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Abstract
Building	 management	 systems	 (BMSs)	 are	 increasingly	 integrating	 advanced	 machine	
learning	(ML)	and	artificial	intelligence	(AI)	capabilities	to	enhance	operational	efficiency	
and	responsiveness.	The	transformation	of	BMSs	involves	a	wide	range	of	environmental,	
behavioural,	economical	and	technical	factors	as	well	as	optimum	performance	consider-
ations	in	order	to	reach	energy	efficiency	and	for	long	term	sustainability.	Existing	BMSs	
can	only	provide	local	adaptability	by	creating	and	managing	information	for	a	built	asset	
lacking	 the	capability	 to	 learn	and	adapt	based	on	performance	objectives.	This	 research	
provides	 a	 comprehensive	 review	 of	ML	 techniques	 in	BMSs,	with	 particular	 emphasis	
and	demonstration	of	fast	machine	learning	(FastML)	techniques	in	a	real-case	study	ap-
plication.	The	study	reviews	optimization	methods	for	ML	algorithms,	focusing	on	Long	
Short-Term	Memory	(LSTM)	networks	for	energy	consumption	forecasting	and	exploring	
solutions	that	leverage	hardware	accelerators	for	low-latency	and	high-throughput	process-
ing.	 The	 High-Level	 Synthesis	 for	Machine	 Learning	 (HLS4ML)	 framework	 facilitates	
deployment	 of	 fast	machine	 learning	models	with	BMSs,	 achieving	 substantial	 gains	 in	
hardware	 efficiency	 and	 inference	 speed	 in	 resource-constrained	 environments.	 Findings	
reveal	 that	HLS4ML-optimized	models	maintain	 accuracy	while	 offering	 computational	
efficiency	through	techniques	like	pruning	and	quantization,	supporting	real-time	BMS	ap-
plications.	This	research	significantly	contributes	to	the	development	of	intelligent	BMSs	
by	 integrating	 ML	 algorithms	 with	 advanced	 hardware	 solutions,	 ultimately	 improving	
energy	management,	occupant	comfort,	and	safety	in	modern	buildings.

Keywords Fast	machine	learning	·	Building	management	systems	·	Energy	forecasting	·	
High	level	specification	languages	·	Building	automation

Abbreviations
ANN	 	Artificial	neural	network
AI	 	Artificial	intelligence
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BMS	 	Building	management	system
BEMS	 	Building	energy	management	system
BAS	 	Building	automation	system
BIM	 	Building	information	modeling
CNN	 	Convolutional	neural	network
FL	 	Federated	learning
HFL	 	Horizontal	federated	learning
VFL	 	Vertical	federated	learning
FDD	 	Fault	detection	and	diagnosis
FPGA	 	Field-programmable	gate	array
HLS4ML	 	High-level	synthesis	for	machine	learning
HVAC	 	Heating,	ventilation,	and	air	conditioning
IoT	 	Internet	of	Things
LLM	 	Large	language	model
LSTM	 	Long	short-term	memory
ML	 	Machine	learning
MPC	 	Model	predictive	control
PCA	 	Principal	component	analysis
RL	 	Reinforcement	learning
RNN	 	Recurrent	neural	network
SSL	 	Semi-supervised	learning
TL	 	Transfer	learning
NILM	 	Non-intrusive	load	monitoring
LDA	 	Linear	discriminant	analysis
t-SNE	 	t-Stochastic	neighborhood	embedding
SOM	 	Self-organizing	maps
GAs	 	Genetic	algorithms
ICA	 	Independent	component	analysis
GMM	 	Gaussian	mixture	model
IAQ	 	Indoor	air	quality
MLP	 	Multilayer	perceptron
NAS	 	Neural	architecture	search
LR	 	Logistic	regression
SVR	 	Support	vector	regression
AR	 	Auto-regressive
RF	 	Random	Forest
XGBoost	 	Extreme	gradient	boosting
AdaBoost	 	Adaptive	boosting
ARMA	 	Auto-regressive	moving	average
RT	 	Real-time
DQN	 	Deep	Q-network
DDQN	 	Double	deep	Q-Network
SARSA	 	State-Action-Reward-State-Action
AR	 	Auto-regressive
GA	 	Genetic	algorithm
TLD	 	Transfer	learning	domain
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RCM	 	Resource	consumption	model
TL-CNN	 	Transfer	learning	convolutional	neural	network
TL-LSTM	 	Transfer	learning	long	short-term	memory
LNCS	 	Springer	Lecture	Notes	in	Computer	Science
Q-Learning	 	Quality	learning	algorithm
DT-MPC	 	Decision	tree	model	predictive	control
SBNMF	 	Semi-binary	nonnegative	matrix	factorization
SOM	 	Self-organizing	maps

1 Introduction

ML	for	BMSs	represents	a	transformative	advancement	in	facility	management,	simplify-
ing	the	operation,	maintenance,	and	optimization	of	building	systems.	Building	Automation	
Systems	(BASs)	regulate	critical	infrastructure	aspects	such	as	heating,	ventilation,	and	air	
conditioning	(HVAC),	lighting,	and	energy	consumption	in	buildings	(Abdullah	et	al.	2022).	
Recent	advancements	in	sensing	and	Internet	of	Things	(IoT)	technologies	have	facilitated	
data-driven	approaches	in	BMSs,	significantly	enhancing	efficiency,	cost-effectiveness,	and	
occupant	comfort	 (Finck	et	 al.	2018).	To	enhance	 responsiveness	 in	dynamic	built	 envi-
ronments,	 traditional	ML	techniques	 in	BMSs	must	be	complemented	with	software	and	
hardware	accelerators.	Historically,	BMSs	relied	on	rule-based	control	methods,	 limiting	
their	ability	 to	adapt	effectively	 to	dynamic	factors	such	as	fluctuating	energy	 tariffs	and	
changing	meteorological	 conditions	 (Finck	 et	 al.	2018).	The	 integration	of	 sophisticated	
sensing	 technologies	and	 IoT	devices	has	ushered	 in	a	 transformative	era	of	data-driven	
building	management,	greatly	improving	both	efficiency	and	occupant	comfort	(Abuimara	
et	al.	2021).	In	contemporary	settings,	data-driven	methodologies-especially	those	employ-
ing	ML	and	artificial	intelligence	(AI)-are	increasingly	integrated	into	BMSs	to	bolster	their	
functionality,	efficiency,	and	responsiveness.	AI-powered	BMSs	leverage	advanced	analyt-
ics,	predictive	modeling,	and	intelligent	automation	to	optimize	operations.	By	harnessing	
the	 extensive	 data	 generated	 by	BMSs,	 these	 systems	 can	 uncover	 patterns,	 trends,	 and	
anomalies	that	traditional	rule-based	systems	may	overlook.	This	adaptive	capacity	allows	
BMSs	 to	 dynamically	 respond	 to	 fluctuating	 environmental	 conditions,	 optimize	 energy	
consumption,	and	enhance	occupant	 safety.	However,	challenges	persist	 in	 incorporating	
AI	and	ML	into	BMSs,	including	ensuring	data	quality,	achieving	rapid	decision-making,	
and	navigating	 implementation	complexities	 (Puiu	and	Fortis	2024).	Real-time	decision-
making	is	critical,	as	traditional	ML	algorithms	often	exhibit	slow	response	times	(Duarte	
et	al.	2022a).	FastML,	which	refers	to	rapid	machine	learning	techniques	that	enhance	per-
formance,	is	becoming	increasingly	important	in	this	context.	Advancements	in	hardware,	
particularly	in	Field-Programmable	Gate	Arrays	(FPGAs),	are	essential	for	addressing	the	
need	for	rapid	ML	decision-making.	To	address	these	challenges,	the	primary	objectives	of	
this	research	are	to	(i)	provide	a	comprehensive	review	of	existing	ML	techniques	within	
BMSs,	focusing	on	a	diverse	range	of	algorithms	and	applications,	and	(ii)	investigate	the	
emergence	and	effectiveness	of	FastML	techniques	with	hardware	accelerators	for	energy	
management	applications	within	BMSs,	as	demonstrated	through	a	case	study.	This	review	
aims	to	enable	BMSs	to	swiftly	adapt	to	changing	environmental	conditions,	ensuring	occu-
pant	safety	and	comfort	while	optimizing	energy	usage.	In	the	subsequent	sections,	we	will	
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explore	existing	studies	on	ML-based	BMSs,	exploring	the	methodologies	employed	and	
specific	techniques	for	optimizing	LSTM	models	for	energy	management.	The	case	study	
will	 highlight	 a	 comparative	 analysis	 of	 inference	 speeds	 across	 various	LSTM	models,	
providing	insights	into	the	practical	applications	of	these	techniques.	This	exploration	ulti-
mately	seeks	to	deliver	a	comprehensive	understanding	of	current	advancements	and	future	
directions	in	this	rapidly	evolving	field,	highlighting	the	implications	for	research	and	prac-
tice	in	BMS	solutions.

1.1 Existing studies on ML-based BMSs

Numerous	studies	have	explored	the	application	of	AI	and	ML	in	BMSs,	with	a	focus	on	
various	aspects	such	as	power	consumption,	anomaly	detection,	occupants’	satisfaction,	and	
security.	Table	1	provides	an	overview	of	the	existing	research	in	this	field.	One	notable	study	
by	Mazhar	et	al.	(2022)	delves	into	the	integration	of	5G	technology	into	smart	building	
management	systems	(BMSs).	The	research	emphasizes	the	need	for	sustainable	solutions	
in	the	face	of	resource	constraints	and	population	growth.	It	advocates	for	the	incorporation	
of	intelligent	systems	within	smart	homes,	leveraging	IoT	and	cloud	technologies	to	address	
challenges	across	different	domains.	The	study	highlights	 the	 importance	of	 IoT-enabled	
energy-conserving	 buildings	 and	 calls	 for	 increased	 awareness	 and	 financial	 incentives,	
particularly	in	commercial	settings.	Additionally,	it	explores	how	5	G	can	enhance	service	
quality,	network	capacity,	and	AI	 integration	 in	automated	systems	while	addressing	pri-
vacy	concerns.	The	research	provides	valuable	insights	into	advancing	smart	city	evolution	
within	the	context	of	big	data	and	5	G	advancements,	considering	challenges	like	building	

Table 1	 Overview	of	studies	on	ML	applications	in	BMSs
Authors Year Focus	area Main	findings Key	contributions Challenges 

addressed
Mazhar	
et	al.

2022 Integration	of	5	G	
in	smart	building	
management

Need	for	sustainable	
solutions,	5	G’s	potential	
in	automation	and	pri-
vacy	concerns

Incorporation	of	
intelligent	systems	
within	smart	homes,	
leveraging	IoT	and	
cloud	technologies

Building	
penetration	
issues

Himeur	
et	al.

2023 AI-big	data	analyt-
ics	in	BAMSs

Importance	of	machine	
learning, challenges in 
security	and	scalability

Supervised,	unsuper-
vised,	semi-super-
vised,	reinforcement	
learning

Security,	
interoper-
ability,	
scalability

Digitemie	
and 
Ekemezie

2024 Building	Energy	
Management	Sys-
tems	(BEMS)

BEMS’	role	in	energy	
efficiency,	challenges,	
and	future	prospects

Utilization	of	sen-
sors,	controllers,	and	
networks

Costs,	
integration	
issues

Heidari	
et	al.

2024 Integration	of	
BIM	and	AI	in	
construction

Potential	revolution	in	
construction,	challenges	
in	integration

Leveraging	machine	
learning	algorithms	
and	smart	devices

Data	integra-
tion,	software	
compatibility

Ngo	et	al. 2024 Cloud-based	AI	
system	for	energy	
management

Effectiveness	of	the	sys-
tem	in	energy	monitor-
ing	and	prediction

Combination	of	cloud	
technology	and	AI	
algorithms

Long-term	
energy	
prediction

Chen	et	al. 2023 Interpretable	ML	
techniques	in	
building	energy	
management

Challenges,	future	op-
portunities	in	interpre-
table	ML

Ante-hoc,	post-hoc	
approaches

Terminology	
confusion,	
limited	
techniques

This	table	summarizes	key	contributions,	including	authors,	publication	year,	focus	areas,	main	findings,	
and challenges
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penetration	issues	and	existing	structures.	Another	comprehensive	study	by	Himeur	et	al.	
(2023)	focuses	on	the	application	of	AI-big	data	analytics	in	Building	Automation	and	Man-
agement	Systems	(BAMSs).	The	study	examines	various	functionalities,	including	energy	
prediction,	fault	detection,	anomaly	spotting,	and	indoor	environment	evaluation.	Different	
AI	models,	 such	 as	 supervised,	 unsupervised,	 semi-supervised,	 and	 reinforcement	 learn-
ing,	were	 tested.	The	 research	 highlights	 the	 significance	 of	machine	 learning,	 IoT,	 and	
connectivity	in	shaping	BAMSs.	It	acknowledges	the	effectiveness	of	supervised	learning	
with	labeled	data	and	the	promise	shown	by	unsupervised	learning	despite	lower	efficiency.	
The	study	also	emphasizes	the	need	to	address	challenges	such	as	security,	interoperabil-
ity,	 and	 scalability.	Furthermore,	Building	Energy	Management	Systems	 (BEMS)	play	a	
vital	role	in	improving	energy	efficiency	and	sustainability	in	buildings.	They	oversee	and	
regulate	systems	 like	HVAC	and	 lighting	using	components	such	as	sensors,	controllers,	
and	networks	to	collect	data	and	optimize	energy	usage.	Despite	challenges	like	costs	and	
integration,	BEMS	offer	advantages	such	as	lower	energy	consumption	and	enhanced	com-
fort	for	occupants	(Digitemie	and	Ekemezie	2024).	Technological	advancements	like	IoT	
and	AI	are	addressing	these	challenges,	making	BEMS	more	accessible	and	efficient.	The	
integration	of	AI	and	machine	learning	holds	promise	for	further	improving	energy-saving	
capabilities	and	building	performance.	In	summary,	BEMS	are	crucial	for	achieving	energy	
efficiency	and	sustainability	goals,	delivering	significant	savings	and	environmental	ben-
efits	(Digitemie	and	Ekemezie	2024).	As	illustrated	in	Fig.	1,	various	ML	techniques	and	
model	optimizations	are	employed	to	achieve	these	enhancements.	Nevertheless,	despite	the	
substantial	advantages	of	incorporating	AI	and	ML	into	BMSs,	several	challenges	persist.

A	 systematic	 review	 conducted	 by	 Heidari	 et	 al.	 (2024)	 explores	 the	 integration	 of	
Building	 Information	 Modeling	 (BIM)	 and	Artificial	 Intelligence	 (AI)	 in	 the	 construc-
tion	 industry.	This	 integration	has	 the	potential	 to	 revolutionize	 the	 sector	by	 enhancing	
decision-making,	 optimizing	 processes,	 and	 increasing	 overall	 efficiency.	 By	 leveraging	
machine	learning	algorithms	and	smart	devices,	AI	can	enhance	BIM’s	capabilities,	includ-

Fig. 1	 Overview	of	ML	techniques	and	optimization	strategies.	This	diagram	categorizes	AI	methods-
including	 supervised,	 unsupervised,	 and	 semi-supervised	 learning,	 deep	 learning,	 generative	AI,	 and	
reinforcement	learning	alongside	optimization	strategies	like	model	compression,	highlighting	their	ap-
plications	in	BMS
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ing	predicting	building	performance,	 identifying	design	 issues,	 and	optimizing	construc-
tion	 processes.	However,	 successful	 integration	 requires	 careful	 consideration	 of	 factors	
such	as	data	integration	and	software	compatibility.	Further	research	is	needed	to	address	
the	interoperability	and	scalability	challenges	of	integrating	BIM	and	AI.	Nonetheless,	the	
potential	benefits,	including	improved	energy	efficiency	and	accurate	cost	estimation,	make	
this	integration	a	promising	direction	for	the	future	of	construction.	Additionally,	a	survey	
conducted	by	Ngo	et	al.	(2024)	introduces	a	cloud-based	AI	system	for	managing	energy	in	
buildings.	This	system	combines	cloud	technology,	AI	algorithms,	optimization	methods,	
and	web	applications	to	collect,	analyze,	and	visualize	energy	consumption	data.	It	consists	
of	three	layers:	the	data	layer	for	storing	energy-related	data,	the	AI-based	analytics	layer	for	
processing	and	predicting	energy	usage,	and	the	decision-support	information	layer	for	pre-
senting	insights	and	interactive	visualization.	Practical	case	studies	were	conducted	to	test	
the	system’s	effectiveness	in	monitoring	and	predicting	energy	consumption	while	provid-
ing	useful	information	for	building	managers	and	users.	This	study	contributes	to	the	knowl-
edge	of	energy	efficiency	 in	buildings	and	offers	a	valuable	 tool	 for	 implementing	smart	
energy	management	systems.	Future	research	can	further	explore	long-term.	Furthermore,	
Chen	et	al.	(2023c)	provide	a	comprehensive	review	of	previous	research	on	interpretable	
machine	learning	(ML)	techniques	in	building	energy	management.	The	article	categorizes	
the	applications	into	ante-hoc	and	post-hoc	approaches	and	highlights	challenges	such	as	
terminology	 confusion	 and	 limited	 techniques.	The	 article	 suggests	 future	 opportunities,	
including	 exploring	 interpretable	ML	 for	 classification	 tasks	 and	 developing	 customized	
models	for	different	users.	Availability	of	open	datasets	and	interpretable	deep	reinforce-
ment	learning	models	are	also	proposed.	Overall,	these	studies	highlight	the	importance	of	
AI,	ML,	and	technological	advancements	like	IoT	and	5	G	in	the	field	of	building	manage-
ment	systems.	They	provide	insights	into	the	potential	applications,	challenges,	and	future	
directions	for	creating	more	intelligent	and	efficient	buildings.

