
Deep Reinforcement Learning-Based
Indoor Mapless Robot Navigation

September 2024

Yan Gao

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Engineering)

School of Engineering

Cardiff University, United Kingdom

Abstract

Navigation is a critical capability for mobile robots, enabling movement from

a source to a destination. Conventional methods depend on predefined maps,

which are time-consuming and labour-intensive to construct. Mapless navi-

gation removes this requirement by finding collision-free paths using partial

environmental observations. With advances in computational power and ma-

chine learning, there is a growing shift toward deep reinforcement learning

(DRL)-based mapless navigation, where robots learn actions directly from

raw sensory inputs. This thesis focuses on developing and improving DRL-

based mapless navigation systems.

Firstly, this thesis proposes a novel hierarchical reinforcement learning

(HRL)-based mapless navigation framework. Specifically, it defines two dif-

ferent subgoal worthiness metrics: Predictive Neighbouring Space Scoring

(PNSS) and Predictive Exploration Worthiness (PEW). PNSS relates to the

explorable space for each subgoal, while PEW refers to the spatial distri-

bution of obstacles, including the area of free space and the arrangement

of obstacles around each subgoal. The PNSS and PEW models are devel-

oped to predict the PNSS and PEW values, enabling the robot to evaluate

the worthiness of each subgoal. Then, these predicted PNSS or PEW val-

ues are incorporated into the high-level (HL) input representations, resulting

in a more compact and informative representation. Additionally, a penalty

element is introduced in the HL reward function, allowing the HL policy

to consider the capabilities of the low-level policy when selecting subgoals.

Moreover, this thesis proposes a novel subgoal space layout that enables the

robot to explore locations further from its current position. Experiments in

unknown environments demonstrate significant improvements over baselines.

Then, this thesis develops a novel reward function and neural network

i

(NN) structure for HRL-based mapless navigation, designed to address local

minimum issues in complex environments. The reward function for training

the HL policy consists of two components: extrinsic reward and intrinsic

reward. The extrinsic reward encourages the robot to move towards the tar-

get location, while the intrinsic reward, calculated based on novelty, episode

memory, and memory decaying, enables the agent to engage in spontaneous

exploration. The proposed NN architecture incorporates a Long Short-Term

Memory (LSTM) network to enhance the agent’s memory and reasoning ca-

pabilities. Testing in unknown environments shows a significant improvement

in success rates and effective resolution of local minima, especially where

baseline methods fail completely.

Finally, this thesis introduces a DRL-based mapless navigation method

that does not assume the availability of accurate robot pose information. It

utilises RGB-D-based ORB-SLAM2 for robot localisation. The trained pol-

icy effectively directs the robot towards the target while improving pose esti-

mation by considering the quality of observed features along selected paths.

The quality of features depends on both their quantity and distribution. To

facilitate policy training, a compact state representation based on the spatial

distribution of map points is proposed, enhancing the robot’s awareness of

areas with reliable features. Additionally, a novel reward function is designed

that incorporates relative pose error. It increases the policy’s responsiveness

to individual actions. Instead of establishing a predetermined threshold to as-

sess whether the discrepancy between the SLAM-predicted pose and the true

value exceeds an acceptable limit, a dynamic threshold is employed to assess

localisation performance, improving the policy’s adaptability to variations

in SLAM performance across different environments. Experiments show the

method outperforms related RL-based approaches in localisation-challenging

ii

environments.

This thesis presents novel DRL-based mapless navigation approaches,

making significant contributions to both theory and practical applications.

Together, these contributions advance the field of autonomous navigation,

offering more adaptable, efficient, and scalable solutions.

iii

Acknowledgement

During my time as a PhD student, I have many people to thank. First

and foremost, I would like to express my deepest gratitude to my supervisor,

Dr Ze Ji. Without his guidance and support, I would not have been able

to successfully complete my studies. I am also deeply grateful to my second

supervisor, Dr Jing Wu, for offering invaluable advice during moments of

uncertainty. I extend my thanks to all the members of our research group

for the many enjoyable hours we have spent together.

Moreover, I would like to thank my parents and my brother for their

unwavering support and encouragement, letting me know that home is always

a source of strength.

Finally, I express my thanks to the China Scholarship Council for finan-

cially supporting my tuition and living expenses during my PhD studies.

iv

Contents

Abstract i

Acknowledgement iv

List of Figures ix

List of Tables xvii

List of Acronyms xx

Publication List xxii

1 Introduction 1

1.1 Motivation . 2

1.2 Research Challenges and Problems 5

1.3 Aim and Objectives . 7

1.4 Contributions . 8

1.5 Outline . 11

2 Literature review 13

2.1 Map-Based Navigation . 14

2.1.1 Sensing . 15

2.1.2 Localisation . 16

v

2.1.3 Map Representation 18

2.1.4 Path Planning . 20

2.2 Mapless Navigation . 21

2.2.1 DRL-based Mapless Navigation 24

2.2.2 Limitations . 26

2.2.3 Reducing Localisation Errors 38

2.3 Summary . 41

3 Preliminary 43

3.1 Reinforcement Learning . 44

3.1.1 Markov Decision Process 45

3.1.2 Key Elements and Concepts 46

3.2 Reinforcement Learning Methods 48

3.2.1 Model-Free & Model-Based 48

3.2.2 Value-based Methods 50

3.2.3 Policy-based Methods 52

3.2.4 Actor-Critic Methods 55

3.3 Goal-conditioned Reinforcement Learning 56

3.4 Deep Reinforcement Learning Algorithms 56

3.5 Simultaneous Localisation and Mapping 62

3.5.1 Visual SLAM . 63

3.5.2 ORB-SLAM . 66

3.6 Conclusion . 67

4 Efficient Hierarchical Reinforcement Learning for Mapless

Navigation with Predictive Neighbouring Space Scoring or

Predictive Exploration Worthiness 69

4.1 Introduction . 70

vi

4.2 HRL with PNSS . 73

4.2.1 PNSS Model . 74

4.2.2 High-Level Policy . 77

4.2.3 Low-Level Policy . 82

4.3 HRL with PEW . 83

4.3.1 PEW Model . 85

4.3.2 High-Level Policy . 89

4.4 Experiments . 89

4.4.1 Simulation Environment 89

4.4.2 PNSS/PEW Model Training 90

4.4.3 LL Policy Training . 90

4.4.4 HL Policy Training . 92

4.4.5 Subgoal Layouts . 93

4.5 Results and Discussions . 94

4.5.1 Performance Comparison with Other RL-based Ap-

proaches . 95

4.5.2 PNSS Value Prediction 102

4.5.3 RL Algorithms Used to Train the HL and LL Policies . 105

4.5.4 Ablation Study: Observation Modality 108

4.5.5 Ablation study: Subgoal Layouts 117

4.5.6 Ablation Study: Reward Function 122

4.6 Conclusion . 123

5 Mapless Navigation via Hierarchical Reinforcement Learning

with Memory-Decaying Novelty 125

5.1 Introduction . 126

5.2 Methods . 128

5.2.1 High-Level Policy . 128

vii

5.2.2 Low-Level Policy . 135

5.3 Experiments . 138

5.3.1 LL Policy Training . 142

5.3.2 HL Policy Training . 142

5.4 Results . 143

5.4.1 Choice of Hyperparameter in Intrinsic Reward 144

5.4.2 Performance Comparison with Other RL-based Ap-

proaches . 145

5.4.3 Effectiveness of The Proposed Reward Function 151

5.4.4 Ablation Study: Intrinsic Reward Metric 154

5.4.5 Ablation Study of The Proposed HL Network 156

5.4.6 Real World Experiments 159

5.5 Conclusion . 162

6 Deep Reinforcement Learning for Localisability-Aware Map-

less Navigation 163

6.1 Introduction . 164

6.2 Methods . 167

6.2.1 State Representation 167

6.2.2 Reward Function and Network Structure 171

6.3 Experiments . 174

6.3.1 Training in Simulation 174

6.3.2 Evaluation . 176

6.3.3 Study on RPE Dynamic Threshold 183

6.4 Conclusion . 183

7 Conclusion and future work 185

7.1 Conclusion . 186

viii

7.2 Future Work . 189

ix

List of Figures

2.1 (a) Lidar (b) Ultrasonic sensor (c) Depth camera 15

2.2 (a) Metric map (b) Topological map (Beeson et al., 2010) . . . 19

3.1 In RL, the agent observes the state of the environment and

performs an action at each time step. Based on the action

taken, the environment provides a numerical reward as feed-

back to the agent, evaluating whether the action aligns with

the desired behaviour. 47

3.2 Overall visual SLAM framework. 63

4.1 The overall framework with PNSS. The HL policy selects a

subgoal based on the predicted PNSS values, the Lidar ob-

servation and the coordinates of the target coordinates. The

PNSS values are predicted by the PNSS model for a set of

explorable positions in front of the robot. The LL policy con-

trols the robot to reach the subgoal. The process repeats until

the robot reaches the target location. 73

x

4.2 An example of the predicted PNSS values of 3 × 3 positions,

which are located in the forward direction of its ego-centric

view. Each cell in the layouts is 0.5 meters in width and

length. The occupancy view is based on the Lidar observation

at the corresponding location, which the simulator can convert

into a 2D occupancy view. 74

4.3 The PNSS model extracts features from the RGB image firstly.

The Lidar observation is then projected into a 2D occupancy

view. A UNet network is used for predicting the PNSS values

for a 3× 3 grid map. 76

4.4 The overall framework with PEW. The HL policy selects a sub-

goal based on the PEW values of each subgoal (P1, P2, ..., P9),

the Lidar observation and the relative goal position. The LL

policy controls the robot to reach the subgoal. The process

repeats until the robot reaches the target location. 84

4.5 An example of what the PEW model predicts. In the left fig-

ure, the grey areas represent occupied regions, and the white

areas represent free space. The green circle denotes one of

the subgoals the robot can select. The right figure is the oc-

cupancy view measurable with Lidar at the position of the

subgoal. The PEW model is used to predict the area of the oc-

cupancy view and key features of the area, in terms of the dis-

tribution of obstacles and shape/orientation of the free space.

To describe the features of the free space, we use the eigen-

vectors and eigenvalues of the pixels in the free space, where

V1 and V2 represent the two eigenvectors with V1 having a

larger eigenvalue. 84

xi

4.6 Occupancy views of some examples of complex subgoals. The

white area is free space and the grey regions represent occu-

pied or unknown space. All three figures contain the same

area of the free space, except their geometric distribution and

orientations. 85

4.7 Network structure of the PEW model. 88

4.8 Example environments for testing. 91

4.9 Three different layouts we mainly focus on (a) Layout 1 simply

takes the 8 neighbouring grids as its subgoal space. (b) Layout

2 adds three more grids in front of the robot on the basis of

Layout 1. (c) Layout 3 includes 9 subgoals in the forward

direction and 14 rotation subgoals. 94

4.10 Examples of the robot being trapped by obstacles. The red

and blue circles are the start positions and the target positions.

The green lines are ground-truth paths. The red arrows are the

robot’s heading directions. (a), (c), (e) are three cases where

the robot keeps heading towards the direction of the target

and cannot get around the obstacle, using the non-hierarchical

Lidar-based mapless navigation method (Tai et al., 2017). (b),

(d), (f) are the solutions provided by the proposed HRL model

with PNSS in these situations. The yellow circles are the sub-

goals given by the HL policy that leads the robot to bypass

the obstacles. 99

xii

4.11 Examples of long-range navigation tasks. Orange and blue

circles represent the start position and the target position re-

spectively. (a), (b): Green lines represent the robot’s trajec-

tory. (c): Green circles are the subgoals selected by the HRL

model with PEW. 100

4.12 Average HL rewards achieved by the agent (HiRO), the shaded

area represents the standard deviation. 101

4.13 Box plot for average PNSS prediction errors with three layouts.103

4.14 Heat map for the prediction errors for each subgoal in each

layout. In (a) and (b), 0 represents the location of the robot. . 104

4.15 Success rates of the DQN and Double DQN algorithms for

training the HL policy . 107

4.16 Average rewards (a) and test success rates (b) achieved by the

agent with different observation modality-layout 1 110

4.17 Average rewards (a) and test success rates (b) achieved by the

agent with different observation modality-layout 2 113

4.18 Average rewards (a) and test success rates (b) achieved by the

agent with different observation modality-layout 3 114

4.19 An example of the local minimum problem in a long-range

navigation task. Red and blue circles represent the start po-

sition and the target position respectively. Green circles are

the subgoals selected by the policies with different layouts. . . 119

xiii

4.20 We record the total number of occurrences different subgoals

were selected in all successful episodes when the model is

tested in Env 1 (Fig. 4.8a) on tasks of different difficulty set-

tings. 1-9 refers to the 9 grids in front of the robot from near

to far and from left to right. 10-16 indicates that the robot

rotates to the right. The higher the number, the greater the

rotation angle. Similarly, 17-23 represents HL policy selects

the left-rotating subgoals. 121

5.1 This is an example of a local minimum problem, where the

purple and yellow circles denote the starting and target loca-

tions, respectively. The target is situated behind a long wall.

(a) Initially, the HL policy selects subsequent subgoals (de-

noted by the orange circles) in a downward direction, leading

the robot towards the target based on the simple Euclidean

distance. (b) However, since there is no direct path to the goal

due to the obstruction posed by the wall, the robot would need

to find alternative routes to bypass the wall. (c) The robot

will continue to be attracted by the goal while exploring ar-

eas further away from the target, potentially getting trapped

in the local area. To address this, this chapter considers a

memory mechanism or effective exploration motivation would

enable the agent to avoid re-entering previously visited states,

thereby mitigating the issue of local minima. 127

xiv

5.2 The overall framework. The HL policy selects a subgoal based

on the HL input. The LL policy controls the robot to reach

the subgoal, given the subgoal and other LL input informa-

tion. The process repeats until the robot reaches the target

location. Regarding HL model training, a new reward func-

tion is proposed. It has two components: extrinsic and intrin-

sic rewards. The environment provides the extrinsic reward,

and the intrinsic reward is calculated based on novelty, episode

memory, and memory decaying. 129

5.3 Subgoal space. This work sets the surrounding area, centred

on the robot’s current pose, as the subgoal space (yellow cir-

cle). Each grid is 0.35 meters in width and length. 131

5.4 Network structure of HL policy. The input iHt includes the

agent’s current observation and also the observations from the

last three HL steps. The output is the Q value of each subgoal. 135

5.5 Experiment environments for testing. 139

5.6 Specific scenarios for testing. Purple and yellow circles rep-

resent the start location and the target location, respectively.

. 141

5.7 Test success rates with different values of α in the intrinsic

reward during the training process. 145

5.8 Test success rates of the continuous space-based method (Tai

et al., 2017), discrete space-based method (Marchesini and

Farinelli, 2020a) and our method. 147

xv

5.9 An example in the test of scenario 1. Purple and blue circles

represent the start position and the target position, respec-

tively. (a) The orange line represents the robot’s trajectory

generated by the non-hierarchical method (Tai et al., 2017).

(b) The orange circles are the subgoals selected by our HL

policy. The numerical sequence represents the selection order. 149

5.10 Average rewards achieved by the agent when training the HL

policy of HiRO . 150

5.11 An example of the basic HRL-based method in the test of

scenario 1. The orange points represent the subgoals selected

by the HL policy. 153

5.12 An example of the method without intrinsic reward in scenario

1. The orange points represent the subgoals selected by the

HL policy. 156

5.13 Average reward for training steps using our method and the

NN structure without LSTM. 157

5.14 Average reward for training steps using our method and the

NN structure utilising frame stacking. 159

5.15 Experiments in a real environment with (a)-(b) our method

and (c) the non-hierarchical method (Tai et al., 2017). 161

xvi

6.1 The overall framework. ORB-SLAM2 determines the robot

pose through the current RGB-D observations and subsequently

acquires the polar coordinates of the target location. Addi-

tionally, our proposed method captures information on the

distributions of map points derived from SLAM. The input

for the DRL policy comprises the target location, the distri-

bution of map points, and the current velocity of the robot.

The output consists of linear and angular velocity commands. 167

6.2 Illustration of spatial distribution representation of map points.

The green points represent the currently tracked map points

(distributed within regions 1, 12, 13, and 24). The brown

points represent those previously tracked and may be dis-

tributed across any region. 169

6.3 Env 1: Aloha and two examples of the robot visual features. . 174

6.4 Success rates achieved by different methods. 177

6.5 Two examples of SLAM failures caused by the NP-SLAM. The

red and blue circles denote the starting and target locations,

respectively. The arrow represents the initial direction of the

robot. In (a) and (c), the orange circle represents the locations

of the SLAM failures. 180

6.6 Env 2: Arona and two examples of the robot visual features. . 181

xvii

List of Tables

4.1 Performance comparison with two non-hierarchical methods

in the continuous and discrete space respectively (Tai et al.,

2017; Marchesini and Farinelli, 2020a) 97

4.2 Performance of PNSS values prediction using different sens-

ing modalities and subgoal layouts based on the L1 distance

metric. 103

4.3 Test success rates with different RL algorithms used to train

the HL policy . 108

4.4 Test success rates with different observation modalities-layout 1111

4.5 Test success rates with different observation modalities-layout 2115

4.6 Test success rates with different observation modalities-layout 3116

4.7 Test success rates with different subgoal spaces 117

4.8 Test success rates with different reward functions for training

the HL policy . 122

5.1 Performance comparison with two non-hierarchical methods

in the continuous and discrete space respectively (Tai et al.,

2017; Marchesini and Farinelli, 2020a) 148

5.2 Comparison between our method and the basic HRL-based

model in the three unseen environments 152

xviii

5.3 Comparison between our method and the basic HRL method

in the three specific scenarios 152

5.4 Comparison between our method and the method without the

intrinsic reward in the three unseen environments 155

5.5 Comparison between our method and the method without in-

trinsic reward in the three specific scenarios 155

6.1 Test success rates in Env 1. 178

6.2 Test success rates in Env 2. 182

6.3 Test success rates in Env 1/ Env 2. 183

xix

List of Acronyms

UGVs Unmanned ground vehicles

UAVs Unmanned aerial vehicles

DL Deep learning

RL Reinforcement learning

DRL Deep reinforcement learning

DNN Deep neural network

HRL Hierarchical reinforcement learning

GNSS Global navigation satellite system

SLAM Simultaneous localisation and mapping

RPE Related pose error

HL High-level

LL Low-level

IPS Indoor positioning systems

EKF Extended kalman filter

ERL Evolutionary reinforcement learning

LSTM Long short-term memory

NN Neural network

MLP Multi-layer perceptron

DQN Deep Q network

DDPG Deep deterministic policy gradient

SAC Soft actor critic

MDP Markov decision process

POMDP Partially observable markov decision process

PPO Proximal policy optimisation

xx

TD3 Twin delayed deep deterministic policy gradient

A2C Advantage actor-critic

DDQN Double DQN

CNN Convolutional neural network

xxi

Publications

[1] Gao, Y., Wu, J., Yang, X. and Ji, Z., 2023. Efficient hierarchical rein-

forcement learning for mapless navigation with predictive neighbouring space

scoring. IEEE Transactions on Automation Science and Engineering.

[2] Gao, Y., Ji, Z., Wu, J., Wei, C. and Grech, R., 2023, August. Hierarchical

reinforcement learning-based mapless navigation with predictive exploration

worthiness. In 2023 IEEE International Conference on Mechatronics and

Automation (ICMA) (pp. 636-643). IEEE.

[3] Gao, Y., Lin, F., Cai, B., Wu, J., Wei, C., Grech, R. and Ji, Z., 2024. Map-

less navigation via hierarchical reinforcement learning with memory-decaying

novelty. Robotics and Autonomous Systems.

[4] (Under review) Gao, Y., Wu, J. and Ji, Z., 2024. Deep reinforcement

learning for localisability-aware mapless navigation. IET Cyber-systems and

Robotics.

xxii

Chapter 1

Introduction

1

1.1 Motivation

A mobile robot is an intelligent system capable of autonomous movement on

roads and in various terrains, operating in real time. It integrates a range

of advanced capabilities, such as environment perception, dynamic decision-

making, and behavioural control. While these features enable significant

advancements in both military and civilian applications. In the military,

mobile robots can undertake dangerous tasks such as demining (Rachkov

et al., 2005) and reconnaissance (Matthies et al., 2002). In civilian settings,

mobile robot technology is used in various environments, such as warehouse

automation with Unmanned Ground Vehicles (UGVs) (Laber et al., 2020)

or Unmanned Aerial Vehicles (UAVs) for power line inspection (Xing et al.,

2023). In the research of mobile robot technology, navigation is the core focus

of mobile robot research and is essential for enabling autonomous movement.

The goal of navigation is conceptually simple: to find an optimal path

from the robot’s current location to the destination while avoiding obsta-

cles. A conventional mobile robot navigation system is explicitly divided

into three components: a mapping and localisation module, a global path

planner, and a local planner. The robot first needs to create a map of the

environment using various mapping methods (Millonig and Schechtner, 2007;

Durrant-Whyte and Bailey, 2006), then localises both the target location and

its current position within the map (Rai et al., 2012; Durrant-Whyte and Bai-

ley, 2006). The global planner generates a feasible path based on different

path planning approaches (Gasparetto et al., 2015), and the local planner

follows a sequence of waypoints proposed by the global planner. Thus, the

entire navigation process heavily relies on an accurate map, leading to the

conventional navigation method being referred to as the map-based method.

However, map-based navigation has several limitations, primarily related

2

to the reliance on maps. Firstly, constructing a map is time-consuming

and labour-intensive. Secondly, maintaining and updating the map can be

costly in the long term, especially with dynamic changes in the environment.

Thirdly, there is a high dependence on precise sensors for mapping work.

These limitations have been highlighted in previous studies (Xie, 2019; Tai

et al., 2017).

Mapless navigation is widely regarded as an approach that eliminates the

need for a map in the navigation system. Mapless navigation refers to the

task of finding a collision-free path for a mobile robot with only partial ob-

servations of the environment. This capability is crucial for applications in

unstructured environments, such as urban search and rescue, disaster relief,

and domestic service robots, where constructing an accurate map is challeng-

ing.

Nowadays, extensive research (Patle et al., 2019) has been conducted on

path planning for autonomous navigation systems, which involves determin-

ing the optimal route for a robot or vehicle to travel from a starting point

to a destination while avoiding obstacles and ensuring efficiency. This field

has seen significant advancements, particularly in addressing challenges such

as planning under perception uncertainty (Kurniawati, 2022). However, con-

ventional path planning algorithms typically rely on handcrafted heuristic

functions—predefined rules or strategies designed to estimate the cost or

feasibility of a path. While these heuristic functions can provide effective

guidance in specific, well-understood environments, they are often tailored

to particular scenarios, making them less adaptable to unforeseen conditions.

Lack of generalisation means that significant effort must be invested to re-

configure these algorithms whenever they are deployed in a new context. As

a result, there is a growing interest in developing more flexible and adaptive

3

path planning methods that can learn and generalise across diverse envi-

ronments, reducing the dependency on handcrafted heuristics and enhancing

the robustness and efficiency of navigation systems (Mac et al., 2016; Qureshi

and Yip, 2018).

As an emerging algorithm, deep reinforcement learning (DRL) has achieved

great success in numerous tasks including video games (Mnih et al., 2015),

simulation control agents (Lillicrap et al., 2015) and robotics (Kober et al.,

2013). Reinforcement learning (RL) involves an agent interacting with the

environment and learning an optimal policy through trial and error. As a

purely data-driven method, deep reinforcement learning (DRL) outperforms

conventional approaches in several ways. Firstly, it eliminates the need for

handcrafted rules, which, while effective in certain scenarios, may have been

derived based on domain-specific assumptions and can sometimes offer lim-

ited adaptability. Many studies have shown that DRL-based methods can

surpass the limitations of human strategies (Li, 2017). However, it is impor-

tant to note that handcrafted rules may also come with rigorous theoretical

guarantees that are difficult to achieve in DRL. While DRL offers flexibility

and adaptability, its reliance on empirical learning means it may lack the

same level of formal theoretical assurance that handcrafted approaches can

provide. Secondly, DRL excels in learning from high-dimensional domains,

such as sensory data or robot models—domains that are both information-

theoretically and computationally challenging for heuristic methods. Thirdly,

in contrast to other machine learning mechanisms, RL is more suited to prob-

lems with complex reward structures and a strong requirement for sequential

interactions with the environment. Therefore, DRL has demonstrated great

performance in addressing mapless navigation tasks (Tai et al., 2017; Zhelo

et al., 2018). It enables the generation of appropriate navigation behaviours

4

for mobile robots based solely on sensory information, without the need for

a map. The working principle of DRL-based mapless navigation is straight-

forward: reward the robot for reaching the target location and penalise it for

collisions (Dobrevski and Skočaj, 2021).

However, due to long decision horizons and sparse rewards that can only

be earned upon reaching the target location, the agents of most DRL-based

mapless navigation methods (Tai et al., 2017; Dobrevski and Skočaj, 2021)

often get stuck in local regions, encountering the local minimum problem

in complex environments. Hierarchical reinforcement learning (HRL)-based

mapless navigation methods have shown promising performance in address-

ing this problem (Ding et al., 2018; Wöhlke et al., 2021). This is because

HRL allows a robot to decompose a long-horizon navigation task into several

intermediate destinations (subgoals), which are significantly easier to reach

than the distant long-term goal. Based on HRL, a navigation system can

be divided into two levels: a high-level (HL) policy that selects subgoals as

short-term targets, and a low-level (LL) policy that moves the robot to these

subgoals at the locomotion level.

1.2 Research Challenges and Problems

Although DRL/HRL-based methods have demonstrated remarkable perfor-

mance, several challenges remain. This thesis aims to address the following

problems.

One major challenge is the limitations of HRL in addressing mapless

navigation effectively. The existing HRL-based methods contain three limi-

tations. Firstly, humans have the ability to assess the worthiness of different

subgoals for exploration, enabling them to make informed decisions when

5

selecting subgoals (Wolbers and Wiener, 2014). However, the HL policies

of most methods lack this capability. These policies select subgoals solely

based on sensory observations. Widely used sensors, such as Lidar, opti-

cal cameras, and RGBD sensors, provide high-dimensional raw measurement

data that are inefficient for training RL agents for complex navigation tasks.

Secondly, in most methods, the subgoal layout is defined as a 3 × 3 grid

map centred around the robot, allowing for 8 subgoals in the neighbouring

cells (Wöhlke et al., 2021). This can restrict the robot’s exploration. Few

studies have examined the effects of different subgoal space layouts. Thirdly,

many methods do not adapt the HL planning to the capabilities of the LL

policy (Eppe et al., 2019; Yamamoto et al., 2018). In robot navigation, it is

unrealistic to assume that the robot can always reach a subgoal selected by

the HL policy.

Another significant challenge relates to the performance of HRL in com-

plex and cluttered environments, where agents may still encounter issues such

as getting stuck in local minima. The reasons can be summarised as follows:

Firstly, most HRL-based mapless navigation methods use a simplified re-

ward structure when training their HL policies, such as rewarding proximity

to the goal and penalising collisions (Zhou et al., 2019; Bischoff et al., 2013;

Staroverov et al., 2020). Secondly, many methods rely on random exploration

strategies, like ϵ-greedy, during training (Zhou et al., 2019; Bischoff et al.,

2013). Thirdly, most agents lack a spatial memory mechanism, which can

lead to revisiting the same locations multiple times. Thus, the agent is easily

trapped in a local region.

A further issue in most DRL-based mapless navigation methods is the

assumption that robots have access to accurate ground-truth poses, typi-

cally provided by Global Navigation Satellite System (GNSS) signals (Tai

6

et al., 2017; Zhelo et al., 2018; Jang et al., 2021). However, this assumption

is unrealistic in the real world, as GNSS signals are not available every-

where. In GNSS-denied environments, Simultaneous localisation and Map-

ping (SLAM)-based localisation methods may be required to assist in robot

self-localisation. However, the performance of these techniques is highly de-

pendent on the environment. For instance, visual SLAM heavily relies on

tracked visual features. Its performance may degrade in environments where

features are poorly observed, such as in areas lacking distinct features. Ignor-

ing localisation performance can lead to robots failing to accurately localise

themselves, resulting in potential issues due to decision-making based on un-

reliable state estimation. Therefore, the author believes that the perception

module for localisation should be closely integrated with decision-making in

the path planning process.

1.3 Aim and Objectives

The primary aim of this project is to develop a reinforcement learning-based

navigation method that can allow a robot to robustly navigate in cluttered

environments and be deployed in the real world without assuming localisation

availability.

Based on the research challenges, this project aims to achieve the follow-

ing objectives:

• Propose an HRL-based mapless navigation framework to enhance per-

formance in long-range navigation tasks in cluttered environments.

• Develop a solution to enhance the effectiveness of the high-level (HL)

policy within the hierarchical reinforcement learning (HRL) framework

for selecting appropriate subgoals.

7

• Investigate effective approaches to incorporate a novelty mechanism to

encourage robots to explore unknown environments more efficiently,

hence addressing the local minimum issue.

• Propose a solution to eliminate the reliance on the assumption of local-

isation availability by integrating visual SLAM into the mapless navi-

gation framework.

• Optimise traversal trajectories using RL to ensure the perception of

high-quality visual features, hence preventing deteriorated localisation

performance.

1.4 Contributions

In accordance with these research objectives, this section summarises the

contributions claimed in this thesis.

By pursuing objectives to address the limitations of HRL-based mapless

navigation methods, this thesis makes the following contributions:

• Introduce a novel HRL-based mapless navigation framework using RGB

images and Lidar scans. The high-level policy predicts the worthiness

value of each subgoal based on RGB images and Lidar observations,

then selects an appropriate subgoal. The low-level policy controls the

robot to reach the subgoal by generating speed commands based on

Lidar observations.

• Propose two metrics for evaluating the worthiness of each subgoal. The

first is Predictive Neighbouring Space Scoring (PNSS), which relates to

the free neighbouring space available at each subgoal. The second is

8

Predictive Exploration Worthiness (PEW), which considers obstacle

spatial distribution, such as the area of free space and the distribution

of obstacles around each subgoal.

• Develop the PNSS and PEW model to predict the respective values for

each subgoal. The predicted PNSS or PEW values are then utilised

as part of the HL policy inputs, providing a compact and informative

representation.

• Propose a new HL reward function that includes penalties for selecting

subgoals that are not achievable by the LL policy, resulting in more

reliable subgoal selection.

• Design a novel subgoal layout to improve overall performance.

• Demonstrate the effectiveness of the proposed HRL-based method,

showing that it outperforms state-of-the-art methods in terms of task

success rates and generalisability.

By pursuing objectives to address the local minimum issue of HRL-based

methods, this thesis makes the following contributions:

• Propose a new HL reward function that integrates two principal com-

ponents: extrinsic and intrinsic rewards. The extrinsic reward guides

the robot towards the target location. The intrinsic reward, informed

by novelty theory (Ruan et al., 2022), episode memory, and memory

decay, fosters effective exploration of the environment.

• Design a novel neural network structure that incorporates an LSTM

layer to provide the agent with a memory mechanism. The network

takes a sequence of the four most recent states as input and outputs

the Q-values for selecting the corresponding subgoal.

9

• Demonstrate the effectiveness of the proposed reward function and neu-

ral network (NN) structure, particularly in addressing the local minima

issue.

By pursuing objectives to address the issue of most RL-based methods

relying on the assumption of localisation availability, this thesis makes the

following contributions:

• Develop a novel DRL-based mapless navigation framework that uses

RGB-D-based ORB-SLAM2 for localisation, eliminating the assump-

tion of available ground-truth robot pose.

• Propose a compact state representation derived from the spatial distri-

butions of map points. It enables the robot to be aware of the distribu-

tions of tracked features, thereby encouraging navigation along paths

that offer reliable localisation.

• Introduce a novel reward function that incorporates related pose error

(RPE). This enables the policy to be more responsive to the individual

action, providing finer-grained feedback on the impact of each action

on overall performance.

• A dynamic threshold is introduced to assess the performance of SLAM,

enhancing the policy’s adaptability to variations in SLAM performance

across different environments.

• Demonstrate the substantial improvements in localisation accuracy and

navigation task success rates achieved by the proposed method.

In Chapter 4, a novel mapless navigation framework based on HRL is

introduced, enabling the robot to evaluate the worthiness value of each sub-

goal, which significantly improved the success rate of long-range navigation

10

tasks. However, this approach still faced the issue of local minima in un-

structured environments that might contain terrains like long corridors and

dead corners. To address this, Chapter 5 proposes a method for training the

high-level policy, including a new reward function and a novel neural network

structure, both of which help mitigate the local minimum problem. While

both Chapters 4 and 5 effectively tackle mapless navigation and the local min-

imum challenge, they still rely on the assumption of localisation availability.

In response, Chapter 6 introduces an RL-based method that eliminates this

assumption, further advancing the capabilities of the navigation system.

1.5 Outline

The remainder of this thesis is organised into six chapters, which are briefly

outlined as follows.

Chapter 2 reviews the relevant literature on conventional map-based

and modern DRL-based mapless navigation. It summarises the limitations

of existing methods and discusses related approaches for addressing these

challenges.

Chapter 3 provides an overview of key concepts in RL and highlights

the important DRL algorithms used in this thesis. Additionally, it discusses

techniques for reducing localisation errors when using self-localisation meth-

ods to determine the robot’s pose during navigation.

