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 A B S T R A C T

The advancement of the manufacturing system towards more human-centric, emphasising not only efficiency 
but also the well-being of workers. However, task planning in human–robot collaborative assembly (HRCA) 
remains challenging, when considering the physical exertion alleviation of workers, due to the complexities 
of physical exertion estimation and variations in human assembly operations. Different from conventional 
methods, this paper proposes a task planning method for physical exertion alleviation of workers in HRCA by 
leveraging the reinforcement learning (RL) method to train a policy. Initially, a musculoskeletal model-based 
method driven by human movement data to assess workers’ physical exertion is integrated into this work. 
Then, the policy is trained in a DuelingDQN-AM framework, utilising a carefully designed reward function 
informed by the estimated physical exertion of workers. The effectiveness of this approach has been validated 
through a simulation experiment and a proof-of-concept real assembly experiment. Simulation experiment 
results demonstrate the advantages of DuelingDQN-AM over other methods in terms of convergence speed and 
stability across multiple cycles and products of varying complexity. Additionally, real-world experiment results 
show that the RL strategy reduced physical exertion by 15.63% compared to the baseline method.
1. Introduction

The advancement of human-centric manufacturing shows the focus 
on workers’ safety, comfort, and health rather than only the process 
and efficiency when designing manufacturing systems. However, man-
ufacturing workers still suffer from musculoskeletal disorders (MSD), 
which are mainly caused by physical fatigue. A study shows that around 
53.1% of workers in automobile manufacturing workers have MSD 
conditions [1]. This data shows that there is a long way to go to manage 
the physical exertion of the workers to reduce the MSD rate.

Human–robot collaboration (HRC) is an important manufacturing 
paradigm that combines the strength of humans and robots, advancing 
the flexibility of the manufacturing system. Task planning plays an 
important role in the HRC, which can allocate subtasks to agents 
in sequence to complete a shared goal to ensure efficient resource 
utilisation and optimal performance. The factors considered in the task 
planning methods are diverse and may include agents’ capabilities, 
task characteristics, efficiency, safety, and so on [2]. However, to our 
knowledge, it is rare for work to consider the reduction of physical 
exertion of human operators when planning tasks in HRCA.

Many task planners are proposed for HRCA in the literature [3]. 
Task planning in HRC is proven to be an NP-hard problem [4]. To solve 
such a problem, heuristic methods [5] were proposed to find optimal 
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solutions rather than the exact solution within an acceptable time. Be-
sides, some works adapt behaviour trees-based methods [6,7] to model 
the assembly process and obtain an allocation plan. Behaviour trees 
belong to a knowledge model, which is designed by the domain experts 
manually. The RL method can learn a policy by interacting with the 
environment, which has achieved some results on graph optimisation 
problems [8], travelling salesman problem [9], etc. Additionally, the RL 
method offers adaptability and generalisation capabilities in dynamic 
and uncertain environments, inherent in dynamic scheduling problems, 
where traditional methods often struggle [10]. Based on the above 
analysis, we believe that RL has the potential to address the challenge 
of physical exertion alleviation problem in HRCA.

In mitigating workers’ physical exertion in HRCA, one of the pri-
mary challenges is the absence of real-time physical exertion estima-
tion methods for workers. Existing methods, such as the Borg RPE 
scale [11], rely on subjective user feedback, which can lead to inac-
curate measurements and interruptions in workflow. Ergonomic ap-
proaches, like the Rapid Upper Limb Assessment [12], also struggle to 
capture individual differences in human physical exertion accurately. 
Another challenge lies in the variability of human operations. Workers 
often have personal preferences in how they perform assembly tasks, 
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which can vary between individuals [13]. To avoid disrupting these 
preferences, this paper assumes that the task planner does not enforce 
specific work content on workers. The uncertainty in worker operations 
adds complexity to task planning and makes alleviating worker physical 
exertion more challenging.

To address the above-mentioned limitations, this paper proposes an 
RL-based framework for mitigating the physical exertion of workers in 
HRCA. A human musculoskeletal method from our previous work [14] 
is adapted to estimate real-time physical exertion based on human 
movement data. Then, a DuelingDQN algorithm, combined with an 
action masking technique, is introduced to train a policy alongside a 
random policy to manage the human operation variations. The reward 
function of the DuelingDQN is carefully designed to integrate the 
estimated physical exertion values, guiding task allocation. The policy 
enables the robot to proactively undertake tasks that are most fatiguing 
for the human operator, thus, alleviating the human physical exertion. 
Finally, we conduct both simulation and real-world experiments to 
demonstrate the effectiveness of our method.

The contribution of this work is summarised as follows:

1. The problem of human physical exertion alleviation in HRCA is 
modelled as a multi-agent Markov decision process, and a novel 
RL-based framework is proposed to address this challenge.

2. An RL algorithm, DuelingDQN-AM, which is informed by a 
musculoskeletal-based physical exertion assessment method, is 
introduced for task planning in HRCA to mitigate workers’ phys-
ical exertion.

3. A real-world assembly experiment involving multiple partici-
pants was conducted to comprehensively validate the proposed 
framework. The results demonstrate that the RL strategy reduces 
physical exertion by 15.63% compared to the baseline strategy.

2. Literature review

2.1. Task planning methods in HRC

HRC is an emerging manufacturing paradigm that leverages the 
strengths of human workers, such as dexterity, flexibility, perception, 
and intelligence, and robots, known for their precision, repeatability, 
and strength. This integration enhances the overall adaptability and 
flexibility of manufacturing systems. However, task planning in HRC re-
mains a challenging issue due to constraints related to resources, agent 
capabilities, and assembly requirements, which has attracted significant 
research interest [15]. Addressing the complexities of task planning 
involves considering multiple factors, including resource availability, 
task specifications, operation time, ergonomics, safety, costs, product 
quality, workload, movement efficiency, and space utilisation.

