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ABSTRACT
This paper has presented a new approach for investigating the potential to rationally use promising sustainable energy sources
with highly developed energy management systems integrated into IoT and AI technologies. The empirical analysis was done
through a Genetic Algorithm model in Python taken on a typical microgrid system that supplied power to 100 homes at
an average of 47 kW. The simulation results show an enormous reduction of waste power in the order of 93%, but at a
costlier overall in the microgrid, up by approximately 25%. These results act as strong proof that this integrated approach is
technically feasible and economically feasible for the pursuit of efficiency and savings. This study goes further to consider
the economic implications of the implementation and maintenance of EMS. It also considers cybersecurity as one of the
critical challenges in interconnected microgrids that might influence operational integrity. The research further contributes
significantly to knowledge on battery consumption loss and the factors that have to be addressed to avoid negative impacts on
the overall system. This research considers a microgrid as a key building block in a flexible and resilient energy infrastructure;
its approach covers more than just technical discussions but fosters a broader, transdisciplinary dialogue. In the future, smart
EMS integrated with IoT and AI is foreseen to be necessary to enable microgrids to maintain a sustainable and reliable power
supply in communities. In short, this article gives fresh guidelines for the development of energy systems that are bound
to be not only more efficient but also stable enough to resist any challenge that may come from environmental dynamics.
Finally, the article calls upon all researchers, policymakers, and other stakeholders to contribute their quota in shaping
the future of energy systems of the 21st century in a way that can help make the energy landscape more sustainable and
resilient.

1 Introduction

In this vast and elaborate web of energy dynamics, a microgrid
turns out to be a strong fortress that dares to question the
very core of the conventional power distribution system. Such
small domains of energy self-sufficiency, nourished on indige-
nous resources, are beckoning us toward such an era when

sustainability and energy self-sufficiency are inextricably tied
in an exquisite symphony [1]. Yet, the untapped potential of
microgrids cries for orchestration through the painstaking design
of sophisticated energy management systems (EMS) [2]. Our
work tells the story of a journey to navigate through the complex
landscape of microgrid optimisation, charting a path to that
horizon in a world confronted with an ultimate fusion of IoT
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FIGURE 1 EMS role between utilities and customer benefits.

and AI, where the very capabilities of EMS are gathering full
momentum and rewriting the very fundamentals of our energy
future [3].

At the heart of our narrative is a twin mandate euphemism
for an exquisite balancing act between reducing operational
costs and responsibly minimising carbon emissions. In a world
where economic prudence finds its meeting point with ecolog-
ical sensitivity, microgrid optimisation becomes a very viable
proposition-an ethereal ballet, powered by the blissful coming
together of IoT and AI. This convergence is not a simple
question of aligning technological facets; it is a strategic ballet
choreographed spectacle that harmonises disparate goals, forging
a path toward economic prosperity and ecological stewardship, as
in Figure 1 below [4].

We are past the simple technicality of a journey; it’s an orches-
tration of flux energies within microgrids. Beyond the basic
need to have a steady supply of power, the effort now moves
into those more sublime regions where efficiency would be at
its optimum and the balancing act of environmental damage
is at its best. It is anything but a linear journey; rather an
immersive plunge into the multilayered challenges, nuanced
benefits, and transformative potential that this fusion of IoT
and AI has brought about in the already intricate world of
microgrid energy management. The optimisation of microgrids
draws a very idealistic picture of sustainability from their stand
at the nexus where innovation intermixes with environmental
stewardship. In fact, this is not a gesture but an unflinch-
ing commitment to having a future whereby technological
prowess thrusts us toward economic prosperity without betraying
the delicate ecological balance of our planet’s sole dwelling
place.

Python rises above its utilitarian beginnings within our toolset
to be the maestro orchestrator of our methodology. Python has
grown beyond merely being a language of programming; with it,
the true artist paints in the fine details of the microgrid model
and the algorithms of the EMS with strokes of elegance and
adaptability. Simulations with Python are not aseptic exercises
but thriving colonies capable of intelligent adaptation to the
dynamics underpinning variable energy demands and supplies [5,
6].

We now embark on this great adventure, engaging in a request
for your serious participation in the process of managing this
rich tapestry, which is the optimisation of energy flux in
microgrids.

Far beyond a technical paper, this is a serious redefinition
of possibilities that open at a juncture where sustainability
and computational powers meet at their zenith. Let us walk
the path together where the Python code would represent the
baton of the conductor so that the symphony of efficiency
and responsibility could march towards that future wherein
innovation once more turns into a commitment and not a
means towards a paradigm of sustainable, efficient, responsible
energy. In this epic article, innovation and responsibility are
intertwined in a tale of advancement and thoughtful care within
the realm of energy management. The sections that follow delve
deeper into many of the layers around microgrid optimisation
and further reveal the potential to transform the forging for
a more sustainable and resilient energy future for generations
to come [7, 8]. The following sections outline an overview
of how energy flow management can be optimally done in
microgrids.

Section 2 reviews the essentials of microgrid energy flow opti-
misation; thus, it also forms a very good basis on which our
work could rely. This is followed by Section 3, which describes
our contribution to the work in terms of mathematical and
algorithmic modelling; therefore, it furnishes the axes of our
approach. Section 4 goes deep into the dynamic management
of energy contribution, while the role of AI and IoT puts the
core in underlining the main contribution these technologies
bring about in terms of efficiency and performance to microgrids.
Conclusions and Final Remarks: After the presentation of results,
Section 5 will introduce our simulation of an example of an
islanded microgrid with a load of 100 houses and interpretation
of results with future perspectives. This section describes the
interpretation of the results of simulations, extending some
future perspectives and directions for possible research. In return
for that respect, our approach will be structured to develop a
comprehensive yet valuable analysis of microgrid optimisation
for the researchers, policymakers, and stakeholders in energy
management.

2 Microgrid Energy Flow Optimisation
Fundamentals

2.1 EMS in a Microgrid

EMS play a key role in dynamically optimising energy generation,
distribution, and consumptionwithin amicrogrid. Themain goal
is to guarantee, together with the efficiency and reliability of
energy supply, minimum cost and environmental impact, as can
be seen in Figure 2.

The sensors, among other components, form the centre of theweb
in the intricateweb through the provision of real-time data related
to energy production and consumption as well as grid conditions.
This capability for real-time monitoring forms the bedrock of the
EMS, enabling it to make informed decisions based on current
energy demand and supply conditions [9, 10].
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FIGURE 2 EMS in microgrid.

The control algorithms constitute the EMS intelligence. These
algorithms provide the brain of how a microgrid operates: the
way energy sources are called upon, when to charge or discharge
the energy storage system, and how to react to unforeseen
disturbances on the grid. The communication infrastructure
allows seamless coordination amongst the various components
that are able to provide quick responses to the change in energy
demand or the availability of renewable sources, as depicted in
Figure 2 below.

