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ABSTRACT

Gates and weirs are frequently used hydraulic structures employed for controlling water flow rates in irrigation and drainage networks.
Therefore, accurately estimating the discharge coefficient (Cd) is important for precise flow measurement. The present study used intelligent
predictive models for modeling Cd in labyrinth sluice gates. For this purpose, key dimensionless parameters and reliable experimental
datasets were used. The support vector regression (SVR) model was hybridized with particle swarm optimization (PSO) and genetic
algorithms (GA). The statistical metrics and graphical plots evaluated the performance of the generated models. Three commonly used
statistical indicators, namely root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), were used
for quantitatively evaluating the performance of the proposed models. The SVR-PSO model achieved the lowest values of RMSE (0.0287) and
MAE (0.0209) and the highest value of R2 (0.9732), indicating that it was more accurate than SVR-GA (RMSE¼ 0.0324, MAE¼ 0.0257,
R2¼ 0.9685) and SVR (RMSE¼ 0.0575, MAE¼ 0.0468, R2¼ 0.8958) on the testing data. The findings revealed that the hybrid SVR methods
were more accurate than the standalone SVR model. In addition, regarding the value of the objective function criterion (OBF), the SVR-PSO
(OBF¼ 0.0245) and SVR-GA (OBF¼ 0.0273) had lower OBF values and provided more precise estimates of the Cd compared to existing
nonlinear regression-based formulas and existing data-driven approaches. Finally, sensitivity and SHapley Additive exPlanations (SHAP)
analyses determined the relative importance of each input variable for the prediction of Cd.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0260738

I. INTRODUCTION

Gates and weirs are important hydraulic structures in regulating
discharge flow in open channels and controlling water levels in supply
channels and waterways.1,2 These structures are used to control water
flow and measurements of discharge rates. Therefore, accurate estima-
tion of the discharge coefficient (Cd) is important for the efficient
design of gates and operation. This coefficient quantifies the relation-
ship between the measured and theoretical flow, and the values of Cd

illustrate the efficiency of the gates and weirs. There are various types
of gates, such as standard, side, skew, and labyrinth sluice gate configu-
rations.3 The selection of an appropriate gate type depends on specific
operational needs. Therefore, hydraulic engineers have extensively
examined various types of gates and weirs in different geometric

configurations and hydraulic conditions.4 Labyrinth sluice gates were
introduced as appropriate hydraulic structures for irrigation systems
and flood control infrastructure.5

Generally, three modeling approaches, including physical model-
ing, numerical simulation, and data-driven techniques, are proposed
in the literature for the prediction of Cd in gates and weirs. Each of the
modeling methods has strengths and limitations for the estimation of
Cd. Physical modeling used scaled hydraulic models that experimen-
tally measured Cd under controlled laboratory conditions, capturing
real flow conditions.6 The experimental data were used for validation
of other methods; however, physical modeling requires the cost of
building a model and conducting experiments, is time-consuming, and
is under the influence of scale effects.7 Numerical modeling simulates
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the hydraulic behavior of flow and detailed insights of flows, extracting
the various parameters of flow in complex geometries of hydraulic
structures.8 Numerical simulations are cost-effective compared to
physical models; however, they need substantial computational resour-
ces, expertise in computational fluid dynamics modeling, and experi-
mental validation to mitigate uncertainties. Data-driven techniques
can find nonlinear relationships from large datasets without any prior
knowledge about physical processing. However, they need high-quality
data and hyperparameter tuning to achieve reliable accuracy.
However, their interpretability poses a persistent challenge.

Traditionally, the estimation of Cd is conducted using experimen-
tal works using physical hydraulic models. However, experimental
work is time-consuming and costly. Recently, implementations of
data-driven models compared to experimental work for modeling
hydraulic parameters have led to savings in cost and time.9 These
methods have been used to model Cd for various types of gates and
weirs.10 Azamathulla et al. proposed the gene expression programming
(GEP) model to estimate Cd in side sluice gates.11 The GEP model was
developed by Azimi et al. for Cd estimation in side weirs.12 They inves-
tigated effective parameters to predict Cd. Ghorbani et al. simulated Cd

for vertical sluice gates13 while considering the effect of various sill
shapes. For Cd prediction, they used gradient-boosting techniques and
experiments. Roushangar et al. presented a hybrid kernel extreme
learning machine and gray wolf optimization (KELM-GWO) model
for Cd prediction in radial gates.14 For the prediction of Cd in rotary
gates, Marashi et al. coupled artificial neural networks (ANNs) and
SVMs with genetic algorithms (GA) and simulated annealing (SA).
Compared to empirical methods, Marashi et al. showed that their
data-driven models produced accurate predictions.15 For simulating
Cd in weir gates, Parsaie et al. assessed the adaptive neuro-fuzzy infer-
ence system (ANFIS) and ANN.16,17 They concluded that the ANFIS
performed rather better than the ANN. Using genetic programming

(GP), Salmasi and Abraham generated predictive models for calculat-
ing Cd in inclined sluice gates.18 Their GP results demonstrated more
accurate than conventional regression methods.

Other noteworthy contributions include those of Sahib et al.,19

who applied ANN to predict Cd for a combined trapezoidal weir and
rectangular gate, achieving high accuracy through iterative parameter
optimization, and Nouri et al.,20 who evaluated various data-driven
approaches, including model trees, SVM, and ANN, for compound
rectangular broad-crested weirs, identifying support vector regression
(SVR) as the most reliable approach. As mentioned earlier, various
data-driven methods have been proposed for the prediction of Cd.
However, some studies highlighted the accuracy and capability of
SVR-based models for accurate predictions of Cd in weirs and gates,
summarized in Table I.

