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Abstract 

Additive Manufacturing (AM), commonly known as 3D Printing (3DP), is a layer-by-

layer manufacturing technique for fabricating objects based on digital models. This 

technology is widely applied across industries due to its highly customisable and 

flexible design capabilities. The considerable energy consumption that potentially 

limits widespread applications is particularly important when seeking suitable and 

cost-effective manufacturing methods. Energy management and optimisation before 

or during the process are challenging due to the high demand for data analytics in the 

dynamic working environment in AM systems. Therefore, Deep Learning (DL) has 

increasingly been recognised by academia and enterprises to manage energy predictive 

modelling based on different design-relevant parameters of AM processes. Advanced 

data analytics and DL techniques are leveraged to develop more accurate and efficient 

models for predicting and optimising energy consumption in AM systems.  

 

However, traditional energy modelling in AM systems has significant limitations, 

particularly in handling large and complex datasets in these dynamic environments in 

AM systems and capturing valuable insights from non-linear relationships between 

energy consumption and various parameters. This has led to a worldwide recognition 

of the problems associated with establishing energy predictive models in AM systems. 

Design for Additive Manufacturing (DfAM) considers energy efficiency with its 

functionality and manufacturability, and integrating data-driven systems can optimise 

AM systems. The precise information required to optimise designs could be provided 

by energy consumption modelling. DfAM helps manufacturers consider energy 

efficiency at the design stage, leading to more economical and sustainable 

manufacturing by managing the energy consumption of various design options and 

optimisation support. DL provides an alternative to building the framework of energy 

management and optimisation support. Compared to conventional analytical 

approaches, Deep Neural Networks (DNNs) take significant advantages in handling 

different data, revealing and predicting complex patterns or insights in AM systems. 

Differently from other accelerating devices, Field-Programmable Gate Arrays (FPGAs) 

are often reprogrammable to perform new types of computing tasks. This is due to the 
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computing capabilities and flexibility, which allow them to work collaboratively with 

Central Processing Units (CPUs) in terms of training and inference. However, the 

complexity and memory requirements of predictive models pose challenges, failing to 

perform edge computing on FPGA platforms directly.  

 

This research is established based on a comprehensive framework for managing and 

optimising energy consumption and design-relevant parameters, integrating design-

relevant parameters with image data to optimise overall energy consumption. The 

framework is organised into three key topics, which consider a Selective Laser 

Sintering (SLS) system as the case study. Firstly, a data-driven approach using multi-

scale feature fusion techniques is proposed to predict energy consumption from 

different layer-wise image data, providing insights into the valuable energy 

consumption patterns. Secondly, to address the challenges of complexities of the 

model, Knowledge Distillation (KD) is employed, compressing a cumbersome teacher 

model to a lightweight student model, thereby deploying on the edge device. Finally, 

Particle Swarm Optimisation (PSO) utilises insights from the lightweight model to 

optimise design-relevant parameters, providing optimisation support for the case study. 

The framework offers a potential method to achieve an efficient design with optimal 

parameter combinations with adjustment of the energy consumption of different 

prototypes. The framework improves the accuracy of energy consumption predictions, 

facilitating more energy-efficient AM processes and sustainable manufacturing 

practices. 
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Chapter 1 Introduction 

 

1.1 Background 

Additive Manufacturing (AM), commonly known as 3D Printing (3DP), fabricates 

parts with complex geometries layer-by-layer directly from Computer-Aided Design  

(CAD) models (ISO/ASTM 2013). Figure 1.1 demonstrates a significant milestone in 

the development of prevailing AM technologies and systems. Early AM equipment 

using Laser Sintering (LS) and photopolymerisation technology emerged in the 1980s 

(Jiménez et al. 2019) and became popular in the early 2010s because of the emergence 

of low-cost and desktop 3D printers (Sotoodeh 2022). In the following decades, the 

emergence of AM has attracted the attention of academia and manufacturers due to its 

design freedom and flexibility. AM system embraces the development of modern 

machinery, material science, and software development, and is now accessible across 

various industries. In the context of Industry 4.0 (I4.0) framework, AM integrates 

technological and industrial development, such as the Internet of Things (IoT), big data 

and physical entities, including sensors (Prashar et al. 2023). The AM system could be 

applied in a range of commercial applications without expensive tooling including 

aerospace, medical equipment, and prototyping due to its high customisation and 

design freedom (Pérez et al. 2020). This technique would reduce design time, enhance 

and improve product quality, and lower the costs associated with repeated 

manufacturing (Horn and Harrysson 2012). 

 

 

Figure 1.1 Key milestones in AM process development. 
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A typical AM system consists of six procedures: (1) converting the 3D model to STL 

file format, (2) determining part orientation, (3) adding support structures, (4) 

generating sliced files for layer-by-layer fabrication, (5) fabrication, and (6) post-

processing to finish the printed objects (Wang and Alexander 2016). Compared to 

conventional manufacturing processes that rely on tooling and machining, AM has the 

potential to fabricate complex structural components that were previously constrained 

by conventional manufacturing (Watson and Taminger 2018). Furthermore, AM has 

shown its merits of customisation and relatively lower cost when manufacturing small 

batches of builds (Kellens et al. 2017). The diversity of AM technologies contributes 

to the selection of the most suitable approach according to parameter requirements and 

design specifications. Each AM technologies have unique characteristics and working 

principles, as shown below: 

 

⚫ Vat Photopolymerisation (VPP) techniques utilise lasers to cure liquid 

photopolymer resin into solid objects (Zhang et al. 2021). 

⚫ Material Jetting (MJT) techniques selectively deposit feedstock material 

(Gülcan et al. 2021). 

⚫ Binder Jetting (BJT) techniques selectively deposit a liquid bonding agent onto 

a powder bed to adhere to the material (Lores et al. 2019).  

⚫ Material Extrusion (MEX) processes extrude materials from the nozzle layer 

upon layer in the process (Braconnier et al. 2020).  

⚫ Power Bed Fusion (PBF) techniques utilise concentrated energy beams to fuse 

the region of the powder bed (Dev Singh et al. 2021).  

⚫ Sheet Lamination (SHL) manufacturing processes involve bonding sheets of 

materials to fabricate the final part (Lores et al. 2019).  

⚫ Direct Energy Deposition (DED) utilise thermal energy to melt and fuse 

deposited materials (Tang et al. 2020).  

 



3 

Due to the different working principles and materials used, modelling energy 

consumption patterns and relative optimisation support raises a significant concern in 

different AM technologies, which requires a more focused and smart solution in the 

production life cycle (Majeed et al. 2021). Energy optimisation and management has 

been a high active research area in the AM system with challenges of developing an 

energy consumption model (Yang et al. 2017), which could improve the long-term 

viability and production efficiency of a product lifecycle (Dunaway et al. 2017). 

Nowadays, researchers and manufacturers have increasingly focused on this aspect. 

AM has the potential to achieve higher production yields, resulting in an increasing 

amount of energy consumption (Freitas et al. 2016). Early incorporation of eco-design 

or Life Cycle Assessment (LCA) in the design and manufacturing process is essential 

to assist designers and operators in energy management, decision-making, and process 

optimisation (Kellens et al. 2017).  

 

1.2 Motivations 

Selective Laser Sintering (SLS) is a 3D printing technique that uses a high-power laser 

to sinter powdered material into solid objects, layer by layer, based on CAD models, 

which is widely used in aerospace, medical fields and prototypes at the early stage 

(Kellens et al. 2011). SLS is a typical AM technology in which the energy is used to 

power high-intensity lasers, heating systems, and complex mechanical movements 

(Yehia et al. 2024). SLS machines consume significant energy, which is a major barrier 

to their widespread adoption and large-scale production (Hu et al. 2023). Advanced 

data analytics for managing energy consumption is crucial for AM systems, which can 

uncover insights into energy usage (Liu et al. 2018b). Data are collected from different 

sources such as the working environment, design specifications, process parameters 

and materials (Qin et al. 2018). In such a complex and dynamic scenario in AM 

systems, traditional energy modelling approaches are inadequate for capturing and 

connecting the complex relationships between various impact factors (e.g., layer-wise 

images and design-relevant parameters) and energy consumption. Existing studies 

regarding SLS systems have focused on impact parameters related to energy 

consumption prediction (Baumers et al. 2011; Paul and Anand 2012; Baumers et al. 
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2013; Liu et al. 2018b; Peng et al. 2018; Watson and Taminger 2018), while part 

geometry of layer-wise images of printed prototypes has not been sufficiently 

considered as a critical impact factor to energy consumption. There are three 

motivations below: 

 

Advanced models for complex systems 

DL has the ability to deal with complex nonlinear relationships between impact factors, 

improving the accuracy of energy consumption modelling (Qin et al. 2022). DL is a 

data-driven approach that requires substantial data with higher dimensions to train 

models (LeCun 2019), while there will be a large amount of data generated during the 

SLS production process, offering a sufficient basis for the training of DL models. In 

the case study, layer-wise images from the sliced CAD model are utilised as the input, 

and the image features would have the potential to affect the level of energy usage. To 

develop an image-based model, more advanced data-driven modelling is required by 

using multi-scale feature fusion approaches. By analysing and extracting image data, 

advanced analytics can uncover valuable insights from the correlation between specific 

layer-wise images, design-relevant information, and energy consumption. The energy 

prediction model is employed, with multi-scale feature fusion to focus on part design 

details, thoroughly considering detailed patterns and geometrical information for a 

more precise analysis of energy consumption. 

 

Lightweight models for FPGA deployment 

Energy consumption patterns may vary over time, and SLS machines could be 

equipped with real-time data acquisition and prediction platforms. This platform can 

be performed and deployed on the edge, providing real-time data input to the energy 

prediction models thereby enabling dynamic adjustment and optimisation support for 

energy consumption and design-relevant parameters. Due to parallel processing 

capability and low power consumption, edge computing platforms such as FPGAs play 

a vital role in accelerating model inference (Biookaghazadeh et al. 2018). Besides, 

FPGAs can be customised based on specific tasks (i.e., energy consumption prediction 

and feature fusion) in SLS systems due to their hardware programmability. However, 
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the limited resources on FPGAs prevent deep models from direct deployment and 

acceleration. To enable efficient predictive modelling on the FPGA platform, 

lightweight models are developed using model compression techniques such as 

Knowledge Distillation (KD) (Hinton et al. 2015). This technique allows lightweight 

networks to learn from cumbersome networks, which manage the complexity of AM 

data with minimal computational resources (Wang et al. 2024a).  

 

Bridging design parameters and energy efficiency 

Particle Swarm Optimisation (PSO) is crucial for optimising a series of design-relevant 

parameters and energy consumption in AM scenarios. In the case study, this 

optimisation approach will identify design-relevant parameters corresponding to 

optimal energy consumption. The lightweight model can process image data and 

provide features and predicted energy, which are integrated with design-relevant 

parameters. Subsequently, an optimisation algorithm will be employed to minimise the 

build energy consumption based on the combination of the optimal design-relevant 

parameters. This framework will provide valuable insights for adjusting AM processes 

by managing and analysing energy consumption to enhance overall sustainability in 

AM processes. 

 

1.3 Research Questions and Objectives 

The research questions are demonstrated in the following: 

1. What lightweight Deep Learning architectures and model compression 

techniques can be developed to effectively analyse layer-wise image data for 

energy consumption prediction in SLS when deployed on FPGA platforms? 
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2. How can the inherent parallel processing and reconfigurability of FPGAs be 

exploited to enhance the performance and energy efficiency of lightweight 

neural networks for predictive modelling in AM? 

 

3. What are the essential steps and design considerations for integrating an FPGA-

based monitoring system for real-time energy consumption analysis in AM, and 

how does this system enable dynamic optimisation support of energy usage? 

 

To address these research questions, the following objectives will be conducted: 

 

1. To develop and validate a multi-scale feature fusion model to improve the 

accuracy and efficiency of a specific AM process using layer-wise image data 

derived from CAD models. Under the teacher-student architecture by using 

Knowledge Distillation (KD) strategies, this model serves as the teacher model 

which will capture and integrate features at different scales, focusing on image 

features that could affect the energy consumption of each layer. 

 

2. To investigate and implement the KD strategy to develop a lightweight energy 

prediction model replacing the feature fusion model to predict energy 

consumption in an SLS system. This lightweight model is regarded as the 

student model. This lightweight model will maintain high predictive 

performance while reducing computational resources, making it suitable for 

deployment on resource-constrained devices. 

 

 

3. To deploy the lightweight model on FPGAs to accelerate image data processing 

of the student model and provide the features and predictions of energy. Before 
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deployment, the parameters of the lightweight model are further quantised to 

accommodate the resources available on the FPGA. This deployment will 

facilitate faster feature extraction. This aims to achieve a nearly real-time 

environment when predicting energy consumption on the edge device.  

 

4. To leverage the PC-FPGA collaboration, the PC is equipped with the targeted 

FPGA platform for accelerating the inference of the lightweight model. After 

that, the optimisation algorithm determines the optimal design-relevant 

parameters, followed by minimising energy consumption in builds. This will 

help in decision-making during the design and manufacturing phases by 

offering recommendations and optimisation support. 

 

Details of these objectives and research are demonstrated in Chapters 3, 4, 5, and 6. 

 

1.4 Thesis Outline 

The thesis is organised into seven chapters and the outline is listed below: 

 

Chapter 1 introduces an overview of the research background, motivations, research 

questions, objectives, and contributions of the research work.  

 

Chapter 2 reviews the current studies on different AM processes, energy consumption 

analytics and advanced data analytics techniques. The chapter summarises AM and 

discusses the seven prevailing processes with a particular focus on Selective Laser 

Sintering (SLS). The chapter subsequently examines the types of data used in AM, 

current constraints and energy consumption analytics. Furthermore, the chapter 

introduces DL-based and advanced data-driven approaches, followed by a focus on 
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Knowledge Distillation (KD) techniques. Finally, this chapter reviews the background 

and application of FPGAs in smart manufacturing.  

 

Chapter 3 presents a predictive modelling framework aimed at optimising energy 

consumption in an SLS system, incorporating multi-scale feature fusion, model 

compression, lightweight model deployment, parameter optimisation and decision 

support. 

 

Chapter 4 describes the preliminary contributions offering the theoretical foundations 

of the whole research, which involves developing a predictive model for predicting 

energy consumption based on layer-wise images. In detail, this part of the research 

focuses on an ensemble model serving as the teacher model under the scheme of 

teacher-student architecture, followed by exploiting a teacher-assistant model at the 

intermediate position in conventional teacher-student architecture to mitigate the gap 

in the learning capacity of the student model. In addition, this chapter provides primary 

insights into feature extraction for images by using the ensemble technique and the 

KD technique for lightweight modelling. 

 

Chapter 5 targets to mitigate the limitations of ensemble learning on layer-wise 

images by employing a multi-scale feature fusion model as the teacher model. By using 

KD, the student model is deployed on the targeted FPGA platform, where the 

architecture of the student model must be redesigned to accommodate the resource 

availability on the targeted FPGA platform. This chapter highlights the multi-scale 

feature fusion technique for image data and employs a different KD strategy to train 

the student model.  Besides, the FPGA-based implementation is validated to identify 

the effectiveness of the purposed methodology. 
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Chapter 6 extends and integrates the previous research outcomes to a more 

comprehensive data-driven approach utilising multi-scale feature fusion and 

acceleration with the targeted FPGA platform. The output features and predictions can 

support design-relevant parameters for optimisation. By using Particle Swarm 

Optimisation (PSO), the optimised combinations of those parameters help in 

minimising the energy consumption of the selected build. This chapter focuses on the 

optimisation of different parameter combinations and the minimal energy consumption 

of the build, providing guidance and decision support for part designers and process 

operators.  

 

Chapter 7 concludes the thesis and presents the achievements of the research. It also 

discusses the limitations of the research and suggests directions for future work.  

 

1.5 Research Contributions 

This thesis makes several significant contributions to the broader body of knowledge, 

particularly in the development of advanced energy prediction models, and the 

framework of energy consumption predictions and optimisation support in SLS. Each 

contribution corresponds to the subsequent chapters 3 to 6. 

 

1. The research developed a comprehensive framework for energy management and 

optimisation support in a targeted SLS system. The technical framework is 

illustrated for energy predictive modelling at the I4.0 level by leveraging an 

advanced data-driven approach to integrate insights from image-based data, 

energy-relevant data and design-relevant data.  

 

2. An accurate energy consumption prediction contributes to energy management in 

SLS. At the beginning of the framework, the research involves developing a data-
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driven approach to integrating layer-wise images derived from CAD models and 

unit energy consumption measured by a power meter. The multi-scale feature 

fusion model, U-Net, is utilised with an attention mechanism to achieve an accurate 

prediction of energy usage. This is the preliminary stage before deployment and 

this model serves as the teacher model in the KD process. 

 

3. KD strategy allows for the development of a lightweight model based on the 

knowledge of a complex model rather than designing a new network architecture. 

The teacher model is associated with a multi-scale feature fusion model, while the 

student model is the lightweight model, thus maintaining effectiveness and 

performance. To bridge the performance gap between different models, KD 

techniques such as logit-based, feature-based and dual strategy are employed. By 

leveraging KD, a lightweight model is obtained and subsequently deployed and 

accelerated on resource-limited FPGA platforms. Such implementation and PC-

FPGA collaboration contribute to edge computing for nearly real-time inference 

on the lightweight energy prediction model. 

 

4. The proposed framework leverages the collaboration of the data-driven approach 

and the FPGA to process different data and analyse energy consumption. Particle 

Swarm Optimisation (PSO) is employed to optimise the combination of design-

relevant parameters, minimising the energy consumption based on the predicted 

energy consumption and features obtained from the FPGA and lightweight student 

model. Optimised parameter combinations and minimised energy consumption 

provide recommendations for part designers and process operators. The framework 

supports informed decision-making and enhances the energy management and 

operational efficiency of the targeted AM system. Furthermore, this framework 

could be applied to monitor the in-situ behaviour of printed objects in the future. 
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Chapter 2 Related Works 

 

2.1 Introduction 

This chapter provides an overview of Additive Manufacturing (AM) technologies, 

including seven promising technologies in Section 2.2. In Section 2.3, the overview of 

Selective Laser Sintering (SLS) as one of the Powder Bed Fusion (PBF) technologies 

will be emphasised, as it is used as the case study throughout the entire research route. 

This will be followed by a discussion on the types of data within the AM system and 

the current constraints in AM.  In Section 2.3, energy consumption and sustainability 

in different AM systems will be discussed, including reviews of different analytical 

approaches to energy consumption, Machine Learning (ML)-based prediction models 

and predictive modelling for optimisation in AM systems. Section 2.4 will discuss 

Deep Learning (DL) and advanced data analytics in AM, including current DL 

algorithms and recent advances in AM. In Section 2.5, model compression techniques, 

especially the Knowledge Distillation (KD) technique including its background and 

different distillation strategies will be described. In Section 2.6, a background of 

FPGAs and their applications in smart manufacturing will be demonstrated. 

 

2.2 An Overview of AM Systems 

AM, as a promising manufacturing practice, has contributed to the advancement of the 

Industry 4.0 (I4.0) environment (Haleem and Javaid 2019). An increasing diversity of 

customer demands results in complex situations when developing products in a 

customised manner. This trend has led to the collection and analysis of data to make 

intelligent decisions regarding automation (Ahuett-Garza and Kurfess 2018). In I4.0, 

physical entities such as machines and workpieces are combined in embedded systems 

that collect data, followed by the connection with the network (Thoben et al. 2017).  
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In this section, seven prevailing AM technologies are introduced in Section 2.2.1. 

Section 2.2.2 describes the details of SLS. Subsequently, the data generation and 

acquisition process are described in Section 2.2.3. Finally, the current constraints and 

quality considerations of AM systems will be discussed.  

 

2.2.1 Prevailing Technologies in AM 

According to Figure 2.1, AM falls into three main types based on the physical state of 

the material used during the manufacturing process including liquid-based systems, 

solid-based systems, and powder-based systems. In more detail, this can be further 

categorised into seven mainstream AM technologies: Vat Photopolymerisation (VPP), 

Material Jetting (MJ), Binder Jetting (BJ), Material Extrusion (MEX), Powder Bed 

Fusion (PBF), Sheet Lamination (SHL) and Directed Energy Deposition (DED). Table 

2.1 summarises an overview of AM technologies and their characteristics in terms of 

categories, working principles, processes, material used, advantages and 

disadvantages.
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Figure 2.1 Mainstream AM technology categories. 
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Table 2.1 Overview of AM technologies. 

Names of AM Working Principle 
Relevant 

Technologies 
Materials Advantages Disadvantages References 

Vat Photopolymerisation 

(VPP) 

 

Photo-polymerisation 

and curing 
SLA Photopolymers 

⚫ High 

precision 

⚫ Good surface 

quality 

⚫ Fast 

prototyping 

⚫ Material 

limitations 

⚫ Complex post-

processing 

⚫ Size constraint 

(Pagac et al. 

2021) 

(Davoudinejad 

2021) 

(Al Rashid et 

al. 2021) 

Material Jetting (MJT) 

 

A process associated 

with droplets of 

feedstock selectively 

deposited and 

successive layers 

cured. 

Drop on-

demand and 

nano-particle 

jetting. 

Photopolymers, 

metals, wax 

⚫ High 

resolution 

⚫ Multi-

material 

capability 

⚫ Superior 

surface finish 

⚫ High material 

costs 

⚫ Slow printing 

speed 

⚫ Support 

structure issue 

(Sturm et al. 

2019) 

(Yap et al. 

2017) 

(Elkaseer et al. 

2022) 

Binder Jetting (BJT) 

 

A process selectively 

sprays liquid binder to 

bond powder materials 

Inkjet 3D 

printing 
Metal, ceramics 

⚫ Board 

material 

applicability 

⚫ High 

production 

efficiency 

⚫ High 

dimension 

accuracy 

⚫ Complex post-

processing 

⚫ Material waste 

⚫ Lower 

strength 

(Mostafaei et 

al. 2021) 

(Lores et al. 

2019) 

(Lv et al. 2019) 

Material Extrusion (MEX) 
Heated polymer is 

extruded through a 

nozzle in filament 

form, which is then 

FDM 

Thermoplastics 

like PLA and 

ABS 

⚫ Diverse 

material 

options 

⚫ Lower 

precision 

⚫ Size 

limitations 

(Huang et al. 

2020) 
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Names of AM Working Principle 
Relevant 

Technologies 
Materials Advantages Disadvantages References 

 

deposited layer-by-

layer onto a platform to 

create the 3D product. 

⚫ Low 

equipment 

cost 

⚫ Easy 

operation 

⚫ Material 

Limitations 

(Chaunier et al. 

2018) 

(Goh et al. 

2020) 

Powder Bed Fusion (PBF) 

 
It is selectively fusing 

material by using laser 

beams or electron 

beams on the powder 

bed that can move 

upward and downward 

in the working area. 

SLS Thermoplastics 

⚫ Wide material 

applicability 

⚫ No support 

structure 

needed 

⚫ High 

production 

efficiency 

⚫ Cost-effective 

⚫ Part shrinkage 

⚫ Average 

surface quality 

⚫ Material waste 
(Dev Singh et 

al. 2021) 

(Singh et al. 

2020) 

(Vock et al. 

2019) 

(Sun et al. 

2021) 

 

SLM 

Titanium, 

stainless steel, 

aluminium 

⚫ High 

precision 

⚫ High material 

utilisation 

⚫ Can fabricate 

the complex 

structure 

⚫ Superior part 

performance 

⚫ Low forming 

speed 

⚫ High 

equipment 

cost 

⚫ Needs post-

processing 

⚫ Support 

structure 

needs 
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Names of AM Working Principle 
Relevant 

Technologies 
Materials Advantages Disadvantages References 

 

EBM 

Most metal 

alloys (inc. 

titanium) 

⚫ High energy 

density 

⚫ Material 

strength 

⚫ Reduced 

residual stress 

⚫ High printing 

efficiency 

⚫ Not suitable 

for small holes 

and gaps 

⚫ High 

equipment 

costs and 

complex 

maintenance 

⚫ Limited 

printing size 

Sheet Lamination (SHL) 

 

The process joints 

sheets of material to 

form a part 

Laminated 

object 

manufacturing 

Paper, metal 

foils, polymer 

film 

⚫ Low cost 

⚫ Diverse 

material 

options 

⚫ Simple 

operation 

⚫ Lower 

strength 

⚫ Limited 

precision 

⚫ Material 

limitations 

(Park et al. 

2000) 

(Obikawa et al. 

1999) 

(Bisht and 

Awasthi 2020) 

Directed Energy Deposition 

(DED) 

 

A process exploits 

concentrated energy 

sources (laser, electron 

beam, or plasma arc) to 

melt the material being 

deposited. 

WAAM 
Aluminium 

alloys and steel 

⚫ Board 

material 

applicability 

⚫ High 

deposition 

efficiency 

⚫ Repair and 

modification 

capabilities 

⚫ High 

equipment 

cost 

⚫ Lower 

precision 

⚫ Large heat-

affected zone 

(Ahn 2021) 

(Gibson et al. 

2021) 

(Liu et al. 

2021b) 

(Tang et al. 

2020) 
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2.2.2 SLS Technology 

Selective Laser Sintering (SLS) is a process that utilises a laser to create layers of 

melted material. As shown in Figure 2.2, the powder is spread over the upper surface 

of the parts and heated to a temperature just below the sintering point by a powder 

roller. Once the powder reaches its melting point, a laser scanning system scans its 

cross-sectional contours (Sing et al. 2017). Subsequently, the powder is sintered and 

bonded to the lower layers. Afterwards, the print plate is lowered by a layer thickness 

and a layer of uniform and dense powder is applied to it by a roller (Frazier 2014). 

This sintering and powder distribution cycle is repeated until the entire build is 

completed (Ma et al. 2021). Nevertheless, when metal materials are combined with 

low melting point metals or polymers, different melting points can lead to porosity and 

poor mechanical properties, as the low melting point material melts during processing 

while the high melting point powder remains unaffected (Zhang et al. 2018a).  

 

Despite these challenges, SLS has its merits in several aspects. Firstly, the wide range 

of materials can be utilised as the feedstock based on the product requirements. These 

materials include polymer, metals, ceramics, and sand. Moreover, high material 

utilisation is considered, and unused powder can be recycled for use in subsequent 

printing cycles (Paul and Anand 2012). In the SLS processes, the un-sintered powder 

serves as the support structure, thus eliminating the need for additional materials (Han 

et al. 2022). The mechanical properties of finished metal products are similar to those 

of conventionally manufactured metal products, which can be used for the fabrication 

of metal moulds and small-batch prototypes (Sing et al. 2017). However, the surface 

of SLS parts may be rough and require extra post-processing, which presents a 

challenge (Kumar 2003). Additionally, deformation can be observed when forming 

large-sized and high-performance metal and ceramic parts (Ma et al. 2018).  
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Figure 2.2 SLS system working principle. 

 

2.2.3 Data Generation and Acquisition in AM Systems 

AM has been recognised as a highly complex, integrated, and flexible system, 

including six critical stages during manufacturing, which are 1) conversion, 2) 

positioning and orientation, 3) adding support structure, 4) slicing, 5) building, 

and 6) post-processing (Ahuett-Garza and Kurfess 2018).  

 

The conversion stage often involves transforming a Computer-Aided Design (CAD) 

model into a compatible file format to the 3D printers, which preserves the geometric 

information. This conversion is essential for the subsequent stages of the process. Due 

to its inherent simplicity, the STL format reduces the complex geometric information 

into a series of triangular facets, facilitating comprehension by design software and 

simplifying the data for 3D printing (Qin et al. 2019).  

 

Positioning and orienting the prototypes is essential to placing and adjusting the 

converted models in the appropriate positions in the building envelope of an AM 

machine. This procedure contributes to the enhanced building efficiency and ensures 
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the mechanical integrity and surface finish of the prototypes (Wang and Alexander 

2016). 

 

Suspended components or features often need additional structures to support during 

the manufacturing process. On the other hand, the usage of support structures should 

be removed in the post-processing stage. This creation of support structures requires 

extended time and additional costs (Vaneker et al. 2020). Therefore, this step needs to 

be balanced when considering structural necessity and post-processing efficiency. 

 

The slicing process converts a 3D model into a set of 2D contours. The process can 

print the products with these contours by following the generation of G-codes. G-codes 

can accurately guide and execute the manufacturing process of each layer for the 3D 

printers by determining process parameters such as layer thickness, print speed, and 

thermal settings (Zhang et al. 2023a).  

 

Fabrication follows the G-codes and leverages different techniques such as deposition, 

solidification or fusion of materials, according to the specific machines and tasks 

(Dunaway et al. 2017). After prototypes are fabricated, manual intervention of post-

processing is conducted to refine the prototypes. This is associated with the removal 

of support structures, finishing and curing (Bahnini et al. 2018). 

 

In those procedures of producing builds, a variety of data is generated and utilised from 

the conceptual design to realisation (Chinchanikar and Shaikh 2022). Data are 

important to each stage, such as design-relevant data derived from CAD file models, 

STL files, geometry specifications, material attributes, process parameters and support 

structure (Mies et al. 2016). For instance, machine parameters such as power rate and 

thermal settings are critical for process control during the printing process (Wang et al. 