Chapter 4 addresses the limitations of HRL-based mapless navigation

methods, seeking to develop a more efficient HRL framework for long-horizon

navigation tasks.

Chapter 5 focuses on resolving the local minimum issues in HRL-based

methods within complex environments.

11

Chapter 6 is devoted to developing a DRL-based method that does not

rely on the assumption of available robot pose.

Chapter 7 concludes the thesis by summarising the contributions and

limitations of the works, and proposing future research directions.

12

Chapter 2

Literature review

13

In this chapter, a comprehensive review of related works on robot naviga-

tion methods is presented. Robot navigation is a classic problem in robotics

with applications across numerous industries. Rather than providing an ex-

haustive review of this vast field, this chapter focuses specifically on the

navigation of wheeled robots in indoor environments. These methods can

be broadly classified into two categories: map-based methods and mapless

methods.

This chapter is organised as follows: First, Section 2.1 outlines the formu-

lation of map-based navigation methods, covering sensing, localisation, map-

ping, and path planning. Following this, Section 2.2 reviews recent works in

mapless navigation, particularly those utilising deep reinforcement learning

and discusses their limitations. Such studies often assume that robots have

access to ground-truth poses, which is unrealistic in real world environments.

Therefore, at the end of this chapter, methods for reducing localisation errors

when employing various techniques to determine the robot pose are explored.

Finally, Section 2.3 concludes this chapter.

2.1 Map-Based Navigation

Conventional navigation methods are widely recognised as map-based ap-

proaches. This is because the navigation system fundamentally relies on a

geometric description of the environment, e.g. a map. The traditional nav-

igation task can be decomposed into three sub-tasks: perception, planning,

and control. Perception involves sensing the environment, representing it,

and localising the robot, essentially allowing the robot to determine its own

position. Planning aims to find the shortest path to the destination. Finally,

the control module guides the robot to execute the planned actions, ensuring

14

it moves toward the target location while avoiding obstacles.

2.1.1 Sensing

Robots typically estimate their state by extracting geometric relationships

between themselves and objects in the environment, relying on sensors. Di-

rectly measuring distance is the simplest sensing method, and the raw data

can be used for both obstacle avoidance and map construction. Widely used

sensors in robot navigation systems include Lidar (Kwon and Lee, 1999; Scott

et al., 2000), ultrasonic sensors (Moravec and Elfes, 1985; Elfes, 1987), and

depth cameras (Moradi et al., 2006; Cunha et al., 2011), as shown in Fig. 2.1.

(a) (b) (c)

Figure 2.1: (a) Lidar (b) Ultrasonic sensor (c) Depth camera

Lidar technology utilises light pulses or laser beams to measure the dis-

tance between the robot and obstacles. When the beams of light hit an

object, they reflect back to the sensor, enabling the calculation of distance

based on the elapsed time. Ultrasonic ranging involves emitting pulses of

acoustic energy toward the obstacle’s surface and measuring the time it takes

for the echo to return. The most widely used depth camera is the Microsoft

Kinect (Zhang, 2012), developed by Microsoft Corporation. This device fea-

15

tures an infrared laser projection system and a monochrome CMOS sensor,

allowing it to capture 3D video data in various lighting conditions.

As an alternative to ranging sensors, the visual sensor has a wide applica-

tion in robot navigation. It can capture external information about objects

in the environment (DeSouza and Kak, 2002). While a single image cannot

provide geometric information, this can be derived from two images using

internal and external camera parameters. Moreover, with the ubiquity of

cameras and the increasing semantic information contained in images, the

influence of visual sensors in robot navigation research is growing exponen-

tially.

2.1.2 Localisation

In this section, pure localisation methods that do not involve constructing a

map of the environment are explored. Then, Simultaneous Localisation and

Mapping (SLAM) approaches are reviewed.

In many map-based robot navigation systems, the environment is de-

scribed in a pre-defined metric map that is always available to the robot.

Thus, understanding the robot’s state within the environment requires only

a localisation system to provide the robot’s pose in the map’s coordinate

system.

This section reviews prior work on Indoor Positioning Systems (IPS),

focusing on robot navigation in indoor environments. Visual localisation is

popular in robotics due to its low cost and high accuracy (DeSouza and Kak,

2002). However, its bottlenecks include limited computational power and a

lack of robustness to environmental changes, such as variations in lighting.

Another frequently used sensor in infrastructure-free IPS is the range finder,

which outperforms others in terms of accuracy but has the disadvantages of

16

high energy consumption and cost (Lingemann et al., 2005). Besides these

two types of infrastructure-free IPS, other systems may utilise magnetic field

sensors (Wang et al., 2016a) or inertial sensors (Xiao et al., 2014), which often

involve a significant tradeoff between manufacturing cost and measurement

accuracy.

Simultaneous Localisation and Mapping (SLAM) (Durrant-Whyte and

Bailey, 2006) shall be the most widely used method in constructing a map

of the environment and localising the robot. SLAM refers to the process

by which a robot builds a map of the environment while simultaneously

determining its position within that map. Notably, SLAM allows the robot

to estimate its motion trajectory and create the map in real-time, without

any prior knowledge. This capability makes SLAM a crucial technology in

the field of robot navigation.

Generally, as the robot moves, its position changes and sensor observa-

tions are used to extract feature points from the environment. The robot then

combines the positions of the currently observed feature points with its pre-

vious observations and movement data. This integration is often performed

using an Extended Kalman Filter (EKF) to estimate the current position and

update the environmental map. Since the robot’s position information ob-

tained through motion estimation has significant errors, it cannot rely solely

on this method for accurate positioning. After using the robot’s motion equa-

tion, it is necessary to use information from the surrounding environment to

correct the robot’s position. This process generally involves extracting envi-

ronmental features and then re-observing these features’ positions after the

robot has moved.

There are various forms and solutions for SLAM, with probabilistic SLAM

being widely accepted (Thrun et al., 1998). At the theoretical level, proba-

17

bilistic SLAM can be addressed using several methods, such as the Kalman

Filter (EKF-SLAM) (Bailey et al., 2006), the Rao-Blackwellised Particle

Filter (FastSLAM) (Montemerlo et al., 2002), and Graph Theory (Graph-

SLAM) (Thrun and Montemerlo, 2006). However, this is only at the theo-

retical level, and there are still many substantive problems when it is applied

in a real environment. Firstly, it is computationally intensive and complex. It

involves estimating joint states that encompass robot poses and the positions

of stationary landmarks, where each landmark corresponds to a feature point

on the map. As the robot’s trajectory lengthens and the number of land-

marks on the map increases, the size of the state vector for the robot grows

linearly, and the covariance matrix grows quadratically. Secondly, dynamic

environments significantly impact the practical implementation of SLAM.

Assumptions in many SLAM algorithms, which typically assume a static en-

vironment, are often disrupted by pedestrians and movable objects. These

disruptions can lead to conflicts during map updates through data associ-

ations. For instance, if the robot returns to a previously recorded position

on the map, it may attempt to close the loop and reduce drift by matching

current observations with the map. Significant changes in the environment at

that location can cause the data association to fail, resulting in inconsistent

maps.

2.1.3 Map Representation

The form of maps varies with the application of navigation and can be broadly

categorised into metric maps and topological maps, as shown in Fig. 2.2.

18

(a)

(b)

Figure 2.2: (a) Metric map (b) Topological map (Beeson et al., 2010)

Metric maps emphasise the precise representation of positional relation-

ships between objects. They are typically classified as either sparse or dense.

Sparse maps offer a degree of abstraction and do not need to represent all

objects, while dense maps aim to capture detailed information about every

object in the environment. People select representative features, known as

landmarks, a sparse map is composed of these landmarks, with non-landmark

areas being ignored (Meyer and Filliat, 2003). In contrast, dense maps aim

to model everything in the environment. While sparse maps are often suffi-

cient for localisation, dense maps are typically required for navigation (Meyer

and Filliat, 2003; Filliat and Meyer, 2003). Dense maps are usually com-

19

posed of numerous small blocks, each representing a specific resolution. A

two-dimensional metric map consists of numerous small grids, while a three-

dimensional map is made up of many small volumes called voxels. Typically,

each voxel can be in one of three states: occupied, free, or unknown, indi-

cating whether or not there is an object within that voxel (Fairfield et al.,

2010).

Topological maps emphasise the relationships between map elements rather

than the precise accuracy of metric maps. Essentially, a topological map is

a graph consisting of nodes and edges that represent the connectivity be-

tween points (e.g., point A is connected to point B) rather than the specific

process of travelling from A to B (Kostavelis and Gasteratos, 2015). This

approach simplifies the map, making it a more compact representation. How-

ever, topological maps are less effective at representing complex structures.

Key challenges remain in partitioning the map to create nodes and edges and

in using topological maps for navigation and path planning.

2.1.4 Path Planning

Once the robot has localised itself and identified the target on the map,

the next step is to find a path to the target. Path planning algorithms are

utilised to generate collision-free paths with minimal cost. These algorithms

can be categorised into offline and online methods based on whether the

robot possesses a complete description of the environment in advance.

In offline algorithms, searching and creating the optimal path on a given

map is straightforward because the complete environment map is available.

Lozano-Perez et al. developed core methods in this field, introducing con-

cepts like configuration space, visible graph, and cell decomposition in the

early stages (Lozano-Pérez and Wesley, 1979; Lozano-Perez, 1990). These

20

methods are effective in simpler environments but can be computationally

expensive in complex ones. As a result, optimisation algorithms such as ge-

netic algorithms and particle swarm optimisation have been developed (Qin

et al., 2004; Piot et al., 2016).

Online path planning algorithms are widely favoured due to their strong

compatibility with SLAM, allowing robots to map environments as they tra-

verse them. Early examples of online path planning algorithms include the ar-

tificial potential field method (Khatib, 1986) and collision cones (Chakravarthy

and Ghose, 1998). Current online path planning algorithms have been im-

proved, with more efficient approaches emerging, such as bionics (Mei et al.,

2006) and evolutionary algorithms (Vadakkepat et al., 2000).

2.2 Mapless Navigation

As discussed above, the conventional robot navigation system heavily relies

on the map of the environment. However, many research (Fan et al., 2018;

Tai et al., 2017; Jin et al., 2020) have pointed out some problems with using

maps in robot navigation systems. Firstly, constructing an accurate map of

the environment is time-consuming and labour-intensive. In addition, the

control performance of conventional methods highly depends on the simpli-

fied mathematical models, which lead to unreliable navigation systems.

Mapless navigation is widely regarded as an approach that relieves the

navigation system from the need of a map (Tai et al., 2017; Zhelo et al.,

2018). Mapless navigation refers to the task of finding collision-free paths in

situations where the mobile robot receives only local environmental informa-

tion, without pre-constructed descriptions of the environment. The difference

between map-based and mapless navigation is summarised in Table. 2.2.

21

Metric Map-Based Naviga-

tion

Mapless Navigation

Application Sce-

narios

Autonomous vehicles

(self-driving cars), GPS

navigation (smart-

phones, cars, hiking),

Indoor navigation (shop-

ping malls, airports)

Robots in unknown

or dynamic environ-

ments, Search and rescue

operations

Required Prior

Knowledge

Precise map data (2D

or 3D), Detailed road,

building, or terrain infor-

mation

Minimal prior environ-

mental knowledge, Real-

time sensor data, algo-

rithms for localisation

Real-time Adapta-

tion

Limited to map updates;

slower reaction to unex-

pected events, Requires

external inputs for dy-

namic changes (e.g., traf-

fic)

High adaptability to

changing environments

without pre-built maps,

Continuously adapts

using sensors and AI

algorithms

Infrastructure De-

pendence

Heavy reliance on pre-

existing infrastructure

(maps)

Minimal infrastruc-

ture required (works in

uncharted spaces)

Cost Can be expensive due

to high-quality maps

and updates, Continuous

costs for map updates

Can be less costly in

terms of infrastructure,

Requires high computa-

tional resources for real-

time processing

22

Metric Map-Based Naviga-

tion

Mapless Navigation

Reliability High in well-mapped ar-

eas

Highly reliable in unpre-

dictable environments,

but can struggle with

accuracy in some cases

Scalability Scalable for large ar-

eas (city-wide, country-

wide)

Typically suited for

smaller or dynamic

areas, but scalable with

advancements

Computational

Complexity

Relatively lower com-

plexity once map is

available

Higher complexity due

to real-time processing of

sensor data

Robustness to

Environmental

Changes

Less robust to sudden

environmental changes

(e.g., road closures,

unexpected obstacles)

More robust, as it reacts

to real-time environmen-

tal changes

Data Updating

Frequency

Updates typically require

manual or automated

map revisions

Continuous and real-time

updates as the system ex-

plores

Energy Efficiency Can be more energy-

efficient (especially in

known environments)

Energy-consuming due

to continuous sensor

processing and decision-

making

Deep reinforcement learning-based methods are currently receiving the

most attention in the field of mapless navigation. With the powerful rep-

23

resentation learning capabilities, DRL-based methods enable the learning of

control policies directly from raw sensory inputs, bypassing all intermediate

steps of the conventional methods. Therefore, this thesis mainly focuses on

DRL-based mapless navigation methods.

2.2.1 DRL-based Mapless Navigation

Tai et al. (Tai et al., 2017) address the challenge of designing suitable move-

ment behaviours for mobile robots when no prior map information is avail-

able. They propose a mapless navigation system based on DRL. The mobile

robot in this system is equipped with a ranging sensor. This system utilises a

transformation equation. The equation takes three inputs: a 10-dimensional

local Lidar observation, the 2-dimensional relative position of the target, and

the robot’s 2-dimensional velocity from the previous time step. The output is

a 2-dimensional velocity representing the robot’s current action. In addition,

they apply asynchronous DRL to train the model. Unlike traditional DRL

methods, asynchronous DRL separates the training sample collection into a

different thread. This approach enables multiple sample collection threads,

enhancing efficiency and performance. The reward function is that a posi-

tive value will be assigned to the agent when reaching the target location and

the agent will be penalised when colliding with an obstacle. In other cases,

the reward is the change of distance from the robot to the target location

between two consecutive timesteps.

A number of related works have adopted a similar method and reward

function to address mapless navigation tasks. Dobrevski et al. (Dobrevski

and Skočaj, 2021) present a novel local navigation method for guiding robots

to global goals without an explicit environmental map. The proposed model,

trained using a DRL framework based on the advantage Actor-Critic (A2C)

24

method, directly translates robot range-scan observations into action com-

mands. Grando et al. (Grando et al., 2020) introduce a DRL-based system

designed for goal-oriented mapless navigation of Unmanned Aerial Vehicles

(UAVs). Their approach leverages localisation data and sparse range data

to train the intelligent agent efficiently.

In RL-based mapless navigation, the robot’s sensors encompass not only

range sensors but also visual sensors (Zhu et al., 2017; Shao et al., 2018).

Zhu et al. (Zhu et al., 2017) explore the hypothesis of using purely visual

input for target-driven mapless navigation. They propose an actor-critic

model whose policy is a function of the goal as well as the current observed

image. They aim for their model to exhibit high adaptability and flexibility,

eliminating the need for repeated training when the target image changes.

Consequently, the model requires an understanding of the relative spatial

relationship between the current and target positions, as well as an awareness

of the overall scene layout. To capture this intuition, they develop a Deep

Siamese Actor-Critic Network.

The method involves inferring the spatial relationship between the cur-

rent position and the target by projecting the two input images into a shared

embedded space, preserving their geometric relationship. The proposed net-

work is a two-stream model designed for discriminative embedded learning.

They use two Siamese layers with shared weights to map the current state and

target into the same embedded space, then fuse these embeddings to form

a joint representation. They also introduce a scene-specific layer to cap-

ture particular scene features, such as room layout and object arrangement,

which processes the joint representation. The model then generates policies

and value estimates similar to the A2C model. In their method, all scenarios

share a common generic Siamese layer, while targets within a scenario use

25

the same scene-specific layer. This enhances the model’s generalisation as

the target image changes. Regarding the reward function, they provide a re-

ward of 10.0 upon completing the task of reaching the goal. Additionally, to

incentivise shorter trajectories, they introduce a small time penalty of −0.01

as an immediate reward.

In addition, many other DRL-based mapless navigation models using

visual information as input demonstrate great performance. For example,

Shao et al. (Shao et al., 2018) propose an efficient DRL-based method to

address visual navigation tasks. Specifically, they present the synchronous

A2C with the generalised advantage estimator (GAE) algorithm. Gupta

et al. (Gupta et al., 2017) train a model using real-space scans. Mirowski

et al. (Mirowski et al., 2018) utilise a high-quality simulated environment to

perform inter-city mapless navigation without deploying a real robot or using

city maps.

2.2.2 Limitations

Recent research on DRL-based mapless navigation has demonstrated im-

pressive performance in handling navigation tasks without relying on pre-

defined maps. However, they only address those problems under limited sit-

uations. For example, the environments in which Tai Lei’s method is trained

and tested are simple, Gazebo-created environments with no complex obsta-

cles (Tai et al., 2017). This section discusses the current challenges facing

most mapless navigation methods and explores how related work is address-

ing these issues.

26

Low Training Efficiency

Most methods (Tai et al., 2017; Luong and Pham, 2021) highlight that vari-

ous applications based on DRL must contend with the uncertainties of robot

hardware and real-world environments. Consequently, numerous trials are

necessary to enhance the stability of robot performance. Reducing the num-

ber of training iterations and improving training efficiency has thus become

a significant challenge.

To address this issue, many theoretical (Wang et al., 2016b; Schaul et al.,

2015b) and systematic (Mnih et al., 2016) methods have been introduced.

These methods improve training efficiency by optimising the learning mech-

anism itself, without relying on any additional information.

In addition, numerous works try to combine other learning techniques

with DRL algorithms to address the issue of low training efficiency. Luong

et al.(Luong and Pham, 2021) propose a DRL-based mapless navigation sys-

tem with incremental learning. They employ an on-policy learning approach

to effectively train the navigation policies. The traditional actor-critic al-

gorithm struggles with sampling efficiency, and the Advantage Actor-Critic

(A2C) method is not suitable for online learning models. To address these

issues, Luong et al. propose an improved A2C model that incorporates the

Kronecker-Factored Trust Region (ACKTR) (Wu et al., 2017). This en-

hancement optimises the loss function by using K-factor and trust region

adjustments within the A2C framework. In this model, the actor and critic

networks share two fully consistent connection layers, reducing the number

of training parameters and improving training efficiency.

Recently, many studies have also combined evolutionary strategies with

DRL, called evolutionary reinforcement learning (ERL) (Such et al., 2017;

Bodnar et al., 2020; Khadka and Tumer, 2018). Conventional RL often relies

27

on extensive sampling and trial-and-error to improve policy performance,

particularly in high-dimensional spaces or with sparse rewards, leading to

lower sample efficiency. However, ERL utilises evolutionary algorithms to

evaluate multiple individuals in each generation, leveraging parallel compu-

tation to enhance sample efficiency. Genetic operations such as crossover and

mutation can quickly generate new strategies, speeding up the exploration

of the solution space.

Marchesini et al. (Marchesini and Farinelli, 2020b) propose a hybrid al-

gorithm called Genetic Deep Reinforcement Learning (Genetic DRL), which

is on the basis of ERL. This approach combines the strengths of traditional

genetic algorithms and DRL. In Genetic DRL, the agent initially stores its

experience from interacting with the environment in a replay buffer. Peri-

odically, it generates a population of children, each with a distinct genome

created by a mutation function. A separate thread and a copy of the train-

ing environment are instantiated for each child. The mutation function’s

weights are used to create these individuals. The children are then evaluated

in their respective training environments using a copy of the mutation func-

tion’s weights. The best-performing child replaces the current agent, thereby

improving the overall training process. Genetic DRL leverages DRL for effi-

cient sampling and uses the genetic algorithm to evaluate and discover bet-

ter strategies. This combination enhances training stability, reduces training

time, and improves overall training efficiency.

On the other hand, Marchesini et al. (Marchesini and Farinelli, 2020a)

find that mapless navigation models with discrete state spaces require sig-

nificantly less training time compared to those with continuous state spaces.

They argue that continuous state space-based algorithms (such as DDPG,

PPO) can address issues that discrete state space-based algorithms cannot,

28

such as sampling in a continuous high-dimensional action space. However,

DDPG and PPO are still challenged by longer training time compared to

discrete action space-based algorithms.

Additionally, learning from demonstrations (or imitation learning) may

be another choice to speed up the training (Duan et al., 2017). It leverages

both the interactive learning pattern in RL for robustness and the efficient

learning signal in supervised learning by forcing the network to mimic expert

behaviour. However, it is limited by the need for expert controllers, which

are often difficult to establish.

Local Minimum Problem

The current work of DRL-based mapless navigation has shown promising

performance in simple environments. However, a common feature of these

methods (Tai et al., 2017; Marchesini and Farinelli, 2020a; Mnih et al., 2016)

is their reliance on either random exploration strategies, such as ϵ-greedy,

or state-independent exploration by maximising the entropy of the policy.

Also, some methods utilise sparse rewards (Shao et al., 2018), which are

only granted upon reaching the target location. As a result, when testing

these methods in complex environments, the agent tends to be stuck in local

regions, i.e, the local minimum problem.

Nowadays, some methods aim to solve this issue through novel reward

functions. Pathak et al. (Pathak et al., 2017) introduce the concept of ’inter-

nal curiosity’ to the reward function. They argue that an agent’s ability to

predict the consequences of its actions can be used to assess the novelty of

states, or the intrinsic curiosity. Therefore, they develop an Internal Curios-

ity Module (ICM) that predicts the next state based on the current state and

action. The error between the predicted state and the actual state serves as

29

the intrinsic reward. Pathak et al. demonstrate that if intrinsic rewards are

effectively trained through supervised learning, the agent can be motivated

to explore the environment more thoroughly. The intrinsic reward encour-

ages the robot to explore the environment and encounter new states. it helps

guide the robot away from local minima or premature convergence, enabling

the agent to better utilise learned action strategies to complete the current

task.

Inspired by Pathak et al.’s work, Zhelo et al. (Zhelo et al., 2018) pro-

pose a reward function which incorporates extrinsic and intrinsic rewards.

The extrinsic reward is similar to those of settings in other mapless naviga-

tion models. It is the difference in the distance from the target compared

with the last timestep. This motivates the robot to get closer to the target

position. Regarding the intrinsic reward, they propose to use the internal

motivation of agents measured by curiosity to encourage the agents to ex-

plore new environments, so as to obtain new states, therefore, the exploration

performance and the generalisation ability of the agents in an unknown envi-

ronment are improved. The results show that exploratory behaviours due to

curiosity help escape local minima of the policy function. Similarly, Khan et

al. (Khan et al., 2018) use internal agent signals as auxiliary representations

to promote environmental exploration. They develop an agent that utilises

micro-memorable and self-monitoring states, along with reward and action

predictions.

In addition to ’curiosity,’ researchers have incorporated ’novelty’ into re-

inforcement learning (RL) methods. Novelty, a motivation for animals to

spontaneously explore their environment, means that the animal can reward

itself for encountering something new (Sutton, 1990; Ruan et al., 2022; Fu

et al., 2017). In simple terms, in RL, a state that has been frequently vis-

30

ited by the agent is considered to have low novelty. Based on this, Ruan et

al. (Ruan et al., 2022) calculate the novelty of a state using classical count-

based methods. When the agent encounters a state, it retrieves its memory

to calculate how many times it has previously visited that state. This count

is then used to adjust the reward: a higher count results in a smaller reward,

and a lower count results in a larger reward. This method encourages the

agent to explore more novel states.

Bellemare et al. (Bellemare et al., 2016) propose a pseudo-count method

that generalises count-based exploration to non-tabular cases, improving

agent exploration efficiency in difficult games. Ostrovski et al. (Ostrovski

et al., 2017) enhance this method by replacing the model providing the

pseudo-count with PixelCNN, demonstrating excellent exploration perfor-

mance. Moreover, they find that the mixed Monte Carlo update significantly

facilitates exploration.

Except for intrinsic motivation, several methods incorporate curriculum

learning into RL to improve data efficiency in sparse reward RL (Klink et al.,

2020; Florensa et al., 2017; Wöhlke et al., 2020). Florensa et al. (Florensa

et al., 2017) propose Reverse Curriculum Generation algorithm for RL. In

their method, the robot is trained in ’reverse’. Initially, the robot is trained to

reach the goal from the start states that are close to the goal state. Building

on this foundation, the robot is subsequently trained to solve the task from

increasingly distant start states. They propose a method that automatically

generates a curriculum of start states that adapts to the agent’s performance,

leading to efficient training on goal-oriented tasks.

31

Struggling in Long-Range Tasks

Although many studies have demonstrated great performance (Tai et al.,

2017; Marchesini and Farinelli, 2020a), these methods have not been tested

with long-range tasks in challenging environments. Consequently, there is

reason to suspect that these models might struggle to learn effective naviga-

tion strategies in more complex training scenarios. Long-range tasks would

be more challenging, often involving scenarios with complex local maps that

tend to lead to local minima, making it more difficult to generate suitable

policies.

Hierarchical Reinforcement Learning (HRL) receives increasing attention

as it is well suited for long-horizon and complex tasks (Levy et al., 2017; Yang

et al., 2021; Nachum et al., 2018). HRL methods typically design high-level

(HL) policies that operate on a coarser time scale and control the execution of

low-level (LL) policies. Recent HRL methods, such as Option Critic (Bacon

et al., 2017), Feudal Networks (FuN) (Vezhnevets et al., 2017), and HiRO

Networks (Nachum et al., 2018), combine the concepts of subgoal generation

and policy combination with neural networks and reinforcement learning.

In FuN, Vezhnevets et al. employ a Manager module (HL policy) and a

Worker module (LL policy). The Manager operates at a lower temporal res-

olution, setting abstract goals for the Worker to enact. The Worker generates

primitive actions at each tick of the environment. This decoupled structure

facilitates long-timescale credit assignment and encourages the emergence of

sub-policies associated with different goals set by the Manager. These prop-

erties enable FuN to significantly outperform a strong baseline agent on tasks

requiring long-term credit assignment.

In general, the HL policy can be trained to iteratively predict sequences

of intermediate subgoals, which are then used as targets for the LL pol-

32

icy (Nachum et al., 2018; Gupta et al., 2020; Nair and Finn, 2019). Alterna-

tively, some methods generate subgoal sequences using a divide-and-conquer

approach (Jurgenson et al., 2020; Parascandolo et al., 2020).

HRL methods also can be categorised based on HL representations, such

as symbolic representation (Yamamoto et al., 2018), predicate-logic-based

representation (Eppe et al., 2019), and learned skills (Sharma et al., 2019).

Additionally, some methods do not set the representation form for the HL

model in advance, and connect the experience in the buffer to a graph to form

the representation through the accessibility estimation network (Eysenbach

et al., 2019).

Nowadays, many studies have proven that HRL-based navigation meth-

ods can perform well in complex navigation tasks (Ding et al., 2018; Wöhlke

et al., 2021; Zhou et al., 2019). This is because HRL enables a robot to de-

compose a long-horizon navigation task into several intermediate destinations

(subgoals), which are much easier to reach than the long-term distant goal.

A navigation system can be decomposed into two levels, where a high-level

(HL) planning policy selects subgoals as short-term targets, and a low-level

(LL) policy moves the robot to these short-term targets at the locomotion

level. Such a hierarchical way is analogous to human navigation, therefore,

hierarchical methods tend to be more interpretable than non-hierarchical

methods (Epstein et al., 2017).

Zhou et al. (Zhou et al., 2019) utilises an HRL-based method to control

the robot based on a topological map. The HL policy examines the nodes

of the map and learns a policy over these nodes to select the subgoal for the

LL policy to achieve. The LL policy takes in the subgoal and produces an

action to reach the selected subgoal. In their work, the actions are defined to

control the robot’s moving direction and include 8 discrete components. The

33

reward function for the HL policy is set as that the agent receives a positive

reward when it reaches the target and a penalty when a collision is detected.

Additionally, to avoid unnecessary subgoal switches and encourage shorter

trajectories to the goal, the agent also receives a small penalty for each state

change at the high level. Regarding the Ll reward function, the agent receives

a reward when the subgoal is reached and a penalty when collisions occur.

Also, to promote faster subgoal reaching, a penalty is assigned to the agent

for each moving step.

Wohlke et al. (Wöhlke et al., 2021) propose a HRL-based navigation

framework. The subgoal space is set as a 3 × 3 grid centred around the

robot, which allows 8 subgoals in the neighbouring cells. The HL policy se-

lects a sub-goal from the set of neighbours based on a rough map. This policy

generally operates at a lower frequency than the LL state space transition.

The LL policy is pursuing the subgoal. Similarly, Zhu et al. (Zhu et al., 2021)

employ the navigation tasks in two layers, where the higher layer decomposes

the trajectory in discrete primitives corresponding to the decomposed grids,

and the lower layer deals with movement control.

Furthermore, some methods try to replace the DRL-based LL model with

conventional navigation methods. Xue et al. (Xue and Chen, 2023) combine

DRL-based methods with classical navigation methods for UAV navigation.

They argue that the trajectory generated by DRL-based end-to-end methods

cannot be as smooth as traditional planning algorithms. Additionally, their

control curves tend to be relatively rigid, increasing energy consumption. In

their method, the classical motion planning algorithm and DRL algorithm

are combined using a hierarchical structure. At the high level, they train

a DRL-based model to generate a suitable subgoal. The reward function

consists of two parts: a collision penalty and the difference in distance from

34

the target compared to the last step. Then, the conventional method, EGO-

planner, controls the UAV to move to the subgoal.

Although HRL-based methods have demonstrated good performance, they

have some limitations. However, some HRL methods do not consider the LL

policy performance in HL planning (Eppe et al., 2019; Yamamoto et al.,

2018). Additionally, some existing HRL-based navigation methods (Wöhlke

et al., 2021; Bischoff et al., 2013) require prior knowledge, such as a grid map

of the environment, which is often unrealistic. Moreover, the HL policies of

many HRL methods select subgoals based on unrepresentative features or

high-dimensional redundant data (Levy et al., 2017; Nachum et al., 2018).

Moreover, the simplicity of the subgoal space layout (Wöhlke et al., 2021)

may impede performance.

In addition, some methods also use a hierarchical structure, but instead of

selecting a subgoal, the HL model provides guidance for the LL model. Ding

et al. (Ding et al., 2018) propose a HRL-based navigation system for multi-

agents, called Hierarchical Navigation Reinforcement Network (HNRN). In

the HL policy, they train a Hidden Markov Model (HMM) to evaluate the

agent’s perception. Then, this HMM gives a hazard coefficient, which is

used to control the LL decision-making process. In the LL policy, two sub-

systems are introduced, a differential target-driven system and a collision

avoidance DRL system. In the target-driven sub-task, they use the position

and angle difference between the target position and the current position

to drive the agent, which is optimal in the absence of obstacles. For the

collision avoidance system, they train a DRL model for obstacle avoidance.

The reward function for the collision avoidance model contains only two

components: the coverage of the 2D laser and the penalty incurred after

a collision. The reward function involves only a single task, significantly

35

reducing the training difficulty. The advantage of this hierarchical structure

is that it decouples the target-driven and collision avoidance tasks, leading

to a faster and more stable model. Experiments indicate that their method

has higher learning efficiency and success rates.

Dey et al. (Dey et al., 2023) develop a hybrid method that switches be-

tween complementary navigation strategies based on an HL planner trained

with DRL using a dense reward function, specifically the geodesic distance to

the goal. They distribute navigation decisions between two different meth-

ods: a DRL-based planner that takes RGB-D first-person input and a clas-

sical planner that takes a metric occupancy map as input. The HL plan-

ner exploits regularities between scene elements and planning performance,

learning to make binary decisions between these two methods based solely

on first-person inputs.

Xie et al. (Xie et al., 2020) propose a visual navigation system based on

DRL, called SnapNav. SnapNav only receives the currently observed image

and outputs a specific action according to directional guidance. SnapNav also

contains a hierarchical structure, a HL Commander and a LL Controller.

The Commander provides command information for every image, but the

command database only stores images of specific areas where the robot needs

to change direction or stop. There are three primary instructions: turn right,

turn left, and stop. The default action is to continue moving forward. At each

timestep, the robot matches its current image with those in the commander’s

dataset to determine the appropriate instruction. The LL controllers are

trained using DRL, where the input is the current RGBD observation, and

the output is the corresponding action.

36

Lacking Memory Mechanisms

Another limitation of most methods (Tai et al., 2017; Zhelo et al., 2018; Jin

et al., 2020) is that the agents lack the memory mechanism. When humans

perform navigation tasks, they avoid revisiting places that do not lead to

the target location because these unavailable places are in their memory.

However, the robots do not have memory mechanisms, so they may revisit

those already visited areas, including the paths that have proven infeasible

for the navigation task and will be trapped in a local region. In addition,

the real environment often includes dynamic elements, necessitating that

agents maintain continuous long-term memory. Most vision-based mapless

navigation models (Zhu et al., 2017) without memory mechanisms are not

well-suited for long-range navigation in large indoor environments.

To enable agents with memory units, most methods combine the long

short-term memory (LSTM) (Gers et al., 2000) network with RL. LSTM is

a type of recurrent neural network (RNN) architecture designed to address

the limitations of conventional RNNs in learning long-term dependencies.

LSTM networks utilise gating mechanisms to address the limitation and are

effective for various time series (Yu et al., 2019).

