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This study introduces a more accurate approach to managing drone batteries by improving how the state of
charge (SoC) is estimated, focusing on energy efficiency and environmental impact. The key innovation lies in
developing a mathematical model to assess battery behavior, combined with Hybrid Pulse Power Character-
ization testing and Recursive Least Squares with Forgetting Factor for parameter identification. To enhance the
battery management system, the study integrates the Extended Kalman Filter (EKF), which overcomes the lim-
itations of traditional linear filters and provides more precise SoC estimation. This approach reduces energy
waste and extends battery life, directly supporting sustainable engineering practices. A developed MATLAB-
based framework ensures real-time monitoring and optimized battery performance, minimizing the risk of
power depletion during flight. The results demonstrate that the proposed SoC_EKF method significantly out-
performs the conventional SoC_AH approach, achieving a lower estimation error (1.93 x 10 % vs. 7.21 x 10’4),
leading to improved energy efficiency, reduced carbon footprint, and more reliable, eco-friendly drone opera-
tions for clean technology applications.

require more energy than a drone without a payload. This reduces the
drone’s battery life and shorter flight time than flying without a payload.
Second, the wind speed can have an impact on the battery life of the
drone. Flying against the wind consumes more energy and affects the

1. Introduction

1.1. Stat of literature

Drones become among the most extensively researched logistics
technologies in recent years. They integrate technical elements corre-
sponding to contemporary developments in the transportation sector
and Society; critical attributes like autonomy, adaptability, and agility
are essential. Among the primary factors influencing a drone’s battery
life is the weight of its payload. The larger the payload weight, the more
energy the drone will take to fly, hence the shorter the battery life. A
payload weighing a few kg is relatively heavy for a drone and will
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drone’s battery life. Flying with the wind, on the other hand, can
enhance battery life, allowing the drone to fly for extended periods.
Temperature also has an impact on battery life. When the temperature
rises too high, the battery can overheat, shortening its life. As the tem-
perature drops, the battery’s capacity diminishes, decreasing perfor-
mance and lowering overall performance and flight time. Finally, flight
height can have an impact on battery life. The more energy the drone
requires to maintain stability and continue flying, the shorter its battery
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life. As a result, it is critical to consider these aspects when planning
drone operations, particularly when transporting a payload, ensuring
the drone has sufficient battery life to complete its mission safely and
effectively. (Yaacoub et al., 2020). Three significant difficulties must be
addressed to make drone operations a predictable energy assessment.
Effective drone design focuses on creating reliable and efficient equip-
ment suited to various tasks that can float, be used in a variety of cir-
cumstances, and have reliability comparable to airline airliners; this is
an enormous task that will require numerous attempts, as well as the
creativity and contributions of people to various fields (Andrea, 2014).
Moreover, Xia et al., (2023) conducted a study on the routing challenges
of drones with load-dependent energy characteristics; they introduced
docking hubs as collaborative facilities for trucks and drones, enhancing
service coverage. A mixed-integer model was proposed to tackle the
complexities associated with nonlinear, load-dependent energy con-
sumption. At the same time, the operational range has traditionally not
been a critical issue due to rapid and convenient refueling options;
accurately estimating the range for battery-powered vehicles, such as
drones, has become essential given their increased diffusion and
importance in various domains, such as personal and commercial
transportation and surveillance (Baek et al., 2019). In the context of
drone operations, energy consumption emerges as a critical constraint
that must be addressed to unlock the full potential of maximum range,
cost reduction, and accurate SoC estimation. Optimizing energy usage is
crucial for extending the operational range of drones, as it determines
the distance they can travel and the payload they can transport. To fully
leverage drone capabilities, it is essential to implement effective energy
management strategies that maximize range while minimizing power
consumption. These strategies must account for various factors,
including flight dynamics, payload weight, wind conditions, and specific
operational requirements (Zhang et al., 2021).

Countless studies reveal that drones have some drawbacks in terms
of energy efficiency. Even brief periods of hovering create substantial
energy needs, severely limiting a drone’s operating radius; Kirschstein
et al. (Kirschstein, 2020) study introduces a drone energy consumption
model to evaluate energy requirements based on eco-friendly factors
and flight configurations. The model estimates the energy needs for a
fixed-route package delivery system operating from a central hub,
serving a predefined client base. For comparison, drone energy con-
sumption is assessed alongside the energy demands of diesel and electric
trucks serving the same clients from an equivalent depot. To enhance the
accuracy and reliability of SoC estimation, an auto-regressive moving
average model approximates the dynamic characteristics of the battery;
this approach compensates for inaccuracies in measuring terminal
voltage and discharge current, improving SoC estimation precision and
reliability (Liu et al., 2019). Manjarrez et al., (2023) focused on tackling
the challenge of estimating the energy requirements for mission per-
formance. Furthermore, Madani et al. (Madani et al., 2018) review
different equivalent circuit models and parameter identification tech-
niques utilized in lithium-ion batteries for energy storage; their paper
underscores the significance of accurately determining the state of
charge, cycle life, and other critical parameters to guarantee lithium-ion
batteries’ reliable, safe, and cost-effective operation in portable elec-
tronics and electric vehicles; they discuss various equivalent circuit
models, from simpler ones like the internal resistance model to more
intricate ones like the two-time constants model, Thevenin model, PNGV
model, and dual polarization model. Additionally, the review explores
methods like electrochemical impedance spectroscopy and the tree
seeds algorithm, highlighting their relevance in battery management
systems. Freja Vandeputte et al., (2023) introduce a parametric esti-
mation method to assess the impedance of lithium-ion batteries, which is
essential for determining their SoC, health, and remaining useful life.
Unlike electrochemical impedance spectroscopy, a widely used
nonparametric technique, this new method employs a fractional order
equivalent circuit model to deliver impedance estimates across the
entire frequency range of interest rather than limiting itself to specific
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frequencies; in their parametric approach enables any persistently
exciting signal, such as a noise excitation, instead of being confined to
sine or multiline signals. The method has been validated through sim-
ulations and subsequently applied to measurements of commercial
Samsung 48X cells. However, the research primarily concentrates on
batteries at rest, meaning at a constant SoC after a relaxation period,
showcasing the potential for enhanced impedance analysis in battery
management systems. Simone Barcellona and Luigi Piegari (Barcellona
and Piegari, 2017) examined the vital importance of battery storage
systems in both stationary and mobile applications, particularly
emphasizing lithium-ion batteries for their impressive power and energy
densities. Precise modeling of these batteries is crucial to accurately
predicting their charge and health state. Their paper reviews various
battery models and techniques for parameter estimation, underscoring
the significance of electric, thermal, and aging modeling. It also in-
troduces a classification method for the different models, dividing them
into three primary categories: mathematical, physical, and circuit
models. This classification offers a clear framework for understanding
the advantages and limitations of each type of model.