As shown in Table I, the effectiveness of SVR for estimating Cd is
highlighted. Furthermore, Karami et al. and Zaji et al. demonstrated
that integrating metaheuristic algorithms with SVR improved perfor-
mance compared to standalone SVR.21,25 Therefore, it is essential to
evaluate the efficiency of optimization algorithms for predicting Cd.
SVR has been a popular data-driven model for Cd prediction in weirs
and gates with satisfactory results. However, the tuning parameters of
SVR are necessary to avoid being trapped in a local minimum.
Therefore, evolutionary algorithms are effective methods for determin-
ing internal SVR parameters. The capability of popular and widely
used evolutionary algorithms, such as GA and particle swarm optimi-
zation (PSO), for determining the values of the parameters in an SVR
model has been successfully demonstrated in recent studies in various
civil and water engineering fields.27–30

Numerous studies have shown that more accurate outcomes arise
from combining the SVR model with GA and PSO. For the prediction
of suspended sediment load in a watershed basin, Rahgoshay et al.
examined SVR-GA, MARS,30 and model tree approaches. The SVR-GA

TABLE I. The application of SVR-based models for the estimation of Cd.

Authors Methods Type of weirs/gates Key findings

Karami et al.21 SVR, SVR-FA, PCA, RSM Triangular labyrinth weir The statistical metrics showed that the
SVR-Firefly model possesses the great-
est capability for simulation compared

to the other models.
Roushangar et al.22 SVR Labyrinth and arced

labyrinth weirs
The results obtained demonstrated that

SVM-based models can identify
discharge coefficients.

Azimi et al.23 SVR Side weir Based on the simulation results, the
superior model is reasonably accurate.

Zaji and Bonakdari26 SVR Modified labyrinth side weir The SVR model outperformed nonlin-
ear regression models in predicting

the Cd.
Zaji et al.25 SVR, SVR-FA Modified labyrinth side weir The SVR-FF model demonstrated

enhanced prediction accuracy com-
pared to the standalone SVR model.

Zaji et al.24 SVR Modified oblique side weirs The findings revealed that SVR utiliz-
ing a radial basis kernel function sur-

passed SVR, which employs
polynomial kernel functions.
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model turned out to have smaller errors than the others. For the pre-
diction of the transverse mixing coefficient in streams, Nezaratian
et al. found that GA might enhance the accuracy of the SVR
model.31 The SVR-PSO method for calculating the sediment load
during floods was developed by Kazemi et al. Their findings indi-
cated that this approach effectively provided dependable predictions
of flood features in basins.32 Yong et al.33 integrated SVR models
with meta-heuristic algorithms, including the whale optimization
algorithm, differential evolution, and PSO, for daily reference evapo-
transpiration estimation in Malaysia. Accordingly, the results
highlighted the superior hybrid SVR compared to a single SVR and
found the SVR-PSO model was more accurate than others.
Mozaffari et al.34 predicted groundwater levels in aquifers using
SVR-GA, and the results outperformed Bayesian and standalone
SVR models. The above-mentioned studies revealed the potential
and efficacy of data-driven models in the prediction of Cd for weirs
and gates. Nevertheless, there is a noticeable gap in research about
the application of integration of SVR base models with metaheuris-
tic algorithms for the prediction of Cd in labyrinth sluice gates. In
addition, to the best of the authors’ knowledge the hybridization of
SVR with evolutionary algorithms has not yet been used for the
accurate estimation of Cd in labyrinth sluice gates. Therefore, based
on the successful hybridization of GA and PSO with the SVR
method to improve power prediction accuracy, the SVR-PSO and
SVR-GA models were adopted to estimate Cd for labyrinth sluice
gates. The integration of GA and PSO with SVR (i.e., SVR-GA and
SVR-PSO) for modeling various engineering problems was illus-
trated successfully in many studies. These metaheuristic algorithms
(i.e., GA and PSO) are selected for their ability to handle complex
hydraulic engineering problems and for automatic optimization of
internal parameters of the SVR model for precise prediction.

In summary, the previous literature confirmed the successful esti-
mation of the discharge coefficient (Cd) of various gates and weirs
using the SVR model. However, only a few studies have combined the
SVRmodel with evolutionary algorithms to predict the Cd. In addition,
according to the literature review, the application of the combined
SVR model with two widely used optimization algorithms (GA and
PSO) in various civil and water engineering problems has successfully
improved the accuracy of predictions by identifying the optimal
parameters of the SVR model. Hence, the present work investigated
the capacity of the hybridization of the SVR model with two popular
and efficient metaheuristic algorithms, including GA and PSO, to
acquire the internal parameters of the SVR model for the estimation of
Cd in labyrinth sluice gates. The performance of the produced models
was evaluated using different statistical metrics and various graphs.
The possibility of hybrid SVR models for precise estimation of Cd in
labyrinth sluice gates was investigated in this work.

II. MATERIAL AND METHODS

The experimental dataset and suggested methods for modeling of
Cd in labyrinth sluice gates are described in the following subsections.

A. Experimental dataset

Hashem et al.5 have supplied experimental data on the discharge
coefficient of labyrinth sluice gates. Their laboratory experiments were
conducted in a rectangular hydraulic channel of 10m in length, 0.30m
in width, and 0.50m in height. Each 0.004m thick steel plate was used

as a gate; the labyrinth gates were set 5.50m downstream from the
canal inlet.