In efforts to alleviate physical exertion on workers during HRC, 
several task planners have developed scheduling algorithms to optimise 
worker fatigue management [16–18]. For instance, Li et al. proposed 
a discrete bees algorithm for sequencing tasks, aimed at reducing the 
time required for disassembly tasks and mitigating fatigue-related in-
efficiencies [16]. However, these methods have largely been validated 
in simulations, with limited real-world evidence to support their prac-
tical effectiveness. Additionally, research has explored role allocation 
and co-manipulation in HRC [7,19,20]. While these studies primarily 
focus on the fatigue of movement primitives, they lack comprehensive 
integration into real-world assembly processes, failing to address the 
inherent complexities and uncertainties involved in such operations.

RL allows robots to acquire skills through interaction with their 
environment, thereby eliminating the need for a predefined knowl-
edge model for task planning. Its primary objective is to learn the 
optimal policy by maximising cumulative rewards for solving the prob-
lem of Markov Decision Processes. RL has been successfully imple-
mented across various robotic applications, such as autonomous nav-
igation [21] and manipulation [22]. Given the inherent stochastic 
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decision-making associated with assembly tasks, these processes can 
also be effectively modelled as Markov Decision Processes [23]. This 
research aims to reduce the physical exertion on workers in HRCA tasks 
while simultaneously ensuring that both task order requirements and 
the agent’s capabilities. Since RL’s ability to learn and adapt through 
trial and error, we believe it offers a promising alternative to traditional 
approaches, potentially yielding more efficient solutions to mitigate 
workers’ physical exertion.

2.2. Physical exertion assessment techniques

Manual workers, particularly those involved in physically demand-
ing tasks such as assembly line work, are at high risk of suffering 
musculoskeletal disorders due to prolonged, repetitive movements, 
especially of the hands and arms [24]. While implementing effective 
fatigue/physical exertion management strategies is essential to reduce 
these risks, current methods of assessing physical exertion, including 
subjective self-reports and objective measurements, cannot provide 
continuous, automatic and precise assessment of physical exertion. 
Subjective assessments, such as the Borg RPE and CR10 scales [11], rely 
on personal perceptions, leading to inaccurate results and disrupting 
the workflow.

Objective methods, which include physiological, ergonomic, and 
biomechanical approaches, offer more reliable data but are influenced 
by various individual and environmental factors, limiting their accu-
racy. Physiological indicators like heart rate [25] and surface elec-
tromyography [26] are often used to estimate physical exertion, though 
individual physiological and biochemical factors, may impact the accu-
racy of results. Ergonomic techniques, such as Rapid Upper Limb and 
Rapid Entire Body Assessments [12], aim to minimise injury risk during 
repetitive tasks but often fail to account for human anatomical differ-
ences, leading to inconsistent assessments. Meanwhile, musculoskeletal 
models, like OpenSim [27], provide valuable insights by simulating 
bodily dynamics but are complex and resource-intensive, requiring 
extensive data input and high computational power [28]. Thus, in 
our previous work [14], we proposed a physical exertion assessment 
model capable of providing real-time muscle exertion estimation based 
on human movement data. We integrate this model into the current 
research to inform the reward function in our RL-based approach for 
physical exertion alleviation.

3. Problem formulation

In a robot–human assembly unit, we assume the presence of a robot 
𝑟 and an assembly worker ℎ, collaborating sequentially to assemble 𝑛
products 𝑃 , each consisting of 𝐼 parts. The agents operate in a turn-
based manner, modelled as an agent-environment cycle game. The 
product’s assembly sequence and task allocation are treated as stochas-
tic decision-making processes. Thus, we model a product’s human 
assembly operation process as a multi-agent Markov decision process, 
defined by a tuple 𝑀 = (𝑆,𝐴ℎ, 𝐴𝑟, 𝑃𝑎, 𝛾, 𝑅). 𝑆 represents the state 
space of the product assembly status. 𝐴 are discrete operational action 
spaces performed by humans and robots on the product. 𝑃𝑎(𝑠′|𝑠, 𝑎) is 
the transition probability from the state 𝑠 ∈ 𝑆 to state 𝑠′ ∈ 𝑆 under 
action 𝑎. 𝛾 ∈ [0, 1) is the discount factor. 𝑅 represents the reward after 
the transition from state 𝑠 to state 𝑠′ by action 𝑎 ∈ 𝐴𝑟. The reward 
function will be carefully designed, informed by the human worker’s 
accumulated physical exertion.

We advocate for flexible HRC, where humans are not strictly obliged 
to follow the planner’s suggested actions. This flexibility is important 
because different assembly workers may have varying preferences for 
assembly sequences, introducing an element of randomness. Therefore, 
in our work, we do not restrict the worker assembly sequence. To 
reduce workers’ physical exertion in HRCA, our goal is to learn a policy 
𝜋𝑟 for the robot that prioritises tasks causing higher physical exertion 
for the worker, leaving less physically demanding tasks for the worker, 
thereby alleviating their physical exertion.
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Fig. 1. The general framework of RL-based task planning method for worker’s physical 
exertion alleviation in HRCA.

4. Method

A comprehensive HRCA framework for the proposed method has 
been developed to facilitate RL-based task planning for robots, with the 
primary objective of mitigating workers’ physical exertion in HRCA, as 
depicted in Fig.  1. Central to this framework is a human–robot cell, 
where the agents collaborate on an assembly task. The movement of 
the human operator is monitored, and a musculoskeletal-based physical 
exertion estimation method is integrated, which provides an estimation 
of worker physical exertion by utilising the worker’s movement data as 
input. The policy 𝜋𝑟, parametrised by a deep neural network, controls 
the robot at the task level. The training is performed through an 
iterative process, allowing agents to interact with the environment 
and learn optimal actions that maximise the cumulative reward 𝑅. 
To ensure 𝜋𝑟 is adaptable to diverse worker behaviours, e.g. different 
assembly sequences, we implement a random policy 𝜋ℎ for the human 
in the training process, which randomly operates executable assembly 
tasks.