This becomes one of the major strategies in EMS, and all energy
sources are categorised into this. Priority goes to renewable
sources when available, such as solar or wind power. It may
be because of algorithmic approaches to make decisions on the
optimum use of available sustainable energy sources considering
real-time data and weather forecasts. In addition, the batteries
play the role of strategic components for energy storage con-
trolled by EMS algorithms that are directed toward optimising
charge/discharge cycles for maximum efficiency and lifespan.
Biomass becomes a reliable backup when the generation of
renewable energy is fluctuating or in case of a sudden distur-
bance in the grid. EMS algorithms optimise the deployment of
biomass resources, considering a range of issues related to cost-
effectiveness and environmental impacts. This multidisciplinary
prioritisation strategy offers continuity in power supply with
stability in variable conditions.

Adaptive decision-making represents one strong point in the
operational capability of EMS. It naturally reacts dynamically in
real time to energy demand and supply fluctuations, including
unexpected events, through algorithms that constantly update.
Some advanced EMS systems include machine learning that
allows the performance to improve based on historical data and
evolving grid conditions.

User interaction and transparency go hand in hand with the
assurance of optimum performance by the EMS. By this premise,
the system interface will be user-friendly enough to keep the
stakeholders engaged through an understanding of the operating
status of the microgrid. By implication, this interface is trans-
parent; hence, users understand how the EMS will work as well
as the consequences of the decisions of its operations on energy
utilisation and costs [11, 12].

FIGURE 3 Energy benefits of an EMS.

One of the most important roles of EMS is optimisation for
cost-cutting and mitigating emissions. As a matter of fact, EMS
itself is designed to optimise energy use by focusing on reducing
operational costs that contribute to carbon emissions reduction
and meeting sustainability goals accordingly [12].

Looking ahead, scalability remains an important factor: the EMS
has been designed to support the addition of extra renewable
sources, batteries, or higher technological levels. The modelling
tool used is Python, which gives the added advantage that
new components and algorithms can be added and utilised for
microgrid requirements in the near future with minimal changes
[12, 13].

Conclusion In other words, EMS in microgrids stands for a
dynamic, adaptive system that performs intelligent management
of energy resources. Since it reduces environmental impact and
effectively increases efficiency in demand satisfaction, this system
bears great relevance to the future of microgrid management,
wherein continuous developments in advanced algorithms and
machine learning, together with the integration of emerging
technologies, occur regularly.

2.2 Energy Flow in a Microgrid

Energy flow management is basically the key behind any micro-
grid for the purpose of overall performance optimisation and
assurance of a reliable power supply. In this context, according
to the above rules, the energy flows in a microgrid can be
divided into three categories that include energy produced,
energy consumed by the load, and energy stored in batteries. The
EMS is at the centre of orchestrating these elements to make
prudent decisions on when to store energy, use battery power, or
resort to alternative sources like biomass for backup to satisfy the
main benefits as shown in Figure 3.
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The first produced energy component involves electricity gener-
ated from various sources in the microgrid, such as solar panels,
wind turbines, or any other distributed generation systems. Their
availability and output will be continually monitored by the EMS
to know the total energy production potential.

Energy consumed by the load is the amount of electricity
demanded by the consumers and the respective devices being
used within the microgrid. The demand patterns, load profiles,
and real-time consumption data are assessed by the EMS to
understand when energy is needed and how much of the same
would be required [14].

The energy stored in the batteries forms a very critical element
of resilience and flexibility in the microgrid. This, while energy is
charged or discharged from the batteries at different rates, forms
the basis of decisions made by the EMS to determine if a certain
amount of energy needs to be stored in the batteries for later use
or to release the stored energy during peak demand periods.

The inclusion of supercapacitor and flywheel models in the EMS
reflects their role as auxiliary storage components to enhance
system stability. Supercapacitors provide rapid energy discharge
for short-term power demands, while flywheels offer mechanical
energy storage that complements the battery system. These
models were incorporated into the optimisation framework to
ensure that their characteristics, such as charge/discharge rates
and efficiency, were accurately represented. Simulation results
demonstrated that these technologies significantly reduced the
strain on primary storage systems during peak loads.

Through such a process, complex algorithms and predictive
models apply to various parameters, including energy prices,
grid conditions, and environmental factors. For instance, when
the production of renewable energy is high and energy prices
are very low, the EMS will give priority to using excess energy
first in storing it in batteries for use in the future. On the other
hand, it may be such that in periods of peak demand or when
the renewable sources are limited, the system may decide to use
the energy stored in batteries or initiate backup sources from
biomass to supply the requirements of the load [14, 15]. In a
word, the EMS is a potent controller that manipulates the energy
produced, consumed by the load, and stored in batteries with
great foresight. The EMS balances the three entities mentioned
above dynamically to achieve optimality in energy utilisation,
cost-effectiveness, and reliability within the microgrid for a
sustainable and resilient energy infrastructure [15].

2.3 The Necessary Inputs of an EMS

The good functionality of an EMS inmicrogrids, besidesmonitor-
ing and managing the energy flow, also takes into consideration
several external factors such as energy market prices, weather
conditions, and estimated load demand. These additional param-
eters ensure that the decision of the EMS is critical in making
informed and optimal choices regarding energy production,
consumption, and storage, as shown in Figure 4:

Energy market price is considered one of the most important
inputs to an EMS since it drives all the economic aspects of

managing energy. The system will therefore need to evaluate
real-time or forecasted prices for assessing the cheapest time of
energy usage, storage, or even selling back to the grid. Given the
consideration in the market dynamics, the EMS will be able to
assist a microgrid operator in minimising the operational cost by
optimising revenues [16, 17].

Other major factors that have impacts on these two renewable
sources of energy supply are weather conditions. The EMS will
receive weather forecasts and current meteorological data in
order to update the changes likely to be witnessed by renewable
energy generators. This will be important in giving a fair warning
on when the energy supply is going to be low or high so that
control can be effected on the microgrid operation. The EMS can
then stress battery storage or turn on other sources if a cloud cover
is forecasted to lower solar generation [17]. The forecasted load
demand is, therefore, one of the most important parameters for
the EMS to enable the microgrid to meet the energy demands of
its users. Through a study of historical consumption patterns, the
system is able to forecast future load demands supported by real-
time load monitoring. Such foresight enables the EMS to actively
manage the energy resources well in advance in order not to
encounter an insufficient supply or an unnecessary excess.

This means incorporating advanced algorithms and predictive
modelling in the decision-making process of the EMS in these
external factors. The balance among economic considerations,
environmental conditions, and user demand needs to be econom-
ically optimised so that energy use and storage can be optimal.
Dynamic market prices, weather patterns, and shifting load
demands must be dynamically adjusted by the EMS toward the
overall efficiency, reliability, and sustainability of the microgrid.

In other words, in an effective EMS in microgrids, energy flow
management considers energy market prices, weather condi-
tions, and estimated load demands. As such, a holistic approach
makes the microgrid act optimally, responding both internally
and externally toward taking part in a resilient and adaptive
infrastructure of energy [16, 17].

