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Abstract 

Battery Energy Storage Systems (BESS) play a key role in supporting the transition to 

renewable energy by providing stability to energy grids. However, the increasing 

complexity of managing BESS presents significant challenges regarding real-time 

monitoring, accurate state estimation, and predictive maintenance. Estimating key 

battery states, such as State of Charge (SOC), State of Health (SOH), and Remaining 

Useful Life (RUL), is important for enabling the operational efficiency and longevity 

of these systems. Traditional methods often struggle to account for the complex and 

dynamic behaviour of battery systems, leading to inefficiencies in decision-making 

and system performance. This thesis proposes a Digital Twin (DT)-driven approach to 

enhance decision support for BESS, focusing on improving the accuracy of battery 

state estimations and optimising system operations through the integration of real-time 

data with advanced analytical models. 

The thesis begins by outlining the development of a DT framework tailored 

specifically for BESS. The proposed framework creates a digital model of the physical 

system, enabling continuous synchronisation of real-time data between the physical 

and digital environments. This integration allows for real-time updates of battery states, 

providing operators with a comprehensive view of system performance. The 

framework includes detailed data acquisition and preprocessing procedures, which are 

essential for keeping the accuracy of the DT model. Additionally, advanced deep 

learning algorithms are applied to enhance the framework’s capacity for decision 

support. This approach provides a robust foundation for improving operational 

decision-making by offering insights into potential outcomes based on various 

operational scenarios. 

Secondly, this thesis presents a detailed examination of battery state estimation 
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methods, with a focus on advanced deep learning techniques. Temporal Convolutional 

Networks (TCN) and Long Short-Term Memory (LSTM) networks are used to 

estimate SOC and SOH, and predict RUL. These models are capable of processing 

both historical and real-time data, allowing them to adapt to dynamic changes in the 

operational environment. Compared to traditional methods, the TCN-LSTM model 

demonstrates improved accuracy in estimating battery states, which is critical for 

proactive maintenance and efficient resource allocation. The results of the 

experimental analysis validate the effectiveness of these models, highlighting their 

ability to provide reliable predictions that support the management of BESS. 

Thirdly, the thesis addresses the importance of situational awareness in managing 

BESS operations. Situational awareness is essential for managing multiple operational 

objectives, including load balancing, energy dispatch, and system reliability. A multi-

faceted optimisation strategy is proposed, leveraging real-time data from the DT to 

address these objectives simultaneously. This approach can provide operators with a 

detailed understanding of system conditions and the ability to simulate various 

operational scenarios. The optimisation approach improves system efficiency under 

varying conditions, allowing for more informed decisions that reduce the risk of 

unexpected system failures. 

Finally, the thesis introduces a DT-supported decision support system designed to 

optimise BESS maintenance and operational efficiency. The proposed method extends 

DT to support operational decision-making by incorporating real-time health 

monitoring, fault detection, and predictive maintenance strategies. The decision 

support system presented leverages predicted RUL. These predicted RUL to inform a 

maintenance scheduling and spare parts ordering policy, aimed at minimising system 

downtime and reducing operational costs. Additionally, large language models (LLMs), 

are introduced to enhance the system’s capability for intelligent fault diagnosis and 

maintenance recommendations through the analysis of unstructured data, such as 

maintenance logs and technical documentation. 
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This thesis presents a comprehensive DT-driven approach for enhancing the 

management and operation of BESS. The proposed framework integrates data with 

advanced deep learning models, providing more accurate estimations of battery states 

and supporting more effective decision-making. The findings of this research 

contribute to the broader field of energy management by demonstrating the potential 

of DT to improve the reliability and efficiency of BESS operations. As renewable 

energy continues to play an increasingly important role in global energy systems, the 

adoption of DT will be critical in supporting the long-term sustainability and 

performance of energy storage infrastructures.
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Chapter 1 Introduction 

With the global shift toward renewable energy sources such as solar and wind, Battery 

Energy Storage Systems (BESS) have become essential in addressing the intermittent 

nature of renewable generation (Mahela and Shaik, 2016). BESS enables surplus 

energy storage during periods of low demand and its release when demand exceeds 

supply. This energy-buffering capability stabilises supply and enhances the integration 

of renewable energy into modern grids (Hu et al., 2018a). However, as BESS demand 

increases, the challenges of effective system management have become more evident. 

One of the challenges faced by BESS management lies in accurately estimating critical 

parameters such as State of Charge (SOC), State of Health (SOH), and Remaining 

Useful Life (RUL). SOC refers to the quantity of charge accessible in a battery 

compared to the total charge possible. All measurements are important for forming 

practical maintenance schemes. These factors are essential for improving system 

effectiveness and avoiding breakdowns as well as cutting back on upkeep costs (Drath 

and Horch, 2014). 

Standard techniques for assessing battery metrics are often constrained by static 

models that do not adequately portray the changing behaviour of batteries across 

diverse operating environments. Battery systems are intricate and affected by factors 
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like temperature and current; thus, accurate forecasts need sophisticated algorithms to 

handle the nonlinearities in performance. Standard practices such as ampere-hour 

integration and look-up tables can be misled by faulty sensor data causing inefficient 

battery management and increased financial burden (Tuegel et al., 2011). 

The combined effects led to the growth of the Digital Twin (DT) as a valuable resource 

for enhancing BESS handling (Reniers and Howey, 2023). A combined approach to 

modelling data from the physical asset in real-time allows DT to adjust itself 

effectively for accurate assessment and future projection (Dong et al., 2014). Through 

DT in BESS environments, operators can observe battery behaviour and determine 

SOC and SOH for effective charge and discharge decisions (Mahela and Shaik, 2016). 

By merging sensor data and historical performance with environmental contexts DT 

offers a detailed perspective on battery performance issues and advancements (Li et 

al., 2020). In place of standard maintenance schedules based on time intervals, DT 

supplies predictive maintenance options. Maintenance needs are anticipated by the 

system for operators to lessen unforeseen failures and cut down on downtime while 

increasing battery lifespan. This capability proves to be essential for large-scale BESS 

deployments because unanticipated maintenance may result in costly and chaotic 

situations (Killer et al., 2020). Additionally, DT helps operators model different 

operational situations with efficient energy storage and discharge methods which 

increases system effectiveness and lowers expenses (You et al., 2022). 

While DT offers benefits challenges arise during its implementation in BESS. 

Complexities in merging DT systems with the already established grid infrastructure 

create the foremost issue. As renewable energy sources grow in number, they add 

complexity to the relationship between demand and storage. DT must manage these 

interactions immediately while requiring smooth connexions with other grid 

management tools and platforms. For smaller operators integration can prove to be 

costly and complicated (Dileep, 2020). The amount and accuracy of data required by 

DT present a major issue (Fuller et al., 2020). To function properly a DT requires 
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dependable data from its physical asset. Lacking or incorrect data could generate 

flawed forecasts and poor decisions possibly leading to system breakdowns or 

inefficiencies (Koziel et al., 2021). 

To overcome these obstacles researchers have crafted sophisticated strategies for 

merging data. The application of cloud-based systems has been investigated to boost 

the scalability and flexibility of DT (Alam and El Saddik, 2017). New developments 

in Machine Learning and Artificial Intelligence have enhanced the accuracy of 

estimating SOC and SOH and enabled DT to adapt to variable operating scenarios 

(Singh et al., 2021a). 

The creation of hierarchical DT frameworks for combining data from multiple origins 

at diverse granularities is an active area of research (Wang et al., 2023). By adopting 

this strategy, we gain a deeper understanding of the battery system which increases the 

reliability of estimations and supports better management of BESS. The adoption of 

deep learning methods like convolutional neural networks (CNN) and long short-term 

memory (LSTM) networks has enhanced the precision of SOC and SOH estimations. 

By identifying detailed patterns of battery data these algorithms improve the precision 

and trustworthiness of battery state estimations (Yang et al., 2021b). Utilising transfer 

learning strategies enables DT systems to react to new data faster and boost their 

response to variations in battery performance. Adjustments in the market present 

multiple chances to improve the functionality of BESS using DT. Operators receive 

guidance on charging or discharging the battery to enhance profit or lower expenses 

by utilising simulations of various market scenarios provided by DT systems 

(Mirsaeidi et al., 2022). This function is especially important in unregulated energy 

sectors where prices shift according to both supply and demand. By using DT 

technology, the connections between BESS and variable renewable energy forms like 

solar and wind can be improved (Agostinelli et al., 2021). 
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Even if the potential gains from DT technology for BESS are visible significant hurdles 

persist before it can be embraced. Alongside the previously mentioned technical issues 

are economic and regulatory challenges (Verbruggen et al., 2010). The steep financial 

requirements for establishing and managing DT systems might hinder smaller 

operators, especially in places with minimal capital or government incentives. The 

regulations that oversee DT applications in energy sectors continue to change and 

clearer standards are necessary to guarantee the safe and proper functioning of these 

systems (Yu et al., 2022). 

DT represents a major improvement in the control of BESS. With their ability to 

deliver insights immediately and promote predictive maintenance DTs present a strong 

tool to tackle the challenges linked to renewable energy expansion. The effective use 

of DT systems involves addressing multiple technical and economic obstacles. 

Research developing in this area will probably lead to an enhanced importance of DT 

for energy storage and grid operations (Bhatti et al., 2021). 

DT technology brings attractive advantages to BESS; however considerable hurdles 

remain for acceptance on a larger scale. Along with the technological barriers listed 

above are multiple economic and regulatory issues that will influence the situation. 

The total price of launching and maintaining DT systems might be too steep for smaller 

operators in places that lack capital or government incentives for deployment. 

Regulatory rules for using DT in energy markets have not been finalised; clearer 

guidelines and standards must be established to enable the safety and efficiency of 

these systems (Onile et al., 2021). 

DT technology marks a major progress in managing BESS. These tools deliver timely 

battery analytics and facilitate predictive upkeep while solving problems linked to the 

rise of renewable energy systems. To apply DT systems successfully one must address 

multiple challenges relating to technology and economics. Ongoing studies should 

enhance the importance of DT technology in shaping energy storage and grid 

management (Boicea, 2014, Meliani et al., 2021). 
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The global demand for renewable energy has led to the rapid development of BESS to 

mitigate the variability of solar and wind energy. The systems contribute significantly 

to grid stability by capturing excess energy during low-demand times and then 

supplying it when demand spikes. As renewable energy sources become more 

prominent managing BESS presents considerable difficulties. Although improvements 

in battery technology have increased energy storage efficiency and capacity, current 

battery management strategies are still unable to cope with the complex operating 

behaviour of batteries. (Li and Wang, 2019). 

Traditional monitoring approaches are the primary basis for existing battery 

management tools in determining important battery characteristics such as SOC and 

SOH (Lipu et al., 2022). These values are important for judging the efficiency and 

lifespan of the battery alongside its safety concerns. Traditional techniques rely on 

fixed models and set maintenance plans and fail to capture the changing behaviour of 

battery systems. Insufficient real-time data integration and predictive functions result 

in inefficiencies during energy storage management and raise operational expenditures 

as well as the chance of unforeseen failures (Krishna et al., 2022). These constraints 

emphasise the urgency for enhanced methodologies that increase the fidelity of battery 

state evaluations and allow for anticipatory maintenance practises. 