4.1. Physical exertion estimation

Static optimisation is a critical simulation-based method for muscle 
force estimation based on a worker’s musculoskeletal model. The model 
is customised by scaling a general bimanual upper arm model [29] 
using the anthropometric data of the worker, which reflects individual 
differences. The Muscle force or activation at each specific moment is 
calculated based on the observed human motion, where the motion 
is captured using inertial measurement units (IMUs). In our work, a 
human muscle force-based method, leveraging static optimisation is 
adapted to assess worker physical exertion.

In addition to using IMUs, we employed a vision-based method [14] 
to determine whether a component is being held by the worker. If 
the component is held, its gravitational force is applied to the hand 
joints. Furthermore, we assume that contact forces during the assembly 
process were not considered in this study.

Static optimisation requires a heavy computation burden, making it 
unsuitable for real-time analysis. Using a neural network as a surrogate 
model for real-time analysis is a common approach. To efficiently 
estimate muscle forces on the upper body of a human operator, we em-
ploy an IK-BiLSTM-AM-based surrogate model, which integrates inverse 
kinematics (IK), bidirectional long short-term memory (BiLSTM), and 
an attention mechanism (AM), as proposed in our previous work [14]. 
This model approximates the complex biomechanics simulation for 
muscle force estimation.

A muscle force-based physical exertion estimation model [30] is 
then applied, which estimates physical exertion using historical force 
3 
data via a first-order differential equation. The mathematical formula-
tion of this model is as follows: 
𝑑𝑒𝑚(𝑡)
𝑑𝑡

=

{

(1 − 𝑒𝑚(𝑡))
𝑓𝑚(𝑡)
𝑐𝑚

𝑓𝑚(𝑡) ≥ 𝑓th
−𝑒𝑚(𝑡)

𝑅
𝑐𝑚

𝑓𝑚(𝑡) < 𝑓th
(1)

where 𝑒𝑚(𝑡) represents the physical exertion of human muscle 𝑚, while 
𝑓𝑚(𝑡) denotes the force exerted by muscle 𝑚 at time 𝑡. The recovery 
coefficient 𝑅, set to 0.5, indicates the recovery rate from fatigue. The 
threshold of muscle force for muscle 𝑚 is denoted by 𝑓th. The capability 
coefficient of muscle 𝑚, denoted by 𝑐𝑚, reflects the muscle’s resistance 
to fatigue.

4.2. DuelingDQN policy

In the HRCA framework, we adopt a DuelingDQN policy with action 
masking techniques (DuelingDQN-AM) for reliable task planning for 
physical exertion alleviation. DuelingDQN is an improved version of 
standard DQN [31], designed to perform well in environments with 
sparse reward structures. The rationale behind using DuelingDQN lies 
in its Q-value estimation mechanism, which is composed of two compo-
nents: the state-value function and the advantage function. This design 
enables the model to evaluate the relative importance of actions 𝑎
within a given state 𝑠, while simultaneously identifying the value of the 
state itself. The state-value stream in DuelingDQN enhances learning 
by decoupling the evaluation of states from the actions, allowing for 
a more focused and efficient representation of state values in the 
decision-making process. Given that our problem involves a multi-
step, sparse reward scenario, this approach is considered a promising 
approach for physical exertion alleviation in HRCA.

State-value function, the first part of the DuelingDQN Q-value, rep-
resents the value of being in a particular state, regardless of the action 
taken. The advantage function represents the advantage of taking a 
specific action in that state relative to other actions. The Q value in 
DuelingDQN is represented as: 

𝑄(𝑠, 𝑎) = 𝑉 (𝑠) +

(

𝐴(𝑠, 𝑎) − 1
|𝐴|

∑

𝑎′
𝐴(𝑠, 𝑎′)

)

(2)

where 𝑄(𝑠, 𝑎) is the Q-value for taking action 𝑎 in state 𝑠; 𝑉 (𝑠) is the 
value function that estimates the value of being in state 𝑠; 𝐴(𝑠, 𝑎) is the 
advantage function, which estimates the advantage of taking action 𝑎
in state 𝑠; |𝐴| is the total number of actions. The training process of 
DuelingDQN for workers’ physical exertion is illustrated in Fig.  2.

4.3. Action masking techniques

Action masking is a technique of RL that masks invalid actions in 
the action space, in order to improve training efficiency and reliability. 
In our case, certain actions are strictly prohibited in specific states due 
to factors such as task order requirements and the robot’s capabilities. 
Task order requirements are defined by the logical sequence of assem-
bly actions, which must comply with the geometric constraints inherent 
in the product design, thereby ensuring that each assigned action aligns 
with the established procedural constraints. The agent’s capability, 
generally dictated by factors such as the robot arm’s workload and the 
gripper’s grasping capacity, imposes further limitations. Therefore, we 
introduce a mask 𝑀(𝑠, 𝑎) to account for these constraints. Thus, the Q 
value function is modified as follows:

𝑄masked(𝑠, 𝑎) = 𝑀(𝑠, 𝑎) ⋅

(

𝑉 (𝑠) +

(

𝐴(𝑠, 𝑎) − 1
|𝐴|

∑

𝑎′
𝐴(𝑠, 𝑎′)

))

+ (1 −𝑀(𝑠, 𝑎)) ⋅ 𝜖 (3)

where 𝑀(𝑠, 𝑎) = 0 if action 𝑎 is invalid in state 𝑠; 𝑀(𝑠, 𝑎) = 1 if the 
action 𝑎 is valid; 𝜖 is a small number. 𝜖 = −105 in our case.