An ultrasonic depth sensor of accuracy 60.10mm was used to
measure the flow depth. The study involved 187 experimental tests
involving labyrinth sluice gates, each with a triangular cross section. The
parameter study involved three apex angles (h¼ 45�, 60�, and 90�) and
four gate opening heights (G¼ 0.02, 0.03, 0.04, and 0.05m). In the tests,
the discharge varied from 0.0057 to 0.0261m3/s, and the upstream water
depth varied from 0.072 to 0.045m. The tests were conducted under
free-flow conditions, enabling a thorough analysis of the labyrinth gate
behavior. The gates were tested for exactly the same parameters in one-
cycle (N¼ 1) and two-cycle (N¼ 2) configurations; leaf-plan paths of
the gates were observed for both one-cycle and two-cycle configurations.
Hashem et al. used the data to develop a robust empirical equation for
estimating Cd. Notably, Hashem et al. reported that the efficiency of the
labyrinth gates diminished as the apex angle increased.5 The Cd increases
as the H/G ratio increases. However, the number of cycles (N) was
found to have minimal influence on Cd. Figure 1 shows a definition
sketch of the labyrinth gate and related key variables.

B. Dimensional analysis

The dimensional analysis provided by Hashem et al. indicated
that the following relationship can be used to determine Cd for the lab-
yrinth sluice gate:5,35

Cd ¼ f
H
G
; h;N;Re;We

� �
; (1)

where H is the upstream water depth, G is the gate opening, h defines
the apex angle (h ¼ L

lÞ, N is the number of cycles in the labyrinth gate.
Re and We are denoted as Reynolds and Weber numbers, respectively.
Furthermore, L represents the overall length of the labyrinth gate,
while l denotes the length of the labyrinth gate’s projection onto a ver-
tical surface. It is worth mentioning that based on the laboratory con-
ditions of Hashem et al.,5 the values of Re and We exceed 2000 and
exceed 50, respectively, and can be negligible on Cd.

36 Therefore, the
primary nondimensional parameters influencing Cd may be rear-
ranged and simplified to give

Cd ¼ f
H
G
; h; N

� �
: (2)

The statistical parameters of influential variables in Eq. (2) are pro-
vided in Table II.

Figure 2 presents the correlation matrix for key non-dimensional
variables influencing the discharge coefficient (Cd) in labyrinth sluice
gates. This figure visually represents the strength and direction of the
relationships between variables affecting Cd.

As seen in Fig. 2, parameter H/G has a strong direct correlation
with Cd. This suggests that as H/G increases, the discharge coefficient
tends to increase. The parameter h shows a negative correlation with
Cd. This inverse relationship suggests that larger apex angles lead to
reduced discharge. The parameter N appears to have a minimal effect
on Cd, as reflected by the weak correlation.

C. Data-driven models andmetaheuristic algorithms

Data-driven models employ advanced computational techniques
that discover hidden patterns and relationships within datasets.
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Data-driven models are widely used and effective for finding the
relationship between input and output parameters and extract-
ing knowledge from datasets.37 Metaheuristic algorithms are
optimization methods that search the problem space for the
optimal solution. They are particularly useful for solving com-
plex problems where traditional optimization methods may fail.

Such algorithms provide optimal solutions by iteratively explor-
ing and exploiting the search space to optimize an objective
function.38 Metaheuristics often are inspired by natural pro-
cesses, such as biological evolution (genetic algorithm) and
swarm behavior modeling (particle swarm optimization). The
hybridization of data-driven models with metaheuristic algo-
rithms can enhance the predictive accuracy of developed predic-
tive models.39 Metaheuristics schemes can optimize the internal
parameters of data-driven models and improve their overall
performance.40

The present study used SVR as a data-driven model and PSO
and GA metaheuristic algorithms for modeling Cd. The efficiency
of these algorithms is demonstrated for solving complex prob-
lems, particularly in hydraulic engineering applications. In addi-
tion, the SVR model presented a good performance in earlier
research that supported its application for discharge coefficient
prediction in labyrinth sluice gates. SVR was chosen in this inves-
tigation because of its efficacy in modeling nonlinear interac-
tions, proficiency in generalizing from limited datasets, and solid
theoretical basis in machine learning.41,42 However, the accuracy
results of SVR depend on the appropriate tuning of its hyperpara-
meters.43 Usually, the SVR parameters are explored using a con-
ventional approach, such as the grid search method. However,
this method is computationally costly and may fail to find the
best values of the hyperparameters of the SVR model. Employing
intelligent tuning techniques to determine the internal parame-
ters of SVR can be implemented by metaheuristic algorithms
such as PSO and GA. The determination of SVR parameters by
metaheuristic algorithms frequently leads to improved accuracy
and lower computing costs.43

1. Support vector regression (SVR)

SVR is a supervised learning methodology designed for
regression modeling. It is a modified version of the SVM algorithm
that is mostly used for classification tasks.44 SVR seeks to find a
function, f(x), that describes the relationship between the input

TABLE II. The values of the main statistical parameters of Eq. (2).

Statistical index Cd
H
G h N

Minimum 0.548 2.075 0.785 1.000
Maximum 1.344 22.500 1.570 2.000
Average 0.803 7.061 1.082 1.481
Standard deviation 0.177 4.612 0.316 0.501
Kurtosis 0.333 1.491 �1.148 �2.016
Skewness 0.944 1.408 0.663 0.076
Median 0.767 5.500 1.047 1.000 FIG. 2. Correlation matrix for key non-dimensional variables for the labyrinth sluice

gate.