Hausknecht et al. (Hausknecht and Stone, 2015) propose to combine

LSTM with DQN algorithm (Mnih et al., 2015), called DRQN. In specific,

they replace the first post-convolutional fully-connected layer with a recur-

rent LSTM to enable the agent to memorise past states. Similarly, Mnih

et al. (Mnih et al., 2016) propose an asynchronous RL method and utilise

it to train a model combined with an LSTM network for addressing the

navigation tasks in 3D mazes. Singla et al. (Singla et al., 2019) propose a

memory-based DRL method for avoiding collisions in indoor environments,

with an LSTM network processing partial information acquired previously.

37

Hu et al. (Hu et al., 2021) present a sim-to-real pipeline for DRL-based au-

tonomous robot navigation in cluttered rough terrain, where an A3C-based

policy is adopted (Mnih et al., 2016). In the work, LSTM is employed to

capture information from previous states. Mirowski et al. (Mirowski et al.,

2016) construct a stacked LSTM framework demonstrating enhanced data

efficiency and task performance through the incorporation of supplementary

navigation-related signals.

In addition to incorporating an LSTM network, some methods encode the

environment with episode memory (Pritzel et al., 2017; Ruan et al., 2022).

During an episode, Ruan et al. (Ruan et al., 2022) save the observations at

each tiemstep, creating an episode memory. Then they compare the current

observation and those in memory to access the novelty of the state. However,

the size of the episode memory for the agent grows linearly with the states

explored by the agent. This can become problematic when the agent needs

to accomplish a task in large environments.

2.2.3 Reducing Localisation Errors

Most mapless navigation studies usually assume that robots have access to

their ground-truth poses (Tai et al., 2017; Zhelo et al., 2018; Marchesini and

Farinelli, 2020a) and focus on path planning only. However, this assumption

is unrealistic. In real environments, the robot needs to utilise localisation

methods to obtain its pose. Localisation performance is highly dependent

on the environment. For example, techniques of visual SLAM highly rely

on the tracked visual features for global navigation satellite system (GNSS)-

denied environments; while, for outdoor, GNSS-based localisation is prone

to multipath reflections of radio signals caused by the environment. The

ignorance of localisation performance would lead to robots failing to localise

38

themselves and possible catastrophic issues caused by decision-making based

on unreliable state estimation. This thesis believes the perception module

for localisation should be closely coupled with decision-making in the process

of path planning. This section reviews various approaches aimed at reducing

localisation errors during indoor navigation.

Non-Learning-Based Methods

SLAM is a widely used method for localising a robot within a map. How-

ever, pose estimates from the SLAM system can drift during navigation when

they encounter environments with few features. To correct this drift, loop

closures are necessary (Mur-Artal et al., 2015; Deshpande et al., 2023). Many

methods utilise an Active Loop Closure (ALC) module to navigate the robot

back to known areas, thereby achieving loop closures and reducing uncer-

tainty (Deshpande et al., 2023; Stachniss et al., 2004; Lehner et al., 2017).

However, most methods use wide FoV sensors such as 360 degrees FoV Lidar

or range finders, or use large compute modules (Lehner et al., 2017; Stachniss

et al., 2004).

However, forming a loop is challenging for narrow-FoV visual SLAM.

Deshpande et al. (Deshpande et al., 2023) propose a lighthouse-based method

for reducing the localisation error in narrow-FoV visual SLAM. The light-

house is the place that makes the robot rotate in place. This operation

emulates a panoramic view which is equivalent to having a 360 degrees view

at the point. When the uncertainty is high, they make the robot travel to

a lighthouse and perform an in-place rotation. This approach significantly

increases the likelihood of loop closure, as the panoramic view captures a

broader range of features dispersed over the local environment.

39

Learning-Based Methods

Many studies also utilise DRL to reduce the localisation error. Naveed et

al. (Naveed et al., 2022) train a model to predict whether an action leads to

localisation failure in visual SLAM. Specifically, the simulator will provide

an action which moves the robot to the target location without considering

the issue of localisation. They utilise the DQN algorithm to evaluate the

recommended action based on the current observed image. If the Q-value

of the recommended action exceeds a certain threshold, the recommended

action will be considered safe, and the robot will execute it. If the Q-value

of the recommended action is below the threshold, the robot chooses actions

randomly. The reward function penalises the robot if SLAM fails and assigns

a reward based on the number of overlapping points. Naveed et al. believe

that overlapping points between two consecutive images is a strong indicator

of a successful localisation operation.

Prasad et al. present an approach closely related to Naveed et al.’s

work (Prasad et al., 2018), proposing a Q-learning-based method to avoid

tracking failures in visual SLAM by utilising handcrafted features, such as

the number of tracked features. In contrast, Naveed et al. employ DQN to

directly extract information from raw images. While these DRL-based meth-

ods effectively prevent localisation failures, they focus primarily on detecting

potential SLAM failures, without addressing the broader navigation-related

tasks. Additionally, both approaches rely on pre-built path planning to guide

the robot’s movement (Naveed et al., 2022; Prasad et al., 2018).

However, several DRL-based mapless navigation approaches go beyond

this by integrating SLAM or similar techniques to estimate the robot’s pose

at each timestep. These methods aim not only to move the robot toward

its target but also to minimise localisation errors. For instance, Lin et al.

40

(Lin et al., 2022) develop a DRL-based mapless navigation method that uses

Hector SLAM (Kohlbrecher et al., 2011) to track the robot’s pose. They

hypothesise that the estimated covariance in state estimation can serve as

a measure of localisation performance, which can then be incorporated into

the reward function. Their reward structure includes both conventional re-

wards (Tai et al., 2017; Marchesini and Farinelli, 2020a) and a penalty when

the estimated covariance exceeds a threshold, ultimately improving localisa-

tion accuracy and supporting successful task completion.

Similarly, Chen et al. (Chen et al., 2023b) introduce a DRL-based, localis-

ability enhanced navigation method specifically designed for dynamic human

environments. They utilise Adaptive Monte Carlo Localisation (AMCL) for

localisation and propose a novel reward function that encourages higher local-

isation accuracy. In their method, the reward is calculated as the difference

between the estimated pose errors at two consecutive timesteps, penalis-

ing the agent if this error exceeds a predefined threshold. Like Lin et al.’s

method, their reward function combines traditional navigation rewards with

a focus on minimising localisation error. The resulting navigation policy not

only moves the robot towards its destination but also chooses a path that

enhances localisation quality. This approach leads to improvements in both

the lost rate and arrival rate during testing.

2.3 Summary

This chapter provides a thorough overview of traditional map-based robot

navigation methods, followed by an in-depth exploration of emerging mapless

navigation techniques based on deep reinforcement learning. Additionally,

this chapter highlights various strategies for minimising localisation errors,

41

a crucial aspect for enhancing localisation accuracy. By reviewing both con-

ventional and cutting-edge approaches, this chapter offers a clearer under-

standing of the evolution of navigation technologies and the methodologies

currently shaping the field of robotics.

42

Chapter 3

Preliminary

43

This chapter provides a comprehensive overview of the foundational con-

cepts that underpin the research presented in this thesis. This chapter is

organised as follows: It begins by introducing key concepts within the re-

inforcement learning (RL) framework (Section 3.1), followed by a discus-

sion of typical RL methods (Section 3.2). Also, goal-conditioned reinforce-

ment learning is discussed (Section 3.3). Section 3.4 then explores two

prominent practical deep reinforcement learning (DRL) algorithms: Deep

Q-Network (DQN) (Mnih et al., 2015) and Deep Deterministic Policy Gra-

dient (DDPG) (Lillicrap et al., 2016), both of which are utilised in the re-

search. These concepts are crucial for understanding the DRL-based nav-

igation methods developed in this thesis, which will be detailed in the fol-

lowing chapters. Finally, Section 3.5 delves into visual Simultaneous Local-

isation and Mapping (SLAM) methods, with a particular focus on ORB-

SLAM (Mur-Artal and Tardós, 2017), which is employed to provide robot

pose estimation in the proposed work. Section 3.6 concludes this chapter.

3.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that studies

how to learn from interactions, considered the most natural learning experi-

ence for humans. RL was inspired by the observation that humans or some

animals can learn certain behaviours associated with some form of reward

signals. RL is akin to a baby that starts with no knowledge but learns the

’right’ actions through exploration and guidance (rewards or punishments).

The entity that learns behaviours in RL is called an agent.

In the learning process, the agent needs to explore its environment by

taking some actions to discover the consequences of those actions. RL meth-

44

ods store the experiences of the agent’s actions and the consequences in a

buffer, using this information for learning. The agent is expected to exploit

what it has learned about its actions to earn more rewards, thereby increas-

ing its confidence in taking ’good’ actions. This process gives rise to the term

’reinforcement’ (Sutton and Barto, 2018). In the past, the method of param-

eterised distributions was always used to store the knowledge learned by the

agents (Engel et al., 2005). With the widespread use of DL, the method has

been replaced by deep neural networks, which is where deep reinforcement

learning comes from.

In the following, a mathematical theoretical formulation of RL is pre-

sented. This section first outlines the theoretical framework of an RL prob-

lem, followed by a discussion of key elements.

3.1.1 Markov Decision Process

In the theoretical formulation, the RL problem can be formulated as a MDP.

A MDP is a sequential decision-making process where an agent chooses ac-

tions based on feedback from the environment (i.e., states and rewards) in

a sequential fashion (Wiering and Van Otterlo, 2012). It means that each

decision depends on the state and action outcomes from the previous step,

forming a continuous sequence of decisions. MDP is based on an important

assumption that each state satisfies the Markov property. A system satisfies

the Markov property if the future states are independent of what happened

before the current state. The Markov property states that the future state

is independent of the past given the current state. In specific, there is a se-

quence of states, s0, s1, s2,..., sT in the period [0−T]. The state st (t ∈ [0, T])

has the Markov property if

45

P (st+1|st) = P (st+1|s0, s1, s2, ..., st) (3.1)

where P is the transition probability function that describes the distribu-

tion of the next state given the current and previous states. Based on this

property, a MDP can be considered as a memory-less and random process.

Formally, an MDP can be represented by a tuple ⟨S,A,R, P, γ, ρ0⟩ (Wier-

ing and Van Otterlo, 2012). S is the state space, A represents the action

space, R(s, a) denotes the reward function, P (s′|s, a) is the system transition

model, γ represents the discount factor and ρ0 is the initial state distribution.

According to the initial state s0 and the transition function P , we can obtain

a sequence of states, s0, s1, s2,..., sT . This sequence is called an episode.

The reward function R is used to evaluate the episode by accumulating the

instantaneous reward at each state transition as
∑T

τ=1 rτ .

3.1.2 Key Elements and Concepts

The essential elements of an RL problem are illustrated in Fig. 3.1. In the

period [0 − T], at timestep t, the agent selects an action at based on the

current state st. After executing the action at, the robot receives a reward

rt+1 (rt+1 = R(st, at), R denotes the reward function) from the environment

and then gets the next state st+1. It is worth noting that the action taken at

each timestep may affect all future states, actions, and rewards. Therefore,

the reward rt+1 the agent receives cannot be the only judge of the ’goodness’

of the action at.

The goal of reinforcement learning is to maximise discounted accumula-

tive future rewards Gt:

46

Figure 3.1: In RL, the agent observes the state of the environment and

performs an action at each time step. Based on the action taken, the en-

vironment provides a numerical reward as feedback to the agent, evaluating

whether the action aligns with the desired behaviour.

Gt = rt+1 + γrt+2 + γ2rt+2 . . . γ
T−trT =

T∑
τ=t+1

γτ−t−1rτ (3.2)

where γ represents the discount factor. The discount factor is used to reduce

the value of future rewards and to avoid infinite rewards. Eq. 3.2 means that

the agent needs to infer the optimal sequence of actions based on the current

state.

In the following, some important concepts in RL are introduced. The

policy π denotes the strategy the agent utilises to select action at based on the

current state st. It can be represented as a stochastic distribution of actions

given a state π(at|st) : S ×A → [0, 1], or a deterministic function that maps

a state to an action at = π(st) : S → A, where at ∈ A, A is the action space.

The action space can be either continuous or discrete. A discrete action space

means that the entire space contains a finite number of actions from which the

agent can choose. In contrast, a continuous action space contains an infinite

number of possible actions. In most cases, discrete action space-based models

are easier to train. However, to enable more flexible manoeuvring motions in

complex and diverse environments, continuous action space would be more

desired.

47

The state-value function is the expected sum of discounted reward in

future, as formulated below:

Vπ(st) = Eπ[Gt|st] (3.3)

Vπ(st) is defined given a specific policy π and state st.

The action-value function (also called the Q-value function) is similar to

the state-value function. However, the difference is that the Q-value function

is further defined on the action as an additional parameter:

Qπ(st, at) = Eπ[Gt|st, at] (3.4)

The relation between the state value and the action value:

Vπ(st) =
∑
a∈A

Qπ(st, at)π(at|st) (3.5)

Vπ(st) can be considered as the evaluation of the policy π in state st.

While Qπ(st, at) further measures the ’goodness’ of taking a particular action

at in state st.

3.2 Reinforcement Learning Methods

3.2.1 Model-Free & Model-Based

RL methods can roughly be divided into two categories, model-free methods

and model-based methods (Wiering and Van Otterlo, 2012). In reinforcement

learning, the term ‘model’ refers to the agent’s understanding or representa-

tion of the environment’s dynamics. Specifically, a model predicts the next

state and the reward that will result from taking a particular action in a

given state. In model-based reinforcement learning, the agent builds or has

48

access to such a model, which it can use to simulate future states and re-

wards, enabling it to plan actions more effectively and optimise its policy

before interacting with the environment. In contrast, model-free methods do

not require an explicit model of the environment; instead, they learn directly

from interactions with the environment, using trial and error to estimate the

value of actions and states. Therefore, in model-free methods, the agent re-

lies on experience to update its policy, whereas in model-based methods, the

agent leverages a model to predict and plan ahead.

Regardless of whether the Markov property (Eq. 3.1) is satisfied, as long

as such a model exists, it is possible to find a path that meets a specific

requirement given an initial state. If the model is deterministic, the transition

probability is definite. Then, we can know the probabilities corresponding to

s → s′ and the action a that would have the highest reward in state s. This

way, Vπ(s) and Qπ(s, a) can be estimated accurately. This is the model-based

method.

However, in most scenarios, the model is unknown or not precisely quan-

tified. Model-free methods aim to provide a more generalised approach. For

example, Q-Learning (to be discussed below) performs strategy learning by

continuously solving the Qπ(s, a), without relying on a model based on statis-

tical results for planning. It estimates the Qπ(s, a) of each ’cell’ in the table

for modelling and solving. With the recent advancements in deep neural

networks, model-free RL methods have demonstrated effectiveness in high-

dimensional state spaces. However, developing a model of the real-world

environment in such a high-dimensional state space is computationally in-

tensive. Therefore, this thesis mainly focuses on the model-free methods.

The model-free RL methods fall into three categories: value-based, policy-

based and actor-critic methods. In the following, these three methods are

49

explored.

3.2.2 Value-based Methods

Value-based methods aim to estimate the value or Q-values accurately. With

the known sum of future rewards, determining the policy becomes straightfor-

ward: choose the action that maximises the future reward. The classic value-

based method shall be the SARSA and the Q-learning method (Watkins and

Dayan, 1992).

SARSA

SARSA is the acronym for the transition tuple (s, a, r, s’, a’). Review the

Q-value function first:

Qπ(st, at) = Eπ[Gt|st, at] (3.6)

then, based on Bellman equations, the following recursive property of the Q

function holds:

Qπ(st, at) = E[Gt | st, at]

= E[rt+1 + γrt+2 + γ2rt+3 + · · · | st, at]

= E[rt+1 + γ(rt+2 + γrt+3 + . . .) | st, at]

= E[rt+1 + γGt+1|st, at]

= E[rt+1 + γQπ(st+1, at+1)|st, at]

(3.7)

The SARSAmethod mainly utilises the Temporal Difference (TD) method

to update the Q-value.

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (3.8)

50

where r+ γQ(s′, a′)−Q(s, a) is the TD error. The SARSA method updates

the Q-value at every single collected transition after each timestep. The

SARSA has many benefits: i) It does not require the environment to be an

MDP or model-based. The valuation of the SARSA is derived from its own

attempts; ii) The SARSA’s valuation feedback is relatively fast and can be

updated after each step taken.

On-policy & Off-policy

Before exploring the Q-learning method, the terms on-policy and off-policy

should be discussed. On-policy and off-policy generally refer to whether the

policy that generates the data is the same as the one that is to be updated

using the data. From this point of view, the SARSA method is a typical

on-policy algorithm. On-policy methods are considered simpler to under-

stand and faster to converge. However, the drawback of on-policy methods

is obvious, that is, it makes transitions very relevant, as a ’poor’ choice at

one step can have far-reaching consequences for many future steps.

Off-policy methods also have many advantages. Firstly, the process of

learning the optimal policy can be distinct from the process of exploring

the environment. Secondly, to be more suitable for real-world problems,

operating off-policy enables the agent to learn from diverse data sources,

including handcrafted controllers or human demonstrators.

Q-Learning

The Q-learning method is considered the off-policy version of the SARSA.

The update rule of Q-learning can be obtained by changing one operation in

SARSA:

51

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (3.9)

In Q-learning, it takes the maximum q-value when computing the es-

timate of the target. This method is straightforward: the Q-value of the

current state is determined by which action achieves the highest value in the

state it transitions into.

Q-learning has many strengths: i) Due to the ’max’ operation, it is easier

to determine the optimal path and the best policy in simple environments.

ii) The implementation is straightforward: only the transition (s, a, r, s’)

needs to be logged and updated step by step. Additionally, its logic is easier

to understand. However, it has some limitations: i) It is challenging to

implement scenarios where the action space is continuous. Not only does the

Q-learning algorithm suffer from this problem, but so does the SARSA. ii)

The value of taking an action in one state depends entirely on the action that

yields the highest value in its subsequent state. This contradicts the original

definition and may lead to ’overestimation’.

3.2.3 Policy-based Methods

Policy-based approaches optimise the policy function π directly. A primary

approach involves estimating the gradients of the policy function with respect

to the total rewards. By following these gradients, the policy can be improved

to achieve greater rewards. In summary, the policy gradient algorithms aim

to model and optimise the policy directly.

The to-be-optimised policy is denoted as πθ(a | s). It is parameterised

with θ and must be differentiable. The objective function utilised in opti-

mising is formulated as follows:

52

J(θ) = V πθ(s0)

=
∑
a∈A

πθ(a|s)Qπθ(s, a)
(3.10)

It represents the cumulative reward for the episodic case from the start state.

To find the parameter θ that maximises the objective function Eq. 3.10,

the iterative optimisation algorithm gradient ascent can be used. This algo-

rithm updates the parameter by taking the gradient of the objective function:

θi+1 = θi + α∇J(θi) (3.11)

where i and i + 1 denotes the update step; α represents the learning rate.

The gradient indicates the direction in which the parameter should change

to improve the expected returns.

The episodic tasks have a finite number of interaction steps. According to

the policy gradient theorem (Sutton et al., 1999; Silver et al., 2014; Lillicrap

et al., 2015), the gradient with respect to the policy parameters in the episodic

case can be written as:

∇J(θθθ) = ∇vπθθθ(s0)

=
∑
s

dπθθθ(s)
∑
a

qπθθθ(s, a)∇πθθθ(a|s) (3.12)

=
∑
s

∞∑
k=0

γkPr(s0 → s, k, π)
∑
a

qπθθθ(s, a)∇πθθθ(a|s)

= Eπ

[
γt

∑
a

qπθθθ(s, a)∇πθθθ(a|s)

]

= Eπ

[
γt

∑
a

qπθθθ(s, a)πθθθ(a|s)
∇πθθθ(a|s)
πθθθ(a|s)

]
(3.13)

where
∑

a q
πθθθ(s, a)∇πθθθ(a|s) indicates the state value represented by the summed

action values weighted by the gradients of the probabilities over all actions.

53

∑
s d

πθθθ(s) is the sum of state values of visited states weighted by the expected

number of timesteps required to reach the state s according to the policy πθθθ.

In simple terms, Eq. 3.12 increases the probability of selecting an action if

that action results in a high expected discounted future return (the fewer

steps required the better), and decreases it otherwise.

REINFORCE

The most classic policy-based approach is REINFORCE (Williams, 1992).

The most straightforward way of calculating qπ to estimate Eq. 3.13 is to ap-

proximate it with the actual return collected from an interaction trajectory.

This approach leads to the REINFORCE algorithm, which is essentially a

Monte Carlo policy gradient method. Specifically, the gradient for the max-

imisation objective can be formulated as:

∇J(θθθ) = Eπ

[
γt

∑
a

qπθθθ(St, a)πθθθ(a|St)
∇πθθθ(a|St)

πθθθ(a|St)

]

= Eπ

[
γtqπθθθ(St, At)

∇πθθθ(At|St)

πθθθ(At|St)

]
(using sampleAt) (3.14)

= Eπ

[
γtGt

∇πθθθ(At|St)

πθθθ(At|St)

]
(using Monte-Carlo estimate of qπθθθ)

= Eπ

[
γtGt∇ log πθθθ(At|St)

]
(using ∇ log x =

∇x
x

)

The REINFORCE update rule is moving the weights of a policy towards

the higher return direction with respect to its parameters at iteration i:

θi+1 = θi + αγtGt∇ log πθi(At|St) (3.15)

When the REINFORCE converges, it directly provides a distribution of

the optimal policy. Sampling actions from this distribution is expected to

54

maximise the expected discounted return. It is worth noting that REIN-

FORCE only updates after a whole episode is finished.

3.2.4 Actor-Critic Methods

The third category of model-free RL methods is the actor-critic method.

’actor’ is a policy that is responsible for selecting an action based on the

environment, and then the value function ’critic’ criticises the actions taken

by the ’actor’ to provide the gradients for optimising the policy using the

policy gradient theorem. Therefore, the actor-critic method is based on both

the value function and the policy function.

Both the critic function and the policy function are iteratively updated

during the learning process. The critic function is adjusted to provide a more

accurate estimation of values or Q-values. Subsequently, the policy function

is optimised based on the guidance provided by the critic function, enabling

it to learn better actions in various scenarios. Gradients computed from the

critic function tend to be more stable compared to those in policy-based

methods. This is because critic gradients are derived from expected val-

ues estimated by the critic, whereas policy gradients are typically estimated

from the total rewards obtained from sampled trajectories. The gradient is

formulated as follows:

∇θJ(θ) = ∇Vθ(s0) ∝ Eπθ
[Qπθ(s, a)∇θ log πθ(a|s)] (3.16)

With predictions from the approximation function, the policy can be up-

dated with every transition tuple, eliminating the need to wait for a complete

trajectory as required by the REINFORCE algorithm. This characteristic al-

lows for more frequent and incremental updates to the policy during learning.

55

3.3 Goal-conditioned Reinforcement Learning

Goal-conditioned Reinforcement Learning (GRL) differs from traditional RL.

The GRL problem adds a goal space G to the MDPs of the standard RL

paradigm. Standard RL is to achieve a single goal, while a GRL agent

tries to maximise a multi-goal reward function R(st, at, g), resulting in a

goal-conditioned value function Qπ(s, g, a) or policy π(a|s, g) (Schaul et al.,

2015a). The GRL optimises the return based not only on a single-objective

reward function that depends on states and/or actions but also on a goal

vector. This multi-objective reward function aims to optimise the return

with respect to achieving specific goals, in addition to traditional reward

considerations. As a result, the input to the value functions and policy is

augmented by an extra term: the goal. The learned policy is expected to

exhibit different behaviours in the same state depending on the assigned

goals, enabling a certain level of information or knowledge sharing.

3.4 Deep Reinforcement Learning Algorithms

With the rise of DL and its breathtaking achievements, people combine DL

with RL, that is, DRL. Both the tasks of value estimation and policy search

benefit from deep neural networks, which are theoretically capable of ap-

proximating any function. In this section, two DRL algorithms utilised in

the research are introduced: Deep Q Network (DQN) and Deep Deterministic

Policy Gradient (DDPG).

Deep Q Network (DQN)

DQN is a typical value-based method that aims to estimate the Q-values.

DQN can be seen as an extension of the traditional Q-learning algorithm,

56

designed to address its limitations in handling high-dimensional state spaces.

While Q-learning relies on a tabular representation of the Q-value function,

which is impractical for large or continuous state spaces, DQN uses deep

neural networks to approximate the Q-function. This allows DQN to handle

more complex environments, such as those with pixel-based input, by lever-

aging the power of deep learning for function approximation. In essence,

DQN is a modernised version of Q-learning, combining its foundational prin-

ciples with deep learning techniques to solve more challenging reinforcement

learning problems.

Review the definition of the Q-value function:

Qπ(st, at) = Eπ[Gt|st, at] (3.17)

The Q-value function can be computed using the Bellman equation:

Qπ(st, at) = Eπ[rt+1 + γEπQ(st+1, at+1) | st, at] (3.18)

The goal of RL algorithms is to obtain an optimal policy that maximises the

value function. The optimal Q-value function, Q∗(st, at), can be formulated

as below:

Q∗(st, at) = E[rt+1 + γmax
at+1

Q(st+1, at+1) | st, at] (3.19)

It indicates that the optimal Q-value at time t is the current reward rt+1 plus

the discounted optimal Q-value at time t+1. This approach avoids the need

to compute the Q-value directly over a large state space.

DQN aims to train an NN parameterised with θQ to estimate Q(st, at). In

the training process, the estimatorQ(st, at | θQ) updates θQ using (st, at, rt+1, st+1).

The loss function is:

57

L(θQ) = [(rt+1 + γmax
at+1

Q(st+1, at+1 | θQ))−Q(st, at | θQ)]2 (3.20)

Therefore, DQN is only suitable for discrete action space as it is impossible

to compute the Q-value of an infinite number of actions.

Nowadays, many methods based on DQN have been proposed to enhance

the performance of the vanilla DQN. In the following, four such methods are

introduced.

Double DQN (DDQN) (Van Hasselt et al., 2016) In the vanilla DQN,

the policy utilises the same Q-value function to evaluate and select an action.

This leads to overestimation (Van Hasselt et al., 2016). The valuation of a

state should be the mathematical expectation (i.e., the weighted average) of

the valuations of all the actions in that state. However, if the maximum value

is taken every time, the difference between this maximum and the weighted

average creates an error, which leads to overestimation. DDQN aims to solve

this problem by proposing a target network parameterised with θQ
′
. When

updating the network, the loss function is:

L(θQ′
) = [(rt+1 + γmax

at+1

Q(st+1, at+1 | θQ
′
))−Q(st, at | θQ)]2 (3.21)

The target network slowly tracks the original Q-network and evaluates

all actions in the discrete action space, while the greedy action selection is

still made by the original Q-network.

Dueling DQN (Wang et al., 2016b) Wang et al. (Wang et al., 2016b) be-

lieve that estimating all actions at every state may be unnecessary, therefore,

they propose Dueling DQN. The dueling network takes the form of provid-

ing two separate valuation functions: one for the state value and one for the

58

action advantages independent of the state. This decouples the value of the

action itself from the value of the state.

The above branch maps to an output called Vπ(s), which is the state

valuation function. In simpler terms, this function estimates how much a

state is worth on its own. The following branch maps to Aπ(s, a), which is

known as the state-independent action advantage function. Dueling DQN

assumes the following relationship between the two:

Aπ(s, a) + Vπ(s) = Qπ(s, a) (3.22)

The dueling network directly implements this assumption. The final layer

outputs Qπ(s, a) by directly combining the two values. This network features

two branches shared by the front network, while the back network determines

its own parameters, represented by θα and θβ separately.

Aπ(s, a | θα) + Vπ(s | θβ) = Qπ(s, a | θα, θβ) (3.23)

In the final implementation, the following formulation is utilised:

Q
(
st, at | θα, θβ

)
= V

(
st | θβ

)
+

[
A (st, at | θα)−

1

|A |
∑
a′

A (st, a
′
t | θα)

]
(3.24)

where A represents the action space and a′ ∈ A .

Prioritised Experience Replay Prioritised Experience Replay is a

method that allows Q-Learning to learn more efficiently (Schaul et al., 2015b).

It addresses the problem of low convergence efficiency in the traditional Q-

Learning algorithm. DQN stores the experienced transitions in a replay

buffer and uniformly samples a batch of transitions for training. In (Schaul

et al., 2015b), the authors believe that for tasks that have been learned and

59

completed, there is no need to revisit them. Instead, it is better to focus

on those areas with larger errors. Therefore, the transitions selected from

the memory buffer are typically not equally weighted; transitions with larger

errors are prioritised for updating.

Deep Recurrent Q-Learning (DRQN) (Hausknecht and Stone, 2015)

DRQN is mainly solving the Partially Observable MDP problem (POMDP).

In a POMDP, the agent cannot directly observe the state and can only ob-

serve the transition probability. In such a partially observable environment,

the optimal policy needs to rely on information from the previous histor-

ical trajectory. Hausknecht et al. (Hausknecht and Stone, 2015) propose

to replace the first post-convolutional fully-connected layer with a recurrent

LSTM to enable the agent to memorise past states.

Deep Deterministic Policy Gradient (DDPG)

As discussed above, DQN is suitable for discrete action spaces. In the follow-

ing sections, a continuous-space-based method, DDPG, is discussed. DDPG

is a modern, model-free reinforcement learning algorithm that combines the

principles of actor-critic methods with deep learning techniques to handle

continuous action spaces. Traditional actor-critic methods consist of two

components: an actor, which directly determines the policy, and a critic,

which evaluates the action-value function (Q-value). While standard actor-

critic methods are typically used for discrete action spaces, DDPG extends

this framework by using deterministic policies and deep neural networks to

approximate both the actor and critic. This makes DDPG particularly suited

for environments where actions are continuous, as it learns a deterministic

policy and uses function approximation to scale to complex, high-dimensional

tasks. Thus, DDPG can be considered an advanced variant of actor-critic

60

methods, specifically designed for continuous action spaces with deep rein-

forcement learning. In an actor-critic mode, the actor is an independent

model (parameterised with θµ), whose task is to select actions. The critic

is also an independent model (parameterised with θQ), that aims to learn

the value estimation. In DDPG, the actor network and critic network com-

prise the main network. There are two other target networks (θµ
′
and θQ

′
),

corresponding to the actor (θµ) and critic network θQ respectively.

The specific training process is as follows: Firstly, at time t the actor

network in the main network selects an action at based on the state st,

at = π(st | θµ). However, in DDPG, noise (Nt) is typically added to the

action during this selection process, at = π(st | θµ) + Nt. The purpose of

adding noise is to broaden the range of values and increase the exploration in

the action outputs. Secondly, after obtaining the transition (st, at, rt+1, st+1)

through the exploration, it is stored in the Replay Buffer. It is important

to note that at this stage, the role of the actor network (θµ)in the main

network is complete and it will not perform any further actions. The next

step involves performing the update computations. The update progress is

mainly based on the following three formulations:

yi = ri+1 + γQ′(si+1, π(si+1 | θµ
′
) | θQ′

) (3.25)

L =
1

N

∑
i

(
yi −Q

(
si, ai | θQ

))2
(3.26)

∇θµJ ≈
1

N

∑
i

∇aQ(s, a | θQ) |s=si,a=π(si|θµ) ∇θµπ(s | θµ) |si (3.27)

yi in Eq. 3.25 represents the target value. It denotes the process of itera-

tively updating the value estimator using a temporal-difference methodology.

61

It is worth noting that in Eq. 3.25, the action is selected by the actor network

in the target network. Then, (s, a) is evaluated by the target critic network.

In Eq. 3.26, L is the loss function of the critic network in the main

network, specifically the Mean Squared Error (MSE) Loss. yi is obtained by

Eq. 3.25. N indicates the number of samples selected from the Replay Buffer

for this update step.

In Eq. 3.27, ∇θµJ denotes the amount of updates when updating θµ in

the main network, that is, θµ = θµ −∇θµJ . As for the latter part, the outer

refers to averaging, and the inner is associated with the chain rule, i.e.,

∂J (θµ)

∂θµ
= Es

[
∂Q

(
s, a | θQ

)
∂a

∂µ (s | θµ)
∂θµ

]
(3.28)

When updating the target network, the following methods are utilised:

θQ
′ ← τθQ + (1− τ)θQ

′
(3.29)

θµ
′ ← τθµ + (1− τ)θµ

′
(3.30)

where τ is a number much less than 1, and in some experiments, it will be

set to 0.001. That is, instead of directly assigning θQ to θQ
′
, the value of θQ

′

is retained to a large extent and then slowly updated in the direction of θQ.

3.5 Simultaneous Localisation and Mapping

This section reviews the Simultaneous Localisation and Mapping (SLAM)

algorithms primarily utilised in my works, focusing particularly on ORB-

SLAM, which is one of the visual SLAM methods.

SLAM refers to the process in which a subject equipped with specific

sensors constructs a model of the environment while in motion and estimates

62

Figure 3.2: Overall visual SLAM framework.

its own motion without prior information about the environment (Durrant-

Whyte and Bailey, 2006). When cameras are the primary sensors used, it is

referred to as ’visual SLAM’.

3.5.1 Visual SLAM

The goal of visual SLAM is to achieve simultaneous localisation and mapping

using images or visual data (Taketomi et al., 2017). The framework of classic

visual-SLAM methods is shown in Fig. 3.2.