2022b). These data can significantly influence the printing performance. On the other 
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hand, monitoring data from camera surveillance and inspection, provide critical 

information and insight for detecting distortion. This is helpful for quality control and 

identifying problems before printing (Zhang et al. 2023a). AM processes can benefit 

from continuous improvement in terms of AM processes by acquiring and analysing 

those data. 

 

Overall, data from different sources such as working environment, machine settings, 

process operations, design specifications and material attributes play a vital role in 

analysing and optimising AM systems. The following section reviews the limitations 

and quality considerations of current AM processes to understand the challenges and 

opportunities in AM. 

 

2.2.4 Challenges and Quality Considerations in AM 

Growing demand for customers contributes to the recent advance in AM processes. 

These are driven by functional integration, design freedom and customisation (Fulga 

et al. 2017). By overviewing the development of AM systems, technologies, from 

resin-based processes such as SLA to more integrating techniques such as SLS and 

SLM, have broadened. Some critical technologies in energy sources such as lasers and 

electron beams are continuously optimised. The current AM machines have excelled 

at fabricating prototypes with more complex structures with enhanced precision 

(Thompson et al. 2016). AM refers to a more efficient production process in industries, 

but it cannot be employed in large-scale production. The reasons are: 

 

⚫ The Efficiency of the Production Mode 

The fixed workflow of AM consists of digital and physical processes, which convert 

conceptual designs to end products. A digital workflow incorporates operations such 

as data conversion, error checking, and slicing, providing instructions from a digital 

data stream. A physical workflow converts raw materials to final parts (Thompson et 
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al. 2016). Current 3D printers are not designed to endure long-term, high-intensity 

production loads (Pereira et al. 2019). The maintenance costs and complexity for a 

single 3D printer are significantly higher compared to traditional manufacturing 

processes (Kaikai et al. 2023).   

 

⚫ Material  

In the AM process, powder materials should be prepared in advance. In some instances, 

the mechanical properties of AM-produced parts are comparatively lower than those 

achieved through machining (Fulga et al. 2017). While titanium alloy components 

used in the aviation industry can meet mechanical property requirements, the overall 

performance of AM-produced parts remains questionable (Akilan and Velmurugan 

2022). AM methods for metallic components, such as SLS and SLM, often result in 

poor surface quality and necessitate post-processing steps such as grinding and 

polishing (Srivastava et al. 2024). For 3D-printed parts with complex curved surfaces, 

removing support materials can be challenging and may risk damaging the final 

product. 

 

⚫ Costs 

Maintaining a single-machine operation under high workloads over the long term 

significantly increases the cost of large-scale production. The cost is also tied to the 

feedstocks used, which may not be cost-effective for highly customised production 

(Kanishka and Acherjee 2023). 

  

Other constraints include  1) CAD and digitalisation (Hague et al. 2003), 2) support 

structures and build orientation (Leary et al. 2014), 3) process characteristics and 

machine capabilities, 4) metrology and quality control (Albakri et al. 2017), 5) 

through-life maintenance, repair and recycling (Campbell et al. 2013), and 6) external 

and regulatory constraints (Thompson et al. 2016).  
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Design for Additive Manufacturing (DfAM)  can mitigate the negative impact of 

additively manufactured products, regulating and standardising the industry (Vaneker 

et al. 2020). It leverages various design approaches and tools to optimise functional 

performance and critical factors in the product lifecycle (Chinchanikar and Shaikh 

2022). The term DfAM now refers to three levels: 1) tools, techniques, and guidelines, 

2) understanding and assessing the impact of the design process on manufacturing 

performance, and 3) the relevance of design and manufacturing and its impact on 

designers, the design process and practice (Tang and Zhao 2016). In addition to the 

considerations mentioned in this section, sustainability raises another concern that is 

gaining the attention of academia and manufacturers. The next section illustrates 

various studies examining energy consumption and analytical methodologies in terms 

of impact factors of energy consumption and advanced data-driven modelling on 

energy. A multitude of optimisation and predictive modelling techniques have been 

reviewed.  

 

2.3 Energy Consumption Analysis and Approaches in AM 

The research focus on energy consumption prediction in AM has changed over time. 

It presents the development of technologies, environmental awareness, and the 

demand for sustainability practices. In the following section, a review of energy 

consumption analysis and approaches is demonstrated.  

  

2.3.1 Early Recognition of Sustainability in AM 

Sustainability in AM was recognised relatively later than other conventional 

manufacturing approaches. According to the literature, early studies have concentrated 

on understanding of environmental impact of AM systems. The analysis of energy 

consumption has been a highly active area of research in AM. Predictive modelling in 

AM is essential for understanding and improving energy consumption efficiency. 

These methodologies have utilised statistical analyses to examine the relationship 



23 

between various parameters and energy usage. For instance, Paul and Anand 

discovered that the correlation between the energy used in SLS and the total area 

sintered was determined by the thickness of the layer and the part orientation. 

According to their findings, the geometry of the part orientation affected the input 

energy, whereas the layer thickness was inversely proportional to the required energy 

(Paul and Anand 2012). A comparative analysis was carried out by Baumers et al. 

(2011) in terms of two laser-based systems by monitoring energy consumption to 

provide reliable data categorisation. Their research showed that material and process 

parameters, as well as geometry-related properties, influenced energy consumption. A 

further investigation on the influence of various factors on post-processing, such as the 

working environment, control parameters, part geometry, and machine settings, was 

conducted (Baumers et al. 2011). 

 

Analytical research can be conducted early in the design and manufacturing process to 

facilitate environmentally friendly production (Niaki et al. 2019). For instance, Peng 

et al. (2018) discussed the sustainability of AM from a life cycle perspective and 

suggested focusing on the AM process and system (Peng et al. 2018). A study on 

different impact factors corresponding to energy consumption was identified in terms 

of four main data sources including working environment, design parameters, 

operations, and material attributes (Qin et al. 2018). In addition, Yang et al. (2017) 

extended the study to other different AM systems, which determined the impact of 

different manufacturing processes and energy consumption. On the other hand, the 

changing control parameters lead to a challenge due to different AM subprocesses 

(Yang et al. 2017). With ML-based approaches, energy prediction could be conducted 

to model the overall energy trend by identifying patterns in data, which is essential to 

optimise the process. Some authors have considered the data-driven approaches related 

to utilising ML.  

 

2.3.2 Initial Energy Consumption Studies  
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Relevant research has switched to address AM energy consumption and its 

environmental influence more directly, which is associated with developing basic 

modelling and focusing on specific aspects of the manufacturing process. Some 

predictive models were employed to quantify the energy consumption usage according 

to the process parameters and stages of the printing processes. Yi et al. (2019) 

presented a simulation-based approach to model energy consumption in an SLM 

system. They also developed a five-phase analytical approach to examine energy 

consumption in the design phase, using a lattice ring fabrication as the case study  (Yi 

et al. 2019). The exploration by Liu et al. (2018) broadened the research area in 

different systems in EBM and SLM, by considering the energy use of AM machine 

tools at both machine and process levels. They stressed high-energy beam generators, 

control systems, and cooling systems for AM machine tools, leading to a high 

influence on energy consumption (Liu et al. 2018b). In another PBF-based system, Ma 

et al. (2018) bridged the correlation between sintering parameters, energy consumption 

and material costs. According to their analysis, a non-dominated sorting genetic 

algorithm was employed to conduct a multi-objective optimisation on three variables 

including scanning speed, layer thickness and gap distance (Ma et al. 2018). In addition, 

Yan et al. (2022) leveraged a mathematical model to predict energy consumption. 

Some impact factors such as power, time and operating status are considered. Based 

on their finding, it demonstrated higher precision in terms of prediction, compared to 

energy-specific and process-based energy consumption models (Yan et al. 2022). 

According to a study on energy consumption modelling across FDM processes,  Ma et 

al. (2021) utilised a mathematical model and analysed energy distribution profiles to 

construct the correlation between energy efficiency and performance enhancement 

(Ma et al. 2021). Dunaway et al. (2017) indicated that the surface area can affect the 

energy consumption in the FDM process (Dunaway et al. 2017). Tian et al. (2019) 

further revealed the quantitative relationship between energy consumption, part 

geometry and design parameters, by demonstrating a comprehensive framework 

within the FDM process (Tian et al. 2019a).  

 

2.3.3 Energy Consumption Analysis and ML Integration in AM  
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Advanced techniques such as ML have started to be applied to predict energy 

consumption more precisely, aiming to capture and bridge complex relationships 

between process parameters and energy usage. Gutierrez-Osorio et al. (2019) 

conducted a comparative analysis of in-process predicted energy consumption based 

on part geometry (Gutierrez-Osorio et al. 2019). Yang et al. (2020) demonstrated 

energy consumption in an SLA process, using mathematical modelling and DL 

techniques (Yang et al. 2020a). Researchers such as Li et al. (2021) employed ML 

techniques to enhance the colour and quality of the deposited surfaces in a single-track 

titanium DED process. The researchers examined several process parameters, 

including laser power and scanning speed. In addition to these studies, there is a 

demand for more generic AM models that could be applied to a range of AM 

technologies. However, the trade-off between model complexity and practical usability 

remains to be explored. Model complexity might pose a challenge when computational 

resources are limited. It means that simpler models would be more appropriate for 

industrial environments but not capture the full range of variables that affect energy 

consumption.  

 

Owing to advanced DL in AM, energy efficiency can be enhanced through dynamic 

adjustment of process parameters swiftly and accurately. The non-linear relationship 

between various parameters and energy consumption increases the complexity of data 

analytics and modelling (Fu et al. 2022). DL models are suitable for capturing and 

revealing non-linear relationships more effectively. Additionally, it is worth noting that 

the dynamic working environment of AM systems is driven by operational and process 

parameters, significantly influencing energy consumption (Thompson et al. 2016). The 

next section will focus on DL-based approaches in energy consumption predictive 

modelling. 

 

2.3.4 Advanced Prediction Models and Holistic Energy Optimisation 

in AM  
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⚫ DL Applications in AM Energy Consumption Predictive Modelling 

More recent studies have focused on more complex and robust DL models to predict 

energy consumption, where DL can uncover hidden patterns and insights from data 

and energy usage. It allows the AM to adjust and correct processes in real-time 

scenarios, which could optimise designs and overall processes (Rai et al. 2021). In the 

field of robotic AM, Ghungrad and Haghighi (2024) introduced a multi-point 

trajectory-based energy consumption model. They developed two alternative models 

for real-time energy consumption prediction: a purely data-driven model and a 

kinematic-based data-driven model. These models improved prediction accuracy by 

learning inverse kinematic solutions on trajectories and showcased their potential in 

real-time applications in practical case studies (Ghungrad and Haghighi 2024). Wang 

et al. (2024) demonstrated that advanced pattern matching can significantly reduce the 

cost of training data. The study was based on recognising filling patterns of simple 

structures and arbitrary shapes to approximate energy consumption by employing 

dynamic algorithms (Wang et al. 2024c). Lim et al. (2021) employed DL to optimise 

the deposition surface colour and quality in a DED process. The parameters included 

laser power and scanning speed (Lim et al. 2021). Another hybrid DL approach was 

carried out by Hu et al. (2021). In their study, a CNN-LSTM model fused multi-source 

data to predict energy consumption, revealing the correlation between operational 

environment parameters and energy consumption in an SLS system (Hu et al. 2021a). 

In another laser-based PBF system, Ghansiyal et al. (2023) employed a conceptual 

framework to forecast the layer quality and the energy required to build the layers by 

using the proposed multimodal regression method by integrating 2D images and 

process parameters (Ghansiyal et al. 2023). 

 

DL has the ability to solve the challenges posed by increased data complexity (Tian et 

al. 2019a). Wang et al. (2022) developed a new continual attention memory network 

to predict energy consumption. In detail, their work was based on extracting and 

storing complementary information in the FDM system, in which the inherent 

consistency between layers contained more diverse and valuable insights (Wang et al. 

2022a). In another study, El youbi El idrissi et al. (2023) introduced a DL-based 

method by using a Multilayer Perceptron (MLP) network, and they identified the 
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relationships between energy consumption and impact factors, including part 

orientation in the FDM system (El youbi El idrissi et al. 2023). By generating filling 

patterns and trajectory planning with generative adversarial networks, Xu et al. (2020) 

converted 3D objects into different layers in an FDM process. This adaptive multi-

layer customisation leads to improved energy efficiency, linking it to customisation 

parameters, according to their findings (Xu et al. 2020). 

 

⚫ Predictive Modelling for Energy Optimisation Support in AM 

Beyond the scope of energy prediction, current research has focused on holistic 

optimisation support to consider both energy consumption level and in-process 

parameters, preserving energy efficiency.  The predictive modelling in AM has shown 

the potential to improve energy management and optimisation  (Niaki et al. 2019). 

Ulkir (2023) established a Life Cycle Assessment (LCA) based on a mathematical 

model to assess overall environmental impacts over the life cycle of AM products, 

which included resource efficiency and waste generation (Ulkir 2023). By quantifying 

energy consumption, Gao et al. (2024) proposed a comprehensive analytical approach 

for complex AM solutions. They divided parts into typical features, creating energy 

models for each feature (Gao et al. 2024).  In addition, a new mathematic model was 

proposed by Yan et al. (2022) to predict energy consumption by considering the power 

of each component, the time of each process and the operating state of each component, 

demonstrating that it had higher prediction accuracy compared to energy-specific 

models and process-based energy consumption model (Yan et al. 2022). Consequently, 

a DL-based study has been conducted to optimise the deposition surface colour and 

quality in the single-track titanium alloy DED process.  

 

Hasan et al. (2023) studied the effect of process parameters such as scanning speed, 

laser power and feed rate on energy consumption. The findings indicated that laser 

power has a significant influence on energy consumption and therefore higher 

scanning speeds, lower laser power and feed rates are recommended to improve energy 

efficiency. This research is critical to understanding and optimising energy usage in 
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advanced manufacturing processes (Hasan et al. 2023). Another study carried out by 

Tiwari and Yang (2023) was based on the energy consumption behaviour of 3D printed 

Carbon Fibre Reinforced Polymer (CFRP) parts. They developed an energy model 

during the melt and deposition phases and identified that layer height, filler density 

and extruder speed were the most important factors impacting the energy consumption 

behaviour. The insight offered a sustainable decision support tool for CFRP design and 

process planning (Tiwari and Yang 2023). In addition, Liu et al. (2021) proposed a 

decision model that compared the energy consumption in additive subtractive hybrid 

manufacturing with conventional manufacturing. They focused on the entire lifecycle 

of a printed prototype before and during the manufacturing process. This study 

determined that components utilised in the aerospace industry were more compatible 

with the ASHM process, due to the lightweight feature and high Energy consumption 

Reduction Coefficient (ERC), leading to reduced energy consumption in the 

operational phase compared to conventional processes (Liu et al. 2021a). 

 

This section reviewed the development of establishing predictive modelling in 

different AM systems to understand and optimise energy efficiency, using DL 

approaches. The subsequent section will explore advanced DL techniques for data 

analytics in AM systems. 

 

2.4 Advanced Data Analytics in AM 

In the previous section, the DL techniques for energy consumption modelling in AM 

were reviewed. This section will review the advanced data analytics in AM systems in 

terms of other areas. This section is organised as follows:  

 

In Section 2.4.1, the background of DL will be described. Classical architectures such 

as Fully Connected Neural Networks (FCNNs), Convolutional Neural Networks 

(CNNs), and Recurrent Neural Networks (RNNs) are the most fundamental DL 

architectures, which will be reviewed as well. Section 2.4.2 will review the recent 
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advances in DL for AM systems. At last, the challenges and opportunities associated 

with current DL-based approaches will be discussed (Section 2.4.3). 

 

2.4.1 Background of DL 

In 2006, Deep Learning (DL) was first introduced based on the concept of Artificial 

Neural Networks (ANNs) (Hinton et al. 2006). Compared to traditional approaches to 

AI and ML, DL concentrates on model efficiency and compactness. With a 

computational model consisting of many hidden layers, DL can learn data 

representations with multiple abstraction levels (LeCun et al. 2015). DL is inspired by 

the interest in creating and mimicking neural nets in the human brain for analysis and 

understanding. DL has been identified to extract features without supervision and aims 

to model high-level data abstractions (Gheisari et al. 2017). ML is limited when 

solving problems involving signals such as human speech and raw images, as well as 

problems involving complex classification because of generalisation. On the other 

hand, when it comes to simulating more complicated functions that require larger 

training datasets, DL is superior due to its non-linear and deep architecture 

(Goodfellow et al. 2016). The relationship between AI, ML and DL is demonstrated in 

Figure 2.3.  

 

 

Figure 2.3 The relationship between AI, ML and DL. 
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DL technologies have become a popular topic in ML, AI, data science and analytics 

due to their ability to learn from and generalise unseen data. Depending on the different 

datasets, DL can address regression and classification problems, yield significant 

results and uncover hidden knowledge and inherent correlations between data (Sarker 

2021). DL can perform a variety of tasks such as image recognition, video 

classification, text generation and speech processing (Minar and Naher 2018). There 

are three most basic categories in DL techniques based on their architectural designs, 

including 1) deep architecture such as FCNNs or DNNs, 2) CNNs, and 3) RNNs. In 

the following sections, these different DL architectures will be reviewed and discussed. 

 

⚫ Fully Connected Neural Network 

Fully Connected Neural Networks (FCNNs), or known as Dense Neural Networks 

(DNNs), are characterised by having multiple layers of linear and non-linear 

operations. These networks are capable of approximating complex functions that map 

input data to outputs (Wang et al. 2020b). Different from standard NNs, DNNs extend 

the depth by adding hidden layers, which allows the model to learn more complex and 

abstract representations of the raw input data. This depth is critical for managing the 

complexity of the related learning tasks (Janiesch et al. 2021).  Figure 2.4 illustrates a 

typical FCNN architecture, demonstrating the data flow through layers and the 

transformation from the input to output via a series of interconnected neurons.  

 



31 

 

Figure 2.4 FCNN architecture overview. 

 

⚫ Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are a variant of DNNs, which learn directly 

from the structural data without human intervention in feature extractions (Minar and 

Naher 2018). In addition, CNNs have been tailored to process image data, typically 

accepting input with three dimensions: height and width of images and colour channels 

in RGB (Liu et al. 2018a).  

 

In Figure 2.5, a typical CNN architecture consists of convolutional layers, down-

sampling (pooling) layers and fully connected layers. In addition, CNNs can employ a 

dropout technique to mitigate overfitting, different from traditional network 

architectures (Sarker 2021). Convolution plays an important role in extracting features 

from the input image and generating a feature map as output. The convolutional layer 

converts the image into a series of values that allow network nodes to interpret and 

extract hidden patterns from edges and textures (Albawi et al. 2017). The 

convolutional layer includes multiple convolution kernels that compute various feature 

maps, where each neuron in a feature map is connected to a group of neighbouring 

neurons from the preceding layer. It allows the network to detect hidden patterns with 

spatial hierarchies (Gu et al. 2018). The pooling operation is subsequently employed 
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to reduce redundancy since the considerable image input leads to overfitting, thereby 

reducing the spatial size of the representation to decrease the number of parameters 

(i.e. weights and biases) and computations in the network (Li et al. 2022). The fully 

connected layer performs a similar role as ANN. It offers classification scores that can 

be used for classification by integrating learned features from previous layers to make 

a final prediction (Saxena 2022). CNNs have promising applications such as time 

series predictions and signal identification for one-dimensional CNNs. In addition, 

two-dimensional CNNs show the merits of image classification, object detection, 

image segmentation and face recognition (Li et al. 2022). 

 

 

Figure 2.5 CNN architecture overview. 

 

⚫ Recurrent Neural Network 

Several real-world problems involve sequential data, such as text, speech, and video. 

However, the correlation between data has not been considered in the feedforward 

neural networks, and the network output is only relevant to the inputs at the current 

moment, which limits their effectiveness for sequential data analysis (Salehinejad et 

al. 2017). As shown in Figure 2.6, ANNs with multiple recurrent connections, 

Recurrent Neural Networks (RNNs) are utilised to process time series data or 

sequential data, allowing for the analysis and prediction of data where order and timing 

are crucial, which offer the solutions to ordinal or temporal problems, including 

language translation, natural language processing and text generation (Sarker 2021). A 

key distinguishing factor is their capacity to leverage past inputs to affect current inputs 
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and outputs, known as the “memory” (Sutskever et al. 2011). Instead of strictly 

memorising all fixed-length sequences, RNNs store previous time-step information by 

hidden states, enabling them to handle sequences of arbitrary lengths with a fixed 

number of parameters (Pascanu et al. 2014). 

 

Unlike conventional DNNs, the nodes in each layer of an RNN are connected via a 

loop, enabling the network to propagate information from one step to the next. This 

self-connection enables RNNs to preserve information over time within a sequence of 

data (Wang et al. 2020b). This allows for more efficient use of the parameters. RNNs 

share parameters in each layer, which have different weights for each node. In addition, 

RNNs employ the same weight parameters within each layer (LeCun et al. 2015). 

Bidirectional Recurrent Neural Networks (BRNNs) to enhance contextual 

understanding, Long-Short Term Memory (LSTM) to address the vanishing gradient 

issue, and Gated Recurrent Units (GRUs) as a simplified alternative featuring forget 

and input gates, are the variants of RNN architecture (Salehinejad et al. 2017). These 

variants can model dynamic systems, providing a more effective way to manage 

sequential or time-series data. 

 

 

Figure 2.6 RNN architecture overview. 
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2.4.2 Recent Advances in DL in AM 

The complexity of AM systems involves various technologies including computer 

science, materials science, mechanical engineering, and electronics engineering. 

Mapping the correlations between different variables at different stages of 

development using mathematical relationships is challenging. In addition to energy 

modelling mentioned in Section 2.3, advances in DL have profoundly influenced AM 

in other aspects such as material development, process optimisation, quality control, 

and design optimisation.  

 

⚫ Material Development 

DL technologies have a wide range of applications in material design discovery and 

manufacturing (Papadimitriou et al. 2024). DL models can be utilised to predict the 

properties of new materials and materials combinations, thereby accelerating the 

discovery of materials optimised for 3D printing (Jin et al. 2020). Zuccarini et al. 

combined their experiment and DL technology to predict and synthesise new materials 

with potential application value, holding a better prediction accuracy and efficiency 

than those of conventional approaches, which provides a new pathway to explore new 

materials (Zuccarini et al. 2024). Erps et al. expanded this application by developing 

multi-objective optimisation algorithms based on ML. This technique can identify the 

optimal solution in a quick manner in terms of the complicated space of 3D printed 

material, thereby shortening the material development cycle (Erps et al. 2021). 

Different from traditional and physical-based approaches, the CNN provides superior 

prediction performance by learning complex patterns. Another study stressed the effect 

of re-entrant honeycomb structure design, using a DL-based approach. Instead of 

leveraging conventional complex analytical equations and control algorithms, the 

proposed approach leveraged pseudo-randomised images of geometric modifications 

to develop the prediction model for deviations from multi-material configurations 

(Wilt et al. 2020). 
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⚫ Process Optimisation  

Ng et al. (2024) believed that the DL algorithm played an essential role in optimising 

print parameters by analysing data in the process. According to the different materials 

used, adjustment of laser power, print speed and layer thickness were considered when 

considering a metal AM process. Furthermore, extrusion speed and temperature were 

involved in the case of filament-based printing. These optimisations on printing 

parameters can improve the strength, precision and surface finish of the prototypes 

(Ng et al. 2024). 

 

Many researchers have investigated methods to enhance product quality. Nohut and 

Schwentenwein (2024) leveraged ML technologies to optimise the manufacturing 

process of multi-material ceramics by predicting shrinkage and porosity (Nohut and 

Schwentenwein 2024). A surrogate model based on a feedforward neural network was 

developed by Pham et al. (2023) to predict temperature changes and melt poo size in 

AM process, which reduced the dependence on costly computational simulations 

(Pham et al. 2023). Tamir et al. (2023) proposed an open-loop and closed-loop control 

to monitor the impact of processing parameters on the quality of printed objects. By 

integrating an open-loop control with a fuzzy algorithm, a closed-loop control 

algorithm was developed. According to their results, this method determined the 

correlation between 3D printing specifications and the in-process parameters (Tamir 

et al. 2023). A more recent study explored the integration of point clouds and DL to 

enhance in-situ quality through data analysis and intelligent decision-making. As a 

result of utilising a deep convolution autoencoder model to process a top-surface point 

cloud, a statistical analysis of the part quality was conducted, which was necessary to 

generate commands for the optimisation of the manufacturing process. Since the G-

code has been modified, the auto-encoder results can be employed to adjust layer 

deposition in real-time, as controllers leveraged layer deposition grid-by-grid by 

adjusting the feed rate and print speed (Akhavan et al. 2024). 

 



36 

⚫ Design Optimisation 

Utilising various AM techniques, engineering research aims to develop 

multifunctional intelligent composites. There are limitations to large-scale industrial 

applications of AM due to the lack of reliable methods to predict and model material 

properties, design barriers, limited material libraries, processing defects, and 

inconsistent product quality (Babu et al. 2023). Topology optimisation includes a 

broad concept of determining optimal layouts for structural materials based on 

computational analysis. Discrete optimisation techniques have consistently been used 

in civil and structural engineering. In contrast, optimisation of continuity has recently 

emerged as a powerful tool to promote the adoption of AM, as observed in several 

other fields of industry (Ribeiro et al. 2021). In their study, a comprehensive analysis 

of structural steel design and AM-specific design was carried out during the discussion 

of recent DL-based approaches and fields of application of topology optimisation.  

 

An in-depth analysis of the heterogeneous graph structures of spider webs allowed the 

researchers to model and synthesise artificial, bioinspired 3D web structures using DL. 

Generative models consider critical geometric parameters such as edge length, node 

number, and averaging node degree. As a result of inductive representation sampling 

of large experimentally determined spider web graphs, this study uncovered graph 

construction principles, which could be used to inform the training of conditional 

generative models (Lu et al. 2023b). The textured surface on tribological performance 

was considered by Zhu et al. (2023). Their focus is on the development of a DL-based 

generative design framework integrated with CNNs and an enhanced Monte Carlo 

search. Based on their findings, they indicate that machine-generated wavy and 

chevron-like textures can enhance tribological performances in terms of sliding 

surfaces with infinite design domains (Zhu et al. 2023). Wu et al. (2023) developed an 

innovative multiscale topology optimisation technique leveraging a derivative-aware 

DL algorithm to achieve uniform strain patterns on additively manufactured lattices 

(Wu et al. 2023a). Another study focused on layered surface morphology information, 

according to Liu et al. (2023), who presented a CNN-based approach to solving high-

dimensional and nonlinear problems in 2D images and 3D point clouds. The trained 
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model could directly predict 3D surface data, thus reducing time-consuming 

triangulation calculations (Liu et al. 2023). 

 

⚫ Quality Control  

While handcrafted-based approaches can extract representative features of images, 

they can be challenging when dealing with complex design and structural features 

produced by different AM processes. DL can be utilised in AM systems to provide 

predictive insights for identifying complex manufacturing patterns, and it would allow 

the system to make intelligent decisions in manufacturing (Jiang et al. 2022). DL in 

metal AM hold the potential to optimise manufacturing processes and improve part 

quality (Johnson et al. 2020). 

 

The research focuses on the application of DL in AM in terms of quality control and 

monitoring. Fischer et al proposed a DL-based approach for monitoring and classifying 

powder bed defects in metal AM. Their study employed the Xception model to classify 

powder bed images, identifying defects with high accuracy (Fischer et al. 2022). 

Manivannan exploited semi-supervised DL to achieve automatic quality inspection in 

AM, which was validated on multiple AM datasets demonstrating excellent 

performance with less annotation data (Manivannan 2023). Li et al. (2020) proposed a 

DL-based quality recognition method for metal AM, which mitigated the high 

demands of high-quality annotation data by exploring semi-supervised training data 

(Li et al. 2020). Lu et al. (2023) developed a real-time system to detect defective areas 

in printed objects, by integrating DL models with geometric analysis. In addition, they 

quantified the severity of each unique defect based on the misalignment level (Lu et 

al. 2023a). Another DL-based defect detection approach employed three YOLO 

attention mechanisms for further improvement in the performance of the model (Li et 

al. 2023). In addition, Kumar et al. (2024) presented a comprehensive study on the DL 

approach in defect detection using zero-bias DNN with less manual image processing. 

They focused on the feasibility of detecting multiple types of defects, including cracks, 

stringers and warpages. These data did not require a priori knowledge from trained 
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datasets (Kumar et al. 2024). A study conducted by Fang et al. (2024) highlighted the 

importance of deep transfer learning in detecting outliers in a WAAM process. When 

a new domain adaptation strategy was designed using the Particle Swarm Optimisation 

(PSO) technique, the study minimised the cross-domain discrepancies between 

marginal and conditional distributions to mitigate data imbalances (Fang et al. 2024).  

 

2.4.3 Challenges and Opportunities in DL for AM 

Traditional statistical approaches have become inadequate when managing numerous 

datasets to extract valuable information from heterogeneous data produced by AM 

systems (LeCun 2019).To address this problem, complex architecture with more 

hidden layers in DL architecture plays an important role, which leads to intensive 

parameters. These analytical models can often extract and learn valuable insights from 

data (Yang et al. 2020b). For instance, an ensemble model can achieve the tasks of 

discovering the hidden knowledge, but it fails to deploy on edge devices due to slow 

inference speed and high resource requirements (Lin et al. 2020). This step requires a 

lot of latency and computational resources (Gou et al. 2021). As a result, model 

compression approximates the performance of a slower, more complex, but more 

accurate model with one faster and more compact (Schohl 2003), which involves 

reducing the number of parameters while retaining performance. 