FIG. 1. The schematic view of the labyrinth sluice gate (adopted from
Ref. 35).
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features, x, and the desired values, y, in order to reduce estimation
errors. The principal expression in this methodology can be
expressed as follows:44

f xð Þ ¼ wTu xð Þ þ b; (3)

where f(x) represents the function relating the output and input
parameters, wT denotes the transpose of the weighting vector applied
to the input data, u signifies a nonlinear transformation function that
maps the input variable x into an m-dimensional feature vector, and
term b refers to the bias factor. The optimization problem for SVR can
be expressed as45

minw;b;ni;n�i
1
2
kwk2 þ C

Xn

i¼1
ni þ n�i
� �

; (4)

subject to the constraints

yi � wTxi þ bð Þ � �þ ni;

wTxi þ bð Þ � yi � �þ n�i ;
ni; n

�
i � 0; 8i ¼ 1; 2;…; n:

8><
>:

where yi is the target value for the i-th data sample, � is the width of
the �-insensitive tube, ni; n

�
i are slack variables for the i-th data sample,

and C is the regularization parameter that controls the trade-off
between model complexity and prediction error. Employing Lagrange
multipliers, ai; a�i and the Karush–Kuhn–Tucker (KKT) condition, Eq.
(3) may be written as45

f xð Þ ¼
Xm

i¼1
ai � a�i
� �

k xi; xjð Þ þ b; (5)

where k represents the kernel function.
Various kernel functions can be used to analyze and interpret

data effectively in SVR modeling. Linear, sigmoid, polynomial,
and radial basis functions (RBF) are among the routinely used
kernel functions. The choice of appropriate kernel function is
a crucial issue for the performance of the SVR model to detect
complex data patterns. This work adopted RBF expressed as
follows:

k xi; xjð Þ ¼ exp �kxi � xjk2
2r2

� �
; (6)

where r denotes the kernel parameter.
This work chooses the RBF kernel for SVR because of its strong

capacity to describe the complex and nonlinear interactions in hydrau-
lic engineering applications like discharge coefficient prediction.
Moreover, the RBF has advantages such as being less sensitive to out-
liers and noise in experimental data, better model generalization, and a
good history demonstrated in modeling hydraulic engineering, espe-
cially Cd prediction.

46–48

The performance of the SVR method depends on three primary
variables, including C, r, and �. A metaheuristic optimization algo-
rithm can be used to assign the best values for these parameters. For
the optimization process, the root mean squared error (RMSE) fitness
function is used.

The RMSE fitness function is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

i¼1
Cobs
di � Cpre

di

� �2r
; (7)

where Cobs
di and Cpre

di refer to measured and estimated values of Cd. The
m parameter represents all measured data samples.

2. Genetic algorithm (GA)

GA is a metaheuristic optimization algorithm that is inspired
by the process of natural selection and the genetic evolution of
creatures.49 The main procedures of the GA algorithm are as fol-
lows:50 (i) Initialization: A set of potential solutions (chromo-
somes) is randomly generated within the problem search area. (ii)
Selection: The fittest individuals are selected according to a fitness
function value, which evaluates the quality of each candidate. (iii)
Crossover (recombination): Selected individuals undergo crossover
to produce offspring, combining features from parent solutions to
generate diversity. (iv) Mutation: A mutation induces random
changes in offspring, allowing the algorithm to explore diverse
areas of the search space. (vi) Termination: The process repeats
over generations until convergence criteria, like a maximum itera-
tion limit or desired fitness level, are met.

3. Particle swarm optimization (PSO)

PSO was originally inspired by the social patterns exhibited by
birds and fish.51 It relies on a group of particles passing the search
area to find optimal solutions based on their individual experiences
and interactions with others. The main steps of PSO are as fol-
lows:52,53 (i) Initialization: A collection of particles is dispersed
within the search area at random. Every particle signifies a possible
solution. (ii) Velocity and Position Update: Every particle modifies
its position and velocity according to its individual best position
(pbest) and the global best position (gbest) found by the swarm. (iii)
Iteration: The movement of particles is influenced by cognitive
(individual) and social (group) components, enabling exploration
and exploitation of the search space. (iv) Termination: The algo-
rithm stops when particles converge to a solution or a specified
condition is met.

The principal equations of the PSO algorithm for updating the
velocity and position of each particle are given in Eqs. (2) and (3),
respectively,

vtþ1
i ¼ wvti þ c1r1 pbesti � xti

� �þ c2r2 gbest� xti
� �

;

xtþ1
i ¼ xti þ vtþ1

i ;

where vtþ1
i is the updated velocity of particle i at iteration tþ 1,

w is the inertia weight, c1 and c2 are the acceleration coefficients; r1
and r2 are random values that have uniform distribution between 0
and 1, xti and xtþ1

i are the current position of particle i at iteration t
and the new position by adding the updated velocity to the current
position.