DT stands out as a potential answer to the issues encountered in managing BESS. The 

DT functions as an immediate virtual model of a physical system that consistently 

incorporates data from sensors alongside historical statistics and environmental 

conditions. With the simulation of the physical system's behaviour, DT improves 

monitoring and decision processes in BESS. With the help of DT technology operators 

gain full visibility of battery operations that facilitates the optimisation of charge and 

discharge schedules and forecasts failure risks while increasing battery lifespan (Wu 

et al., 2020). 
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Though DT technology offers benefits potential hurdles continue in implementing it 

for BESS. Combining DT systems with existing grid systems poses significant 

difficulties (Jafari et al., 2023). Managing energy generation and storage is becoming 

complex and needs data to move smoothly between physical and digital systems. For 

smaller operators integrating DT with the existing grid poses technical challenges and 

high costs (Xu et al., 2016). Reliable prediction depends on the essential need to allow 

the quality and correctness of the data integral to DT. Lacking or incorrect data can 

result in bad decisions that might cause less efficient system operation or even 

breakdowns (Koziel et al., 2021). Overcoming the financial and technical obstacles of 

DT implementation in BESS is an essential research topic. 

Battery management systems struggle with the absence of predictive maintenance 

methods. Old practices of maintenance typically depend on established schedules that 

overlook the battery's true condition causing either extra interventions or unanticipated 

breakdowns (Koziel et al., 2021). By analysing real-time data predictive maintenance 

determines when maintenance is essential thereby decreasing downtime and lowering 

operational costs. By tracking the battery's state and running simulations across 

different scenarios DT supports predictive maintenance (Chen et al., 2023). By 

employing predictive strategies ahead of failures operators boost system reliability 

while decreasing their maintenance costs. 

Improving battery monitoring and upkeep is just one benefit of DT; it can also allow 

the BESS to operate more efficiently in reaction to market changes. As renewable 

energy enters the grid more prominently energy markets experience greater volatility 

as prices shift with supply and demand. With DT technology available operators can 

handle these variations by modelling diverse market situations and discovering the 

optimal methods for storing and distributing energy. A quick response to market 

changes creates a notable advantage in deregulated energy markets. 

Adopting DT technology for BESS carries various obstacles. A major technical issue 

lies in the necessity for accurate data. A DT performs efficiently if it obtains reliable 
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and timely data from the physical system. Missing or incorrect data may cause wrong 

forecasts and poor choices. As BESS systems become more interconnected they create 

risks related to cybersecurity that necessitate securing the data's integrity and 

guaranteeing safe communication between the physical and digital realms (Ünal et al., 

2023, Kharlamova et al., 2022). 

New techniques for boosting data quality and harmonisation in DT systems are being 

examined by researchers. Applying ML algorithms acts as a technique to improve the 

prediction skills of DTs. Through the training of ML models with extensive datasets 

researchers can boost the accuracy of predicting SOC and SOH. The connection of 

cloud platforms to DT systems may boost scalability and alleviate the local devices' 

computational strain. DTs hosted on the cloud enable immediate data analysis and 

processing for operators to gain precise and prompt information about battery 

performance (Semeraro et al., 2023b). 

Building hierarchical DT systems represents an additional field of current research. 

Such systems support the unification of analytics from multiple resources offering a 

more in-depth perspective of system dynamics. For BESS applications this strategy is 

vital as monitoring both individual cells and the entire system is key to improving 

performance. Combining sensor information with historical data and external inputs 

allows hierarchical DTs to generate a reliable and extensive analysis of battery 

efficiency (Semeraro et al., 2023b). 

With the ongoing rise of renewable energy use comes an increasing demand for 

advanced energy storage options. BESS will significantly contribute to maintaining 

the dependability and consistency of the grid; however, for effective management of 

these systems new tools and technologies are essential. By supplying instantaneous 

information about battery performance and supporting predictive maintenance 

methods DT technology becomes a beneficial tool in addressing BESS management 

difficulties. To fully utilise DT technology for BESS we must navigate numerous 

challenges including technical and financial issues. Current explorations in this 
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domain will play a vital role in forming scalable and affordable approaches that address 

the demands of a rapidly changing and decentralised energy framework (Bao et al., 

2024). 

This study aims to develop a robust, data-driven DT framework for BESS management 

to enhance operational efficiency, extend battery lifespan, and reduce costs. Through 

the integration of machine learning algorithms and hierarchical DT architectures, the 

research seeks to improve real-time accuracy in SOC and SOH estimations, while 

enabling predictive maintenance strategies to minimize downtime. Additionally, the 

framework will incorporate dynamic updating models to optimise model 

responsiveness. By resolving technical challenges related to state monitoring and 

estimation, the proposed DT aims to provide scalable and cost-effective tools for 

operators, ultimately advancing system reliability, accelerating renewable energy 

integration, and supporting global decarbonization efforts in an increasingly 

decentralized energy landscape. 

Following the background and motivations, under the context of renewable energy 

integration and BESS management, this research aims to investigate a Digital Twin-

driven approach for improving battery state estimation, situational awareness, and 

operational decision support. The following research questions have been formulated 

to achieve this goal: 

1. With the development of emerging technologies such as DT and real-time data 

analytics, the management of BESS has shifted towards a data-driven and real-

time operational environment. In this context, what is an appropriate Digital 

Twin-driven framework for optimising the management and performance of BESS? 

2. Battery state estimation is important for the efficient operation of BESS, and a 

data-driven approach has been widely adopted. However, existing research on 
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state estimation often lacks a comprehensive explanation of how key variables are 

determined for predicting battery state metrics such as SOC and SOH. Therefore, 

how can battery state estimation be achieved in a predictive manner with proper 

justification of the variables affecting SOC, SOH, and RUL? 

3. Battery optimisation is critical for enhancing the performance and lifespan of 

BESS, and data-driven approaches are commonly used. However, existing 

optimisation research often focuses on isolated parameters without fully 

explaining or justifying the selection of variables influencing battery performance. 

Therefore, how can battery optimisation be achieved in a predictive manner, with 

proper justification of the factors affecting energy storage, discharge efficiency, 

and long-term operational reliability? 

4. With the advancement of DT technology and machine learning techniques, DT can 

be applied for operational decision-making with the unique advantage of real-

time data integration and predictive analytics. Therefore, how can DT be utilised 

for computational modelling and decision support in BESS, particularly for 

predictive maintenance and operational decision-making, considering 

operational and technical constraints? 

With the identification of the research questions, the research objectives following 

these research questions are listed below: 

1. To propose a framework for DT-driven management of BESS that can integrate 

real-time data, historical performance, and environmental factors to optimise 

battery performance and reliability. 

2. To apply the proposed DT-support framework for battery state estimation tasks 

that improve the accuracy of SOC, SOH, and RUL predictions and integrate real-

time data for updating. 
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3. To propose a DT-driven optimisation method for BESS. The method will integrate 

real-time sensor data, historical data, and environmental factors to enhance 

battery situational awareness. 

4. To study a DT-driven approach for operational decision support in BESS for 

predictive maintenance and providing maintenance strategies. 

The details of this research will be reported in Chapters 3, 4, 5 and 6.  

In Chapter 1, a broader context and background are provided as to the motivation and 

significance of this research.  

Chapter 2 presents a detailed review of the existing literature related to Battery Digital 

Twin (BDT) technology and BESS. The chapter is divided into four sections: (1) an 

overview of the BDT, including its definition, evolution, and current research trends; 

(2) a review of the key components, benefits, and challenges of BESS; (3) the research 

and applications of DT in energy system; and (4) a summary of the literature, linking 

the key findings to the research questions of this study. This review provides an 

understanding of the current research landscape and highlights areas that will be 

addressed through the research questions in the following chapters. 

In Chapter 3, a framework is introduced for the DT-driven management of BESS. 

This framework is designed to support real-time monitoring, predictive maintenance, 

and operational optimisation. The framework consists of several components, each 

focusing on different aspects of BESS management and digital representation. These 

components include data description, data pre-processing and integration, analytical 

methods for optimisation, and model collaboration. 

Chapter 4 presents a method for battery state estimation and RUL prediction. Utilising 
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an equivalent circuit model as its foundational basis, a DT model has been developed, 

integrating factors such as voltage, current, and ambient temperature. Recognising the 

complexities of battery state estimation, we introduced the temporal convolutional 

networks (TCN)-LSTM approach. This advanced algorithm is specifically designed to 

reduce dependence on initial values, especially with limited training data as input. To 

support this, we incorporated the battery digital twin framework and used transfer 

learning techniques to enable continuous model refinement while working through 

rolling learning. 

Chapter 5 aims to introduce the hierarchical and self-evolving digital twin (HSE-DT) 

method, designed to enhance battery situational awareness. Utilising a structured DT 

model, the method integrates critical parameters such as voltage, current, and 

temperature, alongside advanced estimation techniques. Recognising the complexities 

of battery situational awareness, The HSE-DT method employs the Transformer-CNN 

model to accurately identify spatial and temporal characteristics of battery conditions. 

In Chapter 6, the integration of advanced data-driven approaches (e.g., spare parts 

ordering strategy combining RUL prediction and availability, and LLM-based fault 

diagnosis and decision support) into DT to enhance maintenance decision support for 

BESS is explored. The results of the experiment indicate that integrating the spare 

parts ordering strategy based on RUL and availability with LLM insights can greatly 

enhance maintenance planning and fault detection. This chapter focuses on the special 

qualities of these models and proposes that unifying them under a DT framework might 

generate a more thorough and versatile strategy for overseeing BESS and boosting 

system dependability while cutting maintenance expenses. 

Chapter 7 concludes the thesis, and a summary of its achievements is presented. There 

is a discussion of the limitations and future work. As a final note, the main 

contributions to the body of knowledge resulting from this research are summarised. 
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This thesis makes several contributions to the wider body of knowledge. 

1. A DT framework for BESS management is presented that prioritises real-time 

monitoring and optimisation. This approach delivers a clear strategy to collect data 

from multiple sources and enhance the accuracy of battery state estimations. The 

framework enhances the efficiency of BESS operations through real-time data-

driven decision support. 

2. A method for battery state estimation is introduced, including SOC, SOH and RUL. 

By integrating machine learning techniques and real-time data, the proposed 

methodology offers a more reliable approach to estimating these critical battery 

parameters. This can lead to better decision-making and improved battery 

performance in real-world applications. 

3. A multi-faceted optimisation method is proposed for situational awareness in 

BESS. The optimisation model contributes to improving the adaptability and 

reliability of BESS under changing operational conditions. 

4. A decision support system is introduced within the DT framework, focusing on 

predictive maintenance and providing a question-answer maintenance strategy. 

This system enables operators to predict potential failures and plan maintenance 

activities, reducing downtime of BESS. This contribution addresses a gap in 

current battery management practices by providing a more proactive approach to 

maintenance and operational decision support.
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Chapter 2 Literature Review 

As outlined previously, this chapter reviews the related works and relevant research in 

three main areas: battery energy storage systems, battery digital twins, and the research 

and applications of digital twins in energy systems. Section 2.2 explores BESS by 

reviewing its key components, the associated benefits and challenges, and emerging 

innovations in this field. The discussion on battery digital twins is divided into three 

aspects: the definition and evolution of the technology, its advantages and limitations, 

and the current trends shaping future research. These topics are covered in Section 2.3. 

Section 2.4 reviews the broader applications of digital twin technology in energy 

systems, particularly its role in renewable energy integration, system optimisation, and 

potential implications for energy transitions. Finally, Section 2.5 summarises the 

chapter concerning the research questions posed in this study. 

In the contemporary energy landscape, BESS has appeared as a critical asset for 

managing renewable energy integration and providing grid stability (Kortmann et al., 

2021). The global shift towards decarbonisation and the development of sustainable 

energy infrastructures underscore the significance of BESS (Dunn et al., 2011). These 

systems store excess energy generated from intermittent renewable sources, such as 

solar and wind, for later use, thereby enabling a reliable power supply (Castelletto and 



14 Literature Review 

 

 

Boretti, 2022). This capability mitigates fluctuations in energy availability, particularly 

during periods of low generation or high demand, enhancing the efficiency and 

resilience of modern energy systems (Nazar and Anwer, 2020). Consequently, BESS 

have become indispensable in both grid-level applications and decentralised energy 

networks, such as electric vehicles (EVs) (Mendi et al., 2021). 