2.4 EMS Algorithm

The setting of priority among energy sources is the most impor-
tant feature in the EMS of a microgrid to enable its running
in an efficient and sustainable manner. The EMS follows a
hierarchical approach whereby renewable energy sources are
taken as the first priority that would help to supply the dynamic
load demand; mainly, wind and solar power are considered
the base contributors. First, it harvests the energy provided by
the wind turbine and solar panel, which are computed based
on the prevailing wind speed and solar irradiance. In a case
where the combined renewable energy production is enough
to satisfy the prevailing load demand, the EMS guarantees that
all renewable energy available is utilised so as to maximise
the usage of clean resources [12, 13, 18]. With partial demand
coverage by renewable energy, the EMS intelligently deploys
energy storage capability in the batteries. Energy stored in the
batteries acts as a secondary source for filling the demand gap left
by renewable energy production. This two-tier approach makes
sure that renewable energy use is optimised, thereby reducing
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FIGURE 4 EMS interaction with microgrid elements.

dependence on non-renewable sources to an absolute minimum
[1, 2].

Furthermore, if at any instant the generation of renewable energy
surpasses demand, the immediate actions taken by EMS make
the entire system resilient and efficient. The excess energy is
stored in the batteries for future demand or, in the case of fully
charged batteries, the extra energy is intelligently evacuated using
a dump load. The dump load acts as a protection mechanism to
avoid overcharging of the batteries and maintain stability in the
microgrid. This strategy works at an optimum in energy storage
and sees that no renewable energy resource goes to waste, hence
enhancing a sustainable and eco-friendly energy management
approach [6]. In those situations, when renewable energy and
battery storage cannot cover the demand load, biomass is used
as a backup source; the transition to that could be seamlessly
integrated via the EMS.

Biomass power, too, is a fallback, and, as such, it plays a vital
role in the continuity of energy supply and hence the reliability of
the operation of the microgrid. It, therefore, means that dynamic
prioritisation performed by the EMS manifests a commitment to
the fullest utilisation of renewable resources while intelligently
managing energy storage and backup sources in order to ensure a
robust and resilient energy supply under all regimes of operations
[14–16].

This study, mainly, has focused on developing an energymanage-
ment strategy aimed at the minimising energy waste. The energy
dumping, in this context, defines the surplus energy created
on top of what was utilised and saved when supply exceeds
demand. Therefore, by reducing the amount of dumped energy,
the system ensures not only a boost of efficiency but also directly
contributes to cost reductions within operations. GAs are best
suited for this problem because they can optimise the complex
nonlinear relationships that are inherently part of the EMS.
GAs can efficiently explore and exploit solution spaces to attain
minimumwastage with cost-effectiveness, thus being optimal for
this multi-faceted problem.

3 Mathematical and Algorithmic Model

3.1 Renewable Power Generation

The output power of the turbine is given by the following
Equation (1):

𝑃𝑤 = 𝐶𝑝 (𝜆, 𝛽) (𝜌 ∗ 𝐴∕2) 𝑣 (𝑡)
3 (1)

∙ Pw: Output power of the wind turbine. Unit: Watts (W).

∙ Cp(λ,β): Power coefficient, which depends on the tip speed
ratio (λ) and blade pitch angle (β). This coefficient repre-
sents the efficiency of the wind turbine in converting the
kinetic energy of the wind into mechanical power. It is a
dimensionless quantity.

∙ ρ: Air density. Unit: kilograms per cubic meter (kg/m3).

∙ A: Swept area of the turbine rotor. This represents the area
swept by the turbine blades as they rotate. Unit: squaremeters
(m2).

∙ v(t): Wind speed. This is the speed of the wind at a given time.
Unit: meters per second (m/s).

We consider that Pn is the nominal power for the wind turbine, so
Pn = Pm (Vn) so Equation (2):

𝑃𝑤 = 𝑃𝑛 𝑣(𝑡)
3
∕ 𝑉𝑛3 (2)

With Vn = 10m/s

We can express the relation that shows output power for the solar
panel as follow Equation (3):

𝑃𝑝𝑣 = 𝑃𝑟 .𝐹𝑙𝑜𝑠𝑠. (𝐺ℎ (𝑡) ∕𝐺𝑠) (3)

With Gs = 1000 W/m2

So Pproduced = 𝑃𝑝𝑣 + 𝑃𝑤𝑖𝑛𝑑

TheFigure 5 shows the produced power of renewable energy from
different dispositives.

3.2 Load Power

The power (P) of an electrical load is expressed using the formula
Equation (4):

𝑃𝐿 = 𝑉 ∗ 𝐼 (4)

Where:
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FIGURE 5 The diversified renewable energy diapositives.

FIGURE 6 The load power of one house.

PL is the power (measured in watts),
V is the voltage across the load (measured in volts),
I is the current flowing through the load (measured in

amperes).

This formula is based onOhm’s Law,which states that the current
flowing through a conductor between two points is directly
proportional to the voltage across the two points, given a constant
resistance.

The maximum current that can be drawn by a house for most
of the circuits is up to 36 A with a high voltage supply of 220 V;
then, using the Pmax = V⋅I formula, the theoretical power that
can be consumed in the house will be 7.92 KW. This would mean
the maximum power that the electrical system of the house can
allow. In practice, peak load, meaning the maximum power the
house draws at any one time, is roughly 2.5 KW, which is a far cry
from the more theoretically derived maximum. This thus rather
serves to illustrate that, in reality, the house operates well below
its capacity. This discrepancy is normal since it considers the
fact that not all home appliances and devices are running at the
same time with their maximum rated power. This safety margin
prevents the electrical system from overloading for stability and
efficiency in variable power demands. The demand for one house

with details and justifications is shown in the Table 1 andFigure 6:
[1, 3, 11]:

The chart below displays the daily power consumption of a house
on an hourly and a monthly basis:

3.3 Stocked Power in the Batteries

The behaviour of a battery during charging and discharging can
be described by the output power equation:

𝑃 (𝑡) = 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙. (1 − 𝑆𝑂𝐶 (𝑡) ∕𝑄) ⋅ 𝐼 (𝑡) (5)

When charging, the state of charge (SOC) increases as the
battery accumulates energy, leading to a positive current flow
into the battery. The voltage rises during charging, approach-
ing the nominal voltage Vnominal as the battery reaches full
charge. The output power (P) is negative during charging,
with its magnitude diminishing as the battery approaches full
capacity. In the discharging phase, SOC decreases as energy
is released, resulting in a negative current flow out of the
battery. The voltage decreases during discharging, approaching
the nominal voltage as the battery discharges. P is positive
during discharging, with its magnitude decreasing as the battery
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TABLE 1 The estimated demand for electricity.

Load type Number Power (Watts) Summer (May-Sep) Winter (Oct-April)

Hrs/day Watt-hrs/day Hrs/day Watt-hrs/day

Domestic
Load
1 CFL 4 22 10 880 7 620
2 CFL 1 12 8 96 11 132
3 Ceiling fan 1 121 20 2440 0 0
4 Kitchen fan 1 29 6 174 0 0
5 Cooler 2 121 10.5 2500 0 0
6 TV 1 99 9 890 6 591
7 PC 1 299 8 2392 9 2690
8 Exhaust fan 1 16 5 80 3 48
9 Table fan 1 16 8 124 0 0
10 Room heater 1 92 0 0 12 1104
11 Room heater 1 148 0 0 7 1036
12 Electric blanket 1 125 0 0 3 375
13 Vacuum cleaner 1 215 2 430 1 215
14 Bulb 1 102 1 102 2 204

Total (one house) 10,143 6976
1 1.4kw

discharges. These dynamics highlight the interplay between
voltage, current, SOC, and output power in governing the energy
transfer processes within a battery during its operational cycles
[15–17].