III. ASSESSMENT OF MODEL ACCURACY

The suggested data-driven models were evaluated using three
common statistical indices. In this study, the coefficient of determina-
tion (R2), root mean square error (RMSE), and mean absolute error
(MAE) were selected as the main statistical indicators to evaluate the
performance of the data-driven models. These three metrics are used
widely in machine learning and hydraulic modeling.54 These statistical
indices are defined as follows:
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Coefficient of determination (R2)

R2 ¼
Pm

i¼1 Cobs
di � Cobs

d

� �
Cpre
di � Cpre

d

� �	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 Cobs
di � Cobs

d

� �2r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 Cpre
di � Cpre

d

� �2r
0
BBB@

1
CCCA

2

: (8)

Root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

i¼1
Cobs
di � Cpre

di

� �2r
: (9)

Mean absolute error (MAE)

MAE ¼ 1
m

Xm

i¼1
Cobs
di � Cpre

di

��� ���: (10)

For an ideal model, RMSE and MAE values are zero, whereas R2

is unity.

IV. MODELING CD USING DATA-DRIVEN APPROACHES

The discharge coefficient (Cd) was simulated using the non-
dimensional relationship given by Eq. (2). The dataset was partitioned
into training and testing portions, assigning 70% for model creation
and reserving 30% for validation. In the present study, the two meta-
heuristic algorithms, PSO and GA, were employed to tune the three
internal variables of SVR algorithms (i.e., C, r, and �) to predict the Cd

of the labyrinth sluice gate. The RMSE fitness function was adopted
for the optimization process.

A. The main steps of the development of the SVR-PSO
model

The SVR-PSO approach is developed to determine SVR method
parameters using the GA algorithm. The SVR-PSO model develop-
ment procedure is as follows:

• Initialization: The PSO algorithm commences by initializing a
random population of particles. These particles represent poten-
tial solutions, each associated with specific SVR parameters (e.g.,
kernel function parameter r, regularization term C, and epsilon
�). The initial values are randomly assigned within predefined
bounds.

• Initial SVR model training: The model uses the training dataset
to predict target values. Based on the predicted outputs, the
model performance is evaluated using a fitness function (i.e.,
RMSE) to determine the accuracy of SVR-PSO for each particle
parameter set.

• Velocity and position update: Regarding the stopping criterion,
the velocity and position of each particle are updated iteratively.
A velocity update equation is used to determine the next move-
ment direction of the particle by considering its personal best
position, the global best position, and its present velocity. A posi-
tion update then adjusts the particle’s position in the parameter
search space based on the updated velocity.

• Solution refinement: The best solution is refined during each
iteration. This involves updating the global best solution found
by the swarm and the personal best solution for each particle.

• Termination: The optimization process iterates until the termi-
nation criterion is achieved. The termination criterion may con-
sider predefined maximum iterations or reaching a low error
value.

Integrating SVR with PSO can adjust the SVR parameters and
result in higher accuracy for the prediction of Cd. The flow chart of the
modeling procedure is illustrated in Fig. 3.

B. The main steps of the development of the SVR-GA
model

The hybrid SVR-GA model is developed to determine the SVR
parameters using the GA algorithm. The development of the SVR-GA
model involves the following main steps:

• Initialization: The GA algorithm starts by randomly creating an
initial population of decision variables of the SVR model, includ-
ing kernel function parameter (r), regularization term (C), and
epsilon ð�).

• Initial SVR model training: The SVR model is trained using an
initial parameter, and the corresponding fitness function value
(i.e., RMSE) is calculated for each individual in the population.

• Crossover operation: The crossover operator is applied to the
existing population (selected parent) to create offspring by com-
bining the genetic material (SVR parameters). The resulting off-
spring are used for training the SVR model and computing their
fitness function values.

FIG. 3. Flowchart of SVR-PSO for estimation of value of Cd.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 045117 (2025); doi: 10.1063/5.0260738 37, 045117-6

VC Author(s) 2025

 16 April 2025 09:41:55

pubs.aip.org/aip/phf


• Mutation operation: The mutation operator introduces variabil-
ity in the population by making random variations to the off-
spring. The mutated population is used for training the SVR
model, and fitness function values for each mutant are calculated.

• Population sorting and repository update: The total population,
consisting of parents, their offspring, and mutants, is sorted
according to its fitness function values. The set of the best solu-
tions is updated to ensure the maintenance of the best parameter
sets.

• Termination: The optimization process continues until the ter-
mination criterion is satisfied. This criterion may reach the pre-
defined maximum number of iterations or meet a specified error
limit.

This SVR-GA approach can efficiently explore the parameter
space and enhance model performance. The flow chart of the SVR-GA
model is illustrated in Fig. 4.

V. RESULTS AND DISCUSSION

In this study, an optimized SVR model was proposed for the pre-
diction of Cd. The optimal values obtained for the SVR-PSO and SVR-
GA models, including C, r, and � obtained during the optimization
process are tabulated in Table III.

Table IV presents the values of the three statistical performance
indicators, R2, RMSE, and MAE, used to evaluate the SVR-based mod-
els for the prediction of Cd.

As observed in Table IV, the SVR model achieves an R2 value of
0.9184 for the training dataset, indicating a good fit between the pre-
dicted and actual values. However, the RMSE of 0.0538 and MAE of
0.0436 suggest that the SVR model has a relatively higher prediction
error compared to the hybrid models. For the testing dataset, the value
of R2 for the SVR model decreases slightly to 0.8958, and the RMSE
and MAE values increase to 0.0575 and 0.0468, respectively. These
metrics for the SVR model reflect less accurate predictions in the test-
ing phase compared to other hybrid models. The SVR-GA hybrid
model exhibits significant improvement over the standalone SVR. In
the training dataset, the SVR-GA model achieves an R2 value of
0.9736, demonstrating a much closer fit to the actual values. The corre-
sponding RMSE and MAE values are 0.0285 and 0.0224, respectively,
indicating lower prediction errors. In addition, in testing datasets, the
SVR-GA model maintains its accuracy with an R2 value of 0.9685, an
RMSE value of 0.0324, and an MAE value of 0.0257. These metrics
confirm the more accurate SVR-GA model compared to the stand-
alone SVR model. Based on the statistical metrics values, it confirmed
that the SVR-PSO model has better accuracy compared to both the
SVR-GA and the standalone SVR.

