TMCS 

resources within the bilevel framework. To the extent that 

aggregated demand exceeds this limit, we assume that TMCO 

could take measures. Examples include dynamic pricing 

mechanisms, budget increases, or selective service reductions 

for less profitable CFOs. Thus balancing the leasing demand 

while ensuring fairness and profitability. 

C. Modeling of charging demand uncertainty 

Although the accurate probability distribution of Pm
th is not 

available, historical data can still provide reliable probabilistic 

insights that facilitate the configuration of ambiguity set. An 

ambiguity set is a collection of distributions at a statistical 

distance from a reference distribution. It provides a margin for 

variation in scenario probability distributions. This approach 

seeks to balance the economic feasibility and model robustness 

by constructing ambiguity sets using distance metrics. E.g., 1-

norm and ∞-norm [31], χ2 distance [32], and Wasserstein 

distance [33]. To address the limitations of traditional 

uncertainty sets (e.g., box sets or Gaussian assumptions), the 

Wasserstein distance is employed to construct ambiguity sets. 

This approach captures distributional biases based on real-

world data, providing greater flexibility and robustness in 

dealing with uncertainty. Suppose there is a historical data set 

{β̂
(1)

, β̂
(2)

, ……β̂
(N)

}, where N represents the number of sample 

groups. The empirical distribution ̂N  constructed using the 

Dirac function is taken as an estimate of the true distribution . 
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where, δ
β̂

(l)  is the unit point mass at β̂
(l)

. Intuitively, ̂N 

converges to  as N→∞, i.e. the “distance” between ̂N and 

 becomes smaller when more data is available. One of the 

"distances" to establish the convergence of ̂N  to  is the 

Wasserstein metric defined as follows:  

                    ( ) ( ) 2 11 2 2 1 2W in, f ,d d   


= −   (7) 

where, ||⋅||1 denotes the norm, typically taken as the 1-norm. 

Therefore, we have W(̂N,)≤ε(N), where ε(⋅) is a monotonic 

function related to the sample size, decreasing to zero as N 

approaches infinity. Given a historical dataset with N samples, 

the true distribution  belongs to the following ambiguity set:  

                        ( ) ( ) ( ) W: , NN N =   (8) 

where, N is a Wasserstein ball centered at the empirical 

distribution ̂N  with a radius of ε(N), and (Ξ) denotes the 

space of all values supported by . The radius ε depends on the 

sample size (N) and the confidence level (1-ρε) [34]: 
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The auxiliary variable α can be found by solving (10) 

through the bisection search method, which in turn determines 

Dε and substitutes it into (9) to obtain the radius ε. 

Subsequently, constraint (5m) is reformulated into the DRCC 

form: 
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This expression can be further expressed in a compact form: 
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where, E(⋅) denotes the expectation calculation. However, 

solving such nonlinear constraints is challenging. This paper 

introduces auxiliary variables φ1, φ2 and sl to derive the 

conditional value-at-risk (CVaR) approximation for the above 

probabilistic constraints [35][36]: 
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The above process shows that the CVaR approximation 

converts the chance constraints into a set of linear constraints. 

Thus, a balance between computational efficiency and risk 

management is achieved [37][38]. 

IV. SOLUTION APPROACH 

The proposed TMCS leasing model is formulated as a bilevel 

programming problem where both levels include linear 

objective functions and constraints. The model is categorized as 

a MILP problem due to the presence of continuous and integer 

variables. Moreover, the complexity introduced by the DRCC 

structure makes it challenging to solve the problem with a 

unified optimization approach. To this end, a hybrid algorithm 

combining the genetic algorithm (GA) and nested column-and-

constraint generation (NC&CG) is employed [39]. 

The upper-level problem, in which the TMCO determines the 

number of TMCSs and the lease prices, is solved using GA. The 

method is suitable as it is robust and can efficiently search for 

globally near-optimal solutions in non-convex and complex 

spaces. For low-level problems, the master problem and 

subproblems can be solved iteratively due to the structured 

decomposition approach of NC&CG. This process involves 

progressively adding variables and constraints to the master 

problem to tighten the lower bounds of the original objective 

function. Compared with the traditional Benders decomposition 

method, NC&CG reduces the number of iterations and 

computational overhead, ensuring more efficient convergence. 

The proposed hybrid approach balances computational 



 

 

efficiency and solution quality, making it a practical choice for 

addressing the complexity of the TMCS leasing model. 