By deeply understanding the battery performance growth procedure,
valuable insights can be gained. This understanding enables the testing
of battery performance, leading to the identification of Various signifi-
cant and minor factors that contribute to performance outcomes
alongside the associated implications. Practical battery system models
for BMS can be developed using a modeling method based on mecha-
nism, semi-experience, or experience. These models provide adequate
precision while minimizing complex computations. During operation,
adaptive control technology is employed to identify battery system pa-
rameters, estimate battery SoC, State of Health (SoH) and State of
Function (SoF)," and communicate this information to the drone
controller through the grid, supporting this assessment parameter the
research conducted by Yuan Chen et al. (Y. Chen et al., 2024b) in-
troduces a hybrid framework to predict battery life accurately, empha-
sizing feature extraction and advanced optimization methods; they
extract eight features from the collected data to establish a connection
with the battery’s state of health. This framework integrates variational
mode decomposition, an enhanced sparrow search algorithm, and
multi-kernel support vector regression to tackle data instability, uneven
feature distribution, and local optima. The elite chaotic opposition
learning strategy and adaptive weights also improve the optimization
process. Experimental validation using NASA datasets shows that this
proposed method surpasses other algorithms, achieving improvements
in SoH estimation accuracy ranging from 0.16% to 1.67% while main-
taining stable predictions of remaining helpful life across various start-
ing points (Lu et al., 2013).

Kaigiang Chen (K. Chen et al., 2024a) et al. conducted a study on
accurately estimating the SoC for lithium-ion batteries; their research
explores how the precision of parameter identification and temperature
fluctuations affect SoC estimation. The authors created a dual polari-
zation model for LIBs, identifying its parameters through a novel genetic
factor recursive least square (GFRLS) algorithm. They utilized an
extended particle filter (EPF) method based on the identified model for
SoC estimation. The study confirmed the model’s accuracy across a
range of temperatures from —10 to 40 °C, using the federal urban
driving schedule for testing; their results showed that the GFRLS and
EPF methods significantly enhanced SoC estimation accuracy, achieving
an error margin of less than 1.3%, which lays a strong foundation for the
reliable operation of battery management systems in various environ-
mental conditions. Furthermore, Alshawabkeh, A. et al. (Alshawabkeh
et al., 2024) discuss the growing use of batteries across various appli-
cations underscored the need for precise parameter identification and
effective modeling, particularly for lithium-ion batteries, which are
favored for their high power and energy densities; their works introduce
a comprehensive framework that employs the Levenberg-Marquardt
algorithm (LMA) to validate and identify parameters of lithium-ion
battery models, aiming to enhance the accuracy of SoC estimations by
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utilizing only discharging measurements within the N-order Thevenin
equivalent circuit model; the findings reveal that optimization based
solely on discharging data is sufficient for precise parameter estimation;
also, it aligns closely with experimental measurements. Alternatively, a
relevant study highlights the significance of monitoring internal pa-
rameters to ensure lithium-ion batteries’ safety and accurately predict
their SoC (Wang et al., 2024a), the research presents an enhanced
electrochemical thermal coupling model that considers low-temperature
degradation and various battery characteristics. It introduces a decou-
pled deviation strategy for real-time adjustments of current and tem-
perature fluctuations, which improves SOC accuracy; their results
indicate a maximum SOC error of 4.57% under challenging test condi-
tions, showcasing its reliability in dynamic settings—moreover, the
approach developed by Wang et al. (Wang et al., 2024b) aims to enhance
the SoC estimation for lithium-ion batteries, essential for effective bat-
tery management systems; they introduce a method that combines
particle swarm optimization with an adaptive square root cubature
Kalman filter to improve SoC estimation accuracy; the filtering param-
eters are optimized to achieve precise SoC estimation, and an adaptive
window is determined using the PSO algorithm to refine the moving
estimation window their results show that the relative error stays under
0.5% when the SoC is stable, and the root mean square error and mean
absolute error are 0.0019 and 0.0017, respectively, proving the
robustness and adaptability of the method in varying conditions. In
another study (Wang et al., 2022), the prediction of the whole-life-cycle
SoC for lithium-ion batteries is explored, addressing the challenges
posed by variations in internal capacity, working temperature, and
current rate, indeed the study proposes an improved feedforward-long
short-term memory modeling method to achieve accurate SoC predic-
tion throughout the battery’s life cycle by considering current, voltage,
and temperature variations, the technique involves an optimized sliding
balance window for filtering the measured current. It creates a
three-dimensional input matrix using filtered current and voltage.
Long-term charging capacity decay tests on two batteries show a sig-
nificant reduction in capacity, with a decrease of 21.30% and 22.61%
after 200 cycles. The maximum SoC prediction error is 3.53%, with
RMSE, MAE, and MAPE values of 3.451%, 2.541%, and 0.074%,
respectively, confirming the model’s effectiveness for whole-life-cycle
SOC prediction in battery applications.