In the training dataset, the SVR-PSO approach reached the high-
est R2 value of 0.9778 and the lowest RMSE (0.0270) and MAE
(0.0200). For the testing dataset, the SVR-PSO model again demon-
strates the best performance with an R2 value of 0.9732. In addition,
the RMSE and MAE values are 0.0287 and 0.0209, respectively. These
metrics confirm the outstanding predictive accuracy of the SVR-PSO
model in both the training and testing datasets. Compared to the SVR
model, the SVR-PSO approach achieved a 49.8% reduction in RMSE
for the training dataset and a 50.6% reduction for the testing dataset.
Similarly, the SVR-GA model achieved significant RMSE reductions of
47.0% (training) and 43.7% (testing) compared to a single SVR model.
Both the SVR-GA and SVR-PSO models exhibit strong generalization,
as indicated by the minimal change in accuracy between the training
and testing stages. The values of statistical metrics reveal that the GA
and PSO optimization algorithms are significantly effective in improv-
ing the precision of the SVR model by optimizing its parameters. The

FIG. 4. Flowchart of SVR-GA for estimation of the value of Cd.

TABLE III. The optimal values of C, r, and � for the hybridized SVR models.

Approach C � r

SVR-GA 56.0973 0.0182 2.6242
SVR-PSO 63.6851 0.0100 2.3548

TABLE IV. Values of R2, RMSE, and MAE statistical indices for the SVR-based mod-
els in determining Cd for a labyrinth weir.

Model R2 RMSE MAE

SVR (training data) 0.9184 0.0538 0.0436
SVR (testing data) 0.8958 0.0575 0.0468
SVR-GA (training data) 0.9736 0.0285 0.0224
SVR-GA (testing data) 0.9685 0.0324 0.0257
SVR-PSO (training data) 0.9778 0.0270 0.0200
SVR-PSO (testing data) 0.9732 0.0287 0.0209
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SVR-PSO model has the best performance for the prediction of Cd.
Among the evaluation of SVR-based models, SVR-PSO is the most
accurate model for predicting Cd, as it achieves the highest R2 value
and the lowest RMSE and MAE values for both the training and test-
ing stages, compared to SVR and SVR-GAmodels.

For further analysis of developed hybrid SVR models, several
graphical techniques are used to examine the performance of proposed
models for the prediction of Cd. Therefore, three common graphical
evaluation plots, including scatterplots, Taylor, and violin plots, were
used. A scatterplot is a type of data visualization used to display rela-
tionships or correlations between measured and predicted values
obtained from SVR-based models for the prediction of Cd. The scatter-
plot visually compares the results of each model to the measured val-
ues. The accurate model has the results near the 45� line (dashed point
line), indicating that the results of predictions align with the measured
values. Figure 5 displays scatterplots of SVR-based models for training
and testing datasets.

The scatterplot for the training and testing datasets shows that
the predicted values of SVR-PSO are closer to the measured Cd values
compared to the SVR and SVR-GA models. Therefore, it is suggested
that the SVR-PSO is the most accurate of the three models. On the
other hand, the SVR-GA model also performs well but slightly less
accurately than the SVR-PSO model. Finally, the standalone SVR
model has the most scattered predictions, indicating that it is the least
accurate of the three models.

Taylor and violin plots are advanced statistical graphs that have
been widely used in evaluating machine learning models in hydraulic
and environmental modeling. The Taylor plot is a statistical diagram
used to graphically summarize the performance of the SVR models by
comparing their results to observed data. It simultaneously displays three
key metrics, including the correlation coefficient, the RMSE, and the
standard deviation.55,56 In this plot, the observed data serve as a reference,
and the results of other models are represented as points whose position
refers to their correlation and standard deviation relative to the observed
values. A model that is closer to the reference point (the observed values)
is more accurate. This allows for the easy evaluation of multiple models
simultaneously, making it easier to determine the best model.

Figure 6 shows the Taylor plots obtained for the model evaluation
of the discharge coefficient for the labyrinth gate.

FIG. 5. Scatter plots of SVR-based models in (a) training and (b) testing stages. FIG. 6. Taylor plots of SVR-based models in (a) training and (b) testing stages.
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As seen in the Taylor plots, the SVR-PSO results lie closer to the
observed Cd, confirming the better performance of the SVR-PSO
approach than the other models.

The Taylor plot is used to evaluate the performance of three
SVR-based models in predicting Cd for training and testing stages
[Figs. 6(a) and 6(b)]. SVR-PSO lies closest to the observed point, fol-
lowed by SVR-GA, then SVR, of training data with minimal error.
SVR-PSO again positions closest to the observed point, followed by
SVR-GA, with SVR being the farthest. Figure 6 illustrates that SVR-
PSO outperforms SVR-GA and SVR in both training and testing, with
points closest to the observed Cd, reflecting the highest accuracy for
the prediction of Cd.