To facilitate explanation, the CFO model in subsection III.B. 

is converted into the following compact form: 
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The first constraint in (14) corresponds to constraints (5a)-

(5c) of the original problem. The second represents the 

constraints of (5d)-(5e), the third corresponds to (5f), (5i)-(5j), 

and the fourth includes (5g)-(5h) and (5n). The fifth constraint 

represents (5k), (5l), while the sixth denotes (5m), and the 

seventh indicates constraint (5o) in the original problem. 

Decomposition of (14) results in the following master 

problem (MP) and subproblem (SP): 
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where, * denotes the known quantities, while s1 and s2 represent 

the historical and current iteration counts of the outer loop, 

respectively; the auxiliary variable χ1 indicates the optimal 

value of the second-stage objective, and τ1, τ2, τ3 are dual 

variables associated with the relevant constraints. The outer 

C&CG algorithm is used to iteratively solve the MP, 

incorporating the scenario variable β to determine an upper 

bound Uout. The solution for the first-stage decision variable y 

is applied to the SP, which then provides a lower bound Lout. 

Feedback from the SP is used to update the MP, iteratively 

introducing new constraints and variables until the convergence 

criterion in (17) is met, resulting in an optimal solution. 

                               out out outU L L −   (17) 

where, ψ stands for convergence gap. The SP, classified as a 

two-level MILP, contains binary variables d1 that do not satisfy 

the KKT conditions. To address this, the SP is decomposed into 

the master problem subset (MPS) and the subproblem subset 

(SPS). 

The MPS reformulates the inner maximization objective into 

a single-level minimization problem, producing Lin. The SPS 

uses β obtained from the MPS to calculate Uin. Iterative updates 

involving d1 and the introduction of new constraints are 

performed until the inner loop converges (as outlined in (20)). 

Thus, Lin and Lout are connected and the final scenario is fed 

back to the MP. The solving procedures of the proposed TMCS 

leasing model are illustrated in Fig. 2. The iteration ends when 

the deviation of the operator utility function (i.e.,  T,  j) 

between two iterations is less than the convergence gap. 

 
Fig. 2 Flow chart of the proposed TMCS leasing model. 
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where, r1 and r2 denote the current and historical iteration 

counts of the inner loop; χ2 is an auxiliary variable representing 

the optimal value of the inner objective function; u is the 

partial derivative of the Lagrangian function with respect to d2
u; 

I0
u, I1

u, I2
u are binary variables introduced during the linearization 

of the KKT complementary relaxation conditions, and M is a 

large positive constant. 

V. CASE STUDY 

A. Test System 

A ring-form highway network from [12] serves as the test 

system, where nodes 1-5 are the entrances and exits as depicted 

in Fig. 3. Nodes 1, 2 and 4 lead to large cities, while nodes 3 

and 5 connect to smaller cities. The topology mirrors the current 

real-world application of TMCSs, with these mobile charging 

stations serving primarily as temporary supplements to FCS 

along the highway. The planning horizon is set as H for one day 

and T for one year. Considering that the start and end of TMCS 

service requires a certain preparation time, th is set as 1h [18]. 

The sample set is derived from the traffic statistics of the 

highway network in the Pearl River Delta region of China and 

the holiday schedule of 2023. The schedule divides the year into 

three typical days: weekdays, weekends, and holidays [40][41]. 

Eighteen FCSs along the highway belong to four independent 

CFOs, with locations indicated in Fig. 3. The tariffs are 

determined by typical time-of-use tariffs in China [42]. The 

population size of GA is set to 30 and the maximum number of 

iterations is 50. The mutation and crossover rates are chosen to 

be 0.2 and 0.6, respectively. Other parameters are provided in 
TABLE I. The experiments were performed on a computer with 

an Intel Core i5-13500H processor and 32 GB of RAM. The 

model is coded with the YALMIP toolbox in MATLAB 

environment and solved by Cplex 12.8.0. 

 
Fig. 3 The ring-form highway network and distribution of CFO operations. 

TABLE I 

PARAMETERS FOR SIMULATION 

Variable Value Unit Variable Value Unit 

ce
tmc 1.25 kwh/km Pch,ω

max  500 kW 

va 60 km/h Pdch,ω
max  300 kW 

λj
max

 6 ¥103/d r0
T 6 % 

Kb 120 mth ρε 0.1 / 

Ks 240 mth ρev 0.1 / 

cMDC 315 ¥/MWh ηch,ω 0.95 / 

qt 1000 kWh/d ηdch,ω 0.95 / 

cω
bt 1000 ¥/kWh the 23 / 

cω
bt,f

 600 ¥/kWh SOCmax 0.95 / 

cω
pl

 105 ¥/pile SOCmin 0.15 / 

cω
la 6*103 ¥/mth Nrc 1 / 

cω
tk 3.5*105 ¥ κ 1 / 

Three cases were considered to evaluate the effectiveness of 

the proposed approach: 

● Case 1: A self-owned operational model is adopted by 

CFOs [14]. 