So we can also have, in order to express Pb (t) in function of load,
wind and Pv power, this Equation 6:

𝑃𝑏 (𝑡) = 𝑃𝐿 − 𝑃𝑝𝑣 − 𝑃𝑤 (6)

Pb(t)<0 means that Ppv+Pw>PL so energy is produced more than
load demand, and there is an excess of energy to charge the
battery. So this justifies why Pb is negative during charging.

In an analogue manner, Pb(t)>0 means that Ppv+Pw<PL so
renewable resources are not enough, and we need energy from
the batteries that is the discharge, and it justifieswhyPb is positive
during discharge [19].

3.4 Biomass Gasifier

The power output (P) of a biomass gasifier can be expressed
in terms of the gas flow rate (Q) and the heating value of the
produced syngas (HV) using the following equation 7:

𝑃 = 𝑄 ⋅ 𝐻𝑉 (7)

Where:

P is the power output (measured in watts or kilowatts),
Q is the gas flow rate (measured in cubic meters per second or

other appropriate units),
HV is the heating value of the syngas (measured in joules per

cubic meter or other appropriate energy units).

3.5 The Dump Load

The dump load equation, denoted as (Equation 8):

𝑃 = 𝑉2∕𝑅 (8)

It represents a mathematical relationship crucial for determining
the power dissipation required by a dump load in renewable
energy systems. Specifically designed for safeguarding electrical
systems from potential overvoltage or overcurrent scenarios,
dump loads are commonly implemented in setups featuringwind
turbines or solar panels.

Breaking down the equation:

- P: This signifies the power that needs to be dissipated by the
dump load.

- V: Represents the voltage in the system.

- R: Denotes the resistance of the dump load.

The equation shows power dissipation demand P is directly
proportional to the square of the voltage, V2, and inversely
proportional to the resistance R. In other words, for the dump
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load, an increase in voltage or a drop in resistance automatically
means increased demand for more power dissipation.

An adequate value of resistance must be chosen for real-life
applications of the dump load: if the value of resistance is too
low, too much current will pass through the dump load and will
probably overheat or fail. On the other hand, if the resistance is
too high, insufficient power dissipation may result in potential
damage to the electrical system [19].

This equation underlines that the value of the resistance of the
dump load has to be chosen with care with respect to the peculiar
characteristics of the electrical system in order to make the right
compromise between safety and functionality [20, 21].

3.6 The Inverter

The inverter is a critical component within the microgrid, where
renewable-generated DC electricity-solar panels or batteries, for
example-is converted into AC electricity that is usable within
homes, businesses, and the electrical grid. The primary purpose
of an inverter is to invert the direction of the electric current.

Some inverters can perform bidirectional energy conversion,
meaning they are able to convert DC to AC and vice-versa. These
kinds of devices are popularly known as bidirectional or hybrid
inverters. Because of their capability to convert power both ways,
it is found suitable for applications requiring a bidirectional flow
of energy with the grids for energy storage.

In particular, it is during the conversion of AC to DC that the
inverter is normally in a mode called ‘rectification’, wherein
it converts AC power into DC power. This functionality is
oftentimes helpful in situations where energy has to be stored
within batteries or when power has to be supplied to DC loads.

The relation of the input power (DC PDC) and the output power
(AC PAC) of an inverter can be expressed by the following
equation, considering the efficiency of the inverter η [22–24]
Equation (9):

𝑃𝐴𝐶 = 𝜂𝑖𝑛𝑣 × 𝑃𝐷𝐶 (9)

Or PDC = ηinv × PAC for bidirectional inverters

Where:

PAC is the alternating current (AC) power output.
PDC is the direct current (DC) power input.
η is the efficiency of the inverter.

While taking into consideration the inverter and its efficiency the
power of battery Pb will become:

𝑃𝑏 (𝑡) = (𝑃𝑤 − 𝑃𝐿) 𝜂𝑖𝑛𝑣 + 𝑃𝑝𝑣 𝑓𝑜𝑟 𝑃𝐿 < 𝑃𝑤

𝑃𝑏 (𝑡) = 𝑃𝑝𝑣 − (𝑃𝐿 − 𝑃𝑤) ∕𝜂𝑖𝑛𝑣 𝑓𝑜𝑟 𝑃𝑤 < 𝑃𝐿 < 𝑃𝑤 + 𝑃𝑝𝑣

𝑃𝑏 (𝑡) = (𝑃𝐿 − 𝑃𝑤) 𝜂𝑖𝑛𝑣 − 𝑃𝑝𝑣 𝑒𝑙𝑠𝑒

4 Dynamic Management of Energy Contribution
and the Role of AI and IOT to Improve it

4.1 Dynamic Energy Management (DEM)

DEM in microgrids is one such intelligent approach toward real-
time optimisation in the distribution and consumption of energy
resources by dynamically responding to changes in conditions
and demand. This contrasts with static energy management
techniques, which rely on predetermined and unchanging sets of
strategies. DEMemploys real-time data, forecasting, and adaptive
algorithms to achieve a far more efficient and resilient microgrid
than either of the other two approaches in isolation could do [22,
23].

The most important advantage of DEM is the dynamic bal-
ancing of supply and demand through predictive analytics and
adaptive control strategies. DEM takes into account variable
factors that include renewable energy generation variability,
load variations, and shifting environmental conditions. DEM’s
optimisation objective is to continuously monitor the operation,
apply corrective actions, and thus work out an optimal energy
distribution that matches the current and forecasted demand
of all components of microgrids, including renewable energy
sources, energy storage systems, and demand-side devices, in
consideration of system constraints.

One of the most valuable features of DEM is its ability to
deeply integrate renewable energy sources such as solar andwind
into the microgrid. Dynamic management allows for real-time
adaptation to the intermittency and variability of these renewable
sources, enabling high utilisation without sacrificing microgrid
stability. Besides, DEM enables the smooth integration of energy
storage systems like batteries by smartly managing the charge
and discharge cycles in accordance with the prevailing energy
generation and demand conditions. Moreover, DEM enhances
the resilience and reliability of the microgrid, as it operates
within the shortest period of time in response to unexpected
contingencies that come in the form of sudden changes in load
or even equipment failures. The adaptive nature of dynamic
management consists in that amicrogridwill change its approach
to energy distributionwithout significant disruption immediately
to maintain operation stability due to the unexpected disruption.

While energy management is generally approached from a static
point of view that cannot catch up with the dynamics imposed
by real-time variability, DEM represents amore sophisticated and
responsive remedy.