A violin plot is a data visualization tool that detailed representa-
tion of the distribution of data.57 Violin plots allow a more compre-
hensive visualization of data distribution. By visualizing multiple
models simultaneously, the violin plot provides a clear comparison of
prediction accuracy and consistency. Figure 7 presents violin plots for

evaluating the performance of different predictive models used for esti-
mating the Cd in labyrinth sluice gates. The violin plot helps in com-
paring the distribution of predicted Cd values for different models by
assessing model consistency by examining the spread and shape of
each violin. By simultaneously comparing the predicted data with the
observed data, the model performance is assessed, helping to identify
which model best aligns with the target distribution. The violin plot is
a data visualization tool that indicates the distribution and spread of a
dataset. Figure 7 shows the violin plots obtained for the training and
testing datasets using the three SVR approaches. Differences in violin
shapes between observed and predicted data reveal that the model
with similar shapes has a good fit.

As observed in violin plots, the shape of SVR-PSO during the
training and testing stages is closer to the Cd values.

It is confirmed that the SVR-PSO model had better results than
the SVR and SVR-GA models in both training and testing phases, as
indicated by its violin plot closely aligning with the observed data. The
symmetrical shape of the SVR-PSO violin further reflects minimal
error and high precision. Overall, graphical representations demon-
strated that the SVR-PSO model is the most dependable and accurate
model for the prediction of values of Cd.

VI. SHAPLEY ADDITIVE EXPLANATIONS (SHAP)
ANALYSIS

SHAP method explains the contribution of every feature to the
predictions of a machine learning model based on cooperative game
theory.58 Therefore, this approach leads to enhanced model interpret-
ability of the black-box models, such as the SVR technique. This analy-
sis is an organized assessment of the effect of every feature on the
predicted performance of the model. The SHAP value for a feature xi
in the prediction of f(x) is determined as follows:

/i ¼
X

S�Nn if g

jSj! jNj � jSj � 1ð Þ!
jNj! f S [ if gð Þ � f Sð Þ� 

;

where Ui is the SHAP value for input variable i, S denotes the subset of
all input variables excluding feature i, and f(S) represents the output
model when only the features in S are considered. N is the total num-
ber of input variables. In the present study, SHAP analysis was used to
identify the rank of each feature based on its importance in predicting
Cd. Figure 8 shows the SHAP analysis results related to the SVR-PSO
model.

The input variables x3¼H/G, x1¼h, and x2¼N. It is clear that H/G
and N variables have the highest and lowest effects on Cd, respectively.

VII. SENSITIVITY ANALYSIS

Sensitivity analysis is an essential technique for evaluating the
influence of input parameters on model predictions. In this study, a
leave-one-variable-out sensitivity analysis was performed using SVR-
PSO models to assess the effect of each input variable on the discharge
coefficient. This method involves systematically removing one variable
at a time and analyzing the impact on model accuracy, which is a
widely used approach in machine learning and hydraulic modeling.
The sensitivity analysis using SVR-PSO models was conducted to
determine the effect of each input factor on Cd. Therefore, the SVR-
PSO models were developed by removing each input variable from Eq.
(2). The results of the sensitivity analysis indicated the specific effect of
excluding each input variable on the output parameter.59 The resultsFIG. 7. Violin plots of SVR-based models in (a) training and (b) testing stages.
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of the sensitivity analysis are tabulated in Table V for the testing
dataset.

As shown in Table V, it is clear that the H/G variable has the
most significant effect on Cd, with an R2¼ 0.3460, RMSE¼ 0.1570,
and an MAE¼ 0.1192. Furthermore, the N variable has the least influ-
ence on Cd (R2¼ 0.9372, RMSE¼ 0.0425, and MAE¼ 0.0383). It is
important to note that this finding is consistent with the findings of
Hashem et al.5

VIII. COMPARISON RESULTS WITH EXISTING
PREVIOUS STUDIES FOR ESTIMATION OF Cd

The results of the present study are compared with regression-
based models and data-driven methods for the prediction of Cd

that existed in the literature. It is worth mentioning that the previ-
ous study conducted by Hashem et al. used the same datasets as
used in the present study.5,35 This comparison with existing models
makes it possible to evaluate the accuracy of proposed SVR-based
models compared to the existing methods for the estimation of Cd

in labyrinth sluice gates.

A. Comparison results with existing regression-based
models for estimation of Cd

The recently proposed regression-based equations for the predic-
tion of Cd in labyrinth sluice gates are listed in Table VI.

The values of statistical metrics for the regression-based equations
for the estimation of values of Cd are listed in Table VII for all datasets.

As seen in Table VII, both hybrid SVR models have the highest
accuracy compared to other regression-based models.

B. Comparison results with existing data-driven mod-
els for estimation of Cd

The results of the data-driven models suggested for Cd prediction
are listed in Table VIII. The previous study by Hashem et al.5 provided
the results of K�, decision tree (DT), and M5P algorithms for training
and testing datasets. For comparison of the previously suggested data-
driven results with the outcomes of SVR-GA and SVR-PSO provided
in this study, the objective function (OBF) criterion is used. The OBF
criterion is defined as follows:60

TABLE VI. The regression-based equation for prediction of Cd.

Approach Equation

LR35

Cd ¼ 0:9776� 0:2977	 h� 0:0368	 N þ 0:028 41	 H
G

� �
SPR35

Cd ¼ 0:8361� 0:543	 hþ 0:102 24	 H
G
� 0:0155	 N þ 0:2033	 h2

�0:001 669	 H
G

� �2

� 0:033 84	 h	 H
G

� �
� 0:002 71	 N 	 H

G

� �
NLR5

Cd ¼ 0:511	 ðH=GÞ0:268 	 h�0:566 	 N�0:066

FIG. 8. The results of SHAP analysis for the estimation of Cd.