1. Sensor information reading: In visual SLAM, this primarily entails

reading and preprocessing camera images. For robots, this process

may also include reading and synchronising data from encoders, iner-

tial sensors, and other types of sensors depending on the application

requirements.

2. Visual Odometry (VO): VO, also referred to as the Front End, focuses

on estimating camera motion and local map structure from sequential

images.

3. Back End Optimisation: The back end processes the camera positions

measured by the visual odometry at different moments, along with

information from loop closure detection, and optimises them to achieve

63

a globally consistent trajectory and map. It is referred to as the back

end because it follows the VO.

4. Loop Closure: Loop Closure Detection determines whether the robot

has returned to a previously visited position. When a loop is detected,

this information is forwarded to the back end for further processing.

5. Mapping: It builds a map that meets the task requirements by using

the estimated trajectory.

This is the basic framework of a visual SLAM system. Theoretically, the

framework consists of five main modules: initialisation, tracking, mapping,

relocalisation, and global map optimisation.

To start visual SLAM, it is necessary to define a specific coordinate sys-

tem for camera pose estimation and 3D reconstruction in an unknown en-

vironment. During initialisation, the global coordinate system should first

be defined, and a portion of the environment should be reconstructed as an

initial map with respect to this global coordinate system.

Following the initialisation phase, tracking and mapping processes are un-

dertaken to continuously estimate the camera’s poses. During the tracking

phase, the the reconstructed map is tracked in the image to determine the

camera’s pose relative to the map. To achieve this, 2D–3D correspondences

between the image and the map are initially obtained through feature match-

ing or feature tracking within the image. Subsequently, the camera pose is

determined from these correspondences by solving the Perspective-n-Point

(PnP) problem (Nistér and Stewénius, 2007). It is worth noting that most

visual SLAM algorithms assume that the intrinsic camera parameters are

available beforehand. Therefore, a camera pose typically corresponds to the

extrinsic camera parameters, which include the translation and rotation of

64

the camera within the global coordinate system.

Relocalisation is executed when tracking fails due to rapid camera motion

or other cases. Then, it is essential to recompute the camera pose. The last

module is global map optimisation. It is understandable that the map accu-

mulates estimation errors with the distance of the camera’s movement. To

suppress the errors, global map optimisation is typically performed. During

this process, the map is refined by ensuring the consistency of the entire map

information. When the map is revisited and a starting region is captured

again after some time, reference information representing the cumulative

error from the beginning to the present can be computed. This reference

information is then used to establish a loop constraint, which serves to sup-

press errors during global optimisation. It should be noted that loop closure

detection can be conducted using similar techniques employed in relocalisa-

tion.

Loop closure is always used to acquire such reference information. In

loop closure, a closed loop is identified by matching the current image with

previous images. If a loop is detected, the cumulative error that occurred

during the camera’s movement can be estimated.

Pose-graph optimisation is employed to mitigate accumulated errors by

optimising camera poses (Grisetti et al., 2010; Kümmerle et al., 2011). In

pose-graph optimisation, the relationships between camera poses are repre-

sented as a graph, and a consistent graph is constructed to mitigate errors.

Bundle adjustment (BA) is utilised to minimise the reprojection error by

optimising both the map itself and the poses of the cameras.

65

3.5.2 ORB-SLAM

To the best of the author’s knowledge, ORB-SLAM (Mur-Artal et al., 2015) is

the most complete visual slam system. ORB-SLAM includes multi-threaded

tracking, mapping, and closed-loop detection, with the map optimised using

pose-graph optimisation and BA, making it an all-in-one package. Since

ORB-SLAM is an open-source project, this comprehensive visual system can

be easily utilised in my works. ORB-SLAM is not only a monocular-based

SLAM system but has also been extended to support stereo visual SLAM

and RGB-D visual SLAM. In this thesis, the RGB-D-based ORB-SLAM2 is

primarily utilised.

One of the primary design principles of ORB-SLAM is the utilisation of

the same features for mapping, tracking, and place recognition. In ORB-

SLAM, they choose ORB feature (Rublee et al., 2011), which are oriented

multiscale FAST corners paired with a 256-bit descriptor. These features

are extremely fast to compute and match while offering good invariance to

viewpoint changes. This capability enhances the accuracy of BA.

ORB-SLAM2 operates with three primary parallel threads:

1. Tracking: The tracking thread localises the camera with every frame

by identifying feature matches to the local map and minimising the

reprojection error using motion-only BA.

2. Local Mapping: The local mapping thread manages and optimises the

local map by performing local bundle adjustment (BA).

3. Loop Closing: The loop closing thread detects loops and corrects ac-

cumulated errors by performing pose-graph optimisation. After opti-

misation, it initiates another thread to execute full BA to compute the

optimal structure and motion solution.

66

Another important concept in visual SLAM is the keyframe. Since the

camera collects a large amount of image data, storing all of it is impracti-

cal. Continuous operation would lead to unacceptably high memory usage.

Therefore, the main approach is to selectively save frames considered impor-

tant (keyframe), under the assumption that the camera’s trajectory can be

accurately represented by these keyframes.

In this thesis, my work is more concerned with robot localisation based

on ORB-SLAM2, and this will be further discussed in Chapter 7. In OBR-

SLAM2, robust localisation is realised through reprojection optimisation.

The reprojection error of map points to corresponding matched key points is

represented as:

ei,j = xi,j − πi(Tiw, Xw,j) (3.31)

where ei,j is the reprojection error of a map point j in a keyframe i, xi,j repre-

sents the matched keypoint, Tiw ∈ SE(3) is the pose of keyframe i, Xw,j ∈ R3

represents the 3D pose of map point j, and πi denotes the projection function.

Then, to obtain the camera pose, a cost function needs to be minimised:

C =
∑
i,j

(ρh(e
T
i,jω

−1
i,j ei,j)) (3.32)

where ρh represents the Huber robust cost function, and ωi,j is the covariance

matrix linked to the scale at which the keypoint was identified.

3.6 Conclusion

This chapter introduces key concepts within the reinforcement learning frame-

work and discusses typical RL methods. Building on this foundational under-

standing, two major DRL algorithms utilised in this thesis, DQN and DDPG,

67

are presented. The DQN algorithm is used to train the high-level policy of

the hierarchical model in Chapters 4 and 5. The DDPG algorithm, another

key applied method, primarily trains the low-level policy of the hierarchical

model in Chapters 4 and 5, as well as the navigation method in Chapter

6. In addition, Chapter 6 introduces a navigation method that uses the

ORB-SLAM algorithm to provide the robot pose. This chapter also provides

an overview of the fundamental working principles of ORB-SLAM, explain-

ing how it tracks the robot’s movement and generates accurate localisation

information, which is essential for the navigation process.

68

Chapter 4

Efficient Hierarchical

Reinforcement Learning for

Mapless Navigation with

Predictive Neighbouring Space

Scoring or Predictive

Exploration Worthiness

69

4.1 Introduction

Solving reinforcement learning (RL)-based mapless navigation tasks is chal-

lenging due to their sparse reward and long decision horizon nature. Hierar-

chical reinforcement learning (HRL) has the ability to leverage knowledge at

different abstract levels and is thus preferred in complex mapless navigation

tasks.

However, designing an HRL framework for mapless navigation is non-

trivial and this chapter seeks to improve existing frameworks in four direc-

tions as discussed below. First of all, in mapless navigation, the subgoal

layouts of most HRL algorithms are defined based on a local grid map. For

example, a 3 × 3 grid centred around the robot, which allows 8 subgoals in

the neighbouring cells (Wöhlke et al., 2021). Such a subgoal space limits the

robot’s exploration within a small area around its current location, while it

would be more desirable to explore locations further away from the current

location.

Secondly, many HRL methods assume that the low-level tasks are always

achievable, i.e., the robot can always reach the subgoal selected by the HL

policy (Eppe et al., 2019; Yamamoto et al., 2018). This assumption is un-

realistic as it is common for the robot to encounter unreachable locations in

complex environments.

Thirdly, mapless navigation can be based on different sensors including

Lidar, cameras, or the combination of both (Tai et al., 2017; Zhu et al., 2017).

Training RL agents from raw images or Lidar scans has been proven highly

inefficient (Levy et al., 2017; Nachum et al., 2018). Although downsampled

Lidar scans can provide sufficient information for short-term RL-based nav-

igation (Tai et al., 2017; Zhelo et al., 2018; Marchesini and Farinelli, 2020a;

Dobrevski and Skočaj, 2021), it does not provide sufficient information for

70

long-term navigation. On the other hand, image data contain much richer

information, but has more redundancy and is more difficult to process. Ex-

isting works propose to represent images using an intermediate state space

that covers essential information in a more compact way, but they generalise

poorly in unseen environments or new tasks (Wöhlke et al., 2021; Bischoff

et al., 2013).

Fourthly, when navigating, humans take into account both intrinsic and

extrinsic factors to determine their subgoals, where intrinsic factors could be

related to the objectives, preferences, and expectations, and extrinsic factors

pertain to the environment’s layout, landmarks, available resources and so

on (Wolbers and Wiener, 2014; Ekstrom et al., 2014). In simple terms, hu-

mans have the ability to distinguish the worthiness levels of different subgoals

for further exploration, when selecting subgoals, and making appropriate de-

cisions based on the observations or states (Wolbers and Wiener, 2014). For

instance, humans can be aware that the space behind a couch is unoccupied,

offering more path options. Similarly, when humans encounter a wall, they

recognise that there is no viable path in that direction, and therefore, they

will not select a subgoal in that direction. Conversely, when humans per-

ceive a door, they understand that it leads to additional rooms, expanding

the number of available path options. However, most HRL-based navigation

methods lack such a similar capability. Numerous methods rely solely on

current sensory input when selecting subgoals (Wöhlke et al., 2021; Bischoff

et al., 2013; Levy et al., 2017; Nachum et al., 2018).

To address these limitations, this chapter proposes a novel HRL-based

mapless navigation framework with Predictive Neighbouring Space Scoring

(PNSS)/Predictive Exploration Worthiness (PEW). Similar to existing HRL

frameworks, the proposed framework also has a high-level (HL) policy that se-

71

lects subgoals and a low-level (LL) policy that controls the wheels to reach the

selected subgoals. However, this chapter seeks to make some improvements.

Firstly, it proposes two subgoal worthiness matrices: Predictive Neighbour-

ing Space Scoring (PNSS) and Predictive Exploration Worthiness (PEW), as

shown in Fig. 4.1 and Fig. 4.4. The PNSS assesses the area of the explorable

space for each of the candidate subgoal locations and the PEW is related to

some attributes of the local area around a subgoal, such as the free space

area, distribution of obstacles in the area, or the shape/orientation of the

area. Then the PNSS/PEW model is developed to predict the PNSS/PEW

values using raw images and Lidar data. The predicted PNSS or PEW scores

are used to evaluate the worthiness level of each subgoal candidate for fur-

ther navigation and the values will be included as part of the HL input, such

that the agent will not solely rely on sensory inputs for decision making.

The LL policy will generate velocity commands based on the current Lidar

observations to control the robot to reach the subgoal selected by the HL

policy. After reaching the subgoal, the HL policy will repeat the process to

select the next subgoal, until the robot reaches the final target location.

In addition, a penalty term is included in the reward function for the HL

policy, so that the subgoal selection process would avoid subgoals that are

physically unrealistic to achieve. Finally, design a novel subgoal layout that

encourages the robot to explore far places ahead (the blue grid in Fig. 4.1

and 4.2).

The rest of the chapter is organised as follows: Section 4.2 describes HRL

with PNSS, while Section 4.3 introduces HRL with PEW. Section 4.4 covers

the experiments, and Section 4.5 presents the results. Section 4.6 summarises

this chapter.

72

4.2 HRL with PNSS

This chapter proposes a novel HRL framework, in which an HL policy selects

subgoals in an abstract space and an LL policy is responsible for the locomo-

tion control of the robot to reach the corresponding subgoals, as illustrated

in Fig.4.1.

RGB Image

Downsampled

Lidar Scan

PNSS
Model

Target Location

High

Level

Policy

PNSS Values

Subgoal

Last Wheel
Velocities

Low

Level

Policy

Wheel

Velocities

Predictive Neighbouring Space Scoring Values

Figure 4.1: The overall framework with PNSS. The HL policy selects a sub-

goal based on the predicted PNSS values, the Lidar observation and the

coordinates of the target coordinates. The PNSS values are predicted by the

PNSS model for a set of explorable positions in front of the robot. The LL

policy controls the robot to reach the subgoal. The process repeats until the

robot reaches the target location.

For the selection of subgoals, we introduce a prediction mechanism to

evaluate the worthiness level of a location for further exploration, named

Predictive Neighbouring Space Scoring (PNSS). Briefly, the PNSS module is

to predict the area of unoccupied space that can be observed at a correspond-

ing location. A deep neural network is trained for the prediction of the PNSS

values given the measurement of local surroundings. These PNSS values are

then provided to the HL policy for the selection of the next subgoal. We

design a reward function for training the HL policy including a penalty that

occurs when the LL policy fails to reach a subgoal. The framework contains

three key modules:

73

• PNSS module for estimating the PNSS values based on the current

observation,

• HL policy that decides the next subgoal, and

• LL policy that is responsible for the locomotion control of the robot to

reach the target subgoals selected by the HL policy.

4.2.1 PNSS Model

Xi Yi

0.2500.6

0.450.60.25

0.350.40.5

Free
Occupied
Unknown

Occupancy View

Nf

Nt
Robot and its facing direction

Predicted PNSS values

Figure 4.2: An example of the predicted PNSS values of 3 × 3 positions,

which are located in the forward direction of its ego-centric view. Each cell

in the layouts is 0.5 meters in width and length. The occupancy view is based

on the Lidar observation at the corresponding location, which the simulator

can convert into a 2D occupancy view.

As mentioned, we introduce a metric to score the explorable worthiness

of a given location. As illustrated in Fig. 4.2, the explorability of a loca-

tion is estimated from the current egocentric observation of the robot. The

worthiness for exploration is related to the free neighbouring space available

at each corresponding location. We introduce the PNSS metric, defined as

74

the proportion of the observable free space of a local region (see Fig. 4.2),

formulated as:

s(xi, yi) =
Nf

Nt

(4.1)

where xi and yi represent the coordinates of the i-th cell in the subgoal space

with respect to the robot’s coordinate frame, for which the score is calculated.

Nt represents the area of the local region of interest (represented by 128×128

cells), and Nf represents the area of free space (i.e. number of non-occupied

cells) measurable with Lidar observations at [xi, yi], s ∈ [0, 1].

The PNSS model is trained in a supervised manner (Nasteski, 2017).

We use the iGibson simulation environment (Shen et al., 2021) to obtain

the ground-truth scores as training labels. For data collection, the robot

is randomly placed at any arbitrary position of concern. As illustrated in

Fig. 4.2, since the robot is equipped with a Lidar with the Field of View

(FoV) of 360 degrees, the occupancy view can be obtained directly from the

Lidar data. We then count the number of free cells Nf in the occupancy view

and calculate the PNSS using Eq. (4.1).The higher the score is, the more

free space the robot observes in the local region. A score of 0 indicates that

the neighbouring areas are fully occupied.

In addition, for predicting PNSS, we also use a standard forward-looking

camera that can only provide RGB images with a horizontal FoV of 58 degrees

(Asus Xtion pro). We believe that the visual features from the RGB images

with rich information will improve the prediction accuracy. This is validated

in Experiments Section.

We adopt a network architecture inspired by the occupancy anticipation

model (Ramakrishnan et al., 2020). The PNSS network predicts the PNSS

values for a few candidate locations based on the current observation of

75

RGB

ResNet-18

Lidar
Observation

 Occupancy View
Free

Occupied

Unknown

fr

fo

Encode Decode

Merge

Unet

PNSS Values

Sensor Processing

Figure 4.3: The PNSS model extracts features from the RGB image firstly.

The Lidar observation is then projected into a 2D occupancy view. A UNet

network is used for predicting the PNSS values for a 3× 3 grid map.

RGB images and Lidar data. The main components are shown in Fig. 4.3

and summarised below:

• The sensor pre-processing module contains two parts: 1) feature extrac-

tion from RGB images using a pre-trained ResNet-18 model (Sarwinda

et al., 2021), which is selected for its ability to capture general visual

features (e.g., edges, textures) learned from large-scale datasets like

ImageNet (Ridnik et al., 2021), providing robust input for further pro-

cessing, and 2) the current Lidar observation that will be transformed

into the occupancy view.

• Given the RGB features and the occupancy view, we encode them

using UNet encoders (Ronneberger et al., 2015) individually. The RGB

features are encoded using a stack of three convolutional blocks denoted

as f r. The occupancy view is processed by a stack of five convolutional

blocks into a feature vector, denoted by f o.

• We then combine f r with f o through the Merge module to construct a

76

combined feature f g. The Merge module contains layer-specific convo-

lution blocks to merge all layers in [f r
i , f

o
i] (Ramakrishnan et al., 2020).

It can be formulated as f g = Merge(f o, f r).

• The combined feature, f g, is decoded using a Unet decoder that outputs

the PNSS values for the corresponding positions in the subgoal space,

formulated as SPNSS = σ(Decode(f g)). Fig. 4.3 shows a 3× 3 subgoal

space, as an example.

4.2.2 High-Level Policy

The HL policy is used to generate the next short-term navigation subgoal

for a robot to navigate. In this work, DQN is used to train the HL planning

policy. The following subsections describe the main components of the HL

policy, namely 1) the observation, 2) the action/subgoal space, and 3) the

reward function.

Observation

The observation for the HL policy comprises three main components, denoted

by oHt = {oL||oPNSS||gHp t}, where || represents vector concatenation combin-

ing two vectors into one higher-dimensional vector. oL is the Lidar reading at

the robot’s current location, oPNSS = Flatten(SPNSS) is the vector of PNSS

values by flattening the SPNSS matrix, whose size depends on the subgoal

space. Starting from the row of subgoals farthest from the robot’s current

position, the subgoals are considered from left to right: first, second, third,

and so on. Then, the first PNSS value corresponds to the first subgoal, the

second PNSS value to the second subgoal, and so forth. gHp t = (rt, θt) repre-

sents the polar coordinates of the target location with respect to the robot

77

frame. This work is based on the assumption that the global coordinates of

the target and robot locations are available for a mapless point navigation

task, usually known as the PointNav task (Abhishek Kadian* et al., 2020).

Action Space (Subgoals)

The action space of the HL policy produces the subgoals for navigation that

will serve as the goals for the LL policy, i.e., AH = GL, where, AH is the

high-level action space and GL is the low-level goals.

Efficient robot learning for the high-level policy requires careful consid-

eration of the action space in terms of the locations of the subgoals and the

complexity of the subgoals (number of actions). Some previous works utilise

a 3×3 grid centred at the robot’s current pose (Wöhlke et al., 2021) and most

of them rely on 360 Lidar only. In this work, we move the 3× 3 grid subgoal

space to the front of the robot’s current view. We consider the method more

intuitive because the forward-looking camera in this work would provide rich

information about the environment in front of the robot, hence predicting

more accurate PNSS values. In addition, when predicting the PNSS value for

each subgoal, the input consists of a 360-degree Lidar observation, which the

simulator automatically converts into an occupancy view. This occupancy

view can offer crucial insights into the distribution of obstacles behind the

robot, aiding in the prediction of potential obstacles ahead. For example, in

indoor environments, a high density of obstacles behind the robot suggests

a lower likelihood of encountering a similar concentration of obstacles in the

robot’s forward path. On the other hand, these positions cover a larger range

of explorable areas compared to those used by existing works (Wöhlke et al.,

2021). We compare the performance of different choices of such explorable

positions in Experiments Section. Due to the spatial constraints with the

78

introduced subgoal space, when the above subgoals are invalid, (e.g., falling

outside of the environment), we also introduce some additional rotation ac-

tions in the subgoal space (14 angles in this work). In such cases, the HL

policy would encourage the robot to rotate with an angle. The action space

can be formulated as below.

AH = [grid1, grid2, ..., grid9, angle1, angle2, ..., angle14] (4.2)

Therefore, there are in total 23 subgoals, i.e., HL actions, available for

selection.

Reward Function

The HL policy will be rewarded or penalised in the different cases, as formu-

lated below:

RH =



rHarrive if dt ≤ δH

rHcollision if collision

rHovertime if tL ≥ T

rHapproach if approaching the subgoal

rHrotate if rotate

(4.3)

where rHarrive is a positive value when the robot reaches the target location,

i.e., when its distance to the final target location, dt, is within a radius δH ;

rHcollision and rHovertime are the penalty values that occur when the LL policy

fails to reach a selected position due to collision or timeout; rHapproach = dt−1−

dt is the change of distance from the robot to the target location between

two consecutive time steps. rHapproach is positive when the robot is getting

closer to the target, and negative when moving away; rHrotate = −cr(|7θpi |) is

a term that penalises when the HL policy selects a subgoal to rotate. The

79

greater the rotation angle θ, the greater the penalty. cr is a weighting factor

that scales the penalty value. The term rHrotate is used to encourage smoother

motions.

It is worth noting that, as discussed before, the reward function above

takes the LL policy’s capabilities into consideration for HL decision making.

It is not realistic to assume that all LL tasks can be completed. We, there-

fore, introduce rewards, e.g. rHcollision and rHovertime, for the HL model such

that it is penalised when the LL model fails to reach a subgoal. This will en-

courage the HL model to consider reachability in its subgoal selection. Alg. 1

details the algorithmic implementation of the HL policy. An ’epoch’ refers

to one complete cycle of training, where the model is trained on the current

environment (which changes every time m is updated). After each epoch,

the training environment is sampled again, ensuring different conditions or

experiences for the model in subsequent epochs.

80

Algorithm 1: HL policy of HRL model with PNSS
Given:

• Pretrained LL policy πLL ;

• HL policy πHL, HL buffer DHL ;

Initialise DQN of HL policy

for m← 0 to M epoch do

Sample training environment Env 1, 2, 3...(once m is changed,

sample another different environment in turn)

for j ← 0 to J training episode do
tHL = 0,

done = 0

Sample a target location gt

while do

Obtain a subgoal gs

gs ∼ epsilon-greedy(πHL(o
H
t))

while do
tLL = 0

atLL ∼ πLL(o
L
t)

tLL = tLL + 1

oLt = oLt+1

if tLL ≥ TLL, or gs reached, or collision then

break

tHL = tHL + 1

if tLL ≥ TLL, or gt reached, or collision, or tHL ≥ THL then

done = 1

DHL ← (oHt , gs, R
H , oHt+1,done)

λtHL+1 ← Adam (λtHL , DHL)

oHt = oHt+1

if done = 1 then

break

81

4.2.3 Low-Level Policy

The LL policy is used to train a robot to learn how to reach any given goal

in a short range. It interacts directly with the environment selecting actions

for the robot. DDPG is utilised to train the LL policy.

This subsection describes the details of the LL policy in three parts: the

observation, the actions and the reward function.

Observation

The observation of the LL policy comprises three parts, denoted as oLt =

{oL||aLt−1||gLp t}. oL denotes the Lidar data of its local surroundings. The

action from the last timestep, at−1, is included in the observation because,

due to the inertia, the robot’s motion commands will have effects on its

successor steps. Last, gLp t is the target location represented in the polar

coordinates of the robot frame.

Action

The LL policy directly controls the wheel velocities of the robot (a TurtleBot

in the experiments), aLt = {vleft, vright}. Each velocity action lasts for 0.1

seconds.

Reward Function

The reward function for training the LL policy is as follows:

RL(oLt , a
L
t , g

L) =


rLarrive if dt ≤ δL

rLcollision if collision

rLapproach otherwise

(4.4)

82

where rLarrive is a positive value, when the robot reaches the target location,

i.e., when its distance to the target dt is within a radius δL; rLcollision is the

penalty value that occurs when the robot collides with an obstacle; rLapproach =

cd(dt−1 − dt) is the distance reward, where (dt−1 − dt) is the change of the

distance from the robot to the target location at two consecutive time steps,

and cd is a weighting factor.

4.3 HRL with PEW

This section mainly introduces the HRL framework with PEW, as shown

in Fig. 4.4. It contains three key modules, including the PEW model, HL

policy and LL policy. Firstly, the PEW model predicts the PEW values for

the positions of the subgoals. Then, the HL policy selects a subgoal based

on current Lidar observations and the predicted PEW values. The LL policy

is responsible for producing locomotion control of the agent to reach the

subgoals selected by the HL policy. The difference between HRL with PNSS

and HRL with PEW lies in the predictive model and the HL state input

representation; all other components remain the same. The PNSS value

denotes the proportion of free space within the local area around a subgoal.

To further refine this measure, the PEW value is developed, which accounts

for the distribution of obstacles, thereby complementing the PNSS value.

We hypothesise that the quantity of obstacles surrounding each subgoal is a

critical factor, while the spatial distribution of these obstacles also provides

valuable contextual information.

83

Figure 4.4: The overall framework with PEW. The HL policy selects a sub-

goal based on the PEW values of each subgoal (P1, P2, ..., P9), the Lidar

observation and the relative goal position. The LL policy controls the robot

to reach the subgoal. The process repeats until the robot reaches the target

location.

Figure 4.5: An example of what the PEW model predicts. In the left figure,

the grey areas represent occupied regions, and the white areas represent free

space. The green circle denotes one of the subgoals the robot can select. The

right figure is the occupancy view measurable with Lidar at the position of

the subgoal. The PEW model is used to predict the area of the occupancy

view and key features of the area, in terms of the distribution of obstacles

and shape/orientation of the free space. To describe the features of the free

space, we use the eigenvectors and eigenvalues of the pixels in the free space,

where V1 and V2 represent the two eigenvectors with V1 having a larger

eigenvalue.

84

4.3.1 PEW Model

To estimate the exploration worthiness of each subgoal, we propose a new

metric, Predictive Exploration Worthiness (PEW). We consider the worthi-

ness is related to the neighbouring space at each corresponding position.

Specifically, the PEW model is designed to predict the free space area, as

well as other attributes, such as the distribution, orientations and shape of

the space. Fig. 4.5 illustrates one example of an occupancy view. It is obvi-

ous that the area can ensure navigation safety, and a larger area may provide

more path choices. However, in more complex situations, we need to consider

other attributes.

(a) Subgoal 1 (b) Subgoal 2 (c) Subgoal 3

Figure 4.6: Occupancy views of some examples of complex subgoals. The

white area is free space and the grey regions represent occupied or unknown

space. All three figures contain the same area of the free space, except their

geometric distribution and orientations.

For illustration purpose, Fig. 4.6 shows the occupancy views of three

complex cases. In Fig. 4.6a and Fig. 4.6b, the areas of the free spaces around

the two subgoals are similar, but the shape and distribution are different,

and obviously, subgoal 2 is consider more preferable than subgoal 1 due to

the complexity of the obstacles. On the other hand, we consider orientation

would also be an important feature for navigation decision making. Fig. 4.6b

85

and Fig. 4.6c have similar shapes and areas. However, if the target location

is located on the right-hand side, subgoal 2 would be more preferred as this

is more likely to lead to the goal location. Therefore, we believe the area,

distribution, orientation and shape are the key features for the PEW metric,

which is formulated as,

P (x, y) = [S,E] (4.5)

where x and y are the coordinates of the subgoal with respect to the robot

coordinate frame, S represents the area of the free space and E denotes the

distribution and shape.

S = Nf/Nt (4.6)

Nt represents the total area of the local region of interest (represented by

128× 128 cells), and Nf represents the area of the free space (i.e. number of

non-occupied cells) measurable by Lidar at [x, y], S ∈ [0, 1].

Rather than predicting the occupancy map directly, we introduce a com-

pact representation of the free space, based on the Principal Component

Analysis (PCA) (Karamizadeh et al., 2020). PCA is a widely used method

for dimension reduction, where the principal components refer to the eigen-

vectors of the covariance matrix. The specific method is as follows:

• Matrix of points. The local region is represented by 128× 128 cells.

Therefore, the region can be seen as a 128×128 matrix. The coordinates

of the free cells are extracted to form a 2 × n matrix,

x1, x2, ..., xn

y1, y2, ..., yn

,
where n is the number of free cells. The first row represents the x-

coordinates, and the second is the y-coordinates.

86

• Subtract the mean for each point. The mean of the x coordi-

nates is computed, and then, for each x-point, the mean value is sub-

tracted from the x coordinates. This procedure is repeated for the

y-coordinates.

• Covariance matrix calculation. Calculate the 2× 2 covariance ma-

trix.

C =

σ2(x, x) σ2(x, y)

σ2(x, y) σ2(y, y)

 (4.7)

• Eigenvectors, eigenvalues of covariance matrix. Calculate the

two eigenvalues and two eigenvectors of the covariance matrix.

• Rearrange the eigen-pairs. Sort by decreasing eigenvalues d1, d2.

The dominant direction can be determined by the eigenvector having

the largest eigenvalue, as shown in Fig. 4.5 where v1 shows a larger

eigenvalue.

• Calculate the orientations of eigenvectors. Calculate the angles

between the two eigenvectors and the x-axis, denoted by θ1 and θ2

respectively, as illustrated in Fig. 4.5.

Therefore, E in Eq. 4.5 can be defined as [d1, d2, θ1, θ2]. Therefore, P (x, y)

in Eq. 4.5 includes 5 values in total.

The PEW model is trained in a supervised manner. We use the iGibson

simulation environment (Shen et al., 2021) to obtain the ground-truth scores

as the training labels. For data collection, the robot is randomly placed at any

arbitrary position of concern. Since the robot is equipped with a Lidar with

an FoV of 360 degrees, the occupancy view can be obtained directly from the

87

Figure 4.7: Network structure of the PEW model.

Lidar data. We then count the number of free cells Nf in the occupancy view

and calculate the eigenvalues and orientations. If the neighbouring areas are

fully occupied, Nf in Eq. 4.6, d1, d2, θ1 and θ2 are all set as 0.

We propose the network structure of the PEW model inspired by the

occupancy anticipation model (Ramakrishnan et al., 2020). The network

structure is shown in Fig. 4.7. Firstly, the RGB image is processed by

ResNet18 to extract features, while Lidar observations are converted into

the occupancy view provided by iGibson (Shen et al., 2021). Then, both are

encoded separately using Unet (Ronneberger et al., 2015). The RGB fea-

tures are processed through a stack of three convolutional blocks, while the

occupancy view is processed through a stack of five convolutional blocks. To

create a combined feature, we merge these features using the Merge module,

which comprises layer-specific convolution blocks to merge each layer of both

encoded features. Finally, the combined feature is decoded using the Unet

decoder that outputs the PEW values.

88

4.3.2 High-Level Policy

Regarding the HL inpurt representation, a state SH
t at time t is defined as

SH
t = [OL||GH ||SPEW], OL is the current Lidar observation, and GH is the

relative goal position. SPEW = Flatten(PPEW) is a 1×45 vector by flattening

the PPEW matrix. All other components remain the same, including the HL

reward function, LL policy and so forth.

4.4 Experiments

4.4.1 Simulation Environment

The iGibson simulator (Shen et al., 2021) is used in this chapter. It is based

on the Gibson dataset (Xia et al., 2018) that includes a large number of com-

plex and photo-realistic 3D domestic environments, such as houses, offices,

restaurants and coffee shops. We use a Turtlebot provided by the simulator

in the experiments. It is equipped with a camera that generates 3×480×640

RGB images and a Lidar with 360 laser beams covering a FoV of 360 degrees.

In this chapter, 23 environments are selected from the Gibson dataset,

where 10 are used for the PNSS model training, 10 are used for the HL policy

and the LL policy training and 3 are used for testing (shown in Fig. 4.8).

The training strategy for the PEW model is identical to that for the PNSS

model.

One main cause of failures is the local minimum problem, i.e., robot be-

ing trapped in a local region (Zhelo et al., 2018). To better demonstrate the

improvement of this work in terms of solving the local minimum problem,

the tests are performed at three difficulty levels. The difficulty levels are de-

fined based on the distances from the robot to the destinations. Respectively,

89

the three difficulty levels correspond to tasks with distance ranges of [2, 5],

[5, 8], and [8, 10]. Tasks in each of the above categories are initialised with

randomly generated starts and destinations that range between the corre-

sponding bounds above. For example, tasks in the first category have target

distances of between [2, 5] meters. Tasks with large ranges would be more

challenging and would include scenarios with more complex local maps that

tend to lead to local minima. Each test is performed with 500 episodes to

compute the average success rate. The same start and goal positions are

used for different algorithm configurations to ensure fair comparisons.

4.4.2 PNSS/PEW Model Training

In the iGibson environment, we can directly acquire the ground-truth occu-

pancy view of a given location. In this work, the occupancy view is repre-

sented as a 128 × 128 matrix, with each cell labelled as occupied, free, or

unknown. Then from the occupancy view, the PNSS value and PEW value

for the location can be calculated. We obtained 5000 sets of data from ran-

domly selected poses in each environment, each consisting of the egocentric

RGB image, the Lidar scan and the calculated ground-truth PNSS value and

PEW value. In total 50000 sets of data are collected, where 40000 of them

are used for training, 5000 are for validation and 5000 are for testing.

4.4.3 LL Policy Training

The LL policy is trained separately. For each episode, the robot is randomly

placed in an environment. Since the LL policy is only concerned about

short-range navigation, we limit the distance to the destination for each LL

episode. The target is randomly sampled at least 0.5 meters away from the

robot, but within a square that is centred at the robot, with each side of

90

(a) Env 1 (Allensville)

(b) Env 2 (Bolton)

(c) Env 3 (Chireno)

Figure 4.8: Example environments for testing.