This Paper outlines a method for estimating the SoC of batteries that
involves several necessary steps. First, creating a battery model tailored
for drones using data from Hybrid Pulse Power Characterization tests
gives us a more precise understanding of how the battery performs
during flight. Then, an Extended Kalman Filter framework for real-time
SoC estimation will be implemented, incorporating an online parameter
identification algorithm that adjusts to the battery’s changing charac-
teristics throughout the flight. This approach helps maintain the accu-
racy of SoC predictions under different operational conditions. The
confrontation of real-world drone flight test data was used to validate
and compare the proposed method, showing a notable enhancement in
estimation accuracy and reliability. This paper is planned as follows: In
the introduction, we outline the problem statement, underscoring the
critical role of energy consumption in drone operations. The system
modeling section then explores the methods used to estimate drone
energy consumption. We then address battery modeling, presenting a
mathematical framework for understanding battery behavior alongside
applying the HPPC test and the FFRLS method for parameter identifi-
cation. The subsequent section on nonlinear filtering introduces the
Extended Kalman Filter EKF as a robust approach to battery state esti-
mation, offering advantages over traditional linear filters. We then
describe the battery system utilized in this study, detailing its impor-
tance in enhancing battery performance management. In conclusion, we
summarize the primary findings, highlight the contributions of our
research, and discuss its broader implications for advancing drone en-
ergy consumption and battery management practices.
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1.2. Problem statement

SoC estimation is a vital factor in the success of drone operations. It
presents a significant hurdle that must be tackled to unlock the full
potential of achieving maximum range and cost efficiency. The opti-
mization of energy usage and precise SoC estimation are crucial aspects
that directly impact the operational range of drones, determining their
coverage distance and payload capability. To fully capitalize on the
benefits of drones, we must devise efficient strategies for managing
energy that extends range and minimizes power consumption. This issue
also applies to aerial drones, where accurate flight range planning is
essential to ensure uninterrupted service and prevent battery depletion
mid-flight. Precise SoC estimation is critical for dependable power usage
modeling. While comprehensive models for drones are available, power
is consumed by the battery as a result of non-ideal characteristics of the
battery, and they fail to precisely align with the power consumed by the
battery due to its non-ideal characteristics. This research seeks to tackle
these challenges by introducing an innovative approach for predicting
and optimizing drone range. The proposed technique allows for varying
levels of accuracy and complexity in both drone and battery models,
thereby enhancing capabilities for precise range estimation and effective
operational planning.

1.3. Goals and contributions

This paper emphasizes the importance of sustainable engineering
solutions and innovative technologies for cleaner production and envi-
ronmental protection. Our research contributes to the field by intro-
ducing an advanced energy management strategy for drones, which
focuses on optimizing battery performance and reducing energy con-
sumption. Accurate estimation of the State of Charge is essential for
minimizing battery waste, extending battery life, and ensuring effective
energy use. These enhancements promote sustainable drone operations
by improving energy efficiency, lowering carbon footprints, and facili-
tating eco-friendly applications such as last-mile logistics, precision
agriculture, and environmental monitoring. By incorporating advanced
estimation methods like the Extended Kalman Filter, our work supports
advancing greener and more dependable drone technologies, directly
aiding in cleaner energy management and sustainable engineering
practices.

The variety of drone choices significantly impacts how users perceive
them. Accurately determining the battery charge level is crucial for
effectively modeling power usage. Our study addresses these obstacles
and strives to advance innovatively in foreseeing and improving drone
range. Our approach caters to varying degrees of precision and intricacy
in the drone and battery models, ultimately enhancing the capacity for
range estimation and planning. Furthermore, drones are often promoted
as an environmentally-friendly means of transportation thanks to their
use of batteries. Nevertheless, developing an energy usage model is
paramount to accurately depicting the energy needs for specific drone
functions. This model considers various parameters such as flight
characteristics, payload capacity, environmental conditions, and oper-
ational constraints to accurately and accurately. By doing so, this
research aims to provide a comprehensive understanding of the impact
of energy consumption. The developed energy usage model will also be a
valuable tool for optimizing drone performance, prolonging battery life,
and improving overall energy efficiency. These advancements
contribute to the sustainable and energy-efficient utilization of drones.

1.4. Methodology

Our approach to determining the operating ranges of drones starts
with gathering vital information about the drones and their batteries.
This involves looking at important mechanical and electrical features,
such as motor specifications, total weight, and aerodynamic drag, all of
which affect power usage and overall flight efficiency. By examining
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these factors, we can better understand the energy needs of various
drone models. We also analyze the electrical characteristics of individual
battery cells and how they fit into the battery pack to evaluate energy
storage capacity accurately. We use a battery modeling technique that
considers power conversion efficiency to improve our range estimates.
We utilize voltage and current waveforms to gauge the state of charge
and the potential flight range. A key part of this model is capturing the
power consumption patterns based on different payloads and incorpo-
rating this into a simulation framework. This allows for a thorough
assessment of battery performance in real-world flight scenarios, deep-
ening our insight into energy dynamics and battery life during
operation.

