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ABSTRACT
Background and Objective: The diagnosis of interstitial lung diseases (ILDs) often relies on the integration of various clini-
cal, radiological, and histopathological data. Achieving high diagnostic accuracy in ILDs, particularly for distinguishing usual 
interstitial pneumonia (UIP), is challenging and requires a multidisciplinary approach. Therefore, this study aimed to develop 
a multimodal artificial intelligence (AI) algorithm that combines computed tomography (CT) and histopathological images to 
improve the accuracy and consistency of UIP diagnosis.
Methods: A dataset of CT and pathological images from 324 patients with ILD between 2009 and 2021 was collected. The CT 
component of the model was trained to identify 28 different radiological features. The pathological counterpart was developed in 
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our previous study. A total of 114 samples were selected and used for testing the multimodal AI model. The performance of the 
multimodal AI was assessed through comparisons with expert pathologists and general pathologists.
Results: The developed multimodal AI demonstrated a substantial improvement in distinguishing UIP from non- UIP, achieving 
an AUC of 0.92. When applied by general pathologists, the diagnostic agreement rate improved significantly, with a post- model 
κ score of 0.737 compared to 0.273 pre- model integration. Additionally, the diagnostic consensus rate with expert pulmonary 
pathologists increased from κ scores of 0.278–0.53 to 0.474–0.602 post- model integration. The model also increased diagnostic 
confidence among general pathologists.
Conclusion: Combining CT and histopathological images, the multimodal AI algorithm enhances pathologists' diagnostic accu-
racy, consistency, and confidence in identifying UIP, even in cases where specialised expertise is limited.

1   |   Introduction

Interstitial lung disease (ILD) comprises a heterogeneous group 
of disorders primarily characterised by fibrosis of the lung inter-
stitium and inflammation [1]. The incidence of these disorders 
varies widely, owing to the rarity of certain entities and the high 
frequency of others [2], making encounters with ILD cases not 
uncommon for general pathologists in daily clinical practice. 
However, achieving a precise diagnosis of ILD and identifying 
the causative agent/condition demands a high level of expertise 
due to the overlapping histological features, radiological presen-
tations, and clinical symptoms [3]. Notably, many challenging 
ILD cases that cannot be diagnosed based solely on clinical and 
radiographic findings necessitate surgical lung biopsy and histo-
pathological evaluation, further complicating the diagnostic pro-
cess. For most ILDs, a conclusive diagnosis demands integrating 
clinical, radiological, and pathological features, which calls for 
a multi- disciplinary discussion (MDD) [4, 5]. As a result, diag-
nosing ILD remains extremely challenging and is often deemed 
esoteric for most non- pulmonary pathologists.

The recognition of the usual interstitial pneumonia (UIP) histo-
logical pattern, which is present in numerous types of ILD, plays a 
crucial role as an indicator of potential fibrosis progression in the 
future and is associated with poor prognosis [5, 6]. Nevertheless, 
it is widely acknowledged that diagnosing interstitial pneumo-
nia, including UIP, remains inconsistent even among medical 
specialists proficient in both histopathological and radiographic 
image evaluation [7–9]. This inconsistency poses significant 
challenges for pathologists who do not routinely encounter in-
terstitial pneumonia cases, making it extremely difficult for 
them to conduct accurate tissue evaluation, including computed 
tomography (CT) image analysis/interpretation. Consequently, 
many cases of interstitial pneumonia tend to be concentrated in 

facilities with specialised departments equipped to handle such 
complex diagnoses.

To address this situation and improve the accessibility of ILD di-
agnoses, we have previously developed MIXTURE, an explain-
able artificial intelligence (AI) strategy that relies on extracting 
histopathological features evaluated by specialist pathologists 
through the use of a deep learning algorithm [10]. This approach 
has been applied explicitly to ILDs, focusing on predicting the 
diagnosis of UIP. Notably, the model demonstrated outstanding 
performance with an area under the curve (AUC) of 0.86 and 
showed promising results in predicting other ILDs as well.

Despite the high performance of the MIXTURE model, an AI 
model relying solely on histopathological information may not 
provide sufficient depth for achieving an objective diagnosis. ILDs 
pose a diagnostic challenge requiring a multi- disciplinary ap-
proach to reach a definitive diagnosis. A potential solution lies in 
integrating radiological or clinical data into AI models to mimic 
real- life conditions. The growing trend of employing multimodal 
AI models, which combine radiological and pathological images 
to attain final diagnoses, is evident across various medical disci-
plines. Notably, similar approaches have demonstrated successful 
outcomes in classifying gliomas [11, 12] and lung cancer [13].