Despite significant technological advancements, particularly in lithium-ion (Li-ion) 

batteries, several critical issues hinder the optimal performance and widespread 

adoption of BESS. These include battery degradation, energy density limitations, and 

the economic feasibility of long-term operations (Nechaieva, 2019). Furthermore, the 

complexity of integrating BESS into diverse energy systems introduces additional 

challenges in maintaining operational safety and efficiency (Beltramin, 2018). To 

address these issues and unlock the full potential of BESS, continuous research and 

innovation are needed. 

This section reviews the literature on BESS, focusing on its core components, the 

benefits it offers, the challenges it faces, and the emerging innovations that aim to 

address these challenges. This review lays the groundwork for understanding the 

subsequent discussion on DT and its applications in battery management, which will 

be explored in greater depth in the following sections. 

BESS are fundamental to modern energy infrastructures, balancing energy supply and 

demand, facilitating the integration of renewable energy sources, and enhancing the 

stability of power grids (Dunn et al., 2011). As reliance on renewable energy, 

particularly variable sources such as solar and wind, increases, the need for advanced 

energy storage solutions capable of mitigating fluctuations in energy production and 

consumption becomes more urgent (Zuo et al., 2021). BESS offer the flexibility to 

store surplus energy generated during periods of low demand and release it during peak 

demand, thus preventing power outages and providing grid stability (Al Essa, 2020). 
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The success of BESS is largely attributed to the widespread adoption of Li-ion batteries, 

which dominate the market due to their high energy density, long cycle life, and 

relatively low maintenance requirements (Nazar and Anwer, 2020). However, these 

batteries are not without limitations. Safety risks related to thermal runaway, 

constraints on raw material availability, and environmental concerns associated with 

lithium and cobalt extraction and processing pose significant barriers to broader 

adoption (Fauzan et al., 2016). Addressing these issues is critical to meet the growing 

demand for sustainable and resilient energy solutions (Fang et al., 2020). 

One promising research direction involves exploring alternative battery chemistries, 

such as sodium-ion and solid-state batteries, to overcome the limitations of Li-ion 

technologies (Xu et al., 2020). Sodium-ion batteries, for instance, offer a more 

sustainable and cost-effective option for large-scale energy storage, as sodium is more 

abundant and less expensive compared to lithium (Namekar and Pathak, 2020). 

Similarly, solid-state batteries, which replace the liquid electrolyte in Li-ion batteries 

with a solid electrolyte, improve safety by reducing the risk of thermal runaway (Wang 

et al., 2021b). These innovations hold the potential to significantly enhance the 

performance, safety, and scalability of BESS for both grid-level and transportation 

applications (Wang et al., 2022). 

In addition to advancements in battery chemistry, significant progress has been made 

in optimising BESS operation through the integration of Battery Management Systems 

(BMS) and DT technology. BMS play a critical role in providing the safe and efficient 

functioning of battery systems by monitoring and estimating parameters such as SOC, 

SOH, voltage, and temperature (Anandavel et al., 2021). Real-time data provided by 

BMS enable operators to adjust system operations to prevent adverse conditions and 

extend battery lifespan. 

Digital Twin technology further enhances BESS optimisation by creating a virtual 

model of the physical battery system that mirrors its real-time operation (Mihai et al., 

2022). This virtual representation allows for precise monitoring, predictive 
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maintenance, and performance optimisation. By integrating data from embedded 

sensors, the DT can simulate various operating scenarios, predict potential failures, 

and provide actionable insights to enhance system performance and longevity (Mihai 

et al., 2022). In EVs, DTs are used to monitor battery health, predict the RUL, and 

optimise charging and discharging cycles, thus extending battery life (Mihai et al., 

2022). 

The deployment of BESS has extended beyond grid-level applications to diverse 

sectors, particularly transportation. Within power grids, BESS provide essential 

services such as frequency regulation, voltage support, and peak shaving. Fast 

adaptation to shifts in grid frequency and voltage allows BESS to support grid stability 

and secure the dependable supply of electricity. (Fellah et al., 2021). Peak shaving, 

specifically, involves discharging stored energy during periods of high demand to 

reduce the grid load, thereby minimising the need to activate costly and less efficient 

peaker plants (Uddin et al., 2018). 

In the transportation sector, BESS serve as a foundational technology for vehicle 

electrification. EVs rely on advanced battery technologies for propulsion, and as 

demand for EVs continues to grow, the need for efficient, durable, and safe battery 

systems becomes even more critical (Xu et al., 2020). Vehicle-to-grid (V2G) 

technology exemplifies an innovative use case for BESS in transportation, wherein 

EVs can supply excess energy stored in their batteries back into the grid during peak 

demand periods (Anandavel et al., 2021). This bidirectional energy flow enhances grid 

flexibility and provides opportunities for optimising energy utilisation across both 

transportation and energy sectors. 

BESS is composed of several integral components, each playing a critical role in 

ensuring system efficiency, safety, and operational reliability (Pham et al., 2020). 

These components are systematically integrated within a sophisticated architecture 
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that enables BESS to perform a wide range of applications, such as grid stabilisation, 

renewable energy integration, and EV propulsion (Schimpe et al., 2018). A 

comprehensive understanding of these components and their interactions is essential 

for optimising BESS performance and enhancing their long-term sustainability 

(Vartanian, 2010). 

The core of any BESS is the battery cells, which serve as the primary storage units for 

electrical energy. The predominant technology in BESS is Li-ion batteries, known for 

their high energy density, long cycle life, and overall efficiency (Diao et al., 2016). 

These battery cells are typically assembled into modules, which are then organised 

into larger battery packs. This modular configuration facilitates scalability, allowing 

BESS to accommodate varying energy storage requirements, from small-scale 

residential systems to large-scale utility applications (Ma et al., 2023). The modular 

structure also simplifies maintenance and replacement of individual components, 

thereby minimising system downtime (Soni and Fernandez, 2023). 

The BMS is a pivotal component that supports battery cells by monitoring and 

regulating their operating conditions (Ausswamaykin and Plangklang, 2014). By 

tracking critical parameters such as SOC, SOH, voltage, temperature, and current, the 

BMS helps prevent issues such as overcharging, overheating, or deep discharge, all of 

which can significantly impair battery performance and lifespan (Lipu et al., 2021). 

Moreover, the BMS not only safeguards the battery cells but also provides actionable 

data for optimising system efficiency and enabling predictive maintenance, helping 

operators anticipate potential failures before they occur (Inderwildi et al., 2020). 

Another essential component in BESS architecture is the Power Conversion System 

(PCS), which manages energy conversion between the direct current (DC) stored in 

the batteries and the alternating current (AC) used by most electrical grids and devices 

(Soong and Lehn, 2014). The PCS includes inverters to convert DC to AC for grid 

applications, as well as converters that govern the charging and discharging processes 

(Zhao et al., 2014). This conversion capability is important in grid-connected systems, 
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ensuring that energy storage can be efficiently utilised by the grid and various electrical 

loads while minimising energy losses during the conversion process (Lo Franco et al., 

2021). 

Effective thermal management is a critical aspect of BESS design, as it maintains 

optimal operating temperatures for battery cells, which is vital for both performance 

and safety (Liu et al., 2017). Li-ion batteries, in particular, are highly sensitive to 

extreme temperatures, and their efficiency can be significantly compromised when 

exposed to conditions that are either overheating or overcooling (Qian et al., 2016). A 

well-engineered thermal management system may employ air cooling, liquid cooling, 

or phase-change materials to regulate temperature and prevent overheating (Wang et 

al., 2020a). In some advanced BESS configurations, thermal management is integrated 

with DT, allowing real-time simulations that can predict and pre-empt potential 

overheating or other temperature-related issues (Patil et al., 2021). 

The integration of DT technology into BESS architecture represents a significant 

advancement in system management and optimisation (Padmawansa et al., 2023). 

Digital twins create a virtual replica of the physical system, enabling operators to 

monitor performance, conduct simulations, and predict future behaviour based on real-

time data. Continuously updated using sensor inputs from the physical BESS, the 

digital twin provides an accurate, up-to-date representation of the system’s status. This 

technology facilitates more precise control, improved maintenance strategies, and 

enhanced operational efficiency, particularly in large-scale applications where even 

minor improvements can yield substantial cost savings and performance gains. 

Despite the rapid advancement and growing adoption of BESS, numerous technical, 

economic, and environmental challenges persist, impeding their full-scale deployment 

and optimisation (Krishna et al., 2022). These barriers not only limit the efficiency and 

longevity of current BESS installations but also raise concerns about the sustainability 
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and long-term feasibility of using such systems for extensive grid and transportation 

applications (Krishna et al., 2022). Consequently, addressing these challenges is 

imperative for realising the full potential of BESS and enabling a more sustainable and 

resilient energy future (Sun et al., 2023). 

One of the foremost barriers to the widespread adoption of BESS is the high upfront 

capital cost associated with battery technologies, particularly Li-ion batteries 

(Sparacino et al., 2012). Although significant reductions in manufacturing costs and 

improvements in material sourcing have been achieved in recent years, the initial 

investment required for installing large-scale BESS remains a formidable barrier, 

particularly in regions where renewable energy project financing is constrained 

(Hossain et al., 2020). The overall cost of BESS deployment encompasses not only the 

batteries themselves but also the expenses related to power conversion systems, BMS, 

and thermal management solutions (Mitali et al., 2022). To overcome these economic 

challenges, ongoing research is focused on developing cost-effective battery 

chemistries, enhancing manufacturing efficiency, and achieving economies of scale in 

production (Akram et al., 2020). 

In addition to high costs, battery degradation and limited lifespan present significant 

technical challenges for BESS (Liu et al., 2021a). Repeated charging and discharging 

cycles, fluctuations in operating temperature, and external environmental factors 

contribute to the gradual degradation of battery cells, leading to a decline in overall 

energy storage capacity and system efficiency over time (Pan et al., 2019). Degradation 

mechanisms such as capacity fading, increased internal resistance, and electrode 

deterioration not only reduce the operational lifespan of batteries but also necessitate 

frequent maintenance and replacement, thereby increasing the long-term operational 

costs of BESS. These issues are particularly problematic for lithium-ion batteries, 

which are highly sensitive to temperature variations and prone to safety risks such as 

thermal runaway under extreme operating conditions. 

Efforts to address battery degradation have spurred research into alternative battery 
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chemistries, such as sodium-ion and solid-state batteries, which offer potential 

improvements in lifespan, safety, and environmental sustainability (Hasan et al., 2021). 

Sodium-ion batteries, for example, use sodium—a more abundant and less expensive 

material compared to lithium—as the primary charge carrier, making them a cost-

effective option for large-scale energy storage applications (Zhao et al., 2023). 

However, sodium-ion batteries currently face challenges related to lower energy 

density and shorter cycle life compared to their lithium-ion counterparts, which limits 

their competitiveness in high-energy applications (Hirsh et al., 2020). Meanwhile, 

solid-state batteries, which utilise solid electrolytes instead of liquid ones, drop the risk 

of leakage and significantly reduce the likelihood of thermal runaway (Velumani and 

Bansal, 2022). Despite these advantages, solid-state batteries are still in the 

experimental stage, and their commercial viability remains constrained by issues 

related to material stability and manufacturability at scale (Yang et al., 2021a). 

Another significant technical challenge in the deployment of BESS is to offer the 

operational safety and reliability of these systems, especially when integrated with 

diverse energy infrastructures (Nazaralizadeh et al., 2024). Safety concerns stem from 

the complex chemical reactions within batteries, which can lead to issues such as 

overheating, short-circuiting, and in extreme cases, fires or explosions (Chen et al., 

2021c). These safety risks are further exacerbated by the increased energy densities of 

advanced battery technologies, making effective safety management a critical priority. 