And-Or graph 𝐺 is a common way to represent the product assembly 
task, decomposing complex assembly tasks into task units and defining 
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Fig. 2. The training process of the DuelingDQN with action masking techniques for alleviating workers’ physical exertion is illustrated. An IK-BiLSTM-AM network, along with a 
force-exertion model, is employed to estimate physical exertion, using human motion data as input. The policy is trained using both the online Q-network and target Q-network, 
with the Adam optimiser facilitating updates. This trained policy enables the robot to execute optimal actions that minimise workers’ physical exertion during HRCA.
the task constraint between them. An example of And-Or graph is 
shown in Fig.  4. Thus, the AND-OR graph is used to mask unavailable 
actions that violate task order constraints.

Based on the graph 𝐺, the executable task in the state 𝑠 is defined: 
a collection of task units with no dependent tasks that have not yet 
been executed [32]. We define 𝐸(𝑠, 𝑎), where 𝐸(𝑠, 𝑎) = 1 if action 𝑎 is 
executable in state 𝑠; 𝐸(𝑠, 𝑎) = 0 if it is not.

The robot’s capability to perform action 𝑎 is denoted as 𝐶(𝑎), where 
𝐶(𝑎) = 1 if the robot can perform action 𝑎; 𝐶(𝑎) = 0 if it cannot. Using 
both the robot’s capabilities and the assembly sequence requirements, 
we define the action mask as: 
𝑀(𝑠, 𝑎) = ¬(𝐸(𝑠, 𝑎)&𝐶(𝑎)) (4)

where 𝑀(𝑠, 𝑎) = 1 if action 𝑎 is either not executable in the state 𝑠 or 
beyond the robot’s capabilities, ensuring adherence to task constraints 
and robot limitations.

4.4. Observation space, action space, and reward function

The observation space, action space and reward function for physi-
cal exertion alleviation using RL techniques are carefully defined in this 
section.

4.4.1. Observation space
The observation space of the robot consists of the status of the 

product being assembled and the accumulated physical exertion of the 
human operators. The status of the parts involved in the task is defined 
as 𝑠𝑖, and the accumulated physical exertion of muscle 𝑚 is defined as 
𝑒𝑚. Consequently, the observation space is defined as 𝑂. 

𝑂 = [𝑠1,… 𝑠𝑖,… , 𝑠𝐼 , 𝑒1,… 𝑒𝑚 … , 𝑒𝑀 ] (5)

where 𝑠𝑖 denotes the state of the 𝑖th part 𝑝𝑖. The state of the parts could 
be assigned with 3 cases: 0 for the parts that are to be assembled, 1 for 
those being assembled, and 2 for those that are already assembled. The 
physical exertion 𝑒𝑚 is derived by Eq. (1). In our case, 𝑀 = 20 selected 
muscles, located in the arms, shoulders, back, and chest on the right 
side of the upper body, are monitored.

4.4.2. Action space
The robot’s action space is defined as 𝐴𝑟, including the operation of 

the product’s parts. However, the robot has limitations in its assembly 
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capabilities. Besides the action masking techniques, we penalise the 
policy if an allocated task exceeds the robot’s capabilities. 
𝐴𝑟 = [𝑎1,… , 𝑎𝑖,… , 𝑎𝐼 , 𝑎idle] (6)

where 𝑎𝑖 is the action that assembles the corresponding parts or tools 
𝑝𝑖. 𝑎idle means the agent is idle.

4.4.3. Reward function
The design of the reward function is paramount to the overall 

effectiveness of the RL policy, as it directly influences the agent’s 
decision-making process. In this work, the reward function is crafted 
with several critical factors, namely the task order requirements, the 
agent’s capabilities, and the physical exertion experienced by the hu-
man collaborator. Additionally, we punish the robot while the human 
collaborator conducts tasks that impose fatiguing physical exertion on 
them, aiming to reduce their workload. With these considerations in 
mind, the reward function, denoted as 𝑅, is designed to guide the agent 
towards optimal performance.
𝑅 =

⎧

⎪

⎨

⎪

⎩

𝑟𝑐 if an assembly task is completed.
𝑟𝑠 if an assembly step is completed.
𝜉(𝜗𝑖 − 𝜗𝑖−1) if the physical exertion of the human worker increases

(7)

where 𝑟𝑐 is a completion reward if an assembly task is done; 𝑟𝑠 is a 
reward if an assembly step is done.

In assembly tasks that require coordination among multiple muscle 
groups, relying on a single metric often fails to fully capture the 
complexity of physical exertion. For repetitive and intricate activities, 
integrating signals from multiple muscle groups offers a new perspec-
tive, enabling a more accurate assessment of overall fatigue caused by 
localised muscle fatigue [33]. Furthermore, peak muscle loading plays 
a critical role in musculoskeletal disorders, highlighting the necessity 
of considering maximum muscle exertion, as emphasised in [34]. 

This dual perspective underscores the importance of evaluating 
both overall and peak muscle exertion when assessing worker fatigue. 
Accordingly, Eq.  (8) is formulated as follows: 

𝜗𝑖 =
1
𝑀

𝑀
∑

𝑚=1
𝑒𝑚 + max

𝑚
𝑒𝑚 (8)

which combines the average muscle physical exertion and max muscle 
physical exertion across 𝑀 selected muscles. The accumulated increase 
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Fig. 3. The products with various complexities that are used in the experiment: (a) pump (36 parts), (b) PC desktop (9 parts).
at the step 𝑖 in muscle exertion, 𝜗𝑖 − 𝜗𝑖−1, is used as a penalty for the 
robot if the human worker’s physical exertion rises. 𝜉 is the weight 
variable.