To enhance the realism and objectivity of ILD diagnoses, we de-
veloped a multimodal AI model that combines histopathological 
and CT image data. This integrated approach aims to achieve a 
more effective prediction of UIP, irrespective of the pathologist's 
expertise level. By fusing both histopathological and radiolog-
ical information, our AI model holds the potential to provide 
more accurate and reliable predictions, enhancing the diagnos-
tic process for ILD, particularly in cases of UIP.

2   |   Methods

2.1   |   Study Design

The study received approval from the Institutional Review Board 
of Nagasaki University Hospital (Approval number 22092203) to 
develop a multimodal AI system for accurately diagnosing UIP 
using a retrospective case collection approach. The multimodal AI 
algorithm was designed by combining models trained on CT and 
pathological images, enabling the prediction of UIP presence. The 
performance of this AI model was then compared to that of pul-
monary pathologists and general pathologists, with and without 

Summary

• We aimed to develop a multimodal artificial intelli-
gence (AI) model combining CT and pathological im-
ages for a more accurate diagnosis of interstitial lung 
diseases (ILDs), particularly usual interstitial pneu-
monia (UIP).

• The AI achieved an AUC of 0.92 in distinguishing 
UIP from non- UIP cases and significantly improved 
pathologists' diagnostic confidence.
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the aid of the AI model, to evaluate its impact on diagnostic accu-
racy. Figure 1 illustrates the schematic workflow of the study.

2.2   |   Data Collection

A cohort comprising 770 cases diagnosed with ILD after MDD 
was chosen from a single institution (Tosei General Hospital, 
Seto, Japan) covering the period from 2009 to 2021. To ensure a 
robust dataset, cases with no volumetric CT images, pre- biopsy 
CT images, and no precise pathological diagnosis were excluded 
(n = 106). All remaining cases included CT images without a de-
finitive UIP pattern and with corresponding pathological tissue 
samples. After a random selection to narrow down the cohort, the 
remaining cases (n = 324) were partitioned as follows: 74 cases 
for extracting CT image features, 93 cases for creating the AI 
model using CT image features; additionally, 61 cases were used 
for multimodal AI model training, and 114 cases for its testing. 
A detailed representation of the case distribution is illustrated 
in Figure 2. All histopathological slides were scanned using the 
digital slide scanner Aperio ScanScope CS2 (Leica Biosystems, 
Buffalo Grove, IL) to produce whole slide images (WSIs).

2.3   |   Creation of Pathology AI That Recognises 
UIP With the MIXTURE Strategy

Regarding the histopathological component of the multi-
modal AI model, hereinafter referred to as Pathology- AI, the 

intermediate output of the MIXTURE model was used [10]. The 
model is able to predict the presence of UIP in video- assisted 
thoracic surgery (VATS) histopathological specimens. A com-
prehensive account of the creation of Pathology- AI, along with 
an in- depth analysis of its performance, can be found in our 
prior publication [10].

2.4   |   Creation of CT- AI That Recognises UIP

2.4.1   |   Features Extraction

The radiological counterpart of the multimodal AI, referred to 
as CT- AI, was developed using CT images from 74 patients diag-
nosed with chronic interstitial pneumonia, acquired with thin 
slices (0.5–0.6 mm) from multiple CT scanner models. Lung 
segmentation was performed using the lungmask library [14], 
generating 574,977 patches divided into 32 × 32 pixels with a 48 
× 48 stride (Figure 3(1)).

Features extraction was conducted using an automated, self- 
supervised learning approach with the SimSiam library, 
transforming patches into 2048- dimensional feature vectors 
(Figure  3) [15]. No adjustments for class imbalances were re-
quired. From these, 74,970 feature vectors were clustered into 
120 groups using spherical k- means. Two ILD specialists (M.O. 
and Y.Z.) classified these clusters into 8 patterns, including UIP 
and non- UIP categories, based on image features and spatial lo-
calisation (Figure 3(3)).

FIGURE 1    |    Workflow of the study. The multimodal AI algorithm was developed by integrating computed tomography and histopathological 
components, both designed to detect the presence of usual interstitial pneumonia. Subsequently, the model's performance was evaluated by com-
paring it to that of a pulmonary pathologist with expertise in interstitial lung disease, as well as to general pathologists before and after utilising the 
model.
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The lung field was further divided into 12 anatomical regions 
(left–right, upper- middle- lower, inner- outer), and 28 features 
were extracted: 24 based on the proportions of the 8 patterns 

in the upper, middle, and lower regions, 1 capturing the differ-
ence in normal lung proportions between left and right, and 3 
representing spatial variations in UIP patterns between inner 

FIGURE 2    |    Cases distribution. A total of 74 interstitial lung disease cases were used for feature extraction from computed tomography images, 
while 93 cases were employed for annotation. The multimodal AI model was trained using 61 cases and subsequently tested on 114 cases.