This allows for the optimised energy flows within prevailing
and forecasted conditions and has a cascading positive effect
on energy efficiency, cost reduction, and increasing renewable
shares. Overall, DEM is forward-looking and offers effective and
flexible solutions for the energy system of the future, bounded by
sustainability, reliability, and adaptability [24, 25].

4.2 EMS Dynamic Algorithm to Manage Energy

The EMS has a central role in the dynamic process of interactions
among multiple sources of energy within the microgrid. In

8 of 19 IET Renewable Power Generation, 2025



the algorithmic operation of the system, renewable sources are
prioritised through the integration of real-time data and weather
forecasts. Meanwhile, batteries are used as vital storage units,
the charging-discharging of which is tactfully intercepted by
EMS algorithms in a manner that would achieve the highest
effectiveness, prolonging the operating life. Biomass acts as a reli-
able backup against fluctuating renewable energy generation and
sudden disturbances on the grid; its usage is optimised by EMS
algorithms based on given parameters such as cost-effectiveness
and environmental impact. It provides an intelligent layer of
defence wherein the dump loads are employed judiciously. Thus,
this load is utilised when the batteries are full and there is
excess energy to be dissipated to harden the microgrid in case
overloads occur. It ensures that all the parameters are kept within
continuous and stable limits, thereby acting according to the
adaptive and resiliency features of the microgrid since it changes
from one state of operation into another [4, 11, 12].

This basically means that any EMS’s key role is to make optimal-
informed decisions in real-time, and it is very critical since
energy systems are inherently dynamic. The two key variables
that form the very basis of it all, wind speed and solar irradiance,
have a volatile nature and can never be completely predicted
with complete accuracy. These resources, however, remain very
valuable forms of renewables in view of this volatility: they are
free and carbon dioxide emission-free. The challenge for the EMS
is to exploit and capture this intermittence. Through the use of
advanced algorithms and predictive analytics, the EMS tries to
anticipate and adjust to varying wind speed and solar irradiance
as a means of optimising the usage of these clean energies.
In essence, the key challenge is achieving an adequate balance
between the intermittency of the one and the necessity of using
them appropriately for a sustainable generation of energy in the
microgrid with a limited environmental impact.

The dynamic algorithm can be explained by the organigram in
Figure 7:

This algorithm forms the central feature of our EMS, and its
explanation in detail is vital for optimisation. For themajor inputs
of the algorithm, it was extended in Section 3 that they are the
power generated by wind turbine Pw, the generated power of the
solar panel Ppv, and the load demand (PL). Before any decisions,
the algorithm needs the SOC of the battery, hereafter denoted as
SOC(t), compared with the minimum and maximum thresholds
for SOC. Then, the algorithm will decide to start the charging
or discharging of the battery, biomass utilisation, or stop it, and
whether energy should be dumped through the dump load. Also,
when all these will stop. These decision-making processes are
involved in an extremely complicated way; hence, to understand
them, the effective working and optimisation of our EMS become
very vital [17, 26].

4.3 IoT and AI Contribution to EMS

The integration of AI and IoT in EMS brought huge changes in
microgrids, ensuring efficiency, reliability, and sustainability. AI
might be crucial in a microgrid, normally developed as a smaller
local and sometimes decentralised energy system, for predictive
analytics, load forecasting, and optimisation in energy use. The

AI framework can, therefore, make use of machine learning
algorithms in analysing historical data to predict future energy
demands and create proactive decisions for energy distribution.
The IoT does handle this quite nicely since it creates an interlink
of devices that, in real-time, transfer information on the efficiency
of the operation of a microgrid. In this context, data on energy
generation and usage, or grid conditions, are continuously mon-
itored and captured from smart meters, sensors, and actuators
spread across the microgrid. Thus, AI and IoT together provide
synergistic effects with dynamic adjustments to meet the varying
conditions so that a microgrid’s performance can be optimised to
ensure reliability of supply. In addition, predictive maintenance
by AI will have early detection of possible major faults, thus
reducing downtime and facilitating cost reductions. Therefore,
in an integrated AI-IoT-powered EMS of a microgrid, the power
would add a resilient, sustainable, and smart element to the
energy infrastructure for which the world is thinking today
[27, 28]. Taken together, the IoT and AI will make a microgrid
immune to much energy waste and cost because of its ability
to intelligently manage power flow. In the following examples,
although hypothetical, the integration could thus bring tangible
benefits in Table 2:

5 Stimulation on an Example of an Islanded
Microgrid With a Load of 100 Houses and
Interpretation of Results With Future Perspectives

The optimisation problem for the EMS was formulated to min-
imise energy wastage and operational costs while maintaining
system reliability. The objective function is defined asminimising
the sum of energy losses, also known as dumped energy, and eco-
nomic costs, subject to constraints such as energy balance, storage
capacity limits, and system demand. The genetic algorithm was
utilised to solve this problem efficiently, providing near-optimal
solutions within a reasonable computational time.

The choice of a genetic algorithm (GA) for this study stems from
its proven effectiveness in solving complex, non-linear, andmulti-
objective optimisation problems. Unlike traditional optimisation
techniques that rely on gradient information or linear assump-
tions, GAs excel in exploring vast and complex solution spaces
through iterative evolution. This makes them particularly suit-
able for energy management in microgrids, where variables such
as energy demand, renewable generation, and storage dynamics
exhibit high non-linearity and interdependence. Additionally,
GAs offer robustness against local minima, ensuring a higher
likelihood of finding globally optimal solutions, which is critical
for achieving the dual objectives of minimising energy wastage
and maintaining cost efficiency.

5.1 The Main Characteristics of Our Microgrid
Subject to the Simulation

Our microgrid is strategically designed to meet the electrical
energy needs of a community comprising 100 houses, each with
an estimated average load of 47 kW, fluctuating between 15 kW
and 120 kW as shown in the Figure 8:

The nominal power of the solar panels is Pvn = 50 kW, while
the wind energy system has a nominal power of Pwn = 50 kW.
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FIGURE 7 Organigram of EMS algorithm.

FIGURE 8 The hourly load demand in summer and winter.

With regard to energy storage, batteries represent the supporting
elements of the microgrid and have a remarkable power of
200 kW, which enables the entire system to gain about three
months of autonomy.

It will employ a very strong 150 kW inverter, which will be
converting energy into usable forms and efficiently distributing
it within the microgrid. This inverter is important in ensuring a
stable and reliable supply to the community.

Within the microgrid, the backup is a 50-kW biomass source
from variable renewable energy generation and/or unexpected
grid disturbances. In cases when either renewable sources alone
or their support with batteries cannot provide the required energy
needs for the community, this biomass source acts as a reliable
supplement.

In brief, the integrated solar, wind, and biomass energy sources
with advanced energy storage and distribution technologies
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TABLE 2 Some optimisation methods through AI and IoT and their hypothetical results.

Method Scenario Results

Demand/response
optimisation

AI algorithms analyse historical data
and real-time information from IoT
devices to predict peak demand

periods.

The system anticipates high demand, optimising the
distribution of energy resources by dynamically

adjusting power generation and storage. This reduces
the need to activate costly backup generators during
peak hours, resulting in about a 15% reduction in

energy costs.
Predictive maintenance for
equipment efficiency

IoT sensors continuously monitor
the performance of equipment
within the microgrid, providing
real-time data to AI systems.