2. System modeling
2.1. Drones’ energy modeling

Several factors must be considered when determining the optimal
operating conditions for a drone, including the drone’s type, battery
capacity, and weather conditions. The battery life of a drone is influ-
enced by multiple variables, such as payload weight, wind speed, tem-
perature, and flight altitude, which are crucial in determining the
drone’s energy requirements. To ensure reliable operation, it is vital to
verify that the drone’s battery has enough power to complete a round
trip, even with the added weight of the payload and potential environ-
mental influences of the payload and any unpredictable weather con-
ditions. Moreover, the flight path should be planned to avoid obstacles,
including buildings, power lines, and trees. The route should also avoid
flying over densely populated areas or sensitive sites such as airports,
and finally, weather conditions can have a noteworthy influence on
drone operations. It is essential to check the weather before each flight
and avoid flying in adverse conditions.

The research work carried out by Anderea (Andrea, 2014) This
approach has produced substantial insights into the techno-economic
analysis of drone operations under these specifications. Andrea’s
research has concentrated on identifying the primary factors influencing
the cost-effectiveness and profitability of drone usage in this framework.
Specifically, the study examines how factors such as the drone’s pur-
chase and operational costs impact overall financial feasibility, battery
life, payload weight, and operating environment, as well as the profit-
ability of drone operations. His research has also explored the potential
applications of drones with such specifications. For example, drones
with a payload of 2 kg and a range of 10 km with a speed of 30 km/h can
be used for errands such as aerial photography, surveying, and package
delivery. The present research looked at the potential economic impact
of using drones for these tasks and has found that they can significantly
reduce costs and improve efficiency compared to traditional methods.
The power consumption in “kW” can be approached by:

(mp +m,)v

P 1
370’11_ =+ Petec ( )

Peons =

To calculate the power consumption in “kW,” the following
approximation can be used in (1) where m,, represents the payload mass
in “kg,” m,: denotes the vehicle mass in “kg,” r signifies the lift-to-drag
ratio, n\etan indicates the motor and propeller power transfer efficiency,
P Represents the electronic power consumption in “kW,” and v rep-
resents the cruising velocity in “km/h. The input parameters for this
design are as follows: my, is set to 2 “kg”, m, is set to 4 “kg” for the drone
mass, r is set to 3 for a pessimistic scenario representing a drone skilled
in vertical departure and landing, n is assumed to be 0.5 for power
transfer efficiency, Pee. is estimated to be 0.1 “kW” for the power
consumed by the electronics, and the cruising velocity can range from
0 to 45 “km/h". Please note that the velocity is not converted to “m/s".
Additionally, a study (Andrea, 2014) This suggests that these parameter
values and cruising velocity directly affect the drones’ power
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consumption.

Based on (1), a nested loop calculates power consumption for each
velocity and payload mass combination. The results are stored in the
Pcons Matrix. Then, a 3D plot is created in “Fig. 1". using the mesh
function to visualize the drone’s power consumption as a function of its
cruising velocity and payload mass. Consequently, these values lead to a
power consumption of “0.59 kW”. An approximation can estimate the
worst-case energy prerequisite in “kWh.” Through targeted calculations
and careful considerations, the maximum energy demand that the sys-
tem may experience can be calculated. This estimation is essential for
selecting the correct capacity and sizing of energy storage systems, as it
supports optimal performance and ensures reliable operation in varying
conditions. For further details, refer to (2).

d

PConS (WOI‘St) = 1 — HWF <(

m, +my)  Peec
P )+ 1 ) (2)

370nr v

The maximum range, represented by “d" in kilometers, is influenced
by the HeadWind Factor (HWF), which quantifies the ratio between
headwind speed and the drone’s airspeed. To illustrate, let us examine
some sample values: if the maximum range varies between “2-25 km,”
with an airspeed range from “0-45 km/h" and a headwind speed of “30
km/h,” the HWF plays a crucial role in determining the feasible distance
the drone can cover under these conditions.

In " Fig. 2, " the graph shows multiple lines, each representing a
different maximum range value. The x-axis represents the cruising ve-
locity in km/h, and the y-axis represents the power consumption in kW.

By analyzing this graph, one can gain insights into the drone’s power
consumption behavior based on varying velocities and maximum
ranges. This information can be valuable in designing the drone’s power
system and estimating its operational capabilities.

- Power Consumption Trend: As the cruising velocity increases, power
consumption generally increases. This is expected since higher ve-
locities require more energy to overcome air resistance and maintain
forward motion.

- Maximum Range Influence: Each line in the graph represents a
different maximum range value. Comparing the lines, we can
observe that the overall power consumption tends to be higher as the
maximum range increases. This is because longer ranges require
more energy to cover the distance.

- Sensitivity to Headwind Factor: The HeadWind Factor is two-thirds
of the ratio between headwind speed and airspeed. Although the
specific HWF value does not appear explicitly in the graph, it is

Power Consumption vs Velocity and Payload Mass
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Fig. 1. Power consumption of drones as a function of velocity and
payload mass.
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Worst-case Power Consumption vs Velocity and Maximum Range
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Fig. 2. Analysis of worst-case power consumption concerning velocity and
maximum range.

treated as a constant factor in power consumption calculations,
influencing overall energy requirements. Nonetheless, the graph
provides an understanding of the power consumption trend under
different velocities and ranges, regardless of the HWF value.