BMS play a critical role in mitigating these risks by continuously monitoring key 

parameters such as voltage, temperature, and SOC and implementing protective 

measures to prevent hazardous conditions (Wu et al., 2019, Chen et al., 2021b). 

However, the complexity of integrating BMS with multiple energy systems and 

enabling real-time responsiveness remains a considerable challenge. 

DT technology has emerged as a promising solution to enhance the safety, efficiency, 

and reliability of BESS (Waseem et al., 2023). By creating a virtual representation of 

the physical battery system, DT technology enables real-time monitoring, predictive 



Literature Review 21 

 

 

maintenance, and optimisation of battery performance. The integration of DT with 

BESS allows operators to simulate various operating scenarios, predict potential 

failures, and implement pre-emptive measures to prevent safety incidents. Moreover, 

DT technology facilitates a deeper understanding of complex degradation mechanisms, 

enabling more accurate predictions of RUL and enhancing decision-making processes 

related to maintenance and replacement schedules (Bhatti et al., 2021). Despite these 

advantages, the implementation of DT in large-scale BESS is still in its nascent stages, 

and further research is needed to develop standardised frameworks and protocols for 

DT integration. 

Environmental sustainability represents another major challenge for BESS, primarily 

due to the extraction and processing of materials like lithium, cobalt, and nickel, which 

are associated with significant environmental and social impacts (Dehghani-Sanij et 

al., 2019). The mining of these materials not only results in habitat destruction, soil 

degradation, and water contamination but also raises ethical concerns regarding labour 

practices, particularly in regions with limited regulatory oversight (Hannan et al., 

2021). For instance, cobalt mining in the Democratic Republic of the Congo has been 

widely criticised for its reliance on child labour and hazardous working conditions. 

The improper disposal of spent batteries poses additional environmental risks, as 

hazardous chemicals can leach into soil and groundwater, leading to long-term 

ecological damage (Chowdhury et al., 2020). 

Despite these challenges, BESS present numerous opportunities for supporting the 

global transition to sustainable energy systems (Branco et al., 2018). One of the most 

promising areas of opportunity lies in the integration of BESS with renewable energy 

sources, such as solar and wind, to enhance grid flexibility and stability (Worku, 2022). 

By providing critical services such as frequency regulation, voltage support, and peak 

shaving, BESS can help balance supply and demand in real-time, thereby reducing the 

reliance on fossil-fuel-based peaker plants and minimising greenhouse gas emissions 

(Worku, 2022). Moreover, the deployment of BESS in microgrid and off-grid 
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applications can provide reliable energy access in remote and underserved regions, 

contributing to energy equity and resilience. 

The adoption of V2G technology offers another significant opportunity for BESS in 

the transportation sector (Lund and Kempton, 2008). V2G technology enables 

bidirectional energy flow between EVs and the grid, allowing EVs to supply excess 

energy stored in their batteries back to the grid during peak demand periods. This 

bidirectional energy flow not only enhances grid stability but also provides additional 

revenue streams for EV owners, incentivising the adoption of EVs and supporting the 

decarbonisation of the transportation sector (Upputuri and Subudhi, 2023). However, 

the implementation of V2G technology requires the development of compatible 

charging infrastructure and regulatory frameworks, as well as advancements in 

communication and control systems to manage energy flows effectively (Sovacool et 

al., 2018). 

Artificial Intelligence (AI) and machine learning (ML) technologies are poised to play 

a transformative role in the optimisation of BESS operation and management (Yao et 

al., 2023, Gao and Lu, 2021). AI-driven algorithms can analyse vast amounts of 

operational data to identify patterns and anomalies, enabling real-time optimisation of 

charging and discharging cycles, predictive maintenance, and fault detection (Guo et 

al., 2021b). The integration of AI with BMS and DT systems can further enhance the 

performance and safety of BESS by enabling autonomous decision-making and 

adaptive control. As AI and ML technologies continue to mature, their application in 

BESS is expected to reduce operational costs, improve system efficiency, and extend 

battery lifespan (Chen et al., 2012). 

In conclusion, while BESS faces various technical, economic, and environmental 

challenges, the opportunities for growth and optimisation remain vast. By overcoming 

issues related to high costs, battery degradation, and environmental sustainability, and 

capitalising on advancements in digitalisation, AI, and energy management, BESS can 

continue to play a pivotal role in the global transition towards sustainable energy 
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systems (Andal and Jayapal, 2022). Continued research and innovation in battery 

chemistries, recycling technologies, and system integration will be critical for 

unlocking the full potential of BESS and achieving a more resilient and sustainable 

energy future. As the energy storage landscape evolves, BESS is poised to become a 

cornerstone technology in modern energy infrastructures, driving the decarbonisation 

of power grids and transportation systems worldwide. 

The integration of DT technology into BESS represents a significant advancement in 

the management and optimisation of energy storage solutions (Kharlamova et al., 

2022). A digital twin is a dynamic, virtual model of a physical system that replicates 

real-time operations by continuously syncing with sensor data from the physical 

counterpart (Ibrahim et al., 2023). In the context of BESS, this technology enables 

enhanced monitoring, predictive maintenance, and performance optimisation by 

simulating various operating conditions and predicting potential failures (Song et al., 

2024). As BESS becomes more complex and widespread in applications like grid 

stabilisation, renewable energy integration, and electric vehicles, the use of Digital 

Twins provides operators with a powerful tool for improving system efficiency, safety, 

and lifespan. This section will explore the core concepts of DT, its development, key 

techniques and the opportunities it presents when integrated with BESS, providing a 

detailed overview of the role it plays in modern energy management systems. 

The concept of the DT has evolved significantly since its inception, becoming an 

integral part of numerous industrial and technological sectors, including energy 

storage systems (Tao et al., 2018). At its core, a digital twin is a virtual representation 

of a physical system that replicates the system’s behaviour, processes, and 

characteristics in real-time by utilising data from various sources. This digital entity 

allows for enhanced monitoring, predictive maintenance, and optimisation of the 
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physical system, making it a vital tool in the modern energy landscape (Hu et al., 2021). 

The term "digital twin" was first introduced by NASA in 2012 to describe a high-

fidelity digital model that could simulate the behaviour of aerospace systems during 

missions (Glaessgen and Stargel, 2012). It was envisioned as a tool to predict system 

behaviour, assess performance, and optimise operations in space environments. The 

idea quickly gained traction across various sectors, including manufacturing, where 

Michael Grieves further developed the concept by introducing a framework that 

described the digital twin as a digital counterpart to a physical product or system 

(Grieves and Vickers, 2017). This concept formed the foundation for further 

technological advancements, eventually being adopted in fields such as aerospace, 

automotive, and, more recently, energy systems. 

A key feature of the digital twin is its bidirectional nature, wherein data flows between 

the physical system and its virtual counterpart in real-time (Yaqoob et al., 2020). This 

connection creates a dynamic feedback loop, allowing the digital twin to provide 

accurate assessments of the physical system’s state and performance, predict potential 

failures, and optimise operations based on real-time data. This real-time 

synchronisation is made possible through the integration of Internet of Things (IoT) 

technologies and advanced data processing algorithms. 

In the context of BESS, digital twin technology has become invaluable due to its ability 

to enhance the efficiency and reliability of energy storage systems. BESS face a variety 

of challenges, including battery degradation, safety risks, and efficiency losses, 

particularly with lithium-ion batteries (Lo Franco et al., 2021). Digital twins offer 

solutions by providing detailed, real-time insights into the SOC, SOH and RUL of 

batteries, enabling more effective battery management and optimisation (Li et al., 

2020). 

The evolution of digital twin technology in energy systems can be attributed to 

advancements in data analytics, machine learning, and cloud computing (Mihai et al., 
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2022). As data collection methods have improved and become more sophisticated, 

digital twins have evolved from simple static models to highly dynamic systems that 

continuously update themselves with real-time data from sensors embedded in the 

physical systems. This shift has made digital twins indispensable for optimising 

complex systems, such as BESS, where continuous monitoring and predictive 

capabilities can significantly enhance system performance and longevity (Ibrahim et 

al., 2023). 

Another significant aspect of digital twin evolution is its application in smart grids 

(Jafari et al., 2023). In modern energy infrastructures, the ability to predict and respond 

to fluctuations in energy supply and demand is critical, particularly as more renewable 

energy sources, such as wind and solar, are integrated into the grid. Digital twins 

enable smart grids to become more adaptive and responsive by providing operators 

with real-time insights into energy flows and potential bottlenecks. This capability is 

essential for optimising the use of BESS, as it helps balance the intermittent nature of 

renewable energy sources by allowing operators to store excess energy during periods 

of low demand and release it when demand peaks (Sifat et al., 2023). 

As digital twin technology continues to evolve, its applications are expanding beyond 

traditional industrial uses to encompass new and emerging fields, such as EVs and 

renewable energy integration. In the EV sector, digital twins are being used to monitor 

battery health, optimise charging cycles, and predict the performance of battery 

systems over time (Bhatti et al., 2021). This capability is critical for ensuring the safety 

and longevity of EV batteries, which are subject to repeated charging and discharging 

cycles. 

In summary, the digital twin has evolved from a theoretical concept to a highly 

practical tool that is transforming how complex systems are managed and optimised. 

Its ability to provide real-time, data-driven insights into physical systems makes it an 

indispensable asset in fields such as energy storage, where efficiency, reliability, and 

safety are paramount. As advancements in data processing, machine learning, and IoT 
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continue to accelerate, the role of digital twins in optimising BESS and other energy 

systems will only become more critical. 

The development of battery digital twins involves the integration of various techniques, 

enabling accurate modelling, real-time monitoring, and predictive maintenance for 

BESS (Li et al., 2024). These techniques help create digital twins that provide reliable 

simulations, informed decision-making, and system-wide optimisation. For BESS, 

digital twin technology is evolving through the use of machine learning models, real-

time data processing, and advanced modelling strategies to improve system 

performance. 

A key technique in digital twin development is real-time data acquisition and 

integration. Sensors embedded in the physical battery system continuously collect data 

on parameters such as voltage, temperature, and current. This data feeds directly into 

the digital twin, allowing the virtual model to stay aligned with the real-time conditions 

of the battery. IoT technology plays a role in maintaining the flow of data between the 

physical and virtual environments. The regular acquisition of data allows the digital 

twin to stay informed and delivers a fluid depiction of how the battery is functioning. 

(Uhlemann et al., 2017). 

Advanced modelling and simulation techniques are another critical element in battery 

digital twin development. These models replicate the electrochemical processes within 

battery cells, helping to predict how the system will behave under different conditions. 

Various approaches, such as electrochemical models and thermal models, are 

employed to represent the battery’s physical behaviour and identify the factors that 

impact performance and lifespan (Singh et al., 2021b). By simulating a range of 

scenarios, such as extreme conditions or degradation over time, the digital twin helps 

assess potential risks and system vulnerabilities, contributing to long-term operational 

planning (Alcaraz and Lopez, 2022). 
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ML algorithms enhance the predictive capabilities of digital twins by analysing both 

historical and real-time data to forecast future battery performance and identify 

potential issues (Rathore et al., 2021). LSTM networks, for instance, are effective in 

handling time-series data, making them suitable for predicting battery health and RUL 

(He et al., 2021). Similarly, TCN and CNN are used to detect patterns in battery data, 

offering valuable insights into the system's operational trends (Hong et al., 2021). 

These models can process complex datasets generated by BESS, providing more 

reliable predictions about the system's future behaviour. 

Cloud computing plays a significant role in digital twin technology by enabling large-

scale data processing and analysis (Hong et al., 2021). Cloud-based platforms offer the 

necessary computational resources for handling the vast amounts of data generated by 

BESS. Furthermore, edge computing complements cloud infrastructure by enabling 

real-time processing closer to the physical system. Time-sensitive tasks, such as 

monitoring critical operational changes, can be executed locally, while more complex 

simulations and analyses are conducted in the cloud (Wu et al., 2021). This balance 

between cloud and edge computing improves the responsiveness of the digital twin. 