 

As one of the prevailing architectures applied in various scenarios, CNNs take image 

data directly as input without requiring complex operations such as additional manual 

image preprocessing and feature engineering. This type of architecture uncovers 

hidden patterns in the image data by extracting representative features for sophisticated 

shapes (Saxena 2022). According to the research, CNN is the primary tool for 

automatically learning and extracting representative features from highly complex 

geometries. In order to achieve higher performance on feature extraction, it is 

necessary to significantly increase the number of layers and their parameters (Hu et al. 

2021b). Despite the advantages, convolution operations are always complex and time-

consuming due to their high computation requirements, which convolution accounts 
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for approximately 90% of computation time (Cong and Xiao 2014). Therefore, the 

complexity and memory requirements of the model lead to the limited usage of deep 

models on resource-constrained devices in the manufacturing process. Despite the high 

level of performance achieved by current deep models, their implementation on the 

edge platform is constrained by high latency and memory requirements (Wang et al. 

2020a). These models with a deep architecture are computationally intensive and 

consume a substantial number of resources, making them challenging to deploy, 

particularly in applications deployed on devices with limited resources (Wang and 

Yoon 2020). To overcome these limitations, model compression techniques are 

employed, including network pruning, quantisation, low-rank approximation, and 

Knowledge Distillation (KD) (Cheng et al. 2018).  

 

2.5 Model Compression Techniques 

Numerous real-world applications require devices with real-time processing 

capabilities. Since the current DL-based models are computationally intensive, the 

main obstacle to using them is the limited resources of edge devices. Limited memory 

and computational power pose challenges in deploying DL models effectively on 

resource-constrained platforms. As the model complexity is directly proportional to its 

storage requirements, directly deploying it on devices with limited resources is 

challenging. Furthermore, larger models demand longer inference times and higher 

power consumption (Cheng et al. 2017). Consequently, model compression techniques 

are implemented. The following sections will review four model compression 

techniques: pruning, quantisation, low-rank approximation, and Knowledge 

Distillation (KD). The following sections are organised as follows: Section 2.5.1 

involves the pruning technique for compressing model. Section 2.5.2 will review the 

quantisation technique, followed by low-rank approximation in Section 2.5.3. Section 

2.5.4 will focus on KD techniques.  

 

2.5.1 Pruning 
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The purpose of pruning techniques is to identify redundant connections and remove 

them so that they are not involved in the forward or backward operations of the 

network, which reduces the amount of network computation (Wang et al. 2024a). The 

neurons and connections that have been removed are no longer retained, resulting in a 

reduction of storage in the model. At the end of this process, a network, that is initially 

dense, becomes sparse due to the removal of specific connections (Liu et al. 2018a). 

Figure 2.7 depicts the process of network pruning.  

 

One of the most challenging aspects when pruning is to identify the less critical 

parameters. Pruning networks leads to a reduction in network complexity and mitigates 

overfitting. The architecture of a larger neural network is pruned to yield a less 

complex neural network. Pruning employs a top-down approach, wherein a large 

network is first constructed, and subsequently, the network structure is trained by 

removing or merging specific neurons or weights as necessary (Reed 1993). By setting 

weights to zero, magnitude-based weight pruning results in the sparsity of the model 

during the training process. The pruning technique sets weights below a certain 

threshold to zero by comparing their absolute values against the threshold. As part of 

this approach, knowledge of connectivity must first be acquired through training (Han 

et al. 2015). 

 

Unlike conventional training, the connections are learned instead of learning the final 

value of weights. Subsequently, low-magnitude neurons are pruned out, which 

transfers a dense neural network to a sparse one, removing all connections with 

weights below the threshold. Finally, once the network is retrained, a final weight is 

calculated for the remaining sparse connections to preserve the accuracy (Cheng et al. 

2018). Some significant branches of pruning include weight pruning and filter pruning.  
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Figure 2.7 Pruning technique. 

 

2.5.2 Quantisation 

Quantisation in DL refers to representing the parameters of an NN using floating point 

numbers with low-bit width integers, as shown in Figure 2.8. Quantisation involves 

clustering the weights of neurons. It maps the range of these weights to the INT8 

integer scale, ranging from -127 to 128, using the maximum and minimum values 

found in the data  (Choudhary et al. 2020). Through this method, on the one hand, the 

storage of the model can be reduced. The weight parameters of the model are often 

stored in the form of 32-bit floating-point numbers with a considerable quantity, 

consuming a large storage space (Gou et al. 2021). When the number of parameters is 

reduced, the model will be reduced when the 32-bit floating-point number is quantised 

into an 8-bit fixed-point number (Li et al. 2022). Post-quantisation model reduction 

also leads to a significant decrease in computational resources needed during the 

network’s forward computation phase (Polino et al. 2018). Additionally, employing 

fewer bits per weight decreases the data required for computations, resulting in energy 

savings and reduced access costs (Cheng et al. 2018). 
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Figure 2.8 Quantisation technique. 

 

As a result of quantisation, fewer bits are required to represent weights and biases in a 

CNN, reducing storage and memory requirements and computation complexity.  

 

𝑄(𝑣) = 𝑟𝑜𝑢𝑛𝑑 (
𝑣

𝑆
) + 𝑍 

𝑤ℎ𝑒𝑟𝑒 𝑆 =
2𝑏 − 1

𝛼 − 𝛽
 

𝑎𝑛𝑑 𝑍 = −𝑟𝑜𝑢𝑛𝑑(𝛽 ∙ 𝑆) − 2𝑏−1 (2.1)

 

 

A floating-point weight or activation can be converted into an integer using the 

equation, where 𝑸 denotes the quantised value,𝒗 is the original floating-point value, 𝑺 

is the scaling factor, and 𝒁  is zero point to ensure that the quantised integer value 

represents zero correctly. The actual values are located at the range of [𝜷, 𝜶], which is 

at the range of [−𝟐𝒃−𝟏, 𝟐𝒃−𝟏 − 𝟏] (Jacob et al. 2018; Wu et al. 2020). Equation (2.2) 

and Equation (2.3) show quantisation and de-quantisation, respectively, where �̂� ≈ 𝑋. 

 

𝑋𝑞 = 𝑐𝑙𝑖𝑝(𝑟𝑜𝑢𝑛𝑑(𝑋 ∗ 2𝑏−1)) (2.2) 
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�̂� =
1

𝑆
(𝑋𝑞 − 𝑍) (2.3) 

 

2.5.3 Low-Rank Approximation 

The low-rank approximation-based approach enhances the computational process of 

the model from the perspective of decomposing matrix operations, greatly reduces 

model redundancy, and significantly speeds up model computation when compressing 

and accelerating the fully connected layers (Cheng et al. 2017). Most of the 

computation occurs in the convolutional layer, whose parameters are usually stored as 

multidimensional matrices. Decomposing the matrix into a series of smaller matrices 

through linear algebra allows the combined smaller matrices to approximate the 

representation of the original convolutional layer (Choudhary et al. 2020). This model 

compression technique can preserve the model's accuracy while decreasing the 

demand for parameter storage requirements. The low-rank approximation is performed 

starting from the shallowest layer to the deepest layer, achieving the approximation at 

each convolutional layer. After the decomposition of a layer, its parameters are fixed 

and fine-tuned  (Dziugaite and Roy 2015). 

 

2.5.4 Knowledge Distillation 

The concept of model compression via Knowledge Distillation (KD) was first 

proposed by Buciluǎ et al. in 2006 (Buciluǎ et al. 2006). After that, Hinton et al. (2015) 

systematically defined and introduced the training approach of the KD technique 

(Hinton et al. 2015). KD involves training a compact model to imitate a pre-trained 

large model (or ensemble of models) that has been previously trained (Ba and Caruana 

2013). Many models have more recently achieved State-of-the-Art (SOTA) 

performance with current algorithms. As a result of excessive latency and memory use, 

the model structure makes it computationally expensive and inefficient.  
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Figure 2.9 Knowledge distillation in teacher-student architecture. 

 

Figure 2.9 illustrates a teacher-student architecture in the distillation process, where 

the cumbersome model obtained during the training phase represents a teacher and the 

distilled model represents a student. Students are trained by teacher networks with high 

learning capacity, transferring knowledge to student networks with lower learning 

capacity, thus enhancing the model's generalisation ability (Hinton et al. 2015). The 

term "knowledge" is a mapping from input to output vectors. The class possibility 

output from the teacher model serves as labels for the data, sent to the student model 

for training, with a soft target representing class probabilities. The distilled model is 

trained on a dataset, employing a soft target distribution for each instance in the dataset.  

 

In contrast to the original softmax function, Equation (2.4) introduces a temperature 

hyperparameter, 𝑻 to smooth the probability distribution between teacher and student 

models. 

 

𝑞𝑖 =
exp (

𝑧𝑖

𝑇 )

∑ exp (
𝑧𝑗

𝑇)𝑖

(2.4) 
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Equation (2.5) identifies the distillation loss, including soft label (𝒒𝒊) of the teacher 

model, and the class possibility (𝒑𝒊), and temperature parameter (𝑻).  

 

𝐿 = 𝑇2 ∑ 𝑞𝑖
𝑇 log(𝑝𝑖

𝑇)
𝑁

𝑖
(2.5) 

 

Equation (2.6) represents the aggregation of soft labels, where 𝒘𝒊𝒋  are the weights 

assigned to the soft labels 𝒒𝒊𝒋 from the teacher model. 

 

𝑞𝑖 = ∑ 𝑤𝑖𝑗
𝑗

𝑞𝑖𝑗 (2.6) 

 

Hard label loss and soft label loss are added to compute students' loss functions 

(Equation 2.7), which are derived from cross-entropy, derived from the probability 

distribution of output, and label for student networks, and Kullback-Leibler (KL) 

divergence, which is equivalent to the difference in output between student and trained 

teacher networks, respectively. 𝜶  and 𝜷  are used to control the ratio between two 

losses.  

 

𝐿𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝛼𝐿𝑠𝑜𝑓𝑡 + 𝛽𝐿ℎ𝑎𝑟𝑑 (2.7) 

 

KD can be classified into three categories, logit-based, feature-based and relation-

based, according to their knowledge types. A special focus will be placed on the 

development of teacher-student architectures, which are crucial for KD in DL. 

Learning from large networks is challenging due to the significant model capacity gap 

between the teacher and student models. A variety of methods has been developed to 

ensure knowledge is effectively transferred to student networks.  



46 

 

⚫ Logit-based Knowledge Distillation 

In Figure 2.10, logit-based or response-based knowledge refers to the neural response 

to the final output of the teacher model (Gou et al. 2021). Owing to its simplicity and 

effectiveness, this KD technique is used in a wide variety of tasks and applications. A 

typical KD process consists of three components: a teacher network, a student network 

and knowledge transfer between them. The first detailed studies of KD have focused 

on learning category distributions, i.e., using soft labels from large pre-trained teachers 

to train small student models. The student network took the output of the teacher 

network as input and aimed to approximate the output of the teacher network (Hinton 

et al. 2015). In the traditional KD process, knowledge is transferred from a complex 

model to a simplified model. Zhang et al. (2018) introduced a mutual learning strategy, 

where a group of student models learned and guided each other, replacing the classic 

teacher-student architecture. The results of the study showed that model performance 

tended to improve as the number of student models increased (Zhang et al. 2018b).  

 

Soft labels can enhance classification tasks by providing more information and 

revealing the teacher model’s generalisation ability.  However, Cho and Hariharan 

(2019) found that a better teacher model did not necessarily lead to improved student 

performance when using soft labels with regularisation. Student models did not match 

the teacher’s performance due to the potential for mismatched samples and a bias 

towards primary losses (Cho and Hariharan 2019). Xie et al. (2020) presented a logit-

based KD, using more noisy datasets to enhance the student model performance by 

focusing on the data issue (Xie et al. 2020). Yang et al. (2019) utilised soft labels when 

training the student model, optimising it by applying constraints. It has been shown 

that combining ground truth with the secondary class leads to more effective learning, 

which prevents overfitting (Yang et al. 2019). However, this teacher-student 

architecture was limited by structural differences between teacher and student models. 

Aiming on this issue, Phuong and Lampert (2019) proposed a new loss function and a 

multi-exit architecture for the KD technique, which utilised an early exit to mimic the 
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more accurate later exit by matching their output probabilities (Phuong and Lampert 

2019).  

 

The logit-based method is relatively simple and effective due to its straightforward 

approach and strong performance. Utilising a teacher model in student modelling 

provides probability distributions that serve as similarity information and additional 

supervision, facilitating student learning (Gou et al. 2021). The logit-based KD 

techniques face several challenges. For instance, logit-based KD is sensitive to the 

temperature hyperparameter, which can negatively affect the performance of 

distillation (Hinton et al. 2015). Moreover, logit-based distillation focuses on the final 

output, which neglects the intermediate representation, leading to the loss of key 

insights (Gou et al. 2021).  

 

 

Figure 2.10 Logit (response)-based KD architecture. 

 

⚫ Feature-based Knowledge Distillation  
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Figure 2.11 depicts the feature-based KD. This strategy extracts features from the 

intermediate hidden layers in the architecture of the teacher model (Gou et al. 2021). 

Romero et al. (2015) first introduced the idea of feature-based KD, which employed 

the teacher output in its hidden layer to supervise students. The technique directly 

matched the feature activations of the teacher and the student (Romero et al. 2015). 

Inspired by this, the method was proposed to match the features indirectly. According 

to Zagoruyko and Komodakis (2016), an attention map was derived from the original 

feature maps to express knowledge (Zagoruyko and Komodakis 2016). Chen et al. 

(2021) developed a new teacher-student architecture, by utilising a locality-preserved 

loss function. This loss function allowed the student network to generate low-

dimensional features from high-dimensional features of the teacher network (Chen et 

al. 2021). Another Dual Masked Knowledge Distillation (DMKD) scheme was 

proposed by Yang et al. (2024), which employed a dual attention mechanism for 

guiding masking branches. The proposed method was applied to object detection task 

that captures both spatially and channel-wise features as the knowledge to supervise 

the student’s learning (Yang et al. 2024a). A more recent study on logit-based KD with 

a hierarchical distillation mechanism was conducted by Xie et al. (2024). An 

integration of both logit and feature was utilised to mitigate the capacity gap between 

teacher and student models. In addition, the method employed feature matching and 

logit separation (Xie et al. 2024).  

 

In the action recognition task, a generative model introducing feature-based 

knowledge and an attention-based mechanism was developed by Wang et al (2024) to 

improve the performance of small models. (Wang et al. 2024b). Feature-based KD can 

also play an important role in the recommender system, and Zhu and Zhang (2024) 

proposed a method called FreqD to focus on important knowledge by redistributing 

knowledge weights (Zhu and Zhang 2024). Shao et al. (2023) studied the Adversary-

based Ensemble Feature Knowledge Distillation (AEFKD) technique. It allowed 

students to learn probabilistic information and high-dimensional features. It also 

identified feature map distributions in a model. (Shao et al. 2023). Yang et al. (2023) 

utilised a feature-based KD and attention mechanism to transform intermediate 

features to supervise the student model. They also highlighted the importance of 
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transferring knowledge that is related to reasoning (Yang et al. 2023). Yuan et al. (2024) 

used Semantic Graph Mapping (SGM) to transfer intermediate knowledge between 

different models at different scales, which overcame the limitations of traditional KD 

techniques (Yuan et al. 2024). Furthermore, Yang et al. (2024) integrated Vision 

Transformer (ViT) and KD, which identified the importance of both shallow and deep 

layers in ViT for distillation (Yang et al. 2024b). Feature-based KD has drawbacks 

such as challenges of matching features between different models (Wang et al. 2022b) 

and additional computation that is time-consuming (Phuong and Lampert 2019). 

 

 

Figure 2.11 Feature-based KD architecture. 

 

⚫ Relation-based Knowledge Distillation 

Relation-based KD (Figure 2.12) focuses on the structural information through the 

output of a model, which is derived from the different layers or data samples. It allows 

students to learn the structural information of the teacher model (Gou et al. 2021).  

To effectively train students with the relation-based KD, Yim et al. (2017) utilised the 

Gramian matrix to capture the relationships between two layers. This matrix described 

the relationships between two feature maps by calculating the products of features 
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from the two layers (Yim et al. 2017). Furthermore, Zhang et al. (2024) leveraged a 

token-level relationship graph to improve KD performance to facilitate the knowledge 

transfer from the teacher to student models, particularly in the context of dealing with 

unbalanced data (Zhang et al. 2024). Park et al. (2019) presented an approach for 

relation-based KD on instance relations  (Park et al. 2019). According to the approach 

proposed by Passalis et al. in 2021, they transferred probabilistic knowledge to 

enhance KD performance (Passalis et al. 2021). By using contrastive learning, Tian et 

al. (2020) introduced contrastive representation distillation, which assisted student 

models in learning more knowledge from teacher models (Tian et al. 2019b). In the 

context of more recent research, Xin et al. (2024) utilised neighbourhood feature 

relationships and logit relationships for the distillation process to develop a KD-based 

similarity relationship. This approach transferred neighbourhood relation knowledge 

by selecting K nearest neighbours of each sample, and ultimately the knowledge was 

used to train the student model (Xin et al. 2024). To adjust the output queries of the 

student and teacher models, Li et al. (2024) proposed a KD scheme based on semantic 

segmentation and querying of instances of the transformers (Li et al. 2024).  

 

 

Figure 2.12 Relation-based KD architecture. 
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2.6 Field-Programmable Gate Arrays 

The section will introduce the basics of Field-Programmable Gate Arrays (FPGAs) in 

Section 2.6.1, their use in CNN accelerators in Section 2.6.2, and their implementation 

in smart manufacturing in Section 2.6.3.  

 

2.6.1 Fundamentals of FPGAs  

FPGAs, a type of Integrated Circuit (IC), can be reprogrammed to implement various 

algorithms according to specific tasks. Modern FPGAs can be configured to implement 

a broad array of software algorithms, with the capacity for millions of logic cells 

(Guzel Aydin and Bilge 2021). While FPGA design processes resemble those of 

processors more than traditional processors, FPGAs offer significant advantages and 

often match or exceed their performance. A further advantage of FPGAs over ICs is 

their ability to be dynamically reconfigured (Rodriguez-Andina et al. 2007). The 

process is similar to loading a program into a CPU processor, but some or all of the 

resources available in an FPGA may be affected by this process. An FPGA architecture 

is composed of Look-Up Tables (LUTs), Flip-Flops (FFs), multiplexers, wires, and 

Inputs / Outputs (I/O) blocks (Boutros and Betz 2021). A significant part of its 

flexibility can be attributed to its essential component, the Configuration Logic Block 

(CLB) (Figure 2.13). CLBs are responsible for providing logic and storage. There are 

various blocks within the FPGA structure, including configuration logic blocks and 

others (Gandhare and Karthikeyan 2019), where the LUTs and FFs belong to the 

essential elements.  
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Figure 2.13 Detailed FPGA architecture including programmable logic and I/O. 

 

In the case of a LUT, all binary-valued functions can be implemented with four binary 

inputs. Depending on the configuration of the LUT, the outputs enter a buffer block 

configured as a register (i.e. FF) (Mueller et al. 2009). FFs are the primary storage 

units in the FPGA architecture. As described above, the unit is always used with a LUT 

to aid in logic pipeline operations and data storage. Some other memory blocks can be 

utilised, such as Random-Access Memory (RAM), Read-Only Memory (ROM), and 

shift register (Rodriguez-Andina et al. 2007). Analogue circuitry is incorporated in 

blocks such as I/O and RAM (Boutros and Betz 2021). Each logic block contains 

several bits of memory and one or more LUTs.  As a result, logic blocks can implement 

arbitrary logic functions. Programmable wires connect logic blocks into circuits of 

arbitrary complexity by routing logic blocks' outputs to each other's inputs (Draper et 

al. 2003). 
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FPGAs have become popular for DL applications due to their high computational 

processing, low power consumption and ability to adapt to different networks (Seng et 

al. 2021). According to the specific applications, FPGA has the potential to bridge the 

gap between Application Specific Integrated Circuits (ASICs) and embedded 

processors (Magyari and Chen 2022).   

 

2.6.2 Accelerating CNNs with FPGAs 

Graphics Processors (GPUs) and Central Processing Units (CPUs) have been utilised 

in the training and inference phases of DNN applications due to their computational 

power. However, DL models fail to be deployed directly, due to the limited on-chip 

resources of FPGAs (Schmitt et al. 2020). Considering latency and data volume 

challenges, it is crucial to reduce response time and computational burden. Various 

accelerators such as FPGAs, GPUs or even ASICs can improve the efficiency of CNN 

architectures. FPGA-based accelerators show the merits of good performance, high 

energy efficiency, a fast development cycle, and high reconfigurability (Guzel Aydin 

and Bilge 2021). 

 

Research advances focused on using FPGAs to accelerate CNNs, which has several 

advantages over conventional microprocessors and ASICs. The unique characteristics 

of FPGAs contribute to high efficiency in parallel processing (Zhang et al. 2015), 

energy efficiency (Qiao et al. 2017), flexibility and reconfigurability (Mittal 2020), 

improved latency (Venieris and Bouganis 2017) and customisation for specific tasks 

(Guo et al. 2016). Abdelouahab et al. (2018) reviewed comprehensively accelerating 

CNN inference by FPGAs. This review indicated that convolution layers generate most 

of the workload, whereas fully connected layers generate most of the weights so that 

large models cannot be run in real-time. Mode compression techniques, such as weight 

pruning and low-rank approximations, play an important role in mitigating these 

limitations. By taking advantage of the sparsity of pruned CNNs in FPGA 

implementations, they suggested skipping the multiplication of zero weights for each 

layer during unrolling (Abdelouahab et al. 2018). Further development on CNN 
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accelerators was carried out by Philip and Sivamangai (2022), who showed prevailing 

optimisations and acceleration for CNN implementation on FPGAs, considering DL 

algorithms and FPGA design. In addition, FPGAs have been challenged in developing 

computational elements and control units within the current framework (Philip and 

Sivamangai 2022). Kumar and Madhumati (2023) employed FPGA-accelerated CNN 

model computation utilising multiple approximate accumulation units based on fixed-

point data types. They employed the LeNet-5 accelerated network structure, which 

they validated on handwritten digits from the MNIST dataset (Kumar and Madhumati 

2023). Various convolutional layers in the binary model were implemented using 

Finite State Machines (FSMs). According to the study by Pérez and Figueroa in 2021, 

a hardware accelerator based on MobileNet V2 inference was proposed for real-time 

image classification. This accelerator utilised loop tiling, bank-balanced pruning, 

dynamic quantisation, and off-chip storage for increased performance and reduced 

power consumption (Pérez and Figueroa 2021). Wu et al. (2023) redesigned processing 

elements implementation to share multiple functions and hybrid memory in order to 

maximise resource utilisation and achieve efficient inference (Wu et al. 2023b). 

 

2.6.3 Smart Manufacturing Applications of FPGAs 

FPGAs have the potential for real-time processing on the edge in the AM systems. It 

can accelerate computationally intensive tasks, such as DL models on the FPGA, 

conserving performance (Xu et al. 2022).  

 

Many studies have focused on FPGAs to accelerate the model in different applications. 

Luo and Chen (2021) leveraged FPGAs to accelerate the defect detection process in 

AM. FPGA and DL were integrated to provide highly accurate and real-time defect 

detection. According to their findings, the targeted FPGA platform improved the 

efficiency and speed of defect detection in AM systems (Luo and Chen 2021). Scharf 

et al. (2019) introduced an FPGA-based vision system for in-line monitoring. This 

system was associated with image processing, contributing to the nominal operating 

and thereby enhancing AM process control and monitoring (Scharf et al. 2019). 
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Researchers such as Renken et al. (2019) also discovered the usage of an FPGA-based 

control system with FPGAs. The system consisted of different sensors to measure melt 

pool temperature in real-time and adjust the laser power accordingly to stabilise the 

temperature. By implementing the closed-loop and feedforward control strategies, 

temperature deviations were mitigated, resulting in up to a 90% reduction in 

temperature variance. The effectiveness was demonstrated in several geometries and 

conditions, including the bridge structures and powder-filled plates (Renken et al. 

2019). An FPGA-based adaptive control system was developed by Rodriguez-Araujo 

et al. (2012) for industrial laser cladding processes, which improved monitoring and 

control over conventional PC-based systems. The system utilised FPGA technology to 

perform real-time image processing and control tasks in complex geometries and 

varying operating conditions. An adaptive control mechanism based on fuzzy rules 

dynamically adjusted control parameters to ensure a high-quality, consistent outcome 

enabled laser cladding variability and precision challenges to be addressed effectively 

(Rodriguez-Araujo et al. 2012). Ji et al. (2022) presented a model compression 

technique using KD and parameter quantisation to deploy DL models for bearing fault 

diagnosis on resource-constrained platforms like FPGAs, highlighting the practical 

applicability in real-world industrial settings (Ji et al. 2022). 

 

By using real-time hyperspectral data processing integrated into hardware-in-the-loop, 

Devesse et al. (2016) developed a high-order physical model to improve precision in 

AM and adjust laser power based on real-time temperature feedback from the melt 

pool. This advanced approach was intended to improve the quality of manufactured 

parts (Devesse et al. 2016). A wire-based directed energy deposition process was also 

studied to address the challenge of maintaining constant layer heights. With a coherent 

range-resolved interferometric sensor, Qin et al. (2023) provided insights into accurate 

and efficient in-process geometric measurements of different process parameters, 

especially in the transition region. This FPGA-based signal processing system allows 

demodulation of the returned light directed to the photodetector (Qin et al. 2023).  
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To sum up, the FPGA platform is effective in many applications, including defect 

detection, real-time image processing, surveillance, and industrial control. In addition 

to these applications, it is notable that FPGA platforms have the potential to predict 

energy consumption in AM systems. 

 

2.7 Summary 

In this chapter, the current AM technologies, especially SLS were reviewed. After that, 

DL-based and data-driven approaches to AM were discussed, followed by model 

compression techniques, especially KD. This model compression technique can be 

employed to develop lightweight models. The DL models become lightweight and 

deployable on small devices such as FPGAs.  A review of the research advances in 

FPGAs was presented at the end of this chapter. The following chapter will present an 

overview of the proposed framework for predictive modelling and energy consumption 

optimisation in an SLS system. 
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Chapter 3 A Framework for Predictive 

Modelling and Energy Consumption 

Optimisation in SLS 

 

3.1 Introduction 

The emergence of AM has become a promising manufacturing paradigm, by 

decentralising production geographically and bringing it closer to end customers. In 

addition, AM facilitates free-form product design, significantly contributing to 

sustainable manufacturing practices (Khorram Niaki and Nonino 2017). AM reduces 

additional tooling, material waste and resource usage, which potentially boosts an 

energy-efficient and sustainable production process (Majeed et al. 2021). 

Sustainability could increase the long-term vision and efficiency of the production life 

cycle. Additionally, it would enable manufacturers to make smart decisions and reduce 

material waste and energy management (Dunaway et al. 2017). Developing energy 

prediction models contributes to more comprehensive analytics to assist energy 

management. The highly precise models are anticipated to minimise costs and improve 

overall process sustainability (Kellens et al. 2017). This chapter will outline the 

comprehensive framework for energy predictive modelling and the optimisation of 

design-relevant parameters as well as energy consumption.  

 

3.2 Research Framework for Energy Consumption 

Prediction in SLS 

Traditional empirical models and physics-based models often fail to capture the 

complex insights and non-linear relationships between geometric information and 

energy consumption collected from the dynamic environment in SLS, since they 

heavily depend on feature engineering from high-dimensional data and non-linear 

mappings (Wang et al. 2024c). Recent data-driven approaches, DL, offer promising 
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alternatives to improve the accuracy of energy consumption prediction. These 

approaches can model complex patterns and discover relationships in SLS processes 

(Qin et al. 2018). However, the current constraints of DL-based models are often 

associated with significant computational overhead (Cheng et al. 2017). The increased 

computational requirements for inference have posed challenges for edge device 

implementation and deployment (Chen et al. 2021). The high parameter count of deep 

Convolutional Neural Networks (CNNs) limits the usage of FPGAs in terms of 

processing on the edge. In order to overcome these challenges, a comprehensive 

framework for energy consumption prediction needs to be developed. Figure 3.1 

demonstrates the research framework for an energy consumption prediction and 

management system, covering three main topics: 1) data-driven energy prediction 

model including stages 1 and 2, 2) FPGA and lightweight model optimisation 

including stages 3 and 4, and 3) energy optimisation support through design-relevant 

parameter adjustment. Each stage is organised as follows:  

 

In the data collection and knowledge acquisition stage in Section 3.2.1, the image 

data of unique layers sliced from CAD models, energy-relevant data collected from a 

power meter, as well as design-relevant parameters from part designs and process 

planning are obtained. Image-based predictive modelling in Section 3.2.2 describes 

how the multi-scale feature fusion model can process the layer-wise image data, known 

as the teacher model when employing KD techniques. Upon completing the teacher 

model training, model compression in Section 3.2.3 describes the utilisation of KD 

techniques. Lightweight model deployment in Section 3.2.4 describes the 

deployment of the lightweight model. After training this lightweight model, the 

quantisation technique is employed to further compress the parameters of the student 

model to deploy on the targeted FPGA platform, followed by redesigning and 

configuring to the FPGA. Subsequently, the deployment and acceleration of the 

student model are accomplished. In Section 3.2.5, the final stage of the study includes 

an optimisation approach. These features and insights are integrated into another 

DNN model, integrating with design-relevant parameters. Using the Particle Swarm 

Optimisation (PSO) algorithm can identify the best parameter combinations and 

achieve optimal energy consumption.
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Figure 3.1 Framework for predictive modelling and energy consumption optimisation in SLS.
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3.2.1 Data Collection and Knowledge Acquisition 

Figure 3.2 illustrates the data obtained from the targeted SLS system. The dataset 

consists of three types of data including 1) layer-wise image data from sliced CAD 

models, 2) corresponding energy consumption on each unique layer, and 3) design-

relevant data to be optimised, collected from another set of printed prototypes. The 

data is categorised into three distinct types based on their sources: energy-relevant data, 

layer-wise image data, and design-relevant data, each presenting different data types 

and levels of detail. Specifically, energy-relevant data are collected from a power meter, 

and layer-wise images are derived from distinct layers of the sliced CAD model. These 

datasets are utilised to train the multi-scale feature fusion model, which can extract the 

image features with the most significant impact on the energy consumption of each 

layer. Additionally, design-relevant data were gathered from part design and process 

planning before fabrication, which is a critical aspect of the overall process. However, 

these data are not included in the energy predictive model. Instead, they play a 

significant role in the optimisation approach to determine the minimum energy 

consumption for the selected builds.  