91

4 meters. The parameters in Eq. 4.4 are set as below. The arrival reward,

rLarrive = 20, is given, when the robot is no more than δL = 0.36 meters

away from the target position (the chassis radius of the Turtlebot is 0.36m).

The collision penalty is set as rLcollision = −3. The hyperparameter cd in

the distance reward, rLapproach, is set to 10 empirically. The full length of an

episode is 1500 timesteps. We train the LL policy for 20000 timesteps in

one environment and then continue to the next environment, until a total

of 1 million timesteps is reached. At each timestep, the agent explores the

environment by taking random actions with a probability ϵ = 0.2 and learnt

actions with Gaussian noises with a probability 1− ϵ = 0.8.

We use DDPG to train the LL policy. The actor network for DDPG has

three MLP layers with the same size of 512. The critic network also has three

MLP layers, the size of the first and last layers is 512, and the dimension

of the second layer is 514, with two extra dimensions for the action. ReLU

activation is used for each layer on both the actor and the critic networks ex-

cept for the output layers. Hyperbolic tangent is used for the actor networks

to activate the last layer, while the critic network has no activation on the

output.

4.4.4 HL Policy Training

After the PNSS model, PEW model and the LL policy are trained, we then

train the HL policy. For each episode, the robot is placed at a random loca-

tion in an environment. We randomise the target positions within a sphere

centred at the robot’s position, with a distance between the corresponding

range bounds. An episode ends in three cases: 1) when the LL policy cannot

reach the subgoal within 1500 timesteps; 2) when the HL policy cannot reach

the target position within 400 selections of subgoals; and 3) the robot collides

92

with an obstacle. An episode is considered successful, when the robot is no

more than δH = 0.86 meters away from the target position, and an arrival re-

ward, rHarrive = +20, is given. The hyperparameter cr in the rotation penalty

term is empirically set to 0.05. The collision and overtime penalties are set

as rHcollision = −3 and rHovertime = −3.

We train the HL policy for 150 episodes in one environment and continue

to the next environment, until a total number of 60000 episodes is reached.

The HL policy uses a epsilon-greedy to explore the environment, with epsilon

decaying linearly from 1 to 0.05 within the first 42, 000 episodes, and being

kept 0.05 to the end of training. These parameters are empirically set after

trial-and-errors.

We use Deep Q Network (Mnih et al., 2015) to train the HL model.

The network is represented by two MLP layers of sizes 512 and 256. ReLU

activation is used only on the output of the first layer. The output of the

network is the Q values of selecting the subgoals with a given observation.

4.4.5 Subgoal Layouts

Since there are infinite combinations of subgoal layouts (HL action space), it

is impractical to evaluate all of them. We focus on three subgoal layouts, as

shown in Fig. 4.9. Each cell in the layouts is 0.5 meter in width and length.

• Layout 1 simply takes the 8 neighbouring cells as its next candidate

subgoals. This is the same as used in (Wöhlke et al., 2021).

• Layout 2 includes another 3 cells in the forward direction of the robot.

This would allow a robot to explore its next subgoal with a larger range.

• Layout 3 is used in this work. We eliminate the cells behind the

robot and introduce a 3× 3 grid in the forward direction of the robot.

93

This will encourage the robot to explore further distance in the forward

direction. We also include 14 rotation subgoals to avoid the robot being

stuck in local minimum.

(c) Layout 3(b) Layout 2(a) Layout 1

Facing Direction

Figure 4.9: Three different layouts we mainly focus on (a) Layout 1 simply

takes the 8 neighbouring grids as its subgoal space. (b) Layout 2 adds three

more grids in front of the robot on the basis of Layout 1. (c) Layout 3

includes 9 subgoals in the forward direction and 14 rotation subgoals.

4.5 Results and Discussions

To study the performance of our proposed method, we carried out compre-

hensive experiments and analyses from various aspects, as follows:

• Overall performance of our proposed method in comparison with other

RL-based mapless navigation approaches

• Performance of the PNSS value prediction

• Choice of RL algorithms for training

• Effectiveness of the PNSS module in comparison with using Lidar data

and encoded RGB image features

94

• Comparison of different subgoal layout configurations

• Effectiveness of the proposed reward function

4.5.1 Performance Comparison with Other RL-based

Approaches

To evaluate the performance of this work, we compare the proposed HRL-

based method with three other RL-based algorithms, including non-hierarchical

and hierarchical methods respectively.

Non-hierarchical RL-based Methods

There are a number of non-hierarchical RL-based mapless navigation meth-

ods. Most of them are inheritance of the work proposed in (Tai et al., 2017).

For comparative evaluation, we choose two approaches to compare with the

proposed HRL-based method, including one DDPG-based approach for the

continuous action space (Tai et al., 2017) and one Double DQN-based al-

gorithm (Van Hasselt et al., 2016) in the discrete space (Marchesini and

Farinelli, 2020a).

The input for both methods includes Lidar observations and the polar

coordinates of the target. The work in (Tai et al., 2017) also includes the

velocity at the previous timestep. The output is the velocity commands,

except that one is in the continuous action space and the other one is discrete.

It is worth mentioning that the same network architecture as used in (Tai

et al., 2017) is deployed for the LL policy in this work, with the same reward

function.

As mentioned, one reason for choosing the above methods is that it is

known to be the most popular solution for RL-based mapless navigation. It

95

should be noted that there is no widely-deployed non-hierarchical navigation

solution that uses both Lidar and raw images, which are also found inefficient

based on the preliminary experiments. Also, the PNSS module or PEW

module is not compatible with this non-hierarchical configuration. Therefore,

in this work, we could not perform a direct comparison here, and only perform

the comparison between our method using PNSS or PEW and the above-

mentioned methods without PNSS or PEW.

The experiments were performed in three environments with different

difficulty levels with all methods. The success rates of the testing tasks are

shown in Table 4.1. It is obvious from the table that the proposed HRL-

based method outperforms both the non-hierarchical approaches (Tai et al.,

2017; Marchesini and Farinelli, 2020a) in all three cases, except for tests

with ranges of 2 − 5m in Environment 3. The improvement is considered

significant, especially for tasks with longer ranges. In the most difficult

experiments (target range: 8− 10m) in three environments, the success rate

of HRL with PNSS is nearly 40% higher than the discrete non-hierarchical

method (Marchesini and Farinelli, 2020a), indicating that the proposed HRL-

based method outperforms the non-hierarchical methods when faced with

complex scenarios. We speculate that this is attributed to the ability of the

proposed HRL-based method to tackle the local minimum problem which is

more often encountered with longer ranges.

Fig. 4.10 illustrates a few cases of the local minimum problem, where a

robot is trapped by a corner, a wall, or furniture. As can be seen in the

figure, with the HL subgoals, the proposed HRL-based method would en-

courage the robot to explore further and could more effectively tackle such

situations. This is attributed to the PNSS values for tackling the local min-

imum problem, which is more often encountered with longer ranges.

96

Table 4.1: Performance comparison with two non-hierarchical methods in

the continuous and discrete space respectively (Tai et al., 2017; Marchesini

and Farinelli, 2020a)

Env Target

range

Continuous

space

Discrete

space

HRL with

PNSS

HRL with

PEW

1

2-5m 55.0% 38.4% 59.4% 57.4%

5-8m 50.4% 23.4% 58.8% 54.6%

8-10m 38.0% 14.2% 52.6% 41.8%

2

2-5m 68.0% 45.0% 71.6% 70.2%

5-8m 57.6% 21.6% 61.2% 59.4%

8-10m 42.0% 14.0% 52.0% 50.2%

3

2-5m 74.8% 65.0% 71.6% 73.6%

5-8m 65.0% 29.8% 65.6% 67.8%

8-10m 61.0% 26.2% 64.6% 66.6%

Fig. 4.11 illustrates the performance of the non-hierarchical methods and

the proposed HRL model with PEW in a long-range navigation task. The

discrete action space-based method fails to move towards the target and

collides with the obstacle. While the continuous action space-based method

is able to approach the target location without any collision, it is trapped by

a long table, which is referred as the local minimum problem. In contrast, the

proposed HRL-based approach effectively addresses this issue. We speculate

that the PEW assists the robot in selecting a more appropriate subgoal,

enabling the robot to explore additional locations and successfully escape the

situation, thereby highlighting the proposed HRL-based method’s superior

performance.

97

In addition, table 4.1 shows that HRL with PNSS outperforms method

HRL with PEW. This could be because the data predicted by the PEW

model is more complex and may not be as accurate. Additionally, the PEW

model predicts four times more data than the PNSS model, resulting in

higher dimensionality of the HL state inputs, which affects the HRL model’s

performance under the same training conditions. Given that HRL with PNSS

performs better, this section will focus on HRL with PNSS in the subsequent

experiments.

98

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Examples of the robot being trapped by obstacles. The red

and blue circles are the start positions and the target positions. The green

lines are ground-truth paths. The red arrows are the robot’s heading direc-

tions. (a), (c), (e) are three cases where the robot keeps heading towards the

direction of the target and cannot get around the obstacle, using the non-

hierarchical Lidar-based mapless navigation method (Tai et al., 2017). (b),

(d), (f) are the solutions provided by the proposed HRL model with PNSS in

these situations. The yellow circles are the subgoals given by the HL policy

that leads the robot to bypass the obstacles.

99

(a) Continuous space-based method

(b) Discrete space-based method

(c) Ours

Figure 4.11: Examples of long-range navigation tasks. Orange and blue

circles represent the start position and the target position respectively. (a),

(b): Green lines represent the robot’s trajectory. (c): Green circles are the

subgoals selected by the HRL model with PEW.

100

HRL Method

HiRO (Nachum et al., 2018) is a state-of-the-art HRL method. Its HL policy

uses conventional MLP neural networks, trained by TD3 (Fujimoto et al.,

2018), operating in the continuous state space as the LL policy. Since the

subgoal space is continuous, it is not compatible to use the proposed PNSS

model. Therefore, the inputs to the HL policy for this study include Lidar

observations and the polar coordinates of the target location. In (Nachum

et al., 2018), they train their HL and LL policies jointly. The reward functions

for both policies are distance-based. To ensure a fair comparison, we utilise

the same reward function as defined in this work. The average reward per

1000 episodes for training the HL policy of HiRO is shown in Fig. 4.12.

Figure 4.12: Average HL rewards achieved by the agent (HiRO), the shaded

area represents the standard deviation.

101

As shown in the figure, the average rewards achieved by the agent do not

show a sign of improvement by increasing the number of episodes for training.

The rewards are all negative values too. Therefore, we consider that HiRO is

unsuitable for such navigation tasks. It suggests that a continuous subgoal

space may not be suitable for the HL policy, due to the large search space

of subgoals for efficient policy training. Furthermore, simultaneous training

of the HL and LL policies is more challenging for this problem due to the

nonstationary problem. Efficient training of the HL policy requires a stable

LL policy, which would need random explorations before it stabilises. The

untrained LL policy would yield an unstable HL policy training and hence

causes inefficiency or even failure in learning effective policies.

4.5.2 PNSS Value Prediction

This section evaluates the performance of the PNSS prediction module and

test the hypothesis that RGB observation will help predict the PNSS value of

a location. We show the results with 1) only Lidar observation and 2) both

Lidar and RGB observations. The model is trained to predict the PNSS

values using three subgoal layouts, as shown in Fig. 4.9. The performance

of the prediction is measured using the L1 distance between the model’s

predicted PNSS values and the ground truth.

As shown in Table 4.2, it is clear that the accuracy of PNSS estimation

is higher, when RGB observation is considered in addition to Lidar data,

producing smaller errors based on the L1 distance metric. We have evalu-

ated several NN structures and loss functions and found that it is difficult

to further reduce the training errors. However, the effect of adding RGB

observations is rather notable. This is expected as the hypothesis is that

visual observations embed richer semantic information that would help in

102

Table 4.2: Performance of PNSS values prediction using different sensing

modalities and subgoal layouts based on the L1 distance metric.

Subgoal Space Lidar Lidar + RGB

Layout 1 0.0996 0.0921

Layout 2 0.0889 0.0791

Layout 3 0.1016 0.0813

determining available free space for navigation. For the above reasons, we

will only use RGB and Lidar data for PNSS estimation in the rest of the

experiments.

To statistically evaluate the PNSS prediction module, we record the av-

erage prediction errors (L1 distance) for each of the 5000 groups in the test

dataset. Fig. 4.13 shows the distributions of the prediction errors. The pre-

diction errors for each subgoal in each layout are also plotted on a heat map,

as shown in Fig. 4.14.

Figure 4.13: Box plot for average PNSS prediction errors with three layouts.

103

(a) Layout 1

(b) Layout 2

(c) Layout 3

Figure 4.14: Heat map for the prediction errors for each subgoal in each

layout. In (a) and (b), 0 represents the location of the robot.

104

As can be seen in Fig. 4.13, Layout 1 has the largest error distribution

that mainly ranges in 0.04-0.13. In contrast, Layout 2 has the smallest error

distribution range. Considering that Layout 2 is similar to Layout 1 except

the three extra subgoals in front of the robot, the reduction of prediction

errors indicates that the model is more accurate in predicting the PNSS

values of the subgoals in the front region of the robot, resulting in a lower

mean error. Layout 3 contains more subgoals in front of the robot. The

overall error distribution is similar to the other two layouts, except that it

has the smallest median value, hence higher accuracy. On the other hand,

the results further suggest that RGB images can contribute to the prediction

of PNSS values, as the camera’s FoV is only for the forward direction.

The heat map (Fig. 4.14) shows the L1 distance between the predicted

and true values for each subgoal in three layouts. The unit is proportion, i.e.,

the ratio of free space in the local region. As illustrated, the maximum L1

distance is 0.11, demonstrating the high accuracy of our prediction model. In

addition, the prediction is less accurate in the PNSS of the subgoals on the

rear and two sides than the forward direction of the robot. This demonstrates

that the RGB images contribute to the improvement of the prediction accu-

racy, as mentioned above. Considering that Layout 3 has the lowest median

PNSS value and overall more evenly distributed errors across all subgoals,

we choose Layout 3 for this work.

4.5.3 RL Algorithms Used to Train the HL and LL

Policies

To decide on the algorithms for training the HL and LL policies, we select

several widely used RL algorithms respectively. We first use the TD3 (Fuji-

moto et al., 2018), SAC (Haarnoja et al., 2018), and DDPG (Lillicrap et al.,

105

2016) to train the LL policy separately. The training strategies and reward

functions for the three methods are identical, as described in Sections 4.2.3

and 4.4.3. Since the LL policy is responsible for short-range navigation, we

set the distance between the target location and the robot’s initial location

to 1− 3m for each episode. For testing, each test lasts for 100 episodes and

the success rates of the three methods are as follows. DDPG produces the

highest success rate of 77%, and the success rates trained by the TD3 and

SAC are close, 72% and 71% respectively. This suggests that DDPG is more

suitable among the three tested algorithms for short-term navigation tasks.

Therefore, we select DDPG as the RL algorithm to train the LL policy.

For the HL policy, since the action space is discrete, we choose two widely

used algorithms designed for discrete action space, namely DQN (Mnih et al.,

2015) and Double DQN (Van Hasselt et al., 2016). Both methods have

identical training strategies and reward functions, and utilise the same LL

policy trained above.

In the process of training, we test both methods every 3000 episodes, with

50 episodes per test. The success rates are shown in Fig. 4.15.

The success rates of both methods start to rise after about 30000 training

episodes, with the method using DQN maintaining a higher success rate than

DDQN. The DQN-based policy stabilises at approximately 50% success rate

and can reach up to 56%. In contrast, the DDQN-based method maintains

a stable success rate of about 40% and remains below 50% overall.

Both methods are tested in the three environments (Fig. 4.8). The suc-

cess rates are shown in Table 4.3. The agent trained by DQN achieves the

best performance in 7 out of the 9 tasks. DDQN is only better in two con-

figurations in Env 3, where, however, the gap between the two is considered

insignificant at about 4%. However, in other configurations, the improve-

106

Figure 4.15: Success rates of the DQN and Double DQN algorithms for

training the HL policy

ment by using DQN is considerably more obvious. Considering the overall

higher success rates and simpler implementation, the DQN is deployed as a

more suitable choice for the HL policy.

107

Table 4.3: Test success rates with different RL algorithms used to train the

HL policy

Env Target range DDQN DQN

1

2-5m 59.2% 59.4%

5-8m 54.0% 58.8%

8-10m 43.6% 52.6%

2

2-5m 68.6% 71.6%

5-8m 55.8% 61.2%

8-10m 46.8% 52.0%

3

2-5m 74.6% 71.6%

5-8m 65.0% 65.6%

8-10m 68.8% 64.6%

4.5.4 Ablation Study: Observation Modality

In this section, we evaluate the importance of the PNSS prediction in im-

proving the HL policy and conduct ablation studies with different observation

modalities, as follows:

• Only Lidar observations

• Lidar observations concatenated with RGB image features, which are

extracted based on (Zhu et al., 2017) using ResNet18.

• Our method, which is similar to the above, but uses predicted PNSS

values instead of extracted ResNet18 features.

108

Fig. 4.16 shows the average reward per 3000 episodes and the test suc-

cess rates of Layout 1 (Fig. 4.9a), which is one commonly used subgoal

space (Wöhlke et al., 2021). As mentioned above, RGB images are encoded

using ResNet18 to obtain a compact representation, as used in (Zhu et al.,

2017). Fig. 4.16a shows that the agent with PNSS achieves the highest re-

ward (blue line). The one with only Lidar and target information achieves the

second (orange line) and the one with RGB image observation achieves the

least (green line). Moreover, the shaded region of each curve is corresponding

to the standard deviation of the rewards. It can be seen that both the upper

and lower bounds of the rewards obtained by the agent with the PNSS values

are higher than the other two methods, indicating that our proposed method

has a better overall performance. Although the increase in reward does not

demonstrate a statistical significance visually, this is considered primarily at-

tributed to the inclusion of a large number of random episodes for training,

encompassing varying levels of difficulty. During training, we also conduct

testing for each method by running 100 episodes per test and calculating the

success rates correspondingly. These tests are performed at regular intervals

of every 3000 episodes of training. The success rates are shown in Fig. 4.16b

for layout 1. It is clear that after 30000 training episodes, the success rates

of all methods start to rise. The proposed HRL-based method (PNSS values

and Lidar) clearly reaches a higher success rate than the other two methods,

and stabilises at around 38%. The methods with only Lidar data and both

RGB features and Lidar reach about 33% and 20% respectively.

109

(a)

(b)

Figure 4.16: Average rewards (a) and test success rates (b) achieved by the

agent with different observation modality-layout 1

110

The success rates of tests in unseen environments (Environment 1, 2,

and 3) are shown in Table 4.4 for Layout 1. The results demonstrate that

the proposed HRL-based method using both the PNSS values and Lidar

outperforms the other two sensing modalities in all cases. Combining RGB

ResNet18 features and Lidar produces the least performance overall, while

the Lidar-based method performs in between the other two. We observe that

directly using the ResNet18 features or RGB data would not contribute to

the performance improvement. This is due to the redundancy in the RGB

features, where the HL policy struggles to extract information helpful for the

task. For the above reason, we do not consider ResNet18-encoded features

for the other two layouts here.

Table 4.4: Test success rates with different observation modalities-layout 1

Env Target range Lidar Lidar + RGB Lidar + PNSS

1

2-5m 50.8% 48.2% 53.4%

5-8m 44.6% 33.4% 54.0%

8-10m 31.8% 25.8% 39.8%

2

2-5m 60.2% 55.0% 64.8%

5-8m 47.0% 34.2% 49.6%

8-10m 30.6% 22.6% 38.8%

3

2-5m 68.0% 66.6% 73.2%

5-8m 57.8% 55.0% 63.2%

8-10m 55.8% 46.8% 62.2%

The same experiments are conducted with Layout 2 and Layout 3 too.

The average reward per 3000 episodes and the test success rates during train-

ing are shown in Fig. 4.17 and Fig. 4.18 respectively. The corresponding

111

success rates of tests in Environments 1, 2, and 3 are illustrated in Table 4.5

and Table 4.6.

These results suggest that extracting task-relevant information by pre-

processing raw observations encoded as the PNSS values has played an im-

portant role in improving its performance. On the other hand, directly using

the Lidar observations makes it more challenging to train the policy, because

Lidar observation can only provide information about the robot’s observed

surroundings. It should be also noted that the tasks with larger ranges show

more obvious performance improvement while using the PNSS data as ob-

servations.

112

(a)

(b)

Figure 4.17: Average rewards (a) and test success rates (b) achieved by the

agent with different observation modality-layout 2

113

(a)

(b)

Figure 4.18: Average rewards (a) and test success rates (b) achieved by the

agent with different observation modality-layout 3

114

Table 4.5: Test success rates with different observation modalities-layout 2

Env Target range Lidar Lidar + PNSS

1

2-5m 52.2% 57.0%

5-8m 47.0% 55.6%

8-10m 31.2% 42.2%

2

2-5m 60.0% 67.8%

5-8m 48.2% 56.4%

8-10m 32.2% 41.8%

3

2-5m 72.6% 72.8%

5-8m 63.2% 66.6%

8-10m 56.4% 62.4%

Despite the promising results with the proposed HRL-based approach,

the overall success rates still present a gap from reliable deployment for real-

world problems. One of the main reasons is the limited sensing capability

and the complexity of the indoor environments in this work. The iGibson

environment includes complex layouts and furniture of various shapes. Due

to the sensing limitation, some furniture parts cannot be detected by Lidar,

such as the legs of chairs which can easily lead to collisions. Also, some

obstacles, like coffee tables, are above the horizontal scanning plane of the

Lidar but can collide with the robot. The collisions will trigger signals for

terminating corresponding episodes, hence limiting the average success rate.

Overall, the proposed HRL-based method improves the success rate in most

of the difficult tasks compared to other methods.

On the other hand, we also consider the practicality of deploying the

policy for real-world control. The average computational times of the models

115

Table 4.6: Test success rates with different observation modalities-layout 3

Env Target range Lidar Lidar + PNSS

1

2-5m 55.8% 59.4%

5-8m 49.8% 58.8%

8-10m 33.4% 52.6%

2

2-5m 59.6% 71.6%

5-8m 39.6% 61.2%

8-10m 25.4% 52.0%

3

2-5m 70.4% 71.6%

5-8m 61.6% 65.6%

8-10m 57.2% 64.6%

with different input modalities are measured too. The proposed method takes

about 0.358s for calculating the PNSS values and the subsequent action.

The method that uses Lidar and RGB image features takes about 0.186s for

computation. The method with only Lidar needs the least computational

time of 0.172s. This is reasonable as this work introduces another tailored

step of predicting the PNSS values for the navigation task. Despite the

longest computational time required, we consider our method highly feasible

for real-world indoor robots that are usually operating at a low speed, as

used in this work.

In addition, we also compare the training time required for the three

methods. All methods are computationally expensive and would take a long

time to run. The proposed method using both Lidar and PNSS values would

take the longest time of about 8 days. The methods with ’Lidar’ and ’Lidar

+ RGB features’ as inputs require similar time durations of about 6 days.

116

We use a workstation with an Intel i9-10900X CPU (3.7GHz x 20) and an

NVidia RTX-2080 TI GPU. This is partially attributed to the fixed number

of episodes (60,000) for all three configurations. With the neighbour scoring

mechanism of the PNSS method, a more valid sub-goal could usually be

chosen by the HL policy for the LL policy to execute. The lower chance

of collision with the PNSS-based method would lead to a longer time for

each episode of the LL policy. The other methods, however, tend to have

higher chances of earlier terminations due to collisions, hence shorter overall

training time.

4.5.5 Ablation study: Subgoal Layouts

Table 4.7: Test success rates with different subgoal spaces

Env Target range Layout 1 Layout 2 Layout 3

1

2-5m 53.4% 57.0% 59.4%

5-8m 54.0% 55.6% 58.8%

8-10m 39.8% 42.2% 52.6%

2

2-5m 64.8% 67.8% 71.6%

5-8m 49.6% 56.4% 61.2%

8-10m 38.8% 41.8% 52.0%

3

2-5m 73.2% 72.8% 71.6%

5-8m 63.2% 66.6% 65.6%

8-10m 62.2% 62.4% 64.6%

In order to investigate whether the choice of subgoal layout (see Fig. 4.9c)

helps improve navigation performance, we conduct experiments with all three

117

different subgoal layouts (Fig. 4.9). The HL policy reward function for the

case of ’Layout 3’ subgoal space is described in subsection 4.2.2, while the

reward functions for the other two cases are the same except that they have

no rotation penalties.

We first report the test success rates of each layout in Table 4.7. One

can see that the proposed subgoal space design helps the agent achieve the

best performance in 7 out of 9 tasks. The proposed method has the highest

success rate in all experiments executed in Env 1 and 2. In Env 3, which

is slightly less complex than the other two (higher average success rates and

more regular geometric features), the performances for the three layouts are

considered similar, except that Layout 3 outperforms in the long range case.

The chosen layout shows clear overall superior results and is considered more

suitable for the majority of tasks. Especially in the difficult tasks (8− 10m),

the HRL model using ’Layout 3’ form has an average success rate 56.4%,

while the average rates of the models using ’Layout 2’ and ’Layout 1’ are

48.8% and 46.9% respectively. The result supports the hypothesis in that

the proposed subgoal space helps the robot navigate better as it allows the

robot to explore subgoals with a larger range.

Fig. 4.19 illustrates an example of a long-range navigation task with dif-

ferent subgoal layouts. As can be seen, the policies using subgoal Layout

1 and Layout 2 do not perform well. The robot is trapped in local regions

in both cases. However, our method would encourage the robot to explore

further and effectively tackle the local minimum problem.

By further investigating the results between the ’Layout 1’ and ’Layout

2’ cases, one can see that the robot performs better when it includes more

subgoal options in front of it, i.e. Layout 2 in this case. This then suggests

that predicting whether there is more free space further ahead is useful for

118

(a) Layout 1 (b) Layout 2

(c) Layout 3

Figure 4.19: An example of the local minimum problem in a long-range

navigation task. Red and blue circles represent the start position and the

target position respectively. Green circles are the subgoals selected by the

policies with different layouts.

navigation tasks.

To understand how the subgoals are selected in the actual navigation

tasks, we tested 100 episodes in Env 1 (Fig. 4.8a), and counted the occur-

119

rences that each subgoal was selected in the successful episodes. Fig. 4.20

shows the results grouped into the three difficulty settings. We observe that

all the subgoals in Layout 3 were selected. When the task is relatively simple,

that is, when the target position is close to the initial position, the subgoals

selected by the HL policy are concentrated in the 9 grids directly in front of

the robot, indicating that the robot is more confident in performing forward

translation motions. However, with the increase in the difficulty of the tasks,

the robot has to face a more complex scenario, so the proportion of rotation

subgoals increases considerably, especially with small angle rotations to the

left (subgoal 10) or right (subgoal 17), because, in the reward setting, the

larger the rotation angle the HL policy selects, the greater the penalty will

be. Only when necessary will the robot choose to rotate at a large angle in

place.

Although the subgoal space layout is set arbitrarily in this work, this

provides another insight into HRL mapless navigation problems that subgoal

layouts could be optimised or even learned in future work.

120

(a) 2-5m (b) 5-8m

(c) 8-10m

Figure 4.20: We record the total number of occurrences different subgoals

were selected in all successful episodes when the model is tested in Env 1

(Fig. 4.8a) on tasks of different difficulty settings. 1-9 refers to the 9 grids

in front of the robot from near to far and from left to right. 10-16 indicates

that the robot rotates to the right. The higher the number, the greater the

rotation angle. Similarly, 17-23 represents HL policy selects the left-rotating

subgoals.

121

4.5.6 Ablation Study: Reward Function

To validate the design of the proposed reward function, we perform the ab-

lation experiment by removing the timeout penalty element from the HL

reward function, which is proposed with considerations of the LL policy’s

capability. Specifically, we remove the item rHovertime that penalises the agent

if it could not reach the selected subgoal within a certain period of time, and

keep the rest the same. After training, we test the two methods, with and

without the timeout penalty. The success rates are shown in Table 4.8.

Table 4.8: Test success rates with different reward functions for training the

HL policy

Env Target range Without timeout penalty With timeout penalty

1

2-5m 60.6% 59.4%

5-8m 56.4% 58.8%

8-10m 46.8% 52.6%

2

2-5m 71.4% 71.6%

5-8m 59.2% 61.2%

8-10m 48.2% 52.0%

3

2-5m 74.4% 71.6%

5-8m 65.4% 65.6%

8-10m 68.2% 64.6%

The result shows that the inclusion of the timeout penalty can overall

improve the success rates in most tasks. As hypothesised, unreachable or

difficult-to-reach subgoals are not desired and the long time costed for the

LL policy to attempt navigating to these subgoals should be integrated into

122

the reward function as penalty. Without the timeout penalty, the agent will

continue choosing unreachable subgoals and subsequently impair the overall

performance.

4.6 Conclusion

This chapter proposes a novel HRL-based mapless navigation method, where

the high-level policy generates a subgoal for the low-level policy, while the

low-level policy is responsible for manoeuvring the robot to the given subgoal

at the locomotion control level. For the HL policy, this chapter introduces

two novel scoring methods, namely Predictive Neighbouring Space Scoring

(PNSS) and Predictive Exploration Worthiness (PEW). The PNSS and PEW

allow the robot to predict the worthiness level for exploration. Also, they

provide the agent with a compact state representation. The PNSS values

indicate the explorable space around a given position and the PEW values

are related to obstacle spatial distribution, such as the area of free space and

the distribution of obstacles. The PNSS/PEW model is trained to predict

the PNSS/PEW values for candidate positions around the robot based on

the robot’s current view. The PNSS or PEW values can be then deployed

by the HL policy as observations in addition to Lidar.

Extensive experiments have been carried out to demonstrate the effec-

tiveness of the proposed methods. This PNSS or PEW-based observation

has shown significant improvements in success rate, due to its compactness

and task-related nature. It should be noted that because of its more accu-

rate predictions and more compact representation, HRL with PNSS performs

better than HRL with PEW under the same training conditions. The results

also demonstrate that our proposed method outperforms Lidar-based policy

123

or policy with both Lidar and ResNet18-based RGB image features. Dif-

ferent layouts for the subgoals are also studied, demonstrating the effective-

ness of the proposed method. One notable improvement of the navigation

performance is for longer range navigation, where Lidar-based methods or

non-hierarchical methods would more likely be stuck in local minimum, as

demonstrated by the experiment conducted in this chapter.

124

Chapter 5

Mapless Navigation via

Hierarchical Reinforcement

Learning with

Memory-Decaying Novelty

125

5.1 Introduction

Despite the effectiveness of HRL in addressing the local minimum problem

as demonstrated in Chapter 4 and other works (Wöhlke et al., 2021; Zhou

et al., 2019; Bischoff et al., 2013), it remains limited in complex, cluttered

environments. As one example, Fig. 5.1 illustrates one case, where the target

is located behind a long wall. In this case, the HRL agent can easily be

trapped in a local area. This is due to the following reasons. First, most

(H)RL-based mapless navigation methods rely on a simplified reward setting,

e.g. rewarded when getting closer to the goal and penalised for any collisions

(Zhou et al., 2019; Bischoff et al., 2013; Staroverov et al., 2020). The distance-

based reward is usually simply calculated based on the Euclidean distance,

which is unrealistic in cluttered environments. Second, exploration is usually

based on a simple inefficient random strategy for exploring unknown areas,

especially for complex cluttered environments (Zhou et al., 2019; Bischoff

et al., 2013). Last, in the case of being trapped in local areas, it would be

desirable for the agent to choose alternative paths. This chapter hypothesises

that incorporating a memory mechanism could effectively address and resolve

such issues.

To address these issues, this chapter proposes a new reward function for

the HL policy, containing two main components, namely extrinsic reward

and intrinsic reward. The extrinsic reward motivates the agent to move

closer towards the target location, expressed as the change in the distance

from the robot to the target at two consecutive HL steps.

The intrinsic reward in this work is inspired by the novelty theory defined

in (Ruan et al., 2022), which posits that animals reward themselves for iden-

tifying something novel. Analogously, an intrinsic reward can be designed to

encourage robots to explore unknown environments by quantifying novelty

126

(a) (b) (c)

Figure 5.1: This is an example of a local minimum problem, where the pur-

ple and yellow circles denote the starting and target locations, respectively.

The target is situated behind a long wall. (a) Initially, the HL policy selects

subsequent subgoals (denoted by the orange circles) in a downward direction,

leading the robot towards the target based on the simple Euclidean distance.

(b) However, since there is no direct path to the goal due to the obstruction

posed by the wall, the robot would need to find alternative routes to bypass

the wall. (c) The robot will continue to be attracted by the goal while ex-

ploring areas further away from the target, potentially getting trapped in the

local area. To address this, this chapter considers a memory mechanism or

effective exploration motivation would enable the agent to avoid re-entering

previously visited states, thereby mitigating the issue of local minima.

as an intrinsic mechanism that drives curiosity about the world (Bellemare

et al., 2016; Ostrovski et al., 2017; Tang et al., 2017). Episode memory is

also an important attribute for designing an intrinsic reward (Pritzel et al.,

2017). Therefore, in this work, the intrinsic reward function has the following

features. First, when the agent reaches a subgoal, previously visited areas or

127

states will be retrieved for calculating the reward. Specifically, this chapter

uses a count-based method (Ostrovski et al., 2017). Second, memory decay-

ing is introduced in this work (Dodd and Gutierrez, 2005) as the basis for

assigning rewards, where the size of the reward depends on the steps required

to move from the current state to the corresponding state in the memory.