Celec m, + mv) + Pelec) (3)

_ (
Bcos (kM) = Ghar ey ( 370;r v

The average energy cost per kilometer can become near to Cep.
represents the electricity cost at approximately “0,12 $/kWh” and
Char; denotes the charging efficiency, estimated at around 0.8."

Analyzing this graph “Fig. 3" can help gain insights into the rela-
tionship between cruising velocity and the average energy cost per
kilometer for the given parameters. This information can help under-
stand drones’ energy efficiency and make informed decisions regarding
operation and cost considerations.

The trend in energy cost can be explained as follows: as cruising
velocity increases, the energy cost per kilometer tends to decrease. This
reduction is primarily due to the more efficient use of power over dis-
tance at higher speeds. overhand, payload and vehicle mass influence
higher velocities, which results in covering more distance in less time
and reducing the energy cost per kilometer. On the other hand, payload
and vehicle mass influence energy cost; higher mass values can increase
energy consumption and, consequently, the energy cost per kilometer.

2.2. Battery modeling

The battery system theatres a crucial role in electric vehicles, making
sophisticated battery models essential for optimizing energy processes
and design (Anoune et al., 2018). Cutting-edge battery models and
estimation techniques are necessary for drone flight time estimation and

Energy Cost per Kilometer vs. Cruising Velocity
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Fig. 3. Energy Cost per Kilometer vs. Cruising Velocity.
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range prediction. In existing literature, battery models are generally
categorized into three main types: mathematical models, electro-
chemical models, and Electrical Equivalent Circuit Models (ECM). Due
to the complexities involved in parameter identification and the high
computational demands of mathematical and electrochemical models,
this study adopts an ECM approach to assess battery performance more
efficiently (Shrivastava et al., 2019).

2.2.1. Mathematical model
An Electrical Equivalent Circuit Model comprises resistors, capaci-
tors, and voltage or current sources. This configuration provides a
balanced trade-off, achieving a suitable compromise between modeling
accuracy and computational simplicity. Due to its effectiveness, the ECM
shown in “Fig. 4" is considered a standard in the electronic design field.
Estimating the SoC relies heavily on accurately representing its dy-
namic characteristics through an equivalent model. Thevenin’s model
offers a solution by combining a parallel R.C. circuit integrated into the
Rint model to overcome its limitations in representing the dynamic
behavior of Li-ion batteries. This enhanced model is illustrated in
“Fig. 4,” where the terminal voltage is indicated as Uy and the ohmic
voltage is represented by Uy, with Rg serving as the internal ohmic
resistance. The R.C. circuit includes a polarization resistor, Rp, and a
polarization capacitor, C,, which accurately represents the polarization
effect in Li-ion batteries. The voltage across the polarization component
is denoted by U,. Using Kirchhoff’s law, Equation (4) describes this
equivalent circuit’s voltage and current relationships (Xu et al., 2021).
UL = Uoc 7IR0 - Up
1 1 C)

Uy=——U,+—I
P CPRPP+CP

2.2.2. Parameter estimation

In this subsection, we introduce the HPPC test and the Recursive
FFRLS algorithms as real-time battery parameter estimation tools. The
HPPC test follows a structured sequence of steps: initially, it establishes
the OCV-SOC relationship, which is crucial for accurate battery
modeling. Additionally, this test aids in determining parameter values
for the equivalent circuit model using an offline parameter identification
approach. The HPPC process begins by placing the battery cell in a
temperature-controlled chamber at 25 °C for 4 h. Following this stabi-
lization period, a constant 1C current is applied to the cell until it rea-
ches a voltage of 4.2V, preparing it for subsequent characterization
steps. Following this, the voltage is reserved fixed at 4.2V, pending the
current decreases under <0.05C. The cell is then permitted to respite for
1 h. Next, the cell is initially discharged at a current of 1C until it reaches
an SoC of 90%. After a 1-h resting period, the cell is further discharged
with a 3C current for 10 s, tracked by a rest period of 30 s. Subsequently,
a 2.25C current is applied for another 10 s. This sequence is systemati-
cally repeated at different SoC levels, starting at 80% and proceeding in
10% increments to 10%. Subsequently, a sextic polynomial referred to
(5) is utilized to fit the relationship accurately, where ko ~ k¢ are the
constants

Voer = ko + k1Soc + kxSoc? + ksSoc® + kaSoc* + ksSoc® + keSoc® 5)
f=3
| =
;- ICI -
ANN— :
RO
+ “A\\VN—

RP UL

Uoc

Fig. 4. Electric circuit model for batteries.
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2.2.3. HPPC test

In the context of parameter approximation for LiB, the FFRLS algo-
rithm plays a crucial role. It is employed alongside the HPPC test to
estimate LiB’s parameters accurately. The FFRLS algorithm is a recursive
estimation technique that continually updates parameter values based
on measured data. It takes into account the dynamic characteristics of
LiB and adjusts the parameter estimates accordingly. Including an
overlooking feature in the algorithm allows for a balance between the
effect of new facts and the significance of past facts, preventing outdated
information from overly impacting the parameter estimation process.
Beyond selecting a suitable battery model, ensuring accurate parameter
estimation is equally crucial for reliable SoC estimation. This study
employs the well-established Fast Fourier Recursive Least Squares
(FFRLS) method for identifying key parameters such as Ry (internal
resistance), RP, and CP (Shi et al., 2022)(M. Wu et al., 2020). The
following outlines the derivation process: Following the application of
the Laplace transform to Equation (6) (Lai et al., 2022)(Qin et al., 2022),
the Thevenin model can be expressed in the frequency domain as

Ul(s) — Une(s) =1 (5) (Ro + ©)

RP
1+R,Cps

Where s represents “frequency operator”. By introducing E,(s) = Ui(s)—
U,c(s) transfer function can be represented as:

RP
- <R° 1T R,,cps> @

This work utilizes the well-established bilinear transformation tech-
nique to discretize the transfer function. The specific formulation
employed is presented below.