Predictive maintenance is another important technique used in digital twin technology 

(Chen et al., 2023). By analysing operational data, the digital twin can predict when 

certain components of the battery may fail or degrade, allowing for maintenance to be 

scheduled in advance. This predictive capability helps reduce unexpected system 

downtime and lowers maintenance costs (Peng et al., 2019). Through continuous 

monitoring and forecasting, digital twins enable more informed decisions about when 

and how to perform maintenance, thereby extending the battery’s operational life. 

Thermal management is also a vital consideration for battery systems, particularly in 

lithium-ion batteries, where temperature fluctuations can affect performance (Wang et 

al., 2021b). In digital twins, real-time temperature data is combined with thermal 

models to predict changes in battery temperature during operation (Reniers and Howey, 

2023). By simulating thermal conditions, the digital twin assists in maintaining the 
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battery's optimal temperature range, which is essential for safe and efficient operation. 

Effective thermal management contributes to prolonging battery life and preventing 

safety issues related to overheating (Zhang et al., 2022). 

Cybersecurity is another aspect that has gained attention with the increasing 

digitalisation of energy systems (Shitole et al., 2021). Digital twins are vulnerable to 

cyber threats, particularly when cloud computing and IoT are involved. Protecting the 

data integrity of digital twins is necessary to ensure that the physical systems they 

represent are not compromised. Techniques such as encryption, real-time system 

monitoring, and anomaly detection help maintain the security of the digital twin 

infrastructure, safeguarding against disruptions and unauthorised access. 

In summary, the development of battery digital twins depends on the integration of 

several techniques, including real-time data acquisition, advanced modelling, machine 

learning, cloud computing, predictive maintenance, thermal management, and 

cybersecurity. These techniques contribute to improving the efficiency, safety, and 

reliability of BESS, supporting better decision-making and operational optimisation. 

As digital twin technology continues to evolve, the incorporation of more advanced 

models and techniques will further refine the functionality of battery digital twins, 

promoting progress in energy storage technologies. 

The integration of DT into energy systems has accelerated in recent years, with 

increasing interest in its potential to enhance the performance, safety, and efficiency 

of energy storage systems. While much progress has been made, ongoing research 

continues to explore emerging trends and address challenges that will shape the future 

development of digital twins in this domain. These trends include the growing role of 

ML, advancements in real-time data analytics, the increasing importance of 

cybersecurity, and the expansion of digital twin applications beyond traditional energy 
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storage systems. 

One of the most significant trends in digital twin research is the use of AI and machine 

learning to enhance the predictive capabilities of digital twins. The integration of ML 

models has enabled more accurate forecasting of battery performance, degradation, 

and faults in energy storage systems-driven models allowing digital twins to process 

and analyse vast datasets, identifying patterns in system behaviour and predicting 

future outcomes with greater accuracy (Kaleem et al., 2023). By leveraging machine 

learning, digital twins can improve the efficiency of energy systems by optimising 

operational parameters and anticipating maintenance needs (Agostinelli et al., 2021). 

Another key trend is the increasing focus on real-time data analytics and the 

development of robust data management (Wang et al., 2021b). Digital twins depend 

on continuous data streams from physical systems, while advancements in data 

analytics enable more efficient processing and interpretation of this information. Real-

time monitoring and control of energy storage systems are essential to maintaining 

stability, optimising energy use, and ensuring reliable performance under varying 

demand conditions. The development of advanced data architectures, such as cloud-

based and edge computing platforms, enables the real-time operation of digital twins. 

These architectures facilitate large-scale data processing and support localised 

decision-making, which is critical for responsive energy management systems. 

Cybersecurity is becoming increasingly vital in digital twin research as energy systems 

become more interconnected and reliant on digital infrastructure (Wang et al., 2023). 

The growing adoption of IoT technologies in energy systems makes it imperative to 

secure the data integrity on which digital twins rely. Cyberattacks present significant 

risks to energy infrastructure, potentially compromising system performance or 

leading to catastrophic failures. Research on secure architectures, encryption methods, 

and fault-tolerant systems is critical to protecting energy storage systems from external 

threats. Future advancements in cybersecurity protocols for digital twins are likely to 

become a primary focus, particularly for critical infrastructures like power grids 
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(Shitole et al., 2021). 

Extending digital twin applications beyond conventional BESS is another critical 

future direction. While digital twins are well-established for lithium-ion battery 

management, there is growing interest in applying them to other energy storage 

systems, such as fuel cells, pumped hydro, thermal energy storage, and supercapacitors 

(Kharlamova et al., 2022, Li et al., 2020). Such diverse applications create new 

opportunities for research and innovation in digital twins. For instance, digital twins 

can monitor and manage heat transfer processes in thermal energy storage systems, 

while fuel cell systems could benefit from advanced fault diagnosis and lifetime 

prediction. Expanding digital twins to include these systems can provide more 

comprehensive solutions for energy storage and management. 

Lifecycle integration has emerged as a core focus in digital twin research, underscoring 

the deployment of these technologies across the entire lifecycle of energy systems—

from design and production to operation and maintenance (Merkle et al., 2019). This 

holistic approach facilitates system optimisation, cost-efficiency, and enhanced 

operational performance across the entire system’s lifecycle (Naseri et al., 2023). 

Moreover, lifecycle integration enables predictive maintenance through real-time 

monitoring and comprehensive data analysis during the operational phase. 

Consequently, future research is anticipated to prioritise the refinement of DT models 

to ensure seamless integration across each phase of energy system development, 

thereby enhancing overall system efficiency and reducing operational risks. 

Finally, the formulation of standardised digital twin frameworks and protocols is 

pivotal for advancing research in this domain. The lack of universally accepted 

standards for digital twin deployment, coupled with inconsistencies in system design, 

data management, and communication protocols, poses considerable challenges for 

large-scale implementation. As digital twin technology advances, the establishment of 

standardised frameworks ensuring interoperability and scalability across a diverse 

array of energy storage systems will emerge as a top research priority. Such 
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frameworks will facilitate the seamless integration of digital twins into diverse energy 

infrastructures, thereby promoting widespread adoption and optimising overall system 

performance. 

In conclusion, the future of digital twin research for energy systems is driven by 

advancements in AI, real-time data analytics, cybersecurity, and the expansion of 

applications across various energy storage technologies. As digital twin technologies 

continue to evolve, their potential to optimise energy storage and management systems 

will become increasingly important, particularly in supporting the transition to more 

resilient and sustainable energy grids. By addressing current challenges and exploring 

new applications, digital twin research will play a pivotal role in shaping the energy 

systems of the future. 

The development of BDT technology has seen considerable progress, driven by its 

ability to transform the management of energy storage systems through advanced 

monitoring, predictive maintenance, and optimisation. A digital twin replicates the 

physical battery system in a virtual environment, providing real-time insights into its 

performance. This section investigates the current research and various applications of 

BDT, focusing on its role in improving grid stability, integrating renewable energy, 

and managing EV batteries. By exploring both theoretical advancements and practical 

implementations, this section sheds light on how BDT is evolving within the energy 

sector. 

Digital twin technology harnesses sophisticated physical models, intelligent sensor 

readings, and comprehensive operation and maintenance data history, amalgamating 

multidisciplinary insights for a simulation process that spans various physical 

quantities, temporal scales, and probability scenarios. Such twins provide an authentic 

representation of energy storage systems within a virtual domain, capable of real-time 
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updates and dynamic evolution, thereby mirroring the full lifecycle of the pertinent 

energy system (Zhou et al., 2019). 

While research into batteries has deepened and advanced over the years, numerous 

challenges persist. State estimation for Li-ion batteries serves as a foundational 

element for both battery management systems and battery equilibrium management, 

critical in averting overcharge or over-discharge situations. Nevertheless, crafting 

accurate models for lithium-ion batteries remains an intricate task, given the 

pronounced non-linearity and tight interrelation of internal battery dynamics (Rae and 

Bradley, 2012). DT technologies have demonstrated notable efficacy in the aerospace 

domain, particularly in SOC estimation, RUL predictions, and optimal controls (Wu et 

al., 2020), suggesting their potential applicability to battery state management issues. 

The integration of DT with BMS commenced recently, further enhanced by the 

incorporation of cloud computing and IoT frameworks (Botta et al., 2016). Present-

day investigations into battery digital twins primarily address three core challenges 

inherent to contemporary BMS: the complexities in data integration from diverse BMS 

providers, the constrained computing power of embedded systems, and the restricted 

data storage capabilities. A synthesis of battery management systems utilising digital 

twin technologies, alongside their functionalities and methodologies, is outlined in 

Table 1.1. 

To address the data-sharing challenges in battery management, Li (Li et al., 2020) 

integrated DT technology, consolidating all battery-related data into a cloud-based 

platform to enhance the BMS structure. This integration is critical as the volume of 

battery data surges, resulting in exponential increases in computational and storage 

demands for BMS. To navigate these complexities, machine learning approaches, 

particularly data scarcity models, are utilised to predict and refine system states, 

offering new insights into battery ageing processes. A notable example is the study, 
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Table 1.1 Battery digital twin in literature 

Years The functionality of applying DT Related methods and algorithms 

2018 

(Baumann et 

al., 2018) 

Monitoring cell voltage and 

temperature for decision-making 

Cloud-connected BMS; electric-

thermal model and empirical ageing 

model 

2019 (Peng et 

al., 2019) 

Assessment of spacecraft lithium-

ion battery pack degradation based 

on low-cost modules and software 

ECM with SVM and filter algorithms; 

LabVIEW for visualisation 

2019 

(Ramachandran 

et al., 2019) 

Estimation of SOC ECM and EFK algorithm 

2020 (Qu et al., 

2020) 

Estimation of the battery discharge 

capacity 
Health indicator and LSTM algorithm 

2020 (Li et al., 

2020) 
Estimation of SOC and SOH 

AEHF-based SOC estimation 

algorithm and PSO-based SOH 

estimation algorithm 

2021 

(Sancarlos et 

al., 2021) 

Estimation of cell voltage, 

anode/cathode bulk SOC and 

surface SOC 

Sparse-Proper Generalised 

Decomposition (s-PGD) and dynamic 

mode decomposition technique 

2021 (Merkle 

et al., 2021) 

Estimation of SOC, capacity and 

internal resistance 

ECM model parameter fitting, curve 

fitting and SOC-OCV curve 

2021 (Tang et 

al., 2021) 

Estimation of SOC and monitoring 

and visualisation of real-time 

voltage and current 

ECM and joint HIF-PF online 

estimation of SOC 

2022 (Qin et 

al., 2023) 
SOH Estimation 

Gaussian Regression, LSTM, Dropout 

in LSTM, Cycling synchronisation, 

MPC 

2023 (Reniers 

and Howey, 

2023) 

Thermal Management, Electrical 

Coupling, Degradation Analysis 

'Always on' method, PI controller, SEI 

growth model 

 



34 Literature Review 

 

 

(Qu et al., 2020), which combines a Health Indicator (HI) with the LSTM network for 

precise estimation of battery discharge capacities. 

However, the digital twins' real-time and self-evolving capabilities warrant further 

improvement. The following sections delve into the use of digital twins for SOC 

estimation. Research (Sancarlos et al., 2021) introduces a 'Hybrid Twin', a pioneering 

DT model for lithium-ion batteries in the automotive sector. These methods 

significantly boost the real-time performance and flexibility of BMS. Similarly, a study 

(Merkle et al., 2021) establishes a digital battery twin and data pipeline for electric 

vehicle batteries, leveraging a cloud-based system for health and performance analysis, 

underscoring digital twins' role in enhancing battery system management in vehicles. 