FIGURE 3    |    Development of the computed tomography counterpart of the multimodal AI model, CT- AI. 1. Image segmentation of the CT image's 
lung field produced over a million patches of 32 × 32 pixels. 2. Some examples of the 120 clusters obtained from k- means clustering, emphasising 
feature similarity between different patches 3. Clusters were further classified into 8 distinct radiological patterns by 2 pathologists to be finally re-
grouped under UIP or non- UIP 4. 12- regions division of the lung on the left coupled with an example of results of the CT- AI on the right.
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and outer regions (Figure 3(4)). Further details are provided in 
Supporting Information.

2.4.2   |   UIP Labelling of CT Images

To train and test the CT- AI model, 93 consecutive CT images 
from patients with chronic interstitial pneumonia who had not 
undergone VATS were retrospectively collected from 2019 to 
2020. Two ILD- expert radiologists (R.E. and T.J.) assessed the 
likelihood of UIP presence in 10% increments (0%–100%). The 
average UIP probability was calculated for each case, and cases 
with 50% abnormalities were assigned a pseudo- consensus UIP 
label. Based on these evaluations, each case was classified as ei-
ther UIP or non- UIP.

2.4.3   |   Creation of CT- AI

The 93 annotated CT image cases were randomly split into two 
sets: a training set of 46 and a testing set of 47 cases. From the 
training set, a random forest model was developed (scikit- learn, 
version 0.24.2) capable of predicting the presence of a UIP based 
on the 28 features that were previously created. The model gen-
erated a continuous variable output ranging from 0 to 1, with 
values closer to 1 indicating a higher likelihood of UIP. To di-
chotomise the predictions into UIP and non- UIP categories, the 
cutoff point was set at 0.5, where values equal to or above 0.5 
were classified as UIP, while those below 0.5 were labelled as 
non- UIP. Further details on the creation of the CT- AI are pro-
vided in the supplemental material.

2.5   |   Creation of the Multimodal AI Model 
Combining Histopathological and CT Images

2.5.1   |   Training

A predictive model was developed to determine the histological 
diagnosis of UIP using pathological features from the MIXTURE 
model [10], 0–1 continuous variables from CT- AI, and CT image 
features. The multimodal AI produced continuous values (0–1), 
where values closer to 1 indicated a higher likelihood of UIP. A 
cohort of 70 VATS patients (2016–2017) was enrolled, and after 
excluding 9 cases without chest CT images or with unclassifi-
able histopathology, 61 cases were used for model training via 
a Random Forest strategy. Parameters of the trained model are 
available in the supplemental material.

2.5.2   |   Testing

Between 2009 and 2015, 351 patients who underwent VATS 
were identified for the test set. After excluding 110 cases with 
poor HE staining and 15 unclassifiable cases, 226 cases were 
evaluated by a specialised ILD pathologist (J.F.), classifying 136 
as UIP and 90 as non- UIP. An additional 46 cases with insuf-
ficient follow- up data were also excluded. From the remaining 
cases, 120 (60 UIP, 60 non- UIP) were selected, ensuring a bal-
anced distribution. After further exclusions, 114 cases were fi-
nalised for model testing.

2.5.3   |   Validation by General Pathologists

From the test cohort of 114 cases, 69 were randomly selected to 
assess the performance of the multimodal AI with general pa-
thologists. Four pathologists (N.T., I.M., S.I., and H.S.Y.), with-
out ILD expertise, reviewed the haematoxylin and eosin (H&E) 
and chest CT images, diagnosing UIP/non- UIP and indicating 
confidence levels (high, medium, low). After initial diagnoses, 
they were presented with the multimodal AI results and asked 
to reassess the cases.

Additionally, 11 ILD specialists (R.A., A.C., A.M.M., F.S., J.W.A., 
A.A., A.T.F., L.B., A.C.R., M.S., and A.M.) evaluated the same 
69 cases to establish a “consensus diagnosis,” which served as 
the ground truth. The agreement rate between the general pa-
thologists' diagnoses and the expert consensus was calculated 
before and after AI assistance, along with changes in diagnostic 
confidence.