U(s) — U (s)

G(s) = 1_(5

572 1-—g1
T Ty 142!

®

Where discretization operator z is Ts is set to 1, the discrete form of
Equation (G(s)) can be expressed as:

ay —asz !

-1 e B e
Glz")= 1+ a;z! ®
These coefficients a;, a; and a3 are formulated as:
2R,C, — 1
a ="
2R,C, + 1
Ry +R, +2RoR,
= TORG + 1 (10)
_ RoAt+ RyAt — 2RoR, At
5 2R,C, +1
The model’s functionality depends on the following parameters:
_ a; — as
RO N 1- a;
R _2@ata) a-a
P 14a 1-aq amn
1 2
G =LA ighend >

P 4((11(12 + (13)

2.3. Nonlinear filter: extended Kalman filter (EKF)

By estimating the SoC, the BMS theatres significantly enhance the
performance and reliability of electric vehicles such as drones. Battery
performance is significantly influenced by complex factors such as self-
discharge, discharge current, and the natural aging of battery cells, all of
which contribute to inaccuracies in measurement and estimation. The
Ampere-hour “A.H.” method is commonly adopted to mitigate these
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issues for its straightforward approach to SoC estimation. Despite its
simplicity, the A.H. method can be error-prone in real-world applica-
tions, where external influences like noise and random interference lead
to cumulative errors over time. Various algorithms have been proposed
and examined in the literature to correct these random discrepancies.
(Jung et al., 2019); (Kamal et al., 2018); (Maliki et al., 2024).

Model-based techniques, particularly the equivalent circuit model,
are frequently employed for more accurate SoC estimation. Among these
techniques, the Kalman filter is popular due to its effectiveness in linear
systems. However, the standard Kalman filter is often insufficient since
battery systems exhibit nonlinear characteristics. Advanced adaptations
such as the EKF have been developed to address the limitations of
linearity. The EKF method is widely adopted in battery management
because it reduces convergence time and provides accurate SoC esti-
mations under diverse operational conditions. However, it does intro-
duce a higher computational burden on the BMS.

The EKF achieves first-order polynomial precision by ignoring
higher-order terms, allowing it to provide reliable state estimates across
various operating environments. However, improvements are still
required to make this approach suitable for complex monitoring needs,
especially when dealing with large Li-ion battery packs. Implementing
EKF for SoC estimation requires a linearized state-space model updated
around the most recent estimates. This model is then applied using
linearized Kalman filter “LKF” equations, where the input is the charge
or discharge current, and the output is the battery voltage (Hossain
et al., 2022) (Takyi-Aninakwa et al., 2022) In the case of nonlinear
systems, a discrete state-space model can be constructed to capture the
battery system’s dynamic behaviors and improve the precision of SoC
estimations.

Xp1 = Axy + Buy + dy a2
Yk = Cxx + Duy + sx

The dynamics of Lithium-ion Battery “LiB” behavior can be represented
using a discrete state-space model formulated through the following
equations:

X1 = f(ok, ux) + di
1
Yie = 8o, ux) + sk 13

Where, f(xx,ux) and g(xx,ux) represent nonlinear state evolution and
measuring functions, respectively. By integrating the state equation and
considering measurement noise, the model can be expressed as follows:

X1 fA\kxk + f(Xk, ux) :Kk}k + di

. ~ a4
Y = Cixx + 8(Xk, ux) — CrXy + sk

Building on the linearization approach discussed previously, it be-
comes clear that the EKF effectively addresses the constraints of the LKF
by integrating the system model’s nonlinear characteristics within both
the state prediction and correction phases.

The EKF uses nonlinear battery models to forecast the system state
and output. At each time step k, the EKF applies a linearization of the

nonlinear battery model around the predicted state Kk?k. This process

generates the matrices. Ay, By, and Cy. These are essential for updating
the covariance matrix, as it is simulated with state estimation errors and
computing the Kalman gain. These matrices provide a foundation for
refining the filter’s predictive accuracy, as they capture the local
behavior of the nonlinear system around the current state. In this way,
the EKF mitigates the limitations of linearization inherent to the LKF by
embedding a nonlinear model of the battery system, leading to enhanced
state estimation accuracy and overall performance (Wang et al., 2020)
(C. Wu et al., 2023).In the context of SoC estimation, the EKF is used due
to its adaptability to the battery’s dynamic behavior. Initial parameter
values for the estimation process are established as follows:
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Our three-part model in “Fig. 5" begins with data initialization. If
possible, the FFRLS algorithm and HPPC test data determine initial
values for critical variables impacting load state prediction that mention
specific variables.

The second part, the Thevenin model, performs parameter estima-
tion (Step A) followed by SoC-OCV calculation (Step B) to estimate
terminal voltage. Finally, the third part utilizes the EKF algorithm for
SoC estimation. This two-step process involves calculating predicted and
current states, incorporating initial noise values (Q and R), and using a
state filter to determine the final estimated SOC (El Maliki et al., 2024).

3. Result and discussion

In this study, we used the results obtained from an experimental
flight test conducted with a Y6 hexacopter in “Fig. 6" by Boukoberine
et al., (2021) The hexacopter drone was powered by a compact battery
from 3D Robotics. It featured three Y-shaped arms, each fitted with two
counter-rotating propellers that provided lift, acceleration, and stability.
The airframe also included several autonomous flight modes, improving
its versatility and adaptability for different applications.(Foster, 2014).