Tang (Tang et al., 2021) proposes a digital twin-supported framework to surmount 

BMS constraints, using a joint HIF-PF online algorithm for precise SOC estimation 

and efficient real-time monitoring. This approach exemplifies the transformative 

impact of digital twin technology in BMS. Paper (Qin et al., 2023) details a digital 

twin framework for real-time SOH assessment of lithium-ion batteries under variable 

conditions, utilising a unique method that incorporates energy discrepancy-aware 

cycling synchronisation and time-attention modelling, facilitating accurate SOH 

predictions without complete discharge cycles. Lastly, another study (Reniers and 

Howey, 2023) models a large-scale, grid-connected lithium-ion battery system through 

a digital twin methodology, focusing on the influence of system design and ancillary 

controls on degradation and efficiency, thereby highlighting digital twins' effectiveness 

in optimising battery system performance.  

Deep learning, a specialised branch of machine learning, has gained prominence across 

various scientific disciplines, primarily due to its exceptional capability to model 

complex non-linear relationships. Utilising architectures like neural networks, and 

deep learning algorithms autonomously extract feature representations from raw data, 

eliminating the necessity for manual feature engineering. This unique strength has 

elevated deep learning to a pivotal role in numerous applications, ranging from 
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computer vision to natural language processing. 

Within the context of Li-ion battery research, deep learning's integration has marked a 

significant paradigm shift. The inherent complex dynamics and non-linear behaviours 

of Li-ion batteries pose challenges that often surpass the capabilities of traditional 

modelling techniques. However, deep learning, adept at unravelling these complex 

patterns, provides a solution to these intricacies. 

LSTM, a specialised form of Recurrent Neural Networks (RNN), are particularly 

lauded for their proficiency in processing sequential data. A testament presented the 

Auto-CNN-LSTM model. By merging convolutional neural networks with LSTM, this 

model offers enhanced predictions for the remaining useful life of lithium-ion batteries, 

marking a milestone in battery prognostics (Ren et al., 2020). Reinforcing this, a study 

highlighted the superiority of LSTM-based models over traditional neural networks in 

predicting the RUL of such batteries (Long et al., 2019). 

TCN, characterised by its sequence-focused convolutional design, have also made 

significant strides in Li-ion battery research. For instance, Bi et al. undertook a 

comparative analysis of LSTM and TCN for estimating the SOH of lithium-ion 

batteries. Their research accentuated the advantages of TCN in recognising long-term 

data patterns, indicating a promising avenue for subsequent studies (Bi et al., 2022). 

Further emphasising the adaptability of TCN, Liu delved into the combination of TCN 

with transfer learning, revealing breakthroughs in SOC estimation for lithium-ion 

batteries (Liu et al., 2021b). 

To conclude, the adoption of deep learning architectures, especially LSTM and TCN, 

has undeniably advanced the domain of Li-ion battery research. Their advanced 

methodologies in analysing sequential data forecast a bright future for the development 

of battery management systems, prognostics, and health monitoring. 
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Digital twin applied physical models, intelligent sensors, comprehensive operation and 

maintenance data history, amalgamating multidisciplinary insights for a simulation 

process that spans various physical quantities, temporal scales, and probability 

scenarios. Such DT provides an authentic representation of energy storage systems 

within a virtual domain, capable of real-time updates and dynamic evolution, thereby 

mirroring the full lifecycle of the pertinent energy system (Zhou et al., 2019). 

Battery situation awareness (BSA) is important for the effective management of 

battery systems, encompassing the monitoring of key parameters, accurate state 

estimation, and predictive maintenance (PdM). This section reviews existing 

methodologies and recent advancements in BSA, focusing on battery monitoring and 

state estimation. 

Battery monitoring is a foundational aspect of BSA, providing essential data to 

understand and manage battery performance. Effective monitoring involves the 

continuous measurement of critical parameters such as current, voltage, and 

temperature. These parameters are important for assessing the operational state and 

health of battery systems, especially in high-demand applications like electric vehicles 

and renewable energy storage. 

The complexity and non-linearity of battery systems necessitate advanced monitoring 

techniques to enable safety, reliability, and optimal performance. Traditional BMS rely 

on embedded sensors to capture these metrics in real-time, providing important data 

for evaluating battery health and performance. 

Precise monitoring of current, voltage, and temperature is important for efficient 

battery management, as each parameter significantly influences battery performance, 

safety, and lifespan. Current monitoring is essential for determining charge and 

discharge rates, which directly impact the calculation of the SOC and the prediction of 
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battery behaviour under varying load conditions. Traditional methods, such as the use 

of shunt resistors and Hall-effect sensors, provide highly accurate real-time current 

data (Plett, 2004). However, recent advances in sensor technology and data acquisition 

systems have further improved measurement precision and reliability (Khaneghah et 

al., 2023). Similarly, voltage monitoring plays a pivotal role in SOC estimation and 

anomaly detection, including the prevention of overcharging and deep discharging. 

Advanced voltage monitoring systems, which employ differential voltage techniques 

and high-precision analogue-to-digital converters (ADCs), are capable of detecting 

minute voltage variations, providing valuable insights into battery dynamics and 

aiding in the identification of cell imbalances within battery packs (Ci et al., 2020). 

This capability is critical for implementing effective balancing strategies that enhance 

battery longevity and performance. Temperature monitoring, another key factor, 

directly impacts battery efficiency and safety. Modern battery management systems 

employ multiple temperature sensors distributed throughout the battery pack, utilising 

methods such as infrared thermography and fibre optic sensing for high-resolution 

temperature mapping (Lin et al., 2021). This comprehensive thermal management 

strategy allows the battery to operate within optimal temperature ranges, thereby 

extending its lifespan and enabling overall safety.  

Recent advancements in battery monitoring have introduced techniques like 

Electrochemical Impedance Spectroscopy (EIS) and fibre optic sensing. EIS measures 

the impedance of the battery across a range of frequencies, providing detailed insights 

into the electrochemical processes and the health status of the battery. This technique 

helps in identifying internal degradation mechanisms that are not detectable through 

traditional monitoring methods. Fibre optic sensors offer high sensitivity and 

immunity to electromagnetic interference, making them ideal for monitoring in harsh 

environments (He et al., 2013). These advanced techniques complement traditional 

monitoring methods by providing additional layers of diagnostic information, 

enhancing the overall accuracy and robustness of battery monitoring systems. By 

continuously monitoring these parameters, battery management systems can detect 
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early signs of degradation, optimise charging and discharging cycles, and enable the 

overall safety and reliability of the battery system. The integration of advanced 

monitoring techniques enhances the accuracy and robustness of data, providing a solid 

foundation for further state estimation and predictive maintenance.  

Battery state estimation is another important component of BSA, providing key 

insights into the battery's current status and predicting future performance. Accurate 

estimation of battery state such as SOC and SOH is essential for enabling the reliability, 

efficiency, and safety of battery systems. The inherent complexity and non-linearity of 

battery systems pose significant challenges for state estimation. Advanced 

methodologies and models are necessary to achieve accurate and reliable estimations, 

which are vital for effective battery management. 

SOC estimation represents the available capacity of the battery relative to its total 

capacity. It is a fundamental metric for managing battery operations and informing 

decisions on charging and discharging cycles. Various methods for SOC estimation 

have been developed, each with its advantages and limitations: a) Coulomb Counting: 

This method tracks the charge entering and leaving the battery. It is straightforward 

and widely used but susceptible to cumulative errors over time due to current 

measurement inaccuracies and initial SOC estimation errors (Plett, 2004). b) Voltage-

Based Methods: These methods correlate the battery voltage with its SOC. While 

simple and easy to implement, they can be inaccurate due to the non-linear relationship 

between voltage and SOC, especially under varying load conditions (He et al., 2013) 

c) Model-Based Approaches: Techniques such as Kalman filters and neural networks 

utilise mathematical models to estimate SOC with higher accuracy. Kalman filters, 

including the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), are 

popular due to their ability to handle non-linear systems and incorporate measurement 

noise. Neural networks offer the potential to learn complex patterns in the data, further 

enhancing SOC estimation accuracy. Recent advancements have seen the integration 

of machine learning algorithms to further refine SOC estimation. These approaches 
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leverage large datasets and advanced computational techniques to improve accuracy 

and robustness across various operating conditions. 

SOH estimation provides insights into the overall condition and degradation of the 

battery. It typically involves evaluating parameters such as capacity fade, internal 

resistance increase, and self-discharge rates. Accurate SOH estimation is important for 

predicting battery lifespan and scheduling maintenance. Advanced techniques for SOH 

estimation include a) EIS: EIS measures the impedance of the battery across a range 

of frequencies, providing detailed insights into the electrochemical processes and 

health status of the battery. This technique can identify internal degradation 

mechanisms not detectable through traditional monitoring methods (Hu et al., 2012). 

b) Data-driven approaches: These models analyse historical performance data to 

predict future health trends. Techniques such as support vector machines (SVM), 

random forests, and deep learning models have been employed to enhance the 

accuracy and reliability of SOH estimations. These models can capture complex 

relationships between different health indicators and the overall battery condition (Fan 

et al., 2019). 

DT technology in battery systems is critical for supporting decision-making processes, 

especially in energy management, maintenance scheduling, and optimising energy 

storage operations (Jafari and Byun, 2022). By establishing a real-time, data-driven 

virtual replica of a physical battery, the DT simulates various scenarios, predicts 

outcomes, and supports key operational decisions. Combining real-time monitoring 

with predictive capabilities allows optimal energy system performance, reduces 

operational costs, and mitigates potential risks. 

A key function of DTs in decision support is optimising battery management (Wang et 

al., 2022). DT enables operators to simulate various charging and discharging patterns, 

identify inefficiencies, and optimise energy flows to match grid or end-user 
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requirements. For instance, by leveraging historical and real-time data, the DT can 

predict peak demand periods and adjust charging cycles to ensure energy availability 

when needed, thereby preventing grid overload and lowering electricity costs (Tang et 

al., 2022). 

For predictive maintenance, DT provides significant decision support by forecasting 

the optimal timing and location for maintenance activities (Krishna et al., 2022). 

Batteries degrade over time, and without timely intervention, their efficiency decreases, 

resulting in higher operational costs and potential system failures. DT can monitor the 

key parameters in real-time, enabling operators to predict when maintenance or 

replacement is necessary. This capability decreases the likelihood of unexpected 

breakdowns and prolongs battery lifespan. Predicting maintenance needs based on 

real-time data enables operators to avoid reactive maintenance strategies, which are 

typically more costly and disruptive. 

DT also facilitates fault diagnostics, enabling rapid decision-making when issues arise 

(Xu et al., 2019). By continuously analysing battery system data, the DT identifies 

abnormalities, such as unexpected temperature fluctuations, voltage irregularities, or 

sudden capacity drops, which may signal faults or potential failures. The DT can 

simulate the impact of these faults on system performance and suggest corrective 

actions. This is particularly valuable for ensuring the safe operation of lithium-ion 

batteries, where undetected issues could cause hazardous situations like thermal 

runaway. Through real-time diagnostics, DTs enhance the overall safety and reliability 

of energy storage systems. 

This chapter provides a comprehensive review of the literature on BESS and their 

integration with DT technology, focusing on three main areas: fundamental 

components and architectures of BESS, the evolution and applications of DT in battery 

systems, and emerging research trends and practical implementations of DT in energy 
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systems. 

The review emphasises the role of BESS in modern energy infrastructures, particularly 

in supporting renewable energy integration and ensuring grid stability. Despite 

significant technological advancements, challenges including battery degradation, 

limited energy density, and high operational costs still hinder the widespread adoption 

of BESS. To address these limitations, research focuses on alternative battery 

chemistries, such as sodium-ion and solid-state batteries, while also enhancing BMS 

through advanced operational strategies. However, existing frameworks for BESS 

management lack a cohesive integration of multi-source data such as sensor inputs and 

environmental factors with adaptive decision-making capabilities to address dynamic 

operational uncertainties. 