2.6   |   Statistical Analysis

Cohen's Kappa was used to calculate diagnostic concordance 
rates among the four raters both before and after the input of the 
multimodal AI, as well as to assess their concordance with the 
diagnoses made by expert pulmonary pathologists. Area under 
the curve (AUC), precision, recall, and F1 score were used to 
evaluate the performance of the AI. This study used R (v. 4.3.0.) 
as the statistical software.

3   |   Results

3.1   |   Clinicopathological Characteristics 
of Patients

This study included cases diagnosed with interstitial lung dis-
ease who underwent VATS between 2009 and 2021. Of these 
cases, those without an accurate pathology diagnosis, those 
without 0.5 mm slice chest CT images, and those without pa-
thology specimens collected simultaneously as CT imaging 
were excluded. Finally, 74 and 93 cases were used for feature 
extraction and the creation of the CT- AI, respectively; 61 cases 
were used for training to create the multimodal AI, and 114 
cases were used for testing (Figure 2). Age, sex ratio, and the 
number of UIP cases in the training and testing cohorts can be 
found in Table 1.

3.2   |   UIP Prediction Results With CT- AI

The development of the multimodal AI algorithm for UIP 
classification involved the creation of distinct AI components, 
notably the CT- AI and the Pathology- AI. The performance 
outcomes of the Pathology- AI, facilitated by the MIXTURE 
model, are comprehensively detailed in our previous publica-
tion [10]. Furthermore, the CT- AI, based on the random forest 
model, demonstrated an accuracy of 78.51% ± 4.09% in the di-
chotomised classification of UIP and non- UIP within lung CT 
images. This classification was accompanied by recall, speci-
ficity, precision, and F1 scores, which stood at 89.60% ± 5.21%, 
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60.04% ± 12.88%, 79.93% ± 6.27%, and 84.18% ± 2.92%, respec-
tively. When juxtaposed against the labels provided by radiolo-
gists, the CT- AI model exhibited a high AUC of 0.8492 ± 0.0423 
for the UIP classification.

3.3   |   UIP Prediction Results With Multimodal AI

Next, the assessment of the multimodal AI, integrating both 
the CT images component and the histopathological compo-
nent, was conducted within a cohort comprising 114 patients. 
In this evaluation, the model demonstrated its proficiency by 
accurately detecting the presence of UIP within the test set, 
achieving an overall accuracy rate of 82.37% ± 2.81%. This ac-
complishment was further substantiated by recall and specific-
ity values of 93.08% ± 2.14% and 73.39% ± 5.11%, respectively, 
precision of 74.76% ± 3.68%, and an F1 score of 82.85% ± 2.36%. 
For example, within the test set, three cases were diagnosed 
with chronic hypersensitivity pneumonitis (CHP), including 
one case with an uncertain diagnosis (CHP or idiopathic pul-
monary fibrosis) from the MDD. The AI classified two of the 
CHP cases as non- UIP, while the uncertain case was recog-
nized as UIP.

To ascertain the model's performance against a robust ref-
erence, the UIP/non- UIP binary classifications rendered by 
the pulmonary pathologist (J.F.) were considered the ground 
truth. In this context, the multimodal AI exhibited com-
mendable discriminative power, as evidenced by an AUC of 
0.9238 ± 0.0152 for detecting UIP, with a confidence interval 
of 0.9123 to 0.9353.

3.4   |   Classification Performance of General 
Pathologists Using the Multimodal AI

The impact of the multimodal AI algorithm on the diagnostic accu-
racy of general pathologists was assessed using 69 VATS specimens. 
Ground- truth diagnoses were determined by consensus among 11 
pulmonary pathologists. Four general pathologists, without ILD ex-
pertise, classified cases as UIP/non- UIP and rated their confidence 
levels. Before using the AI, the diagnostic concordance among gen-
eral pathologists was low, with a κ coefficient of 0.273, and agree-
ment with the expert consensus was fair to moderate (κ = 0.278 to 
0.53, Figure 4A). Diagnostic confidence was also limited, with high 
confidence in only about 10% of cases (Figure 4B). After using the 
AI, diagnostic concordance improved significantly, with a κ value 
of 0.737 among general pathologists and 0.474 to 0.602 in agree-
ment with the expert consensus, with a p- value of 0.048, indicating 
a statistical significance (Figure  4A). Diagnostic confidence also 

increased, with three of the four general pathologists expressing 
high confidence in about 50% of cases (Figure 4B).