1.2 Objectives and scope

This	paper	aims	to	(i)	provide	a	comprehensive	review	of	existing	machine	learning	(ML)	
techniques	 in	BMSs	(BMS)	and	(ii)	 investigate	 the	emergence	of	FastML	techniques	for	
BMSs	applications	with	a	case	study	example.	The	review	focuses	on	ML	methods	applied	
to	various	built	asset	types,	including	residential,	commercial,	and	industrial	buildings.

The	section	on	“AI	Applications	in	BMS”	examines	how	advanced	AI	analytics	enhance	
BMS	functionality	through:

FastML and optimization:	The	paper	evaluates	the	effectiveness	of	various	ML	methods	in	
optimization	tasks,	such	as	energy	management,	predictive	maintenance,	and	resource	
allocation.	It	discusses	how	ML	models	leverage	abundant	building	data	to	streamline	
operations	and	improve	decision-making.

ML and AI in BMS applications:	 This	 review	 highlights	 state-of-the-art	ML-powered	
BMS	solutions	and	 identifies	promising	research	avenues,	with	a	 focus	on	areas	 like	
fault	 detection,	 occupant	 behavior	 analysis,	 and	 data	 contextualization	 to	 improve	
BMS	performance.	Optimization	 techniques,	 including	pruning	and	quantization,	are	
also	analyzed,	demonstrating	 the	suitability	of	quantized	models	 for	computationally	
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efficient,	real-time	applications.	This	approach	aims	to	enhance	BMS	functionality,	effi-
ciency,	and	sustainability	on	both	individual	and	city-wide	scales.

Key research questions:	This	investigation	addresses	the	following	questions:	

1.	 How	Fast	Machine	Learning	can	 improve	building	management	 systems	perfor-
mance,	automation	and	efficiency	with	identification	of	gaps	in	research	and	devel-
opment	to	be	addressed	to	advance	ML-powered	BMS	solutions?

2.	 What	are	the	key	ML	methods	utilised	for	building	performance	management	and	
optimization	tasks,	including	energy	management	and	predictive	maintenance?

3.	 How	to	create,	deploy	and	test	a	high	language	specification	fast	machine	learning	
model	using	an	energy	forecasting	application	from	a	real	building	case	study?

This	paper	is	organized	as	follows:	Sect.	1.3	describes	the	methodology,	Sect.	2	explores	
applications	of	ML	 in	BMS	and	optimization	 in	BMS	using	ML	with	 research	gaps	and	
best	practices.	Section	3	provides	the	evaluation	of	this	work	and	Sect.	4	reports	relevant	
discussions	around	the	findings.	Section	5	presents	the	conclusions	of	this	research.	Figure	2 
illustrates	the	integration	of	BMS	and	ML,	providing	a	visual	representation	of	the	concepts	
discussed.	Through	this	comprehensive	overview,	we	explore	how	ML-driven	BMS	solu-
tions	impact	various	BMS	applications	and	suggest	directions	for	further	advancements.

1.3 Methodology

This	review	examines	the	available	research	on	ML	applications	in	BMS	through	a	three-
stage	methodology.

Stage 1: Planning
The	first	 stage	 involved	defining	 the	 review’s	scope,	 research	questions,	and	 target	data-

bases,	 which	 included	 Google	 Scholar,	ACM	 Digital	 Library,	 IEEE	 Xplore	 Digital	
Library,	and	Springer	Lecture	Notes	in	Computer	Science	(LNCS).	The	review	focused	
on	studies	published	between	2016	and	2024	and	was	managed	using	EndNote	refer-
ence	software.

Fig. 2	 Integration	of	BMS	and	ML.	This	diagram	illustrates	the	key	phases,	including	planning,	installa-
tion,	data	collection,	analysis,	model	building,	evaluation,	and	deployment
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Stage 2: Searching and Filtering
In	the	second	stage,	a	systematic	search	process	was	established.	Key	terms	and	interchange-

able	terms	were	defined	for	use	in	the	search,	summarized	in	Table	2).	Initial	screening	
involved	 reviewing	 titles	 and	abstracts.	 Inclusion	criteria	 included	English	 language,	
document	 type	 (full-text,	 conference/journal	 papers,	 or	 books),	 and	 publication	 year	
(2016–2024).	After	 removing	 duplicates,	 the	 screened	 papers	were	 reviewed	 in	 full.	
Studies	that	did	not	address	ML	techniques	in	BMS	or	failed	to	present	primary	research	
findings	were	excluded,	resulting	in	147	selected	papers	imported	into	EndNote.

Stage 3: Evaluation and Extraction
The	final	stage	involved	evaluating	the	quality	and	relevance	of	the	selected	articles.	Papers	

were	assessed	based	on	three	criteria:	

1.	 Clarity of methodology:	 Whether	 study	 methods	 were	 clearly	 described	 and	
understandable.

2.	 Provision of results:	 How	well	 the	 studies	 presented	 outcomes	 and	 supporting	
data.

3.	 Relevance to research questions:	 How	 closely	 each	 study	 aligned	 with	 the	
review’s	research	questions.

After	 evaluation,	 important	 details	were	 extracted,	 including:	ML	models	 used,	Optimal	
models	 identified,Targeted	BMS	 applications,	 Scale	 of	BMS	 implementation	 (e.g.,	 indi-
vidual	buildings,	entire	cities).
This	review,	as	shown	in	Fig.	3,	encompasses	a	wide	range	of	ML	applications	within	BMS,	
examining	each	in	terms	of	motivations,	constraints,	and	methods.	The	findings	contribute	
to	understanding	how	ML	enhances	BMS	operations	by	automating	tasks,	improving	deci-
sion-making,	 and	optimizing	 energy	 consumption	 and	operational	 costs.	Through	 analy-
ses	of	applications	such	as	fault	detection,	predictive	maintenance,	energy	forecasting,	and	
anomaly	detection,	this	paper	provides	insights	into	a	more	sustainable	BMS	framework.	
Furthermore,	the	inclusion	of	FastML	techniques,	such	as	model	quantization	and	pruning,	
proves	critical	in	enabling	real-time	applications	essential	for	energy	management	and	occu-
pant	comfort.	This	discussion	not	only	focuses	on	the	present	state	of	ML	in	BMS	but	also	
lays	out	a	trajectory	for	future	research	and	development	in	this	rapidly	evolving	domain.	
The	final	sections	discuss	existing	research	gaps,	especially	concerning	FastML’s	scalabil-

Main	terminology Search	terminology
Building	manage-
ment	system

Building	automation	system,	HVAC-based	
ML,	building	energy	management	system	
(BEMS),	building	information	modeling	(BIM)

Machine	Learning	
Application

Predictive	Maintenance,	Fault	Detection	and	
Diagnosis	(FDD),	Energy	Forecasting,	Oc-
cupancy	Detection	and	Prediction,	Thermal	
Comfort	Optimization,	Load	Shifting,	Demand	
Response,	Anomaly	Detection,	Reinforcement	
Learning	for	Controls

Fast	Machine	
Learning

HLS4ML,	QONNX

Optimization Model	Quantization,	Hyperparameter	Optimi-
zation,	Model	Compilation,	Parallel	Process-
ing,	Pruning	Techniques

Table 2	 Search	terminology	for	
BMS	and	ML

This	table	presents	main	terms	
alongside	relevant	search	
terminology
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ity	and	impact	within	smart	city	infrastructures,	offering	directions	for	ongoing	research	to	
enhance	ML-BMS	integration	for	sustainable	urban	development.

2 A review of machine learning techniques in BMS

The	utilization	of	AI	and	ML	 technologies	 in	Building	Management	Systems	 (BMSs)	 is	
increasingly	prevalent,	enhancing	various	aspects	of	building	functionality,	including	opera-
tional	efficiency,	energy	conservation,	occupant	well-being,	and	maintenance.	This	integra-
tion	 relies	 on	 data	 gathered	 from	 numerous	 sensors	 installed	within	 buildings,	 enabling	
the	 system	 to	make	 informed	 decisions	 and	 streamline	 control	 procedures.These	 studies	
highlight	how	ML	models	contribute	to	energy	efficiency,	predictive	maintenance,	HVAC	
optimization,	fault	detection,	and	occupancy-based	control,	demonstrating	the	transforma-
tive	impact	of	AI-driven	solutions	in	smart	building.	Common	ML	techniques	employed	in	
BMSs	 include	 fault	detection,	 energy	prediction	and	optimization,	 and	advanced	control	
strategies.	In	the	following	section,	we	will	provide	a	comprehensive	examination	of	these	
ML-based	methods,	 outlining	 their	 objectives,	 functionalities,	 and	practical	 applications.	
Table	3	 summarizes	 recent	studies	 that	utilize	various	ML	techniques	 in	building	energy	
management.	This	table	provides	insights	into	the	applications,	levels,	ML	tasks,	and	algo-
rithms	used,	demonstrating	the	breadth	of	research	in	this	area.

Figure	4	illustrates	the	various	applications	of	BMSs,	showcasing	how	ML	techniques	
can	 be	 integrated	 into	 energy	management	 systems.	 This	 visual	 representation	 comple-
ments	 the	 discussions	 in	 this	 section,	 providing	 a	 clearer	 understanding	 of	 the	 different	
areas	where	ML	can	be	applied	effectively.	ML-based	techniques	in	BMS	span	a	wide	array	
of	applications	beyond	those	depicted,	from	real-time	monitoring	of	air	quality	to	predictive	
maintenance	of	 essential	 systems,	 each	 adding	 to	 a	 building’s	 operational	 resilience	 and	
adaptability.	 Incorporating	 these	ML-driven	 strategies	within	BMS	 frameworks	not	only	
enhances	control	over	environmental	variables	but	also	facilitates	deeper	insights	into	sys-
tem	performance	and	potential	faults	before	they	impact	occupants	or	energy	efficiency.	The	
next	section	will	delve	into	the	specific	techniques	utilized	in	energy	optimization,	mainte-
nance	prediction,	and	anomaly	detection,	providing	a	detailed	overview	of	the	algorithms	
and	methods	that	are	currently	driving	advancements	in	this	field.

2.1 Deep learning

In	recent	years,	deep	learning	techniques	have	been	increasingly	applied	to	predict	and	opti-
mize	energy	consumption	in	buildings.	El-Maraghy	et	al.	(2024)	developed	a	CNN	model	
for	predicting	energy	consumption	in	mosque	buildings,	achieving	a	MAPE	of	4.5%.	This	

Fig. 3	 Applications,	motivations,	constraints,	and	ML	methods	in	BMSs	that	are	considered	in	this	review
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References Year Application Level ML	task ML	algorithms
Kim	and	Cho 2019 Energy	consumption Building Regression CNN-LSTM
Somu	et	al. 2021 Energy	consumption Building Regression kCNN-LSTM
El-Maraghy	
et	al.

2024 Energy	consumption Mosque Regression CNN

Zhang	et	al. 2024 Energy	consumption City Regression CNN
Feng	et	al. 2024 HVAC	fault	

diagnosis
HVAC Classification Attention-based	

Transfer	Learning
Wu	et	al. 2024 HVAC	fault	

diagnosis
HVAC Classification Composite	Neu-

ral	Network
Wu	et	al. 2024 Occupancy	detection Building Classification CNN
Somu	et	al. 2021 Thermal	comfort	

prediction
Building Regression TL	CNN-LSTM

Karaiskos	et	al. 2024 Indoor	air	quality Building Regression LSTM-RNN
Wu	et	al. 2022 Predictive	

maintenance
Equipment Regression LSTM-RNN

Javed	et	al. 2016 Energy	optimization HVAC Regression RNN
Tukymbekov	
et	al.

2021 Street	lighting	
control

Infrastructure Regression LSTM

Jeon	and	Kim 2021 Temperature	set-
point	optimization

HVAC Regression LSTM

Jang	et	al. 2022 Heating	energy	
consumption

Building Regression LSTM

Karijadi	and	
Chou

2022 Energy	consumption Building Regression RF,	LSTM

Durand	et	al. 2022 Appliance	consump-
tion	data	analysis

Building Regression LSTM

Wang	et	al. 2020 Energy	consumption	
prediction

Building Regression LSTM

Luo	and	
Oyedele

2021 Energy	consumption	
forecasting

Building Regression Adaptive	LSTM	
optimized	by	GA

Hu	et	al. 2023 Predictive	
maintenance

Equipment Regression Parallel	LSTM-
Autoencoder

Matsukawa	
et	al.

2019 Maintenance	opera-
tions	prediction

Equipment Regression LSTM

Zhu	et	al. 2022 HVAC	fault	
detection

HVAC Classification LSTM-SVDD

Patil	et	al. 2024 Energy	performance	
forecasting

Building Regression ANN,	RSM

Bhagwat	et	al. 2024 Fault	detection Infrastructure Classification ANN
Ren	et	al. 2023 Energy	efficiency	

optimization
Building Regression ANN

Olanrewaju	and	
Tan

2022 Maintenance	satis-
faction	analysis

Building Regression ANN

Abdelaziz	et	al. 2023 Energy	consumption	
forecasting

Building Clustering PCA,	SOM,	K-
means,	GA

Arias-Requejo	
et	al.

2023 HVAC	control Building Clustering K-means,	ICA

Ramírez-Sanz	
et	al.

2023 Fault	detection Equipment Classification SSL

Liu	and	Gou 2024 Indoor	thermal	
comfort	control

HVAC RL RL

Fährmann	et	al. 2022 Anomaly	detection Building Detection DDQN

Table 3	 Summary	of	recent	studies	utilizing	ML	techniques	in	building	energy	management
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performance	 is	12%	better	 than	an	ANN	model’s	MAPE	of	5.36%	for	 residential	build-
ings,	and	it	also	outperforms	other	models	such	as	Random	Forest	(MAPE	of	6.023%)	and	
ANN	(MAPE	of	6%).	While	CNN	models	demonstrate	strong	predictive	capability,	their	
performance	can	be	influenced	by	the	complexity	of	the	dataset	and	model	scalability.	To	
enhance	predictive	accuracy,	Kim	and	Cho	(2019)	introduced	a	CNN-LSTM-based	model	
for	predicting	residential	energy	consumption	that	 integrates	spatial	and	temporal	depen-
dencies.	While	CNN-LSTM	achieves	a	lower	MSE	of	0.3738-showing	a	49.8%	improve-

References Year Application Level ML	task ML	algorithms
Ding	et	al. 2022 Multi-zone	HVAC	

control
Building Deep	RL Deep	RL

Fu	et	al. 2018 Energy	consumption Building RL SARSA
Alfaverh	et	al. 2020 Peak	energy	demand	

management
Infrastructure RL,	Fuzzy	

Reasoning
RL,	Fuzzy	
Reasoning

Geng	et	al. 2022 Indoor	air	quality	
monitoring

Building Clustering Clustering

Oliosi	et	al. 2023 Anomaly	detection Building Detection PCA,	Spectral	
Clustering

Wen	et	al. 2023 Fault	detection Equipment Detection PCA
Chen	et	al. 2023 Temperature	and	oc-

cupancy	detection
Building Classification SSL

Parhizkar	et	al. 2021 Energy	consumption	
prediction

Building Clustering PCA

Fan	et	al. 2024 HVAC	fault	
detection

HVAC Classification Active	Learning,	
SSL

Nguyen	et	al. 2021 Real-time	energy	
monitoring

Building Clustering Clustering,	
Regression

Pekşen	et	al. 2024 Predictive	
maintenance

Equipment Classification SSL

Ahn	and	Park 2020 HVAC	system	
efficiency

HVAC DQN Deep	Q-Network

Xu	et	al. 2021 Fault	detection HVAC RL RL
Wei	et	al. 2020 Energy	management Building Actor-critic	RL Actor-Critic	RL
Jendoubi	and	
Bouffard