The examination of digital twin technology highlights its evolution from a theoretical 

framework to a robust tool for real-time monitoring, predictive maintenance, and 

operational optimisation. When integrated with BESS, DT technology offers advanced 

capabilities for SOC, SOH estimation and RUL prediction, thereby enabling more 

precise and effective battery management. Integrating DT with BMS enhances the 

system’s predictive and analytical capabilities, which are essential for mitigating safety 

risks and optimising battery performance throughout its operational life. Yet, prior 

studies hard to unify physics-based models with machine learning algorithms in 

hierarchical DT architectures to improve state estimation accuracy. 

The chapter also explores practical applications and current research in battery digital 

twin technology, demonstrating its potential to optimise the performance, safety, and 

sustainability of energy storage systems. Advanced modelling techniques, machine 

learning algorithms, and real-time data analytics significantly enhance the predictive 

and diagnostic capabilities of digital twins. These methodologies enable more accurate 

predictions of battery degradation and maintenance needs, minimising operational 

disruptions and extending BESS lifespan. Nonetheless, current DT implementations 

neglect the integration of multi-faceted situational awareness such as real-time 



42 Literature Review 

 

 

technical performance, economic constraints, and environmental impacts into unified 

operational strategies. 

The chapter concludes by summarising the key findings and identifying research gaps 

that need to be addressed to fully leverage the benefits of digital twin technology in 

BESS. Future research should focus on developing standardised frameworks for DT 

integration, refining real-time analytic algorithms, and expanding DT applications to 

emerging battery chemistries and diverse energy storage systems. Critically, existing 

literature does not bridge the gap between RUL predictions and actionable operational 

optimisation strategies, leaving a disconnect between degradation analytics and 

decision support. Addressing these challenges will position DT technology as an 

essential tool for optimising BESS efficiency, reliability, and safety, ultimately 

contributing to broader energy sustainability and decarbonisation goals. 
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Chapter 3 A Framework for Digital 

Twin-Driven of Battery Storage 

Battery storage systems are becoming increasingly critical in modern energy 

infrastructures, especially with the rise of renewable energy sources (Nazaralizadeh et 

al., 2024). Emerging technologies such as digital twins, artificial intelligence, and the 

IoT have accelerated advancements in battery management and optimisation. DT 

technology, which involves creating a virtual replica of physical systems, is being 

integrated into battery storage solutions to enhance performance and predictive 

maintenance. However, traditional methods for battery state estimation and 

management have been applied in a limited number of studies, as reviewed in Chapter 

2. Currently, there is a lack of comprehensive frameworks that address the 

complexities of battery systems under dynamic conditions. The industry must explore 

a framework that utilises DT technology to improve battery situation awareness and 

extend battery life. In this chapter, a framework is designed for digital twin-driven 

battery storage based on multi-source data and advanced machine learning techniques. 

The data and methodologies relevant to the proposed framework are introduced in 

Section 3.2. 
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According to the literature review in Chapter 2, besides traditional battery state 

estimation methods, it is acknowledged that integrating multi-source data and domain 

knowledge is of great significance in enhancing the accuracy and reliability of BESS. 

Existing studies mainly focus on modelling based on either physical battery models or 

data-driven approaches, while the combination of these methods, along with the 

utilisation of multi-source data, is not fully exploited. With the development of the IoT 

and advanced machine learning techniques, it is now possible to collect and process 

comprehensive data concerning battery performance and state estimation. Hence, it is 

of great importance to introduce a framework that leverages multi-source data and 

integrates both model-driven and data-driven techniques for improved battery state 

estimation and management. 

Meanwhile, DT technology exhibits remarkable potential in providing dynamic and 

accurate representations of physical battery systems, enabling real-time monitoring 

and predictive maintenance (Chen et al., 2023). By integrating advanced machine 

learning models, such as TCN, LSTM, CNN, and Transformer models, the DT 

framework offers a more comprehensive solution than traditional methods. While 

other techniques may struggle to adapt to the nonlinearities and temporal dependencies 

inherent in battery data, the proposed framework effectively handles these 

complexities. Furthermore, the inclusion of rolling transfer learning and self-evolution 

mechanisms allows the DT to adapt and evolve as new data and conditions emerge, 

allowing continuous accuracy and relevance. 

In this context, exploring how to combine different techniques is essential for the 

development of an effective framework. The proposed framework is illustrated in 

Figure 3.1. It includes the following stages: multi-source data acquisition on the 

physical end, data preprocessing and integration on the cloud end, DT model 

development on the digital end, advanced state estimation using machine learning 
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algorithms on the output end, and decision support for operators. The framework is 

designed concerning concepts in DT technology and advanced machine learning, 

which are detailed in the Appendix. Firstly, comprehensive data from various sources, 

including real-time sensor data and historical records, are collected alongside domain 

knowledge from empirical studies and existing literature. Secondly, data preprocessing 

is conducted to filter noise and normalise the data for consistency. Thirdly, the DT 

model is constructed, serving as a dynamic representation of the physical BESS. Then, 

by employing advanced machine learning techniques, the model enhances SOC and 

SOH estimations. Lastly, the results from the machine learning models are used for 

decision support regarding predictive maintenance, optimisation strategies, and 

extending the lifespan of the battery system.  
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Figure 3.1 The proposed overall digital twin framework for battery.
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Physical End: This end comprises the actual battery system equipped with sensors 

that collect real-time data on parameters such as current, voltage and temperature. 

These sensors provide the foundational data required for accurate state estimation.  

Cloud End: Data collected from the physical layer is transmitted to this end, where it 

is integrated and pre-processed. This involves filtering noise, normalising data, and 

enabling consistency across different data sources.  

Digital End: This end hosts the DT models that replicate the physical battery's 

behaviour. It includes electrochemical models, thermal models, and ageing models that 

work together to provide a comprehensive representation of the battery's state. The 

models are continuously updated with real-time data to maintain accuracy. Advanced 

algorithms, such as CNN and Transformer models, are employed on the digital end to 

estimate SOC and SOH. These models analyse historical and real-time data, leveraging 

machine learning techniques to predict future states and detect anomalies.  

Output End: This end delivers critical outputs such as cell status monitoring, SOC 

estimation, and reliability recommendations, which assist technicians in making 

informed decisions.  

Decision Support end: The topmost end provides insights and recommendations 

based on the estimations and predictions. This layer includes user interfaces that allow 

stakeholders to interact with the digital twin, visualise data, and make informed 

decisions regarding battery management. 

The Digital End hosts comprehensive DT models—including electrochemical, thermal, 

and ageing models—utilising advanced algorithms (such as CNN and Transformer) to 

replicate the physical battery's behaviour, estimate critical parameters (SOC, SOH), 

predict future states, and detect anomalies. Conversely, the Cloud End primarily 

functions as a data integration and pre-processing hub, managing data filtering, noise 

reduction, and normalisation to ensure consistent, high-quality inputs to the DT models. 
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The Digital End operates locally, offering real-time state estimation and immediate 

response capabilities directly at the battery system, while the Cloud End performs 

more computationally intensive predictive tasks, such as long-term degradation 

modeling and fleet-level optimisation. 

The processes preceding battery performance degradation are considered potentially 

significant. For instance, data related to charging and discharging cycles, as well as 

environmental conditions, should be collected throughout all operational stages of 

BESS. It is important to note that when collecting battery data—typically recorded in 

a multivariate time-series format—the temporal relevance and quality of the data must 

be carefully considered. Since battery performance can fluctuate due to various factors, 

continuous monitoring provides valuable information about the system's behaviour 

over time. In this context, data are collected systematically during normal operation, 

capturing comprehensive observations that reflect the battery's condition under 

different scenarios.  

In addition to operational data, environmental factors such as temperature and 

humidity are also collected. These factors can influence battery performance from an 

external perspective, affecting aspects like thermal stability and degradation rates. 

Integrating this multi-source data into the Physical End of the DT framework enables 

a comprehensive representation of the BESS. By systematically capturing and 

transmitting high-quality data, the Physical End provides the foundational layer for 

constructing the DT, facilitating accurate modelling and analysis in subsequent stages. 

In complex system environments like BESS, constructing the backbone of a DT is 

challenging without collaboration from domain experts. In domain-specific data 

representation, each data element is described using standardised formats and models, 

utilising open-source platforms. These platforms facilitate the building and storage of 

domain-specific data repositories. The DT model is developed based on refining the 
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hierarchical structure and establishing relationships among various data parameters. 

Studies related to battery degradation and fault analysis can be categorised into four 

different facets: electrochemical degradation, mechanical stresses, thermal issues and 

electrical anomalies. 

After obtaining the data from various sources it is necessary to process and combine it 

carefully for better reliability in future modelling. As emphasised by domain experts, 

the heterogeneity of battery data presents significant challenges in data integration. For 

example, data collected from various sensors may differ in formats, sampling rates, 

and measurement units. It is necessary to standardise these data into a common 

framework to facilitate accurate analysis (Rathore et al., 2021). 

In this context, data preprocessing involves several critical steps, including data 

cleaning, noise reduction, normalisation, and time synchronisation. Outliers and 

missing values are identified and addressed appropriately to maintain data integrity. 

Integrating the pre-processed data into a unified format enables the seamless 

development of the DT model on the digital end. Cloud computing resources and data 

management platforms are employed to store and manage large volumes of data 

efficiently (Wu et al., 2020). The utilisation of standard data representation formats 

and protocols enhances interoperability among different system components. 

Constructing the backbone of the DT model relies significantly on the quality of the 

integrated data. In complex systems like BESS, achieving effective data integration is 

challenging without collaboration from domain experts. Standardised data 

representation and storage facilitate the development of robust DT (Lyu et al., 2020). 

The cloud end thus serves as an essential intermediary between the physical end and 

the digital end, providing high-quality data for accurate simulation and state estimation. 

Studies related to data integration and preprocessing in battery systems often 
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categorise challenges into four facets: data heterogeneity, data quality issues, 

scalability concerns, and security considerations (Li et al., 2019b). Addressing these 

challenges in the cloud end enhances the overall effectiveness of the DT-driven 

framework. The integrated and pre-processed data support advanced analysis and state 

estimation methods, which are discussed in Section 3.2.3. 

The multi-source data collected from the Physical End differ in type and granularity. 

To utilise these data effectively for modelling, the initial step involves data mapping 

and harmonisation. For example, operational data such as current and voltage 

measurements may be recorded at high frequencies with sampling rates in milliseconds, 

whereas batch data like maintenance logs are recorded per event. Therefore, the data 

need to be aligned to the same granularity before being used. 

Data repositories in battery management systems are often fragmented, with 

information distributed across various platforms, resulting in significant efforts in data 

integration and alignment from domain experts. In complex systems like BESS, 

processes are highly interdependent and complex. Processing such data using 

conventional approaches is typically time-consuming and labour-intensive. Moreover, 

it is essential that data cleaning and feature extraction are performed accurately for 

effective model development, but these tasks are often challenging when dealing with 

large-scale, multi-source. In this context, data are often incomplete and noisy, with 

missing values or inconsistencies. Consequently, the pre-processed data need to be 

refined or completed to be effectively utilised in the DT framework. 

By integrating these pre-processed data into the cloud end of the DT framework, a 

unified and standardised data repository is established. This repository facilitates 

seamless data flow to the digital end, where advanced modelling and analysis are 

conducted. Addressing data quality and integration challenges enhances the reliability 

of the DT framework, enabling more accurate state estimation and predictive analytics, 

which are discussed in Section 3.2.3. 
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In the digital end of the DT framework, advanced state estimation methods are 

essential for accurately predicting the SOC and SOH. These metrics are fundamental 

to effective battery management, informing decisions related to charging cycles, 

maintenance schedules, and overall operational efficiency. By integrating model-

driven and data-driven approaches, the DT achieves a comprehensive estimation 

process that leverages both real-time data and historical patterns of battery behaviour 

(Liu et al., 2023). 