The rest of this chapter is organised as follows. Section 5.2 introduces

the proposed method in detail. Section 5.3 introduces the experiment setup,

followed by experimental results and discussions in section 5.4. Section 5.5

concludes this chapter.

5.2 Methods

This chapter proposes an HRL-based mapless navigation method, where the

HL policy is responsible for selecting a subgoal in the subgoal space and the

LL policy controls the locomotion of the robot to reach the corresponding

subgoal. Fig. 5.2 illustrates the proposed framework. To train the HL policy,

this chapter introduces a new reward function that includes two components:

extrinsic and intrinsic rewards. Briefly, the extrinsic reward originates from

the environment and motivates the agent to move towards the target location.

The intrinsic reward depends on three key variables, namely novelty, episode

memory and memory decay. In this section, the working principles of the HL

and LL policies and their training processes will be discussed respectively.

5.2.1 High-Level Policy

The following subsections describe the main components of the HL policy,

namely the observation, the action/subgoal space, the reward function, and

the network structure.

128

Subgoal

Episode
Memory

External
Environment

Novelty Memory
Decaying

LL Model

Extrinsic Reward Intrinsic Reward

Agent

HL Model

Wheel Velocities

Observations

Figure 5.2: The overall framework. The HL policy selects a subgoal based

on the HL input. The LL policy controls the robot to reach the subgoal,

given the subgoal and other LL input information. The process repeats

until the robot reaches the target location. Regarding HL model training,

a new reward function is proposed. It has two components: extrinsic and

intrinsic rewards. The environment provides the extrinsic reward, and the

intrinsic reward is calculated based on novelty, episode memory, and memory

decaying.

Observation

The observation of the HL policy comprised of 6 parts, denoted as oHt =

{oH ||gHp t||aHt−1||rHt−1||xt, yt, ϕt||N(xt, yt)}, where || denotes vector concatena-

tion. oH is the current sensor reading, and gHp t denotes the polar coordinates

of the target location with respect to the robot frame. For the agent to learn

policies through past experience, the action aHt−1 executed at the last HL step

t− 1, i.e. the last selected subgoal, and the HL reward rHt−1 at the previous

step t−1, are also included. xt, yt, ϕt represent the coordinates of the current

location and heading of the robot. The magnitude of the reward is contin-

gent upon the frequency of the robot’s visits to the current location, which

129

will be described in subsection IV-B-(3). To expedite the agent’s acquisition

of the correlation between the reward and visit frequency, we add N(xt, yt),

which is the number of visits to the current location by the robot, to the

observation.

Action Space (Subgoals)

The HL action space, denoted by AH , is constructed by a list of subgoals

that are needed by the LL policy for short-term navigation. Effectively, the

HL action space can be seen as the LL goals, i.e., AH = GL.

Some works use 8 adjacent regions centred on the robot as the action

space (Wöhlke et al., 2021). To provide the robot with more options in a

complex and obstacle-laden environment, we add 2 additional regions in the

front and rear regions of the robot, respectively, as shown in Fig. 5.3. In

addition, since the HL input contains the past states, to initialise the agent

when no historical experience is available, we use stand still as historical

experience for the initial state. Therefore, the subgoal space consists of 13

subgoals, with 12 surrounding areas and one for keeping the robot standing

still.

Reward Function

As mentioned, the proposed reward function contains two components: ex-

trinsic and intrinsic rewards. The total HL reward for each step is the sum of

the extrinsic and intrinsic rewards except when the robot reaches the target,

or the agent remains standing still. The reward RH
t is defined as

130

Figure 5.3: Subgoal space. This work sets the surrounding area, centred on

the robot’s current pose, as the subgoal space (yellow circle). Each grid is

0.35 meters in width and length.

RH
t =


rHarrive if dt ≤ δH

Rex +Rin other

Rs stand still

(5.1)

Three conditions are considered for defining RH
t . Rs is a negative reward for

penalising standing still. A positive value rHarrive is assigned to the reward,

when the robot reaches the target location. This is based on a distance

threshold condition when the distance to the target dt is within a radius δH .

Rex and Rin are the extrinsic and intrinsic rewards, respectively, and their

summation of them forms the reward in other situations. This approach has

been demonstrated to be effective (Zhelo et al., 2018; Dilokthanakul et al.,

2019).

The extrinsic reward is defined in a similar manner as employed in other

non-hierarchical RL-based mapless navigation methods (Tai et al., 2017; Zh-

elo et al., 2018). Its mathematical expression is

131

Rex = Lext−1 − Lext (5.2)

The extrinsic reward is defined as the change of distance from the robot

to the target location between two consecutive HL steps. Lext represents

the distance from the target at HL step t. The extrinsic reward magnitude

increases as the robot approaches the target with greater proximity. This is

directly useful for the agent to be motivated by the extrinsic reward to learn

to move towards the target location.

The intrinsic reward encourages the agent to explore unknown environ-

ments. Analogous to the behaviours of animals that rely on spatial memo-

ries to determine the novelty of a location (Kemp and Manahan-Vaughan,

2004), for navigation tasks, this chapter considers spatial memory an impor-

tant mechanism for implementing robot intrinsic motivation for exploration.

Specifically, in the work, we store the coordinates of all subgoals the HL

policy has previously selected, formulated as below:

M = [x0, y0;x1, y1; ...;xt−1, yt−1] (5.3)

The novelty of the current state is derived from the number of occurrences

in which the agent has visited the corresponding location. We name this the

Novelty Count (NC), denoted by N(x, y).

A threshold δB is used as the condition to determine if the location has

been visited. The number of visits at the current place N(xt, yt) will be in-

creased by 1 if the current location is within δB to the corresponding location.

A high NC indicates low novelty for the current state of the agent. The

intrinsic reward function can be formulated as

Rin = αN(xt, yt) (5.4)

132

where N(xt, yt) is the NC and α is a weighting factor that is negative.

The intrinsic reward encourages the robot to explore more areas efficiently

by avoiding reaching locations that have been previously visited. However,

this is not ideal in all situations. One example is when the robot arrives at a

dead end, where alternative paths are limited or do not exist. In this case, the

above intrinsic reward would prohibit the robot from leaving the local region

through the only path that has been traversed. Although previously visited

places are less favourable, we consider them still worth further exploration.

In this work, this chapter introduces a memory decaying factor Md to the

intrinsic reward. Md enables the robot to revisit areas it has previously

explored after a certain period of time. Mathematically, this chapter defines

Md as a function of the time that the agent has spent travelling to the current

location (xt, yt) from the corresponding location in the episode memory. Md

is formulated as follows:

Md = e−(LM−1)/10 (5.5)

where LM represent the number of HL steps since the last time the robot

visited the location. The memory decaying factor is designed to influence the

magnitude of the intrinsic reward. This factor is expressed as a function in

the range [0, 1]. The value ofMd depends on the distance between the current

state and the robot’s last visit to that state. Since the intrinsic reward is

negative, the closer the distance, the larger the value of Md, and vice versa.

To model this, we use the exponential decay function, xth power of e. Given

the steep rate of decay, we divide the distance by a constant to moderate

the decrease in Md. After testing with various data, we chose to divide the

number of steps by 10. Md is zero if the location has not been previously

visited. A high LM indicates that the agent visited the corresponding place

133

long ago, leading to a small value of Md. Conversely, if the agent recently

visited a location, the value of LM will be low. LM is 1 if the agent visited

the place in the previous HL step. Since α is negative, the agent will incur

a significant penalty for revisiting recently visited locations. Integrating the

memory decaying with the intrinsic reward function gives Eq. 5.4, as follows:

Rin = αN(xt, yt)Md (5.6)

In order to avoid an infinitely small reward, a minimum value R0 is set,

and Rex + Rin thus becomes:

Rex+in = max(R0, Rex +Rin) (5.7)

In addition, to enable the HL policy to take the LL policy’s ability into

account when selecting subgoals, we add some penalty elements to the reward

function. The complete reward function RH
t for the HL policy becomes:

RH
t =



rHarrive if dt ≤ δH

rHcollision if collision

rHovertime if tL ≥ T

Rex+in other

Rs stand still

(5.8)

where rHcollision and rHovertime are the penalty values that occur when the LL

policy fails to reach a selected subgoal due to collision or timeout.

Network Structure

DQN is used to train the HL policy. As shown in Fig. 5.4, this work em-

ploys the LSTM network to equip the agent with memory and reasoning

134

iHt LSTM fc
120

fc
128

Q value
13{oH

t, oH
t-1, oH

t-2, oH
t-3}

oH
t

oH
t-1

oH
t-2

oH
t-3

Figure 5.4: Network structure of HL policy. The input iHt includes the agent’s

current observation and also the observations from the last three HL steps.

The output is the Q value of each subgoal.

capabilities. By leveraging memory units and gating mechanisms, the LSTM

module enables the capture and utilisation of past information, thereby as-

sisting the agent in making more informed policies. Specifically, we input

a sequence of the four recent states iHt = {oHt−3, o
H
t−2, o

H
t−1, o

H
t } into a single

layer of 30 LSTM cells, facilitating the extraction and integration of relevant

temporal patterns. These are followed by two fully connected layers with 120

and 128 units. The network output includes the Q values for selecting the

corresponding subgoals with a given input. Alg. 2 details the algorithmic

implementation of our HL policy.

5.2.2 Low-Level Policy

The LL policy is responsible for outputting the robot’s control commands in

order to navigate to any given short-term goal. This subsection will introduce

the LL policy in terms of observation, action, reward, and network structure.

135

Algorithm 2: HL policy of our HRL model
Given:

• Pretrained LL policy πLL ;

• HL policy πHL, HL buffer DHL ;

Initialise DQN of HL policy;

for m = 0 M epoch do

Sample training environment Env 1, 2, 3...(once m is changed,

sample another different environment in turn)

for j = 0 J training steps do
tHL = 0,

done = 0

Sample a target location gt

while do

Obtain a subgoal gs

gs ∼ epsilon-greedy(πHL(i
H
t))

while do
tLL = 0

atLL ∼ πLL(o
L
t)

tLL = tLL + 1

oLt = oLt+1

if tLL ≥ TLL, or gs reached, or collision then

break

tHL = tHL + 1

if tLL ≥ TLL, or gt reached, or collision, or tHL ≥ THL then

done = 1

DHL ← (iHt , gs, R
H , iHt+1,done)

λtHL+1 ← Adam (λtHL , DHL)

iHt = iHt+1

if done = 1 then

break

136

Observation

The observation of the LL policy comprises five parts, formulated as oLt =

{oL||vL||gLp t||aLt−1||rLt−1}, oL represents the Lidar readings at the current pose,

gLp t represents the target location in the polar coordinates of the robot frame,

aLt−1 is the action produced by the LL policy at the last timestep and rLt−1 is

the reward by executing action aLt−1.

Action

This work uses a TurtleBot, which has a differential drive configuration.

Therefore, the LL policy outputs the velocities of the two wheels, i.e., aLt =

{vleft, vright}.

Reward Function

The reward function for the LL policy is shown below:

RL(oLt , a
L
t , g

L) =


rLarrive if dt ≤ δL

rLcollision if collision

rLapproach otherwise

(5.9)

where rLarrive is a large positive value that will be given when the robot reaches

the target location, i.e., when its distance to the target dt is within a radius

δL; rLcollision penalises the policy when the robot collides with an obstacle;

rLapproach = cd(dt−1 − dt) is the approaching reward, where (dt−1 − dt) is the

distance difference to the target between the current and the last timesteps,

and cd is a weighting factor.

137

Network Structure

DDPG is used for the LL policy. The actor network for the DDPG-based

agent has a single layer of 64 LSTM cells first, followed by three MLP layers,

with the same size of 512. The critic network also contains a single layer

comprising 64 LSTM cells and three MLP layers, where the sizes of the

first and last MLP layers are both 512, and the second layer has two extra

dimensions for the actions, making the size 514. Both the actor and critic

networks use ReLU activation on each MLP layer, except for the output.

The actor network uses hyperbolic tangent to activate the final layer, and

the critic network has no activation on the output.

5.3 Experiments

In this work, the iGibson simulator (Shen et al., 2021) is utilised. It is

developed based on the Gibson dataset (Xia et al., 2018) that contains 572

realistic 3D indoor environments. The robot we use for training is a TurtleBot

equipped with a 360 laser beam Lidar covering a field of view (FoV) of 360

degrees.

This chapter uses a total of 10 different environments to train the HL

policy and the LL policy separately. As mentioned, one main cause for

failure in mapless navigation tasks is the local minimum problem. To better

illustrate the effectiveness of our approach in addressing this issue, three

complex indoor environments which have never been seen before are chosen

for testing, as shown in Fig. 5.5. The dimensions of the environments are as

follows: Env 1 is 9.5m × 8.5m, Env 2 is 12.0m × 8.0m, and Env 3 is 10.0m

× 9.5m.

138

(a) Env 1 (Allensville)

(b) Env 2 (Artois)

(c) Env 3 (Aulander)

Figure 5.5: Experiment environments for testing.

139

The tests in each environment are divided into three difficulty levels,

which are defined according to the distance between the robot’s initial lo-

cation and the target location, ranging from 2-5m, 5-8m, and 8-10m. The

greater the distance, the more difficult the task. Difficult tasks may contain

complex scenarios and more likely result in local minima. We perform 500

episodes per test and record the average success rate, with the initial and

target locations randomly generated by the environment. Every randomised

initial state needs to satisfy the corresponding task difficulty. To ensure fair

evaluation, the initial and target locations are the same across different meth-

ods when testing. In addition, to verify our method’s superior performance

in tackling the local minimum problem, we also choose 3 specific scenarios

that are prone to this problem for demonstration, as shown in Fig. 5.6. In

the three chosen scenarios, the length of the wall between the initial location

and the target location is 5m, 6m and 3.5m, respectively. Each scenario is

tested for 100 episodes, and the success rates are recorded.

140

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 5.6: Specific scenarios for testing. Purple and yellow circles represent

the start location and the target location, respectively.

141

5.3.1 LL Policy Training

The LL and HL policies are trained separately. Considering that the reward

function of the HL policy takes into account the performance of the LL policy,

we train the LL policy first. In each episode, the initial location of the robot

is randomised. Since the LL policy is responsible for short-range navigation,

we randomly generate the target location within a square with a side of 2m

centred on the robot.

The parameters in Eq. 5.9 are set as below. The arrival reward rLarrive =

20 is given when the robot is no more than δL = 0.36 meters away from

the target location (the chassis radius of Turtlebot is 0.36m). The collision

penalty is rLcollision = −3. The hyperparameter cd in rLapproach is set to 10

empirically. The full length of an episode is 1500 timesteps. We train the LL

policy for 20000 timesteps in one environment and then continue with other

environments until a total of 8 million timesteps is reached. Our LL policy

requires the computational time of 0.002s to compute the velocity action.

5.3.2 HL Policy Training

The HL policy training commences after the LL policy training is completed.

In each episode, the robot is randomly placed at a location, and the target

location is also randomly generated by the environment. However, the dis-

tance of each episode is set at 2-10m. The conditions for terminating each

episode are as follows. The robot reaches the target location successfully,

i.e. the distance between the robot and the target location is less than 0.86

m. In this case, the arrival reward rHarrive = 20 is given. When the robot

collides with an obstacle, the collision penalty is set as rHcollision = −3. If

the target location cannot be reached after 200 subgoals selected by the HL

142

policy, this is considered too long and not worth further exploring. Also, if

the LL policy cannot reach the subgoal selected by the HL policy within 800

timesteps, then the overtime penalty is rHovertime = −3. If the agent chooses

to stand still, Rs = −2.5 will be given. In the intrinsic reward function, the

weighting factor α is set as −0.5 and R0 = −2. The boundary threshold δB

is 0.3. These parameters are empirically set.

The HL policy is trained for 5000 steps in one environment and then

switched to another environment until the total number of training steps

reaches 1 million. Our proposed method takes about 0.0025s for selecting a

subgoal.

5.4 Results

To investigate the performance of our method, we perform different experi-

ments to address the following aspects.

• Choice of hyperparameter in intrinsic reward

• Overall performance of our work in comparison with other RL-based

mapless navigation approaches

• Effectiveness of our proposed reward function in comparison with other

reward functions used by most HRL methods

• Effectiveness of the intrinsic reward

• Effectiveness of our proposed neural network structure

143

5.4.1 Choice of Hyperparameter in Intrinsic Reward

In this section, we investigate the effect of the hyperparameter α in the in-

trinsic reward (Eq. 5.6) on training with our model. To ensure the reward

(Rex+in) is not infinitely small, a minimum value R0 = −2 (Eq. 5.7) is set.

Given the dynamic nature of the extrinsic reward Rex and the memory de-

caying factor Md, α primarily determines the value of N , the number of visits

to the current location by the robot, against the reward size. That is, α pre-

dominantly governs the point at which the reward attains a lower bound. To

investigate the effect of different α on our model, we set three values of α:

−0.2, −0.5 and −2. A large N will be required for α = −0.2 to attain the

lower reward bound, but a small value for N is needed when α is −2.

In training, we test three models with different values of α every 25, 000

HL steps, with 50 episodes per test. The test success rates during training

are shown in Fig. 5.7

It shows that when α is −0.5 and −0.2, the success rates tend to in-

crease. However, the success rates are noticeably higher and remain stable

at around 35%, when α is −0.5. On the other hand, when α is −2, the

success rates steadily increase in the early stage, and start to decline after

500, 000 training steps, eventually dropping to about 15%. Considering the

overall performance, α = −0.5 is deployed as a suitable choice for our reward

function.

144

Figure 5.7: Test success rates with different values of α in the intrinsic reward

during the training process.

5.4.2 Performance Comparison with Other RL-based

Approaches

Comparison with Non-hierarchical Methods

We first compare our approach with two non-hierarchical RL-based methods

proposed by Tai et al. (Tai et al., 2017) and Marchesini et al. (Marchesini and

Farinelli, 2020a) respectively. Tai et al.’s work is based on DDPG, applicable

to continuous action space, while Marchesini et al.’s approach is trained with

the Double DQN algorithm (Van Hasselt et al., 2016), tailored for discrete

space. Both methods utilise Lidar observations and the polar coordinates of

the target as input. In addition, Tai et al.’s work incorporates the velocity

from the previous timestep. The output of both approaches consists of the

velocity commands. We train both models with the same reward functions

145

proposed in (Tai et al., 2017) and (Marchesini and Farinelli, 2020a), respec-

tively. In the process of training, we test each method every 25000 steps,

with 50 episodes per test. The success rates are shown in Fig. 5.8. It is clear

that the success rates of all methods have a rising trend. However, the suc-

cess rates of our method are noticeably higher and remain stable at around

35%. The methods with continuous space and discrete space reach about

30% and 18%, respectively. Our method leverages HRL with a structure

tailored for long-range navigation tasks. In addition, we incorporate novelty,

episode memory, and memory decaying into the high-level reward function,

which will encourage the robot to explore unknown environments and thus

effectively solve the local minimum issues. In contrast, the continuous action

space-based method uses a simpler training strategy with a straightforward

reward function—primarily rewarding the robot for approaching the target,

based on Euclidean distance and penalising collisions. This simplicity limits

its success rate compared to our approach.

After training, tests are first performed in three unseen environments with

different difficulty levels. The success rates of the testing tasks are shown in

Table 5.1.

It is clear that our method outperforms both non-hierarchical RL-based

methods in 7 out of 9 tasks. The gap becomes more notable as the task

difficulty increases. In the tests with the target range of 8 − 10m, the con-

tinuous space-based method (Tai et al., 2017) and the discrete space-based

method (Marchesini and Farinelli, 2020a) achieve average success rates of

23.5% and 7.5%, respectively, while our method demonstrates a much higher

success rate of 30.8%. As mentioned, tasks at a higher difficulty level would

be more prone to the local minimum problem. As expected, our method

demonstrates its superior performance compared with the non-hierarchical

146

Figure 5.8: Test success rates of the continuous space-based method (Tai

et al., 2017), discrete space-based method (Marchesini and Farinelli, 2020a)

and our method.

method.

Furthermore, as mentioned, we also test in three specific scenarios (Fig. 5.6).

Both approaches fail to complete the tests in the chosen scenarios, while our

method completes the tasks with success rates of 20.0%, 15.0%, and 30.0%,

respectively.

Fig. 5.9 shows an example of scenario 1. The robot with the non-hierarchical

method (Tai et al., 2017) is trapped in a local region. In contrast, our method

first moves downwards, due to the large extrinsic rewards obtained from the

trajectory that shortens the distance to the target location. However, when

the robot finds that the current path would not lead to the target location,

the intrinsic reward encourages the robot to explore more areas instead of

wandering in a local place.

147

Table 5.1: Performance comparison with two non-hierarchical methods in

the continuous and discrete space respectively (Tai et al., 2017; Marchesini

and Farinelli, 2020a)

Env Target range Continuous

space

Discrete space Ours

1 2-5m 55.0% 38.4% 59.4%

5-8m 50.4% 23.4% 46.6%

8-10m 28.6% 10.2% 38.2%

2 2-5m 56.6% 45.0% 59.0%

5-8m 37.8% 21.6% 40.8%

8-10m 21.6% 7.0% 27.6%

3 2-5m 55.4% 45.0% 57.8%

5-8m 43.4% 12.8% 40.4%

8-10m 20.4% 5.2% 26.6%

The above results show that the non-hierarchical method struggles when

faced with complex local minimum problems, whereas our method substan-

tially improves the success rate and demonstrates effectiveness.

148

(a) Non-hierarchical method

(b) Our method

Figure 5.9: An example in the test of scenario 1. Purple and blue circles

represent the start position and the target position, respectively. (a) The or-

ange line represents the robot’s trajectory generated by the non-hierarchical

method (Tai et al., 2017). (b) The orange circles are the subgoals selected

by our HL policy. The numerical sequence represents the selection order.

149

Comparison with HRL-based Methods

HiRO (Nachum et al., 2018) is one state-of-the-art HRL approach that lever-

ages a conventional MLP HL policy, trained via an off-policy RL algorithm,

TD3 (Fujimoto et al., 2018). It operates in the continuous state space. The

LL policy is trained to track target vectors that are generated by the HL

policy. Notably, they train both policies jointly. In (Nachum et al., 2018),

the authors use a distance-based reward shaping technique in both policies,

which, while not exactly the same as ours, shares similarities and ensures

comparability with our method. We utilise the same HL (without intrinsic

reward) and LL reward functions as proposed in our work. The average re-

wards per 10000 HL steps for training HiRO are shown in Fig. 5.10. The

shaded region corresponds to the standard deviation of the rewards.

Figure 5.10: Average rewards achieved by the agent when training the HL

policy of HiRO

The average rewards achieved by the agent do not show any indication

150

of improvement or stabilisation with increased training steps. Consequently,

the results show that HiRO may struggle with complex navigation tasks. It

also suggests that a continuous subgoal space may not be suited for the HL

policy due to the considerable search space, thereby hindering the efficiency

for policy training. Additionally, parallel training of both policies presents

challenges in navigation tasks. Efficient training of the HL policy requires a

stable LL policy, which may present considerable randomness in exploration

during training, hence highly unstable. In the absence of a properly trained

LL policy, the HL policy training may become unstable, resulting in failing

to learn effective policies.

5.4.3 Effectiveness of The Proposed Reward Function

To validate the effectiveness of our proposed reward function, we train an-

other HRL-based model. As the LL policy only controls the locomotion of

the robot, we still use our LL policy for this model. For the HL policy

training, we utilise the reward function commonly used by most HRL-based

methods (Zhou et al., 2019; Bischoff et al., 2013; Staroverov et al., 2020),

i.e., the agent receives a positive reward for reaching the target location and

is penalised for collisions. Regarding NN structure, instead of incorporating

an LSTM network as with our HL agent, we replace it with two MLP layers

to output the Q value for each subgoal. For evaluation purposes, we exclude

the elements of novelty from the reward function and historical information

for the NN. The HL inputs to the model include the current Lidar readings

and the polar coordinates of the target. In the following experiments, we

refer to this as the “basic HRL” method.

The results of the tests in three unseen environments and specific scenarios

are shown in Table 5.2 and Table 5.3, respectively.

151

Table 5.2: Comparison between our method and the basic HRL-based model

in the three unseen environments

Env Target range Basic HRL method Ours

1 2-5m 46.8% 58.4%

5-8m 32.6% 46.6%

8-10m 20.4% 38.2%

2 2-5m 39.0% 59.0%

5-8m 15.0% 40.8%

8-10m 10.2% 27.6%

3 2-5m 51.2% 57.8%

5-8m 29.8% 40.4%

8-10m 13.0% 26.6%

Table 5.3: Comparison between our method and the basic HRL method in

the three specific scenarios

Scenario Basic HRL method Ours

1 0.0% 20.0%

2 0.0% 15.0%

3 2.0% 30.0%

The results show that our method performs better in all the tasks, and

this dominance is particularly evident in the specific scenarios, which can be

prone to the local minimum problem. The basic HRL-based method achieves

a success rate of nearly zero in the three specific tasks. Fig. 5.11 shows an

152

Figure 5.11: An example of the basic HRL-based method in the test of

scenario 1. The orange points represent the subgoals selected by the HL

policy.

example of when the basic HRL method is tested in scenario 1. The agent

loiters in a local region; however, our method enables the agent to escape

from the dilemma (Fig. 5.9).

It supports our hypothesis that our proposed reward function and the

NN structure can encourage robots to explore unknown environments and

enable them to have certain memory and reasoning abilities.

Furthermore, we conduct a comparative analysis of the training time.

Both approaches entail substantial computational resources and necessitate

considerable time for training. Specifically, our method demands more train-

ing time, approximately 216 hours. Conversely, the basic HRL method re-

quires a shorter time of about 168 hours. We employ a workstation equipped

with an Intel i9-10900X CPU (3.7GHz x 20) and an Nvidia RTX-2080 TI

GPU to conduct our experiments. As described, 10 environments have been

153

selected for training in our work. In the training, we switch to a new en-

vironment after each training session. This requires frequent reloading and

initialisation of new environments in the iGibson simulator. This process

requires about 34.08 seconds, thus time-consuming. In addition, the HL pol-

icy needs to wait for the completion of the task of moving the robot to the

subgoal under the control of the LL policy for each HL training step. As

such, the total training time is considerably long. The longer training time

required by our method is partially due to the fixed number of HL training

steps (1 million) for both methods. Since our method encourages the agent to

explore, it will select more subgoals in various locations. Therefore, the prob-

ability of the agent colliding or choosing an inappropriate subgoal increases.

We terminate the current episode and start the next episode when the robot

fails to reach the selected subgoal. This process involves re-initialisation,

which introduces additional time overhead and prolongs the overall duration

of training. In contrast, the basic HRL method repetitively selects ‘safe’

subgoals that may lead to local minima, as shown in Fig. 5.11. As a result,

the episode does not end prematurely, requiring fewer episodes in total and,

consequently, reducing the training time.

5.4.4 Ablation Study: Intrinsic Reward Metric

In this section, we study the effect of our proposed intrinsic reward in addition

to the extrinsic reward, which is commonly deployed in previous work (Tai

et al., 2017; Zhelo et al., 2018). Specifically, we train our HL policy without

the intrinsic reward and the LL policy remains the same. Due to the lack of

intrinsic rewards in the reward function, the HL reward will not be changed

dynamically based on past states and the subgoal selection is only related

to current observation. Therefore, the HL input includes its current Lidar

154

readings and the polar coordinates of the target with respect to the robot.

Also, the LSTM network is removed to increase its learning efficiency. The

success rates of the tests in the three unseen environments and the three

specific scenarios are shown in Table 5.4 and Table 5.5, respectively.

Table 5.4: Comparison between our method and the method without the

intrinsic reward in the three unseen environments

Env Target range Without intrinsic reward Ours

1 2-5m 50.0% 58.4%

5-8m 39.2% 46.6%

8-10m 22.4% 38.2%

2 2-5m 40.0% 59.0%

5-8m 20.4% 40.8%

8-10m 13.6% 27.6%

3 2-5m 55.4% 57.8%

5-8m 35.4% 40.4%

8-10m 18.4% 26.6%

Table 5.5: Comparison between our method and the method without intrinsic

reward in the three specific scenarios

Scenario Without intrinsic reward Ours

1 0.0% 20.0%

2 0.0% 15.0%

3 3.0% 30.0%

155

Figure 5.12: An example of the method without intrinsic reward in scenario

1. The orange points represent the subgoals selected by the HL policy.

The results show that our method has significantly higher success rates

in all cases, suggesting that our proposed intrinsic reward plays an impor-

tant role. Fig. 5.12 shows an example without the intrinsic reward tested

in scenario 1. The robot moves downwards in order to obtain higher ex-

trinsic rewards, and, due to the lack of exploration motivation and memory

mechanisms, the robot will repeat the same path.

We can observe that the extrinsic reward is effective in most navigation

tasks. However, the performance deteriorates in the presence of local minima,

where the role of our intrinsic reward becomes more effective.

5.4.5 Ablation Study of The Proposed HL Network

To validate the design of the proposed HL network, we conduct two ablation

experiments: 1) removing the LSTM network from our HL network, and

2) replacing the LSTM network with another network, named Frame Stack-

156

ing (Mnih et al., 2015; Tian et al., 2017), which enables the agent’s memory

capability.

Comparison Between Our Method and The NN Structure Without

LSTM Network

We remove the LSTM network from our HL NN. The Q value of each subgoal

is obtained through two MLP layers based on the HL input iHt , which only

includes the current observation oHt . The rest, including the HL reward

functions, training strategies, etc., are identical to our HL policy. In addition,

the LL policy is also the same as ours. The average rewards per 10000 HL

steps for our methods and the one without LSTM are shown in Fig. 5.13.

The shaded region of each curve corresponds to the standard deviation of

the rewards.

Figure 5.13: Average reward for training steps using our method and the NN

structure without LSTM.

157

The figure shows that, without the LSTM network, the agent cannot learn

an effective navigation policy. This is mainly due to the dynamic nature of

our reward function. Consequently, the agent might select the same subgoal

for identical observations but may receive varying rewards. In the absence

of pertinent memory and prior experiences, this could lead to inconsistency

of state-action mapping, failing to optimise the agent’s policy efficiently.

Comparison Between Our Method and The NN Structure Using

Frame Stacking

We replace the LSTM network with another widely used method, Frame

Stacking, which is an effective way to enable NNs to learn temporal context

knowledge (Vanhoucke et al., 2013; Tian et al., 2017; Mnih et al., 2015).

Frame stacking is a kind of frame re-segmentation, which stacks temporal

neighbouring states to form a state (Tian et al., 2017). The inputs to the

HL model include not only the current observation but also the last three

HL steps’ observations, denoted as iHt = {oHt ||oHt−1||oHt−2||oHt−3}. The rest is

identical in terms of the reward function, training strategy, LL policy, etc.

The average rewards per 10,000 steps for our method and the method with

frame stacking are shown in Fig. 5.14.

From the figure, we can observe that the average reward of the method

with frame stacking would not continue growing within its training time (1

million steps), indicating that it could not learn an effective policy and may

require more training steps and resources. In contrast, the average reward of

our model is steadily increasing, proving that the use of the LSTM network

greatly improves learning efficiency.

158

Figure 5.14: Average reward for training steps using our method and the NN

structure utilising frame stacking.

5.4.6 Real World Experiments

Experiments were conducted to demonstrate the effectiveness of the proposed

method in real-world environments. The policy, trained within simulation en-

vironments, was deployed directly onto a mobile robot (Turtlebot 3) without

any modifications. As illustrated in Figure 5.15, the robot is equipped with

two independent controllable wheels and a Lidar sensor (Laser Distance Sen-

sor LDS-01), capable of 360-degree sensing, mirroring the simulation setup.

The Robot Operating System (ROS) platform is used as the robot control

and communication framework in our real-world experiments. Each wheel’s

velocity is computed and commanded by a laptop. It takes about 0.007s for

ROS to export the velocity command to Turtlebot. In addition, as the robot

is operated under direct speed-mode control, the robot maintains its cur-

159

rent velocity until a new command is received. The LL policy outputs zero

motion only upon reaching a subgoal, ensuring smooth transitions between

consecutive subgoals. The total computational and communication time is

approximately 0.01 seconds, during which the robot maintains its velocity.

Due to the short interval and low-speed operation, the computational time

will not have an impact on the robot’s motion. The experimental setup fea-

tured a target location positioned behind a long wall, approximately 6 meters

in length, designed to test the proposed approach’s ability to overcome local

minima. In this scenario, the robot autonomously explores to first locate

the door—the sole access point to the adjacent room—before proceeding to

enter.

For comparative analysis, the non-hierarchical method was evaluated.

Figure 5.15c shows that, using this method, the robot initially moves straight

towards the goal but soon finds itself trapped in a local area close to the goal

yet obstructed by a wall. In contrast, our method prompted the robot to

explore more extensively, enabling successful navigation into another room.

Figures 5.15a and 5.15b depict the robot exploring various subgoals along

the corridor in both forward and backward directions, ultimately finding

the door leading to the goal. This observation underscores our proposed

framework’s ability to encourage further exploration and effectively prevent

revisiting already-explored areas.