4   |   Discussion

The present study detailed the creation of a multimodal AI al-
gorithm that integrates both CT images and histopathological 
images to discern UIP effectively. The radiological component 
of the model underwent training to identify 28 distinct features 
associated with the presence or absence of UIP, while the patho-
logical AI component was developed in a prior investigation [10]. 
When assessed on an independent dataset, the multimodal AI 
algorithms demonstrated a remarkable AUC for UIP detection. 
Furthermore, the model's training significantly enhanced diag-
nostic congruence with expert pulmonary pathologists and in-
creased the diagnostic confidence of general pathologists when 
evaluating UIP diagnoses. To the best of our knowledge, this 
study presents the first attempt to combine CT and pathologi-
cal images to build an AI algorithm capable of distinguishing 
UIP. Moreover, the development and implementation of these 
multimodal AI algorithms represent a promising advancement 
in the accurate and confident diagnosis of UIP. By integrating 
CT and pathological features into an interpretable prediction 
framework, these algorithms hold the promise of reducing in-
terobserver variability while likely enhancing diagnostic consis-
tency and confidence. While not intended to replace MDD, this 
tool has the potential to significantly impact ILD assessment 
and management by supporting pathologists in their decision- 
making process.

In recent years, significant advancements in AI- based image 
diagnosis have been made, particularly in the realms of radio-
logical images and histopathology [16–21]. However, it is worth 
noting that many of these AI developments have been concen-
trated in fields characterised by well- defined diagnostic criteria, 
such as tumours and infectious diseases [22, 23]. In contrast, for 
conditions like interstitial pneumonia, where diagnosis often re-
lies on the subjective judgement of the evaluator and where the 
availability of comprehensive and accurate data for AI is lim-
ited, constructing effective AI models poses unique challenges. 
In response to these challenges, our previous work led to the de-
velopment of the MIXTURE model, which can recognise histo-
logical UIP [10]. In our ongoing efforts to enhance the accuracy 
of the MIXTURE model, we have now introduced a novel ap-
proach: a multimodal AI that incorporates radiographic image 
characteristics to aid in diagnosing histological UIP.

Integrating clinical observations, radiographic data, and occa-
sionally genomic characteristics with histopathological images 

TABLE 1    |    Clinicopathological characteristics of the cohort.

Learning of CT image 
features, n = 74

Training of the 
multimodal AI, n = 61

Testing of the 
multimodal AI, n = 114

Age, mean (intervals) 65 (33–81) 61 (30–75) 63 (31–75)

Male (%) 48 (65%) 38 (62%) 62 (54%)

Pathology label UIP:non UIP n/a 34:27 56:58

 14401843, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/resp.70036 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [15/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7 of 10

enhances diagnostic accuracy [24, 25]. Recent advancements 
in machine learning have driven the development of multi-
modal AI systems that combine diverse diagnostic inputs to 
improve precision. For example, combining pathological and 
radiographic data has shown improved performance in glioma 
diagnosis [11, 12] and more accurate prognostication in high- 
grade serous carcinoma of the ovary [26]. In ILDs, a multidisci-
plinary approach is essential, with radiographic images playing 
a key role in providing a comprehensive view of lesions [27–29]. 
Integrating a chest CT AI model into the MIXTURE model, 
which focuses on histopathological morphology, enables a 
holistic approach that improves the accuracy of histological 
UIP diagnosis and holds promise for other complex medical 
conditions.

The resulting model exhibited a notable increase in AUC 
compared to the performance of the MIXTURE model [10]. 
Specifically, the Pathology- AI demonstrated an AUC of 0.88 for 
UIP prediction on a test set, using findings extracted at 2×, 5×, 

and 20× magnification. In contrast, the multimodal AI model 
in this study achieved an AUC of 0.92 for the same task, sig-
nifying a substantial enhancement in accuracy. This result is 
also superior to a similar developed model but only focusing 
on the UIP prediction on CT images, with an AUC of 0.87 [30]. 
Furthermore, when the multimodal AI model was employed by 
four pathologists who do not routinely diagnose ILDs, their di-
agnostic agreement rate saw significant improvements. Prior to 
AI integration, the κ score stood at 0.273, but following the mod-
el's inclusion, this score surged to 0.737. Moreover, the diagnos-
tic consensus rate with expert pulmonary pathologists, initially 
low with κ scores ranging from 0.278 to 0.53 before AI utilisa-
tion, experienced a marked enhancement, elevating κ scores to 
the range of 0.474 to 0.602 post- model integration. Additionally, 
using the model increased diagnostic confidence among the pa-
thologists, with three general pathologists now exhibiting a 50% 
high- confidence diagnostic rate compared to the previous 10%. 
These compelling results suggest that the model developed in 
this study holds the potential to standardise diagnoses across 