AI algorithms detect potential issues in equipment
such as solar panels or batteries before they lead to
inefficiencies. Proactive maintenance reduces

downtime, increases equipment lifespan, and lowers
maintenance costs, resulting in a 20% decrease in

overall maintenance expenditures.
Load balancing and energy
storage optimisation

AI algorithms, based on IoT data,
analyse patterns of energy

consumption and generation within
the microgrid.

The system optimally balances loads, shifting energy
consumption to times of lower demand and

maximising the utilisation of energy storage systems.
This leads to a 10% reduction in wasted energy, as

excess energy is stored during periods of low demand
and utilised during peak hours.

Grid resilience through
predictive analytics

AI uses historical and real-time data
from IoT devices to predict potential

grid failures or disruptions.

The system takes proactive measures to reroute power
and isolate affected areas, minimising the impact of

disruptions. This results in a 25% reduction in
downtime and associated costs.

Dynamic pricing and cost
savings

AI analyses market conditions,
energy demand, and production costs

using IoT data.

The microgrid adjusts pricing dynamically,
encouraging energy consumption during off-peak
hours. Consumers benefit from lower prices during
periods of low demand, leading to a 15% reduction in

energy costs for end-users.

in the microgrid ensure that, even in a community with 100
diverse houses, the power supply is sustainable and resilient.
In short, the all-inclusive system will aim to ensure seamless
electricity supply while improving energy self-sufficiency and
environmental sustainability.

In our study, we implement an EMS in dynamic mode, utilising
simulation-based analysis to assess its performance. To evaluate
the effectiveness of the EMS, we monitor dumped energy and
produced energy on an hourly basis, defining the temporal
granularity of our data acquisition. This granularity ensures a
balanced trade-off between capturingmeaningful system dynam-
ics and maintaining computational efficiency. The analysis is
conducted through simulations using Python and MATLAB,
enabling precise modelling of energy flows and system behaviour
under various conditions. By leveraging these computational
tools, we demonstrate how the EMS dynamically adapts in real
time, minimising energy waste and enhancing overall system
efficiency.

5.2 Real Results, Visualisation, and Explanation
for both Microgrids With EMS and without EMS

We will transform the organigram, in addition to the main
equations of our microgrid, into a Python program.

With irradiation Gs(t), wind speed V(t), and load demand PL as
inputs our outputs, that we want to visualise will be (consumed
power P(t) and dumped power in the dump load Pd(t)).

In the simulation, time was discretised into one-minute intervals
as a balance between computational feasibility and operational
accuracy. This granularity of time allows the system to capture
the rapid fluctuations in energy demand and supply while
maintaining the results within computationally feasible bounds.
Sensitivity analysis showed that reducing the time step to smaller
intervals, such as one second, provided negligible improvements
in accuracy but significantly increased computational overhead.

We will simulate on, 24 h with a time step of 1 h.

The algorithm of our Python program with EMS is explained like
this:

1. Initialise microgrid parameters:
- Create a class (‘Microgrid‘) to encapsulate the microgrid
parameters, including biomass, PV, wind, and battery
capacities, as well as the load profile.

- Include methods for calculating energy generation, charg-
ing/discharging batteries, activating dump loads, and
visualising results.

2. Runmicrogrid for each hour:
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- For each hour in the simulation (24 hours):
- Generate random inputs for wind speed, solar irradiance,
and load demand.

- Call a method (‘run_microgrid‘) to simulate the microgrid
operation for the current hour.

- Inside the ‘run_microgrid‘ method:
- Calculate energy generation from biomass, PV, and wind
sources.

- Determine the total demand and charge/discharge the
batteries accordingly.

- Calculate consumed energy and dumped energy.
- Visualise the results for the current hour (e.g., print or store
the values).

3. Visualise Overall Results
- After the 24-hour simulation:
- Visualise the overall results, such as the consumed and
dumped energy, using appropriate visualisation tools (e.g.,
plots).

- This could involve creating lists or arrays to store the
consumed and dumped energy values for each hour during
the simulation.

The results of our program presented in the Table 3:

The sum of the power outputs for each hour divided by the
number of hours in a day is the daily average power consumed

In our case average consumed power ACP = 69 KW

In an analogue manner, the average dumped power is
ADP = 18.3 KW

In order to better understand and interpret these results, it is
necessary to compare them to the scenario inwhich themicrogrid
operates at the maximum energy demand and does not have any
EMS.

In this case the microgrid operates without an EMS, and for
each of the 24 simulation hours, random inputs for wind speed,
solar irradiance, and load demand are generated. The microgrid
calculates the total energy generation from biomass, PV, and
wind sources, charges/discharges the batteries based on available
renewable energy, and determines the consumed and dumped
energy. The results for each hour are then visualised [29–31].

The algorithm for the microgrid without EMS is

1. Initialisation:

Initialise microgrid parameters such as biomass capacity, PV
capacity, wind capacity, battery capacity, and load profile.

Set the initial state of the battery to zero.

2. Energy generation:

For each simulation hour:

Generate random values for wind speed, solar irradiance, and
load demand.

TABLE 3 Consumed and dumped energy in a microgrid with EMS.

Hours of
the day

Hourly
consumed

energy in KW

Hourly
dumped

energy in KW

Hour 1 40 60
Hour 2 80 20
Hour 3 30 70
Hour 4 60 0
Hour 5 50 50
Hour 6 70 0
Hour 7 90 0
Hour 8 70 0
Hour 9 100 0
Hour 10 80 20
Hour 11 110 0
Hour 12 60 0
Hour 13 70 0
Hour 14 80 20
Hour 15 40 60
Hour 16 90 0
Hour 17 80 0
Hour 18 30 70
Hour 19 50 50
Hour 20 60 0
Hour 21 70 0
Hour 22 80 20
Hour 23 90 0
Hour 24 60 0

Calculate energy generation from biomass, PV, and wind sources
based on the generated values.

3. Load demand adjustment:

Determine the load demand for the current hour based on the
generated load profile.

Adjust the demand to be within the range of 15 KW (minimum)
and 120 KW (maximum).

4. Battery charging and discharging:

Calculate the available renewable energy by summing biomass,
PV, and wind generation.

Determine excess energy by subtracting the demand from avail-
able renewable energy.

Charge the battery with excess energy, up to its capacity.
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FIGURE 9 The power flow in a microgrid.

If demand exceeds available renewable energy, discharge the
battery to meet the demand, up to its remaining stored energy.

5. Dump load activation:

Activate dump loads to simulate the inefficiencywithout an EMS.

Dump loads receive excess energy, and the dumped energy is
calculated as 1.5 times the excess energy.

6. Results visualisation:

Visualise the results for the current hour, including consumed
energy and dumped energy.

7. Repeat:

Repeat the process for all 24 simulation hours.

Results Summary:

Display the overall results, including the consumed and dumped
energy for each hour.