4.5. Model training

Overall, the Dueling DQN algorithm is a reinforcement learning 
method, where data is collected through repeated interactions with the 
environment to train the model. The virtual environment is modelled 
as a Markov Decision Process, where the human and robot sequentially 
assemble parts in a turn-based manner (Section 3). A musculoskeletal 
model-based method (Section 4.1) is used to estimate human physical 
exertion based on movement data. This empirical estimation informs 
the reward function, guiding the policy towards minimising exertion. 
The Dueling DQN agent explores the environment by selecting actions 
based on an 𝜖-greedy policy. A random policy is used to simulate human 
behaviour, ensuring adaptability to different assembly sequences. Each 
interaction generates a dataset containing state, action, and reward. 
The agent stores these state–action-reward transitions in a replay buffer 
and updates the Q-network through mini-batch sampling. 

5. Experiment

This section introduces the experiments conducted to validate the 
proposed method. The evaluation consists of two experiments: (1) 
Experiment 1 makes a comparison study between DuelingDQN-AM 
and state-of-the-art methods in RL in a simulation environment, and 
(2) Experiment 2 is a proof-of-concept real assembly experiment to 
demonstrate the method’s effectiveness in alleviating physical exertion 
involving multiple participants.

5.1. Experiment 1

5.1.1. Experiment setup
The objective of Experiment 1 is to evaluate the performance of 

the proposed DuelingDQN-AM on products of varying complexities and 
different cycles 𝑛 of assembly products in a simulation environment. 
The performance is compared with state-of-the-art methods. Addition-
ally, we assess the suitability of other baseline RL methods, which have 
been successfully applied in other domains, for addressing the fatigue 
alleviation challenges.

The products used in this experiment are illustrated in Fig.  3. 
Product complexity is defined by the number of parts, with a PC 
desktop consisting of 9 parts classified as an easy assembly task, and a 
5 
Table 1
The parameters of DuelingDQN-AM for policy training.
 Parameters Value  
 Discount factor 0.9  
 Exploration rate 1 decay to 0.1  
 Batch size 64  
 Learning rate 1e−3  
 Estimation step 3  
 Target update frequency 300  
 Network architecture multilayer perceptron 
 Hidden layer sizes [128, 128, 128, 128] 
 weight variable 𝜉 20  
 𝑟𝑐 10  
 𝑟𝑠 −1  

pump consisting of 36 parts regarded as a difficult task. Muscle physical 
exertion is simulated, with values randomly generated between 0 and 
0.3 across 20 muscles, encompassing the arms, shoulders, chest, and 
back of the upper body.  They are: Triceps brachii: Long head, lateral 
head, medial head. Biceps brachii: Long head, short head. Deltoid: 
Anterior, middle, posterior. Pectoralis major: Clavicular head, sternal 
head, ribs head. Latissimus dorsi: Thoracic fibers, lumbar fibers, iliac 
fibers. Extensor carpi radialis longus. Extensor carpi radialis brevis. 
Extensor carpi ulnaris. Flexor carpi ulnaris. Pronator teres. Pronator 
quadratus.

The parameters for DuelingDQN-AM are provided in Table  1. Each 
method was trained for 300 epochs for the PC desktop and 500 epochs 
for the pump task, with each epoch consisting of 1000 steps. All 
computations were performed on an NVIDIA GeForce RTX 3080 GPU.