● Case 2: A uniform pricing scheme is applied under the 

proposed TMCO leasing business model. 

● Case 3 (the model in this paper): A differentiated pricing 

scheme is applied under the proposed TMCO leasing 

business model. 

 In addition, during periods of no charging demand, TMCSs 

are assigned to participate in grid energy arbitrage for additional 

revenue, gained by CFOs in Case 1 and by TMCO in Cases 2 

and 3. 

B. Simulation Results and Comparison 

1) Simulation results 

Fig. 4 presents the economic indicators for CFOs and TMCO. 

In Fig. 4a, the capacity of each TMCS is 2MW, the TMCS 

rental prices are converted values based on the scheduling 

horizon, and "CFOs" refers to the total value across all CFOs. 

In Fig. 4b, "C" and "" denote the cost and profit during the 

planning period, respectively, and ROI stands for the return on 

investment. As shown in Fig. 4a, CFO2 and CFO4 mainly 

choose short-term leasing, CFO1 also has 67% of demand for 

short-term leasing, and only CFO3 chooses long-term leasing. 

This highlights that most CFOs require TMCSs mainly for 

short-term EV charging demand, leading to low utilization 

during the planning period. Under the current electricity market 

policy, the profit gained through grid energy arbitrage is limited. 

As a result, Case 1 is less economical with negative ROIs (Fig. 

4b), indicating that it is unprofitable for operators. 

 

 
Fig. 4 Economic indicators of each operator under different cases. (a) TMCS 

quantity and rental prices (b) Costs and profits 
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In contrast, the CFO costs for Cases 2 and 3 are significantly 

lower. TMCO optimizes TMCS fleet size by leveraging the 

short-term demand differences among CFOs, thereby 

improving profitability. Fig. 5 illustrates the charging demand 

and TMCS operation states at selected sites, where positive 

power in Fig. 5b, 5d indicates charging and negative power 

indicates discharging. CFO2 would need two TMCSs on typical 

day 1 and one on day 2 to meet the demand, while CFO4 

requires zero TMCS on typical day 1 and one on day 2. This 

suggests that TMCO would only need to configure two TMCSs 

to meet the above demand. In Case 2, the profitability of TMCO 

is constrained by low lease demand, particularly the long-term 

demand of CFO3 and the short-term demand of CFO4. 

However, in Case 3, TMCO takes advantage of the relatively 

high demand for leases from CFO1 and CFO2 to increase 

profits by raising lease prices. Compared to the traditional self-

owned model, the proposed model resulted in a 19.27% 

increase in the average ROI of CFOs with guaranteed QoS, and 

a considerable 9.56% profit for TMCO. 

It is indicated that the traditional self-owned model [14] is 

more suitable for CFOs with relatively stable charging demands 

(e.g., CFO3). This is because it eliminates recurring leasing 

costs and offers more predictable returns. However, this model 

requires significant upfront investment, making it less attractive 

to CFOs with limited financial capacity or variable demand 

profiles. In contrast, the proposed leasing model effectively 

addresses both long-term and short-term demands. CFOs 

benefit from reduced capital investment and operational risk 

while maintaining high QoS. TMCO optimizes TMCS 

utilization through resource sharing and differential pricing 

strategies, thereby improving profitability. In particular, the 

leasing model excels in managing short-term, fluctuating 

demand by ensuring flexibility and service continuity. 

Nevertheless, the adoption of differential pricing strategies may 

lead to imbalances, potentially driving some CFOs out of the 

market if lease prices are too high. Therefore, mechanisms such 

as fair pricing or market regulation are necessary to balance 

individual CFO interests and promote social welfare. 

    

  
Fig. 5 Charging demand and TMCSs operation states. (a) Charging demand 

on day 1 (b) TMCSs operation on day 1 (c) Charging demand on day 2 (d) 

TMCSs operation on day 2 

A key advantage of the leasing model is that TMCO is able 

to maximize the time-sharing reuse of TMCSs when short-term 

leasing needs are complementary (i.e., occur at different times). 

This approach reduces fleet size and investment costs, and its 

function is similar to time-sharing scheduling. By adapting to 

multiple short-term demands, the proposed model improves 

TMCS utilization to the benefit of both CFOs and TMCO. This 

dynamic change is critical to the viability of the TMCO leasing 

scheme. For instance, if there is no complementary short-term 

rental demand, the ROI of TMCO in Case 3 would fall to 3.72%. 