2023 Energy	management Building Optimization HRL

Qin	et	al. 2022 Energy	optimization Building Hybrid	RL-GA RL,	Genetic	
Algorithm

Ji	et	al. 2019 Energy	management Building RL Real-time	RL
Quang	and	
Phuong

2024 Energy	optimization Residential	
HVAC

Deep	RL Deep	RL

Zhang	et	al. 2022 Energy	management Multiple	
buildings

MARL Multi-agent	RL

Han	et	al. 2021 Occupant	comfort Building RL RL
Brandi	et	al. 2020 Indoor	temperature	

and	energy	usage
Building RL RL

Masdoua	et	al. 2023 Fault-tolerant	
control

HVAC RL RL

Fang	et	al. 2023 Lighting	control Building RL RL
Shen	et	al. 2022 Energy	control	

systems
Building RL Multi-agent	deep	

RL

(continued) Table	3 
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ment	over	Attention	LSTM	(0.6984)-it	tends	to	be	more	effective	for	aggregated	time-series	
data	rather	than	minute-level	fluctuations.	CNN-LSTM	underperforms	compared	to	LSTM	
and	Linear	Regression,	with	approximately	50%	lower	metrics	in	minutely	data.	Nonethe-
less,	 it	 significantly	 outperforms	LSTM,	GRU,	Bi-LSTM,	 and	Attention	LSTM.	Further	
refinements	were	introduced	by	Somu	et	al.	(2021),	who	proposed	the	kCNN-LSTM	model,	
incorporating	 k-means	 clustering	 to	 refine	 input	 data	 segmentation.	 The	 kCNN-LSTM	
achieves	a	MAPE	of	0.1670,	performing	well	in	weekday	and	weekend	energy	forecasting	
by	leveraging	structured	patterns	within	the	dataset.	However,	the	absence	of	key	contextual	
factors	like	occupancy	data	highlights	the	ongoing	challenge	of	capturing	the	full	complex-
ity	of	building	environments.	To	improve	the	learning	of	complex	temporal	dependencies,	
Wu	and	Wu	(2024)	introduced	the	CNN-BiLSTM-SA	model,	which	combines	bidirectional	
LSTM	layers	with	self-attention	mechanisms.	This	model	reduces	RMSE	by	82.70%	com-
pared	to	BiLSTM	and	43.24%	compared	to	BiLSTM-SA.	Additionally,	it	achieves	the	high-
est	R2	value	among	CNN,	LSTM,	and	CNN-LSTM	models,	demonstrating	its	effectiveness	
in	accurately	predicting	household	electricity	consumption.	Its	ability	to	capture	both	past	
and	future	dependencies,	along	with	attention-based	feature	selection,	enhances	its	predic-
tive	performance	in	dynamic	energy	consumption	scenarios.	Although	this	approach	show-

Fig. 4	 Illustration	of	various	applications	of	BMS	utilizing	ML	 techniques.	This	figure	highlights	key	
areas	such	as	energy	management	and	predictive	maintenance,	demonstrating	how	ML	enhances	opera-
tional	efficiency	and	occupant	comfort
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cased	promising	results,	its	dependence	on	small	datasets	and	simulated	environments-as	
also	observed	in	studies	such	as	El-Maraghy	et	al.	(2024)	and	Zhang	et	al.	(2024c)-raises	
concerns	 about	 scalability	 and	 real-world	 applicability.	 To	 overcome	 these	 limitations,	
researchers	have	explored	hybrid	frameworks	that	integrate	clustering	and	transfer	learning	
strategies.

LSTM	networks,	in	particular,	have	shown	considerable	promise	in	capturing	temporal	
trends	critical	to	energy	systems	management.	Enhanced	interpretability,	achieved	through	
techniques	 like	 layer-wise	relevance	propagation	 in	LSTM	models	 (Wu	et	al.	2022),	has	
provided	new	insights	into	predictive	maintenance	strategies.	Moreover,	the	integration	of	
random	neural	networks	in	cloud-enabled	smart	controllers	(Javed	et	al.	2016)	has	yielded	
substantial	energy	savings	of	27.12%	compared	to	traditional	rule-based	systems.	A	variety	
of	studies	(Tukymbekov	et	al.	2021;	Jeon	and	Kim	2021;	Jang	et	al.	2022;	Karijadi	and	Chou	
2022;	Durand	et	al.	2022;	Wang	et	al.	2020;	Luo	and	Oyedele	2021;	Hu	et	al.	2023;	Matsu-
kawa	et	al.	2019;	Zhu	et	al.	2022)	further	attest	to	the	versatility	of	LSTM	networks-from	
optimizing	street	lighting	based	on	weather	forecasts	to	real-time	HVAC	fault	detection	and	
indoor	air	quality	prediction-demonstrating	both	their	potential	and	the	necessity	for	fur-
ther	refinement.	For	HVAC	systems,	attention-based	transfer	learning	methods	(Feng	et	al.	
2024)	and	composite	neural	network	approaches	(Wu	et	al.	2024a)	have	been	deployed	to	
address	sensor	fault	diagnosis	and	data	imbalance,	respectively.	These	methodologies	high-
light	the	critical	role	of	deep	learning	in	fault	detection	and	diagnosis	within	BMSs.	Beyond	
LSTM	networks,	artificial	neural	networks	(ANNs)	have	also	been	extensively	employed	
for	energy	management	tasks.	Simulation-based	ANN	frameworks	(Roodkoly	et	al.	2024)	
and	models	integrating	ANN	with	Response	Surface	Methodology	(Patil	et	al.	2024)	have	
proven	effective	in	forecasting	energy	metrics	and	optimizing	building	performance.	Fur-
thermore,	ANN-driven	fault	detection	systems	(Bhagwat	et	al.	2024)	and	intelligent	control	
frameworks	for	public	buildings	(Ren	et	al.	2023)	illustrate	the	capacity	of	these	networks	to	
enhance	operational	efficiency	and	occupant	comfort,	even	in	contexts	demanding	post-pan-
demic	adjustments	(Olanrewaju	and	Tan	2022).	Collectively,	these	studies	reveal	a	dynamic	
landscape	in	which	deep	learning	methods	are	continuously	evolving	to	address	the	mul-
tifaceted	 challenges	 of	 building	 energy	 management.	 Although	 each	 approach-whether	
CNN-based,	LSTM-centric,	or	ANN-driven-offers	unique	advantages,	common	challenges	
persist.	These	include	the	need	for	larger,	more	diverse	real-world	datasets,	improved	model	
interpretability,	and	the	integration	of	multi-modal	sensor	data.	Future	research	should	aim	
to	develop	hybrid	models	that	strike	a	balance	between	predictive	accuracy	and	practical	
applicability,	ultimately	bridging	the	gap	between	simulation	and	real-world	deployment.	
Cordeiro-Costas	et	al.	(2024)	propose	a	hybrid	methodology	combining	LSTM	and	Multi-
layer	Perceptron	(MLP)	models,	optimized	with	the	Non-dominated	Sorting	Genetic	Algo-
rithm	II	(NSGA-II).	This	method	uses	Global	Forecast	System	(GFS)	data	to	predict	energy	
consumption	and	optimize	distributed	energy	sources	like	photovoltaic	(PV)	systems.	By	
balancing	energy	costs	and	efficiency,	NSGA-II	identifies	optimal	solutions	along	the	Pareto	
front.	Implemented	at	the	Industrial	Engineering	School	of	the	Universidade	de	Vigo,	Spain,	
this	approach	effectively	enhances	hyperparameter	tuning	and	energy	balance,	showcasing	
the	potential	of	integrating	machine	learning	with	optimization	for	better	energy	manage-
ment	in	buildings.

As	illustrated	in	Fig.	5,	various	machine	learning	approaches,	including	LSTMs,	ANNs,	
and	CNNs,	play	distinct	yet	interrelated	roles	in	building	energy	management.	These	meth-
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ods	are	applied	across	domains	such	as	energy	efficiency,	HVAC	optimization,	occupancy	
detection,	 and	predictive	maintenance,	underscoring	 their	versatility	 in	 creating	adaptive	
and	efficient	building	environments.	This	integration	of	advanced	ML	algorithms	in	BMSs	
not	only	streamlines	operations	but	also	fosters	sustainability	by	optimizing	resource	use	
and	enhancing	occupant	comfort.	The	diversity	of	approaches	highlighted	in	recent	studies	
demonstrates	 the	 adaptability	 and	 potential	 for	 future	 innovations	within	 smart	 building	
systems,	 setting	 the	 stage	 for	 increasingly	 resilient,	 responsive,	 and	 sustainable	 building	
management	solutions.

2.2 Supervised learning

Supervised	learning	is	a	cornerstone	methodology	in	analyzing	annotated	energy	datasets,	
demonstrating	robust	performance	across	various	applications	in	BMSs.	However,	the	reli-
ance	on	labeled	data	presents	significant	challenges	for	real-world	deployment.	Obtaining	

Fig. 5	 Sankey	diagram	illustrating	the	applications	of	ML	and	deep	learning	in	BMS.	This	figure	high-
lights	how	various	ML	techniques	are	integrated	across	different	domains,	including	buildings,	cities,	and	
infrastructure
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high-quality	 labeled	datasets	 is	not	only	 time-consuming	but	also	costly,	which	can	hin-
der	the	scalability	of	supervised	learning	techniques	in	practical	energy	applications.	This	
limitation	is	particularly	pronounced	in	sectors	where	data	labeling	is	scarce	or	expensive,	
potentially	stifling	innovation	and	efficiency	improvements	in	energy	management.

Classification models:	Classification	models	are	traditional	yet	powerful	tools	for	tasks	
such	as	energy	prediction,	indoor	activity	monitoring,	and	fault	detection.	Key	algorithms,	
including	 Support	Vector	Machines	 (SVM),	K-Nearest	Neighbors	 (KNN),	 and	Decision	
Trees	(DT),	have	shown	varying	degrees	of	effectiveness.	For	instance,	Zhang	et	al.	(2022b)	
achieved	 an	 impressive	 accuracy	 rate	 of	 99.98%	 using	 a	 hybrid	 PSO-SVM	 algorithm	
for	energy	balancing	 in	green	buildings.	Such	results	not	only	highlight	 the	potential	 for	
enhanced	energy	efficiency	but	also	suggest	a	model	that	can	be	scaled	for	broader	applica-
tions	 in	similar	contexts.	However,	 these	models	have	inherent	 limitations.	SVMs,	while	
effective,	struggle	with	non-linear	problems	unless	kernel	methods	are	applied,	which	adds	
complexity	to	their	implementation.	KNN’s	performance	is	heavily	dependent	on	the	choice	
of	"K,"	and	the	algorithm	can	become	computationally	expensive	with	large	datasets.	More-
over,	Decision	Trees	can	overfit	on	small	datasets,	leading	to	poor	generalization-an	issue	
that	can	significantly	impact	predictive	maintenance	strategies	in	operational	settings.

Regression models:	Regression	models,	focusing	on	identifying	relationships	between	
variables,	play	a	critical	role	in	energy	forecasting	and	anomaly	detection.	Common	meth-
ods,	 including	 Support	 Vector	 Regression	 (SVR)	 and	 Random	 Forest	 (RF),	 have	 been	
widely	adopted.	Notably,	Moulla	et	al.	(2024)	utilized	a	diverse	dataset	to	predict	hourly	
energy	consumption,	achieving	high	accuracy	with	RF	and	DT	models.	Their	findings	offer	
valuable	insights	that	can	inform	energy	management	policies	and	practices,	particularly	in	
regions	grappling	with	load-shedding	crises.	These	widely	adopted	machine	learning	mod-
els	exhibit	ease	of	implementation	and	interpretability.	However,	the	assumption	of	linearity	
between	variables	may	not	always	hold	true	in	complex	real-world	scenarios.	Addressing	
these	challenges	through	advanced	hybrid	models	could	enhance	predictive	accuracy	and	
operational	efficiency	in	BMS.

2.3 Unsupervised learning

Unsupervised	 learning	 techniques	 have	 proven	 versatile	 and	 effective	 in	 BMSs,	 signifi-
cantly	 enhancing	 energy	 efficiency,	 reducing	 costs,	 and	 improving	 system	 robustness.	
These	methods	allow	for	the	exploration	of	data	without	the	constraints	of	labeled	datasets,	
making	 them	particularly	valuable	 in	dynamic	environments	where	data	 is	 abundant	but	
unannotated.

Clustering:	 Clustering	 algorithms	 are	 employed	 to	 categorize	 and	 forecast	 energy	
usage	patterns,	thereby	improving	energy	management	in	buildings.	Abdelaziz	et	al.	(2023, 
2024)	developed	a	comprehensive	framework	using	Principal	Component	Analysis	(PCA)	
for	dimensionality	reduction,	Self-Organizing	Maps	(SOM)	for	pattern	identification,	and	
K-means	clustering	combined	with	a	Genetic	Algorithm	(GA)	to	optimize	energy	consump-
tion	clusters.	This	innovative	methodology	not	only	improved	energy	demand	forecasting	
but	 also	 enhanced	 load	management	 strategies,	 effectively	 reducing	 energy	wastage	 and	
operational	 costs.	Similarly,	Arias-Requejo	et	 al.	 (2023)	 applied	K-means	clustering	and	
Independent	Component	Analysis	(ICA)	for	energy	consumption	forecasting	in	smart	build-
ings,	focusing	on	HVAC	controls	and	energy-saving	strategies.	They	emphasized	the	criti-
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cal	importance	of	data	preprocessing	and	feature	extraction	to	handle	correlations	among	
variables,	which	can	significantly	impact	forecasting	accuracy.	Raja	and	Saraswathi	(2023)	
introduced	an	 IoT	system	leveraging	hierarchical	clustering	and	Gaussian	Mixture	Mod-
els	(GMM)	to	classify	energy	use	behaviors	and	model	occupancy	patterns,	demonstrating	
high	accuracy	and	minimizing	overall	power	consumption.	Additionally,	Tian	et	al.	(2024)	
utilized	association	rule	mining	alongside	clustering	and	rule-based	methods	 to	optimize	
energy	 consumption	 and	 enhance	 fault	 detection	 in	HVAC	 systems.	Their	 unsupervised	
data	mining-based	framework	resulted	in	a	6.9%	energy	savings,	underscoring	the	practi-
cal	 benefits	 of	 applying	 clustering	 techniques	 in	 real-world	 settings.	 Furthermore,	Wang	
et	 al.	 (2022a)	 and	 Etezadifar	 et	 al.	 (2023)	 investigated	 clustering	 approaches	 for	 event-
based	non-intrusive	 load	monitoring	 (NILM)	and	appliance	 identification,	demonstrating	
significant	contributions	to	energy	performance	evaluation	and	ranking	in	workplaces.	Liu	
et	al.	(2018)	focused	on	energy	efficiency	assessment	in	industrial	buildings,	while	Gunay	
and	Shi	(2020)	applied	clustering	to	detect	operational	anomalies	 in	building	automation	
systems.	The	exploration	of	indoor	air	quality	(IAQ)	monitoring,	as	examined	by	Sha	et	al.	
(2023)	and	Geng	et	al.	(2022),	further	establishes	the	broad	applicability	of	clustering	tech-
niques	in	optimizing	building	performance.

Dimensionality reduction:	 Dimensionality	 reduction	 techniques	 are	 crucial	 for	 sim-
plifying	complex	datasets,	enhancing	the	efficiency	of	anomaly	detection,	and	improving	
energy	management	systems.	Abdelaziz	et	al.	(2023, 2024)	used	PCA	for	dimensionality	
reduction,	which	contributed	significantly	 to	 their	 framework	for	optimizing	energy	con-
sumption	clusters.	By	reducing	the	feature	space,	PCA	aids	in	identifying	key	variables	that	
drive	energy	usage,	streamlining	subsequent	modeling	efforts.	Oliosi	et	al.	(2023)	imple-
mented	PCA	and	spectral	clustering	to	reduce	the	dimensionality	of	complex	sensor	data,	
improving	the	efficiency	of	anomaly	detection	and	maintenance.	Wen	et	al.	(2023)	applied	
PCA	for	early	fault	detection	and	classification,	while	Parhizkar	et	al.	(2021)	and	Baird	et	al.	
(2017)	demonstrated	its	utility	in	energy	consumption	prediction	and	occupancy	detection,	
respectively.	Khan	et	al.	(2020)	applied	the	t-Stochastic	Neighborhood	Embedding	(t-SNE)	
algorithm	to	eliminate	redundant	features,	 thus	preventing	large	coefficients	and	improv-
ing	model	performance.	In	a	novel	approach,	Miyasawa	et	al.	(2019)	introduced	an	energy	
breakdown	technique	using	smart	meter	data	and	semi-binary	nonnegative	matrix	factor-
ization	(SBNMF)	to	estimate	individual	appliance	power	consumption	without	additional	
sensors.	To	enhance	SBNMF	accuracy,	the	authors	proposed	three	model	assumptions	and	
developed	appliance-level	classifiers	using	random	forest,	incorporating	auxiliary	informa-
tion	like	user	feedback	to	improve	performance.	Song	et	al.	(2022)	compared	six	machine	
learning	algorithms	and	 found	Linear	Discriminant	Analysis	 (LDA)	 to	be	more	accurate	
for	 thermal	comfort	evaluation,	and	Lee	et	al.	(2020)	used	LDA	for	building	flow	detec-
tion,	highlighting	its	broad	applicability	in	BMSs.	These	studies	collectively	underscore	the	
importance	of	unsupervised	learning	techniques	in	enhancing	the	efficiency	and	effective-
ness	of	BMSs,	particularly	through	clustering	and	dimensionality	reduction	methodologies.