Our primary goal was to precisely capture the power profile associ-
ated with the load and incorporate it as an input within our simulation
study. This approach allowed us to understand battery performance
better and evaluate energy consumption under realistic flight condi-
tions. By implementing accurate SoC estimation, we aimed to assess how
the battery behaves and performs in operational scenarios, providing
insights into its efficiency and endurance during actual flight missions.

We thoroughly evaluated the energy consumption profile through
experimental tests with drones, focusing on analyzing current load

v

Input values Ro, Ry, Cp FFRLS
ko6 Ro. Ry, Cp Identification

Ipate

Thevenin Model
Ve (1) =V —Ryjig (£)=Ryi(r)
dig (1) 1 i)

. 1
=1l (t)+R

Extended Kalman Filter

Voos | Input Noise : Q. R
Extended Kalman Filter Algorithm
SoC"p,

Fig. 5. Flowchart calculation.

Cleaner Engineering and Technology 25 (2025) 100917

e = e o e

Fig. 6. 3D Robotics RTF Y6 (Foster, 2014).

characteristics and the ampere-hour-based state of charge for the drones
involved. As illustrated in “Fig. 7," each test drone began with a fully
charged battery. However, as the flight distance increased and speed
varied, environmental factors—particularly wind speed—significantly
impacted the energy consumption patterns and altered the input cur-
rent. We applied the previously described empirical method to estimate
the SoC, which allowed us to dynamically assess the remaining battery
life under different operational conditions. The SoC estimation results
are presented along with a detailed analysis of the current load profile,
offering insights into the energy demands of drones at various flight
stages. This method clarifies how changing environmental and opera-
tional factors influence energy efficiency and battery usage.

The proposed SoC estimation model consists of three crucial parts in
the estimation process. First, the Data Input stage involves initializing
the necessary input data for the model. Utilizing the Recursive FFRLS
algorithm along with the HPPC test, the initial values for key system
variables ko through ks, and parameters such as Ry (ohmic resistance), R,
(polarization resistance), and C, (polarization capacitance) are precisely
determined. These foundational values are essential for accurately pre-
dicting the load state and ensuring reliable SoC estimation.

Fig. 8 showcases the main components and their interactions within

(ﬁ)
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T
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=
T

—
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T T
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=
T
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Fig. 7. Analysis of current load profile and ampere-hour-based SoC (SoC) for
the drones under Investigation.
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BATTERY EXPERIMENTAL PLATFORM

Lithium-Ion Battery Pack

- Model: Y6 Drone Battery

- Nominal Voltage: 22.2V

- Nominal Capacity: 6000mAh
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Fig. 8. Diagram illustrating the battery experimental platform.

the experimental setup aimed at assessing the performance of the bat-
tery management system in drones. This platform features a lithium-ion
battery pack that powers the drone’s propulsion system and is moni-
tored by a battery management system for real-time SoC estimation. The
battery pack connects to a voltage and current measurement system to
gather vital parameters such as voltage, current, and temperature, which
are crucial for precise SOC and health estimation. Data from these
sensors is sent to a processing unit employing algorithms like the EKF for
SOC estimation and parameter identification techniques to model the
battery’s behavior accurately. Furthermore, the platform incorporates a
charging and discharging controller that manages battery usage during
flight tests, ensuring optimal performance and longevity. The experi-
mental platform is also linked with a flight controller, enabling real-
world testing of the battery system during drone operations, which
provides essential feedback for enhancing the battery management
strategy.

The 3D Robotics Y6 Drone is utilized as the platform for real-world
flight validation in this study. This hexacopter drone features autono-
mous flight capabilities, making it an excellent choice for testing and
validating the battery SoC estimation model. The Y6 drone operates on
lithium-ion, which aligns well with the proposed EKF-based SOC esti-
mation framework. Incorporating this drone into the experimental setup
enables practical verification of the proposed SOC estimation methods
during actual flight operations (He et al., 2021).

The key technical specifications of the battery cell used in the Y6
drone are as follows:

The HPPC test is specifically employed to establish the correlation
between the battery’s OCV and SoC (see Table 1). This test subjects the
battery to a sequence of hybrid pulse power profiles to simulate real-
world load conditions. The resulting data is then fitted to a sixth-order
polynomial function, allowing for an accurate mathematical represen-
tation of the relationship between the Li-ion battery’s OCV and its SoC.
Modeling this relationship is vital for comprehending battery behavior
and predicting its performance across varying load scenarios. The values
for ko through ke, are detailed in “Table 2," providing an apparent
reference for these critical parameters (He et al., 2021):

System parameter identification is applied to determine if the model
parameters align with the OCV-SOC curve. This process involves
extracting fundamental values that define the battery’s behavior over
various charge states. The resulting parameters, derived using the
Recursive FFRLS algorithm, are summarized in Table 3. These param-
eters are essential for refining the model’s accuracy and enhancing its

Table 1

the key technical specifications of the battery cell.
SPECIFICATION DETAILS
BATTERY TYPE LITHIUM-ION
NOMINAL VOLTAGE 22.2v (6S CONFIGURATION)
CAPACITY 6000mAh

ANODE MATERIAL GRAPHITE
LITHIUM NICKEL MANGANESE COBALT OXIDE (NMC, LiNiMnCoO5)

LIPFgIN ETHYLENE CARBONATE (EC) AND DIMETHYL CARBONATE (DMC)

CATHODE MATERIAL
ELECTROLYTE
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Table 2
results of OCV-SOC fitting at 25 °C.
ko k1 ka2 ks ks ks ke
3.353 2.478 —9.902 19.01 —14.44 2.351 1.319
Table 3
Model parameters at 25 °C.
Ro(Q) Rp(Q) Cp(F)
0.0703 0.0481 750.6747

predictive capability under different operational conditions.