 

 

Figure 3.2 Categorisation of data collected in the SLS process. 
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⚫ Data for Multi-scale Feature Fusion 

The dataset for DL-based modelling consists of layer-wise image data and 

corresponding energy consumption values. The image data come from the sliced files 

of 32 distinct CAD models, accounting for over 20,000 layered images. These images 

contain geometric information extracted from the CAD models. The energy 

consumption data are the unit energy consumption values for each unique layer, 

measured by a power meter, with the unit energy consumption per layer varying from 

4 to 200 Wh/g. In the case study, the image data are the model input, and the labels are 

the unit energy consumption of each layer. The historical data were gathered from the 

EOS P700 SLS machine with PA2200 nylon powder to assess its performance and 

energy consumption. Using Autodesk Netfabb AM analysis software, image data can 

be sliced and extracted from the CAD models of various printed prototypes. Figure 3.3 

illustrates the integration of 3D models and layer-wise images, derived from CAD 

models containing geometric information, in a real-world SLS scenario. In the case of 

building on CAD layers upon layers, CNN input was related to images on each layer, 

whereas the label data represented the corresponding layer-wise unit energy 

consumption. These images were inputted to the energy consumption for feature fusion 

and predicting the unit energy consumption. 

 

 

Figure 3.3 The sliced image data of a sample and the distribution of unit energy 

consumption (Wh/g) of one product. 
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In the preprocessing stage, both image data and corresponding energy consumption 

data will be processed. The first consideration is to observe and pre-process the 

collected image data. The removal of outliers within the energy-relevant data, such as 

extremely high and low energy consumption readings attributed to machine warm-up 

and cool-down, respectively, is applied. As a result of observing the input image 

dataset, it is necessary to remove some blank images, since they do not contain any 

useful information. This situation usually occurs in the first few images. Furthermore, 

the image datasets need to be resized and augmented to enhance the performance of 

the energy predictive model. In detail, the 128×128 pixels are extracted from the 

central region of the input images to minimise the impact on the significant features of 

the layer-wise images. These image data are also converted to grayscale images as the 

colour information does not influence the level of energy consumption. After 

completing the data preprocessing steps, the final datasets are integrated by combining 

energy-relevant data with image data. In this dataset, the energy-relevant data acts as 

the label for each corresponding image, which in turn represents a unique energy 

consumption value for a specific layer. In addition, when visualising the distribution 

of energy consumption, some anomalous data is always observed at the beginning of 

the data collection process, which is related to the pre-heating process. This data should 

be removed to avoid negatively affecting the performance of the model. After 

removing these blank images and the corresponding energy consumption at the 

preheating stages of the 3D printer, the Interquartile range (IQR) method is applied to 

detect and process the outliers again. 

 

⚫ Data for Optimisation Support 

Figure 3.4 illustrates the samples of the CAD design model to which the optimisation 

algorithms and DL were applied, thereby minimising the build energy consumption 

through an optimised combination of parameters. 
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Figure 3.4 The samples of build for optimisation. 

 

Table 3.1 and Table 3.2  summarise values of design-relevant parameters of three 

selected builds for optimisation, categorised into part-design and process planning 

parameters. This dataset with design-relevant parameters was defined by part 

designers and process operators. These parameters can be categorised into part-design 

and process planning parameters. Specifically, part-design parameters were 

established by designers according to the unique design requirements, whereas 

process-planning parameters were set by operators before the process, focusing on 

design and layout considerations. These parameters include aspects such as rotation 

and positioning, filling degree, part height and the quantity of parts. 

 

Table 3.1 The descriptions of part-design data. 

Name of 

Parameters 
Descriptions 

Build 

1 

Build 

2 

Build 

3 

Degree of Part 

Filling (%) 

The proportion of the actual volume 

versus the total volume of a single part 
12.03 17.59 23.10 

Part Ratio (WL) 

(%) 

The proportion of the length and width of 

a single part 
1.06 1.31 1.23 
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Name of 

Parameters 
Descriptions 

Build 

1 

Build 

2 

Build 

3 

Part Ratio (HL) 

(%) 

The proportion of the length and height of 

the single part 
0.61 1.68 0.44 

Part Ratio (WH) 

(%) 

The proportion of the height and width of 

a single part 
1.73 0.78 2.80 

Part Height (mm) The height of the part 106.51 188.5 40.83 

 

Table 3.2 The descriptions of process-planning data. 

Name of 

Parameters 
Descriptions Build 1 Build 2 Build 3 

Degree of Total 

Filling (%) 

The proportion of the 

actual volume versus the 

total volume of the build 

11.17 9.35 4.69 

Total Ratio (WL) 

(%) 

The proportion of length 

and width of the entire 

build 

0.55 0.53 0.49 

Total Ratio (HL) 

(%) 

The proportion of the 

length and height of the 

entire build 

0.54 0.82 0.17 

Total Ratio (WH) 

(%) 

The proportion of the 

height and width of the 

entire build 

1.02 0.64 2.87 

Bottom Area (cm2) The bottom area 2585.51 2546.88 1917.71 

Height (mm) The height of the build 371.02 570.68 107 

Num of Part The number of build 24 54 10 
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3.2.2 Image-based Predictive Modelling 

At the beginning of this stage, conventional modelling techniques are utilised, with a 

focus on CNNs. Subsequently, a series of image-based predictive models are 

integrated into an ensemble model to enhance the predictive performance for energy 

consumption from layer-wise images. Different models will be compared to identify 

the most effective and efficient performance.  

 

However, the traditional models fail to perform multi-scale feature fusion image data, 

particularly in predicting energy consumption by using layer-wise image data. There 

are two approaches to developing the multi-scale feature fusion model. As an initial 

attempt, a Feature Pyramid Network (FPN) constructs a hierarchical feature pyramid 

with features at multi-resolutions by exploiting contextual information at different 

scales across the entire network in a top-down manner (Lin et al. 2017). Considering 

the energy consumption influenced by layer-wise images, the Spatial Pyramid Pooling 

(SPP) module is adopted to enhance the capability to extract contextual information 

(He et al. 2014). For the energy consumption prediction in SLS, the multi-scale nature 

of part geometry will have an influence, so that SSP can generate features by pooling 

operations from the global perspective, which is key to understanding the complexity 

of the energy demand for the entire components.   

 

The U-Net architecture is introduced. U-Net combines features from image data at 

different scales and captures image information at diverse levels (Ronneberger et al. 

2015). In the SLS scenario, the encode-decoder architecture of U-Net avoids manual 

design on feature fusion. By using the skip connection mechanism, the high-resolution 

features can directly be transferred to the decoder, enhancing modelling by considering 

more local design features of layer-wise images such as holes and edges, which is 

essential to the energy consumption prediction. In addition, this architecture is suitable 

in scenarios with high annotation costs since it requires less annotated data. The 
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proposed architecture incorporates two modules: the  Asymmetric Convolution (AC) 

block (Ding et al. 2019) and the Convolutional Block Attention Module (CBAM) 

(Woo et al. 2018). This architecture effectively combines multi-scale contextual 

information. The skip connections in U-Net facilitate the integration of high-resolution 

features from earlier layers with low-resolution features from deeper layers. This 

improves the ability to capture details while maintaining a broader context preserves 

spatial information and improves localisation accuracy. 

 

3.2.3 Model Compression 

Existing DL-based models are limited by expensive computation and intensive 

memory requirements. It makes them unsuitable to be directly deployed on devices 

with limited memory resources or in applications demanding low latency. Model 

compression strategies utilising Knowledge Distillation (KD) and quantisation 

techniques are necessary for developing efficient and effective lightweight models for 

edge platforms.  

 

According to KD, the behaviour of a large teacher network trains and supervises the 

learning of a student model. This process effectively transfers knowledge while 

maintaining a lightweight structure through the proposed KD strategy. In the proposed 

methodology, the work focuses on exploring different KD strategies such as logit-

based KD, feature-based KD and hybrid KD with logit and attention-based knowledge. 

In detail, logit-based knowledge is regarded as the output of the teacher model i.e., 

prediction of energy values, which helps understand the relationship between input 

images and corresponding energy consumption. Feature-based knowledge represents 

the features at the intermediate layer of the teacher model, such as the edge or shapes 

of the layer-wise images. Relation-based knowledge is often the interaction between 

images or the combination of image features that lead to significant changes in energy 

consumption. Combining the scenario, there is no need for utilising relation-based 

knowledge to guide the student model. Firstly, considering energy consumption 

prediction, predicting energy consumption from layer-wise images is the priority rather 
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than the relationship between two successive layer-wise images. Secondly, the dataset 

does not include temporal information to support learning. Compared to it, logit and 

feature-based knowledge are more intuitive to this specific task. The work is finally 

established on the logit and feature-based distillation, guiding the student model to 

concentrate more on the response of the teacher model and the specific area of the 

image feature. Leveraging the attention mechanism can also improve the learning 

capability of the student model, especially in terms of intermediate interpretability and 

details on the sliced model, which could influence energy consumption.  

 

Parameter quantisation can reduce the number of bits required to represent each 

parameter, significantly reducing model complexity and computational demand 

(Choudhary et al. 2020). This method will be employed to further minimise the 

memory requirements and model complexity of the predictive model, making it 

suitable for the targeted FPGA platform. Combining KD and quantisation techniques 

enables the creation of lightweight and high-performing models, essential for 

deployment in environments with limited computational resources. 

 

3.2.4 Lightweight Model Deployment 

Before deploying on the targeted FPGA platform, the parameters of the student model 

are quantised to fit within the limited resources available in the FPGA. The 

quantisation technique plays a crucial role in reducing model complexity by 

approximating the representation of a DL model that uses floating-point numbers with 

one that uses low-bit width numbers. Quantisation results in the requirement for fewer 

bits to represent weights and biases in a CNN. These quantised parameters prevent 

storage and memory shortages and reduce computational complexity. In addition to 

parameter quantisation, the architecture of the student model needs to be redesigned 

to accommodate the on-chip resources and logic on the targeted FPGA platform. 

Specifically, this design includes optimising the algorithm, adjusting the data flow 

process and ensuring the compatibility between the student model and the targeted 

platform. 
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The student model can achieve faster prediction to obtain features and energy 

consumption on the targeted FPGA platform. Subsequently, these features will be 

integrated into a DNN, which utilises the PSO technique to optimise design-relevant 

parameters and minimise the energy consumption of printed prototypes.  

 

3.2.5 Optimisation 

The integration of PSO and DL performs as an optimiser, which optimises a set of 

design-relevant parameters to minimise the energy consumption of a prototype. These 

parameters incorporate design-relevant data on the level of the entire build, such as 

filling degree, part rotation and position, bottom areas, and total height. PSO plays a 

key role in iteratively providing optimal parameters to minimise energy consumption, 

thus evaluating the impact of these parameters on energy consumption. Upon reaching 

the minimum energy consumption values, the algorithm produces the optimal 

parameters corresponding to that minimum value. These optimal parameters are 

invaluable to part designers and process operators for establishing the most effective 

geometry and other key design selections, such as the optimal part ratio between length 

and width or part filling degree before the process. 

 

FPGA-based CNNs significantly enhance predictive analytics from image data derived 

from CAD models for AM energy consumption. During the offline training phase, 

predictive analysis is employed before the manufacturing process. The deep feature 

fusion architecture is implemented to predict and mitigate potential energy 

consumption increases. This pre-trained model transfers knowledge to the lightweight 

student model. Once applied to the FPGA platform, it accelerates the extraction of 

valuable information and predicts layer energy consumption from the lightweight 

model, integrating with design-relevant parameters such as part design and process 

planning. This setup allows the AM system to conduct swift layer-wise image 

processing, significantly speeding up the extraction of hidden and significant features 

by the CNN. This predictive model provides valuable insights from historical data, 
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optimising parameters across different designs, thereby identifying the lowest energy 

consumption based on these parameter combinations.  

 

This framework can contribute to an informed decision-making process in the design 

by providing these optimal parameter combinations to part designers and process 

operators. Based on outcomes from the energy prediction model, designers and 

operators can leverage these insights to create more energy-efficient designs in SLS. 

The framework integrates prediction and optimisation capabilities to enhance the 

energy efficiency of the targeted SLS. Furthermore, it demonstrates a data-driven 

approach to industrial energy management in SLS systems. 

 

3.3 Summary 

This chapter outlined the framework for developing energy consumption and 

management in an SLS system. The framework includes data collection and 

knowledge acquisition, predictive modelling and feature fusion, model compression 

and lightweight DL development, model deployment, and optimisation in terms of 

energy and design-relevant parameters. In the following Chapter 4 to Chapter 6, the 

detailed research methodology will be demonstrated, followed by significant findings 

and insights that can contribute to this proposed framework.  
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Chapter 4 Data-driven Modelling for Energy 

Consumption Prediction with Knowledge 

Distillation in SLS 

 

4.1 Introduction 

In the past decades, AM has shown its merits of reducing material and resource 

utilisation as well as tooling requirements. It has demonstrated the potential for energy 

conservation and sustainable production (Majeed et al. 2021). Advances in data 

sensing and collection technologies increase data availability in AM processes. The 

current development of more comprehensive energy modelling and management 

strategies is suitable for the dynamic working environment. With an ability to process 

substantial data volume and computational power, DL can process and discover 

valuable energy-relevant information and insights from data, which is critical to 

effective decision-making and optimisation. On the other hand, its modelling time is 

long and computationally expensive. Therefore, it is crucial to balance model 

compression and performance in fixed architecture models, which makes techniques 

such as KD essential. The research leverages the KD technique in balancing model 

performance and model complexity for edge deployment in AM energy management.  

 

This chapter is the preliminary step of the proposed framework. It involves applying 

the ensemble approach and logit-based KD techniques to develop the lightweight 

student model for predicting energy consumption by using layer-wise image data, 

laying the foundation for subsequent FPGA deployment and parameter optimisation. 

 

4.2 Overview of Knowledge Distillation-based Predictive 

Modelling 
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The proposed methodology employed a teacher-assistant model between teacher and 

student models. This KD initialisation is divided into three components: teacher 

ensemble, teacher assistant, and a distilled student model through KD, followed by a 

subsequent validation phase. To begin this process, a teacher ensemble was established 

to enhance the algorithmic performance of individual teachers. The teacher ensemble 

was trained independently by comprising three different CNNs. To bridge the capacity 

gap between the pre-trained teacher ensemble and student model, a teacher assistant 

model was employed, which could improve the generalisation ability of the student 

model. During the distillation process, the two student models that were not fine-tuned 

were learned from the teacher assistant, which was used to compare the performance 

of the proposed methodology. Following this, a case study based on an SLS system 

was conducted to demonstrate the feasibility and effectiveness of energy consumption 

prediction modelling. 

 

Figure 4.1 demonstrates the energy consumption prediction framework based on logit-

based KD and a teacher assistant model. The first step involved training multiple 

CNNs using layer-wise images and energy-relevant data to develop a baseline model. 

The second step developed an ensemble teacher model to improve the performance of 

individual CNNs. Subsequently, a teacher-assistant network was developed between 

the teacher ensemble and the student to bridge the capacity gap between models. 

Finally, the KD process was employed to transfer knowledge to shallow CNNs, which 

were then used to predict energy consumption.  
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Figure 4.1 Workflow diagram of the proposed methodology. 

 

4.2.1 The Strategy of Ensemble Approach 

The task is associated with feature extraction from the  layer-wise images, in which 

the image-based prediction model will be employed. For example, the architecture of 

CNNs is dedicated to processing image data and learning directly from the structural 

data without human intervention. It typically accepts input with three dimensions: 
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height and width of images and colour channels in RGB, while the colour channels 

can be neglected since they have less impact on energy consumption. Hence, the 

teacher leverages the single-channel image data (i.e., grayscale images) as the model 

input. However, a single model has less learning capability to perform image feature 

extraction, requiring a more robust and effective approach to the task. 

 

Superior predictive performance can be achieved by employing an ensemble of 

multiple learning algorithms rather than relying on any single learning algorithm alone. 

The primary objective of using an ensemble is to identify a hypothesis that may not 

exist within the hypothesis space of the individual models that constitute it. Ensembles 

tend to yield better empirical findings when there is significant variation among the 

models (Jing Yang et al. 2013). To effectively reduce variance, an ensemble strategy 

for Deep Neural Networks (DNNs) is proposed. Three different learning algorithms 

showed relatively poor prediction performance in the experiments. An ensemble can 

achieve improved performance by using diverse DL algorithms or varying 

hyperparameters. To enhance the overall performance of the teacher network and 

achieve diversity among different base learners, three different models were integrated 

into the experiment (El-Rashidy et al. 2020). Furthermore, incorporating more weak 

learners can negatively impact training and inference times. The stacking approach 

involves training a model to combine other models (models 1, 2 and 3 in this case 

study). The ensemble architecture is depicted in Figure 4.2. 

 



74 

 

Figure 4.2 Ensemble method in ML.  

 

The stacking approach involves training a combination of different models to integrate 

predictions from various learning algorithms. This integration is achieved by 

averaging the outputs of the models. An ensemble stacks multiple models, requiring 

that input data for each model experiences forward propagation. Consequently, 

computations become more time-consuming, and training times are extended. A 

unified soft label, derived from the outputs of multiple teacher networks, is used to 

guide the training of student models (Fukuda et al. 2017). Based on Equation (4.1), if 

𝒉 represents the soft label of the teacher, 𝑻 is the total number of the models, and 𝒘 is 

a set of weights, then the overall result can be expressed as:  

 

ℎ(𝑥) =
1

𝑇
∑ 𝑤𝑖ℎ𝑖(𝑥)

𝑇

𝑖=1

𝑤ℎ𝑒𝑟𝑒, 𝑤𝑖 ≥ 0, ∑ 𝑤𝑖 = 1

𝑇

𝑖=1

(4.1)
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The advantage of combining multiple models lies in their ability to reduce similar 

errors on the test set by averaging out errors from different models (Goodfellow et al. 

2016). According to published results, combining multiple models can balance bias 

and variance. This results in predictions that are less sensitive to specific training data, 

training strategies, or the randomness of individual training runs. 

 

Three different CNNs are selected and trained individually on the image dataset. Their 

performance is then evaluated on a test set. Following that, the ensemble model 

performance is evaluated through the integration of the three models. The ensemble is 

expected to outperform each model on the test set. Consequently, each teacher model 

analyses the data and generates predictions. The predictions are aggregated. Using 

these data and soft labels, the model is trained to achieve consistent performance across 

all teacher models. A distilled student model can be developed using labelled data for 

fine-tuning. 

 

4.2.2 Logit-based KD 

KD commonly typically employs a teacher-student architecture, where the large model 

serves as the teacher and the small model as the student. A simplified model may 

struggle with complex problems, and the training data may not be fully generalised. 

The teacher model’s knowledge can teach the student model how to generalise beyond 

the training data with additional available predictions. Additionally, soft labels can 

provide more information than hard labels, indicating the degree of similarity between 

classes. The loss function is defined in Equation (4.2) below: 

 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = −𝑇2 ∑ 𝑞𝑖
𝑇 log(𝑝𝑖

𝑇)
𝑁

𝑖
(4.2) 
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Here, 𝒒𝒊
𝑻 represents the logits generated by the teacher, 𝒑𝒊

𝑻 denotes the logits of the 

student model, and 𝑻  is a hyperparameter named temperature that controls the 

smoothness of the probability distribution. According to Equation (4.3), the loss 

𝑳𝒔𝒕𝒖𝒅𝒆𝒏𝒕 is the student's total loss, which is the sum of loss of soft label loss 𝑳𝒔𝒐𝒇𝒕 and 

hard label  𝑳𝒉𝒂𝒓𝒅, which is balanced by hyperparameters 𝜶 and 𝜷, where 𝜷 = (𝟏 − 𝜶). 

During distillation, the objective function comprises a distillation loss. 𝑳𝒅𝒊𝒔𝒕𝒊𝒍𝒍 , 

corresponding to the soft target and a student loss corresponding to the hard target 

𝑳𝒉𝒂𝒓𝒅. 

 

𝐿𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝛼𝐿𝑠𝑜𝑓𝑡 + 𝛽𝐿ℎ𝑎𝑟𝑑 (4.3) 

 

Equation (4.4) illustrates that the softened class probability distribution of the student 

model denoted as 𝑷𝒊
𝑻, which is influenced by the similarity of the student to the teacher. 

The key to KD lies in the design of the loss function, which includes common cross-

entropy losses: 𝑳𝒔𝒐𝒇𝒕 and 𝑳𝒉𝒂𝒓𝒅, both based on the soft target. By incorporating the 

hyperparameter 𝑻, soft loss 𝑳𝒔𝒐𝒇𝒕 quantifies the discrepancy between student model 

output and labels, using cross-entropy loss. Hard loss 𝑳𝒉𝒂𝒓𝒅 is the critical distillation 

loss, which measures the difference between the output of the student model and the 

output of the trained teacher model after distilling. 

 

𝐿𝑠𝑜𝑓𝑡= ∑ 𝑞𝑖
𝑇 log(𝑝𝑖

𝑇)
𝑁

𝑖
(4.4) 

 

The training data is input into both the teacher and student models, with the soft target 

being the softmax distribution generated by the teacher model.  

 



77 

4.2.3 KD with a Teacher Assistant  

The idea of employing a teacher assistant stems from multi-phase distillation 

approaches, as demonstrated in the studies from Mirzadeh et al. (2020), where self-

distillation has improved the accuracy of the base model (Mirzadeh et al. 2020). There 

is a potential for a model capacity gap when comparing a large DNN to the smaller 

one utilised by students, which can degrade the performance of the knowledge transfer. 

To facilitate effective knowledge transfer to student models, the introduction of a 

teacher assistant is suggested to manage the complexity of the model effectively. This 

approach involves reducing the structural differences between the student and the 

teacher ensemble, with network pruning and KD, directly compressing the energy 

consumption prediction model. The ensemble model trains students by using teacher 

assistants, rather than relying on a single, large teacher. The teacher ensemble may not 

possess the same level of expressiveness as students, so the teacher assistant is a 

smaller model with the same architecture. The teacher assistant can transfer teacher 

predictions that the student might otherwise fail to express. The teacher assistant is 

positioned at the intermediate level between the teacher ensemble and the student 

model. In comparison to the previous teacher ensemble model, the teacher assistant is 

engaged to match its performance while enhancing learning abilities. It is important to 

focus on softer targets to prevent any weakening of knowledge transfer from the 

teacher model to the student model. 

 

4.3 Experimental Design and Setups 

Employing multiple teacher models provides the student model with a diverse range 

of knowledge, potentially more beneficial than learning from a single teacher. The 

knowledge of large models, such as DNNS or ensembles of numerous models, is 

typically greater than that of small models, but this potential is sometimes 

underutilised. To assign probability distributions to numerous labels in DNNs during 

prediction tasks, a softmax layer is employed, outputting probabilities that reflect 

correlations among each class. However, the model assigns a lower probability to 

incorrect labels compared to the correct ones, leading to hard labels that do not account 
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for their prior knowledge. Students and teachers are given training data, with the 

student model generating a soft target based on the softmax distribution of the teacher 

model. This loss function includes the output of the student model’s softmax and the 

cross-entropy of the soft target at the same temperature. The multi-stage KD consists 

of three stages: 1) establishing the ensemble of teachers, 2) establishing the teacher 

assistant model, and 3) establishing the student model. Stage one involved training the 

teacher ensemble while ensuring soft labels are preserved. Model capacity gaps were 

reduced by a teacher assistant in stage two, which addressed structural differences 

between models.  

 

4.3.1 Experiment Setups 

Data preprocessing was performed before the experiment. All images were collected 

and resized to 128 × 128 pixels and converted to grayscale, which subsequently 

constituted the final dataset, with 70% allocated to the training set, 20% to the testing 

set and 10% to the validation set. The predictive modelling, based on the teacher-

student architecture, included a teacher ensemble, a teacher assistant, and a student 

model. The teacher ensemble was trained with three different CNN models to achieve 

optimal performance. All models utilised the same dataset to train the energy 

consumption prediction model. To validate the effectiveness and feasibility of the 

proposed KD-based approach, there were four groups of the experiment: 1) training 

each CNN individually with image datasets, 2) training the teacher ensemble, 3) 

training within the teacher-student architecture without a teacher assistant, and 4) 

training with the proposed approach. In Experiment 3 and Experiment 4, the other two 

CNNs served as student models for comparative analysis. 
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Figure 4.3 Workflow of model training and implementation for the proposed 

approach. 

 

Firstly, three CNN models were directly trained on the AM dataset to establish the 

baseline model. The role of CNNs was to extract features from layer-wise image data 

derived from CAD models. The unit energy consumption of each unique layer can be 

predicted more accurately when the model is more complex and extensive, leading to 

higher computational costs. Thus, a balance between model complexity and 

computational cost is essential. The number of parameters in each CNN was different. 

Model 1, the simplest, contained approximately 4.43 million parameters. With 

additional high-level convolutional layers, Model 2 and Model 3 had more than 8.76 

million and 10.68 million parameters, respectively. The three models were employed 

to train the ensemble model, aiming to achieve better results, but the ensemble could 

lead to a significant computational burden during training. The number of models in 

the ensemble was determined by the integrated model performance, typically an odd 

number was preferred (Liu et al. 2016; Troussas et al. 2020). Furthermore, the training 

time increased with the number of base models. Thus, three base models were selected 

for the ensemble. 
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Secondly, averaging combined the outputs of the three models in the top layer of the 

ensemble. The ensemble model had more parameters approximately 13.01 million, 

making it significantly more complex than the three individual models. Using hold-

out validation data, these weights could be optimised based on the predictions from 

each model, thereby slightly enhancing the ensemble performance. In the context of 

the teacher ensemble, a student could not learn complete knowledge from multiple 

teachers, leading to a decrease in model accuracy.  

 

Thirdly, the pruning technique reduced the parameter counts of the teacher ensemble 

while minimising accuracy losses. It aimed to eliminate a greater of the less relevant 

and redundant parameters. Weights are effectively set to zero through pruning based 

on their magnitude. By removing weights near zero or with low magnitude, the impact 

on the network is minimised. In addition, the model ensemble initiates with 50% 

sparsity (50% zeros in weight) and concludes with 80% sparsity, fine-tuning the pre-

trained teacher ensemble from the previous step. This experiment aimed to determine 

whether the model complexity affected the student’s final predictions. If so, an early-

stopping mechanism was implemented to mitigate this phenomenon.  

 

The final step utilised a teacher assistant model to mitigate the difference between 

teacher and student models, which was a pruned version of the teacher ensemble. The 

key to distillation relied on the loss function. The student output employed a softmax 

function to match the output of hard labels from the teacher model until the teacher 

model completed training. The temperature was incorporated into the softmax 

classifier of the completed teacher network, serving as a fitting target for the student 

network with the same temperature. Hyperparameter 𝜶 was introduced to determine 

the total loss function followed by the final training. It is recommended to set 𝜶 to 0.9 

and 𝑻 within the range of {3,4,5} (Huang and Wang 2017).  A distiller was constructed 

with the following configurations: a pre-trained teacher ensemble model, a student 

model for training, and a student loss function (𝜶 set to 0.9 and  𝑻 to 3). 
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4.3.2 Evaluation Metrics 

AM poses the challenge of consuming significant processing time, which contributes 

to increased energy consumption. The overall energy utilisation is highly dependent 

on the duration of the manufacturing process, as longer processing times typically 

result in higher energy demands. The energy consumption level can be evaluated by 

Specific Energy Consumption (SEC) (Wh/g) or unit energy consumption, denoted as 

𝑬𝑼, as shown in Equation (4.6), where 𝑬𝑻 and 𝑴𝑻 are total energy usage and mass of 

a total part, respectively. The energy consumption 𝑬𝑼 is determined by the proportion 

of power rate and process productivity, reflecting the efficiency of the energy used in 

the manufacturing process. 