2.4 Semi-supervised learning

Semi-supervised	learning	(SSL)	is	a	crucial	methodology	in	the	development	of	BMSs,	par-
ticularly	in	scenarios	where	obtaining	comprehensive	labeled	datasets	is	difficult	or	expen-
sive.	By	leveraging	both	annotated	and	unannotated	data,	SSL	techniques	can	significantly	
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improve	model	performance	and	predictive	accuracy,	addressing	 some	of	 the	 limitations	
inherent	 in	fully	supervised	methods.	SSL	has	diverse	applications	within	BMS,	particu-
larly	 in	 automated	 fault	 detection	 and	diagnosis	 (AFDD)	 for	HVAC	systems.	Dey	 et	 al.	
(2018)	underscore	 its	utility	 in	managing	unstructured	and	unlabeled	HVAC	sensor	data,	
enhancing	system	reliability	and	reducing	the	operational	costs	associated	with	data	pre-
processing.	 In	 building	 energy	modeling	 (BEM),	Naganathan	 et	 al.	 (2016)	 explored	 the	
use	of	clustering	algorithms	and	semi-supervised	machine	learning	to	optimize	energy	effi-
ciency	by	analyzing	real-time	data	from	substations	and	buildings.	This	approach	not	only	
identifies	 factors	 contributing	 to	energy	 losses	but	 also	aids	utility	providers	 in	effective	
energy	 supply–demand	management.	Akbar	 et	 al.	 (2024)	 introduced	an	 innovative	SSL-
based	deep	learning	framework	for	non-intrusive	load	monitoring	(NILM)	in	smart	grids,	
disaggregating	aggregate	energy	consumption	data	into	individual	appliance-level	insights.	
This	methodology	enhances	energy	optimization	and	cost	reduction,	demonstrating	supe-
rior	accuracy	compared	to	traditional	methods.	The	integration	of	active	learning	with	SSL	
further	enhances	data-driven	HVAC	fault	diagnosis,	reducing	labeling	costs	and	improving	
system	reliability,	as	noted	by	Fan	et	al.	(2024).	This	combined	approach	effectively	identi-
fies	valuable	data	for	fault	detection,	supporting	practical	applications	in	real-world	settings.	
Additionally,	Ramírez-Sanz	et	al.	(2023)	provide	a	comprehensive	review	of	SSL	applica-
tions	in	industrial	fault	detection	and	diagnosis,	highlighting	its	effectiveness	in	handling	
limited	labeled	data	and	improving	model	accuracy	across	various	industrial	environments.	
SSL’s	 versatility	 in	BMS	extends	 to	 energy	 consumption	 forecasting,	 predictive	mainte-
nance,	IoT	integration,	and	renewable	energy	utilization.	For	instance,	Chen	et	al.	(2023b)	
exemplify	 its	 use	 in	 accurate	 indoor	 temperature	 prediction	 and	occupancy	detection	by	
leveraging	both	labeled	and	unlabeled	sensor	data.	Hybrid	SSL	models	that	combine	clus-
tering	and	regression	approaches	have	demonstrated	promise	in	real-time	energy	monitor-
ing	and	predictive	maintenance	within	BMS,	thereby	enhancing	operational	efficiency	and	
prediction	accuracy,	as	shown	by	Nguyen	et	al.	(2021)	and	Pekşen	et	al.	(2024).	Despite	its	
advantages,	SSL	can	exhibit	instability	in	results	and	lower	performance	compared	to	fully	
supervised	learning	when	labeled	data	is	insufficient,	as	highlighted	by	Wang	et	al.	(2022b).	
Nevertheless,	SSL’s	ability	to	effectively	utilize	both	labeled	and	unlabeled	data	positions	
it	 as	 a	valuable	 tool	 for	 addressing	data	 scarcity	challenges	and	enhancing	overall	BMS	
performance.

2.5 Reinforcement learning

Reinforcement	learning	(RL)	has	shown	significant	promise	in	optimizing	various	aspects	
of	BMSs,	 including	HVAC	control,	maintenance,	 fault	 detection,	 energy	prediction,	 and	
consumption.	A	study	by	Ahn	and	Park	(2020)	explored	the	use	of	Deep	Q-Networks	(DQN)	
to	enhance	HVAC	system	efficiency	and	occupant	comfort.	This	approach	illustrates	how	
RL	can	dynamically	adjust	system	parameters	to	achieve	optimal	performance.	Similarly,	
Liu	and	Gou	(2024)	introduced	an	RL	model	that	improved	indoor	thermal	comfort	by	24%	
and	reduced	air	conditioning	usage	by	24.7%	compared	to	baseline	models.	These	results	
not	only	highlight	the	effectiveness	of	RL	in	energy	savings	but	also	demonstrate	its	poten-
tial	 impact	 on	 occupant	 satisfaction.	 Fährmann	 et	 al.	 (2022)	 employed	 deep	Q-learning	
(DDQN)	for	anomaly	detection	in	smart	buildings,	showcasing	RL’s	adaptability	in	identi-
fying	and	responding	to	unusual	behaviors	in	energy	consumption.	In	the	realm	of	energy-
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efficient	control,	Xu	et	al.	(2021)	applied	RL	to	fault	detection	and	diagnostics	in	HVAC	
systems,	ensuring	efficient	operation.	Ding	et	al.	(2022)	proposed	a	deep	RL-based	method	
for	controlling	thermal	comfort	in	multi-zone	residential	HVAC	systems.	Fu	et	al.	(2018)	
utilized	SARSA	to	predict	and	minimize	energy	consumption	in	commercial	buildings.	Wei	
et	al.	(2020)	implemented	actor-critic	methods	for	smart	building	energy	management,	dem-
onstrating	improved	efficiency.	The	versatility	of	RL	is	further	exemplified	by	Jendoubi	and	
Bouffard	(2023),	who	applied	hierarchical	RL	for	managing	complex	building	energy	tasks,	
enhancing	system	responsiveness.	Qin	et	al.	(2022)	combined	genetic	algorithms	with	RL	
for	enhanced	energy	optimization,	while	Ji	et	al.	(2019)	explored	real-time	RL	for	energy	
management	in	smart	buildings.	Moreover,	Quang	and	Phuong	(2024)	developed	a	deep	RL	
algorithm	to	optimize	energy	consumption	in	residential	HVAC	systems	while	maintaining	
occupant	comfort.	Zhang	et	al.	(2022a)	employed	multi-agent	RL	for	coordinated	energy	
management	across	multiple	buildings,	 and	Alfaverh	et	 al.	 (2020)	 applied	RL	and	 fuzzy	
reasoning	to	manage	and	reduce	energy	demand	during	peak	periods.	Han	et	al.	(2021)	bal-
anced	occupant	comfort	using	RL,	and	Brandi	et	al.	(2020)	enhanced	indoor	temperature	
and	energy	usage	with	RL.	Masdoua	et	al.	(2023)	developed	fault-tolerant	HVAC	control	
strategies	with	RL,	while	Fang	et	al.	(2023)	optimized	lighting	control	systems	using	RL	
for	 energy	 savings.	 In	 a	 significant	 advancement,	Shen	et	 al.	 (2022)	 introduced	a	multi-
agent	deep	RL	optimization	framework	for	building	energy	systems	incorporating	renew-
able	energy,	utilizing	a	dueling	double	deep	Q-network	for	single-agent	optimization	and	a	
value-decomposition	network	for	multi-agent	cooperation.	These	studies	collectively	high-
light	the	vast	potential	of	reinforcement	learning	to	enhance	efficiency,	reduce	costs,	and	
improve	occupant	comfort	in	BMSs.

2.6 Generative-AI, federated learning, and transfer learning

The	rapid	evolution	of	AI,	exemplified	by	advanced	language	models	like	ChatGPT,	holds	
significant	promise	for	specialized	engineering	tasks,	particularly	in	physics-based	build-
ing	energy	modeling	(BEM)	(Zhang	et	al.	2024a).	These	models	simplify	data	analysis	and	
generate	 simulation	 inputs,	 demonstrating	 their	 utility	 in	 enhancing	modeling	processes.	
However,	their	effectiveness	depends	on	selecting	appropriate	techniques,	such	as	prompt	
engineering	or	 integration	within	multi-agent	 systems.	Despite	 challenges	 like	 computa-
tional	demands	and	 self-consistency	 issues,	 advancements	 are	 expanding	 the	use	of	 lan-
guage	models	across	various	sectors	 (Alqahtani	et	al.	2023).	 In	 the	context	of	Federated	
Learning	(FL),	a	decentralized	approach	allows	models	to	be	trained	across	multiple	devices	
while	preserving	data	privacy	(Li	et	al.	2021).	FL	encompasses	horizontal	federated	learn-
ing	(HFL),	which	aggregates	models	from	devices	with	similar	features	but	different	sam-
ples,	and	vertical	federated	learning	(VFL),	which	integrates	diverse	feature	sets	from	the	
same	samples.	Applications	in	smart	buildings	demonstrate	FL’s	effectiveness	in	anomaly	
detection	and	thermal	comfort	management,	showcasing	its	potential	to	enhance	operational	
efficiency	and	user	satisfaction	(Sater	and	Hamza	2021;	Khalil	et	al.	2021).	HFL	and	VFL	
enhance	model	accuracy	and	efficiency	while	addressing	privacy	concerns	(Wang	and	et	al.	
2023;	Liu	et	al.	2024).	Transfer	Learning	(TL)	enables	the	reuse	of	models	trained	on	one	
task	 for	 related	 tasks,	 particularly	when	 data	 is	 scarce.	TL	methods	 include	 pre-training	
on	 large	datasets	 followed	by	fine-tuning	on	 smaller,	 task-specific	datasets.	Applications	
range	from	intelligent	fault	diagnosis	to	energy	demand	forecasting,	showcasing	significant	
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improvements	in	accuracy	and	performance,	thus	facilitating	more	informed	decision-mak-
ing	in	energy	management	(Chen	et	al.	2023a;	Coraci	et	al.	2023).	In	summary,	the	inte-
gration	of	generative	AI,	FL,	and	TL	presents	unprecedented	opportunities	for	enhancing	
knowledge	management,	decision-making,	and	innovation	in	engineering	and	construction,	
leading	to	more	efficient,	safe,	and	sustainable	practices.

2.7 Fast machine learning in building management systems

ML	has	become	essential	 across	 numerous	 industries,	 including	healthcare,	finance,	 and	
autonomous	vehicles.	As	the	complexity	of	these	applications	increases,	there	is	a	growing	
demand	for	 faster	and	more	efficient	ML	 techniques,	collectively	 referred	 to	as	FastML.	
FastML	addresses	this	need	by	accelerating	various	stages	of	the	ML	pipeline,	from	data	
preprocessing	to	model	training	and	inference.	This	approach	is	particularly	vital	for	sce-
narios	 requiring	 real-time	 or	 near-real-time	decision-making,	 such	 as	 scientific	 research,	
BMSs,	and	autonomous	vehicles	(Duarte	et	al.	2022b).	By	reducing	the	time	and	compu-
tational	resources	needed	for	model	training,	FastML	facilitates	quicker	innovation	cycles	
and	deployment	of	ML	 solutions.	 It	 aims	 to	overcome	challenges	 inherent	 in	 traditional	
ML	 approaches,	 including	 rising	 computational	 requirements	 for	 training	 and	 inference,	
the	need	for	low	latency	in	certain	applications,	concerns	about	energy	consumption,	and	
the	difficulty	of	scaling	traditional	ML	methods	to	handle	large-scale	datasets	and	complex	
models	(L’heureux	et	al.	2017).	Key	techniques	in	FastML	include	leveraging	specialized	
hardware,	optimizing	models	through	pruning	and	quantization,	developing	efficient	neural	
network	 architectures,	 utilizing	 distributed	 computing	 frameworks,	 and	 improving	 algo-
rithms.	These	techniques	enable	a	range	of	applications,	from	real-time	computer	vision	and	
natural	language	processing	to	personalized	recommendations	and	rapid	decision-making	
in	financial	services	and	healthcare.	FastML	refers	to	techniques	designed	to	accelerate	the	
machine	learning	pipeline,	which	includes	data	preprocessing,	model	training,	and	inference	
(Deiana	et	al.	2022b).	These	techniques	utilize	specialized	hardware	(e.g.,	FPGAs,	ASICs,	
or	GPUs),	optimized	algorithms,	and	advanced	strategies	to	facilitate	real-time	or	near-real-
time	decision-making.	 In	 the	 context	 of	BMSs,	 "fast"	 typically	denotes	 systems	 capable	
of	processing	sensor	data	and	generating	control	decisions	within	milliseconds,	allowing	
for	 rapid	 responses	 to	dynamic	environmental	changes.	FastML	is	particularly	beneficial	
in	BMS	 for	 tasks	 such	 as	 fault	 detection,	 energy	 efficiency	 optimization,	 and	 predictive	
maintenance,	where	low	latency	and	high	computational	efficiency	are	essential.	However,	
achieving	"fast"	performance	often	necessitates	careful	 resource	management,	 especially	
when	deploying	complex	algorithms	like	Nonlinear	Model	Predictive	Control	(NNMPC)	
on	 hardware	 platforms	 such	 as	 FPGAs.	 In	 the	 study	 by	 Fan	 et	 al.	 (2022),	 the	 FastML	
framework	was	developed	to	address	predictive	uncertainty,	model	drift,	and	unexpected	
conditions	using	Bayesian	neural	networks	(BayesCNNs).	These	networks	provide	proba-
bilistic	predictions	and	quantify	uncertainty	by	estimating	prediction	distributions,	enabling	
nuanced	outcomes.	Techniques	like	Monte	Carlo	dropout	enhance	uncertainty	assessment,	
making	FastML	valuable	in	dynamic	environments	such	as	severe	weather,	building	renova-
tions,	or	COVID-19	lockdowns	(Melosik	et	al.	2022).	The	framework	incorporates	adap-
tive	decision-making,	adjusting	predictions	and	confidence	intervals	during	uncertainty,	and	
employs	continuous	learning	to	address	model	drift.	Key	strategies	include	Bayesian	infer-
ence,	adaptive	learning,	and	probabilistic	output	handling	for	risk-aware	decisions.	FastML	
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achieves	remarkable	performance,	including	up	to	92x	higher	energy	efficiency	than	CPUs,	
76x	higher	than	GPUs,	99.39%	accuracy,	and	9-30x	higher	throughput	than	existing	accel-
erators,	making	it	a	reliable	 tool	for	mission-critical	 tasks	 like	energy	management,	fault	
detection,	and	predictive	maintenance.	A	cutting-edge	framework	designed	to	facilitate	the	
deployment	of	machine	learning	models	on	hardware	accelerators,	particularly	Field-Pro-
grammable	Gate	Arrays	(FPGAs)	and	Application-Specific	Integrated	Circuits	(ASICs),	is	
High-Level	Synthesis	for	Machine	Learning	(HLS4ML).	Unlike	traditional	software-based	
implementations,	HLS4ML	utilizes	high-level	synthesis	(HLS)	tools	to	convert	high-level	
model	descriptions	into	hardware	logic,	enabling	efficient	and	real-time	inference	on	these	
platforms.	The	HLS4ML	toolchain	transforms	these	optimized	ML	models	into	hardware	
specifications	suitable	for	implementation	on	FPGAs	and	ASICs.	This	framework	not	only	
enhances	the	performance	of	machine	learning	applications	but	also	significantly	reduces	
the	time	required	for	deployment.	By	utilizing	hardware	accelerators,	HLS4ML	addresses	
the	 need	 for	 low-latency	 inference,	making	 it	 particularly	 advantageous	 for	 applications	
that	 demand	 rapid	 decision-making.	 The	 integration	 of	 hardware	 and	 software	 through	
HLS4ML	paves	the	way	for	more	efficient	and	scalable	machine	learning	solutions	across	
various	 industries,	particularly	 through	 its	 incorporation	of	 several	 core	 features	 that	 are	
critical	for	optimizing	ML	models	for	hardware	deployment:

 ● Quantization:	Fixed-point	quantization	reduces	model	complexity	and	resource	usage	
by	 implementing	 activation	 functions	 and	mathematical	 operations	 using	fixed-point	
arithmetic,	thereby	enhancing	computational	efficiency.