5.1.2. Baselines
In our research, we carefully selected representative algorithms 

from the RL field for a comparative study. Given the discrete nature of 
the action space and observation space of the physical exertion allevia-
tion problem, we chose prevailing RL algorithms such as DQN [35,36]. 
Additionally, based on prior studies demonstrating the effectiveness of 
network structures in DQN-based methods, including DQN-LSTM [37], 
DQN-Transformer [38], DQN-ResNet [39] and DQN-BiLSTM [40], Soft 
Actor-Critic (SAC), and Proximal Policy Optimization (PPO), these 
approaches were selected for comparison. To ensure a fair comparison, 
all methods employed the action masking technique. All methods were 
tested on both the PC desktop (easy task) and the pump (complex 
task). To systematically evaluate the impact of task repetition and 
combination on cumulative physical exertion over different time scales, 
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Fig. 4. An example of an And-Or graph. The graph illustrates an And-Or graph model for a desktop PC assembly task, consisting of And nodes and Or nodes, denoted by ‘‘→’’ 
and ‘‘∥’’ respectively. And nodes define sub-tasks that must be executed sequentially, while Or nodes define tasks that can be executed in parallel.
Table 2
The mean and standard deviation of 100 calculations of the trained policies of DuelingDQN-AM and the baseline across different product assembly rounds for PC desktops.
 Methods Round:1 Round:5 Round:10 Round:20 Round:50  
 DQN-BiLSTM −57.26 ± 0.02 −285.83 ± 0.06 −570.91 ± 0.13 −1148.13 ± 0.11 −2855.71 ± 0.46  
 DQN-LSTM −57.05 ± 0.07 −273.55 ± 0.26 −571.89 ± 0.7 −1143.46 ± 1.28 −2856.86 ± 0.9  
 DQN-ResNet −28.71 ± 0.04 −139.13 ± 0.31 −279.05 ± 0.45 −558.83 ± 0.38 −1396.25 ± 2.03  
 DQN-Transform −28.67 ± 0.03 −140.99 ± 0.11 −285.16 ± 0.13 −569.82 ± 0.38 −1436.89 ± 1.09  
 PPO −108.44 ± 0.16 −295.01 ± 3.91 −1128.13 ± 1.96 −1155.28 ± 3.11 −5111.47 ± 9.86  
 SAC −61.71 ± 0.27 −1865.93 ± 41.63 −25587.43 ± 210.44 −29167.83 ± 152.50 −6030.33 ± 109.97 
 DuelingDQN-AM −𝟐𝟖.𝟒𝟒 ± 𝟎.𝟎𝟑 −𝟏𝟑𝟕.𝟔 ± 𝟎.𝟎𝟔 −𝟐𝟕𝟏.𝟓𝟗 ± 𝟎.𝟐𝟖 −𝟓𝟒𝟗.𝟒𝟕 ± 𝟎.𝟑𝟐 −𝟏𝟑𝟓𝟗.𝟗𝟖 ± 𝟎.𝟔𝟕  
Table 3
The mean and standard deviation of 100 calculations of the trained policies of DuelingDQN-AM and the baseline across different product assembly rounds for pump.
 Methods Round:1 Round:5 Round:10 Round:20 Round:50  
 DQN-BiLSTM −184.39 ± 0.06 −921.82 ± 0.14 −1867.46 ± 0.62 −3722.62 ± 1.08 −8597.68 ± 3.11  
 DQN-LSTM −178.3 ± 0.06 −931.24 ± 0.21 −1872.37 ± 0.1 −3735.82 ± 0.72 −8910.02 ± 2.16  
 DQN-ResNet −61.18 ± 0.12 −303.27 ± 0.28 −600.74 ± 0.31 −1304.94 ± 3.42 −3026.87 ± 4.84  
 DQN-Transform −60.07 ± 0.04 −305.51 ± 2.1 −618.29 ± 3.77 −1228.59 ± 3.89 −3082.81 ± 3.2  
 PPO −186.74 ± 0.12 −944.64 ± 0.64 −2004.95 ± 4.27 −4489.00 ± 1.66 −9767.26 ± 19.91 
 SAC −218.36 ± 0.38 −1121.17 ± 1.14 −2261.96 ± 0.72 −4562.64 ± 0.76 −11176.67 ± 3.70 
 DuelingDQN-AM −𝟓𝟗.𝟕𝟑 ± 𝟎.𝟎𝟒 −𝟐𝟗𝟒.𝟓𝟗 ± 𝟎.𝟏𝟔 −𝟓𝟕𝟒.𝟗𝟒 ± 𝟎.𝟏𝟗 −𝟏𝟏𝟕𝟒.𝟔 ± 𝟎.𝟒𝟖 −𝟐𝟗𝟓𝟗.𝟓𝟖 ± 𝟏.𝟔𝟏  
the performance of the algorithms was assessed across 1, 5, 10, 20, and 
50 assembly cycles.

The evaluation metrics focused on the following:

1. Rewards, which refer to the accumulated reward achieved by the 
trained policies;

2. The physical exertion index 𝜉, to evaluate the level of fatigue 
alleviation experienced by workers under each method;

3. The number of invalid actions;
4. The number of successfully assembled products.

An ablation study was conducted to validate the importance of ac-
tion masking in HRCA tasks. Specifically, we evaluated the performance 
of DuelingDQN in assembling a single unit of the PC desktop and the 
pump, with and without the action masking technique. An additional 
ablation study was conducted to validate the effectiveness of the ad-
vantage function, a key component of Dueling DQN, by comparing 
its performance with that of DQN. The network of Dueling DQN and 
DQN have the same structure. Both of them use the action masking 
techniques.

5.1.3. Results and discussion
Overall performance. The training process of the selected RL-based 
methods for handling physical exertion alleviation tasks of varying 
assembly difficulty is presented in Fig.  5, using different colours to 
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distinguish between them. DQN-LSTM and DQN-BiLSTM did not con-
verge for both products with varying numbers of assembly components, 
because LSTM and BiLSTM did not provide benefits for solving the 
physical exertion alleviation problem. LSTM and BiLSTM networks 
are better suited for capturing temporal dependencies in sequential 
data. However, our problem primarily focuses on state–action pair 
evaluation, which does not rely on long-term temporal dependencies 
but instead depends on the current fatigue state and the potential 
physical exertion induced by the task. This makes FN a more suitable 
approach for this problem.

Methods such as DQN-ResNet, and DQN-Transformer achieved re-
sults comparable to our proposed approach.  The performance of PPO 
and SAC was suboptimal, as the rewards obtained were lower than 
those achieved by the DQN-based methods. The primary reason lies in 
the nature of our problem, where both the action space and observation 
space are discrete, and the rewards are sparse. These factors make 
DQN-based approaches more suitable, whereas PPO and SAC are less 
effective in this context.

Among all methods, DuelingDQN-AM demonstrated the best per-
formance. Its advantages were particularly evident in its rapid con-
vergence: regardless of product complexity or the number of assembly 
cycles 𝑛, the method consistently reached convergence the fastest. This 
is critical for RL tasks, as faster convergence significantly reduces train-
ing time. Additionally, we conducted 100 calculations using the trained 
policies to evaluate each policy. The results are presented in Table  2 (PC 
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Table 4
The experimental results for 100 calculations of trained DuelingDQN-AM policy include the following metrics. Rounds: The required number of executions of the task. Reward: 
The mean of the accumulated rewards. Invalid Action: The total number of invalid actions recorded. Completion: The total cycles of products successfully assembled. Steps: The 
total number of steps required to complete the required rounds.
 Product Methods Rounds Reward Invalid action Completion Steps Physical exertion index 
 

PC desktop DuelingDQN-AM

1 −28.44 0 1 6.1 1.62  
 5 −137.6 0 5 34.3 7.67  
 10 −271.59 0 10 75.2 14.82  
 20 −549.47 0 20 134.1 30.32  
 50 −1359.98 0 50 369.1 74.54  
 

Pump DuelingDQN-AM

1 −59.73 0 1 20 2.49  
 5 −294.59 0 5 106.1 11.92  
 10 −574.94 0 10 209.9 23.25  
 20 −1174.6 0 20 405.1 48.48  
 50 −2959.58 0 50 1057.1 120.12  
Table 5
The ablation study of action masking techniques.
 Product Methods Rounds Action masking Reward Invalid action 
 PC desktop DuelingDQN 1 Y −28.44 0  
 PC desktop DuelingDQN 1 N −29.60 4.18  
 Pump DuelingDQN 1 Y −59.73 0  
 Pump DuelingDQN 1 N −128.00 4.88  

desktop) and Table  3 (pump), with the best outcomes highlighted in 
bold. As shown, DuelingDQN-AM achieved the best performance across 
all rounds for both products. Our proposed method demonstrates both 
optimality and robustness, excelling in terms of convergence speed and 
reward attainment.