This would significantly reduce the economic viability of the 

leasing business model. This highlights the importance of 

complementary charging demand for TMCO and leads to a 

promising area for further research. 

2) Comparative analysis 

To validate the effectiveness of the proposed DRCC model, 

a comparative analysis was conducted using three alternative 

models. They are deterministic model (DM), stochastic 

optimization (SO), and robust optimization (RO) [43]. DM 

model does not account for uncertainties in charging demand. 

SO model assumes that the uncertainty of EV charging demand 

follows a Gaussian distribution. Its mean is determined by the 

historical charging demand with a standard deviation of 20% of 

the mean value. RO model employs a boxed uncertainty set that 

limit Pm
th  within an interval determined by a 20% prediction 

error relative to the average charging demand. The schematic 

representation of the three uncertainty methods is depicted in 

Fig. 6. The SO model adopts the sample average approximation 

method, while the RO model identifies the worst-case scenario 

within the uncertainty set of Pm
th . TABLE II summarizes the 

optimization results of these methods, where "avg. QoS rate" 

refers to the average percentage by which each CFO meets its 

charging needs. 

 
Fig. 6 Schematic visualization of each uncertainty model. 

DM model achieves the minimum number of leases as well 

as profit maximization for CFOs and TMCO under 

deterministic conditions. Nevertheless, it lacks robustness and 

struggles to maintain expected profits or service quality during 

demand fluctuations. Among the uncertainty models, the SO 

model is the most aggressive and achieves the highest CFO 

profits. However, its lower lease prices and higher TMCS 

quantity than DRCC result in lower TMCO profits. The 

effectiveness of SO model is highly dependent on the number 

and distribution of scenarios. While a larger, more realistic set 
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of scenarios can improve accuracy, it significantly increases 

computational expense, as shown in Fig. 7. RO model is the 

most conservative, focusing on worst-case realizations. This 

approach ensures the highest rental quantity and service quality 

but results in lower operator profits due to its high costs and 

ignoring probabilistic information. In some cases, the TMCO 

may experience negative profits, indicating infeasibility. 

TABLE II 

OPTIMIZATION RESULTS OF DIFFERENT MODELS 

Model 
Short-term 

lease quality 

Long-term 

lease quality 

Total 

quality 

Avg. short-term 

price (¥103) 

Avg. long-term 

price (¥103) 

Avg. ROI 

of CFO (%) 

ROI of 

TMCO (%) 

Avg. QoS 

rate (%) 

DM 4 3 6 4.3 3 10.62 13.06 68.12 

SO 5 4 8 4.7 2.9 8.95 6.91 78.05 

RO 7 4 10 5.1 3.3 2.31 -7.85 86.61 

DRCC 5 3 7 4.9 3.1 7.56 9.57 72.26 

 
Fig. 7 Solution time of different models. 

The proposed DRCC model strikes a balance between SO 

and RO. It adapts to data conditions by adjusting sample size 

and constructing uncertainty sets using the Wasserstein 

distance. By fine-tuning parameters like ε and ρev, DRCC 

ensures QoS, accommodates demand fluctuations, and 

maintains balanced profits for CFOs and TMCO. Fig. 8 

illustrates how the Wasserstein ball radius varies with sample 

size and confidence level. With fewer samples, the ambiguity 

set expands to account for distributional uncertainty, making 

DRCC behave similarly to RO model at high confidence levels 

(e.g., 0.99). As the sample size grows, the ambiguity set shrinks 

and DRCC performs closer to SO, which is optimized based on 

historical data to improve profitability. Overall, the DRCC 

model offers a flexible and efficient approach that balances 

cost, profit, and reliability. It outperforms SO and RO in terms 

of adaptability and computational efficiency, especially for 

large datasets. It achieves this while improving charging service 

quality and optimizing TMCS utilization. Future research could 

perform out-of-sample validation by testing different 

probability distributions and ambiguity set configurations. This 

will help to further understand the generalization ability of the 

model under different uncertainty conditions. 

 
Fig. 8 Relationship between N, ρε and ε. 

C. Discussions 

Key parameters such as ρev and ρε have a notable impact on 

both TMCO and CFOs decisions. As a long-term uncertainty 

factor in different planning cycles, the growth of the EV stock 

can further influence operator's strategies.  

Fig. 9a presents the impact of ρev on the optimization results 

of the leasing business model. Lower values of ρev (e.g., 

ρev=0.05) lead CFOs to increase short-term and long-term 

rentals to cope with higher uncertainty. This leads to higher 

TMCS allocation costs and lower TMCO ROI. Conversely, a 

higher value of ρev (e.g., ρev=0.2) drive CFOs to reduce their 

rental demands, allowing TMCO to reduce TMCS deployment. 