 ● Framework support:	HLS4ML	 integrates	with	 several	 prominent	machine	 learning	
frameworks,	 including	 (Q)Keras,	 PyTorch,	 and	 QONNX,	 allowing	 users	 to	 convert	
models	into	an	internal	representation	(HLSModel)	for	further	optimization	and	hard-
ware	synthesis.

 ● Optimization:	The	framework	performs	optimization	passes	to	merge	compatible	lay-
ers,	reducing	latency	and	improving	hardware	resource	utilization.	Collaboration	with	
the	FINN	 team	on	QONNX	enhances	 support	 for	 quantized	neural	 network	models,	
ensuring	smooth	interoperability	with	various	back-end	tools.

Originally	developed	for	high-energy	physics	applications,	HLS4ML	has	since	expanded	
to	meet	the	demands	of	fields	requiring	low-latency,	high-throughput,	and	energy-efficient	
inference.	It	primarily	supports	Vivado	HLS	for	Xilinx	FPGAs	but	also	offers	back-ends	for	
Intel	HLS	and	experimental	support	for	Vitis	HLS.	A	key	enabler	of	FastML	is	the	use	of	
specialized	hardware	components	such	as	GPUs	and	FPGA.	For	critical	BMS	applications	
like	 fault	detection	and	energy	management,	FPGAs	have	demonstrated	 superior	perfor-
mance	compared	to	GPUs.	Recent	benchmarks	indicate	that	FPGAs	can	reach	speeds	that	
are	up	to	36	times	faster	and	provide	energy	efficiency	improvements	of	up	to	21	times,	all	
while	ensuring	an	optimal	balance	between	latency	and	throughput	(Guo	2024).	This	makes	
FPGAs	particularly	suitable	for	real-time	applications	in	dynamic	building	environments.	
To	 further	 enhance	performance,	FastML	employs	various	optimization	 techniques.	One	
such	technique	is	feature	selection,	which	reduces	the	number	of	input	types	and	focuses	
on	essential	data,	 streamlining	 the	preprocessing	 stage	and	 improving	efficiency	without	
compromising	prediction	accuracy	(Zhang	et	al.	2024b).	Another	important	approach	is	data	
reduction,	which	involves	utilizing	fewer	meteorological	data	types	or	other	input	variables,	
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significantly	 reducing	 computational	 overhead	 while	 maintaining	 model	 performance.	
Additionally,	model	quantization	plays	a	critical	role	by	reducing	the	precision	of	model	
parameters,	enabling	faster	 inference	and	 lower	energy	consumption.	This	 is	particularly	
beneficial	 in	 resource-constrained	 environments	 where	 hardware	 limitations	 necessitate	
lightweight	models	 (Rutishauser	2024).	Despite	 its	advantages,	FastML	faces	challenges	
in	BMS	applications.	For	instance,	while	techniques	like	quantization	and	data	reduction	
enhance	 efficiency,	 they	may	 also	 introduce	 trade-offs	 in	model	 accuracy	 or	 robustness.	
Additionally,	 the	deployment	of	FastML	models	on	hardware	 like	FPGAs	often	 requires	
specialized	 tools	and	expertise,	which	can	hinder	developer	productivity	and	slow	down	
implementation.	As	noted	by	Wang	et	al.	(2019),	the	complexity	of	hardware	programming	
presents	a	significant	barrier.	Furthermore,	while	FPGAs	offer	computational	acceleration	
through	reconfigurability,	the	time	required	for	reconfiguration	can	be	a	significant	draw-
back.	To	address	these	challenges,	this	paper	utilizes	HLS4ML,	a	tool	designed	to	convert	
machine	 learning	models	 into	 hardware	 designs	 (FastML	Team	2024).	HLS4ML	 strikes	
a	 balance	 between	 hardware	 efficiency-ensuring	 optimal	 performance	 on	 devices	 like	
FPGAs-and	developer	productivity-simplifying	 the	process	of	creating	and	deploying	AI	
applications.	By	reducing	the	time	required	for	FPGA	deployment,	HLS4ML	enables	faster	
and	more	accessible	implementation	of	FastML	solutions	in	BMS.	This	approach	not	only	
enhances	the	performance	of	critical	applications	like	fault	detection	and	energy	manage-
ment	but	also	supports	the	broader	adoption	of	FastML	in	building	management.	FastML	
is	 revolutionizing	 building	 management	 by	 leveraging	 advanced	 algorithms	 to	 analyze	
real-time	data	from	IoT	devices.	This	approach	facilitates	proactive	adjustments	in	opera-
tions,	enhancing	energy	efficiency	and	supporting	sustainability	initiatives.	Barbaresi	et	al.	
(2022)	demonstrate	the	effectiveness	of	various	machine	learning	models,	particularly	tree-
based	methods,	in	predicting	building	energy	requirements	and	improving	design	strategies.	
Seyedzadeh	et	al.	(2019)	stress	the	need	for	model	fine-tuning	to	achieve	precise	heating	
and	cooling	load	predictions,	which	are	crucial	for	optimizing	energy	consumption.	Beyond	
energy	prediction,	FastML	contributes	 to	 the	development	of	advanced	energy	materials,	
as	highlighted	by	Farhadi	et	al.	(2023),	promoting	further	improvements	in	energy	perfor-
mance.	Deiana	et	al.	(2022a)	discuss	the	integration	of	machine	learning	into	scientific	pro-
cesses,	offering	valuable	insights	for	BMSs.	Aarrestad	et	al.	(2021)	explore	the	deployment	
of	low-latency	neural	networks	on	field-programmable	gate	arrays	(FPGAs)	for	real-time	
data	processing	in	building	management,	while	Ngadiuba	et	al.	(2020)	focus	on	optimizing	
resource	use	within	machine	learning	applications,	enhancing	BMS	efficiency.	Additionally,	
the	review	by	Seyedzadeh	et	al.	(2018)	outlines	various	machine	learning	methodologies	
that	enhance	building	energy	performance,	laying	the	groundwork	for	adaptive	operational	
frameworks	in	smart	buildings.	Dey	et	al.	(2020)	proposed	a	machine	learning-based	multi-
level	framework	designed	to	enhance	functionality	and	enable	quick	fault	detection	in	smart	
buildings.	However,	 this	 approach	 is	 computationally	 expensive	 due	 to	 a	 lack	 of	model	
optimization,	particularly	when	applied	to	large-scale	buildings	or	in	real-time	scenarios.	
The	high	computational	demands	pose	 significant	challenges,	especially	 for	older	BMSs	
with	limited	processing	power,	which	may	hinder	the	feasibility	of	real-time	fault	detection	
and	response.	To	address	these	issues	and	accelerate	machine	learning	while	reducing	com-
plexity,	optimization	techniques	such	as	quantization	are	essential.	This	optimization	would	
facilitate	deployment	on	resource-constrained	devices	by	leveraging	FPGA	acceleration.	To	
further	tackle	these	challenges,	Agouzoul	et	al.	(2022)	developed	an	efficient	energy	man-
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agement	system	that	utilizes	a	Model	Predictive	Control	(MPC)-based	ANN	implemented	
on	FPGA	technology.	Their	simulation-based	approach	enhances	real-time	processing	capa-
bilities	by	enabling	the	parallel	execution	of	control	algorithms.	This	innovation	not	only	
improves	energy	consumption	optimization	but	also	reduces	computational	overhead	and	
increases	processing	speed.	However,	 it	 introduces	programming	complexities,	as	 imple-
menting	such	systems	requires	specialized	skills	in	hardware	description	languages	(HDL)	
like	VHDL	and	Verilog,	along	with	meticulous	resource	management.	Deploying	intricate	
algorithms	such	as	NNMPC	on	an	FPGA	necessitates	careful	planning	of	resources,	includ-
ing	logic	elements	and	memory	blocks,	to	ensure	efficient	hardware	utilization	and	optimal	
performance.	Additionally,	Sen	et	al.	(2023)	proposed	a	fast,	machine	learning-based	pre-
dictive	control	approach	for	energy	management	systems	(EMS).	Their	study	emphasizes	
the	 importance	of	 real-time	data	 for	 effective	 implementation	while	 also	 acknowledging	
the	potential	 risks	 associated	with	 the	 reprogrammability	of	FPGA	systems.In	 summary,	
FastML	significantly	enhances	the	capabilities	of	BMS	in	areas	such	as	predictive	mainte-
nance,	occupancy	detection,	and	energy	forecasting,	all	of	which	are	crucial	for	developing	
smart,	sustainable	buildings.	However,	to	fully	realize	the	potential	of	FastML,	challenges	
related	to	data	quality	and	model	interpretability	must	be	addressed.	Future	research	should	
explore	the	integration	of	FastML	with	smart	grid	technologies	to	enable	dynamic	responses	
to	fluctuations	in	energy	supply	and	demand.	Collaborative	efforts	among	experts	in	engi-
neering,	data	science,	and	environmental	science	will	be	vital	in	overcoming	the	complex	
challenges	faced	in	modern	building	management.

3 Evaluation and results

In	this	section	we	present	how	FastML	and	HLS4ML	can	be	applied	in	an	building	man-
agement	energy	forecasting	application.	This	section	uses	data	and	models	form	a	real	case	
study	(Queen’s	Building)	and	provides	the	following	contributions	(i)	a	forecasting	capa-
bility	to	prediction	energy	consumption	in	an	educational	building	context	and	(ii)	a	fast	
machine	learning	capability	using	high	level	specification	ML	that	demonstrates	the	use	of	
FastML	for	BMSs.

3.1 Experimental testbed and pilot

The	evaluation	part	describes	an	energy	consumption	prediction	for	optimizing	energy	in	
buildings.	The	Queen	Building,	depicted	in	Fig.	6,	serves	as	a	case	study	for	this	analysis,	
showcasing	its	architectural	 layout.	The	objectives	of	 this	evaluation	are	 to	(i)	develop	a	
forecasting	model	using	traditional	machine	learning	techniques	and	(ii)	transform	the	ML	
models	using	HLS4ML	to	demonstrate	effectiveness	in	energy	forecasting	and	energy	man-
agement	based	on	real	data	and	models	from	a	case	study	example.	LSTM	models,	a	type	of	
Recurrent	Neural	Network	(RNN),	were	selected	for	their	proven	effectiveness	in	capturing	
long-range	dependencies	in	sequential	data,	which	is	critical	for	accurately	modelling	time-
series	patterns	in	energy	consumption.	Energy	usage	in	buildings	often	exhibits	temporal	
trends,	such	as	daily	or	weekly	cycles,	and	LSTMs	are	particularly	well-suited	for	captur-
ing	these	dynamics.	Additionally,	their	compatibility	with	the	HLS4ML	framework,	which	
enables	 efficient	 deployment	 on	 resource-constrained	 hardware,	was	 a	 key	 factor	 in	 our	
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model	selection.	While	alternative	architectures,	such	as	Transformers	and	Graph	Neural	
Networks	(GNNs),	show	promise,	their	computational	demands	and	limited	support	within	
HLS4ML	rendered	them	less	practical	for	our	current	work.	However,	the	computational	
intensity	of	LSTMs	poses	challenges	for	deployment	in	resource-constrained	environments,	
such	as	edge	devices.	This	study	investigates	four	optimization	strategies	for	LSTM	models	
aimed	at	enhancing	energy	consumption	forecasting:	standard	LSTM,	pruned	LSTM,	quan-
tized	LSTM,	and	a	hardware-accelerated	model	using	HLS4ML.	We	focus	on	pruning	and	
quantization	techniques	that	improve	model	efficiency	by	reducing	computational	complex-
ity	while	maintaining	accuracy.	The	models	are	evaluated	based	on	three	criteria:	accuracy,	
inference	speed,	and	practical	feasibility	for	real-time	applications.	Although	both	pruning	
and	quantization	effectively	reduce	model	complexity	and	enhance	 inference	speed,	 they	
may	slightly	compromise	accuracy.	 In	contrast,	hardware	acceleration	 through	HLS4ML	
can	provide	substantial	performance	improvements,	though	careful	integration	is	necessary	
to	meet	 hardware	 constraints.	The	 experimental	 setup	 utilized	 a	 system	 running	Ubuntu	
18.04.2	LTS	on	an	x86	64	architecture,	powered	by	a	13th	Gen	Intel(R)	Core(TM)	i7-1355U	
processor	with	12	logical	CPUs	across	6	cores	and	hyper-threading.	This	configuration,	fea-
turing	a	base	clock	speed	of	approximately	2.6	GHz	and	7.6	GB	of	RAM,	supports	efficient	
multi-tasking	and	high-speed	connectivity	via	a	10	Gbit/s	network	interface.	Key	software	
tools	used	in	this	study	include	Pandas,	NumPy,	Seaborn,	TensorFlow	Model	Optimization,	
HLS4ML,	and	Vivado	for	high-level	synthesis.

Understanding	 the	architectural	 layout	of	 the	Queen	Building	 is	crucial,	 as	 it	 impacts	
energy	 consumption	 patterns.	 The	 diverse	 spaces	within	 the	 building,	 including	 offices,	
laboratories,	and	common	areas,	present	unique	challenges	for	energy	forecasting	and	opti-
mization.	This	 study	 aims	 to	 leverage	 advanced	machine	 learning	 techniques	 to	 provide	
insights	that	can	inform	energy	management	strategies,	ultimately	leading	to	more	sustain-
able	practices	in	building	operations.

Fig. 6	 Architectural	layout	of	the	Queen’s	Building,	the	primary	case	study	for	evaluating	energy	con-
sumption	prediction	models.	This	figure	illustrates	the	framework	for	preparing	the	LSTM	model,	includ-
ing	data	extraction,	validation,	and	the	training	process	on	an	HLS-based	FPGA
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3.1.1 Dataset

This	project	investigates	the	potential	of	creating	an	LSTM	model	to	predict	energy	con-
sumption	 using	 a	 dataset	 sourced	 from	 the	Queen	Building.	The	 data	 is	 formatted	 as	 a	
CSV	file	and	contains	1,044	observations	across	21	variables,	with	no	missing	or	duplicate	
entries.	Load	volume	statistics	reveal	a	minimum	of	7.78	MWh,	a	maximum	of	29.0	MWh,	
and	an	average	load	volume	of	approximately	16.46	MWh.	Key	variables	include	energy	
usage	data	for	multiple	buildings,	such	as	Queens	East,	Queens	North,	and	others,	along	
with	 total	energy	metrics.	One	critical	aspect	 to	consider	 is	 that	 the	dataset	may	contain	
gaps	in	timestamps,	and	zero	values	do	not	always	indicate	no	energy	consumption;	they	
can	represent	instances	where	the	meter	failed	to	report.	Additionally,	to	accurately	calculate	
total	energy	usage	 for	 the	Trevithick	building,	adjustments	must	be	made	by	subtracting	
excluded	energy	metrics.	These	considerations	highlight	the	importance	of	preprocessing	
and	refining	the	dataset	to	ensure	accurate	predictions.	Overall,	this	project	seeks	to	lever-
age	this	detailed	dataset	to	enhance	energy	consumption	forecasting	and	improve	the	model	
using	various	methods,	including	HLS4ML.	In	this	context,	FastML	offers	several	advan-
tages.	First,	it	allows	for	seamless	compatibility	with	various	BMS	architectures,	enabling	
efficient	data	exchange	and	control	across	different	platforms.	By	processing	and	analyzing	
large	datasets	in	real	time,	FastML	enhances	decision-making,	optimizing	energy	use	and	
occupant	comfort	regardless	of	the	building	type.	Furthermore,	FastML	provides	scalable	
machine	learning	models	that	can	be	tailored	to	specific	building	needs,	offering	customized	
solutions	that	improve	overall	operational	efficiency.	Moreover,	FastML	leverages	machine	
learning	algorithms	that	can	quickly	learn	and	adjust	to	diverse	regional	climates,	construc-
tion	 practices,	 occupant	 cultural	 preferences,	 and	 economic	 conditions.	 For	 instance,	 its	
ability	 to	process	 large	datasets	enables	 it	 to	 identify	patterns	and	optimize	performance	
based	on	specific	local	factors,	such	as	temperature	variations,	building	materials,	and	user	
behaviors.	To	illustrate,	energy	consumption	patterns	in	tropical	climates	differ	significantly	
from	those	in	temperate	or	arid	regions,	while	cultural	norms	around	comfort	and	energy	use	
can	influence	system	design	and	adoption.	This	flexibility	ensures	that	energy	management	
strategies	are	tailored	to	meet	the	unique	needs	of	different	regions,	enhancing	efficiency	
and	occupant	satisfaction	while	promoting	sustainable	energy	use	across	various	contexts.	
Finally,	 the	use	of	 standardized	APIs	 further	 simplifies	 integration,	ensuring	 that	diverse	
systems	can	communicate	effectively	while	maintaining	data	integrity	and	security.	These	
capabilities	ultimately	lead	to	enhanced	sustainability	and	performance	across	a	portfolio	
of	buildings.