To further analyse the performance of DuelingDQN-AM, we use 
other metrics, as presented in Table  4. For both the PC desktop and 
pump, the number of steps and the physical exertion index increased 
approximately linearly with the number of assembly cycles. Besides, 
all required rounds of assembly were completed in each group. The 
average steps and physical exertion index per product were approx-
imately 6.5 and 1.6 for the PC desktop, and 20 and 2.5 for the 
pump, respectively. This indicates that the policy’s performance did 
not degrade with an increasing number of products, demonstrating the 
method’s effectiveness in handling multiple assembly cycles.
Ablation study. The Table  4 shows that the number of invalid actions 
was consistently 0. In contrast, DuelingDQN without the action masking 
technique performed poorly, as shown in Table  5. Even within the 
assembly of a single unit, multiple invalid actions were observed (PC 
desktop: 4.18, pump: 4.88). This is unacceptable for collaborative 
robots in assembly lines, as invalid actions can result in defective prod-
ucts or even compromise safety. The comparison shows the importance 
of action masking techniques in this problem to ensure the validity of 
the policy action.

From Table  6, it can be observed that the Dueling DQN-AM method 
consistently outperforms DQN-AM across all assembly rounds and prod-
uct types. For example, in the Desktop product assembly assembly 
round 50, DuelingDQN-AM achieves −1359.98 ± 0.67 compared to 
DQN-AM’s −1405.71 ± 3.11. This indicates that the Dueling architec-
ture contributes to the overall performance, leading to a more stable 
improvement in the reward.
Efficiency. We conducted 100 inferences using a well-trained model, 
with an average inference time of 0.00068 s for the desktop PC task 
and 0.00063 s for the pump task. The inference times are similar, 
as the model parameter sizes are 53,505 (desktop PC) and 55,809 
(pump), respectively. These results demonstrate that the model can 
make decisions in near real-time.

5.2. Experiment 2

5.2.1. Experimental setup
In Experiment 2, a proof-of-concept PC desktop assembly experi-

ment was conducted in a lab environment. This experiment received 
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review and approval from the School of Engineering Research Ethics 
Committee (reference: 2023-PGR-YY-R1). The PC desktop used in the 
study, depicted in Fig.  3(b), consists of 9 components. The weights of 
these components were customised, ranging from 0.03 to 3 kg, with 
an average of 1.3 kg, to simulate the physical exertion experienced by 
assembly workers. The assembly requirement is shown in Fig.  4. The 
selected muscles are consistent with experiment 1. Besides, nine IMUs 
are strategically attached to specific body parts of each participant: the 
chest, scapula, upper arm, forearm, and hand. The working frequency 
of IMUs is 40 Hz.  The hardware and software used in the experiment 
are listed in Table  7.

The experiment took place in a human–robot cell, which includes 
the parts to be assembled and the assembly areas, as shown in Fig.  6. A 
staff member, positioned near the assembly area, would disassemble the 
PC desktop once the assembly was completed, simulating a production 
line. The human and robot assembled the parts in turn. There is a 
keyboard for participants to inform the robot of the completion of the 
task.

The experiment included an experimental group and a control 
group. Participants were asked to assemble the PC desktop five times in 
each group. A total of 8 participants (6 male and 2 female, ages 23–35, 
height 160–185 cm.) were recruited to participate in both groups, and 
they were blind to the group assignment. Participants completed a 
questionnaire to subjectively evaluate their physical exertion in each 
group. The two questions in the questionnaire are both the Modified 
Borg Scale [41], with a score ranging from 0 to 10, to assess the 
physical exertion required to complete each group of experiments. We 
also evaluate the physical exertion of participants using our proposed 
methods. The effectiveness of the physical exertion alleviation method 
is validated by comparing the results obtained from our method with 
participants’ subjective feedback.

In the experimental group, the robot operates using a policy trained 
with the DuelingDQN-AM method, incorporating empirical fatigue 
data. This policy prioritises tasks that are most fatiguing for humans, 
referred to as the RL strategy. In the control group, the robot operates 
using a random policy that selects executable tasks at random during 
the robot’s turn, referred to as the random strategy. No specific 
assembly order is imposed on the human operator in either group, 
allowing them to choose their tasks based on personal preference. The 
experimental process for participants is listed in Table  8.

In the experiment, the hardware used included a KUKA iiwa LBR 
robot, a Robotiq 3f gripper, a Realsense D435 camera for object track-
ing, and an RTX 3080 GPU for algorithm training. Xsens awinda IMU 
was used for action tracking in the experiment. The screen was used to 
display the robot’s operational status. The whole system was developed 
under the robot operation system (ROS). The human musculoskeletal 
model was visualised in OpenSim 4.4.