TABLE V. Sensitivity analysis of the SVR-PSO model for the estimation of Cd.

Model Remove variable R2 RMSE MAE

Cd ¼ f h; Nð Þ H
G

0.3460 0.1570 0.1192

Cd ¼ f
H
G
; N

� �
h 0.6956 0.1161 0.0878

Cd ¼ f
H
G
; h

� �
N 0.9372 0.0425 0.0383

TABLE VII. Values of R2, RMSE, and MAE statistical indices for the SVR-based
models in determining Cd.

Model R2 RMSE MAE

LR35 0.8012 0.0787 0.0622
SPR35 0.9509 0.0396 0.0317
NLR5 0.9060 0.0548 0.0436
SVR-GA (present study) 0.9721 0.0296 0.0226
SVR-PSO (present study) 0.9742 0.0285 0.0202
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OBF ¼ ntraining data
nall data

	 RMSEtraining data þMAEtraining data
R2
training data þ 1

 !

þ ntesting data
nall data

	 RMSEtesting data þMAEtesting data
R2
testing data þ 1

 !
(11)

where ntraining data, ntesting data, and nall data refer to the number of train-
ing samples, testing, and total datasets. The best optimal approach
reaches the lowest value of the OBF criterion. As observed in Eq. (11),
the OBF criterion simultaneously considered the R2, RMSE, and MAE
values for both the training and testing datasets. Table VIII provides
the values of the main parameters of statistical metrics (i.e., R2, RMSE,
and MAE) for the calculation of the values of the OBF criterion for
data-driven models.

Regarding the OBF criterion and the statistical metrics tabulated
in Table VIII, the values of OBF for the proposed data-driven models
are calculated and displayed in Fig. 9.

As observed in Fig. 9, the values of the OBF criterion for the
SVR-PSO and SVR-GA models have minimum values compared to
K�, DT, and M5P methods. In addition, the SVR-PSO model has the
lowest value of OBF (¼0.0245) compared to other models, confirming
the best performance of SVR-PSO for the estimation of Cd.

IX. SUMMARY AND CONCLUSIONS

The present research examined the capability of hybridizing the
SVR model with two widely used metaheuristic algorithms, including
PSO and GA algorithms, to predict the discharge coefficient (Cd) of the
labyrinth sluice gate. For this purpose, the SVR models were developed
using reliable datasets and dimensionless parameters for the estimation
of Cd in the labyrinth sluice gate. Graphical plots and statistical evalua-
tions assessed the SVR, SVR-GA, and SVR-PSO model accuracy. The
highest correlation coefficient (R2¼ 0.9742) and the lowest RMSE
(0.0285) and MAE (0.0202) are achieved by SVR-PSO, which also has
the greatest overall performance. This suggests that PSO efficiently opti-
mizes SVR parameters, resulting in more precise Cd predictions. In com-
parison to standalone SVR, SVR-GA also enhances efficacy; however, it
fails to attain the same level of accuracy as SVR-PSO. The highest RMSE
and lowest correlation coefficient are observed in the standalone SVR
model, which implies that parameter tuning through GA or PSO
improves prediction accuracy considerably. According to these tests, the
SVR-PSO model is the most accurate at estimating Cd. Furthermore, the
SVR models’ outcomes were compared to previously published
regression-based equations and data-driven models. The research results
indicated that the accuracy of the standalone SVR model was signifi-
cantly enhanced by the integration of SVR with metaheuristic optimiza-
tion algorithms, including GA and PSO. Moreover, sensitivity and SHAP
analysis revealed that the H/G parameter was the main factor of Cd esti-
mation, which matched the findings of earlier investigations. The present
work showed the possibilities of integrating SVR with optimization tech-
niques for hydraulic parameter modeling in hydraulic engineering. For
future research, the application of white box data-driven models, such as
multivariate adaptive regression splines and group method handling for
predicting Cd, can be investigated. In addition, the hybridization of deep
learning and metaheuristic optimization can be investigated to assess the
predictive capability for Cd prediction. The proposed methodology in the
present research could be extended to other hydraulic structures for
the determination of hydraulic parameters. The primary limitation of
this study is the reliance on laboratory data; therefore, it is recommended
that the proposed method be assessed using prototype data.
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TABLE VIII. The R2, RMSR, and MAE values of existing data-driven models for the prediction of Cd.

Model Dataset R2 RMSE MAE Train/test ratio

K�35 Training 0.9752 0.0391 0.0291 50/50
K�35 Testing 0.9409 0.0579 0.0436
M5P35 Training 0.9502 0.0390 0.0307 50/50
M5P35 Testing 0.9469 0.0422 0.0348
DT35 Training 0.9357 0.0427 0.0325 50/50
DT35 Testing 0.5676 0.1234 0.0709
SVR-GA (Present study) Training 0.9736 0.0285 0.0224 70/30
SVR-GA (Present study) Testing 0.9685 0.0324 0.0257
SVR-PSO (Present study) Training 0.9778 0.0270 0.0200 70/30
SVR-PSO (Present study) Testing 0.9732 0.0287 0.0209

FIG. 9. The values of OBF values for the proposed data-driven models for the pre-
diction of Cd.
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