FIGURE 4    |    Impact of the multimodal AI on general pathologists. (A) Diagnostic concordance between general pathologists and consensus diag-
nosis, before and after exposure to the multimodal AI results. Overall improvement in concordance was noted after pathologists were aware of the re-
sults of the multimodal AI model. (B) Diagnostic confidence assessment for general pathologists before and after AI results. Improvement in diagnos-
tic confidence was observed in 3 out of 4 pathologists, with 50% of cases diagnosed with high confidence after consulting the multimodal AI results.
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diverse patient populations, even in scenarios where medical 
professionals lack specialised expertise. Although the model 
was initially designed for VATS specimens, there is potential to 
extend this methodology to cryobiopsy, thereby creating a more 
versatile diagnostic tool. While our study integrates CT data into 
pathological diagnosis, it does not suggest modifying current ra-
diological practices. Biopsy is not recommended for cases with 
a definitive UIP pattern on CT, as the multimodal AI primarily 
aids in inconclusive cases.

Conversely, despite its immense value, AI diagnosis is not in-
fallible, necessitating the development of mechanisms that 
allow users to assess the reliability of AI- generated judgments. 
Consequently, explainability holds profound significance 
within the medical AI field. This study's model was crafted to 
serve as an assisting tool for pathologists. It was designed to 
convey the distribution of pathological findings in a manner 
that enables pathologists to make informed decisions while 
concurrently verifying the AI's accuracy in recognising le-
sions. Additionally, acknowledging that pathologists may have 
little expertise in interpreting radiographic images, the model 
represents the presence of UIP as a numerical value, thereby 
enhancing interpretability. Pathologists can seamlessly col-
laborate with the AI through these thoughtful design choices, 
conducting diagnoses while naturally confirming the AI's per-
formance. The integration of the AI into the clinical workflow 
is efficient, as the AI- generated results can be incorporated into 
an existing diagnostic platform, assisting pathologists in gener-
ating more standardised reports prior to their inclusion in mul-
tidisciplinary discussions.

Several limitations have to be considered in this study. Firstly, 
the multimodal AI model training and evaluation were limited 
to cases from a single medical institution, which may affect the 
model's generalizability. To address this limitation, data aug-
mentation was applied to simulate different laboratory settings 
and staining differences that might arise from cases originating 
from different institution. However, the performance of the mul-
timodal AI should be interpreted with caution, as no external 
test set was used to validate its performance on an institution- 
independent dataset. This limitation is primarily due to the 
nature of the study, which serves as a proof- of- concept for the 
multimodal AI. This issue should be addressed in a follow- up 
study involving cases from multiple institutions, with ground 
truth established through a consensus of multiple patholo-
gists, to comprehensively evaluate the model's performance. 
Secondly, although the model underwent training involving 
multiple CT scanner models, the histopathological tissue anal-
ysis was restricted to using a single digital slide scanner and in-
cluded only VATS specimens. Thirdly, in a highly complex field 
such as ILD and UIP, the annotations provided by pathologists 
and radiologists to establish the ground truth may have intro-
duced some degree of bias, potentially affecting the reliability of 
the reference standard. To mitigate this concern, a consensus- 
based approach was adopted, where the ground truth diagno-
sis was established only when agreement was reached among 
a panel of expert pathologists. Nevertheless, future research 
endeavours should focus on broadening its scope to encompass 
various biopsy techniques, including cryobiopsy, to enhance the 
model's versatility and real- world applicability. Additionally, 
incorporating data from diverse medical sources and facilities 

would provide a more comprehensive assessment of the model's 
performance and robustness.

In summary, we developed a multimodal AI algorithm encom-
passing both CT and histopathological images to accurately 
recognise UIP in patients with resected lung specimens. The 
extensive validation process, including comparisons with expert 
pathologists and general practitioners, highlights the significant 
potential of this AI tool in enhancing diagnostic capabilities and 
confidence among pathologists, even in cases where specialised 
expertise is limited. We believe that the model's performance in 
improving diagnostic accuracy and consistency signifies a criti-
cal step toward more standardised and reliable diagnoses in the 
field of ILD and that beyond the context of UIP diagnosis, this 
multimodal approach holds promise for addressing the complex-
ities of other intricate medical conditions.
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