3.1.2 Data preprocessing

To	prepare	 the	 energy	 consumption	data	 for	modeling,	 several	 preprocessing	 steps	were	
carefully	designed	to	address	common	data	quality	issues,	handle	missing	values,	and	engi-
neer	useful	features	to	improve	model	accuracy:

 ● Handling missing data:	The	 dataset	 contained	 instances	where	 energy	 values	were	
recorded	as	zero,	indicative	of	meter	failures	rather	than	actual	consumption.	Interpret-
ing	these	zeros	as	legitimate	data	could	lead	to	misleading	conclusions.	To	address	this,	

1 3

  211  Page 24 of 48



Fast machine learning for building management systems

all	zero	values	in	the	energy	consumption	columns	were	replaced	with	NaN	values.	A	
forward-filling	technique	was	then	applied	to	fill	these	gaps,	ensuring	data	continuity	by	
using	the	last	valid	observation	to	maintain	the	integrity	of	the	time	series.

 ● Resampling:	The	original	dataset	lacked	a	consistent	time	interval	due	to	gaps	in	me-
ter	reporting	or	irregular	data	logging.	To	standardize	the	dataset,	it	was	resampled	to	
15-minute	intervals,	calculating	the	mean	of	all	values	within	each	interval.	Remaining	
gaps	were	again	forward-filled	to	produce	a	complete	and	uniform	time	series.

 ● Feature engineering:	Several	temporal	features	were	extracted,	including	month,	year,	
week	number,	and	day	of	the	week,	to	capture	seasonal	consumption	patterns.	A	new	
feature,	"season,"	categorized	the	data	into	Spring,	Summer,	Autumn,	or	Winter	to	help	
the	model	capture	broader	consumption	trends	influenced	by	weather	or	time	of	year.	
Additionally,	 lag	features	 representing	energy	consumption	from	the	past	seven	days	
were	introduced,	enabling	the	model	to	utilize	historical	behavior	in	predictions.

 ● Special case of Trevithick Data:	The	energy	consumption	data	for	the	Trevithick	build-
ing	required	adjustment,	as	the	reported	values	included	data	from	another	building,	in-
flating	the	figures.	To	obtain	the	actual	energy	consumption	for	Trevithick,	values	in	the	
’Trev’	column	were	adjusted	by	subtracting	the	corresponding	values	in	the	’Trev_Ex-
clude’	column,	ensuring	accurate	data	specific	to	the	building’s	consumption.

 ● Incorporating Domain-Specific Insights:	The	preprocessing	steps	were	informed	by	
a	deep	understanding	of	energy	consumption	dynamics.	Recognizing	that	zero	values	
often	stemmed	from	meter	failures	allowed	for	more	accurate	data	handling.	Extract-
ing	seasonal	 features	accounted	 for	predictable	variations	 in	energy	usage,	while	 lag	
features	utilized	 the	 temporal	dependencies	 inherent	 in	energy	consumption	patterns.	
Adjusting	the	pilot	data	demonstrated	awareness	of	the	complexities	involved	in	accu-
rately	reporting	energy	usage	across	multiple	buildings.

 ● Scaling:	After	preprocessing,	 the	dataset	was	normalized	using	the	Min-Max	scaling	
method,	which	transformed	values	to	a	range	between	0	and	1.	This	normalization	en-
sured	 that	all	 features	contributed	equally	during	model	 training,	preventing	 features	
with	larger	ranges	from	dominating	the	outcomes.

The	scaling	process	involved	several	steps:

 ● Initialization:	The	MinMaxScaler	was	applied	to	normalize	the	feature	set.
 ● Fitting the Scaler:	The	scaler	was	fitted	to	compute	the	minimum	and	maximum	values	
for	each	feature.

 ● Transforming the Data:	The	data	was	normalized	using	the	formula:	

 
X ′ = X − Xmin

Xmax − Xmin

 ● Reshaping for LSTM:	The	scaled	data	were	reshaped	to	meet	the	input	requirements	
of	LSTM	models,	which	typically	expect	three-dimensional	input	in	the	format	of	(sam-
ples,	time	steps,	features).
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3.1.3 Outlier handling in data preprocessing

The	analysis	of	the	“Actual	Trev	Energy	Usage”	data	revealed	significant	outliers,	particu-
larly	energy	consumption	 levels	 exceeding	100	megawatts	 (MW).	These	extreme	values	
could	distort	model	performance	and	were	identified	for	removal.

The	identification	and	removal	of	outliers	were	conducted	as	follows:

 ● Identification of Outliers:	The	 Interquartile	Range	 (IQR)	method	was	 employed	 to	
detect	outliers.	Here,	the	first	quartile	(Q1)	and	the	third	quartile	(Q3)	were	calculated,	
yielding	 the	 IQR	as	 IQR = Q3 − Q1.	Outliers	were	defined	as	values	 falling	below	
Q1 − 1.5 × IQR	or	above	Q3 + 1.5 × IQR.

 ● Filtering the Dataset:	The	dataset	was	filtered	to	retain	only	data	points	within	accept-
able	 limits,	 including	a	check	 to	ensure	 that	maximum	values	across	relevant	energy	
columns	 did	 not	 exceed	 the	 threshold	 of	 100	MW.	This	 process	 involved	 removing	
missing	values	and	ensuring	that	Actual Trev	values	remained	positive.

 ● Resulting Dataset:	The	removal	of	outliers	resulted	in	a	dataset	that	more	accurately	
represents	typical	energy	consumption	patterns,	thus	reducing	potential	skew	in	analy-
ses	and	visualizations.

3.1.4 Data visualization

Data	visualizations	were	 created	 to	 reveal	 patterns	 in	 energy	 consumption,	 facilitating	 a	
deeper	understanding	of	underlying	trends	and	variances.

 ● Seasonality:	Bar	plots	were	employed	 to	 illustrate	variations	 in	energy	consumption	
across	 different	 seasons.	As	 shown	 in	 Fig.	 7,	 energy	 consumption	 peaks	 during	 the	
spring	months,	 followed	 closely	 by	winter,	 likely	 due	 to	 increased	 heating	 demands	
associated	with	colder	 temperatures	 in	winter	and	heightened	activity	 in	spring.	This	
seasonal	analysis	provides	critical	insights	for	forecasting	energy	needs	and	optimizing	
resource	allocation	throughout	the	year.

 ● Monthly Energy Usage:	Box	plots	displayed	the	distribution	of	energy	consumption	
for	each	month,	highlighting	significant	spikes	in	energy	usage	during	colder	months.	
Figure	8	reinforces	the	seasonal	trends	previously	identified,	showcasing	the	variability	
across	months.

 ● Energy Consumption Distribution:	The	distribution	of	’Actual_Trev’	values	was	ana-
lyzed,	 revealing	a	peak	at	15.62	MW,	 indicating	a	common	consumption	 level.	This	
analysis	confirms	the	effectiveness	of	the	preprocessing	steps	and	provides	insight	into	
energy	consumption	patterns.	Figure	9	illustrates	the	distribution	and	density	of	energy	
consumption,	indicating	that	the	highest	density	occurs	at	15.62	MW,	with	values	rang-
ing	from	approximately	7.81	MW	to	17.22	MW.

3.1.5 Train, validation, and test dataset

To	effectively	evaluate	the	LSTM	model,	the	dataset	was	divided	into	three	distinct	subsets:

 ● Training Set:	This	subset	was	utilized	to	train	the	LSTM	model	on	historical	energy	
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consumption	data,	enabling	the	model	to	learn	inherent	patterns	and	relationships.
 ● Validation Set:	The	 validation	 set	 served	 to	 fine-tune	 hyperparameters	 and	monitor	
model	performance	during	training.	This	step	is	critical	for	preventing	overfitting,	en-
suring	a	balance	between	fitting	the	training	data	and	generalizing	to	new,	unseen	data.

 ● Test Set:	This	subset	was	reserved	for	the	final	evaluation	of	the	model’s	performance.	
Using	a	separate	test	set	allows	for	an	assessment	of	the	model’s	generalization	ability	
on	data	it	has	not	encountered	during	training	or	validation.

Fig. 8	 Monthly	energy	usage	distribution.	The	box	plot	illustrates	the	range	of	energy	consumption	for	
each	month,	highlighting	significant	spikes	during	colder	months

 

Fig. 7	 Average	energy	consumption	by	season.	The	bar	plot	highlights	the	significant	increase	in	energy	
usage	during	spring,	followed	by	winter,	indicating	a	strong	correlation	between	seasonal	changes	and	
energy	demand
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These	strategic	splits	were	instrumental	in	confirming	the	model’s	capability	to	generalize	
effectively	to	future	energy	consumption	data,	rather	than	merely	memorizing	the	training	
dataset.

3.1.6 LSTM mechanism

The	underlying	mechanism	of	the	LSTM	includes	equations	that	govern	the	flow	of	infor-
mation	through	its	gates:

 ft = σ(Wf · [ht−1, xt] + bf ) (Forget Gate) 	 (1)

 it = σ(Wi · [ht−1, xt] + bi) (Input Gate) 	 (2)

 ot = σ(Wo · [ht−1, xt] + bo) (Output Gate) 	 (3)

These	gates	work	together	to	capture	long-term	dependencies	in	time	series	data,	making	the	
LSTM	model	particularly	effective	for	prediction	tasks.

3.1.7 Model structure

The	architecture	of	the	LSTM	model	comprised	three	primary	components:

 ● LSTM Layer:	The	core	of	the	model	consisted	of	a	single	LSTM	layer	with	50	units.	
This	layer	was	essential	for	capturing	temporal	patterns	in	the	energy	consumption	data,	
enabling	the	model	to	learn	from	both	short-	and	long-term	dependencies.

 ● Dropout Layer:	A	dropout	layer	with	a	20%	dropout	rate	was	integrated	to	mitigate	
the	risk	of	overfitting.	By	randomly	dropping	a	fraction	of	the	units	during	training,	the	

Fig. 9	 Energy	consumption	distribution	and	density.	This	figure	illustrates	the	distribution	of	energy	con-
sumption	values	for	the	’Trevithick’	building,	with	the	highest	density	observed	at	15.62	MW
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model	was	encouraged	to	learn	more	robust	features,	thereby	improving	its	generaliza-
tion	ability.

 ● Dense Layer:	 The	 final	 layer	was	 a	 fully	 connected	Dense	 layer	 that	 produced	 the	
output	for	energy	consumption	prediction.	This	layer	enabled	the	model	to	synthesize	
learned	information	from	previous	layers	into	a	single	prediction.

This	model	 structure	effectively	addressed	 the	complexities	of	 time	 series	 forecasting	 in	
energy	consumption,	balancing	model	complexity	with	generalization	capabilities.

3.1.8 Model performance

The	performance	of	the	LSTM	model	in	predicting	daily	energy	consumption	is	illustrated	
through	 two	 key	 graphical	 representations.	 Figure	10	 compares	 actual	 energy	 consump-
tion	(in	blue)	with	the	LSTM	model’s	predictions	(in	orange)	over	time.	This	visual	rep-
resentation	 underscores	 the	model’s	 ability	 to	 closely	 follow	 actual	 consumption	 trends,	
demonstrating	an	accuracy	of	95.87%	on	the	validation	set.	Such	proximity	indicates	effec-
tive	learning	and	generalization,	which	are	essential	for	reliable	forecasting.	Additionally,	
Fig.	11	depicts	the	training	and	validation	loss	over	the	epochs.	The	training	loss	shows	a	
consistent	decline,	while	 the	validation	 loss	decreases	with	some	fluctuations.	This	 trend	
suggests	 that	 the	model	 is	effectively	minimizing	error	without	significant	overfitting,	as	
both	losses	stabilize	towards	the	end	of	training.

These	 results	 underscore	 the	 robustness	 of	 the	 LSTM	model’s	 predictive	 capabilities	
and	its	effectiveness	in	capturing	underlying	patterns	in	energy	consumption	data.	The	high	
accuracy	achieved	indicates	that	the	model	can	be	reliably	used	for	forecasting	purposes	in	
energy	management	applications.	Moreover,	the	observed	loss	trends	suggest	that	further	
tuning	and	optimization	could	enhance	performance,	especially	 in	real-time	applications.	
Continued	evaluation	and	refinement	of	the	model	will	be	essential	to	maintain	its	accuracy	
and	adaptability	to	changing	energy	consumption	behaviors	in	diverse	environments.

Fig. 10	 LSTM	baseline	model	predictions	vs.	actual	energy	consumption.	This	figure	displays	the	base-
line	model’s	performance,	with	the	blue	line	for	actual	values	and	the	orange	line	for	predictions	over	time
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3.1.9 Future predictions for energy consumption

To	forecast	energy	consumption	for	the	next	60	days	using	the	trained	LSTM	model,	we	
implemented	the	create_future_data	function.	This	function	generates	predictions	
by	following	a	systematic	approach:	

1.	 Input Preparation:	The	last	data	point	from	the	scaled	dataset	is	reshaped	to	conform	
to	the	model’s	input	requirements,	ensuring	it	has	the	shape	(1, timesteps, features).

2.	 Iterative Prediction:	A	loop	runs	for	the	specified	number	of	days	(60	in	this	case).	For	
each	iteration:

 ● The	model	predicts	the	next	energy	consumption	value	based	on	the	current	data.
 ● The	predicted	value	is	appended	to	a	list	for	future	analysis.
 ● The	input	data	is	updated	by	discarding	the	oldest	timestep	and	adding	the	newly	
predicted	value,	maintaining	the	required	input	shape.

3.	 Inverse Transformation:	 Once	 all	 predictions	 are	 generated,	 the	 values	 are	 trans-
formed	 back	 to	 their	 original	 scale	 using	 the	 inverse	 of	 the	 scaling	 applied	 during	
training.

The	predicted	energy	consumption	values	show	an	initial	increase,	peaking	around	Day	10,	
followed	by	a	decline	toward	Day	20.	After	this,	values	fluctuate	with	an	upward	trend	by	
Day	60.	This	cyclical	pattern	in	energy	demand	can	significantly	aid	in	resource	planning	
and	management	decisions.

Fig. 11	 LSTM	model	training	and	validation	loss.	This	figure	illustrates	the	training	and	validation	loss	
over	epochs,	highlighting	the	model’s	learning	progress	and	stability
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3.2 LSTM models optimization for energy consumption

This	study	evaluates	three	LSTM	model	variations:	Standard	LSTM,	Pruned	LSTM,	and	
Quantized	LSTM,	 focusing	on	 their	 accuracy	 and	 inference	 speed.	The	Standard	LSTM	
model	 achieved	 an	 accuracy	 of	 92.43%,	 serving	 as	 a	 baseline.	After	 pruning,	 accuracy	
increased	slightly	to	92.97%,	attributed	to	the	regularization	effect	that	reduces	overfitting.	
In	contrast,	the	Quantized	LSTM	model	exhibited	a	decrease	in	accuracy	to	90.25%,	due	
to	the	introduction	of	quantization	noise	from	lowering	weight	precision.	Nonetheless,	this	
model	 remains	viable	where	efficiency	 is	prioritized.	Figure	12	 shows	 the	model	predic-
tions	compared	to	actual	daily	energy	consumption,	illustrating	the	performance	differences	
among	the	models.

The	model	predictions	reveal	 that	 the	Standard	LSTM	closely	aligns	with	actual	con-
sumption,	demonstrating	its	high	accuracy.	The	Pruned	LSTM	maintains	a	similar	 trend,	
indicating	effective	 learning	despite	 reduced	complexity.	Although	 the	Quantized	LSTM	
shows	a	decline	in	accuracy,	 it	still	captures	essential	consumption	patterns,	highlighting	
its	 efficiency	 in	 resource-constrained	 scenarios.	 In	 addition	 to	 accuracy,	 inference	 speed	
was	analyzed	to	assess	practicality	for	real-time	applications.	The	Standard	LSTM	had	an	
inference	time	of	0.994	s	per	sample,	which	is	impractical	for	edge	devices.	After	pruning,	
this	time	decreased	to	0.566	s,	a	43%	reduction	due	to	reduced	model	complexity.	As	shown	
in	Fig.	13,	quantization	provided	the	most	significant	improvement,	achieving	an	inference	
time	 of	 only	 0.095	 s	 per	 sample,	 reflecting	 a	 90%	 speedup	 by	 utilizing	 lower-precision	
arithmetic.

This	comparison	highlights	the	substantial	speed	improvements	achieved	through	prun-
ing	and	quantization.	The	Quantized	LSTM’s	remarkable	reduction	in	inference	time	dem-
onstrates	its	suitability	for	real-time	applications,	particularly	in	low-power	environments,	
making	it	a	strong	candidate	for	energy	management	systems.	Weight	distribution	analysis	
further	elucidates	the	models’	characteristics.	The	Standard	LSTM	exhibited	a	wide	spread	
of	weight	values,	indicating	diverse	learned	relationships,	whereas	pruning	resulted	in	many	
weights	being	reduced	to	zero,	concentrating	remaining	weights	around	small	magnitudes.	