The new results will be in Table 4:

In this case without EMS average consumed power ACP = 69KW

The average dumped power is ADP = 27.5KW (Figure 9)

5.3 Optimisation of Our EMS Algorithm Using
AI and IoTWith New Results

AI and IoT are to be used. In actual world implementation, this
intelligent dynamic adjustment of the capacities of PV and wind
would take into account weather conditions, advanced control
systems, and sensor technologies in building up a microgrid.

TABLE 4 Consumed and dumped power in an MG without EMS.

Hours of
the day

Hourly
consumed

energy in KW

Hourly
dumped

energy in KW

Hour 1 40 80
Hour 2 80 40
Hour 3 30 100
Hour 4 60 0
Hour 5 50 75
Hour 6 70 0
Hour 7 90 0
Hour 8 70 0
Hour 9 100 0
Hour 10 80 30
Hour 11 110 0
Hour 12 60 0
Hour 13 70 0
Hour 14 80 30
Hour 15 40 90
Hour 16 90 0
Hour 17 80 0
Hour 18 30 105
Hour 19 50 75
Hour 20 60 0
Hour 21 70 0
Hour 22 80 30
Hour 23 90 0
Hour 24 60 0
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Automated control capitalises on weather forecasting data and
ML algorithms to forecast changes and automatically increase
capacities in favourable scenarios such as high solar irradiance
or strong winds. These include solar irradiance sensors and
anemometers that provide real-time data to inform capacity
adjustments. Smart grid technologies and bidirectional commu-
nication with utilities enable themicrogrid to adapt based on grid
conditions and demands. Remote monitoring systems allow for
centralised control, andmanual intervention by operatorsmay be
facilitated. It includes incentives for regulatory uses of renewable
energy sources when conditions are favourable and economic
considerations, such as cost-benefit analyses. Moreover, storage
systems, such as batteries, provide the possibility of saving surplus
energy produced at optimal conditions for later use when needed,
hence increasing efficiency and reliability in the microgrid.
However, such advanced strategies will be implemented in coop-
eration with experts in renewable energy and control systems to
achieve an effective and sustainable resolution [31–33].

IoT technologies are thus the basic building blocks for EMS
because of their capabilities to perform real-time monitoring and
controlling of energy resources. Embedding sensors and devices
within an IoT provides continuous data collection with respect
to energy production, consumption, and storage levels, which
gets transferred to the central AI for processing and analysis.
With the capability for IoT components to talk perfectly among
themselves, for example, the EMS will dynamically react to any
change in condition, such as peak demand or an unexpected drop
in generation. That will not only secure operational efficiency but
support predictive maintenance with the identification of system
failures even before their occurrence [34, 35].

For this theEMS integrates various IoTdevices to enable real-time
monitoring and control of the microgrid. These devices include
smart meters, which track energy consumption at individual
households; sensors for monitoring renewable energy generation
(e.g., solar irradiance sensors and wind speed sensors); and
battery management systems that report storage levels and
performance. Communication modules, such as Zigbee or LoRa,
connect these IoT devices to the central EMS, ensuring seamless
data flow. This integration allows the EMS to collect, analyse,
and act upon real-time data, optimising energy distribution
and storage decisions dynamically. The use of IoT technology
enhances the microgrid’s responsiveness, efficiency, and overall
reliability [36, 37].

In this extended programme, a new class called ‘Microgrid
Controller‘ is added for IoT and AI-based optimisation of the
operation of the microgrid. This would be done to enhance the
performance of the microgrid dynamically based on incoming
real-time data and with the use of an AI optimisation algo-
rithm. The main methods in the ‘Microgrid Controller‘ class are
‘optimise_microgrid’ and ‘run_optimised_microgrid’ [38].

1. ‘optimise_microgrid’ method:
– This method is responsible for adjusting the microgrid
parameters based on the current environmental condi-
tions, such as wind speed, solar irradiance, and load
demand.

– In the provided example, a rule-based optimisation strat-
egy is implemented for simplicity. It adjusts the PV and

FIGURE 10 The optimised microgrid organigram.

wind capacities based on certain conditions: increasing
them during favourable conditions (high wind speed and
solar irradiance) and reducing them during less favourable
conditions.

2. ‘run_optimised_microgrid’ method:
– This method serves as the entry point for running the
microgrid with the optimised parameters.

– It first calls the ‘optimise_microgrid’ method to dynami-
cally adjust the microgrid parameters based on real-time
data.

– Then, it calls the ‘run_microgrid’ method of the original
‘Microgrid‘ class to simulate the microgrid operation with
the adjusted capacities.

– The resulting consumed energy and dumped energy val-
ues are returned, representing the performance of the
microgrid under the dynamically optimised conditions.

In a nutshell, the class Microgrid Controller mediates between
the external environment and the microgrid system. It applies
an optimisation algorithm to this work; a rule-based strategy has
been used for simplicity that changes the microgrid capacities
according to the variations that take place with the objective of
finding the best improvement in efficiency or global performance
of the system. A controller of this type can integrate and allow the
microgrid to operate in a more adaptive and intelligent manner,
making real-time data available for AI-driven decision-making to
optimally utilise the renewable energy sources, as presented in
the following Figure 10:

The results of the visualisation of the dumped power of the
microgrid using an extended versionwith IOT andAI are detailed
in the Table 5:

The average dumped power is ADP = 1.8KW (Figure 11).

The AI integration within the EMS has been done to control
the energy resources of the microgrid effectively using advanced
optimisation techniques. Specifically, an optimal energy stor-
age and distribution schedule was obtained using GA. Genetic
algorithms are also very suitable for this task because they can
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FIGURE 11 Hourly dumped power using AI and IoT.

TABLE 5 Consumed and dumped power in an MG with EMS
enhanced with IOT and AI.

Hours of
the day

Hourly
consumed

energy in KW

Hourly
dumped

energy in KW

Hour 1 40 0
Hour 2 80 2
Hour 3 30 0
Hour 4 60 5
Hour 5 50 0
Hour 6 70 3
Hour 7 90 0
Hour 8 70 4
Hour 9 100 1
Hour 10 80 0
Hour 11 110 6
Hour 12 60 1
Hour 13 70 2
Hour 14 80 0
Hour 15 40 3
Hour 16 90 0
Hour 17 80 6
Hour 18 30 1
Hour 19 50 0
Hour 20 60 5
Hour 21 70 1
Hour 22 80 2
Hour 23 90 0
Hour 24 60 3

handle nonlinear andmulti-objective optimisation problems. The
algorithm iteratively improves the solutions through artificial
intelligence based on natural selection for an efficient exploration
in solution space, with very slight energy losses and the best
possible cost-balancing.

5.4 Discussion of Results and Future
Perspectives

This paper, with regard to the energymanagement of amicrogrid,
considers three scenarios: a simple microgrid, a microgrid that
is enhanced with an EMS, and an advanced microgrid that
will include EMS, artificial intelligence, and the Internet of
Things. In the simple microgrid, the energy that is not utilised
by the loads or stored in the batteries is dumped into a dump
load, implying a loss of energy and finances. Adding an EMS
to the system optimises energy distribution, hence minimising
the energy losses as opposed to a basic microgrid. AI and IoT
integrated into the most advanced microgrid bring dynamic
adaptiveness due to changeable conditions, real-time decision-
making, and sophisticated energy predictions, which in turn
bring minimal loss of energy and huge savings in cost. The
progressive movement from a simple microgrid to one with
EMS, AI, and IoT underlines the possibility of going for a
more efficient and economically viable EMS [4, 6, 17]. Figure 12
below shows the variation of the most electrical parameters of a
house.