 

𝐸𝑈 =
𝐸𝑇

𝑀𝑇

(4.6) 

 

The performance of the proposed method can be evaluated using three key metrics: 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Model 

Correlation Coefficient (MCC), which provide comprehensive insights into the 

accuracy and reliability of the model.  

 

The evaluation metrics of the predictive model involve RMSE and MCC. As shown in 

Equation (4.7), RMSE indicates the difference between the actual value 𝒂𝒕 and the 

predicted value 𝒑𝒕, which the low RMSE results in the high accuracy of the model 

performance. In Equation (4.8) and Equation (4.9), MCC reveals the correlations 

between the predicted and actual data obtained from the model, where �̅� is the mean 

value of predicted data, and �̅� is the mean value of the entire data. 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑝𝑡 − 𝑎𝑡)2

𝑁

𝑡=1

(4.7) 

 

𝑀𝐶𝐶 =
𝑆𝑃𝐴

√𝑆𝑃𝑆𝐴

(4.8) 

 

𝑆𝑃𝐴 =
∑ (𝑝𝑖 − �̅�)(𝑎𝑖 − �̅�)𝑖

𝑛 − 1
; 𝑆𝑃 =

∑ (𝑝𝑖 − �̅�)2
𝑖

𝑛 − 1
 ;  𝑆𝐴 =

∑ (𝑎𝑖 − �̅�)2
𝑖

𝑛 − 1
 (4.9) 

 

4.4 Results and Discussions 

 

4.4.1 Results of Baseline Models Training 

Figure 4.4 and Figure 4.5 illustrate the RMSE and MAE of three different mode CNN 

over 20 epochs. The RMSE and MAE of the teacher ensemble directly trained from 

image data in these two figures are significantly lower than others. At the start of 

training, the teacher ensemble has the second-lowest RMSE and MAE. These RMSE 

and MAE values decrease as the training. The ensemble approach thus improves 

energy consumption predictions and reduces errors as anticipated. The teacher 

assistant model is then pruned based on this teacher ensemble in the subsequent stage. 

 



83 

 

Figure 4.4 RMSE comparison of trained models in terms of CNNs and ensemble 

predictions. 

 

 

Figure 4.5 MAE comparison of trained models in terms of CNNs and ensemble 

predictions. 
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4.4.2 Results of KD with Teacher Assistant and Ensemble Teacher 

Model 

 

Table 4.1 Comparative model performance in energy consumption prediction in 

baseline and ensemble model. 

Model No. RMSE (Wh/g) MAE (Wh/g) 

1 11.61 9.01 

2 10.05 6.88 

3 12.72 12.03 

Ensemble 9.94 6.72 

 

Table 4.1 highlights that the ensemble model outperforms with the lowest values of 

9.94 Wh/g for RMSE and 6.72 Wh/g for MAE. Experimental results are detailed in the 

subsequent contents. These findings show that three different prediction models yield 

relatively poor prediction performance. To enhance the overall performance of the 

teacher network and to contribute to diversity among the weak learners, three different 

models were integrated into the ensemble. 

 

Table 4.2 shows that the ensemble method leads to high computational demand. The 

KD technique effectively balances the trade-offs between performance and model 

complexity. KD-based approaches aim to reduce the model complexity while 

maintaining significant performance. Observing findings from the two experiments in 

Table 4.2, weak CNNs correspond to a reduction in model performance compared to 

the ensemble, thereby highlighting the advantage of ensemble architecture. The 

ensemble model typically outperforms any individual models, as it combines weak 

learners to reduce the variance, optimising the model output. Additionally, Table 4.2 

demonstrates that adding high-performing ensemble members can mitigate errors and 
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optimise error rates. In terms of knowledge derived from diverse data in the AM 

dataset, multiple-teacher models offer superior guidance compared to a single-teacher 

model. The teacher network integrates and synthesises various knowledge 

representations from individual teacher models after an ensemble prediction. Larger 

models with more parameters, tend to perform better within the ensemble. Though 

more effective, the ensemble model demands more computation, leading to longer 

prediction times during deployment.  

 

Table 4.2 Comparative model performance analysis: baseline, ensemble and 

teacher assistant models. 

Experiment 

No. 

Teacher 

Model 
#Params  

Model 

Size 

(MB) 

Training 

Time per 

epoch (s) 

RMSE 

(Wh/g) 

MAE 

(Wh/g) 

Experiment 

1 

1 4.42M 12.20 101 11.61 9.01 

2 8.77M 49.12 184 10.05 6.88 

3 10.68M 87.74 179 12.72 12.03 

Experiment 

2 

Ensemble 13.01M 149.06 259 9.94 6.72 

TA / /  90 18.14 11.08 

 

In Experiment 1, with an increase in the number of layers in the CNNs, the RMSE and 

MAE values for Model 1, Model 2 and Model 3 exhibit variations. Additionally, 

training these models on AM data demands a significant amount of training time. 

Model 3 requires 179 seconds per epoch, compared to Model 1 which requires 101 

seconds. The ensemble model shows a high level of computational complexity due to 

the large number of parameters involved, as evidenced by its size of approximately 

13.01 million parameters, which requires a longer training time of 259 seconds per 

epoch. This results in a longer training time of 259 seconds per epoch. In Experiment 

2, the RMSE and MAE of the teacher ensemble are significantly lowered to 9.94 Wh/g 
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and 6.72 Wh/g, respectively. To improve the generalisation ability of the student model, 

a teacher assistant distils and simplifies information from the teacher ensemble. 

Compared to the ensemble model, the teacher assistant model features a marginally 

lower error rate. This network achieved faster training time and minimised the error 

between the student and the teacher ensemble through the pruning process. Increasing 

the number of layers in the final CNN also limits the applicability of the ensemble 

model in real-world deployment scenarios. Thus, a pruning approach is employed to 

compress the model complexity thereby reducing training time. This pruning strategy 

may negatively affect model performance, potentially impacting the final performance 

of the distilled models, despite being designed as a simplified version of a pre-trained 

teacher ensemble. 

 

Table 4.3 Illustration of model performance in terms of distilled student models.   

Experiment 

No. 

Student 

Model 
#Params  

Model 

Size 

(MB) 

Training 

Time (s) 

RMSE 

(Wh/g) 

MAE 

(Wh/g) 

Experiment 

3 

Distilled 

student A 
1.19M 1.94 95 9.14 5.48 

Distilled 

student B 
2.20M 3.72 110 9.56 6.16 

Experiment 

4 

Distilled 

student A 
1.19M 1.94 98 9.03 5.30 

Distilled 

student B 
2.20M 3.72 106 7.39 3.77 

 

According to Table 4.3, Experiment 3 was conducted without incorporating a teacher 

assistant as an intermediate stage between the teacher ensemble and the students. As 

parameter counts increased, Student A and Student B in different architecture, which 

were not fine-tuned, outperformed the ensemble teacher model while maintaining 
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faster training time. Model size exceeds expectations when compared to models 

developed through independent training. Distilled student models offer advantages 

over independently developed ensemble models, particularly in terms of training time 

and model size. In Experiment 4, a teacher assistant model was employed. The 

experimental results presented in Table 4.3 indicate that single models exhibit 

significantly higher error rates compared to the ensemble. Complex CNNs are more 

effective at meeting the high predictive demands of image data.  

 

Figure 4.6 Comparative RMSE analysis of distilled student model A and B with 

Original model. 

 

Figure 4.6 and Figure 4.7 illustrate an overall downward trend in the pattern. The 

RMSE for model A is 9.29 Wh/g, while the MAE for model B is 10.06 Wh/g. 

Following the initial training of the first two models, both the teacher assistant model 

and direct training employing KD were subsequently applied. The employment of TA 

to Model A results in a 2.8% reduction in its RMSE. A similar pattern can be observed 

in Model B with a significant reduction of 26.5% in RMSE values. The RMSE value 

for Model A decreases from 5.727 Wh/g to 5.3 Wh/g, while that of Model B decreases 
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from 6.91 Wh/g to 3.77 Wh/g, when employing the teacher assistant network. These 

findings indicate that the knowledge of the teacher model can effectively transfer to 

the student, which is more capable of generalisation than the original student model. 

Additionally, employing a teacher assistant model between teacher and student models 

could bridge the model capacity gap, which achieves a level of performance of both 

teacher and student models.  

 

 

Figure 4.7 Comparative MAE analysis of distilled student model A and B with 

Original model. 

 

An additional experiment has been conducted, incorporating process parameters 

within the model. Within the predictive model framework, these process parameters 

are integrated with part geometry characteristics including the maximum and 

minimum values for dispenser speed, recoater speed, hatch power, hatch speed, and 

hatch width. Table 4.4 summarises the main findings of introducing the process 
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parameters as the experimental data. The results indicate a marginal difference in 

predictions when comparing models that incorporate only part geometry versus those 

that combine part geometry with process parameters. This marginal difference may be 

attributed to the slight variations in process parameters across builds, as well as the 

relatively minor influence of these parameters on unit energy consumption.  

 

Table 4.4 Comparative analysis of experimental results based on geometry 

features and process parameters.  

 RMSE (Wh/g) MAE (Wh/g) 

 Model A Model B Model A Model B 

Part geometry 9.03 7.39 5.30 3.77 

Part geometry + process parameters 9.08 7.64 5.41 2.85 

 

4.4.3 Results of Energy Consumption Prediction with Distilled 

Student Models by Using KD 

The results depicted in Figure 4.8 and Figure 4.9 correspond to the two student models, 

Model A and Model B, after the KD process. Model A shows a mean unit energy 

consumption of 9.89 Wh/g, with values ranging from 2.64 Wh/g to 37.63 Wh/g and a 

standard deviation of 6.70 Wh/g. The actual unit energy consumption is 11.89 Wh/g, 

so the prediction of Model A is close to that of the actual value. On the other hand, 

Model B has a mean unit energy consumption of 16.66 Wh/g, ranging from 6.67 Wh/g 

to 77.74 Wh/g with a standard deviation of 11.61 Wh/g. This result indicates that the 

prediction of Model B has a greater variability. Both models provide reasonable 

accurate predictions of energy consumption based on the layer-wise image data after 

employing the proposed method. However, predictions in Model A are more consistent 

and closer to the actual energy consumption, making it more compatible and reliable 

for the practical energy predictions. 
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Figure 4.8 Unit energy consumption prediction accuracy for model A. 

 

 

Figure 4.9 Unit energy consumption prediction accuracy for model B. 
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Improvement in the performance of the teacher ensemble enables it to provide more 

effective supervision to the student model, serving as a superior predictor. However, 

Since the architecture of the teacher ensemble becomes increasingly complex, the 

student model may not be able to fully learn its predictions due to the gap between 

model capacity. Therefore, a teacher assistant is employed to mitigate this model 

capacity, bridging the teacher ensemble and the student model, resulting in the desired 

performance. Utilising soft labels derived from the teacher ensemble, the TA plays a 

critical role in mitigating errors according to Experiments 3 and Experiment 4 in Table 

4.3. A second observation from Figure 4.6 and  Figure 4.7 is that the employment of 

the teacher assistant model enhances the outcomes in comparison to a distilled student 

model without a teacher assistant.  

 

Despite the limitations arising from the reduced number of variables in the student 

mode, the soft labels provided by teachers are crucial in mitigating these issues. 

Employing student models on training sets yields comparatively high performance. 

Differently from other compression techniques, the proposed KD-based approach 

implements a multi-step framework that transfers critical knowledge from a complex 

teacher model to a simpler student model via a teacher assistant model, considering 

both model complexity and performance. As part of such a teacher and student 

architecture, the knowledge extracted from the teacher is transferred to the student 

model while minimising error. The distilled student model shows degraded 

performance due to the large structural difference between the teacher ensemble 

network and the student network. 

 

4.5 Summary 

This chapter introduces a data-driven approach for energy consumption prediction by 

using KD. It aims to establish a predictive model by using layer-wise images obtained 

from a targeted SLS system. Specifically, this approach leverages CNNs to extract 

valuable features that impact the energy consumption of the unique layer. These 

features are readily extracted using conventional data analytics. At this stage, the 
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results are deemed acceptable. KD aims to compress the model, making it suitable for 

the deployment environment. Consequently, the next stage offers substantial potential 

for advancing the optimisation of the proposed architecture that is designed for 

deployment and acceleration. This enables a specialised edge platform to be equipped 

with efficient DL models while minimally affecting performance. However, there is 

scope for further enhancement in energy prediction by image data and optimisation 

based on the algorithm and model architecture in the subsequent research since the 

ensemble approach has an oversimplified feature fusion capability, which is less 

efficient for more complex image features. Besides, TA with pruning technique lost 

critical parameters leading to the reduced performance of student models. In the next 

chapter, the research focuses on leveraging FPGAs and lightweight models after KD 

for predictive modelling in the targeted AM system. 
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Chapter 5 Leveraging FPGAs and 

Lightweight Neural Networks for Predictive 

Modelling in SLS 

 

5.1 Introduction 

This chapter explores predictive modelling using the lightweight model derived from 

the KD for energy consumption prediction. Furthermore, this chapter discusses the 

deployment of the lightweight model on FPGAs. The study of energy consumption 

prediction from design information in AM systems faces two main challenges: 

accurately capturing features from layer-wise images and efficiently integrating these 

features into predictive models at different levels. A multi-scale feature fusion model 

can address these challenges. It overcomes the limitations of traditional data-driven 

approaches for learning complex, design-relevant datasets acquired from the SLS 

system. Energy consumption prediction can be significantly improved by using multi-

scale feature fusion techniques and continuous learning capability.  

 

5.2 Integration of FPGAs and Lightweight NNs for 

Predictive Modelling in SLS 

 

5.2.1 Multi-scale Feature Fusion for Energy Consumption Modelling 
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Figure 5.1 Detailed workflow of FPGA-CNN integration for predictive energy 

modelling. 
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Image data and corresponding energy consumption data were pre-processed for 

analysis. Specifically, the 128×128 pixels were extracted from the central region of the 

input images to minimise the impact on the significant features of the layer-wise 

images. It is essential to remove blank images from the image dataset since they lack 

useful information, which indicates the process is idle or warming up. In addition, it is 

observed that anomalous data are present after visualising the energy consumption 

distribution. The anomalous values in datasets represent the process in the preheating 

or cool-down process, which should be removed to prevent negative effects on the 

model performance. The interquartile range method was utilised to detect and process 

any remaining outliers in energy consumption. 

 

The proposed architecture for energy consumption prediction leveraged the traditional 

Feature Pyramid Network (FPN) architecture (Lin et al. 2017), which combined the 

Spatial Pyramid Pooling (SPP) module (He et al. 2014) and  EfficientNet as a backbone. 

Subsequently, a feature pyramid was utilised to extract the initial features of the model. 

The extracted feature maps were combined with 1×1, 2×2 and 4×4 pooling layers to 

integrate the feature maps across different layers. In addition, a 1×1 convolutional 

layer reduced channel numbers while preserving the critical feature information. 

Finally, each processed feature map was up-sampled to its original dimensions, and 

the up-sampled feature maps were concatenated with the original feature maps along 

the channel dimension to create the feature representation needed for training the 

student network. 

 

5.2.2 Feature-based KD Strategy 

According to Romero et al. (2015), feature-based knowledge was initially utilised to 

improve the training of student networks in the FitNet study (Romero et al. 2015). It 

is shown in Equation (5.1) that the distillation loss involves intermediate features, 

where 𝒇𝒕(𝒙)and 𝒇𝒔(𝒙) are the intermediate features of teacher and student networks, 

respectively. When two networks do not have the same shape, two transformation 

functions 𝜱𝒕(𝒇𝒕(𝒙))  and 𝜱𝒔(𝒇𝒔(𝒙))  are employed. The similarity function 𝓛𝑭  is 
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determined by comparing the feature maps of teacher and student networks (Gou et al. 

2021). 

 

𝐿𝐹𝑒𝑎𝐷(𝑓𝑡(𝑥), 𝑓𝑠(𝑥)) = ℒ𝐹 (𝛷𝑡(𝑓𝑡(𝑥)), 𝛷𝑠(𝑓𝑠(𝑥))) (5.1) 

 

To accurately match teacher and student representations of features, further 

investigation is needed into the significant difference in size between the hint layer and 

the guiding layer (Gou et al. 2021). The feature-based KD technique is employed to 

enable student networks to learn knowledge from teacher networks. It focuses on 

knowledge transfer through the intermediate layers of both networks. However, the 

difference in feature scales between the two different networks leads to additional 

linear matching in the distillation process. It is difficult to distil feature information 

when teacher and student networks are not in the same architecture.  

 

Smooth L1 loss reduces the sensitivity to outliers in the data due to its balance between 

Mean Squared Error (MSE) and Mean Absolute Error (MAE), as shown in Equation 

(5.2). 

 

𝐿𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑓𝑡(𝑥), 𝑓𝑠(𝑥)) =
1

𝑁
∑ ∑ 𝜙(𝑓𝑡(𝑥), 𝑓𝑠(𝑥))

𝑀

𝑗=1

𝑁

𝑖=1

(5.2) 

 

where 𝝓(𝒙) is defined as: 

𝜙(𝑥) = {

1

2
𝑥2      if |𝑥| < 1

|𝑥| - 
1

2
     otherwise.

(5.3) 
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A loss value less than this parameter should be estimated using the MSE. Otherwise, 

the MAE is calculated. With larger loss values, the MAE mitigates the impact of 

outliers, resulting in a more balanced model. For smaller loss values, MSE is used to 

maintain a quadratic function near the centre. 

 

The concatenated feature maps provided by the SPP module were used as features to 

train the student network. Notably, the Smooth L1 loss can be applied in the context 

of feature-based KD by considering both ground truth labels (task-specific loss 𝑳𝒕𝒂𝒔𝒌) 

and the proposed architecture as a teacher network distillation loss ( 𝑳𝒅𝒊𝒔𝒕𝒊𝒍𝒍 ), 

demonstrated in Equation (5.4) and Equation (5.5). 

 

𝐿𝑡𝑎𝑠𝑘 = 𝐿𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑓𝑡(𝑥), 𝑦) (5.4) 

 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = 𝐿𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑓𝑡(𝑥), 𝑓𝑠(𝑥)) (5.5) 

 

Equation (5.6) sums up the losses (𝑳𝒕𝒐𝒕𝒂𝒍), where 𝛼 +  𝛽 = 1: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∙ 𝐿𝑡𝑎𝑠𝑘 + 𝛽 ∙ 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (5.6) 

 

5.2.3 FPGA-based Prediction Model Implementation 

 

⚫ Student Model for Processing Image-based Data 

In the context of deploying on a compact computing platform, the student model 

depicted in Figure 5.2 exhibits a reduced scale in complexity compared to its teacher 

model. This architecture comprises two convolutional blocks and two fully connected 
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layers, accompanied by a single output layer. The student model demonstrates 

enhanced efficiency on smaller computing platforms due to its smaller size while 

preserving sufficient structural integrity to capture the hidden features of the image 

data. Employing two convolutional blocks and two fully connected layers, 

complemented by an output layer, allows the student model to concentrate on the most 

important features of the data and predict energy consumption. Consequently, the 

student model generates a reduced number of weights and biases within its 

convolutional and fully connected layers, compared to the teacher model. By 

employing the proposed feature-based KD technique, the student model may exhibit 

compromised generalisation ability in comparison to the teacher model.  

 

 

Figure 5.2 Student model architecture overview. 

 

⚫ CNN Architecture on the Targeted FPGA Platform 

Figure 5.3 shows the redesign of the student network for the targeted FPGA platform. 

The parameters of the distilled student network are further quantised to fit the FPGA 

platform. Input image data and CNN parameters are stored in multiple Block Random 

Access Memories (BRAMs) instead of a traditional buffer module. Using Vivado IP 

cores, these BRAMs integrate into the FPGA design, facilitating access to the 
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parameters such as weights and biases crucial for convolutional operations. It is 

unnecessary to add intermediate buffers thereby leading to a reduction of latency and 

energy consumption. The parallel processing capabilities of the FPGA are leveraged 

in convolution operations. The design efficiently manages convolution and pooling 

layers through loop unrolling, which optimises both operations by adapting to 

predefined sizes. 

 

 

Figure 5.3 Block diagram of a CNN designed for FPGA deployment and 

acceleration. 

 

A Finite State Machine (FSM) simplifies the workflow of control and computation 

phases of a CNN by controlling the sequence of operations. In energy-sensitive 

environments where consistent performance is critical, this approach minimises 

complexity and ensures reliability. Convolutional layers integrate seamlessly with max 

pool layers, followed by ReLU activation, and fully connected layers. By integrating 

these components, the minimised latency can be realised, significantly reducing power 

consumption. The design eliminates the need for intermediate buffers and directly 

utilises BRAM for instant access to the weights and biases of the CNN, thereby 

reducing the convolution process to an efficient Multiply-Accumulate (MAC) 

operation. The convolutional layer processes the input directly to the max pooling layer, 

followed by ReLU activation and finally through the fully connected layer.  
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During convolution, input data are multiplied by the weights of their corresponding 

filters, and then the results, along with biases, are summed. CNNs perform 

convolutional computations using MAC operations. Convolution is performed by 

sliding the convolution kernel (or filter) over the input data and multiplying it with the 

data at each position according to a specific pattern. The filter (or kernel) slides over 

the input data, multiplying its elements with the covered input data elements using a 

small weight matrix. A complete feature map is generated by accumulating each 

multiplication result into a single output value across the entire input. Figure 5.4 

demonstrates the layout of MAC operation in the convolutional layer when being 

accomplished in FPGA.  

 

 

Figure 5.4 Fundamentals of convolutional operation within CNNs. 

 

 

Figure 5.5 Structural architecture of a convolutional block in CNNs. 
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The sliding window technique allows convolutional kernels to be created with a very 

low memory bandwidth requirement. Figure 5.5 shows the convolution process, 

highlighting how each pixel is stored in FPGA memory for multiple uses.  In this 

scenario, each filter involves 𝑛  multiplications followed by 𝑛 − 1  additions. As the 

windows sliding applies over the image, output feature maps are generated by 

repeatedly calculating the dot product of 5×5 input data with 5×5 filter parameters 

(weights and biases). This process involves storing input data in a buffer that processes 

data within the convolutional layer. Multiple sliding windows, each representing a 

convolution operation, are moved over the buffer in parallel to extract local features. 

Convoluted feature maps are the output of each sliding window.  

 

 

Figure 5.6 Detailed structure of a 5×5 convolution operation including 

multiplications and accumulations. 
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Figure 5.6 demonstrates that multiple sliding windows and convolution operations are 

parallelised, allowing simultaneous processing of data regions. The networks then 

combine information from all feature maps at this layer for use in subsequent layers 

by aggregating the outputs of all convolution operations. 

 

 

Figure 5.7 Maxpooling layer implementation in CNNs. 

 

Comparatively, the max-pooling module selects the maximum value from the four 

input weights and determines the output based on this maximum value. If the value is 

zero, output the original value. In the ReLU module, the function is simply computed 

as 𝒇(𝒙) = 𝐦𝐚𝐱 (𝟎, 𝒙). Figure 5.7 illustrates the operations of the maxpooling module. 

 

5.3 Experimental Design and Setups 

 

5.3.1 Experiment Setups 

 

⚫ Deep Learning-based Energy Consumption Prediction Model 

This study started by employing an FPN and SPP architecture to model unit energy 

consumption on the layer level, leveraging image-based features. A significant 

advantage of the proposed architecture was its capability for multi-scale feature fusion. 

In the initial stage, layer-wise images were input into the proposed architecture. The 
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multi-scale feature fusion model served as the teacher model, which guided the 

training process of the student model. To evaluate the performance of the proposed 

model, it was compared against conventional image-based models.  

 

⚫ Lightweight Model through Feature-based Knowledge Distillation 

The role of the KD technique was to compress the complex model and transfer the 

generalisation capacity to obtain the smaller, simpler model. The KD shows its merits 

in reducing complexity and computational requirements to enhance applicability for 

acceleration on the targeted FPGA platform. The teacher model in the proposed 

methodology referred to a combined architecture including FPN and SPP modules for 

multi-scale feature fusion, while the student model network was a CNN architecture. 

In this experiment, the logit-based KD strategy was compared to identify the 

effectiveness of the feature-based KD strategy. After the KD process, the student was 

quantised to meet the resource requirements of the targeted FPGA platform.  

 

⚫ FPGA-accelerated Lightweight Model Development 

After KD and quantisation, the student model was accelerated by the targeted FPGA 

platform. The Xilinx ZYNQ-Z2 development board as shown in Figure 5.8 is used in 

this experiment to implement 13300 programmable logic elements and 220 Digital 

Signal Processing (DSP) units. The simulation was conducted using CNN functional 

modules, including buffers to store input pixels and calculations to process convolution 

operations, which were then inputted into Vivado for synthesis based on resource 

allocation, time constraints, and routing considerations. 
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Figure 5.8 PYNQ-Z2 as the targeted platform. 

 

5.3.2 Evaluation Metrics 

 

Table 5.1 Evaluation metrics. 

Evaluation metrics Equations 

Root mean squared error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑝𝑡 − 𝑎𝑡)2

𝑁

𝑡=1

 

Mean absolute error (MAE) 𝑀𝐴𝐸 =
∑ |𝑝𝑡 − 𝑎𝑡|𝑁

𝑡=1

𝑁
 

Model correlation coefficient (MCC) 

𝑀𝐶𝐶 =
𝑆𝑃𝐴

√𝑆𝑃𝑆𝐴

 

𝑆𝑃𝐴 =
∑ (𝑝𝑖−�̅�)(𝑎−�̅�)𝑖

𝑛−1
; 

𝑆𝑃 =
∑ (𝑝𝑖−�̅�)2

𝑖

𝑛−1
 ; 𝑆𝐴 =

∑ (𝑎𝑖−�̅�)2
𝑖

𝑛−1
 

 

Table 5.1 shows the equations for calculating RMSE and MAE. Notice that 𝒂𝒕 is the 

actual value, and 𝒑𝒕 is the predicted value based on the model. In addition to measuring 

the magnitude of error, both evaluation metrics can be used to diagnose variations in 

error in a set of predictions. Equations are provided for calculating RMSE, MAE and 
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MCC. It has been observed that the actual value differs from the predicted value 

resulting from the model. Since both evaluation metrics measure the magnitude of 

error in predictions, they can be used to diagnose error variations. Besides, MCC 

measures the correlation between actual values and predicted values on a range of -1 

to 1 from negative to positive impact. As for FPGA, several performance metrics 

incorporate throughput, latency, resource utilisation and power consumption. 

 

5.4 Results and Discussions 

 

5.4.1 Performance of Teacher Model  

This study first explored the potential for compressing DL algorithms, particularly 

CNNs, to predict energy consumption in AM. This study analyses layer-wise image 

data, focusing on design-relevant information to inform the prediction process.  

 

Table 5.2 Comparative analysis of benchmarks and proposed CNN on AM data 

training performance. 

 RMSE (Wh/g) MAE (Wh/g) MCC 

MobileNet-V1  3.95 2.17 0.73 

MobileNet-V2  3.22 1.33 0.92 

EfficientNet  3.98 3.02 0.61 

ShuffleNet  4.46 3.35 0.67 

SqueezeNet  9.73 8.92 0.77 

Vanilla CNN (6 layers) 3.71 2.9 0.81 

Proposed Architecture (FPN+ SPP) 2.87 1.74 0.78 
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Table 5.2 compares the various lightweight network architectures, evaluating model 

correlation with MCC and precision with RMSE and MAE. The proposed multi-scale 

feature fusion architecture leverages EfficientNet as the backbone and shows its merits 

in efficiency and accuracy. It has the lowest RMSE (2.87 Wh/g) and the second-highest 

MAE (1.74 Wh/g). Additionally, it has a moderate MCC of 0.78, which indicates that 

it is very robust in capturing potential trends in the data. The findings reveal the 

importance of the proposed methodology, identifying the advanced ability of an 

effective balance in terms of accuracy and efficiency. The integration of the FPN and 

SPP module in the proposed architecture effectively captures the hidden multi-scale 

features from the layer-wise images, benefiting from feature fusion and predictive 

modelling. 

 

Table 5.3 Comparative analysis of benchmarks and proposed CNN based on 

FLOPs and parameters. 

 FLOPs Params 

MobileNet-V1 11.82M 3.21M 

MobileNet-V2 103.97M 2.21M 

EfficientNet 8.27M 739.5K 

ShuffleNet 22.83M 76.96K 

SqueezeNet 77.18M 722.69K 

Vanilla CNN (6 layers) 101.49M 4.27M 

Proposed CNN 15.23M 272.53K 

KD student 1.71M 19.62K 

 

As a major component of the methodology, a relatively large, comprehensive multi-

scale feature fusion model is trained and then a KD process to transfer its knowledge 

to a smaller, more deployable student model. This process involves reducing larger 

network parameters while preserving valuable information. Consequently, the smaller 

model maintains a similar level of performance despite having fewer parameters. The 

advantage of this model is that it is lighter, more flexible, and easier to deploy. Based 
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on the results, it can be concluded that the simplified student model has reduced 

complexity and fewer parameters but maintains a similar level of accuracy as the 

teacher model. Table 5.3 compares the FLOPs and the number of parameters of the 

student network after the KD strategy and the existing lightweight network. The results 

show that the student model with feature-based KD has the lowest number of 

parameters and a reduced number of FLOPs. In contrast to the direct design of a new 

architecture, the feature-based KD involves training a smaller network based on the 

knowledge from the teacher network, which achieves robust performance with a 

significantly reduced number of parameters. This makes it an ideal option for 

deployment on edge platforms such as FPGAs, where efficiency and low resource 

consumption are crucial.  