Fig. O presents a graph with three curves illustrating the SoC for the
system under study. The first curve displays the observed SoC, reflecting
the actual measured SoC values and serving as a reference benchmark
for evaluating the accuracy of the other two curves. This observed curve
provides a basis for comparison, enabling an assessment of how well the
modeled estimations align with the real-world data.

m The second curve, labeled SoC_EKF, represents the SoC esti-
mated using the Extended Kalman Filter. This curve aligns
closely with the observed SoC, delivering a high-precision
estimation by leveraging advanced filtering and state estima-
tion techniques. The SoC_EKF effectiveness stems from its
ability to account for dynamic system changes, offering supe-
rior accuracy in SoC predictions.

» In contrast, the third curve, labeled SoC_AH, represents the SoC
estimated through the Ampere-hour (A.H.) counting method.
Although the SoC_AH curve provides a reasonable approxima-
tion of the SoC, it does not reach the precision level achieved by
the SoC_EKF. The Ampere-hour method calculates SoC based on
accumulated charge or discharge, which is simpler but may

100 T o T T T
— — = -S0C Observed
SoC AH
SoC EKF
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98t B
=
0
O
w
975 i
99.2
99.1
97 4
99
989
96.5 5
9838
987 NN
9 986 \
95 5 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Times (S)

Fig. 9. Comparison of SoC estimation using the Extended Kalman Filter
(SoC_EKF) with the Ampere-hour method (SoC_Ah).
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introduce slight errors, particularly over extended operation
periods.

m As time progresses, the discrepancies between the actual
observed and estimated SoC curves (SoC_EKF and SoC_AH) tend
to grow. This drift indicates a gradual reduction in estimation
accuracy for both methods. Potential sources of these errors
include battery aging effects, which alter battery performance
over time; measurement noise and uncertainties, which may
affect sensor readings; and inherent limitations in the estima-
tion algorithms. These factors contribute to a cumulative error
that becomes more noticeable with extended usage, high-
lighting the need for periodic recalibration or adjustment of the
estimation models to maintain accuracy.

According to “Fig. 10," the Ampere-hour “A.H.” method provides a
reasonably moderate estimation of SoC, although it is somewhat less
precise than the EKF method. The estimated error for SoC_AH can be as
high as 0.00134451, whereas the error for SoC_EKF is lower at
0.000315187.

It can be concluded that SoC.

- The Ampere-hour “A.H.” method offers a reasonable estimation of
the SoC; however, it demonstrates slightly lower accuracy than the
SoC estimation achieved through the Extended Kalman Filter
“SoC_EKF".

The SoC_AH method estimates the SoC using ampere-hour counting
techniques. However, this approach can introduce a certain error
level into the estimation process due to cumulative inaccuracies and
sensor noise.

The Root Mean Square Error “RMSE” counts the average magnitude
of discrepancies between the estimated SoC values and the actual
observed values, providing a reliable metric for assessing estimation
accuracy. In this context:

o For SoC_AH, the RMSE value is 7.2150 x 10~%).
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Fig. 10. Registered errors detected between SoCAH and the esti-
mated SoC_EKF.
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e For SoC_EKF, the RMSE value is 1.9329 x 107%.

- Comparing the RMSE values, we can observe that the SOC_EKF esti-
mation process has a lower RMSE value, indicating higher accuracy
than the SoC_AH estimation process.

Considering the overall results, the SoC_EKF method delivers highly
precise estimations of the SoC but requires more significant computa-
tional resources, making processing power more demanding. In contrast,
the SoC_AH method presents a more practical and computationally
efficient option, offering a satisfactory level of accuracy that may be
suitable for less resource-intensive applications.

4. Conclusion

In this study, we created an advanced battery management system
for drones, emphasizing precise State of Charge estimation to optimize
energy use and improve operational efficiency. Our research presents a
detailed mathematical model for evaluating battery performance and
energy consumption, backed by Hybrid Pulse Power Characterization
tests and Recursive Least Squares with Forgetting Factor for parameter
identification. To overcome the shortcomings of linear filtering tech-
niques, we employed the Extended Kalman Filter for nonlinear SoC
estimation, which greatly enhances accuracy and reliability. The
comparative analysis between the SoC_AH and SoC_EKF estimation
methods revealed that the EKF method offers greater accuracy, with
RMSE values of 1.93 x 10~* for SoC_EKF compared to 7.21 x 10~ for
SoC_AH. These findings indicate that SoC_EKF minimizes estimation
errors and enables real-time, accurate SoC monitoring. This improved
battery state estimation prevents power depletion during drone opera-
tions and enhances battery performance across different environmental
and load conditions. In addition to enhancing energy efficiency, our
findings have important implications for sustainable drone operations.
They contribute to longer battery life, minimize energy waste, and
promote eco-friendly logistics, agriculture, and surveillance uses. This
research marks progress toward creating more dependable and energy-
efficient drones for contemporary technological applications. This paper
also emphasizes the significance of sustainable engineering solutions
and innovative technologies aimed at cleaner production and lowering
carbon footprints. By incorporating advanced estimation techniques
such as the EKF, our research fosters the development of greener and
more reliable drone technologies to create energy-efficient drones for
environmentally friendly applications.
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