5.2.2. Result and discussion
In our work, eight participants completed the experiments, and Fig. 

7 shows the process of the experiment. We conduct a comparative anal-
ysis and discussion between the results obtained from the questionnaire 
and those derived from our proposed method.
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Fig. 5. The variation in the reward throughout the training process (0–100,000 steps, 0–100 epochs) is compared across the selected methods for both (a)–(e) desktop assembly 
tasks and (f)–(j) pump assembly tasks, evaluated over 𝑛=1, 5, 10, 20, and 50 execution rounds. Most methods converge within 100,000 steps, so only the results for 0–100,000 
steps are presented.
Table 6
The ablation study of the Dueling architecture.
 Methods Product Round:1 Round:5 Round:10 Round:20 Round:50  
 DQN-AM Desktop −28.88 ± 0.08 −143.52 ± 0.37 −278.22 ± 0.35 −562.95 ± 2.53 −1405.71 ± 3.11 
 DuelingDQN-AM Desktop −28.44 ± 0.03 −137.6 ± 0.06 −271.59 ± 0.28 −549.47 ± 0.32 −1359.98 ± 0.67 
 DQN-AM Pump −65.13 ± 0.06 −302.81 ± 1.55 −621.34 ± 3.37 −1184.13 ± 0.74 −2978.11 ± 4.09 
 DuelingDQN-AM Pump −59.73 ± 0.04 −294.59 ± 0.16 −574.94 ± 0.19 −1174.6 ± 0.48 −2959.58 ± 1.61 
8 
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Table 7
Hardware and software used in the experiment.
 Hardware Software  
 Xsens IMU sensors Xsens MT manager (Human movement data collection) 
 Kuka iiwa LBR robot OpenSim (IK-BiLSTM-AM training data preparation)  
 Robotiq 3-Finger Robot Gripper Pytorch (Dueling DQN modelling)  
 Robot Operating System (Robot control)  
Table 8
The experiment procedures for participants.
 Procedure Details  
 1 The participant sits quietly for five minutes to ensure they are well-rested.  
 2 The robot then randomly selects either the RL or random model and assembles the PC desktop 5 times with the participant. 
 3 After completing the previous phase, the participant takes a ten-minute break.  
 4 The robot then switches to the alternative mode and assembles the PC desktop 5 times with the participant.  
 5 The participant fills out a questionnaire. The experiment ends.  
Fig. 6. The photo and layout diagram of the laboratory assembly line for Experiment 
2.

1. Questionnaire: Participants provided subjective evaluations of 
their physical exertion using a modified Borg scale, with the re-
sults shown in Fig.  8(a). From the figure, it is evident that phys-
ical exertion under the RL strategy (mean: 2.31) is significantly 
lower than under the random strategy (mean: 4.56).

2. Our proposed method: The second part of the results is based on 
objective physical exertion analysis derived from the proposed 
method, as shown in Fig.  8(b). Similar conclusions can be drawn: 
physical exertion under the RL strategy (mean: 0.32) is 15.63%
lower than that under the random strategy (mean: 0.37).

To further verify whether the RL strategy can alleviate human physi-
cal exertion, we performed a Mann–Whitney U test on the experimental 
results. The experiment hypothesises that the physical exertion under 
the RL strategy is significantly lower than that under the random strat-
egy. Our results yielded P-values of 0.0456 < 0.05 (Physical Exertion 
Index) and 0.0123 < 0.05 (Borg Scale). The experimental results sup-
port the hypothesis, indicating that the fatigue under the RL strategy is 
significantly lower than that under the random strategy. These findings 
demonstrate that the proposed RL strategy effectively reduces physical 
exertion for workers performing the same tasks, as confirmed by both 
subjective reports and objective analysis. The authors believe that over 
longer work cycles, the reduction in physical exertion would become 
even more pronounced.

6. Conclusions

This study explored the application of RL methods to address the 
problem of physical exertion alleviation in HRCA. Based on the multi-
agent modelling of this problem, we proposed a DuelingDQN approach 
combined with action masking to filter out invalid actions. We designed 
and conducted simulation experiments, demonstrating the advantages 
of DuelingDQN-AM over other methods in terms of convergence speed 
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and stability across multiple cycles and products of varying complexity. 
Additionally, we conducted real-world experiments, where both Borg 
scale reports and physical exertion index confirmed that the RL strategy 
mitigate physical exertion by 15.63% compared to the random strategy.

As an exploratory study, the RL-based task planner proposed in this 
paper focuses primarily on mitigating human physical exertion. While 
this approach effectively addresses the physical exertion alleviation 
problem, it may not fully satisfy the multifaceted requirements of real-
world HRC tasks. To overcome this limitation, future research will 
focus on developing a multi-objective task planner that incorporates 
additional factors such as time efficiency and safety into collaborative 
task planning. Furthermore, the RL model will need to be refined to 
operate within a multi-objective framework.

Additionally, the validation of this study is based on a proof-of-
concept experiment conducted in a controlled laboratory setting. For 
broader applicability, validation in more complex, factory-like environ-
ments is essential. Future work should therefore also aim to evaluate 
the extended task planner on more complex tasks to assess its scalability 
and suitability for real-world industrial applications.

The muscle force estimation method does not account for contact 
forces during assembly, which may introduce inaccuracies in the esti-
mated physical exertion. In future work, we will explore methods to 
address this issue.
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Fig. 7. The images from Experiment 2 illustrate an HRCA task under the RL strategy as follows. H: Motherboard, R: GPU, H: CPU, R: Cooler, H: Memory card, R: Power supply, 
H: Hard disk, R: idle H: Cover. Here, H represents tasks performed by the human operator, and R represents tasks performed by the robot. It is important to note that we assume 
that the robot is unable to assemble the motherboard and cover in our case due to its gripper capability. The human operator is capable of assembling all components.
Fig. 8. Figure (a) shows a box plot of the results of the Modified Borg scale for 8 participants under the RL and random strategies. Figure (b) displays a box plot of the physical 
exertion index for 8 participants under the RL and random strategies.
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