 

5.4.2 Results of KD Strategies 

The findings in Table 5.4 indicate that feature-based KD shows its effectiveness in 

capturing complex patterns through advanced feature utilisation. Although there is a 

similar pattern in the logit-based KD strategy with a lower mean error, potentially 

leading to overfitting due to the increasing variability. Despite its simplicity and low 

computational requirements, a common 2-layer CNN that is not distilled has poor 

accuracy and consistency.  

 

Table 5.4 Effectiveness comparison of knowledge distillation variants in terms of 

plain, logit and feature-based strategies. 

 RMSE (Wh/g) MAE (Wh/g) MCC 

Plain (2-layer CNN) 3.85 3.39 0.74 

Logit-based KD 4.41 3.26 0.74 

Feature-based KD 3.63 2.81 0.75 
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Figure 5.9 Comparative predictive performance of teacher, distilled student and 

original student models. 

 

Figure 5.9 illustrates a comparison of the prediction performance of the proposed 

multi-scale feature fusion architecture (teacher model), the student after-distillation 

process, and the original two-layer CNN that is not distilled. It can be observed that 

the changes in energy consumption values are significant because the original student 

model has less generalisation ability to the new and unpredicted data. While employing 

the KD, the trend of value tends to be smoother and nearly matches that of the actual 

value. According to the previous results, the KD process has shown its merits. 

 

5.4.3 Performance of Implementation of FPGA-CNN  

Table 5.5 and Table 5.6 show the resource allocation and power consumption. Analysis 

reveals that logic and computation-intensive tasks in FPGA deployment require a 
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significant number of LUTs and DSP modules. However, FFs and I/O modules are 

underutilised at 6% and 21%, respectively, suggesting the need for additional 

functionality or interface complexity for optimisation. This study indicates that 

dynamic usage accounts for the majority of power consumption at 68%, with signal 

and DSP modules contributing to the highest percentage at 35% for both. This result 

suggests a need for improved power management strategies. There is potential for 

improving FPGA designs, especially in the areas of power and resource management.  

 

Table 5.5 Synthesis resource utilisation report. 

 Available Utilisation Utilisation % 

LUT 15664 53200 29 

FF 6363 106400 6 

LUTRAM 120 140 / 

DSP 104 220 47 

I/O 26 125 21 

 

Table 5.6 Power utilisation metrics 

 Resource Power Consumption (W) 

Dynamic (68%) 

Clocks 0.017 (7%) 

Signal 0.081 (35%) 

Logic 0.051 (22%) 

DSP 0.080 (35%) 

I/O 0.001 (1%) 

Static (32%) PL static 0.108 (100%) 

 

With limited resources in the targeted FPGA deployment and acceleration, the design 

must be optimised to meet these constraints. KD can produce a simplified CNN version 

that maintains the original model’s performance while meeting FPGA resource 
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constraints. These calculations can be significantly improved by utilising an FPGA 

platform. The parallelism of FPGA shows its merits in processing large-scale 

convolution operations. The integrated structure is used, integrating the different layers 

and functions of a CNN rather than treating them as separate modules. The results 

indicate that the data transfer between different layers of the CNN can be performed 

efficiently inside the FPGA, reducing the latency and energy consumption associated 

with data transfer. Besides, the integrated structure simplifies the CNN architecture, 

reducing the complexity of the interface between different modules. With low latency 

and parallel processing capabilities, FPGAs are ideally suited to handle large volumes 

of data effectively and analyse in real-time. In AM processes, various sensors monitor 

the operation of the machine, including the consumption of energy. FPGA devices 

process this data rapidly and analyse it using CNN models. Based on patterns and 

trends influencing the consumption of energy, these models can identify energy-

intensive layers in manufacturing processes.  

 

Part designers and process operators are expected to consider the energy consumption 

associated with specific parameter settings regarding part design and process planning. 

These parameters play an important role in effective AM design. The FPGA platform 

contributes to offering design and production strategies, enabling the design process 

more energy efficient. Different from traditional processing methods, the FPGA 

platform can potentially reduce the latency of image processing and feature fusion in 

the future, which is critical for handling large amounts of image data. The integration 

of FPGA and DL techniques contributes to a significant impact on AM systems. In 

addition to accurate predictions and energy consumption monitoring, this robust 

integration enables AM energy consumption to be predicted efficiently and effectively, 

as well as offers insights into decision-making through data analysis. 

 

5.5 Summary 

To sum up, this chapter focused on the effects of the integration of DL and the Xilinx 

PYNQ-Z2 FPGA platform to predict energy consumption in an SLS system. The 
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proposed methodology combines a multi-scale feature fusion technique and feature-

based KD to train a lightweight model. After the distillation process, the lightweight 

model significantly reduces its parameters while maintaining satisfactory performance. 

This lightweight model shows robust performance with reduced computational 

requirements. This compression technique facilitates the efficient processing of layer-

wise image data, and the feature-based KD strategy has been successfully implemented 

for FPGA deployment. The allocation of FPGA resources is reflected in the balanced 

utilisation of LUT, DSP, and BRAM by the convolutional, pooling, and fully connected 

layers. The findings highlight the potential benefits of integrating CNN structures on 

FPGAs, characterised by lower resource utilisation and reduced power consumption. 

This highlights the advantages of FPGA-based implementations. 

 

In the following chapter, the proposed approach will move onto an FPGA-based 

monitoring and management system to optimise the energy consumption prediction 

model based on design-relevant data, image-based data and energy-relevant data 

within an SLS system.  
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Chapter 6 FPGA-based Management System 

for Optimising Energy Consumption in SLS 

 

6.1 Introduction 

There has been worldwide recognition of the problems associated with establishing 

energy-relevant models in AM systems (Baumers et al. 2011). These energy-relevant 

models in the detection of excessive energy utilisation at the specific layers, facilitate 

the adjustment of process parameters for planning, design and operations before or in 

the process. This enhances the quality of the product and the overall process (Tian et 

al. 2019a). FPGA platforms are often reprogrammable to perform new types of 

computing tasks. This is due to the computing capabilities and sufficient flexibility, 

which also allow them to work collaboratively with CPUs in terms of training and 

inference, thereby accelerating the computing tasks in the dynamic manufacturing 

environment (Singh and Gill 2023).  

 

There is a need for establishing an energy consumption optimisation system based on 

the collaboration of CPU and FPGA for this specific task driven by the desire to 

improve efficiency and reduce the carbon footprint of SLS systems (Kellens et al. 

2014). Developing the energy consumption prediction models is an important 

component in optimising AM systems, and plays a key role in analysing and managing 

the AM data for decision-making and support for manufacturers (Watson and Taminger 

2018) before exploring potential improvement options for different designs. DfAM 

focuses on the functionality and manufacturability of the final parts followed by energy 

efficiency as part of the design considerations (ALMASRI et al. 2022). Based on the 

principle of DfAM, it is possible to integrate data-driven systems to optimise the AM 

system, for example, by considering energy consumption before the design phase 

(Chinchanikar and Shaikh 2022). The precise information required to optimise designs 

is provided by energy consumption modelling (Qin et al. 2022). DfAM helps 

manufacturers consider energy efficiency at the design stage, resulting in more 
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economical and environmentally friendly manufacturing through the energy 

consumption management of several design options (Vaneker et al. 2020). 

 

The dynamic environment of AM processes makes it difficult to predict and manage 

energy consumption, so conventional approaches to modelling energy utilisation may 

not be sufficient for the dynamic environment of AM systems (Saimon et al. 2024). 

Methods that rely on predefined models are often inadequate to manage the complex 

data produced by AM systems (Liu et al. 2018b). As advanced structures and features 

are integrated into designs, the complexity of the design increases. Hence, there is a 

need for advanced technologies that can adapt to the changing environment of SLS 

processes and provide real-time optimisation.  DL offers a promising alternative, 

capable of learning autonomously from data, continuously enhancing its predictions 

as it is exposed to diverse layer-wise images and associated energy consumption 

(Alzubaidi et al. 2021). However, existing DL models are parameter-intensive (Chen 

et al. 2021), leading to the challenges of direct deployments on the edge device (Cheng 

et al. 2017). A further improvement on lightweight models is considered.  

 

Building on the methodology and findings in Chapter 5, this chapter further explores 

a comprehensive approach to FPGA-based management and optimisation support, 

including multi-scale feature fusion, lightweight model design, and the PSO technique. 

The proposed approach is expected to support the decision-making process of the 

design, in which a data-driven management and monitoring system can optimise 

parameter settings for minimal energy usage by leveraging PSO and DL, allowing for 

continuous improvement in the SLS process. Such integration can pave the way for 

the development of more sustainable and cost-effective SLS systems. The proposed 

approach will contribute to more sustainable and cost-effective manufacturing 

practices. The remainder of this chapter presents the technical overview of the DL-

based optimisation system for SLS. The following section details the experimental 

setup based on a real-world SLS scenario. After that, the last section validates the 

proposed approach and reports the results, accompanied by a discussion.  



114 

 

6.2 Method of Enhancing Predictions with FPGA-CNN 

Figure 6.1 illustrates the overview of an FPGA-based management system for 

optimising energy consumption in an SLS system. In the beginning, the data was 

collected from an AM machine including design-relevant data, energy-relevant data 

and layer-wise images. After the data processing stage, the U-net architecture with 

CBAM and AC serves as the teacher model. CBAM improves feature representation, 

but the DNN architecture that it employs for energy consumption prediction models 

often demands significant computational and memory resources, requiring the 

compression and acceleration of these models without sacrificing performance.  

 

This method utilises a dual KD strategy, leveraging logits and intermediate features to 

train a smaller student network within a simplified architecture for energy 

consumption prediction, transferring knowledge from a larger teacher network to a 

smaller one and preserving a lightweight structure. Additionally, parameter 

quantisation reduces model complexity and computational demand, making it ideal for 

inference and training acceleration on the FPGA. This, combined with other model 

compression techniques, creates compact, high-performance models essential for 

resource-constrained devices and environments. The student mode’s feature fusion can 

be accelerated by the targeted FPGA. These features and predicted energy 

consumption values will be integrated with another DNN for the PSO to optimise the 

design-relevant parameters to minimise the energy consumption of the selected builds. 

 

The student model, integrated with the PSO algorithm on the targeted FPGA platform, 

predicts build energy consumption based on part-design and process-planning 

parameters. Optimised parameters and unit energy consumption of the build are 

expected to provide decision support and inform designers and operators before the 

process. Currently, the method integrating CPU and FPGA platforms can 

collaboratively collect image data from CAD models. Leveraging features from these 

image data, the predictive model extracts valuable insights from the historical data, 
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which is then trained collaboratively with the PSO algorithm. This allows designers to 

collect and analyse design-relevant data before the additively manufactured parts start.  

 

The method aims to optimise the design process, facilitating a more cost-effective and 

sustainable design cycle. Future work will focus on an FPGA-CNN in the real-time 

environment to predict energy consumption, potentially leading to more energy 

savings and increasing operational efficiency. The predictive models provide valuable 

insights from both real-time and historical data, aiding in the optimisation of quality 

control and predictive maintenance in AM processes. Manufacturers can identify and 

adjust AM machine process plans by monitoring energy consumption patterns in real-

time.
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Figure 6.1 Overview of energy consumption modelling in AM monitoring with design parameters, image features, and energy-relevant 

data. 
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6.2.1 Multi-scale Feature Fusion for Energy Consumption Predictive 

Modelling 

 

 

Figure 6.2  Detailed workflow of FPGA-based predictive modelling for SLS 

energy consumption. 

 

This first stage was related to developing the teacher model for multi-scale feature 

fusion on layer-wise images. Building on the development in Chapter 5, this approach 

extended the work to another more efficient architecture. A U-Net was considered as 

the teacher, to which the modification of the architecture was applied. Compared to 

the conventional architecture, the proposed architecture incorporated convolutional 

layers replaced by AC layers and the CBAM in the bottleneck. In an SLS scenario, 

part geometrical information will have features related to direction, such as rectangular 

shapes or patterns in specific directions. AC can capture these features or insights. 
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CBAM, as one of the attention mechanisms, can focus on local features of the layer-

wise images such as edges, holes, dense filling areas, etc. CBAM can leverage the 

attention mechanism to concentrate more on those local features, providing more 

accurate predictions. By channel and spatial attention, the model can present the ability 

to process both local and global information in feature maps, which makes the model 

handle complex geometry and design in a more robust manner. In the broader context, 

the proposed model serves as the teacher model which is also a lightweight model by 

reducing computational complexity and burden. This may contribute to training 

student models before deployment. 

 

The dual KD strategy utilised each feature representation from each layer in the 

encoder to obtain the multi-scale features and the logit from the output of the teacher 

network. Figure 6.2 depicts the energy consumption predictive modelling on the FPGA 

platform. This workflow belongs to the part of the entire approach that contributes to 

enhancing predictive modelling by using FPGA-based predictive modelling. The 

following sections will illustrate the detailed works, beginning with multi-scale feature 

fusion for energy consumption modelling, followed by the employment of the dual 

KD technique, lightweight energy consumption model and FPGA collaboration. The 

proposed architecture employs the AC block and CBAM. The details are described in 

the following sections: 

 

⚫ Enhancing U-Net Performance through Asymmetric Convolution Block  

The AC block splits traditional filters into horizontal and vertical components, each 

with two layers that measure m×1 and 1 × m, to reduce the network's computing 

complexity and parameter counts (Tian et al. 2022). Two-dimensional kernels have a 

rank of 1 and can be equivalently converted into one-dimensional convolutions (Ding 

et al. 2019). Equation (6.1) describes the output channel feature map at the j-th filter, 

where 𝑴 is the input channel feature map, 𝑭 is the k-th input channel of 𝑭(𝒋). AC 

decomposes the convolution kernel into two separate convolution operations (𝑯 × 𝑾) 

in both vertical and horizontal directions, respectively. 
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𝑂:,:,𝑗 = ∑ 𝑀:,:,𝑘 ∗ 𝐹:,:,𝑘
(𝑗)

 

𝐶

𝑘=1

(6.1) 

 

In this experiment, the teacher network combines 3×3, 1×3, and 3×1 convolution 

kernels to extract image features. The 3×3 kernel captures local and global features, 

while the 1×3 and 3×1 kernels focus on the details in the horizontal and vertical 

directions, respectively. In addition to the robustness of this multi-scale feature 

extraction approach, the AC block reduces parameters and computation, thus 

improving the accuracy and efficiency of the energy consumption prediction model. 

In contrast to the conventional U-Net architectures, which typically employ 

conventional convolution layers, the proposed architecture employs AC layers. This 

hybrid approach improves efficient processing and better feature representation, 

facilitating energy consumption prediction through layer-wise images. 

 

⚫ Convolution Block Attention Module 

The CBAM includes channel and spatial attention (Woo et al. 2018), which exploits 

features from two dimensions to obtain attention maps for adaptive feature refinement. 

The following equations illustrate the overall attention process, which 𝑴𝒄(𝑭) and 

𝑴𝒔(𝑭′) represent the attention maps for channel and spatial attention respectively. 

 

𝐹′ = 𝑀𝑐(𝐹) ⊗ 𝐹 (6.2) 

 

𝐹′′ = 𝑀𝑠(𝐹′) ⊗ 𝐹′ (6.3) 

 

Adding a weighting mechanism within the feature map after the convolutional layer 

enables CBAM to demonstrate the significance of the feature extraction. It improves 

the representation of essential features, enabling the model to capture details in the 

sliced images better. Integrating CBAM into the U-Net architecture can significantly 

improve feature representation by refining the feature map through an adaptive 
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attention mechanism. Furthermore, this attention mechanism, CBAM, can effectively 

filter out irrelevant noise in the images, which makes it helpful to predict layer-wise 

energy consumption and improve the effectiveness and robustness of the predictive 

model.  

 

⚫ The Proposed Architecture of U-Net for Energy Consumption Predictive 

Modelling 

U-Net provides a more compact architecture, with skip connection preventing 

information loss and maintaining important features. It effectively integrates multi-

scale features due to its encoder-decoder architecture, as used in biomedical 

segmentation (Ronneberger et al. 2015). The skip connections in this architecture play 

a vital role in merging high-resolution features from earlier layers with the low-

resolution features from deeper layers to enhance capturing details. The image data in 

SLS needs to consider local details and global geometry, which U-Net leverages skip 

connections to preserve high-resolution features. Obtaining insights from the 

traditional architecture and functions of U-Net, the proposed U-Net architecture aims 

to provide efficient image segmentation and multi-scale feature fusion, effective for 

128×128 input dimensions in layer-wise images.  

 

The architecture starts with four encoding blocks. Differently from conventional 

architecture, each convolutional layer is replaced by an AC layer, and the number of 

channels in these layers increases progressively through each encoding block from 1 

to 32, 32 to 64, 64 to 128, and 128 to 256. After the encoding block, there is a 

bottleneck layer that connects the encoder to the decoder, employing CBAM to focus 

on important features by utilising channel-wise and spatial-wise attention mechanisms. 

The bottleneck remains 256 channels which compresses the information into a more 

manageable size to preserve most critical features. Subsequently, the decoding path 

up-samples the feature maps and it restores the spatial dimensions of the feature maps. 

After each up-sampling step, the concatenation of feature maps allows the network to 

combine high-resolution features. The final output layer includes a 1×1 convolution, 
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followed by global average pooling to reduce the spatial dimensions of the feature 

maps to a single value per channel. A fully connected layer is employed last. 

 

 

Figure 6.3 Teacher model architecture for multi-scale feature fusion. 

 

6.2.2 Dual KD Strategy 

The dual KD strategy combines feature and logit-based knowledge. It provides rich 

feature representations of the encoder and the final output. Combining these two 

strategies improves the learning efficiency and performance of the student network. 
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Equation (6.4) provides the loss function of the proposed dual KD strategy, combined 

with distillation loss 𝑳𝒅𝒊𝒔𝒕𝒊𝒍 from logit, actual label loss 𝑳𝒍𝒂𝒃𝒆𝒍 and loss from the feature 

layer 𝑳𝒇𝒆𝒂𝒕𝒖𝒓𝒆 . By experiment, the optimal hyperparameter 𝜶  and 𝜷  controls the 

weight of each loss.  

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∙ 𝐿𝑑𝑖𝑠𝑡𝑖𝑙 + (1 − 𝛼) ∙ 𝐿𝑙𝑎𝑏𝑒𝑙 + 𝛽 ∙ 𝐿𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (6.4) 

 

In Equation (6.5), 𝑳𝒅𝒊𝒔𝒕𝒊𝒍𝒍 represents the difference between the student and teacher 

network's logits (predicted outputs) using the L1 loss. 

 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑓𝑠(𝑥), 𝑓𝑡(𝑥)) (6.5) 

 

where Equation (6.6) defines L1 loss  

 

 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥, 𝑦) = 𝜙(𝑥) = {

1

2
(𝑥 − 𝑦)2      if |𝑥| < 1

|𝑥 − 𝑦| - 
1

2
     otherwise.

(6.6) 

 

According to Equation (6.7), the distillation loss of the feature layer determines the 

mean squared error between the intermediate feature maps of the student model and 

the teacher model, thus providing the student model with the feature representation as 

the teacher model, where the feature 𝒇𝒔,𝒊(𝒙) and 𝒇𝒕,𝒊(𝒙) are the 𝒊-th feature maps for 

the student and teacher.  
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𝐿𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
1

𝑁
∑(𝑓𝑠,𝑖(𝑥) − 𝑓𝑡,𝑖(𝑥))

2
𝑁

𝑖=1

 (6.7) 

 

In Equation (6.8), the actual label loss 𝑳𝒍𝒂𝒃𝒆𝒍 measures the difference between student 

predictions and the actual labels by using L1 loss.  

 

𝐿𝑙𝑎𝑏𝑒𝑙 = 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑓𝑠(𝑥), y) (6.8) 

 

It is important to note that these equations define a comprehensive loss function for 

training the student model using the dual KD technique. This technique enables the 

student to learn from the teacher model's outputs and its internal representations of 

features. 

 

6.2.3 Lightweight Energy Consumption Model and FPGA 

Collaboration 

The role of convolution blocks is critical to extract features, which selects filter sizes 

incrementally. Teacher models typically consist of multiple convolutional layers, 

pooling layers, as well as a fully connected layer. Figure 6.4 illustrates the structure of 

the student model, which comprises four convolutional layers, one ReLU activation 

layer, four pooling layers, and two fully connected layers. The features of input images 

are extracted by the convolutional, activation and pooling layers, while the fully 

connected layers implement the regression analysis. In the context of regression 

analysis, the output layer does not require applying a softmax activation function. In 

contrast, the regression model only requires the output layer to generate a continuous 

value corresponding to the predicted output. 

 



124 

 

Figure 6.4 Student model architecture overview.  

 

Parameters of the student network are quantised to deploy on the targeted platform. 

Due to the significant reduction in computation and complexity in the student model, 

the student model may not generalise as well as the teacher model. The KD process is 

thus used to mitigate the differences in model complexity between the teacher and 

student models. For embedding in a small computing platform, a student model has a 

smaller scale and is less complex than teacher models. A student model is more 

efficient on smaller computing platforms due to its less memory cost and computation 

while maintaining sufficient structure to capture the features of images. By using four 

convolution blocks and two fully connected layers with one output layer, the student 

model focuses on the most important features of the data. As a result, lower-precision 

weights and biases are produced on convolutional and fully connected layers in 

comparison to the teacher model.  

 

Before integrating the student model with the targeted FPGA platform, the parameter 

counts require further quantised to reduce the computational complexity and memory 

requirement due to the resources available on the targeted FPGA platform. The 

quantisation technique is essential in further compressing model complexity, as it 

approximates the representation of a DL model using floating point numbers by a 

model using low-bit width numbers. As a result of quantisation, fewer bits are required 
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to represent weights and biases in a CNN, preventing the shortage of storage and 

memory, as well as the computation complexity. Therefore, the student model can be 

accelerated in terms of feature extraction by the targeted FPGA. These features and 

predicted energy consumption values will be fused with a deep neural network for the 

PSO to optimise the design-relevant parameters to minimise the energy consumption 

of the selected builds. 

 

6.3 PSO-based Technique for AM Parameters and Energy 

Optimisation 

After employing the FPGA and energy consumption model collaboratively, the output 

features and predicted energy consumption of the unique layers can be integrated into 

another DNN for data integration. Additionally, this DNN leverages PSO to optimise 

the best combination of design-relevant parameters including part design and process 

planning to find the minimal energy consumption of the build. These findings are 

anticipated to support and guide the decision-making for part designers and process 

operators before the manufacturing process in an SLS system. This section introduces 

the hybrid PSO-based technique for AM parameter optimisation and energy 

consumption prediction.  

 

6.3.1 Research Visions and Solutions in FPGA and Predictive Model 

Integration 

Figure 6.5 shows the energy consumption management system of the FPGA-CNN in 

AM. With FPGA-based CNNs, predictive analytics and decision-making are 

transformed into AM energy consumption management. In the offline training phase, 

the predictive analysis is conducted before the fabrication. Deep CNN models can be 

implemented to offer predictions to avoid the potential increase in energy consumption. 

These models are trained from the historical layer-by-layer CAD model before the 

build begins. At the real-time monitoring phase, the pre-trained and distilled model is 

deployed FPGA. This setup enables the implementation of AM systems performing 
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real-time layer-wise image preprocessing, which facilitates the extraction of hidden 

and significant features by CNNs in a more rapid manner.  

 

 

Figure 6.5  Integrated solution of FPGA-based CNNs for AM energy 

consumption analysis. 

 

The FPGA-CNN system monitors the energy-relevant data against the predictions, 

allowing for optimising parameters before the build starts if high energy consumption 

is anticipated. An FPGA-CNN can be used to take timely action to predict energy 

consumption immediately leading to significant energy savings and increased 

operational efficiency. The predictive models provide valuable insights from both real-

time and historical data, helping optimise quality control and predictive maintenance 

in AM processes. Manufacturers can identify and correct the inefficiency by 

monitoring energy consumption patterns in real-time, which may involve adjusting 

parameters or pausing the process. However, in the current scenario, the integration of 

FPGA and DL into AM can assist designers in the design process and offer operators 

more cost-effective operations in the manufacturing process based on the optimised 

parameter settings regarding part design and process planning. 
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6.3.2 PSO Technique in the SLS System 

Figure 6.6 describes the optimisation process by using PSO algorithms. The PSO 

algorithm employs a population of particles to simulate the search for an optimal 

solution. Each particle represents a potential solution whose position and velocity are 

continuously adjusted within the search space. Particles adjust their movements 

according to their historical individual optimal position and the global optimal position 

found by the swarm, thereby guiding the search process towards minimising energy 

consumption.  

 

 

Figure 6.6 Integration of PSO in the energy consumption prediction model. 
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Firstly, the objective function 𝒇(𝑿)  is defined as follows: 𝑬  is the predicted energy 

consumption. 𝑺 represents the image-based feature dataset of the selected samples. 𝑫 

represents the image-based feature dataset of the selected samples. This is shown in 

Equation (6.9). 

 

𝑓(𝑋) = 𝐸(𝑆, 𝐷(𝑋)) (6.9) 

 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛 ] (6.10) 

 

In this equation, 𝒙𝟏, 𝒙𝟐, …, 𝒙𝒏 correspond to the different design-relevant parameters 

such as part filling degree, part rate on width and length dimensions etc. The objective 

function 𝒇(𝑿) serves to evaluate the performance of different combinations of design 

parameters by calculating the total specific energy consumption of the model for a 

given set of parameters. When the design parameters are distributed to each particle, 

the PSO algorithm parameters are configured. 𝒗𝒊𝒅 is the is the velocity of the particle 

in a D-dimensional space without volume and mass. 𝒘 represents an inertia weight to 

control the inertia of particle velocity. 𝒄𝟏  and 𝒄𝟐  are the acceleration coefficients, 

while 𝒓𝟏  and 𝒓𝟐  are the random numbers ranging from 0 to 1 (Yao et al. 2024). 

Equation (6.11) illustrates the mechanism for updating the particles’ velocities. 

 

𝑣𝑖𝑑 = 𝑤 ∙ 𝑣𝑖𝑑 + 𝑐1 ∙ 𝑟1 ∙ (𝑃𝑏𝑒𝑠𝑡𝑖𝑑
− 𝑥𝑖𝑑) + 𝑐2 ∙ 𝑟2 ∙ (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑑) (6.11) 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (6.12) 
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By updating iteratively, the algorithm efficiently explores the solution space before 

identifying the optimal combination of design-relevant parameters that are expected to 

reduce energy consumption. After the initial setup and configuration of the PSO 

algorithm, particles are randomly initialised with positions and velocities within the 

search space. Utilising this fitness function 𝒇(𝑿) , particles iteratively adjust their 

positions and velocities, progressively converging towards their best individual 

position (𝑷𝒃𝒆𝒔𝒕) and global position (𝑮𝒃𝒆𝒔𝒕), thereby optimising their search strategy 

to achieve the goal of finding optimal solutions. According to Equations (6.11) and 

(6.12), the velocity and position of each particle are updated for the next iteration. 

Equation (6.12) indicates the update of the position of the new particles. 

 

When the process reaches the maximum number of iterations or the global optima, the 

process ends. When the global best position (𝑮𝒃𝒆𝒔𝒕) is determined, the optimal solution 

and the corresponding design and process planning parameters can be obtained. The 

PSO algorithm efficiently navigates through the complex search space, which 

iteratively enhances the solution until it terminates.  

 

6.4 Experimental Design and Setups 

Combining design-relevant parameters with image data to optimise overall energy 

consumption is a potential approach to achieve efficient design. Using PSO with the 

proposed multi-scale feature fusion and KD strategies identifies the optimal set of 

parameters to minimise energy consumption values. Design parameters such as filling 

degree, part ratios, part height and bottom area play a crucial role in determining the 

energy consumption of a product. These parameters define the physical and 

operational characteristics of the design, directly affecting energy utilisation. In this 

case study, design parameters are optimised based on their impact on energy 

consumption, which is predicted by a trained DL model.  
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Figure 6.7 Experimental setup for SLS energy optimisation monitoring. 

 

Figure 6.7 illustrates the experimental setup for energy optimisation in the case study. 

The overall method comprises two main sections: the CPU and the FPGA. On the CPU 

side, the process began with the pre-processing of layer-wise image data. Subsequently, 

the process data was input into a trained energy consumption prediction model, which 

employed a KD strategy to obtain the lightweight version for deployment on the 

targeted FPGA platform. The FPGA accelerated the execution, providing predicted 

energy consumption values for each layer. After that, features of the multi-scale energy 

consumption prediction model could be extracted based on the layer-wise images. 

Image data is a critical input to the energy prediction model, enabling it to capture the 

detailed geometric features of the design. Each layer-wise image preserves essential 

information such as geometry and orientation. Processing this image data through 

multiple layers of convolution and pooling, the model extracts and fuses high-level 

features that are indicative of the design's energy efficiency.  