This increases the TMCO ROI at the expense of QoS, which 

drops to 62.81%. 

 
Fig. 9 Optimization results for different parameter values. (a) ρev (b) ρε 

Similarly, Fig. 9b reveals the role of ρε, which controls the 

size of the Wasserstein uncertainty set and thus affects leasing 

strategy and TMCS deployment. Lower values of ρε (e.g., 

ρε=0.02) result in CFOs increasing short-term leasing, which 

leads to higher TMCS deployment costs and lower TMCO ROI. 

As ρε increases (e.g., ρε=0.1), the leasing decisions stabilize, 

leading to higher TMCO and CFOs profitability. However, 

further increases in ρε (e.g., ρε=0.2) reduce the demand of CFOs 

and slightly increase their ROI, while decreasing TMCO 

profitability and QoS. These results highlight the trade-off 

between uncertainty managing, TMCS deployment costs, and 

service quality. And TMCO needs to optimize profitability 

while maintaining service quality and market viability. 

Fig. 10 illustrates the impact of long-term uncertainty on 

leasing demand for each planning year. In this case, the growth 

in EV charging demand is based on the 2017-2023 EV stock 

data provided in [1] and obtained by fitting the Pearl growth 

curve function. The number of TMCS increases significantly 

from 7 at κ=1 to 68 at κ=7, indicating that the model is able to 
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capture this type of uncertainty. Due to the effective balance 

between short-term and long-term leasing strategies and the 

efficient allocation of TMCSs, the TMCO ROI initially 

increases, peaking at 15.65% at κ=5. The ROI then declines 

slightly due to the continued increase in TMCS configuration 

costs, battery replacement costs, and O&M costs. Meanwhile, 

these results highlight the importance of long-term leasing and 

time-sharing reuse for TMCO profitability. While short-term 

leasing dominates in the early years, long-term leasing grows 

more rapidly as κ increases. In addition, time-sharing reuse of 

short-term rental demand plays an essential role in optimizing 

TMCS deployment and reducing additional costs. 

 
Fig. 10 Optimization results for different values of κ. 

It is worth noting that while electricity price fluctuations 

affect grid arbitrage profitability, the impact on overall 

optimization results remains limited. This is because grid 

arbitrage profits are generally lower than TMCS leasing 

revenues, making it less influential in TMCO’s strategic 

decisions. In addition, CFOs are required to maintain certain 

charging service rates to ensure that service levels remain 

relatively stable even if electricity prices fluctuate. Therefore, 

while electricity prices can affect arbitrage opportunities, they 

do not significantly change the leasing optimization results. 

VI. CONCLUSION 

This paper presents a bi-level optimization framework for 

TMCS leasing, where the TMCO acts as the leader responsible 

for equipment investment and operations. TMCO offers 

flexible long-term and short-term leasing options to CFOs and 

schedules TMCSs for grid energy arbitrage during idle periods 

to improve utilization and revenue. Case study results 

demonstrate that the proposed model effectively balances 

various demands. The uncertainty associated with charging 

demand is also taken into account, which reduces the decision-

making risk. CFOs mainly take short-term leases to meet the 

peak demand, while TMCO benefits from long-term leases, 

differential pricing strategies, and complementary short-term 

leases. Compared to the traditional self-owned model, the 

proposed model increases the average ROI of CFOs by 19.27% 

with assured QoS and generates a decent 9.56% profit for 

TMCO. The bilevel structure of the model ensures strategic 

interaction between TMCO and CFOs, optimizing leasing 

decisions and resource allocation. This framework provides a 

sustainable and economically viable solution for TMCS 

deployment, ensuring profitability and co-benefits for all 

parties involved. 

In addition, our model assumes homogeneous CFO behavior, 

i.e., all CFOs are presumed to react similarly to pricing and 

service conditions. The model also does not account for 

potential cooperative or competitive interactions among CFOs 

or scenarios involving multiple TMCOs. These assumptions 

simplify the model, but we recognize that they may not fully 

capture the complexity of real-world market dynamics. Future 

research should address these aspects to further optimize 

stakeholder outcomes and explore scalable hybrid algorithms. 

Examples include the development of hybrid algorithms that 

combine NC&CG with advanced decomposition techniques to 

improve computational performance. Parallelization strategies 

for GA will also be explored to leverage its inherent parallelism 

and reduce execution time. Furthermore, scalable meta-

heuristics that combine heuristic exploration with deterministic 

methods will be investigated to achieve faster convergence in 

larger problem instances. These improvements are intended to 

enhance the adaptability and scalability of the proposed 

methods for more extensive real-world applications. 
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