Fig. 12	 Models	predictions	vs.	actual	daily	energy	consumption.	This	figure	compares	predictions	from	
three	LSTM	variations:	Standard,	Pruned,	and	Quantized	LSTMs
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This	sparsity,	illustrated	in	Fig.	14,	allows	the	pruned	model	to	maintain	accuracy	through	
effective	 regularization.	 In	 contrast,	 the	Quantized	LSTM	demonstrated	 a	more	 uniform	
weight	distribution	due	to	reduced	bit	precision,	which,	while	improving	efficiency,	contrib-
uted	to	the	observed	accuracy	drop.

The	weight	 distribution	 analysis	 shows	 that	 the	 Pruned	 LSTM	 effectively	 eliminates	
many	weights,	allowing	 the	model	 to	concentrate	on	significant	 features,	 thus	enhancing	
generalization.	Conversely,	the	Quantized	LSTM’s	uniform	distribution	reflects	the	trade-
offs	involved	in	reducing	precision	for	efficiency.	When	comparing	the	models,	each	opti-
mization	technique	has	distinct	advantages.	The	Standard	LSTM	offers	high	accuracy	but	is	
less	viable	for	real-time	applications	due	to	its	computational	cost.	Pruning	strikes	a	balance	
by	slightly	improving	accuracy	while	significantly	reducing	inference	time,	making	it	suit-
able	for	environments	with	limited	resources.	Conversely,	the	Quantized	LSTM	excels	in	
inference	speed,	suitable	for	deployment	in	low-power	scenarios,	despite	a	modest	accuracy	
reduction.

3.3 NAS and edge deployment of optimized LSTM models

The	NAS	LSTM	model	significantly	outperforms	the	Standard	LSTM	in	prediction	accu-
racy,	achieving	a	Mean	Squared	Error	(MSE)	of	0.00018	compared	to	0.00305,	and	an	R2 
value	of	0.9960	versus	0.9589	(Table	4).	This	improvement	stems	from	the	NAS	process’s	
rigorous	search	for	optimal	hyperparameters	and	architectures,	though	it	increases	training	
time	(139.49	s	vs.	4.83	s).	Despite	 this	 trade-off,	 the	NAS	LSTM	exhibits	slightly	faster	
inference	(0.0676	s	vs.	0.0714	s)	and	is	marginally	larger	(0.31	MB	vs.	0.28	MB),	which	
may	 impact	deployment	on	 resource-constrained	devices.	To	deploy	 the	NAS	LSTM	on	
FPGAs,	quantization	is	required,	potentially	reducing	accuracy-a	key	consideration	when	
balancing	performance	and	hardware	constraints.

Fig. 13	 This	figure	compares	the	inference	speeds	of	Standard,	Pruned,	and	Quantized	LSTMs.	Quantiza-
tion	delivers	the	best	performance	at	0.095	s	per	sample,	allowing	efficient	deployment	on	edge	devices
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Cloud-based	solutions,	while	effective	for	large-scale	data	management,	introduce	chal-
lenges	such	as	latency,	cybersecurity	risks,	and	high	data	transfer	costs	(Yanamala	2024).	
To	address	these	limitations,	we	evaluated	optimized	LSTM	models	on	edge	hardware	plat-
forms,	including	FPGAs	and	GPUs.	Figure	15	shows	that	the	Pynq	Z1	FPGA	achieves	a	
superior	inference	speed	of	0.002574	s,	compared	to	the	Intel(R)	Xeon(R)	W7-3445	CPU	at	
0.289659	s	and	the	NVIDIA	GeForce	RTX	4070	Ti	GPU	at	0.127011	s,	making	it	ideal	for	
real-time	applications	like	adaptive	HVAC	control	and	fault	detection.

Quantization	 further	 enhances	 edge	 compatibility	 by	 reducing	 the	 Baseline	 Model’s	
inference	size	from	70.55	to	27.69	KB	and	weight	size	from	13.50	to	1.19	KB	(Fig.	16)

The	proposed	FastML	model	has	generated	 a	 low	 inference	 time	 (0.002574	 s)	which	
makes	it	ideal	for	edge	deployment,	where	minimizing	latency	is	critical,	such	as	in	dynami-
cally	adjusting	HVAC	systems	based	on	occupancy	patterns.	The	model	size	of	the	proposed	
quantized	model	 (27.69	KB	 inference	 size,	 1.19	KB	weight	 size)	 further	 supports	 edge	
deployment	feasibility.	Overall,	FastML	has	advanced	compatibility	with	edge	or	fog	envi-
ronments	allowing	for	localized	data	processing	closer	to	data	capture	or	actuation	points.	

Metric Standard	LSTM NAS	LSTM
Mean	squared	error	(MSE) 0.00305 0.00018
R-squared	(R2) 0.9589 0.9960
Training	time	(s) 4.83 139.49
Inference	time	(s) 0.0714 0.0676
Model	size	(MB) 0.28 0.31

Table 4	 Comparison	of	standard	
LSTM	and	NAS	LSTM	perfor-
mance	metrics

 

Fig. 14	 Weight	distribution	before	and	after	pruning.	The	Standard	LSTM	shows	a	wide	weight	spread,	
while	pruning	concentrates	weights	around	small	magnitudes	for	sparsity
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This	deployment	 enhances	data	 locality,	 as	 analytics	 and	decision-making	occur	on-site,	
reducing	latency	with	the	ability	to	provide	near	real-time	signals	to	changing	conditions	
in	BMSs.	By	minimizing	data	transmission	to	the	cloud,	FastML	alleviates	bandwidth	con-
straints,	making	efficient	use	of	network	resources	and	reducing	operational	costs.	Further-
more,	processing	data	at	the	edge	mitigates	cybersecurity	risks,	as	sensitive	information	can	
be	analyzed	locally	without	being	transmitted	over	networks.	This	in-site	analysis	enhances	
data	 privacy	 and	 security,	 ensuring	 compliance	 with	 regulations	 while	 maintaining	 the	
integrity	of	occupant	data.

Fig. 16	 Comparison	of	model	sizes	between	Baseline	and	Quantized	Models,	focusing	on	inference	disk	
storage	and	weight	size

 

Fig. 15	 Inference	speed	comparison	of	optimized	LSTM	models	across	hardware	platforms.	FPGA	ac-
celeration	provides	a	significant	advantage	in	real-time	applications
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3.4 Transformation to HLS4ML

In	 this	experiment,	we	 implemented	and	compared	a	machine	 learning	model	using	 two	
approaches:	 a	 traditional	Keras	 implementation	 and	 a	 hardware-optimized	version	 using	
HLS4ML.	The	goal	was	to	evaluate	the	performance	of	 the	HLS4ML	model,	which	was	
derived	 from	 the	 predictions	 generated	 by	 the	 LSTM	model,	 in	 terms	 of	 accuracy	 and	
resource	efficiency	compared	to	the	baseline	Keras	model.	The	Keras	model	achieved	an	
accuracy	of	95.01%,	while	the	HLS4ML	model	attained	92.35%,	reflecting	a	slight	drop	of	
2.66%.	This	decrease	in	accuracy	is	attributed	to	the	fixed-point	quantization	employed	by	
HLS4ML,	as	opposed	to	the	floating-point	precision	used	in	Keras.	Fixed-point	arithme-
tic	introduces	quantization	error,	leading	to	a	marginal	reduction	in	accuracy	but	allowing	
for	significantly	more	efficient	computations	on	hardware	platforms.	The	model	architec-
ture	 used	 for	 this	 comparison	 consists	 of	 three	 dense	 layers.	The	 input	 layer	 receives	 a	
20-dimensional	input	vector,	followed	by	fully	connected	dense	layers	that	progressively	
reduce	the	dimensionality	to	a	single	output	representing	the	model’s	prediction.	Both	the	
Keras	and	HLS4ML	implementations	employed	this	architecture	to	ensure	a	fair	compari-
son.	The	HLS4ML	model	was	configured	with	specific	parameters:	the	precision	was	set	
to	ap_fixed<16, 6>,	with	16	bits	total	and	6	bits	allocated	for	the	integer	part.	The	reuse	
factor,	determining	the	level	of	resource	reuse	in	the	hardware,	was	set	 to	1,	minimizing	
latency	by	performing	computations	in	parallel	at	the	cost	of	increased	resource	usage.	The	
optimization	strategy	focused	on	reducing	latency	during	inference,	while	the	BRAM	fac-
tor,	specifying	the	available	block	RAM	resources,	was	set	to	1,000,000,000.	Trace	output	
was	disabled	to	minimize	runtime	overhead.	Each	layer’s	weights,	biases,	and	outputs	were	
quantized	using	the	same	fixed-point	precision,	ensuring	consistent	numerical	representa-
tion	throughout	the	model.The	results	of	the	predictions	made	by	both	models	are	shown	in	
Fig.	17.	The	graph	indicates	that	while	the	Keras	model	consistently	performs	at	a	higher	
accuracy,	the	HLS4ML	model	still	delivers	competitive	results.	This	performance	trade-off	
highlights	the	effectiveness	of	using	hardware	optimization	for	deployment	in	environments	
where	computational	resources	are	limited.

Fig. 17	 Comparison	of	HLS4ML	and	Keras	model	predictions.	This	figure	shows	the	accuracy	of	both	
models,	with	HLS4ML	reflecting	a	2.66%	drop	compared	to	the	Keras	model
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The	slight	 reduction	 in	accuracy	can	be	considered	an	acceptable	compromise	for	 the	
gains	in	resource	efficiency	and	computational	speed	offered	by	the	HLS4ML	model.	These	
findings	 suggest	 that	 for	 applications	where	 latency	 and	 resource	 utilization	 are	 critical,	
the	HLS4ML	 framework	 presents	 a	 viable	 solution	 despite	 the	marginal	 loss	 in	 predic-
tive	performance.	Future	work	could	explore	advanced	quantization	techniques	or	model	
architectures	to	further	bridge	the	accuracy	gap	while	maintaining	the	benefits	of	hardware	
acceleration.

3.4.1 HLS4ML model configuration

The	HLS4ML	model	was	configured	with	a	16-bit	fixed-point	precision	(ap_fixed < 16,6 >

),	allocating	6	bits	for	the	integer	part.	The	reuse	factor	was	set	to	1,	thereby	minimizing	
latency	by	allowing	parallel	computations,	although	this	increased	resource	usage.	The	opti-
mization	of	the	model	focused	on	reducing	latency	during	inference,	with	a	Block	RAM	
(BRAM)	factor	of	1,000,000,000.	Additionally,	trace	output	was	disabled	to	decrease	run-
time	overhead.	All	layers	utilized	the	same	fixed-point	precision	to	ensure	consistent	numer-
ical	representation.

The	 structure	of	 the	HLS4ML	model,	 as	 illustrated	 in	Fig.	18,	 showcases	 the	overall	
architecture	 and	 highlights	 the	 parallel	 processing	 capabilities	 that	 contribute	 to	 its	 per-
formance	 efficiency.	This	 configuration	 is	 crucial	 for	 achieving	 optimal	 inference	 times,	
especially	in	applications	requiring	rapid	decision-making.

3.4.2 Weight profiling

Weight	profiling	was	conducted	both	before	and	after	optimization	to	analyze	the	distribu-
tion	and	sparsity	of	the	model’s	weights.	Initially,	the	weight	distribution	was	broad,	with	
minimal	sparsity,	as	depicted	in	Fig.	19.

After	 the	 HLS4ML	 optimization,	 the	 weight	 distribution	 became	more	 concentrated,	
with	non-essential	weights	pruned	to	zero,	thereby	enhancing	sparsity.	This	increased	spar-
sity	not	only	reduced	model	complexity	but	also	improved	hardware	efficiency,	as	shown	
in	Fig.	20.

The	comparison	of	weight	distributions	before	and	after	optimization	underscores	 the	
effectiveness	of	the	pruning	technique,	highlighting	significant	improvements	in	both	model	
performance	and	resource	utilization.

3.4.3 Model architecture visualization

The	model	topology	was	visualized	to	illustrate	the	data	flow	through	the	network,	showcas-
ing	how	each	layer	transforms	the	input	features	into	the	final	prediction.	Below	is	a	sum-
mary	of	the	key	layers	in	the	model	(Table	5):

This	visualization	emphasizes	the	flow	of	information	and	the	consistent	use	of	fixed-
point	precision	 throughout	 the	model,	 ensuring	 that	 the	architecture	 is	both	efficient	and	
effective	for	deployment.
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4 Discussion

This	study	explores	enhancing	BMSs	using	FastML	techniques.	Our	findings	indicate	that	
FastML	can	significantly	improve	BMS	performance,	automation,	and	efficiency	through	
pruned	and	quantized	models.	The	Pruned	LSTM	model	achieved	a	43%	increase	in	infer-
ence	speed	with	an	accuracy	of	92.97%,	making	it	suitable	for	resource-constrained	envi-
ronments	like	IoT	devices.	The	Quantized	LSTM	resulted	in	a	90%	reduction	in	inference	
time,	crucial	for	real-time	energy	management,	with	only	a	minor	compromise	in	accuracy.	
We	primarily	utilized	LSTM	models	for	energy	consumption	forecasting,	evaluating	three	
optimized	variations:	Standard,	Pruned,	and	Quantized.	These	models	effectively	capture	
temporal	dependencies	in	energy	data,	with	the	pruned	and	quantized	versions	tailored	for	
resource-efficient	applications.	The	integration	of	the	HLS4ML	framework	enabled	hard-
ware	 acceleration	 on	 platforms	 like	 FPGAs,	 significantly	 boosting	 inference	 speed	 for	

Fig. 18	 HLS4ML	model	summary.	This	figure	details	the	model’s	architecture,	including	the	input	layer,	
hidden	layers,	and	output	layer	for	energy	prediction.	It	also	indicates	the	precision	used	throughout	the	
model
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energy	 forecasting	 tasks.	Our	 research	 involved	 the	creation,	deployment,	 and	 testing	of	
FastML	models	in	a	real-world	case	study	at	the	Queen’s	Building.	This	process	included	
optimizing	LSTM	models	and	 transforming	 them	 into	hardware-accelerated	versions	via	
HLS4ML,	improving	inference	speed	while	maintaining	acceptable	accuracy.	Although	the	
fixed-point	quantization	method	resulted	in	a	slight	accuracy	drop	(92.35%),	it	significantly	
enhanced	computational	efficiency,	making	the	models	suitable	for	real-time	energy	man-
agement.	Testing	confirmed	their	effectiveness	in	handling	real-world	energy	consumption	
data.	While	the	focus	of	this	study	has	been	on	technical	advancements,	broader	factors	such	

Fig. 20	 Weight	profiling	after	optimization

 

Fig. 19	 Weight	profiling	before	optimization
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as	regulatory	constraints,	building	codes,	and	evolving	energy	standards	are	critical	for	real-
world	adoption.	For	instance,	compliance	with	mandates	like	LEED	for	energy	efficiency	or	
GDPR	for	data	protection	could	influence	the	feasibility	and	scalability	of	these	solutions,	
while	 regulatory	 incentives	may	 enhance	 their	 adoption.	 FastML	 enables	 a	 rapid	model	
development	and	deployment	while	ensuring	compliance	with	regulatory	constraints	and	
evolving	energy	standards.	FastML	facilitates	swift	machine	learning	model	 training	and	
optimization,	allowing	for	quick	adaptation	to	new	building	codes	and	energy	regulations.	
Meanwhile,	HLS4ML	converts	high-level	machine	learning	models	into	hardware-efficient	
implementations,	ensuring	real-time	performance	and	reliability,	crucial	for	meeting	strin-
gent	safety	and	performance	standards.	To	address	non-stationary	environments,	our	model	
incorporates	strategies	to	enhance	model	adaptability.	Temporal	features	like	season,	month,	
and	 lagged	 energy	 consumption	 capture	 gradual	 changes	 in	 climate	 and	 usage	 patterns.	
Additionally,	the	model	can	be	periodically	retrained	with	updated	data	to	adapt	to	evolving	
load	profiles	or	energy	policies.	FastML	models	can	adapt	to	dynamic	building	conditions	
such	as	 load	profiles,	occupant	 requirements	or	external	policies	by	 leveraging	 real-time	
data	assimilation	and	adaptive	learning	algorithms.	The	HLS4ML	facilitates	rapid	process-
ing	at	 the	edge,	enabling	 immediate	adjustments	with	continuous	 learning	capabilities	 to	
support	inference	based	on	the	incoming	data,	allowing	it	to	recalibrate	control	strategies	
when	user	parameters	such	as	occupancy	or	comfort	change.	Furthermore,	many	machine	
learning	models,	including	FastML,	rely	on	high-quality	datasets.	The	lack	of	sufficiently	
large	and	diverse	datasets	for	training	and	validation	is	a	concern,	particularly	when	energy	
consumption	data	is	not	reported.	This	data	gap	can	hinder	model	accuracy	and	reliability,	
emphasizing	the	need	for	improved	data	collection	and	preprocessing	techniques.	Looking	
ahead,	enhancing	the	real-time	adaptability	of	FastML	models	to	changing	building	condi-
tions,	such	as	occupancy	levels	and	weather	changes,	will	be	crucial	for	optimizing	energy	
management.	Seamless	integration	of	FastML	solutions	with	existing	BMS	infrastructure	is	
also	essential,	highlighting	the	need	for	standardized	protocols	to	facilitate	integration	with-
out	complete	system	overhauls.	Prioritizing	user-friendly	 interfaces	and	decision	support	
tools	for	building	operators	and	occupants	will	enhance	engagement	and	effectiveness	 in	
energy	management.	Robustness	against	anomalies	in	data,	such	as	sensor	malfunctions	or	
unexpected	environmental	changes,	is	critical	for	model	reliability.	Further	research	could	

Layer	name Layer	type Precision Trace Input	
shape

input_7 InputLayer ap_fixed 
<16,6>

False [(None,	
20)]

dense_35 Dense ap_fixed 
<16,6>

False [(None,	
20)]

dense_35_relu ReLU ap_fixed 
<16,6>

False [(None,	
64)]

dense_36 Dense ap_fixed 
<16,6>

False [(None,	
64)]

dense_36_relu ReLU ap_fixed 
<16,6>

False [(None,	
32)]

dense_37 Dense ap_fixed 
<16,6>

False [(None,	
32)]

dense_37_linear Linear ap_fixed 
<16,6>

False [(None,	1)]

Table 5	 Overview	of	key	model	
layers	and	precision	settings

This	table	includes	each	layer’s	
name,	type,	precision	format,	
tracing	status,	and	input	shape
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explore	anomaly	detection	mechanisms	to	strengthen	this	aspect.	As	BMS	increasingly	inte-
grate	machine	learning,	evaluating	the	environmental	impact	of	deploying	these	technolo-
gies-particularly	regarding	energy	consumption	and	resource	usage-should	also	be	a	focus.