 

Based on these predicted values and the features, the lightweight energy consumption 

model worked with an optimiser, utilising the PSO algorithm to optimise a set of 

design parameters that minimised the specific energy consumption of a process, as 

predicted by the student network. The parameters included geometric and operational 

characteristics of the system, such as filling degree, part ratios, bottom areas and total 
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height. The PSO algorithm explores the multi-dimensional design space by iteratively 

adjusting these parameters and evaluating their impact on energy consumption. The 

output of the PSO process is an optimised combination of design parameters that 

minimise energy consumption. These optimisation parameters are of great value to 

designers in helping them understand the most efficient shape proportions and other 

key design choices. For instance, an optimal aspect ratio or filling degree may indicate 

a design that balances structural integrity while minimising energy consumption. 

Providing designers with these optimisation parameters, the methodology can support 

informed decision-making during the design process. Part designers and process 

operators can use these optimised parameters to create more energy-efficient designs 

and processes. The method integrates prediction and optimisation capabilities to 

improve the energy efficiency of SLS processes, demonstrating a data-driven approach 

to industrial energy management in SLS systems. 

 

6.4.1 Experiment Setups 

 

⚫ DL-based Energy Consumption Prediction Model 

The first experiment was associated with teacher network training. Two data types 

correspond to layers, including image and specific energy consumption. Removing the 

outliers and resizing was required to clean the dataset and standardise the image 

dimensions. Due to the number of small layer-wise images, data augmentation was 

vital in increasing the model's generalisation ability while avoiding overfitting. After 

that, the data was input into the proposed feature extraction and fusion architecture. 

The backbone of the proposed approach was U-net architecture, which had enhanced 

feature extraction ability and the CBAM to focus on the most relevant regions of the 

input image data, thereby improving feature extraction. The AC blocks were integrated 

with traditional U-net architecture to capture spatial features more efficiently, which 

helped improve the receptive field and reduce computational complexity. The 

experiment aimed to achieve superior feature extraction and data fusion using an 

enhanced U-net architecture that combined an attention mechanism and asymmetric 
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convolutional blocks. This approach aimed to provide more accurate predictions and 

better generalisation from training data to new unseen datasets.  

 

A comparative experiment was conducted between the traditional U-net and enhanced 

models, training on the AM dataset and evaluating the performance of the RMSE, 

MAE and MCC. Further details regarding these evaluation metrics can be found in 

Section 6.4. This experiment aimed to demonstrate the merits of enhanced U-net 

architecture offering more accuracy and better generalisation from training data to new 

data than traditional U-net and CNN. 

 

⚫ Lightweight Model by KD 

KD is a key technique for compressing the model into a smaller and simpler 

architecture, thereby reducing complexity and computational requirements, and 

making it suitable for acceleration on the FPGA platform. During the KD process, the 

teacher network was a U-net that employed multi-scale feature fusion, and the student 

network was a CNN designed to learn and predict unit energy consumption at the layer 

level. Experimentation with various KD strategies, including feature and logit-based 

approaches, leads to the adoption of a student model that integrates both feature and 

logit-based strategies. Following the KD process, the parameters of the student model 

were further quantised through the quantisation technique to ensure it was compatible 

with the targeted FPGA. 

 

The experiment aimed to develop a lightweight model using the KD strategy, 

leveraging both logit and feature-based distillation techniques in a dual KD approach. 

This approach combined the advantages of both techniques to improve the 

performance of the student model. This student model architecture comprised four 

convolutional layers and two FC layers for feature extraction and output of the 

predicted values. The dual KD approach potentially provided a balanced transfer of 

final output and features from each encoder in U-net. The comparative analysis was 
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conducted based on the comparison between SOTA lightweight architectures and 

distilled student architecture, as well as the ablation study regarding AC blocks and 

different KD strategies.  

 

⚫ Lightweight Model Acceleration with the Targeted FPGA Platform 

After KD and quantisation, the student model was accelerated by the targeted FPGA 

platform. The Xilinx PYNQ-Z2 FPGA platform as shown in Figure 6.8 is used in this 

case study with 13300 programmable logic elements and 220 Digital Signal Processing 

(DSP) units.   

 

 

Figure 6.8 Xilinx PYNQ-Z2 platform for data processing in the experiment. 

 

Figure 6.9 shows that, due to the heterogeneous nature of the Zynq7020, the design 

utilises Programmable Logic (PL) for various image-based tasks, such as acquisition, 

caching, processing, and output. The regression function of the student network was 

implemented on the Processing System (PS) which communicated the recognition 

results back to the PL side via the AXI-Lite bus, facilitating interaction between the 

software and hardware components of the system. Architecture development was 

managed through Vivado 2023.2 for simulation, synthesis and implementation, and 
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the programming language was Verilog. To manage the interaction between the FPGA 

and the laptop, the bitstream file and overlay were downloaded from Vivado and 

uploaded to the targeted FPGA platform.  The targeted FPGA platform supported 

coding on Jupyter Notebook, enabling direct code development and testing on the 

PYNQ-Z2 platform. The experiment aimed for high performance and efficiency, 

evaluating by resource utilisation, throughput, latency and power.  

 

 

Figure 6.9 The overlay of the project for the experiment. 

 

⚫ PSO-based optimisation technique on design-relevant parameters 

Based on these predicted values and the features, the lightweight energy consumption 

model worked with an optimiser, utilising PSO to optimise a set of design parameters 

that minimise the specific energy consumption of a process, as predicted by the student 

network. The parameters consisted of design-relevant data on the building level, such 

as filling degree, part rotation and position, bottom areas and total height. PSO plays 

a critical role in providing the optimal parameters iteratively to minimise energy 

consumption, thereby evaluating their impact on energy consumption. When the 

algorithm reached its termination condition, it provided the optimal parameters 

corresponding to the lowest energy consumption value. These optimal parameters were 

valuable to part designers and process operators for determining the most effective 
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geometry and other key design selections, such as the optimal part ratio between length 

and width or part filling degree before the process.  

 

In the experiment, the optimised and original parameters were compared, indicating 

the modifications of the parameters. These changes lead to a reduction in energy 

consumption, which could therefore support informed decision-making in the design 

process by providing designers with these optimised parameters. Designers could use 

the insights to create more energy-efficient designs, whether in other SLS machines, 

where energy consumption is a key concern. This system integrated prediction and 

optimisation to enhance energy efficiency in SLS processes, demonstrating a data-

driven approach to industrial energy management in SLS systems. 

 

6.4.2 Evaluation Metrics  

 

Table 6.1 The evaluation metrics. 

Evaluation metrics Equations 

Root mean squared error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑝𝑡 − 𝑎𝑡)2

𝑁

𝑡=1

 

Mean absolute error (MAE) 𝑀𝐴𝐸 =
∑ |𝑝𝑡 − 𝑎𝑡|𝑁

𝑡=1

𝑁
 

Model correlation coefficient 

(MCC) 

𝑀𝐶𝐶 =
𝑆𝑃𝐴

√𝑆𝑃𝑆𝐴

 

𝑆𝑃𝐴 =
∑ (𝑝𝑖−�̅�)(𝑎−�̅�)𝑖

𝑛−1
; 

𝑆𝑃 =
∑ (𝑝𝑖−�̅�)2

𝑖

𝑛−1
 ; 𝑆𝐴 =

∑ (𝑎𝑖−�̅�)2
𝑖

𝑛−1
 

 



136 

Table 6.1 demonstrates the evaluation metrics for determining the performance of the 

proposed architecture. The performance can be evaluated using three key metrics: 

RMSE, MAE and MCC, which provide comprehensive insights into the accuracy and 

reliability of the model.  

 

As for FPGA, several performance metrics incorporate throughput, latency, resource 

utilisation and power consumption. Evaluating the performance of an FPGA 

deployment involves several key metrics that help identify the efficiency, effectiveness, 

and practicality of the deployment. These metrics cover various aspects including 

speed, resource utilisation and power consumption. Latency, defined as time, is critical 

for this implementation requiring high-speed data processing. Throughput, measured 

in operations per second, indicates the amount of data processed by the FPGA per unit 

time, with higher throughput reflecting better performance for data-intensive 

applications. Resource utilisation refers to the percentage of FPGA resources (such as 

logic blocks, DSP slices, BRAM, and I/O pins) used by the deployed design, and 

efficient utilisation ensures the FPGA can handle additional functionalities while 

reducing costs. Lastly, power consumption, measured in watts (W), is the amount of 

power consumed by the FPGA during operation. Lower power consumption is 

essential for battery-powered or energy-efficient applications and affects thermal 

management and cooling requirements. 

 

6.5 Results and Discussions 

 

6.5.1 Results of the Multi-scale Feature Fusion Model 

Table 6.2 lists the proposed CNN architecture and baseline U-net and CNN results. It 

is observed that the vanilla U-net has the best performance in terms of RMSE at 2.93 

Wh/g and MAE at 2.18 Wh/g due to its good feature extraction and data fusion. U-

nets are often utilised in medical segmentation using the encoder-decoder architecture. 
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Unlike conventional CNN, it focuses on accurate feature extraction at the pixel level, 

which leaves more spatial information, increasing the performance. Due to the simple 

architecture of 6-layer CNN, they did not reach the expected performance. Besides, 

conventional CNN does not apply end-to-end training, leading to a high computational 

workload with 4.3M parameters involved, thereby decreasing the training efficiency. 

By implementing the AC block, MAE reduces to 2.03 Wh/g while RMSE increases to 

3.31 Wh/g. Such fluctuations indicate that the AC block introduces changes to the 

model that improve its general accuracy while maintaining some prediction errors. The 

AC block assists in reducing computational workload, representing a decrease in the 

number of parameters by approximately 20%. The CBAM was implemented in the U-

net architecture to improve the performance further. The RMSE and MAE at 3.06 

Wh/g and 2.33 Wh/g have shown a slight increase in performance while still not 

reaching that in the conventional U-net. However, it reduces the parameters 

significantly compared to conventional U-net by about 75%. Reducing the number of 

parameters leads to lower computational and memory requirements, making them 

more suitable for training and deployment in resource-constrained environments, in 

which the model can train faster and perform inference more swiftly.  

 

Table 6.2 The comparison of baseline and proposed CNN architecture. 

Architectures RMSE 

(Wh/g) 

MAE 

(Wh/g) 
MCC FLOPs #Params 

Vanilla CNN (6 layers) 3.71 2.9 0.81 101.5M 4.3M 

Vanilla U-net  2.93 2.18 0.87 386.9M 948.8K 

U-Net with Asymmetric 

Convolution  
3.31 2.03 0.71 285.6M 758.9K 

Proposed Methodology 

(Attention + AC block) 
3.06 2.33 0.91 93.4M 236.2K 

 

6.5.2 Results of the Lightweight Model 
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Table 6.3 The ablation study of the proposed architecture and vanilla U-net with 

the KD process regarding different KD strategies. 

Asymmetric 

Convolution 
KD Strategy 

RMSE 

(Wh/g) 

MAE 

(Wh/g) 
MCC FLOPs #Params 

No 

KD student 

(logit-based) 
4.06 3.10 0.87 44.96M 148.55K 

KD student 

(feature-based) 
4.99 3.20 0.91 93.36M 346.15K 

KD student 

(logit + feature) 
3.82 2.69 0.897 46.14M 181.58K 

Yes 

KD student 

(logit-based) 
3.01 2.50 0.86 44.96M 148.55K 

KD student 

(feature-based) 
3.78 3.01 0.82 93.36M 346.15K 

KD student 

(logit + feature) 
3.77 2.65 0.892 93.36M 346.15K 

 

The findings in Table 6.3 compare the role of different KD strategies and the 

employment of AC block on both the proposed architecture and the vanilla U-Net. The 

findings demonstrate that the AC block enhances performance across different KD 

strategies, resulting in higher model performance. The dual KD approach without AC 

blocks leverages logit knowledge and intermediate feature representations. It 

outperforms the individual logit or feature-based approaches, achieving the lowest 

RMSE and MAE values of 3.82 Wh/g and 2.69 Wh/g, respectively. In addition, 

introducing AC blocks further improves performance, with an RMSE of 3.77 Wh/g 

and an MAE of 2.65 Wh/g when applying a dual KD strategy on the student model. 

The AC block boots feature extraction efficiency by employing asymmetric 

convolutions. It reduces computational overhead and model complexity, reflecting the 

reduced number of parameters. That means the distilled student model is more suitable 

for deployment in resource-constrained environments. These findings have significant 
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practical implications. Reducing RMSE and MAE leads to more accurate and reliable 

predictions, which is crucial for energy consumption prediction in AM systems. 

Moreover, the decreased computational load and model complexity enable faster 

training and inference, enhancing the model's scalability and usability in real-world 

scenarios. 

 

Table 6.4 The comparison of SOTA lightweight architecture and distilled student 

network 

Architectures 
RMSE 

(Wh/g) 

MAE 

(Wh/g) 
MCC FLOPs #Params 

MobileNet-V2  3.22 1.33 0.82 103.9M 2.2M 

EfficientNet  3.98 3.02 0.61 8.3M 739.5K 

ShuffleNet  4.46 3.35 0.67 22.8M 76.9K 

SqueezeNet  9.73 8.92 0.77 77.2M 722.7K 

Vanilla U-net  2.93 2.18 0.87 386.9M 948.8K 

Student network 7.20 4.68 0.79 44.9M 148.6K 

KD student (logit + 

feature) 
3.77 2.65 0.89 93.4M 346.2K 

 

Table 6.4 presents a comparison of the performance of different SOTA lightweight 

architectures and the distilled student network from the proposed methodology. While 

the KD student network (based on logit + features) does not outperform all the SOTA 

architectures, with an RMSE at 3.82 Wh/g and an MAE at 2.69 Wh/g), it achieves a 

competitive balance between performance and efficiency. This architecture achieves a 

good balance of low error rates and high computational efficiency, with 103.9M 

FLOPs and 2.2M parameters. After applying AC blocks, the KD student network (logit 

+ feature-based) achieves a balanced performance with an RMSE of 3.77 Wh/g and an 

MAE of 2.65 Wh/g, representing a significant improvement over the student without 

AC blocks, as well as the baseline student network, with an RMSE of 7.20 Wh/g and 

an MAE of 4.68 Wh/g. The KD process enhances the student network's accuracy by 
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effectively transferring knowledge from the teacher network, improving its 

generalisation capabilities. These findings have important practical implications, 

particularly for applications requiring efficient deployment on resource-constrained 

devices. With its reduced computational and memory requirements, the KD student 

network is well-suited for scenarios where balancing performance and efficiency is 

crucial, such as edge devices and embedded systems. With 93.4M FLOPs and 346.2K 

parameters, it achieves competitive error rates while maintaining a relatively low 

computational burden. 

 

6.5.3 Deployment of the Lightweight Student Model  

The distilled student model is quantised before deploying on the targeted FPGA 

platform. Figure 6.10 illustrates the comparison of the actual and predicted values of 

the energy consumption of different samples. It can be observed that the difference 

still exists because of the effect of quantisation and the architecture of the FPGA 

platform.  

 

 

Figure 6.10 The actual and predicted energy consumption of samples. 
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As a summary of the FPGA resource allocation for the CNN in Table 6.5, key insights 

include the utilisation in convolutional layers (Conv_1 and Conv_2) as indicated by 

the increased LUT and DSP allocation, which are vital to extracting features from 

layer-wise images. Pooling layers (Pool_1 and Pool_2) demonstrate optimised design 

with lower LUTs and consistent DSP usage, which is crucial for maintaining data 

throughput. As a result of their role in the high-level integration of data, the fully 

connected layers (FC_1 and FC_2) show balanced resource use. A strategic allocation 

of BRAM, for the storage of results, emphasises the importance of efficient data 

handling, which is essential for the precision and efficiency required by AM systems. 

As a whole, this FPGA design exhibits a well-balanced balance between processing 

speed and accuracy, which is crucial for high-quality AM. 

Table 6.5 Optimised CNN module utilisation report. 

Module LUT BRAM Tile DSP 

Conv_1 (incl. ReLU) 3706 \ 3 

Conv_2 (incl. ReLU) 3944 \ 4 

Pool_1 582 \ 4 

Pool_2 867 \ 4 

FC_1 2451 \ 3 

FC_2 2429 \ 2 

BRAM (weights & biases) 24 8 \ 

BRAM (input) 11 4 \ 

BRAM (result) 43 16 \ 

 

Table 6.6 provides a detailed report on the synthesis resource utilisation of IP cores, 

highlighting that the FPGA implementation utilises 27% of LUTs, 3% of FFs, 20% of 

BRAM, 9% of DSPs, and 10% of BUFGs. These relatively low utilization percentages 

indicate significant potential for further optimisation and scalability. The low 

utilisation of FFs and LUTRAM suggests that the current design is efficient regarding 

flip-flops and memory resources. In contrast, the moderate utilisation of LUTs and 

DSPs points to areas where computational efficiency could be further enhanced.  
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Table 6.6 Detailed report on synthesis resource utilisation of IP cores. 

Resource Utilisation Available Utilisation (%) 

LUT 14057 53200 27 

FF 2818 17400 3 

BRAM 28 106400 20 

DSP 20 220 9 

BUFG 12 32 10 

 

The power utilisation metrics in Table 6.7 clearly distinguish between dynamic and 

static power consumption. Processing system (PS7) dominates the high dynamic 

power consumption at 1.528W, while other components such as clocks, signals, logic, 

and DSPs contribute minimally. The static power consumption is 0.136W, attributed 

to PL static power. These insights underline the importance of power efficiency in 

FPGA implementations, especially for applications requiring continuous operation on 

limited power sources. The high dynamic power consumption by PS7 suggests areas 

for potential power-saving optimisations.  

 

Table 6.7 Power utilisation metrics. 

 Resource Power Consumption (W) 

Dynamic (1.532W) 

Clocks 0.002 

Signal 0.001 

Logic 0.001 

DSP 0.001 

Processing system (PS7) 1.528 

Static (0.136W) PL static 0.136 
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Table 6.8 compares the quantised student network's performance on the FPGA 

platform and CPU. The FPGA implementation shows higher RMSE (6.49 Wh/g), and 

MAE (5.80 Wh/g) compared to the CPU (RMSE of 3.06 Wh/g and MAE of 2.33 Wh/g). 

However, the FPGA significantly outperforms the CPU regarding power efficiency, 

consuming only 1.668W compared to the CPU at 38.7W. In addition, the FPGA 

achieves higher throughput (3051.8 frames/sec) and lower latency (327.7 ms) 

compared to the CPU (3210.2 frames/sec and 815.97 ms, respectively). The trade-off 

between accuracy and computational efficiency is critical in applications where power 

consumption and real-time processing are priorities. For example, FPGA 

implementation energy efficiency and high throughput in edge computing or 

embedded systems may outweigh the higher error rates.  

 

Table 6.8 The comparison of FPGA and CPU in terms of running performance 

and power consumption (50MHz period). 

 RMSE 

(Wh/g) 

MAE 

(Wh/g) 

Throughput 

(frames/s) 

Latency 

(ms) 

Power 

(W) 

CPU 3.06 2.33 3210.2 815.97 38.7 

FPGA 6.49 5.80 3051.8 327.7 1.668 

 

6.5.4 Optimised Energy Consumption with Design-relevant 

Parameters and Image Features 

Table 6.9 presents the original and adjusted build energy consumption for three 

different prototypes in the case study, by utilising different algorithms including 

Gradient Descent (GD), Genetic Algorithm (GA), Differential Evolution (DE), 

Simulated Annealing (SA), Bayesian Optimisation (BO) and PSO. PSO has shown its 

merits in reducing build energy consumption by adjusting the design-relevant 

parameters. The table compares adjusted values to original energy consumption to 

evaluate the effectiveness of each algorithm in reducing energy usage. 
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Table 6.9 Comparison of original and improved build energy consumption 

(Wh/g) for different algorithms. 

Method Build 

1 

Build 

2 

Build 

3 

Average 

Reduction 

Original 376.66 365.60 287.69 / 

Gradient Decent (GD) 391.82 380.86 297.88 -2.01% 

Genetic Algorithm (GA) 314.03 386.76 257.59 10.6% 

Differential Evolution (DE) 353.11 350.00 264.66 10.1% 

Simulated Annealing (SA) 388.86 394.00 296.69 2.4% 

Bayesian Optimization (BO) 397.83 398.83 298.43 -6.1% 

Particle Swarm Algorithm 

(PSO) 

339.06 378.07 274.79 10.3% 

 

In the three build energy consumption and parameter optimisation, PSO for Build 1 is 

339.06Wh/g, significantly lower than GD (391.82Wh/g) and SA (388.86Wh/g). For 

Build 2, the optimised energy consumption is 378.07Wh/g, which has achieved an 

increasing pattern compared to the original energy consumption. The optimised energy 

consumption in Build 3 is 274.79Wh/g, lower than GD (297.88Wh/g) and SA 

(296.69Wh/g) but higher than GA (257.59Wh/g) and DE (264.66Wh/g). 

 

According to the average reduction of each algorithm, GA outperforms PSO in terms 

of average optimisation, with a 10.6% reduction, while PSO showed consistent 

optimisation across all builds, with a 10.3% reduction. Specifically, energy 

consumption in Build 2 increased significantly with GA and SA, while the pattern of 

optimised energy consumption by PSO demonstrates relatively fewer fluctuations. 

This indicates that PSO in this case study demonstrates a more stable optimisation 

performance. Overall, PSO achieves a relatively balanced performance and good 

optimisation effect across the three builds. The performance of BO in the three builds 

is also noticeable. The energy consumption of BO was 397.83 Wh/g in Build 1, 398.93 

Wh/g in Build 2, and 298.43 Wh/g in Build 3. Compared to original energy 
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consumption values, the optimisation effect of BO in Build 1 and Build 3 is not 

significant, with an increase in Build 2, which denotes relatively poor stability when 

providing optimisation support for design-relevant parameters in the case study.  

 

By combining the image-based features from the FPGA platform and design-relevant 

parameters by using PC, the PSO and DL model is applied to achieve the optimisation 

of design-relevant parameters, thereby minimising the energy consumption of the 

build. The following tables present the experiment data on optimised parameters 

including part design and process planning and the energy consumption values by 

using the proposed method. It provides a comparison across three different builds of 

design-relevant parameters on build-level and energy consumption after employing the 

PSO and DL-based approach. The main objective is to leverage the proposed approach 

to reduce the unit energy consumption (in Wh/g) and optimise those design-relevant 

parameters. What stands out in this table is the decrease in unit energy consumption in 

Build 1 and Build 3 from 376.66Wh/g to 339.06Wh/g and from 287.69Wh/g to 

274.79Wh/g, respectively. There was no decrease in unit energy consumption based 

on the optimised parameters in Build 2, which means the combination of the 

parameters is less efficient for this build.
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Table 6.10 Results of design-relevant parameters in Build 1 by using different optimisation algorithms. 

Build 1 Original GD GA DE SA BO PSO 

Degree of Part Filling (%) 12.03 12.47 10.58 23 13 10.05 11.62 (↓0.41) 

Part Ratio (WL) (%) 1.06 1.11 1.06 1.36 1 1.163 1.05 (↓0.01) 

Part Ratio (HL) (%) 0.61 0.61 0.72 0.55 0.70 0.69 0.63 (↑0.02) 

Part Ratio (WH) (%) 1.73 1.46 1.65 3 1.5 1.55 1.63 (↓0.01) 

Part Height (mm) 106.51 105.26 106.02 40 109.73 108.36 107.78 (↑1.27) 

Degree of Total Filling (%) 11.17 10.66 11.38 4.76 10 12.14 13.61 (↑2.44) 

Total Ratio (WL) (%) 0.55 0.48 0.54 0.10 0.5 0.48 0.48 (↓0.07) 

Total Ratio (HL) (%) 0.54 0.60 0.55 0.2 0.6 0.514 0.55 (↑0.01) 

Total Ratio (WH) (%) 1.02 1.97 1.13 2 1 1.01 1.45 (↑0.43) 

Bottom Area (cm2) 2585.51 2410.37 2701.29 2000 2388.72 2675.05 2628.42 (↑42.91) 

Height (mm) 371.02 401.72 386.62 103.58 408.06 354.54 407.75 (↑36.73) 

Num of Part 24 26.82 39.57 12.01 31.41 32.38 30.65 (↑6.65) 
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Table 6.11 Results of design-relevant parameters in Build 2 by using different optimisation algorithms. 

Build 2 Original GD GA DE SA BO PSO 

Degree of Part Filling (%) 17.59 17.28 16.37 1.12 15.61 16.63 16.74 (↓0.85) 

Part Ratio (WL) (%) 1.31 1.22 1.20 1.10 1.2 1.39 1.32 (↑0.01) 

Part Ratio (HL) (%) 1.68 1.31 1.54 0.6 1.8 1.16 1.24 (↓0.44) 

Part Ratio (WH) (%) 0.78 0.66 0.67 1.58 1 0.51 0.69 (↓0.09) 

Part Height (mm) 188.5 179.04 177.44 105.67 183.84 179.04 191.56 (↑3.06) 

Degree of Total Filling (%) 9.35 10.08 8.86 15 5.90 7.17 9.04 (↓0.31) 

Total Ratio (WL) (%) 0.53 0.61 0.54 0.56 0.5 0.56 0.6 (↑0.07) 

Total Ratio (HL) (%) 0.82 0.79 0.69 0.57 0.5 0.7 0.7 (↓0.12) 

Total Ratio (WH) (%) 0.64 0.52 0.62 1.21 0.5 0.70 0.72 (↑0.08) 

Bottom Area (cm2) 2546.88 2754.68 2466.44 2200 2715.60 2480.12 2408.96 (↓137.92) 

Height (mm) 570.68 580.65 570.88 343 594.52 553.93 562.2 (↓8.48) 

Num of Part 54 60.00 54.03 31.04 51.93 57.3 53.5 (↓0.5) 
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Table 6.12 Results of design-relevant parameters in Build 3 by using different optimisation algorithms. 

Build 3 Original GD GA DE SA BO PSO 

Degree of Part Filling (%) 23.1 21.00 20.54 23 22.42 21.57 20.83 (↓2.27) 

Part Ratio (WL) (%) 1.23 1.07 1.33 1.36 1.4 1.38 1.4 (↑0.17) 

Part Ratio (HL) (%) 0.44 0.54 0.55 0.55 0.6 0.58 0.53 (↑0.09) 

Part Ratio (WH) (%) 2.8 3.05 2.92 3 2.70 2.91 2.87 (↑0.07) 

Part Height (mm) 40.83 43.66 44.21 40 44.10 40.62 41.65 (↑0.82) 

Degree of Total Filling (%) 4.69 5.42 3.28 4.76 4.37 4.45 4.14 (↓0.55) 

Total Ratio (WL) (%) 0.49 0.14 0.45 0.10 0 0.16 0.42 (↓0.07) 

Total Ratio (HL) (%) 0.17 0.02 0.01 0.20 0 0.11 0.66 (↑0.49) 

Total Ratio (WH) (%) 2.87 2.47 2.46 2 3.00 2.82 0.73 (↓2.14) 

Bottom Area (cm2) 1917.71 2124.20 2177.36 2000 2580.92 2848.90 2029.66 (↑111.95) 

Height (mm) 107 104.53 103.42 103.58 108.43 100.3 106 (↓1) 

Num of Part 10 10.21 10.63 12.01 12.54 12.35 12.35 (↑2.35) 
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The tables above present the experiment data on optimised design-relevant data and 

the energy consumption values by using the proposed method. They provide a 

comparison across three different prototypes of design-relevant parameters on build-

level and energy consumption after employing PSO. The main objective is to leverage 

the proposed method to reduce the unit energy consumption (in Wh/g) and optimise 

those design-relevant parameters.  

 

In Table 6.10, the PSO method has a part-filling degree of 11.62%, which demonstrates 

a slight decrease  (-0.41) from the original value, but in the third table (Table 6.12), the 

PSO algorithm has a part-filling degree at 20.83% which is 2.27 lower than the original 

one. This indicates that PSO fluctuates in the part-filling degree while preserving a 

good local filling effect in this scenario. In addition, PSO contributes to modifying 

specifications in terms of coordination of part ratios (width-length, height-length, and 

width-height). In  

 

 

 

Table 6.11,  the part ratio at width-and-length dimension is 1.32, increasing by 1.23 

compared to the original values. The same pattern can be observed in Table 6.12, in 

which the width-and-length ratio reaches 1.4, where a significant improvement is 

achieved (+0.17). This observation means that PSO has an advantage in the 

coordination of the width-and-length ratio of the local specification, which has the 

potential to assist the utilisation efficiency of the design specifications.  

 

Furthermore, PSO has certain modifications in terms of balancing the bottom area and 

the height. According to  
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Table 6.11, the adjustment of the bottom area and the height is employed, with 2628.42 

mm2 (increased by 42.91 mm2) and 407.75 mm (increased by 36.73 mm), respectively, 

while a similar pattern can be seen in Table 6.12. These results demonstrate that PSO 

can support adjusting bottom area coverage and height expansion, potentially 

achieving a more balanced space utilisation.  

 

Thirdly, the PSO could provide good stability and adaptability of the layout structure. 

Among the three tables, PSO can help to suggest a relatively stable number of layout 

segments. In other words, it is helpful to maintain the overall stability and operation 

of the position for different batches during the working process. In this case study, it 

is highlighted that PSOs have certain adaptability in different prototypes. For example, 

PSO performed better in part height and overall filling in Build 1. It also shows merits 

in part ratios and bottom area in Build 2. Besides, PSO stands out in terms of part ratios 

and the number of builds. 