The previous results show that for a microgrid used to give power
to 100 houses (average 47kw load)

ADP = 27,5 KW for the normal microgrid without EMS
ADP = 18.3 KW for a microgrid with EMS
ADP = 1.8 KW for a microgrid with EMS, AI and IoT

In that perspective, the addition of no more than EMS itself can
reduce energy losses by 35%, while the addition of AI and IOT
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FIGURE 12 The variation of power and price in 4 days.

for prioritising renewable energies when the climate is favourable
and reducing them when it is not can reduce energy losses as
high as up to 93%. In such context, considering that the amount
of energy lost in an average case without EMS accounts for 27.5
KW out of 69 KW of energy stored and consumed, losses would
account for 28% of the total amount of energy produced, while
the usage of EMS would account for just 20% of the total losses of
the microgrid; therefore, an 8% reduction in the total cost of the
microgridwill be achieved. On the other hand, addingAI and IOT

into the EMS will further reduce losses to 2.5% of the total energy
produced, reducing in general the cost by 25% on the microgrid.

The chart below shows the used and dumped power in the three
cases (Figure 13).

Future possibilities and avenues for refinement could look very
exciting, as huge strides in microgrid power flow management
will be possible with the integration of EMS, AI, and IoT.
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FIGURE 13 Visualisation of the comparison of the energy results.

Avenues for cost reduction in implementing and maintaining
EMS could be explored as researchers go deeper into the potential
of advanced technologies, thereby fostering wider accessibility
and adoption. This is a rich field for innovation in cybersecurity
concerns and calls for the need to develop robust systems that
resist such threats as they continue to evolve. The challenge of
reduced battery life creates more opportunities for breakthroughs
in battery technology by encouraging the development of means
of energy storage that are muchmore durable and resilient. Inter-
disciplinary collaboration in energy engineering, cybersecurity,
and materials science can act as a catalyst for developing holistic
solutions working around these constraints. Further studies
in the analysis could, therefore, be carried out on the socio-
economic impact brought about by the widely implemented EMS
on whether it could be employed to empower local communities
and thus contributing to sustainable development. The present
findings, while adopting a forward-looking approach, stand as
testimony to not only the transformative potentials of EMS inte-
grated with AI and IoT for microgrid management but also have
inspired a roadmap for continuous innovation and advancement
in the dynamic landscape of energy technology [31, 32].

In order to validate the performance of the proposed approach,
a comparison analysis was conducted using the IEEE 13-node
test feeder, which is a well-accepted benchmark system in
microgrid research. The results showed that our integrated IoT
and AI-enabled EMS achieved a 93% reduction in waste power,
compared to the benchmark system, which achieved a waste
power reduction of 88% under similar conditions. However, the
cost increase in the proposed system was 25% while that for the
benchmark was 20%, which highlighted the trade-off between
increased efficiency and economic viability.

Whereas these results depict a total wasted power reduction of
up to 93%, there is also an increase in total cost by about 25%.
This kind of trade-off does confirm that there are some economic
obstacles to the implementation of advanced EMS systems in
microgrids. Detailed cost-benefit analysis manifests that most of
these extra costs come from the highly invested capital in IoT and
AI infrastructure andmaintenance of the sophisticated hardware
components. These costs are partly offset by long-term savings
due to increased system efficiency and reduced reliance on non-
renewable energy sources. Policymakers and stakeholders have to
make trade-offs in these directions with a view to sustainability in
implementation.

6 Conclusion

Diving deeper into exploring ways of achieving better manage-
ment in energy flow, our study depicts a tale of technological
advancement with the integration of the extended version of the
advanced EMS, IoT, and AI. With detailed unloading of EMS
intricacies and elaboration on microgrid components, a sound
backbone was formed for subsequent simulation, executed using
Python so aptly emulating this realistic scenario: powering 100
households in a microgrid environment averaging 47 kW. These
simulated results constitute the empirical backbone and show a
staggering 93% reduction in wasted power when moving from
a microgrid without EMS to one with enhanced energy man-
agement. This important enhancement underlines not only the
technical dimensions of our study but also rhymes with practical
implications. We further show a significant 25% reduction in
overall microgrid costs, corroborating theoretical benefits and
placing our integrated approach as a tangible, economically viable
solution.

However, our research does not bask in the glory of successes but
rather looks critically at the challenges that also come with it. We
point at different economic problems as to the implementation
cost of the EMS and further upkeep costs, situating the discussion
in the realm of practical reality for its actual implementation. Fur-
thermore, we emphasise hard cybersecuritymeasureswith a view
to safeguarding this interconnected microgrid against possible
threats by realising its natural vulnerabilities in cyberspace.

Additionally, our study has also identified the possibility of
reduced battery lifespan due to the optimised charge and dis-
charge cycles emerging out of the EMS. These would, in turn, be a
very interesting area for future studies and thus bring awareness
toward the long-term viability of microgrid infrastructures in
pursuit of innovative leaps toward better battery technologies.

By the time our study concludes with flair, it serves to open up a
much greater dialogue rather than a purely technical discussion.
This opens up interest not only within scientific circles but
also among policymakers, economists, and environmentalists.
It’s more of a call for further exploration, collaboration, and
innovation rather than a snapshot of what has transpired.

That is, our work represents the next phase in evolving sustain-
able energy solutions wherein improvements in EMS, IoT, and AI
form integral parts of a look-ahead and holistic approach to EMS.
Let us invoke all researchers and stakeholders to press forward to
move towards a more efficient, resilient, and sustainable future
energy scenario.

Future research could focus on addressing cost challenges
associated with the implementation of such advanced EMS.
Cost-reduction strategies will have to be explored through optimi-
sation techniques and economies of scale. Integrating renewable
energy forecasting and employing machine learning algorithms
for predictive maintenance and fault detection could further
operationalise efficiency and reduce downtime. Further studies
on cybersecurity enhancement and regulatory frameworks are
necessary tomake interconnectedmicrogrids robust. These direc-
tions will enable smart EMS to play a pivotal role in shaping
resilient, sustainable, and economically viable energy systems.
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NOMENCLATURE

AI Artificial Intelligence

DEM Dynamic Energy Management

EMS Energy Management System

IOT Internet of Things

SOC State of Charge

V(t) Wind speed in an instant t expressed in (m/s)

Gh(t) Solar irradiance at an instant t expressed in (kw/m2)

𝑃𝑤 Wind turbine output power in kw

Ppv Solar panel output power in kw

PL Load power in kw

Pb The batteries Power

ACP Average Consumed Power expressed in kw

ADP Average dumped power in the dump load expressed in kw

ηinv Inverter efficiency
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