In	summary,	refining	these	models	through	techniques	such	as	layer	fusion	and	advanced	
pruning	 strategies	will	 be	vital	 for	 enhancing	 scalability	 and	 integration	with	 smart	 grid	
technologies.	Addressing	 these	challenges	 is	crucial	 for	maximizing	 the	practical	 impact	
of	FastML	solutions	in	improving	energy	efficiency	and	operational	performance	in	BMS.

5 Final remarks and future roadmap

This	research	showcases	the	application	of	HLS4ML-based	FastML	techniques	in	BMSs	
through	a	case	study	at	the	Queen’s	Building,	utilizing	FPGA	hardware	enabled	by	HLS4ML.	
It	simplifies	the	deployment	of	machine	learning	models,	making	them	more	accessible	to	
operators	 and	 reducing	 setup	 time.	Optimization	methods	 like	 pruning	 and	 quantization	
enhance	 real-time	 energy	 management	 on	 resource-constrained	 devices,	 while	 FastML	
excels	 in	speed	and	efficiency,	making	it	suitable	for	rapid	scenarios	 like	fault	detection.	
Furthermore,	 FastML	 effectively	 handles	 predictive	 uncertainty,	 model	 drift,	 and	 unex-
pected	 conditions	 based	 on	 a	 robust	 adaptive	 learning	 capability	 and	 hardware-efficient	
implementations.	The	advantage	of	HLS4ML	facilitates	quick	inference	at	the	edge,	allow-
ing	for	 immediate	adjustments	to	control	strategies	in	response	to	unforeseen	events	 like	
lockdowns	or	severe	weather.	The	system	can	incorporate	feedback	loops	that	monitor	per-
formance	metrics,	enabling	it	to	detect	model	drift	and	recalibrate	accordingly.	The	dataset	
utilized	for	this	study	is	sourced	from	Queen’s	Building,	an	educational	facility	located	in	
South	Wales.	To	address	challenges	such	as	data	gaps,	sensor	faults,	and	irregular	mainte-
nance	logs,	FastML	provides	key	mechanisms	to	address	data	gaps	and	privacy	by	employ-
ing	advanced	data	imputation	techniques	to	handle	sensor	faults	and	gaps	in	data	collection,	
ensuring	that	analyses	remain	robust	and	reliable	even	in	the	presence	of	incomplete	infor-
mation.	 Moreover,	 FastML	 can	 detect	 and	 compensate	 for	 irregular	 maintenance	 logs,	
enhancing	the	accuracy	of	predictive	models	and	operational	insights.	Regarding	privacy,	
FastML	integrates	privacy-preserving	methods,	such	as	data	anonymization	and	encryption,	
to	protect	sensitive	information	while	still	enabling	effective	data	analysis	by	using	feder-
ated	learning	approaches,	allowing	models	to	be	trained	on	decentralized	data	sources	with-
out	 compromising	 individual	 privacy.	 FastML	 is	 specifically	 designed	 to	 accelerate	 and	
optimize	processes	for	speed	and	efficiency,	making	it	particularly	well-suited	for	scenarios	
requiring	rapid	response	and	decision-making,	such	as	fault	detection.	In	this	study,	FastML	
was	effectively	applied	to	energy	forecasting	in	BMSs,	demonstrating	its	real-time	capabili-
ties,	effective	speed,	resource	efficiency,	and	strong	predictive	performance.	The	hardware	
integration	with	hls4ml	can	enable	efficient	inference	at	the	edge	to	capture	timely	alerts	and	
data-driven	adjustments	for	critical	assets.	Beyond	fault	detection,	FastML	can	be	integrated	
with	 multi-objective	 optimization	 techniques,	 particularly	 GAs,	 to	 balance	 competing	
objectives	within	BMS	applications.	Such	 integration	can	minimize	energy	consumption	
while	 maintaining	 occupant	 comfort	 and	 operational	 efficiency.	 GAs	 provide	 a	 robust	
framework	 for	 identifying	 Pareto-optimal	 solutions,	 enabling	 informed	 decision-making	
that	reconciles	these	competing	demands.	FastML	has	the	ability	to	effectively	address	the	
trade-offs	between	energy	savings,	occupant	comfort,	and	real-time	responsiveness	in	build-
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ing	operations	through	advanced	ML	and	hardware	optimization	techniques.	FastML	uti-
lizes	data-driven	insights	and	predictive	analytics	to	analyze	occupancy	patterns	and	energy	
usage,	enabling	proactive	adjustments	in	HVAC	systems	that	enhance	comfort	while	mini-
mizing	energy	consumption.	Simultaneously,	HLS4ML	translates	these	machines	learning	
models	into	efficient	hardware	implementations,	ensuring	rapid	decision-making	and	real-
time	responsiveness.	By	enabling	multi-objective	optimization	and	incorporating	occupant	
preferences,	these	tools	create	a	dynamic	feedback	loop	that	balances	the	need	for	energy	
efficiency	with	the	imperative	of	occupant	comfort,	ultimately	leading	to	smarter	and	more	
sustainable	 building	 management	 practices.	 Furthermore,	 FastML	 provides	 significant	
advantages	for	user-centric	solution	in	buildings	by	integrating	with	multi-objective	optimi-
zation	techniques	such	as	GAs	and	MPC.	This	integration	enables	the	formulation	of	adap-
tive	control	policies	that	effectively	balance	multiple	objectives,	including	energy	efficiency,	
occupant	comfort,	and	operational	costs.	By	leveraging	real-time	data	on	human	behaviour	
and	 preferences,	 FastML	 can	 inform	 these	 optimization	 processes,	 ensuring	 that	 control	
strategies	are	responsive	to	occupant	needs	with	feedback	integration	for	continuous	refine-
ment	of	policies	based	on	user	input,	enhancing	overall	satisfaction.	Policy	constraints,	such	
as	 regulatory	 requirements	and	 sustainability	goals,	 can	be	also	 seamlessly	 integrated	as	
constraints	into	the	optimization	framework,	ensuring	that	BMS	operations	remain	compli-
ant	while	maximizing	performance.	By	integrating	with	advanced	algorithms	such	as	GAs,	
neural	networks	and	reinforcement	learning,	FastML	can	capture	the	complex	interdepen-
dencies	between	environmental	controls	and	occupant	actions.	For	instance,	it	can	analyze	
historical	data	 to	 identify	patterns	 in	how	occupancy	influences	HVAC	load	and	lighting	
requirements,	while	simultaneously	considering	security	protocols	that	might	alter	access	
and	energy	usage.	Incorporating	real-time	data	from	sensors	and	IoT	devices	enables	the	
system	to	dynamically	adjust	to	changing	conditions,	such	as	varying	occupancy	levels	or	
external	weather	factors.	FastML	can	learn	from	occupant	behavior	and	preferences,	opti-
mizing	energy	efficiency	and	comfort	while	maintaining	security.	Scalability	is	another	key	
strength	of	FastML,	 allowing	deployment	 at	 district	 or	 city-wide	 levels.	The	 framework	
enables	efficient	and	distributed	model	deployment	alongside	data	aggregation	capabilities.	
HLS4ML	facilitates	the	conversion	of	ML	models	into	hardware-efficient	implementations,	
enabling	real-time	processing	at	the	network	edge	for	each	building.	This	localized	deploy-
ment	minimizes	latency	and	bandwidth	requirements	while	allowing	buildings	to	operate	
autonomously	based	on	real-time	data.	Aggregating	data	from	these	distributed	models	into	
a	 central	 system	 allows	 for	 comprehensive	 analytics,	 facilitating	 city-wide	 insights	 and	
trend	identification.	Coordinated	demand	response	strategies	can	leverage	aggregated	data	
to	balance	loads	across	buildings,	further	enhancing	overall	energy	efficiency.	FastML	also	
supports	communication	between	remote	building	systems	for	synchronized	interventions,	
aligning	energy	use	with	city-wide	sustainability	goals	and	fostering	a	more	resilient	urban	
environment.	Additionally,	FastML	leverages	 techniques	such	as	feature	fusion	and	deep	
learning	 architectures,	 which	 can	 synthesize	 information	 from	 various	 data	 sources	 to	
enhance	predictive	accuracy	and	decision-making	capabilities.	HLS4ML	optimizes	 these	
models	for	hardware	efficiency,	enabling	real-time	processing	at	the	edge.	This	combination	
allows	BMS	to	dynamically	adapt	to	varying	conditions,	providing	a	holistic	view	of	build-
ing	 performance	 and	 facilitating	 informed	 responses	 to	 maintain	 occupant	 comfort	 and	
energy	 efficiency.	 Future	 work	 should	 develop	 advanced	 methodologies	 for	 time-series	
alignment,	 robust	 imputation	 techniques	 for	 missing	 data,	 and	 blockchain-based	 frame-
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works	to	ensure	data	integrity	and	traceability.	Enhancing	data	reliability	in	this	manner	will	
strengthen	 the	 robustness	of	FastML	models,	 improving	 their	effectiveness	 in	 real-world	
deployments.	Finally,	the	lifecycle	costs	of	adapting	FastML	for	BMSs	include	expenses	for	
model	development,	deployment,	maintenance,	retraining,	and	hardware	upgrades.	Mainte-
nance	costs	involve	regular	calibration	and	upkeep	of	sensors	and	monitoring	devices.	The	
ongoing	power	consumption	of	FPGA	hardware	is	an	important	factor,	although	it	is	likely	
to	be	lower	than	that	of	traditional	systems	due	to	the	energy	efficiency	of	FPGAs.	Periodic	
updates	to	machine	learning	models	and	HLS4ML	software	will	incur	costs.	Retraining	and	
upgrade	expenses	will	be	incurred	when	building	conditions	or	requirements	change	and	
resources	will	be	needed	for	retraining	models.	There	may	also	be	hardware	upgrades	neces-
sary	to	support	more	complex	models	or	to	handle	increased	data	volumes	as	the	system	
expands	to	cover	more	areas	or	functions.	The	HLS4ML	framework	provides	configurable	
parameters	that	allow	users	to	adjust	the	balance	between	latency,	throughput,	power	con-
sumption,	and	resource	usage,	hence,	reducing	costs	while	ensuring	optimal	performance	
for	their	specific	applications.

6 Conclusion

The	application	of	ML	within	BMSs	has	significantly	improved	energy	efficiency	and	occu-
pant	comfort.	However,	conventional	ML	techniques	often	fall	short	in	meeting	the	stringent	
timing	and	resource	constraints	required	in	BMS	applications.	FastML	emerges	as	a	pivotal	
approach,	enhancing	the	performance	of	ML	models	in	resource-constrained	environments	
by	 accelerating	 inference	 and	 optimizing	 resource	 usage.	This	 study	 presents	 a	 compre-
hensive	review	of	ML	and	AI	applications	for	BMSs,	complemented	by	a	case	study	using	
the	LSTM	model	for	energy	forecasting	in	an	educational	building.	By	employing	FastML	
techniques,	the	standard	LSTM	model	was	adapted	for	enhanced	generalization,	accuracy,	
and	 inference	 speed-qualities	 essential	 for	 real-time,	 performance-sensitive	 applications.	
Specifically,	the	pruned	LSTM	model	achieved	an	accuracy	of	92.97%,	indicating	effective	
regularization	that	mitigates	overfitting.	In	comparison,	the	quantized	LSTM,	with	a	slightly	
lower	accuracy	of	90.25%,	demonstrated	notable	improvements	in	inference	speed,	making	
it	ideal	for	deployment	in	real-time,	resource-limited	environments.	This	trade-off	analysis	
between	accuracy	and	speed	provides	valuable	insights	for	practical	FastML	deployment.	
Additionally,	this	paper	proposes	the	use	of	HLS4ML,	a	high-level	synthesis	framework,	
as	 an	 efficient	 solution	 for	 implementing	ML	models	 on	 hardware	 platforms.	While	 the	
HLS4ML	model	achieved	comparable	accuracy	(92.97%)	to	its	Keras	counterpart,	it	offered	
substantial	gains	 in	hardware	efficiency,	particularly	when	deployed	on	FPGA	and	ASIC	
platforms.	By	utilizing	fixed-point	arithmetic,	HLS4ML	enables	low-latency,	high-through-
put	inference,	which	is	well-suited	for	real-time	BMS	applications.	A	key	consideration	is	
the	lifecycle	management	of	FastML	models.	Specifically,	FastML	can	be	validated,	main-
tained,	and	updated	long-term	through	hardware-accelerated	solutions	and	pruned	or	quan-
tized	models	 by	 implementing	 a	 robust	 framework	 that	 emphasizes	 interoperability	 and	
adaptability.	Continuous	validation	is	facilitated	through	real-time	performance	monitoring	
and	feedback	loops	that	assess	model	accuracy	against	established	benchmarks,	enabling	
prompt	detection	of	performance	drifts.	Moreover,	the	retraining	process	can	be	automated	
and	scheduled,	ensuring	model	relevance	with	minimal	manual	intervention.	Additionally,	

1 3

  211  Page 42 of 48



Fast machine learning for building management systems

to	facilitate	integration	with	legacy	systems	and	proprietary	BMSs,	FastML	and	HLS4ML	
employ	standardized	APIs	and	middleware	solutions,	allowing	seamless	data	exchange	and	
control	 commands.	 Furthermore,	 FastML	 ensures	 continuous	 refinement	 and	 adaptation,	
mitigating	 model	 obsolescence	 and	 preserving	 long-term	 value	 through	 several	 mecha-
nisms.	For	instance,	it	supports	incremental	learning,	enabling	models	to	update	with	new	
data	without	complete	retraining,	thus	maintaining	relevance	as	building	conditions	evolve.	
Similarly,	the	modular	architecture	of	HLS4ML	allows	for	easy	integration	of	new	hardware	
and	algorithm	updates,	 accommodating	advancements	 in	 technology	and	utility	policies.	
Continuous	 performance	monitoring	 further	 enables	 real-time	 assessment	 and	 proactive	
adjustments	 based	 on	 feedback	 and	 changing	 conditions	within	 the	 building	 ecosystem.	
Finally,	dynamic	retraining	capabilities	ensure	models	are	regularly	updated	with	new	data,	
while	configurable	parameters	in	HLS4ML	permit	customization	for	specific	requirements,	
such	as	energy	consumption	patterns.	Looking	ahead,	future	research	may	explore	advanced	
optimization	 techniques,	 including	 layer	 fusion,	enhanced	pruning	strategies,	and	refined	
quantization	methods,	 to	minimize	 accuracy	 loss	while	maximizing	hardware	 efficiency.	
With	these	advancements,	HLS4ML	has	the	potential	to	become	a	cornerstone	framework	
for	deploying	machine	 learning	models	 in	 resource-constrained	BMS	environments,	 sig-
nificantly	advancing	the	field	of	energy	management	and	control	in	real-world	applications
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