 

To sum up, the PSO method contributes to certain optimisation on multiple 

specifications such as height, overall filling degree, and bottom area. It focuses on 

layout optimisation, enabling the adjustment in terms of local area. PSO potentially 

provides control support by optimising part ratios. These proportional relationships 

may improve the utilisation efficiency and coordination of the workspace. These 

findings also provide preliminary insights that the combination of the optimised 

parameters by using PSO and a data-driven approach can effectively reduce the unit 

energy consumption in these printed objects. These improvements have the potential 

to enhance the energy efficiency of the builds, providing the usefulness of support and 

suggestions for part designers and decision-making for process operators. By 

optimising design-relevant parameters, these designs can present a more sustainable 

and cost-effective direction to Am systems, strengthening energy-efficient design and 

in-process sustainability. 
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6.6 Summary 

The study of this section set out to evaluate a hybrid method for predicting energy 

consumption by using layer-wise images from the sliced CAD model prior to printing 

and to assess the effectiveness and feasibility of deploying this method on a targeted 

FPGA platform. The student model on the targeted FPGA platform was integrated with 

the PSO algorithm to predict the build energy consumption based on the combination 

of part-design and process-planning parameters. The optimised parameters and unit 

energy consumption of the build are expected to provide decision support and inform 

designers and operators before the process. 

 

In the current phase, the proposed method integrating PC and FPGA platforms can 

collaboratively collect image data from CAD models. By leveraging features from 

these image data, the predictive model extracts valuable insights from the historical 

data, which is then trained collaboratively with the PSO algorithm. This allows 

designers to collect and analyse design-relevant data before the additively 

manufactured parts start. The generalisability of these results is subject to certain 

limitations. For instance, the data source is mainly derived from the design aspects, 

such as geometry, process planning and part design. Due to the complexity of the AM 

machine, multimodal data from the process and working environment can be collected, 

including temperature, pressure, audio, gas levels etc.  

 

This approach aims to optimise workflows and promote more cost-effective and 

sustainable manufacturing processes. In the future, FPGA-CNN can be used to take 

timely action to predict energy consumption, resulting in significant energy savings 

and improved operational efficiency. Predictive models provide valuable insights from 

real-time and historical data, helping to optimise quality control and predictive 

maintenance in AM processes. Manufacturers can identify and modify process plans 

for AM machines by monitoring energy consumption patterns in real-time. 
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Chapter 7 Achievement and Conclusions 

 

7.1 Achievements 

The main goal of the current study was to develop energy consumption prediction 

models for the targeted SLS systems using advanced data-driven techniques such as 

DL and FPGAs. This framework is expected to contribute to the sustainability and 

cost-effectiveness of AM systems in a broader context, which is crucial for the future 

of manufacturing within the framework of I4.0. Through the development and 

validation of a multi-scale feature fusion model integrated with a robust module, it was 

found that the energy consumption prediction accuracy and efficiency of the SLS 

process were improved. This was achieved by utilising image-based features that can 

significantly influence the energy consumption of each unique layer. A lightweight DL 

model for predicting energy consumption was developed through research and the use 

of a KD strategy. The model preserved high predictive performance while optimising 

computational resources and was therefore well suited for development on FPGAs. In 

addition, the development of the target FPGA platform speeded up the processing of 

image data, enabling the provision of features and predicted energy consumption 

values. This, in turn, facilitated faster feature extraction and energy consumption 

predictions. These findings supported the optimisation technique, PSO, when 

integrated with DNN to determine ideal part-design and process-planning parameters, 

thereby minimising the build energy consumption. This approach would assist part 

designers and process operators with decision-making and support throughout the 

design and manufacturing process by offering optimal combinations of design-relevant 

parameters. Having recalled the research questions presented in Chapter 1, this section 

will provide the answers to those questions based on the study.  

 

⚫ What lightweight deep learning architecture and model compression techniques 

can be developed to effectively analyse layer-wise image data for energy 

consumption prediction in SLS when deployed on FPGA platforms? 
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Multiple types of data were generated during AM systems, including layer-wise 

images derived from CAD models, design-relevant data related to part design and 

process planning, and energy-related data containing energy consumption values for 

each different layer. To address the challenges associated with handling this variety of 

data, various methods such as data integration and advanced data-driven approaches 

(e.g., DL) were utilised. As for the data integration for image data, a multi-scale feature 

fusion model has been developed, which identifies the features within the layer-wise 

images extracted from CAD models. Utilising these features, the model could predict 

the energy consumption of each layer. To achieve lightweight model development, this 

research employed quantisation and KD, which were adept at handling complex data 

generated during the AM process. These lightweight models could be developed and 

accelerated on the FPGA platform. Processing data on the edge device reduces the 

need to send data to a central server, and the collaboration of FPGA and lightweight 

models reduces latency and speeds up decision-making while reducing power 

consumption. In addition, it would have the potential to perform real-time data 

processing for dynamic tuning during the manufacturing process. 

 

⚫ How can the inherent parallel processing and reconfigurability of FPGAs be 

exploited to enhance the performance and energy efficiency of lightweight 

neural networks for predictive modelling in AM? 

 

The second aim of this research was to investigate the unique characteristics of the 

hardware accelerator, FPGA, which plays an important role in optimising the 

performance of the lightweight model for predictive modelling in AM scenarios. It is 

emphasised that the parallel characteristic of the FPGA platform allows the 

simultaneous execution of multiple operations in DL models, especially for 

convolutional layers. In addition, FPGAs facilitate the implementation of dedicated 

algorithms for specific mathematical operations, which is required for the lightweight 

model. In this study, the convolution operation was achieved in the targeted FPGA 
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platform. Other advantages including low latency and high throughput, facilitate 

processing large amounts of data while reducing computational load and power 

consumption. In order to optimise the lightweight model leveraging these specific 

characteristics, quantisation techniques further reduce the precision of the original 

model so that it can be implemented more efficiently on the targeted FPGA. 

Furthermore, designing an FPGA-compatible architecture of the lightweight model 

and optimising data flow are required, thereby efficiently allocating resources for the 

optimisation. These unique strategies contribute to enhancing the performance of the 

lightweight model in AM predictive modelling.  

 

⚫ What are the essential steps and design considerations for integrating an 

FPGA-based monitoring system for real-time energy consumption analysis in 

AM, and how does this system enable dynamic optimisation support of energy 

usage? 

 

There are several key steps and considerations involved in integrating a monitoring 

and management system for AM with the collaboration of FPGAs and DL-based 

approaches. Prior to building the system, energy consumption metrics must be 

determined and monitoring objectives identified. In this study, unit energy 

consumption was the metric, and the objective was to determine the optimal parameter 

combination and minimum energy consumption of the build. In the framework, the 

first step involved developing the multi-scale feature fusion model serving as a teacher 

model for predicting energy consumption from layer-wise images based on historical 

data. The second step leveraged the KD strategy to obtain the lightweight student 

model. Subsequently, the student model could be deployed and accelerated on the 

FPGA to process image features and predict energy consumption. This process 

collaborated with optimisation algorithms to provide optimisation of parameter 

combinations and minimise the energy consumption of the build based on those 

parameters.  By applying predictive analytics for future energy consumption, the 

system would alert operators to potential issues before they occur, enabling proactive 

adjustments on part design and process planning to the AM process. 
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7.2 Future Works 

While this research comprehensively analyses energy consumption predictive 

modelling in an SLS system, several areas require further investigation to strengthen 

the basis for future studies. Firstly, a limitation of the current study is the reliance on 

specific SLS machine configurations and the need for extensive focus on other data in 

different modalities rather than merely design-relevant data to train energy prediction 

models, i.e., layer-wise images from CAD models. This problem can be addressed by 

integrating multimodal data sources such as material properties, machine parameters 

and environmental settings to enhance the robustness of energy predictive models. 

Future research can extend the scope by exploring knowledge fusion across data and 

considering data from different modalities. More advanced data analytics are expected 

to offer new insights into the predictive modelling process. When considering the 

deployment of these models, FPGA utilisation contributes to edge computing 

applications by providing real-time processing due to reducing the computational load 

and power on central servers.  

 

The second limitation comes from edge computing and FPGA deployment. A 

compressed model has the potential to affect dynamic tuning by sacrificing the 

precision of parameters. There is a lack of a more standardised framework for FPGA-

accelerated multimodal data processing, making it difficult to guarantee real-time 

performance while integrating different data streams, where computational overloads 

must be considered. The high computational load of multimodal fusion on edge 

devices requires reducing FPGA power consumption while maintaining real-time 

performance. 

 

Thirdly, the adaptive algorithm for nonlinear dynamics for the SLS system is absent. 

Therefore, the focus of future work involves predictive lightweight modelling and 

closed-loop control techniques to provide more accurate and efficient energy 
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management in SLS systems. It is expected that the targeted system will process data 

in the real-time environment to provide immediate feedback on inefficiencies or 

anomalies in energy consumption based on design-relevant parameters. The future 

study could incorporate the closed-loop control into the SLS system which can 

significantly optimise the energy management and monitoring system.  A closed-loop 

control system could promote the optimisation of energy management to improve the 

overall efficiency of the process through continuous monitoring and real-time 

adjustment of the parameters in the SLS system. For instance, the closed-loop control 

can be achieved from the following aspects. This approach will increase energy 

efficiency, improve overall system reliability and performance, and provide the basis 

for smarter, more sustainable manufacturing processes.  

 

In order to address these challenges, future research direction could include several 

aspects such as 1) developing more comprehensive models informed by physics, 

bridging CAD data with physical phenomena and mechanisms, enabling integration of 

data-driven and physical-constrained methods in the real-time, for example, Physics-

Informed Neural Network (PINN), 2) developing a more robust lightweight model to 

process multimodal data in a more effective and efficient workflow, and 3) designing 

smarter PID controller for nonlinear SLS dynamics by leveraging reinforcement 

learning. By doing so, future work can develop more comprehensive, robust and 

adaptive energy management systems for sustainability practices.  

 

7.3 Conclusions 

This study set out to develop a hybrid model for meeting the requirement of energy 

optimisation in the current SLS system by using different data obtained from real-

world scenarios. To begin with, the multi-scale feature fusion model was derived from 

the enhanced U-Net architecture. By the comparative experiments with prevailing DL 

models, the proposed model showed the merits of the proposed methodology in feature 

extraction and fusion from layer-wise image data. This model contributed to the 

complex feature fusion from the images to predict the energy consumption on each 
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layer. In order to deploy on the FPGA platform for fast and efficient inference, the KD 

strategy was applied to obtain the lightweight model. The framework realised the 

collaboration of DL models and the targeted platform to evaluate the effectiveness and 

feasibility of the predictive model. In the current stage, the predictive model extracted 

valuable information from the historical data by leveraging features from the 

lightweight model, followed by training collaboratively with the optimisation 

algorithm. This could help part designers and process operators to collect and analyse 

design-relevant data before the manufacturing process starts. This approach aimed to 

optimise the design and process parameters and energy consumption, facilitating a 

more cost-effective and sustainable manufacturing system. In the future, an FPGA-

CNN could be employed to take real-time actions to predict energy consumption, 

potentially leading to significant energy savings and increased operational efficiency. 

The predictive models would provide valuable insights from both in-situ and historical 

data, further optimising quality control and predictive maintenance in AM processes. 

Manufacturers could identify and make corrections to the process plan and designs by 

monitoring the energy consumption patterns in real-time.  
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Appendix A Preliminary Study on Energy 

Consumption Prediction Modelling  

 

A.1 Machine Learning 

 

⚫ Support Vector Regression (SVR) 

Support Vector Machine (SVM) includes one or multiple hyperplanes in a high- or 

infinite-dimensional space (Wu et al. 2017). It can realise classification and regression. 

SVM refers to finding the best classification function to divide samples into two 

classes in training data in a two-class learning task. Because of the constraints of the 

training data or noise, the samples outside the training data might be closer to the 

boundaries, which makes the hyperplane present an incorrect division. The maximum 

margin hyperplane has the least impact, i.e. the classification result of that is the most 

robust (Wu et al. 2008). Equation A.1 expresses the division of the hyperplane 

described by following a linear equation to determine the position of the hyperplane.  

 

𝑓(𝑥) = 𝝎𝑇𝒙 + 𝑏 (A. 1) 

  

 

where vector 𝝎 and constant 𝒃 construct the linear equation of division of hyperplane. 

 

Support Vector Regression (SVR) will use different kernel methods that satisfy 

Mercer's theorem to solve the convex problem. Some prevalent kernel involves linear, 

polynomial, Gaussian Radial Basis Function (RBF) and sigmoid (Wu et al. 2017). The 

model can be represented in the following form: 
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𝜔 = ∑(�̂�𝑖 + 𝛼𝑖)𝜙(𝑥𝑖)

𝑚

𝑖=1

(A. 2) 

 

𝑓(𝑥) = ∑(�̂�𝑖 + 𝛼𝑖)𝜅(𝑥, 𝑥𝑖) + 𝑏

𝑚

𝑖=1

(A. 3) 

  

 

where 𝜿(𝒙𝒊, 𝒙𝒋) = 𝝓(𝒙𝒊)
𝑻𝝓(𝒙𝒋) expresses the kernel function. 

 

 

Figure A. 1 Divided hyperplanes to separate the two types of training samples. 

 

As shown in Figure A. 1, 𝒇(𝒙) (the solid line) can be regarded as the centre and used 

to construct an interval band with a bandwidth of 𝟐𝜺. If the training samples fall into 

it, the prediction is considered correct.  

 

⚫ Gradient Boost Regression Tree (GBRT) 
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Gradient Boosting Regression Tree (GBRT) or known as Gradient Boosting 

Decision Tree (GBDT) is a way of ensemble learning, which integrates weak learners 

sequentially, each trying to correct respective predecessors, to form a strong learner. 

In general, DT is applied in this method, and this tree-based ensemble method will 

provide improved performance. It employs an iterative tree-based algorithm that 

consists of various decision trees, and the result of these trees is combined to obtain 

the final result. As same as SVM, it has a strong generalisation ability. It uses gradient 

boosting to avoid the overfitting problem. GBRT shows outstanding performance in 

processing various features, predictive modelling, and processing outliers by the loss 

function (Zhang et al. 2020). 

 

For each weak learner 𝒉, the model 𝑭𝒎 consists of regression trees, and the previous 

preceding model from each iteration accumulates the new regression tree model during 

the entire learning process. 

 

𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + ℎ(𝑥) (A. 4) 

 

When introducing a training set {(𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), … , (𝒙𝒏, 𝒚𝒏)} to the model, GBRT 

will improve the performance by minimising its loss function 𝑳(𝒚𝒊, 𝜸) with initialised 

model: 

 

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖, 𝛾)

𝑛

𝑖=1

(A. 5) 

 

The updated model will be: 

 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) (A. 6) 



190 

 

where 𝜸𝒎 = 𝒂𝒓𝒈𝒎𝒊𝒏 ∑ 𝑳(𝒚𝒊, 𝑭𝒎−𝟏(𝒙𝒊) + 𝜸𝒉𝒎(𝒙𝒊))𝒏
𝒊=𝟏  for 𝒎 regression trees. 

 

⚫ Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

The clustering problem is related to an unsupervised learning problem. According to 

predefined rules, the clustering problem is used to find the uncovered patterns to be 

classified with similar characteristics between data (Jiang et al. 2011). Density-Based 

Spatial Clustering of Applications with Noise  (DBSCAN) is a data clustering 

algorithm targeting unstructured data (Ester et al. 1996). Specifically, DBSCAN used 

a density-based clustering approach, which is the most used in clustering spatial data. 

This algorithm adopts the concept of density-based clustering, which requires the 

number of points in a specific region of the clustering space, with minimum numbers 

of objects 𝑴𝒊𝒏𝑷𝒕𝒔 and should exceed the given threshold. The following equations 

demonstrates the nature of DBSCAN, and the random point 𝑝 in its neighbourhood is 

defined in equation (A.7) 

𝑁𝐸𝑝𝑠 = {𝑞 ∈
𝐷

𝑑𝑖𝑠𝑡
(𝑝, 𝑞) < 𝐸𝑝𝑠} (A. 7) 

  

𝑁𝐸𝑝𝑠(𝑃) > 𝑀𝑖𝑛𝑃𝑡𝑠 (A. 8) 

where 𝐸𝑝𝑠 is the neighbourhood of the radius, given the collection of objects 𝐷. The 

core point  𝑷 is defined in equation (A.8) if it contains a minimal number of points. In 

other words, a core point, a boundary point or an outlier is determined by two 

indicators: 𝑴𝒊𝒏𝑷𝒕𝒔 and 𝑬𝒑𝒔, and the outlier is removed. The algorithm connects core 

points under equation (A.8), allocating the boundary point to the closest core point and 

finally obtaining the clustering results (Jiang et al. 2011). 

 

Compared to k-means clustering, DBSCAN shows faster clustering speed and 

effectiveness in processing noise points, handling abnormal data, and exploring spatial 

clusters of random shapes. Besides, the unbiased-shaped clusters do not need to divide 
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the number of clusters (Sander et al. 1998; Birant and Kut 2007). A satisfactory 

clustering algorithm needs to have the following characteristics: 1) to determine 

knowledge from inputs, especially for large datasets, 2) capable of finding arbitrarily 

shaped clusters and 3) efficient in handling large datasets (Tran et al. 2013). The 

working environment data is collected layer by layer over thousands of data in separate 

files with various types from the entire process because of large data volume and 

heterogeneity. Therefore, DBSCAN is expected to tackle the issues. Furthermore, this 

algorithm was applied at the beginning, demonstrating the mean values, which can be 

representative of the entire cluster. These values can be combined into design-relevant 

datasets on the build level to unify the format of each working environment data file. 

 

⚫ Extreme Gradient Boost (XGBoost) 

Extreme Gradient Boost (XGBoost) refers to a tree-based ensemble learning using a 

tree algorithm proposed by Chen and Guestrin (Chen and Guestrin 2016). This 

boosting method is an effective ML method. XGBoost uses regression tree ensembles 

with the same decision rules as the decision tree (DT) and one score for each leaf value. 

Two aspects allow it to be distinguished from other tree-boosting machines. Firstly, 

XGBoost has a different objective function. For each regression tree, this ensemble 

method accumulates the sum of scores as the prediction value for all trees. Assuming 

there are k trees, the output for the tree ensemble is defined as follows: 

 

�̂�𝑖 = ∑ 𝑓𝑥(𝑥𝑖),𝐾
𝑘=1 𝑓𝑥 ∈ ℱ (A. 9) 

 

The objective function is the sum of training loss and complexity of the trees to control 

overfitting, and it is: 

 

𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖, �̂�𝑖) + ∑ Ω(𝑓𝑘), 𝑓𝑥 ∈ ℱ𝐾
𝑘

𝑛
𝑖=1 (A. 10) 

 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 (A. 11) 
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where �̂�𝒊 is the predicted value of the model,  𝑦𝑖 stands for the 𝑖th feature label, 𝒇𝒌 

represents the 𝑘 -th tree model, 𝑻  is the number of nodes and 𝒘  is the collection of 

score combinations. In reducing the objective function, the predicted value adds a new 

function  𝒇 in each iteration. This additive training defines a new objective function to 

optimise and search for a new tree model. 

 

Another difference is the division of nodes. There are four proposed splitting 

algorithms from Chen and Guestrin’s work. XGBoost adopts (1) a basic exact greedy 

algorithm, (2) an approximate algorithm, (3) a weighted quantile sketch and (4) 

sparsity-aware split-finding methods. Among these four split-finding algorithms, 

algorithms (2) and (3) solve the problem of the data failing to load into memory at 

once or algorithm (1) not being distributed efficiently. The XGBoost approach 

calculates the gain of each feature in parallel and chooses the feature with the most 

significant information gain to split.  

 

XGBoost provides an idea for processing sparse data and enables handling instance 

weights in tree learning. Compared with the traditional tree model, it shows the merits 

of regularisation in controlling the model complexity and reducing the variance of the 

model to avoid overfitting. This model is used to predict the energy consumption in 

the SLS system. By targeting this specific task, XGBoost integrates the weak learner 

to form a stronger learner to increase accuracy.  In addition, the sparsity-aware split-

finding method of XGBoost can process the missing values in the combined datasets. 

Also, it increases the learning rate effectively by controlling the model complexity, 

which is essential when dealing with large datasets.  
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A.2 A Hybrid Machine Learning Approach for Energy 

Consumption Prediction on Layer-level Data 

The original data was collected from the target AM system where the data can be 

categorised into four different types. They are operation process, material, working 

environment and design. In Figure A. 2, process data stem from the parameter settings 

collected from the SLS machine, such as the measured values from the dispenser, 

recoater speed and the laser power used in sintering, which relies on the experience 

and knowledge of the operators. With regards to material data, it depends on the 

material itself. In this case, the type of material is known, referring to two kinds of 

nylon powder. Design data is the data collected from computer-aided design (CAD) 

models created by designers, often including design parameters for each layer (Yang 

et al. 2017), which are often determined at the beginning stage of the entire process. 

The working environment can be monitored by sensors and data stored in the 

conditional monitoring files for the illustration. This kind of data source collected from 

the working environment by an IoT platform is considered as the layer level from real-

time monitoring. Some monitoring files can demonstrate these data to better 

comprehend the structure of the data. 
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Figure A. 2 The Multi-Source Data Collection from AM System. 

 

Figure A. 3 demonstrates the framework of the proposed methodology in pre-

processing and predictive modelling. The entire process can be divided into three 

stages, corresponding to their respective roles. In the first stage, the input data were 

collected from the SLS system and categorised into four datasets according to their 

sources. The working environment data contains different quantities in each separate 

file, which is essential for integrating these data using DBSCAN to unify the structure 

of layer-level data. Secondly, the integrated datasets reduced the dimensionality 

through DBSCAN clustering and combining into the XGBoost decision tree. Finally, 

energy consumption was obtained, and RMSE and MCC were used to evaluate the 

performance of XGBoost. 
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Figure A. 3 The Framework of Proposed Methodology for Energy Consumption 

Prediction. 

 

Advanced data analysis and ML methods show the ability to predict energy 

consumption. This work utilised a hybrid approach that combines unsupervised and 

supervised learning, where unsupervised learning aimed to integrate different 

dimensional datasets, while supervised learning was utilised to predict energy 

consumed in the SLS system.  

 

In the case study, three ML algorithms and one DL technique were implemented to 

predict energy consumption based on working environment data combined with 

various other datasets. The employed ML algorithms include XGBoost, SVR, and 

GBRT, alongside CNN. 
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The effectiveness of these methods was evaluated using metrics such as the RMSE and 

MCC. XGBoost demonstrated superior performance, achieving the highest MCC of 

0.708 when using combined datasets, indicating a strong positive correlation and fit to 

the experimental data, particularly after applying DBSCAN clustering. The MCC 

values for SVR and GBRT were comparably high (0.669 and 0.676, respectively), 

suggesting that these models are also effective for predictive tasks. Conversely, CNN, 

typically used for image data and classification tasks, is less common in regression 

settings and performed less optimally in this study. When multi-source data were 

utilised, ensemble methods like GBRT and XGBoost optimized performance, whereas 

other methods experienced slight decreases in MCC. The RMSE values provided 

further insight into model accuracy, with XGBoost showing the lowest error at 130.783 

Wh/g, indicating the minor deviation between actual and predicted values across all 

datasets. CNN displayed a higher RMSE of 231.958 Wh/g, reflecting its less typical 

use in regression tasks within industry settings where pattern recognition or 

classification is common. 

 

 

Figure A. 4 Comparison of RMSE of XGBoost and benchmarks. 

 



197 

 

Figure A. 5 Comparison of MCC of XGBoost and benchmarks. 

 

Figure A. 4  and Figure A. 5 from the study illustrate the RMSE and MCC comparisons, 

and Figure A. 6 displays the alignment between predicted and actual data, indicating a 

general trend in energy consumption prediction despite outliers. Integrating 

heterogeneous data into the XGBoost model revealed fluctuating patterns, suggesting 

a gap between predicted and actual data that may be attributed to irrelevant features in 

the datasets. This issue could be addressed by refining data collection processes to 

generate new, more relevant features. 

 

 

Figure A. 6 The prediction result between predicted values and original values. 
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This hybrid ML approach has presented better performance than the other three 

algorithms and connected the target and input with high dimensionality when using 

combined datasets. A single learner cannot be adopted to tackle the real-world issue of 

handling heterogeneous data while integrating DBSCAN and XGBoost suits the case. 
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A.3 Particle Swarm Optimisation in Additive Manufacturing 

PSO algorithms play a crucial role in AM technologies, which are used to improve 

manufacturing quality, reduce production time and lower costs. What we know about 

PSO in AM is largely based upon experimental and case studies that investigate how 

optimising printing parameters improves the mechanical properties of the part and the 

efficiency of the manufacturing process. The section below reviews the methodology 

of different researchers in PSO.  

 

It is believed that the key challenge in AM is to determine the optimal parameters to 

improve the quality of the final product. PSO is a population-based optimisation 

algorithm and has been widely used in this case due to its simplicity and fewer control 

parameters. The literature on PSO algorithms has highlighted several variants to 

address premature convergence issues. Those methods were widely applied in different 

optimisation scenarios (Shami et al. 2022). By drawing on the concept of PSO, Yao et 

al. (2024) have been able to propose a Hybrid Strategy PSO (HSPSO) by integrating 

multiple strategies. The results demonstrated the superiority and effectiveness of the 

HSPSO algorithm (Yao et al. 2024). Pathak and Singh provided an in-depth analysis 

of the work of the PSO-based approach for minimising geometric dimension and 

tolerance to improve the geometric accuracy of the objects (Pathak and Singh 2017). 

In their introduction to a new optimisation approach, Zhang et al. (2023) proposed a 

method combining the Analytical Hierarchy Process (AHP) and Weighted Particle 

Swarm Optimisation (WPSO) for advising SLM process parameters of high-

temperature alloys (Zhang et al. 2023b). 

 

Although the original PSO algorithm showed its merits of optimisation performance, 

it still suffers from the problem of premature convergence. To address this problem, a 

case-study approach was chosen to allow a deeper insight into modelling and 

predicting surface roughness in Wire Arc Additive Manufacturing (WAAM). This 

method is particularly useful in studying adaptive neuro-fuzzy inference systems to 

improve the prediction of surface roughness (Xia et al. 2022). Lastly, the work of Xia 

et al. (2022) on leveraging ML-based approaches to model and predict surface 
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roughness in WAAM further highlighted the versatility of PSO algorithms, as did the 

recent study by Murat et al. (2023), which investigated the use of PSO-based response 

surface methodology to determine optimal SLM process parameters (Murat et al. 

2023). Collectively, these studies outline a critical role for PSO and its variants in 

optimising parameters and mechanical properties. 

 

Up to now, several studies have investigated the effects of PSO algorithms in AM 

systems in terms of vibration performance optimisation and automatic parameter 

optimisation strategies. The study by Ekerer et al. (2024) makes an important 

contribution to the vibration performance of 3D printed cantilever beams by 

integrating hybrid Artificial Neural Networks (ANNs) and PSO methods to develop a 

high-precision predictive model (Ekerer et al. 2024). To further investigate the role of 

this combination, Seyedzavvar carried out a study that leveraged ANN and PSO to 

optimise process parameters, and the mechanical properties of 3D printed parts with 

CaCO3 nano additives (Seyedzavvar 2023). Fang and associates demonstrated the 

potential of a unique PSO algorithm in practical industrial data analytics by 

introducing it for anomaly identification in Wire Arc Additive Manufacturing (WAAM) 

(Fang et al. 2024). Sugianto and Kim presented a mixed-integer linear programming 

model and heuristic PSO-based methods to handle a crucial integrated scheduling 

problem involving batch AM operations and direct shipping deliveries (Chandra 

Sugianto and Soo Kim 2024). Liu et al. (2024) presented an automated optimisation 

strategy for Laser Powder Bed Fusion (LPBF) parameters, utilising a Neural Network 

(NN)-based infrared radiation intensity prediction model. This strategy effectively 

mitigated abnormal infrared radiation intensity values during scanning, thus enhancing 

the reliability of LPBF performance for complex components (Liu et al. 2024).  
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Appendix B Datasets Used in This Thesis 

 

B.1 Screenshot of Layer-wise Image Data for Training 

(Partially) 
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B.2 Screenshot of Layer-wise Image Data for Testing 

(Partially) 
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B.3 The Unit Energy Consumption of Each Layer 

(Partially) 

 

    

 

B.4 The Design-relevant Parameters of the Build  

 

Part filling degreePartRate_wlPartRate_hlPartRate_whPart heightTotal filling degreeTotalRate_wlTotalRate_hlTotalRate_whBottom_areaHeigh NumPart Energy
37.60655 0.321654 0.503971 0.63824 52.55192 8.367801 0.52798 0.296037 1.783491 2512.167 204.2029 81 411.1616
36.45841 1.312324 0.098682 13.29849 15.4958 15.65833 0.481711 0.193077 2.494919 2110.806 127.8089 38 151.5222
28.50364 1.161269 0.318051 3.65121 27.24959 15.15736 0.517404 0.152826 3.385573 2316.88 102.2667 46 137.4275