160

(a) Our method - 1

(b) Our method - 2

(c) Non-hierarchical method

Figure 5.15: Experiments in a real environment with (a)-(b) our method and

(c) the non-hierarchical method (Tai et al., 2017).

161

5.5 Conclusion

This chapter proposes an HRL-based mapless navigation approach for com-

plex tasks. A novel reward function and a neural network are introduced for

training the HL policy. The proposed HL reward function consists of two

components, namely extrinsic reward and intrinsic reward. The extrinsic

reward is provided by the environment and encourages the robot to move

towards the target location. The intrinsic reward is inspired by the novelty

theory (Ruan et al., 2022), which suggests that animals will reward them-

selves for identifying novelty. We determine the magnitude of the intrinsic

reward by the novelty of the current state. To decide the novelty of a state,

we introduce a count-based method according to episode memory. In ad-

dition, to enhance the robot’s ability to navigate in complex environments,

we incorporate the memory decaying mechanism into the intrinsic reward.

Also, some penalty elements are included in the overall HL reward function

to ensure the LL policy’s performance is considered when selecting subgoals.

In addition, an LSTM network is proposed to equip the agent with memory

and reasoning capabilities.

Experimental results and analyses highlight the effectiveness of the pro-

posed reward function and the NN structure in learning the navigation policy.

Especially in complex tasks, the proposed approach performs better and sig-

nificantly improves the success rate.

162

Chapter 6

Deep Reinforcement Learning

for Localisability-Aware

Mapless Navigation

163

6.1 Introduction

DRL-based mapless navigation methods usually construct a direct mapping

between robot states and actions. In most works, the RL agent state com-

prises two primary components: the sensory observations and the position

information of the target location, which is usually represented in terms of

polar coordinates relative to the robot’s frame (Tai et al., 2017; Zhelo et al.,

2018). To obtain the accurate polar coordinates of the target, reliable robot

localisation is necessary.

Such studies typically assume that robots have access to their ground-

truth poses and focus solely on path planning (Tai et al., 2017; Zhelo et al.,

2018), including the works presented in Chapters 4 and 5. However, the per-

formance of localisation is highly dependent on the environment. Techniques

of visual simultaneous localisation and mapping (SLAM) highly rely on the

tracked visual features for global navigation satellite system (GNSS)-denied

environments; while, for outdoor, GNSS-based localisation is prone to multi-

path reflections of radio signals caused by the environment. The ignorance of

localisation performance would lead to robots failing to localise themselves

and possible catastrophic issues caused by decision-making based on unreli-

able state estimation. This chapter believes that the perception module for

localisation should be closely coupled with decision making in the process of

path planning, which should consider not only commonly used criteria such

as path length, but also the richness of features in the surroundings that

could greatly affect the localisation performance.

However, even state-of-the-art ORB-SLAM2 (Mur-Artal and Tardós, 2017)

often suffers from localisation failures. Its performance may be degraded in

situations where environmental features are poorly observed, such as when

navigating in areas lacking distinct features. In addition, localisation failures

164

could occur even in feature-rich scenarios, i.e., when encountering rapid rota-

tions or movement (Naveed et al., 2022). Therefore, avoiding SLAM failures

in navigation is necessary (Naveed et al., 2022; Prasad et al., 2018; Lin et al.,

2021, 2022).

However, ensuring the effectiveness of SLAM in navigation is nontrivial

and needs several considerations. Firstly, some studies train RL models us-

ing the current observed image features or manually extracted features as

input (Naveed et al., 2022; Prasad et al., 2018). They aim to assess the dis-

crete actions and identify which action may fail the SLAM through RL. Image

features inherently contain richer information; however, these representations

often exhibit poor generalisation when encountering unseen environments.

Secondly, some works have integrated the prevention of SLAM failures into

the reward function when training an RL-based navigation model. Specifi-

cally, they incorporate Absolute Trajectory Error (ATE) as a factor. They

impose a penalty on the agent based on the disparity between the robot pose

returned by SLAM and the ground truth (Chen et al., 2023b). However, the

pose estimation error is the accumulated error from a sequence of actions

executed in the past steps, rather than the result of the last executed action.

Consequently, the agent may still incur a delayed penalty on the latest action

caused by the accumulated error. On the other hand, discrete action space is

more commonly employed for such problems (Chen et al., 2023b; Lin et al.,

2021, 2022; Naveed et al., 2022; Prasad et al., 2018). To enable more flexi-

ble manoeuvring motions in complex and diverse environments, continuous

action space would be more desired.

With these considerations, this chapter proposes a novel DRL-based map-

less navigation approach with a continuous action space. Rather than assum-

ing the availability of localisation, this method uses ORB-SLAM2 (Mur-Artal

165

and Tardós, 2017) with an RGB-D camera for localisation in indoor environ-

ments. This method aims to generate an effective policy for the control of

the robot’s movement towards the designated target, with the capabilities of

obstacle avoidance and enhanced robot pose estimation by considering the

quality of the observed features along the selected paths, hence consequently

leading to optimal SLAM performance. Instead of directly using raw sensory

observations as the state input, this work adopts a more impact represen-

tation. Many works have proved that enough overlap with already mapped

points can prevent SLAM failure (Prasad et al., 2018; Naveed et al., 2022).

On the other hand, it is more desirable to have more ORB features that can

be detected by the robot for better localisation. In addition, a more uniform

distribution of features in space can enhance the alignment of keyframes,

thus improving the localisation accuracy (Chen et al., 2023a). Firstly, map

points are categorised into two classes: the currently tracked and those pre-

viously tracked and stored in the map. Then, the information about the

distribution of these map points is extracted and incorporated into the state

input. It may enable the agent to discern areas with reliable map points.

Furthermore, this chapter introduces a novel reward function that incorpo-

rates Relative Pose Error (RPE) as a penalising factor. RPE can offer a more

intuitive representation of the impact of SLAM resulting from each action.

In addition, SLAM performance varies across different environments (Taheri

and Xia, 2021). Therefore, instead of employing a pre-set threshold and pe-

nalising the robot when the RPE surpasses the threshold, this work adopts

a dynamic threshold, wherein the threshold is influenced by the prevailing

environmental conditions.

The rest of the chapter is organised as follows. Section 6.2 introduces

the proposed method, especially focused on the sets of state representation,

166

Linear/Angular Velocity

RGB Observation

Depth Observation

ORB-SLAM2

Robot Pose
(x, y, z, w)

Relative Target
Pose

Target Location

RL Policy

Current
Velocity

Distributions of Map points

Robot Pose
(x, y, z, w)

Target Location

Relative Target
Pose

Current
Velocity

DRL

Figure 6.1: The overall framework. ORB-SLAM2 determines the robot pose

through the current RGB-D observations and subsequently acquires the po-

lar coordinates of the target location. Additionally, our proposed method

captures information on the distributions of map points derived from SLAM.

The input for the DRL policy comprises the target location, the distribution

of map points, and the current velocity of the robot. The output consists of

linear and angular velocity commands.

reward function, dynamic threshold and so forth. In section 6.3, the exper-

iment design and the results are introduced. Finally, section 6.4 concludes

this chapter.

6.2 Methods

This section introduces the proposed method, focusing on the design of state

and reward representations.

6.2.1 State Representation

This method is based solely on an RGB-D camera. A compact and infor-

mative state representation is essential for effective and efficient training.

Directly using raw RGB-D observations is impractical due to their high re-

167

dundancy and dimensionality. Our proposed representation Ot comprises

four components denoted by Odis, Otgt, Odep, Ovel.

Odis contains essential information about the spatial distribution of tracked

map points that are crucial for the error reprojection optimisation process,

formulated in Eq.3.31. Previous studies show that tracking sufficient features

or map points between consecutive frames is essential for reliable SLAM per-

formance (Naveed et al., 2022; Prasad et al., 2018; Lin et al., 2021). To

ensure consistent map points being tracked, the robot would directly benefit

from the awareness of the spatial distribution of the tracked map points. In

this work, we partition the map points into two categories: 1) those that are

currently tracked, denoted as T ; and 2) those that are previously tracked

and stored in the map, denoted as M .

The T distribution enables the robot to assess the current view’s feature

distribution for decision-making. As an example (Fig. 6.2), if T ’s distribution

is predominantly concentrated on the right side of the robot, opting for a left

turn might be deemed as a less favourable action, as the robot will lose track

of these features. M provides contextual information of the map points of

the surroundings. Such contextual information endows the robot with the

predictive capability of future observations. With the same example above,

if a significant quantity of M is located on the left side of the robot, but

untracked currently. Executing a left rotation may not result in SLAM failure

due to the pre-tracked features.

To effectively encapsulate the map point spatial distribution in a struc-

tured format, we partition the surrounding area into 24 regions in the polar

coordinate frame centred on the robot, as illustrated in Fig. 6.2. Each map

point is assigned to a corresponding region based on its location with respect

to the robot’s frame. Given that the horizontal angle of the RGB-D camera

168

Figure 6.2: Illustration of spatial distribution representation of map points.

The green points represent the currently tracked map points (distributed

within regions 1, 12, 13, and 24). The brown points represent those previously

tracked and may be distributed across any region.

(Xtion PRO LIVE) is 58 degrees, points in T are primarily distributed in

regions 1, 12, 13, and 24. However, the points in M can be in all regions

(1− 24). Subsequently, we extract the distribution information of T and M

map points in each region, represented as:

η(p) = [N, σ1, σ2, σ3] (6.1)

where p represents the map points of interest. N is the number of p, and σ

denotes the variances of the map point coordinates in three axes, respectively.

The reason for including the variance is that they represent the distribution

of p across three axes. A large variance means the data range is large on the

corresponding axis; while a smaller value means the data are concentrated.

169

Therefore, Odis can be formulated as:

Odis = [η(T1), η(T12), η(T13), η(T24), η(M1), η(M2), . . . , η(M24)] (6.2)

where T1,12,13,24 represents the T map points in region 1, 12, 13, and 24

respectively. Similarly, M1−24 is the M map points in region 1− 24.

Otgt, Odep, and Ovel are used to generate the policy that controls the

robot’s move to the target location and avoid collisions. Otgt is the relative

position of the target, represented in the polar coordinates with respect to

the robot’s frame (Otgt = [d, θ]). The pose is obtained from ORB-SLAM2

and is converted to the polar coordinates.

Regarding obstacle avoidance, many works show that the task can be

effectively achieved using only range sensors (Tai et al., 2017; Zhelo et al.,

2018; Marchesini and Farinelli, 2020a). The RGB-D camera, capable of ex-

tracting depth information, can be considered as a range sensor. Since the

depth image D is represented as an m× n matrix, to be effective in training

the policy, rather than using the raw depth data, we converted the matrix

into a 1D vector k, with the dimension of 1×n/p (p is a constant), simulating

a 2D range sensor.

k =



min(D[a : b, 0 : (p− 1)])

min(D[a : b, p : (2p− 1)])

min(D[a : b, 2p : (3p− 1)])
...

min(D[a : b, (((n/p)− 1)p) : ((n/p)p− 1)])



T

(6.3)

where min returns the lowest number of an array, and D[a : b, · · ·] returns

the sub-column of each column, ranged from index a to b. Here, a = m/2

and b = 3m/4. The range from a = m/2 to b = 3m/4 in the depth map is

170

chosen based on the TurtleBot’s height and the relevance of depth data for

obstacle avoidance. The top half of the depth map (0 to m/2) is typically too

high for the low-mounted robot to interact with, so it is disregarded. The

lower portion (3m/4 to m) likely corresponds to the ground, which does not

significantly impact obstacle avoidance. By focusing on the middle region, we

ensure efficient processing while retaining key information for avoiding obsta-

cles at the robot’s height, optimising both performance and computational

resources.

Last, Ovel denotes the robot velocity, including both the linear and angu-

lar velocities, which are essential in guiding the policy to decide its subsequent

steps. Therefore, the state representation is formulated as

Ot = {Odis||Otgt||Odep||Ovel} (6.4)

where || denotes vector concatenation.

6.2.2 Reward Function and Network Structure

In this work, in addition to typical mapless navigation rewards, such as re-

warding the agent on its arrival at the target or penalising actions of collision,

we also included two other localisation-related rewards. The agent will be

penalised when the estimated pose is diverging from the true trajectory, or

when SLAM fails to track its trajectory.

R =



rarrive if ds ≤ δs and dt ≤ δd

rcollision if collision

rpose if et ≥ δp

rlost if SLAM fails

rapproach otherwise

(6.5)

171

A positive reward, rarrive, is assigned if the robot reaches the target.

A two-threshold criterion is introduced. ds and dt represent the distances

between the robot and the target, where ds is estimated using SLAM, and

dt is the ground-truth position. δs and δd specify the corresponding distance

thresholds. Allowing for a certain amount of error during ORB-SLAM2 runs,

δd is slightly larger than δs. If the robot collides with an obstacle, a negative

reward, rcollision, is assigned.

The reward rpose is introduced to reward or penalise the agent based on

the impact on the SLAM performance. RPE, which measures the drift of pose

estimates from the ground truth over a fixed time span, is used to evaluate

the performance of SLAM. Assuming that the ground-truth relative poses

between Qi−∆t and Qi is Q
−1
i−∆tQi and the estimated relative poses between

Pi−∆t and Pi is P
−1
i−∆tPi. The RPE is formulated below:

ei = |trans((Q−1
i−∆tQi)

−1(P−1
i−∆tPi))| (6.6)

where trans denotes the translation error, which is considered here.

RPE is employed as the representation of the error induced by the cor-

responding action. In this work, we consider the RPE error in one timestep,

∆t = 1. When RPE surpasses a pre-defined threshold, it indicates that

the last action has led to inaccurate pose estimation, and will receive a

penalty. However, determining a reliable threshold is challenging, due to

the substantial variation across different environments. Instead of setting a

fixed threshold, we employ a dynamic threshold approach, by checking if the

current RPE lies within an acceptable range. Specifically, we calculate the

mean value and standard deviation of the RPEs of the last τ timesteps to

provide an estimated range of RPE distribution of the environment. Then,

the threshold, δp, is defined as:

172

δp = µ(E) + α σ(E), (6.7a)

E = (et−τ , et−(τ−1), ..., et−1) (6.7b)

where α is a constant, µ() represents the mean value and σ() denotes the

standard deviation.

If et exceeds the threshold δp, this is considered as surpassing the accept-

able range. This approach endows the agent with the capability to adapt

to diverse environments by providing the agent with an adaptive estimation

of localisation performance in the current environment. When the RPE ex-

ceeds δp, a negative reward rpose is applied. In addition, if SLAM encounters

a complete failure, i.e., the number of currently tracked features is 0, rlost is

applied to the agent.

The reward rapproach is defined as the distance difference from the target

to the robot between the last timestep and the current timestep, rapproach =

cr(dt−1 − dt), where cr is a hyperparameter. This encourages the robot to

move towards the goal.

Regarding the network structure, as mentioned, a DDPG-based method

is deployed in our work. The actor network in the DDPG framework consists

of three Multi-layer Perceptron (MLP) layers, each with a uniform size of

512. The critic network also comprises three MLP layers. The size of the

first and last layers is 512, and the dimension of the second layer is 514,

incorporating two additional dimensions for the action. ReLU activation is

applied to each layer in both the actor and the critic networks, except for

the output layers. The actor network utilises hyperbolic tangent activation

for the last layer, whereas the critic network has no activation applied to the

output.

173

6.3 Experiments

6.3.1 Training in Simulation

The simulation environment, iGibson, is used in this work (Shen et al., 2021),

providing a range of photorealistic 3D indoor environments. The training

procedure of our model is performed in a localisation-challenging environ-

ment, such as Env 1 in Fig. 6.3.

Figure 6.3: Env 1: Aloha and two examples of the robot visual features.

The rewards are set as follows: rarrive = 20, δs = 0.5, δd = 0.7, rcollision =

−5, rlost = −5. For Eq. 6.7, α is 3, τ is 50. cr is set as 100 in rapproach. These

parameters are empirically determined through trial and error. The action

space is continuous. The linear velocity is set to be positive, ranging from 0

to 0.06 m/s, whereas the angular velocity varies within the range of −0.1 to

0.1 rad/s.

The policy is trained for 5 million steps. It requires a large number of

training steps primarily because of the complexity of the task. First, the

state space in this problem is large, with numerous possible configurations

174

of the environment and the agent’s state. This means that the model has to

explore a vast number of possible states and learn the appropriate actions for

each one. Additionally, the policy that needs to be learned is typically quite

complex. Effective navigation involves not only making immediate decisions

but also long-term planning, which requires the model to understand and

optimise action sequences over extended periods. This complexity in both the

state space and the required policies slows down training and necessitates a

large number of interactions with the environment to converge on an optimal

policy. In each episode, the start location is randomised and the target

is also randomly sampled in the environment, with the condition that the

target must be 1 to 5 meters away from the start location. The episode

terminates when any of the following conditions are met: 1) SLAM fails,

i.e., insufficient valid map points can be effectively tracked; 2) The error in

either the estimated x-coordinates or y-coordinates from the ground truth

exceeds 0.15, or the error in the estimated orientation is greater than 0.5;

3) The robot collides or surpasses the time limit (3000 tiemsteps); and 4)

The robot successfully reaches the target location. Successful arrival at the

goal is determined by the following two conditions: 1) the distance from

the estimated position to the target is less than 0.5m, and 2) the distance

from the ground-truth position to the goal is less than 0.7m. The work was

performed on a workstation with an Intel i9-10900X CPU (3.7GHz x 20) and

an NVidia RTX-2080 TI GPU, which took about 145 hours.

175

6.3.2 Evaluation

Baseline

To validate the effectiveness of our method, we select several approaches as

the baselines.

• Naive policy (NP-GT): We train a simple mapless navigation model,

which uses the ground truth as the robot pose, obtained from the simu-

lation environment. Since ground truth poses are used, this policy does

not need to consider the accuracy of the poses. Therefore, the input

representation contains Otgt, Odep, and Ovel. We use the same reward

function proposed in (Tai et al., 2017).

• Naive policy (NP-SLAM): In contrast to the NP-GT, the robot poses

are supplied by ORB-SLAM2. The rest remains the same as the

method above.

• Policy with image input (P-Image): In (Naveed et al., 2022), raw image

observation is employed as the RL input and subsequently identifies

which action may lead to SLAM failures. Inspired by this approach,

we utilise the same neural network structure to extract image features

as inputs for our method. For a fair comparison, the reward function

is the same as ours.

• Policy trained by ATE-based reward function (P-ATE): In (Chen et al.,

2023b), a reward metric is proposed to provide feedback on actions that

affect localisation accuracy. The difference between the ATE errors

at the previous and the current timesteps is utilised for the reward.

Additionally, the agent incurs a substantial penalty if the current error

surpasses a predefined threshold. For comparison, we train a model

176

using its reward function, but the state representation is the same as

ours for a fair comparison.

Results

In the process of training, we test each method every 100000 training steps,

with 100 episodes per test. The success rates are shown in Fig. 6.4. NP-

GT achieves the highest success rate, eventually stabilised at around 65%.

The success rate of NP-SLAM is significantly lower and shows a declining

trend after 4 million training steps, reaching about 30%. In contrast, our

approach demonstrates a notably higher success rate, approximately 20%

higher than that of NP-SLAM. The success rates of P-ATE and P-Image do

not increase with the number of training steps, and ended up at about 5%

and 3% respectively.

Figure 6.4: Success rates achieved by different methods.

177

After training, we conducted performance evaluation on our method and

the baselines in Env 1. For each method, 100 tests were performed. The

initial position of the robot and the target are generated randomly for each

test. The same start and goal positions are used for different algorithm

configurations to ensure fair comparisons. The success rates of the testing

tasks are shown in Table 6.1.

Table 6.1: Test success rates in Env 1.

Method Success Rate

NP-GT 61%

NP-SLAM 33%

Our method 49%

P-Image 2%

P-ATE 5%

It is obvious that the highest success rate of 61% is achieved when the

robot pose is precise. In contrast, when relying on SLAM for pose estimation,

the success rate exhibits a considerable decrease, falling to 33%. This sug-

gests that the robot’s movements, generated by NP-SLAM, fail to ensure ac-

curate SLAM localisation, consequently, resulting in navigation failure. Our

proposed method has the highest success rate among the related baselines,

surpassing the NP-SLAM by 16%. Our policy demonstrates the capability

to enhance the robot pose estimation.

Fig. 6.5 shows two instances where our method successfully completes

the task, while the NP-SLAM leads to SLAM failure. In the first example

(Fig. 6.5a and Fig. 6.5b), the left and right sides of the environment are

178

walls with poor features, while the upper and lower parts contain various

environmental features. The NP-SLAM directs the robot to opt for the

shortest path. However, when confronted with an entire wall that lacks

sufficient features, SLAM failure occurs. In contrast, with our method, the

robot traverses a path that may not be the shortest, but allows the robot to

observe more environmental features, thereby ensuring the efficacy of SLAM.

In the second example (Fig. 6.5c and Fig. 6.5d), the initial heading di-

rection is opposite to the target. The policy initially directs the robot to

execute a large-angle rotation in place, before it proceeds to move towards

the target. However, the substantial changes in environmental perception

during the rotation result in a significant error in SLAM localisation. Con-

sequently, the task fails due to the considerable localisation error incurred

during navigation. In contrast, our approach avoids the large rotation and

guides the robot along a path closer to the door, leveraging a greater number

of visual features to enhance the accuracy of its localisation.

Furthermore, utilising the ATE-based reward function proposed in (Chen

et al., 2023b) yields a mere 5% success rate, suggesting its ineffectiveness in

training the policy. Penalising the agent based on the discrepancy between

the current estimated pose and the ground truth is inappropriate. This is

because the error may not arise solely from the last executed action but

could be accumulated from a sequence of past actions executed. Moreover,

applying a uniform criterion to assess SLAM performance limits its gener-

alisability, as the performance of SLAM varies significantly across diverse

environments. Judging whether the localisation fails or not using identical

criteria is imprecise. The experimental results further validate the efficacy of

our proposed reward function.

Additionally, in accordance with our expectations, our proposed method

179

(a) Case 1 - NP-SLAM (b) Case 1 - Our Method

(c) Case 2 - NP-SLAM

(d) Case 2 - Our Method

Figure 6.5: Two examples of SLAM failures caused by the NP-SLAM. The

red and blue circles denote the starting and target locations, respectively.

The arrow represents the initial direction of the robot. In (a) and (c), the

orange circle represents the locations of the SLAM failures.

180

outperforms the method using raw images as inputs in terms of success rate.

This is mainly due to the high dimensionality of raw RGB images, where

the policy struggles to extract useful information for the task. In addition,

this may require more training steps and resources for training. The result

suggests that our proposed input representation is more effective in training

the policy.

To verify the capacity of generalisation of each method, we test each in

an unknown environment, (Env 2 as shown in Fig. 6.6). Each method is

tested for 100 episodes, and the corresponding success rates are presented in

Table 6.2.

Figure 6.6: Env 2: Arona and two examples of the robot visual features.

Since Env 2 has a simpler layout than Env 1, each method exhibits a

higher success rate. Similarly, the success rate is the highest when the robot

pose is true and decreases notably when the pose is derived from SLAM.

Notably, our method maintains the highest success rate, surpassing the NP-

SLAM by 18%, the method with ATE-based reward function by 50%, and

the utilisation of raw images by 52%.

181

Table 6.2: Test success rates in Env 2.

Method Success Rate

NP-GT 65%

NP-SLAM 42%

Our method 60%

P-Image 8%

P-ATE 10%

The experiments in virtual environments reveal the remarkable perfor-

mance of our proposed method in terms of success rate and generalisation

capability.

The proposed approach eliminates the assumption of available localisation

and utilises ORB-SLAM to provide robot poses. SLAM performance may de-

grade in environments with sparse or poorly observed features. This method

integrates the perception module for localisation with decision-making in

path planning. The trained policy directs the robot toward the target while

simultaneously improving SLAM localisation accuracy. To test this, two en-

vironments with few features, which are challenging for SLAM, were selected.

The results show that the method performs effectively, with the policy guid-

ing the robot toward feature-rich areas, enhancing localisation as the robot

observes more environmental details. ORB-SLAM is a widely used visual

SLAM method, and many works have proved that ORB-SLAM performs ex-

cellently in feature-dense environments (Mur-Artal and Tardós, 2017). We

believe the proposed method will perform even better in more feature-rich

environments.

182

6.3.3 Study on RPE Dynamic Threshold

In this section, we study the effect of our proposed dynamic threshold δp.

Specifically, we train another model with a pre-set threshold. When the

RPE exceeds the threshold, rpose in Eq. 6.5, is used. The rest of the reward

function remains the same. To set a suitable threshold, we run the robot for

10, 000 timesteps randomly and record the RPE generated at each timestep.

Then, we rank them in descending order. Subsequently, we select the smallest

RPE value (0.0026) that falls within the top 10% of the ranked list as the

threshold. After training, we also conduct tests in Env 1 and Env 2. The

success rates are shown in Table 6.3.

Table 6.3: Test success rates in Env 1/ Env 2.

Method Success Rate (Env 1/ Env 2)

Pre-set threshold 4% / 4%

Our method 49% / 60%

The results show that our method has significantly higher success rates in

both environments. It suggests that pre-setting the threshold is not suitable

for training an effective policy. In contrast, our proposed dynamic threshold

significantly enhances the performance of the model.

6.4 Conclusion

This chapter introduces a novel DRL-based mapless navigation without re-

lying on the assumption of the availability of localisation. This method uses

RGB-D-based ORB-SLAM2 for localisation in indoor environments. The

183

trained policy not only directs the robot towards the target location but also

enhances robot pose estimation by considering the quality of the observed

features along the selected paths. This chapter proposes a compact state

representation based on the spatial distributions of map points, thereby en-

hancing the robot’s awareness of areas with reliable map points. Additionally,

RPE is incorporated into the reward function instead of ATE. This allows

the policy’s responsiveness to each single action. Furthermore, a dynamic

threshold is introduced to enhance the policy’s adaptability to variations

in SLAM performance across different environments. The experiments in

localisation-challenging environments demonstrate that the proposed method

outperforms existing methods in terms of success rate.

184

Chapter 7

Conclusion and future work

185

This chapter concludes the work presented in this thesis. The main con-

clusions are summarised in Section 7.1, while future research directions are

discussed in Section 7.2.

7.1 Conclusion

In the emerging era of artificial intelligence, the autonomous operation of

mobile robots, such as UAVs and UGVs, fundamentally relies on a reliable

and intelligent navigation system. As recognised by many researchers, con-

ventional robot navigation methods have significant limitations, primarily

due to the reliance on maps. Mapless navigation offers a solution by elim-

inating the need for a predefined map. In particular, deep reinforcement

learning (DRL)-based methods are gaining increasing attention in mapless

navigation because they enable direct mapping between sensory inputs and

robot actions.

Despite its promise, DRL-based mapless navigation faces many unre-

solved challenges. This thesis focuses on improving the performance of DRL-

based mapless navigation. Based on the proposed research objectives, the

following sections summarise each research project. Section 7.2 discusses the

limitations of this thesis and outlines important future research directions.

Improved HRL-based Framework for Mapless Navigation

Solving reinforcement learning (RL)-based mapless navigation tasks is chal-

lenging due to their sparse reward and long decision horizon nature. HRL

has the ability to leverage knowledge at different abstract levels and is thus

preferred in complex mapless navigation tasks. However, the high-level (HL)

policies of most methods lack the ability to distinguish the worthiness of each

186

subgoal. It is computationally expensive and inefficient to learn navigation

policy end-to-end from raw high-dimensional sensor data, such as Lidar or

RGB cameras.

In conclusion, Chapter 4 presents a novel HRL-based mapless navigation

framework. Specifically, it introduces two different subgoal scoring methods:

Predictive Neighbouring Space Scoring (PNSS) and Predictive Exploration

Worthiness (PEW). The PNSS model estimates the explorable space for each

subgoal, while the PEW model predicts the spatial distribution of obstacles,

including the area of free space and the arrangement of obstacles around

each subgoal. These PNSS or PEW values are then used as part of the

HL inputs, providing a compact and informative state representation for

subgoal selection. This work also proposes a new subgoal space layout and

studies the effects of different subgoal space layouts. Moreover, a penalty

term is introduced in the reward function for the HL policy, so that the

subgoal selection process takes the performance of the low-level (LL) policy

into consideration.

Comprehensive evaluations demonstrate that using the proposed PNSS

or PEW module consistently improves performances over the use of Lidar

only or Lidar and encoded RGB features. The proposed method shows sig-

nificant improvements in success rates when tested in unseen environments.

Additionally, the results demonstrate that the proposed subgoal space layout

performs better in long-range tasks.

Resolving Local Minima in HRL-based Methods

Hierarchical Reinforcement Learning (HRL) has shown superior performance

for mapless navigation tasks. However, it remains limited in unstructured en-

vironments that might contain terrains like long corridors and dead corners,

187

which can lead to local minima. This is because most HRL-based map-

less navigation methods employ a simplified reward setting and exploration

strategy.

In conclusion, Chapter 5 proposes a novel reward function for training

the high-level (HL) policy, which contains two components: extrinsic reward

and intrinsic reward. The extrinsic reward encourages the robot to move

towards the target location, while the intrinsic reward is computed based on

novelty, episode memory and memory decaying, making the agent capable

of accomplishing spontaneous exploration. This work also designs a novel

neural network structure that incorporates an LSTM network to augment

the agent with memory and reasoning capabilities.

The proposed method is tested in unknown environments and scenarios

prone to the local minimum problem to evaluate its navigation performance

and ability to resolve local minima. The results show that the proposed

method significantly increases the success rate when compared to advanced

RL-based methods, achieving a maximum improvement of nearly 28%. The

proposed method demonstrates effective improvement in addressing the local

minimum issue, especially in cases where the baselines fail completely. Addi-

tionally, numerous ablation studies consistently confirm the effectiveness of

the proposed reward function and neural network structure.

Development of a DRL-based Method for Localisability-Aware Map-

less Navigation

Most current works of mapless navigation assume accurate ground-truth

robot pose is available. However, this is not realistic, especially for indoor

environments, where SLAM is needed for pose estimation, which highly relies

on the richness of environment features.

188

In conclusion, Chapter 6 proposes a novel DRL-based mapless navigation

method without relying on the assumption of the availability of robot pose.

The proposed method utilises RGB-D-based ORB-SLAM2 for robot locali-

sation. The trained policy effectively guides the robot’s movement toward

the target while enhancing robot pose estimation by considering the quality

of the observed features along the selected paths. To facilitate policy train-

ing, a compact state representation based on the spatial distributions of map

points is proposed, enhancing the robot’s awareness of areas with reliable

map points. Furthermore, this work suggests incorporating the relative pose

error into the reward function. In this way, the policy will be more responsive

to each single action. In addition, rather than utilising a pre-set threshold

to assess the localisation performance, a dynamic threshold is adopted to

improve the policy’s adaptability to variations in SLAM performance across

different environments.

The experiments in localisation-challenging environments have demon-

strated the remarkable performance of the proposed method. It outperforms

the related RL-based methods in terms of success rate.

7.2 Future Work

Deploy The Works on Real Robots

The works presented in Chapters 4 and 6 were tested in virtual environ-

ments. Future work will focus on applying models trained in these virtual

environments to real robots. Real-world environments pose challenges that

are difficult to replicate in virtual settings, such as the impact of lighting on

the camera, the friction between the robot tyres and the ground and so forth.

It requires the development of techniques to address the sim-to-real transfer

189

problem.

Avoid Dynamic Obstacles

In this thesis, the focus is navigating in static environments. Dynamic ob-

jects significantly complicate obstacle avoidance, as model-free approaches

struggle to predict their future positions. However, the proposed networks in

this thesis could be integrated with an object tracking module to model the

relative velocities between the robot and observable moving objects. Com-

bined with an attention mechanism, this information could help the DRL

agent learn a robust obstacle avoidance policy in dynamic environments.

Apply in Complex Outdoor Environments

All scenarios addressed in this thesis involve indoor environments. However,

many applications of mapless navigation occur in settings where map con-

struction is challenging, such as post-disaster relief situations. Future work

aims to train and apply the models in complex outdoor environments.

Multi-robot Navigation

In this thesis, the proposed mapless navigation systems are many for a single

mobile robot. However, multi-robot cooperation is essential in scenarios such

as search and rescue, where systems can collaboratively search for survivors

and deliver rescue supplies in disaster areas. Therefore, future work aims

to enhance the proposed system for multi-robot applications. Several key

questions emerge in this context: 1) How can each robot retrieve experiences?

2) How can the limited knowledge of each agent be effectively propagated? 3)

How can information from various agents be integrated to plan the optimal

path? These questions offer promising avenues for further research.

190

Apply in Extremely Large Environments

The experimental environments in this thesis are all relatively small. Specif-

ically, the work presented in Chapter 5 relies on episode memory, which may

encounter limitations when applied to very large environments, as it is im-

practical to store all visited locations. Therefore, for navigation in large

environments, it is essential to store a series of typical positions. Future

work will focus on developing a model to predict whether a position is typi-

cal, allowing the robot to store and use these positions to maintain a general

environmental awareness.

191

Bibliography

Abhishek Kadian*, Joanne Truong*, Gokaslan, A., Clegg, A., Wijmans, E.,

Lee, S., Savva, M., Chernova, S. and Batra, D. 2020. Sim2Real Predic-

tivity: Does Evaluation in Simulation Predict Real-World Performance?

vol. 5, pp. 6670–6677.

Bacon, P.-L., Harb, J. and Precup, D. 2017. The option-critic architecture.

In: Proceedings of the AAAI conference on artificial intelligence. vol. 31.

Bailey, T., Nieto, J., Guivant, J., Stevens, M. and Nebot, E. 2006. Consis-

tency of the ekf-slam algorithm. In: 2006 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems. IEEE, pp. 3562–3568.

Beeson, P., Modayil, J. and Kuipers, B. 2010. Factoring the mapping prob-

lem: Mobile robot map-building in the hybrid spatial semantic hierarchy.

The International Journal of Robotics Research 29(4), pp. 428–459.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D. and

Munos, R. 2016. Unifying count-based exploration and intrinsic motiva-

tion. Advances in neural information processing systems 29.

Bischoff, B., Nguyen-Tuong, D., Lee, I., Streichert, F., Knoll, A. et al. 2013.

Hierarchical reinforcement learning for robot navigation. In: Proceedings

192

of The European Symposium on Artificial Neural Networks, Computational

Intelligence And Machine Learning (ESANN 2013).

Bodnar, C., Day, B. and Lió, P. 2020. Proximal distilled evolutionary rein-

forcement learning. In: Proceedings of the AAAI Conference on Artificial

Intelligence. vol. 34, pp. 3283–3290.

Chakravarthy, A. and Ghose, D. 1998. Obstacle avoidance in a dynamic

environment: A collision cone approach. IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans 28(5), pp. 562–574.

Chen, W., Li, W., Yang, A. and Hu, Y. 2023a. Active visual slam based

on hierarchical reinforcement learning. In: 2023 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 7155–

7162.

Chen, Y., Qiu, Q., Liu, X., Chen, G., Yao, S., Peng, J., Ji, J. and Zhang, Y.

2023b. Deep reinforcement learning for localizability-enhanced navigation

in dynamic human environments. arXiv preprint arXiv:2303.12354 .

Cunha, J., Pedrosa, E., Cruz, C., Neves, A. J. and Lau, N. 2011. Using a

depth camera for indoor robot localization and navigation. DETI/IEETA-

University of Aveiro, Portugal 27(Jun), p. 6.

Deshpande, M., Kim, R., Kumar, D., Park, J. J. and Zamiska, J. 2023.

Lighthouses and global graph stabilization: Active slam for low-compute,

narrow-fov robots. In: 2023 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, pp. 4070–4076.

DeSouza, G. N. and Kak, A. C. 2002. Vision for mobile robot navigation:

A survey. IEEE transactions on pattern analysis and machine intelligence

24(2), pp. 237–267.

193

Dey, S., Sadek, A., Monaci, G., Chidlovskii, B. and Wolf, C. 2023. Learn-

ing whom to trust in navigation: dynamically switching between classical

and neural planning. In: 2023 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, pp. 5235–5242.

Dilokthanakul, N., Kaplanis, C., Pawlowski, N. and Shanahan, M. 2019. Fea-

ture control as intrinsic motivation for hierarchical reinforcement learning.

IEEE transactions on neural networks and learning systems 30(11), pp.

3409–3418.

Ding, W., Li, S., Qian, H. and Chen, Y. 2018. Hierarchical reinforcement

learning framework towards multi-agent navigation. In: 2018 IEEE in-

ternational conference on robotics and biomimetics (ROBIO). IEEE, pp.

237–242.

Dobrevski, M. and Skočaj, D. 2021. Deep reinforcement learning for map-less

goal-driven robot navigation. International Journal of Advanced Robotic

Systems 18(1), p. 1729881421992621.

Dodd, W. and Gutierrez, R. 2005. The role of episodic memory and emotion

in a cognitive robot. In: ROMAN 2005. IEEE International Workshop on

Robot and Human Interactive Communication, 2005. IEEE, pp. 692–697.

Duan, Y., Andrychowicz, M., Stadie, B., Jonathan Ho, O., Schneider, J.,

Sutskever, I., Abbeel, P. and Zaremba, W. 2017. One-shot imitation learn-

ing. Advances in neural information processing systems 30.

Durrant-Whyte, H. and Bailey, T. 2006. Simultaneous localization and map-

ping: part i. IEEE robotics & automation magazine 13(2), pp. 99–110.

Ekstrom, A. D., Arnold, A. E. and Iaria, G. 2014. A critical review of the

194

allocentric spatial representation and its neural underpinnings: toward a

network-based perspective. Frontiers in human neuroscience 8, p. 803.

Elfes, A. 1987. Sonar-based real-world mapping and navigation. IEEE Jour-

nal on Robotics and Automation 3(3), pp. 249–265.

Engel, Y., Mannor, S. and Meir, R. 2005. Reinforcement learning with gaus-

sian processes. In: Proceedings of the 22nd international conference on

Machine learning. pp. 201–208.

Eppe, M., Nguyen, P. D. and Wermter, S. 2019. From semantics to execution:

Integrating action planning with reinforcement learning for robotic causal

problem-solving. Frontiers in Robotics and AI 6, p. 123.

Epstein, R. A., Patai, E. Z., Julian, J. B. and Spiers, H. J. 2017. The cogni-

tive map in humans: spatial navigation and beyond. Nature neuroscience

20(11), pp. 1504–1513.

Eysenbach, B., Salakhutdinov, R. R. and Levine, S. 2019. Search on the

replay buffer: Bridging planning and reinforcement learning. Advances in

neural information processing systems 32.

Fairfield, N., Wettergreen, D. and Kantor, G. 2010. Segmented slam in three-

dimensional environments. Journal of Field Robotics 27(1), pp. 85–103.

Fan, T., Cheng, X., Pan, J., Manocha, D. and Yang, R. 2018. Crowdmove:

Autonomous mapless navigation in crowded scenarios. arXiv preprint

arXiv:1807.07870 .

Filliat, D. and Meyer, J.-A. 2003. Map-based navigation in mobile robots::

I. a review of localization strategies. Cognitive systems research 4(4), pp.

243–282.

195

Florensa, C., Held, D., Wulfmeier, M., Zhang, M. and Abbeel, P. 2017.

Reverse curriculum generation for reinforcement learning. In: Conference

on robot learning. PMLR, pp. 482–495.

Fu, J., Co-Reyes, J. and Levine, S. 2017. Ex2: Exploration with exemplar

models for deep reinforcement learning. Advances in neural information

processing systems 30.

Fujimoto, S., Hoof, H. and Meger, D. 2018. Addressing function approxima-

tion error in actor-critic methods. In: International conference on machine

learning. PMLR, pp. 1587–1596.

Gasparetto, A., Boscariol, P., Lanzutti, A. and Vidoni, R. 2015. Path plan-

ning and trajectory planning algorithms: A general overview. Motion

and operation planning of robotic systems: Background and practical ap-

proaches pp. 3–27.

Gers, F. A., Schmidhuber, J. and Cummins, F. 2000. Learning to forget:

Continual prediction with lstm. Neural computation 12(10), pp. 2451–

2471.

Grando, R. B., de Jesus, J. C. and Drews-Jr, P. L. 2020. Deep reinforcement

learning for mapless navigation of unmanned aerial vehicles. In: 2020

Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium

on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE).

IEEE, pp. 1–6.

Grisetti, G., Kümmerle, R., Stachniss, C. and Burgard, W. 2010. A tutorial

on graph-based slam. IEEE Intelligent Transportation Systems Magazine

2(4), pp. 31–43.

196

Gupta, A., Kumar, V., Lynch, C., Levine, S. and Hausman, K. 2020. Relay

policy learning: Solving long-horizon tasks via imitation and reinforcement

learning. In: Conference on Robot Learning. PMLR, pp. 1025–1037.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R. and Malik, J. 2017.

Cognitive mapping and planning for visual navigation. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. pp.

2616–2625.

Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. 2018. Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a stochastic

actor. In: International conference on machine learning. PMLR, pp. 1861–

1870.

Hausknecht, M. and Stone, P. 2015. Deep recurrent q-learning for partially

observable mdps. In: 2015 aaai fall symposium series.

Hu, H., Zhang, K., Tan, A. H., Ruan, M., Agia, C. and Nejat, G. 2021. A

sim-to-real pipeline for deep reinforcement learning for autonomous robot

navigation in cluttered rough terrain. IEEE Robotics and Automation

Letters 6(4), pp. 6569–6576.

Jang, Y., Baek, J. and Han, S. 2021. Hindsight intermediate targets for

mapless navigation with deep reinforcement learning. IEEE Transactions

on Industrial Electronics 69(11), pp. 11816–11825.

Jin, J., Nguyen, N. M., Sakib, N., Graves, D., Yao, H. and Jagersand, M.

2020. Mapless navigation among dynamics with social-safety-awareness:

a reinforcement learning approach from 2d laser scans. In: 2020 IEEE

international conference on robotics and automation (ICRA). IEEE, pp.

6979–6985.

197

Jurgenson, T., Avner, O., Groshev, E. and Tamar, A. 2020. Sub-goal trees

a framework for goal-based reinforcement learning. In: International con-

ference on machine learning. PMLR, pp. 5020–5030.

Karamizadeh, S., Abdullah, S. M., Manaf, A. A., Zamani, M. and Hooman,

A. 2020. An overview of principal component analysis. Journal of signal

and information processing 4.

Kemp, A. and Manahan-Vaughan, D. 2004. Hippocampal long-term de-

pression and long-term potentiation encode different aspects of novelty

acquisition. Proceedings of the National Academy of Sciences 101(21), pp.

8192–8197.

Khadka, S. and Tumer, K. 2018. Evolution-guided policy gradient in rein-

forcement learning. Advances in Neural Information Processing Systems

31.

Khan, A., Kumar, V. and Ribeiro, A. 2018. Learning sample-efficient target

reaching for mobile robots. In: 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, pp. 3080–3087.

Khatib, O. 1986. Real-time obstacle avoidance for manipulators and mobile

robots. The international journal of robotics research 5(1), pp. 90–98.

Klink, P., Abdulsamad, H., Belousov, B. and Peters, J. 2020. Self-paced con-

textual reinforcement learning. In: Conference on Robot Learning. PMLR,

pp. 513–529.

Kober, J., Bagnell, J. A. and Peters, J. 2013. Reinforcement learning in

robotics: A survey. The International Journal of Robotics Research 32(11),

pp. 1238–1274.

198

Kohlbrecher, S., Von Stryk, O., Meyer, J. and Klingauf, U. 2011. A flexible

and scalable slam system with full 3d motion estimation. In: 2011 IEEE

international symposium on safety, security, and rescue robotics. IEEE,

pp. 155–160.

Kostavelis, I. and Gasteratos, A. 2015. Semantic mapping for mobile robotics

tasks: A survey. Robotics and Autonomous Systems 66, pp. 86–103.

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K. and Burgard, W.

2011. g 2 o: A general framework for graph optimization. In: 2011 IEEE

international conference on robotics and automation. IEEE, pp. 3607–3613.

Kurniawati, H. 2022. Partially observable markov decision processes and

robotics. Annual Review of Control, Robotics, and Autonomous Systems

5(1), pp. 253–277.

Kwon, Y. D. and Lee, J. S. 1999. A stochastic map building method for

mobile robot using 2-d laser range finder. Autonomous Robots 7, pp. 187–

200.

Laber, J., Thamma, R. and Kirby, E. D. 2020. The impact of warehouse

automation in amazon’s success. Int. J. Innov. Sci. Eng. Technol 7, pp.

63–70.

Lehner, H., Schuster, M. J., Bodenmüller, T. and Kriegel, S. 2017. Explo-

ration with active loop closing: A trade-off between exploration efficiency

and map quality. In: 2017 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS). IEEE, pp. 6191–6198.

Levy, A., Konidaris, G., Platt, R. and Saenko, K. 2017. Learning multi-level

hierarchies with hindsight. arXiv preprint arXiv:1712.00948 .

199

Li, Y. 2017. Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274 .

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,

D. and Wierstra, D. 2015. Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971 .

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,

D. and Wierstra, D. 2016. Continuous control with deep reinforcement

learning. In: Bengio, Y. and LeCun, Y., eds., 4th International Conference

on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-

4, 2016, Conference Track Proceedings. Available at: http://arxiv.org/

abs/1509.02971.

Lin, F., Ji, Z., Wei, C. and Grech, R. 2022. Localisation-safe reinforcement

learning for mapless navigation. In: 2022 IEEE International Conference

on Robotics and Biomimetics (ROBIO). IEEE, pp. 1327–1334.

Lin, F., Ji, Z., Wei, C. and Niu, H. 2021. Reinforcement learning-based map-

less navigation with fail-safe localisation. In: Annual Conference Towards

Autonomous Robotic Systems. Springer, pp. 100–111.

Lingemann, K., Nüchter, A., Hertzberg, J. and Surmann, H. 2005. High-

speed laser localization for mobile robots. Robotics and autonomous sys-

tems 51(4), pp. 275–296.

Lozano-Perez, T. 1990. Spatial planning: A configuration space approach.

Springer.

Lozano-Pérez, T. and Wesley, M. A. 1979. An algorithm for planning

collision-free paths among polyhedral obstacles. Communications of the

ACM 22(10), pp. 560–570.

200

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

Luong, M. and Pham, C. 2021. Incremental learning for autonomous navi-

gation of mobile robots based on deep reinforcement learning. Journal of

Intelligent & Robotic Systems 101(1), p. 1.

Mac, T. T., Copot, C., Tran, D. T. and De Keyser, R. 2016. Heuristic

approaches in robot path planning: A survey. Robotics and Autonomous

Systems 86, pp. 13–28.

Marchesini, E. and Farinelli, A. 2020a. Discrete deep reinforcement learn-

ing for mapless navigation. In: 2020 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, pp. 10688–10694.

Marchesini, E. and Farinelli, A. 2020b. Genetic deep reinforcement learning

for mapless navigation. In: Proceedings of the 19th International Confer-

ence on Autonomous Agents and MultiAgent Systems. pp. 1919–1921.

Matthies, L., Xiong, Y., Hogg, R., Zhu, D., Rankin, A., Kennedy, B., Hebert,

M., Maclachlan, R., Won, C., Frost, T. et al. 2002. A portable, au-

tonomous, urban reconnaissance robot. Robotics and Autonomous Systems

40(2-3), pp. 163–172.

Mei, H., Tian, Y. and Zu, L. 2006. A hybrid ant colony optimization algo-

rithm for path planning of robot in dynamic environment. International

Journal of Information Technology 12(3), pp. 78–88.

Meyer, J.-A. and Filliat, D. 2003. Map-based navigation in mobile robots:: Ii.

a review of map-learning and path-planning strategies. Cognitive Systems

Research 4(4), pp. 283–317.

Millonig, A. and Schechtner, K. 2007. Developing landmark-based

pedestrian-navigation systems. IEEE Transactions on intelligent trans-

portation systems 8(1), pp. 43–49.

201

Mirowski, P., Grimes, M., Malinowski, M., Hermann, K. M., Anderson, K.,

Teplyashin, D., Simonyan, K., Zisserman, A., Hadsell, R. et al. 2018.

Learning to navigate in cities without a map. Advances in neural in-

formation processing systems 31.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A. J., Banino, A.,

Denil, M., Goroshin, R., Sifre, L., Kavukcuoglu, K. et al. 2016. Learning

to navigate in complex environments. arXiv preprint arXiv:1611.03673 .

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T.,

Silver, D. and Kavukcuoglu, K. 2016. Asynchronous methods for deep

reinforcement learning. In: International conference on machine learning.

PMLR, pp. 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al.

2015. Human-level control through deep reinforcement learning. nature

518(7540), pp. 529–533.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. et al. 2002. Fastslam: A

factored solution to the simultaneous localization and mapping problem.

Aaai/iaai 593598, pp. 593–598.

Moradi, H., Choi, J., Kim, E. and Lee, S. 2006. A real-time wall detec-

tion method for indoor environments. In: 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, pp. 4551–4557.

Moravec, H. and Elfes, A. 1985. High resolution maps from wide angle

sonar. In: Proceedings. 1985 IEEE international conference on robotics

and automation. IEEE, vol. 2, pp. 116–121.

202

Mur-Artal, R., Montiel, J. M. M. and Tardos, J. D. 2015. Orb-slam: a versa-

tile and accurate monocular slam system. IEEE transactions on robotics

31(5), pp. 1147–1163.

Mur-Artal, R. and Tardós, J. D. 2017. Orb-slam2: An open-source slam

system for monocular, stereo, and rgb-d cameras. IEEE transactions on

robotics 33(5), pp. 1255–1262.

Nachum, O., Gu, S. S., Lee, H. and Levine, S. 2018. Data-efficient hierarchical

reinforcement learning. Advances in neural information processing systems

31.

Nair, S. and Finn, C. 2019. Hierarchical foresight: Self-supervised learn-

ing of long-horizon tasks via visual subgoal generation. arXiv preprint

arXiv:1909.05829 .

Nasteski, V. 2017. An overview of the supervised machine learning methods.

Horizons. b 4(51-62), p. 56.

Naveed, K., Anjum, M. L., Hussain, W. and Lee, D. 2022. Deep introspective

slam: Deep reinforcement learning based approach to avoid tracking failure

in visual slam. Autonomous Robots 46(6), pp. 705–724.

Nistér, D. and Stewénius, H. 2007. A minimal solution to the generalised

3-point pose problem. Journal of Mathematical Imaging and Vision 27(1),

pp. 67–79.

Ostrovski, G., Bellemare, M. G., Oord, A. and Munos, R. 2017. Count-based

exploration with neural density models. In: International conference on

machine learning. PMLR, pp. 2721–2730.

203

Parascandolo, G., Buesing, L., Merel, J., Hasenclever, L., Aslanides, J.,

Hamrick, J. B., Heess, N., Neitz, A. and Weber, T. 2020. Divide-and-

conquer monte carlo tree search for goal-directed planning. arXiv preprint

arXiv:2004.11410 .

Pathak, D., Agrawal, P., Efros, A. A. and Darrell, T. 2017. Curiosity-driven

exploration by self-supervised prediction. In: International conference on

machine learning. PMLR, pp. 2778–2787.

Patle, B., Pandey, A., Parhi, D., Jagadeesh, A. et al. 2019. A review: On path

planning strategies for navigation of mobile robot. Defence Technology

15(4), pp. 582–606.

Piot, B., Geist, M. and Pietquin, O. 2016. Bridging the gap between imitation

learning and inverse reinforcement learning. IEEE transactions on neural

networks and learning systems 28(8), pp. 1814–1826.

Prasad, V., Yadav, K., Saurabh, R. S., Daga, S., Pareekutty, N., Krishna,

K. M., Ravindran, B. and Bhowmick, B. 2018. Learning to prevent monoc-

ular slam failure using reinforcement learning. In: Proceedings of the 11th

Indian conference on computer vision, graphics and image processing. pp.

1–9.

Pritzel, A., Uria, B., Srinivasan, S., Badia, A. P., Vinyals, O., Hassabis, D.,

Wierstra, D. and Blundell, C. 2017. Neural episodic control. In: Interna-

tional conference on machine learning. PMLR, pp. 2827–2836.

Qin, Y.-Q., Sun, D.-B., Li, N. and Cen, Y.-G. 2004. Path planning for mo-

bile robot using the particle swarm optimization with mutation operator.

In: Proceedings of 2004 international conference on machine learning and

cybernetics (IEEE Cat. No. 04EX826). IEEE, vol. 4, pp. 2473–2478.

204

Qureshi, A. H. and Yip, M. C. 2018. Deeply informed neural sampling for

robot motion planning. In: 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, pp. 6582–6588.

Rachkov, M. Y., Marques, L. and de Almeida, A. T. 2005. Multisensor

demining robot. Autonomous robots 18, pp. 275–291.

Rai, A., Chintalapudi, K. K., Padmanabhan, V. N. and Sen, R. 2012. Zee:

Zero-effort crowdsourcing for indoor localization. In: Proceedings of the

18th annual international conference on Mobile computing and networking.

pp. 293–304.

Ramakrishnan, S. K., Al-Halah, Z. and Grauman, K. 2020. Occupancy an-

ticipation for efficient exploration and navigation. In: Computer Vision–

ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,

2020, Proceedings, Part V 16. Springer, pp. 400–418.

Ridnik, T., Ben-Baruch, E., Noy, A. and Zelnik-Manor, L. 2021. Imagenet-

21k pretraining for the masses. arXiv preprint arXiv:2104.10972 .

Ronneberger, O., Fischer, P. and Brox, T. 2015. U-net: Convolutional net-

works for biomedical image segmentation. In: Medical image comput-

ing and computer-assisted intervention–MICCAI 2015: 18th international

conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.

Springer, pp. 234–241.

Ruan, X., Li, P., Zhu, X. and Liu, P. 2022. A target-driven visual navigation

method based on intrinsic motivation exploration and space topological

cognition. Scientific Reports 12(1), p. 3462.

Rublee, E., Rabaud, V., Konolige, K. and Bradski, G. 2011. Orb: An efficient

205

alternative to sift or surf. In: 2011 International conference on computer

vision. Ieee, pp. 2564–2571.

Sarwinda, D., Paradisa, R. H., Bustamam, A. and Anggia, P. 2021. Deep

learning in image classification using residual network (resnet) variants

for detection of colorectal cancer. Procedia Computer Science 179, pp.

423–431.

Schaul, T., Horgan, D., Gregor, K. and Silver, D. 2015a. Universal value

function approximators. In: International conference on machine learning.

PMLR, pp. 1312–1320.

Schaul, T., Quan, J., Antonoglou, I. and Silver, D. 2015b. Prioritized expe-

rience replay. arXiv preprint arXiv:1511.05952 .

Scott, A., Parker, L. E. and Touzet, C. 2000. Quantitative and qualitative

comparison of three laser-range mapping algorithms using two types of

laser scanner data. In: Smc 2000 conference proceedings. 2000 ieee inter-

national conference on systems, man and cybernetics.’cybernetics evolving

to systems, humans, organizations, and their complex interactions’(cat. no.

0. IEEE, vol. 2, pp. 1422–1427.

Shao, K., Zhao, D., Zhu, Y. and Zhang, Q. 2018. Visual navigation with

actor-critic deep reinforcement learning. In: 2018 International Joint Con-

ference on Neural Networks (IJCNN). IEEE, pp. 1–6.

Sharma, A., Gu, S., Levine, S., Kumar, V. and Hausman, K. 2019. Dynamics-

aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657

.

Shen, B., Xia, F., Li, C., Mart́ın-Mart́ın, R., Fan, L., Wang, G., Pérez-

D’Arpino, C., Buch, S., Srivastava, S., Tchapmi, L. et al. 2021. igibson

206

1.0: A simulation environment for interactive tasks in large realistic scenes.

In: 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, pp. 7520–7527.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. and Riedmiller, M.

2014. Deterministic policy gradient algorithms. In: International confer-

ence on machine learning. PMLR, pp. 387–395.

Singla, A., Padakandla, S. and Bhatnagar, S. 2019. Memory-based deep rein-

forcement learning for obstacle avoidance in uav with limited environment

knowledge. IEEE transactions on intelligent transportation systems 22(1),

pp. 107–118.

Stachniss, C., Hahnel, D. and Burgard, W. 2004. Exploration with active

loop-closing for fastslam. In: 2004 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566).

IEEE, vol. 2, pp. 1505–1510.

Staroverov, A., Yudin, D. A., Belkin, I., Adeshkin, V., Solomentsev, Y. K.

and Panov, A. I. 2020. Real-time object navigation with deep neural net-

works and hierarchical reinforcement learning. IEEE Access 8, pp. 195608–

195621.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O. and Clune,

J. 2017. Deep neuroevolution: Genetic algorithms are a competitive alter-

native for training deep neural networks for reinforcement learning. arXiv

preprint arXiv:1712.06567 .

Sutton, R. S. 1990. Integrated architectures for learning, planning, and react-

ing based on approximating dynamic programming. In: Machine learning

proceedings 1990, Elsevier, pp. 216–224.

207

Sutton, R. S. and Barto, A. G. 2018. Reinforcement learning: An introduc-

tion. MIT press.

Sutton, R. S., McAllester, D., Singh, S. and Mansour, Y. 1999. Policy gradi-

ent methods for reinforcement learning with function approximation. Ad-

vances in neural information processing systems 12.

Taheri, H. and Xia, Z. C. 2021. Slam; definition and evolution. Engineering

Applications of Artificial Intelligence 97, p. 104032.

Tai, L., Paolo, G. and Liu, M. 2017. Virtual-to-real deep reinforcement

learning: Continuous control of mobile robots for mapless navigation. In:

2017 IEEE/RSJ international conference on intelligent robots and systems

(IROS). IEEE, pp. 31–36.

Taketomi, T., Uchiyama, H. and Ikeda, S. 2017. Visual slam algorithms:

A survey from 2010 to 2016. IPSJ transactions on computer vision and

applications 9(1), p. 16.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O., Duan, Y.,

Schulman, J., DeTurck, F. and Abbeel, P. 2017. # exploration: A study

of count-based exploration for deep reinforcement learning. Advances in

neural information processing systems 30.

Thrun, S., Burgard, W. and Fox, D. 1998. A probabilistic approach to con-

current mapping and localization for mobile robots. Autonomous Robots

5, pp. 253–271.

Thrun, S. and Montemerlo, M. 2006. The graph slam algorithm with ap-

plications to large-scale mapping of urban structures. The International

Journal of Robotics Research 25(5-6), pp. 403–429.

208

Tian, X., Zhang, J., Ma, Z., He, Y. and Wei, J. 2017. Frame stacking

and retaining for recurrent neural network acoustic model. arXiv preprint

arXiv:1705.05992 .

Vadakkepat, P., Tan, K. C. and Ming-Liang, W. 2000. Evolutionary artificial

potential fields and their application in real time robot path planning.

In: Proceedings of the 2000 congress on evolutionary computation. CEC00

(Cat. No. 00TH8512). IEEE, vol. 1, pp. 256–263.

Van Hasselt, H., Guez, A. and Silver, D. 2016. Deep reinforcement learn-

ing with double q-learning. In: Proceedings of the AAAI conference on

artificial intelligence. vol. 30.

Vanhoucke, V., Devin, M. and Heigold, G. 2013. Multiframe deep neural

networks for acoustic modeling. In: 2013 IEEE International Conference

on Acoustics, Speech and Signal Processing. IEEE, pp. 7582–7585.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver,

D. and Kavukcuoglu, K. 2017. Feudal networks for hierarchical reinforce-

ment learning. In: International conference on machine learning. PMLR,

pp. 3540–3549.

Wang, S., Wen, H., Clark, R. and Trigoni, N. 2016a. Keyframe based large-

scale indoor localisation using geomagnetic field and motion pattern. In:

2016 IEEE/RSJ international conference on intelligent robots and systems

(IROS). IEEE, pp. 1910–1917.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M. and Freitas, N.

2016b. Dueling network architectures for deep reinforcement learning. In:

International conference on machine learning. PMLR, pp. 1995–2003.

209

Watkins, C. J. and Dayan, P. 1992. Q-learning. Machine learning 8, pp.

279–292.

Wiering, M. A. and Van Otterlo, M. 2012. Reinforcement learning. Adapta-

tion, learning, and optimization 12(3), p. 729.

Williams, R. J. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8, pp. 229–256.

Wöhlke, J., Schmitt, F. and van Hoof, H. 2020. A performance-based start

state curriculum framework for reinforcement learning. In: Proceedings of

the 19th International Conference on Autonomous Agents and MultiAgent

Systems. pp. 1503–1511.

Wöhlke, J., Schmitt, F. and van Hoof, H. 2021. Hierarchies of planning and

reinforcement learning for robot navigation. In: 2021 IEEE international

conference on robotics and automation (ICRA). IEEE, pp. 10682–10688.

Wolbers, T. and Wiener, J. M. 2014. Challenges for identifying the neural

mechanisms that support spatial navigation: the impact of spatial scale.

Frontiers in human neuroscience 8, p. 571.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S. and Ba, J. 2017. Scalable trust-

region method for deep reinforcement learning using kronecker-factored

approximation. Advances in neural information processing systems 30.

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J. and Savarese, S. 2018.

Gibson env: Real-world perception for embodied agents. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. pp.

9068–9079.

210

Xiao, Z., Wen, H., Markham, A. and Trigoni, N. 2014. Robust pedestrian

dead reckoning (r-pdr) for arbitrary mobile device placement. In: 2014

International Conference on Indoor Positioning and Indoor Navigation

(IPIN). IEEE, pp. 187–196.

Xie, L. 2019. Reinforcement learning based mapless robot navigation. Ph.D.

thesis, University of Oxford.

Xie, L., Markham, A. and Trigoni, N. 2020. Snapnav: Learning mapless

visual navigation with sparse directional guidance and visual reference. In:

2020 IEEE International Conference on Robotics and Automation (ICRA).

IEEE, pp. 1682–1688.

Xing, J., Cioffi, G., Hidalgo-Carrió, J. and Scaramuzza, D. 2023. Au-

tonomous power line inspection with drones via perception-aware mpc.

In: 2023 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, pp. 1086–1093.

Xue, Y. and Chen, W. 2023. Combining motion planner and deep reinforce-

ment learning for uav navigation in unknown environment. IEEE Robotics

and Automation Letters 9(1), pp. 635–642.

Yamamoto, K., Onishi, T. and Tsuruoka, Y. 2018. Hierarchical reinforcement

learning with abductive planning. arXiv preprint arXiv:1806.10792 .

Yang, X., Ji, Z., Wu, J., Lai, Y.-K., Wei, C., Liu, G. and Setchi, R. 2021.

Hierarchical reinforcement learning with universal policies for multistep

robotic manipulation. IEEE Transactions on Neural Networks and Learn-

ing Systems 33(9), pp. 4727–4741.

Yu, Y., Si, X., Hu, C. and Zhang, J. 2019. A review of recurrent neural

211

networks: Lstm cells and network architectures. Neural computation 31(7),

pp. 1235–1270.

Zhang, Z. 2012. Microsoft kinect sensor and its effect. IEEE multimedia

19(2), pp. 4–10.

Zhelo, O., Zhang, J., Tai, L., Liu, M. and Burgard, W. 2018. Curiosity-driven

exploration for mapless navigation with deep reinforcement learning. arXiv

preprint arXiv:1804.00456 .

Zhou, X., Bai, T., Gao, Y. and Han, Y. 2019. Vision-based robot navigation

through combining unsupervised learning and hierarchical reinforcement

learning. Sensors 19(7), p. 1576.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L. and

Farhadi, A. 2017. Target-driven visual navigation in indoor scenes using

deep reinforcement learning. In: 2017 IEEE international conference on

robotics and automation (ICRA). IEEE, pp. 3357–3364.

Zhu, Y., Wang, Z., Chen, C. and Dong, D. 2021. Rule-based reinforcement

learning for efficient robot navigation with space reduction. IEEE/ASME

Transactions on Mechatronics 27(2), pp. 846–857.

212

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Acronyms
	Publication List
	Introduction
	Motivation
	Research Challenges and Problems
	Aim and Objectives
	Contributions
	Outline

	Literature review
	Map-Based Navigation
	Sensing
	Localisation
	Map Representation
	Path Planning

	Mapless Navigation
	DRL-based Mapless Navigation
	Limitations
	Reducing Localisation Errors

	Summary

	Preliminary
	Reinforcement Learning
	Markov Decision Process
	Key Elements and Concepts

	Reinforcement Learning Methods
	Model-Free & Model-Based
	Value-based Methods
	Policy-based Methods
	Actor-Critic Methods

	Goal-conditioned Reinforcement Learning
	Deep Reinforcement Learning Algorithms
	Simultaneous Localisation and Mapping
	Visual SLAM
	ORB-SLAM

	Conclusion

	Efficient Hierarchical Reinforcement Learning for Mapless Navigation with Predictive Neighbouring Space Scoring or Predictive Exploration Worthiness
	Introduction
	HRL with PNSS
	PNSS Model
	High-Level Policy
	Low-Level Policy

	HRL with PEW
	PEW Model
	High-Level Policy

	Experiments
	Simulation Environment
	PNSS/PEW Model Training
	LL Policy Training
	HL Policy Training
	Subgoal Layouts

	Results and Discussions
	Performance Comparison with Other RL-based Approaches
	PNSS Value Prediction
	RL Algorithms Used to Train the HL and LL Policies
	Ablation Study: Observation Modality
	Ablation study: Subgoal Layouts
	Ablation Study: Reward Function

	Conclusion

	Mapless Navigation via Hierarchical Reinforcement Learning with Memory-Decaying Novelty
	Introduction
	Methods
	High-Level Policy
	Low-Level Policy

	Experiments
	LL Policy Training
	HL Policy Training

	Results
	Choice of Hyperparameter in Intrinsic Reward
	Performance Comparison with Other RL-based Approaches
	Effectiveness of The Proposed Reward Function
	Ablation Study: Intrinsic Reward Metric
	Ablation Study of The Proposed HL Network
	Real World Experiments

	Conclusion

	Deep Reinforcement Learning for Localisability-Aware Mapless Navigation
	Introduction
	Methods
	State Representation
	Reward Function and Network Structure

	Experiments
	Training in Simulation
	Evaluation
	Study on RPE Dynamic Threshold

	Conclusion

	Conclusion and future work
	Conclusion
	Future Work