The SOC estimation process within the DT determines the remaining charge in the 

battery relative to its total capacity, a task complicated by varying operational 

conditions and battery degradation over time. The Equivalent Circuit Model (ECM) 

forms the foundation of SOC estimation in the model-driven approach. Using electrical 

components such as resistors and capacitors, the ECM represents the internal dynamics 

of the battery and its ability to store and deliver charge. Real-time sensor data from the 

Physical End, including voltage, current, and temperature measurements, continuously 

update the ECM (Farag et al., 2014). This real-time data integration allows the ECM 

to reflect the battery's current condition more accurately, enhancing the precision of 

SOC estimates under diverse operating scenarios. 

Complementing the model-driven approach, the DT incorporates data-driven methods 

to further refine SOC estimation. Machine learning techniques process extensive 

amounts of operational data, enabling the DT to recognise patterns and account for 

nonlinearities in the battery's performance over time. By analysing both real-time data 

and historical records, the DT learns to predict SOC more accurately under conditions 

that may not be fully captured by physical models alone (Ma et al., 2016). This 

combination of model-driven and data-driven modelling results in a robust framework 

for SOC estimation, allowing the DT to adjust battery management strategies based on 

reliable state predictions. 
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SOH estimation, another key function within the DT, assesses the long-term health of 

the battery and predicts its future performance. As the battery degrades due to factors 

such as ageing, temperature variations, and repeated charge-discharge cycles, its 

ability to retain a full charge diminishes. The ECM plays a significant role in tracking 

these changes by accounting for internal resistance and capacity fade, which directly 

influence the battery’s overall health (Chen et al., 2018). The model-driven approach 

enables the DT to simulate how these factors evolve as the battery ages, providing 

accurate SOH estimates that inform maintenance decisions and potentially extend the 

battery’s usable life. 

The data-driven approach complements the physical model by identifying patterns in 

the battery’s performance data that may not be immediately apparent. By processing 

large datasets of historical battery behaviour, the DT can anticipate future degradation 

trends and predict when maintenance or replacement may be necessary (Chen et al., 

2018). This enables a proactive approach to battery management, where potential 

issues are addressed before they lead to significant performance losses. The data-

driven methodology thus enriches the SOH estimation process, offering a more holistic 

view of the battery’s health. 

A notable feature of advanced state estimation within the digital end is its hybrid nature, 

combining the strengths of model-driven and data-driven techniques. The ECM 

provides a physics-based foundation that captures the battery's internal characteristics, 

while data-driven models enhance predictive accuracy by incorporating operational 

data into the estimation process (Li et al., 2019b). This hybrid approach allows the DT 

to produce both real-time SOC and SOH estimations and long-term performance 

forecasts, improving overall battery management. The integration of real-time data 

from the physical end with the processing capabilities of cloud computing resources 

enables the DT to handle the high volume of data required for accurate predictions, 

offering valuable insights into battery performance under various conditions (Botta et 

al., 2016). 
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The continuous learning process embedded in the DT framework is further 

strengthened through rolling transfer learning. This method allows the DT to adapt its 

models as the battery’s characteristics evolve. As new data become available, the DT 

updates its existing models to reflect the battery’s current state without requiring 

complete retraining. This approach is particularly important for long-term battery 

management, as it maintains the DT's responsiveness to gradual changes in the 

battery's performance, such as capacity loss or increased internal resistance. By 

periodically integrating new data into the existing framework, the DT maintains a high 

level of accuracy in its SOC and SOH predictions over time. 

Rolling transfer learning allows the DT to remain relevant throughout the battery’s 

lifecycle, continuously refining its estimations as the battery ages. This process not 

only improves the immediate accuracy of SOC and SOH predictions but also enhances 

the long-term predictive capabilities of the DT. As a result, the system is better 

equipped to support informed decisions about maintenance, charging strategies, and 

operational adjustments, all of which contribute to optimising the battery’s 

performance and extending its lifespan. 

In summary, the advanced state estimation methods employed within the digital end 

of the DT framework provide a comprehensive solution for managing the performance 

of BESS. By combining model-driven and data-driven approaches, the DT delivers 

highly accurate SOC and SOH estimations that are continuously updated through 

rolling transfer learning. This hybrid methodology allows the DT to remain adaptive 

and capable of providing reliable, real-time insights into battery performance, 

supporting more efficient battery management and predictive maintenance strategies. 

The final component of the DT framework for BESS is the decision support 

mechanism, which leverages insights from advanced state estimation to optimise 

battery management strategies. This system integrates outputs from the digital end 
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with user interfaces and analytical tools to facilitate informed decision-making 

regarding the operation, maintenance, and overall management of the BESS. 

The primary function of the decision support system is to translate SOC and SOH 

estimations, along with other relevant performance metrics, into actionable 

recommendations. By providing a comprehensive view of the battery's current state 

and projected performance, the system enables operators to make data-driven 

decisions that enhance the efficiency, reliability, and longevity of the battery system. 

For example, accurate SOC estimations assist in scheduling charging and discharging 

cycles to optimise energy usage and prevent overcharging or deep discharging, which 

can adversely affect battery health (Teng et al., 2012). 

Moreover, the decision support system facilitates predictive maintenance by utilising 

SOH estimations to anticipate potential failures or degradation trends. Identifying 

early signs of battery deterioration allows for proactive maintenance planning, 

reducing downtime and avoiding unexpected system failures (Meng and Li, 2019). 

This predictive approach contributes to cost savings by extending the battery's 

operational life and minimising maintenance expenses. The integration of user 

interfaces and visualisation tools enhances the usability of the decision support system. 

These interfaces present complex data and analytical results in an intuitive format, 

allowing operators and stakeholders to interpret information effectively (Yang et al., 

2021b).  

Overall, the decision support mechanism within the DT framework serves as a bridge 

between advanced state estimations and practical battery management actions. By 

providing accurate, timely, and actionable information, it enhances the effectiveness 

of BESS operations and contributes to the system's overall performance and 

sustainability. 
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With the advancement of connectivity and intelligence in modern energy systems, the 

integration of DT technology has become increasingly significant for battery 

management. In a data-rich environment, multi-source data and domain knowledge 

relevant to battery performance can be collected and utilised for enhanced state 

estimation and predictive maintenance. A framework has been designed for battery 

management based on the integration of model-driven and data-driven approaches 

within the DT framework. 

This framework encompasses multi-source data acquisition from the physical battery 

system, data preprocessing and integration in a cloud-based environment, and the 

development of a DT model that accurately represents the battery's behaviour. 

Advanced state estimation methods are employed to estimate SOC, and SOH and 

predict the RUL by combining physical modelling with data analytics. Continuous 

learning through rolling transfer learning allows the model to adapt as new data 

becomes available, maintaining accuracy over the battery's operational lifecycle. 

The decision support system utilises outputs from the DT to facilitate informed 

decision-making regarding the operation, maintenance, and overall management of the 

BESS. By providing timely and actionable information, the system contributes to 

optimising BESS operations and enhancing the sustainability of energy systems. 
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Chapter 4 Digital Twin-Supported 

Battery State Estimation 

BESS has now emerged as a fulcrum within the prevailing energy face, specifically 

amid the global shift towards renewable energy sources such as wind and photovoltaic 

(PV) generation. However, this shift is not just a technological development it is a 

response to increasingly urgent issues of universal nature such as climate change, 

energy security, and sustainable development. The urgent challenge of lowering carbon 

emissions leads countries to prioritise BESS for energy reliability and grid stability 

(Mahela and Shaik, 2016). The shift towards a carbon-neutral power system, a goal of 

paramount importance, is laden with a spectrum of technical challenges. BESS present 

a practical solution to address specific issues within this spectrum. The main 

challenges that the project is facing are controlling intermittent renewable energy 

resources, real-time supply-demand balance and preservation of reliability and 

stability of the power grid. BESS plays a critical role in overcoming these obstacles, 

thereby facilitating a smoother transition to carbon-neutral energy systems. 

Lithium-ion batteries, among the array of emerging storage technologies, have been at 

the forefront due to their inherent technological attributes coupled with economic 

considerations. This versatility has been proven in the field as diverse as the portable 

issue mobile phones, online-pop-frass grid-scale energy storage, electric vehicles et al. 
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Using these attributes of the batteries i.e. quick charging capacity, long cycle life, high 

specific energy; high specific power, rechargeable and without a memory effect, both 

their large and wide set have wider applications and wide research on optimisation and 

safety (Hannan et al., 2017). Monitoring parameters such as SOC is not a mere 

operational requirement but a safety imperative. Furthermore, the derivation of health 

indicators, such as SOH and RUL, through capacity or resistance measurements, is of 

paramount importance (Li et al., 2019b). However, the landscape of direct online 

measurements for battery state estimation is complex. Achieving reliable and real-time 

estimation in this domain is an ongoing challenge and a key area of research focus. 

This complexity is primarily due to the dynamic nature of battery behaviours and the 

need for high-precision data for accurate estimation(Harris et al., 2017, Hu et al., 

2018a). Our research specifically addresses this gap by developing methodologies that 

increase the accuracy and reliability of battery state estimation in real time, thereby 

contributing to the field. 

In the domain of BMS, the accurate estimation of SOC and SOH is not only critical 

for operational efficiency but also for ensuring the longevity and safety of the battery 

systems. These metrics serve as vital indicators of the battery's operational status and 

its degradation trajectory, respectively. Over the years, a plethora of methodologies 

have been proposed for SOC estimation, encompassing traditional techniques and 

more recent computational approaches (Chang, 2013, Ng et al., 2009, Li et al., 2018, 

Ma et al., 2016, Zou et al., 2015, Farag et al., 2014, Pop et al., 2005, Lee et al., 2008). 

The indirect nature of SOC measurement presents significant challenges, which 

require advanced methodologies for accurate estimation. This complexity has driven 

substantial research into developing reliable and robust SOC estimation methods, 

encompassing look-up tables, ampere-hour integration, and strategies based on 

filtering, observation, and data analytics. While the simplicity of look-up table and 

ampere-hour integral methods is appealing, their accuracy and robustness are 

compromised by sensor inaccuracies (Wang et al., 2020b, Hu et al., 2019). In contrast, 

filter-based and observer-based methods offer high precision, self-correction, and 
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noise resistance but require detailed battery testing for model calibration (Shrivastava 

et al., 2019, Wu et al., 2022). Data-driven methods utilise machine learning algorithms 

to reduce the necessity for deep knowledge of a battery's electrochemical properties, 

focusing on the correlation between input and output (Tian et al., 2021). However, 

these approaches contend with potential overfitting or underfitting, tied to the quality 

of training data and the algorithmic framework, which can hinder their practical 

application. 

The intricacies associated with battery ageing mechanisms assess SOH as a complex 

endeavour. Direct capacity measurement, while being the most straightforward 

indicator of battery health, is challenging in real-world scenarios. This has led to a shift 

towards indirect measurements, with parameters like internal resistance emerging as 

potential indicators of degradation. The research community has been actively 

exploring these indirect measurements, with a focus on their potential for predicting 

SOH and RUL (Tang et al., 2017, Spillner et al., 2013). However, the dynamic nature 

of battery operations, influenced by a myriad of factors including environmental 

conditions, usage patterns, and manufacturing inconsistencies, often poses challenges 

to these methodologies. These challenges include the difficulty in accurately predicting 

battery life, variability in performance under different environmental conditions, and 

the need to constantly adapt to varying usage patterns. Additionally, manufacturing 

inconsistencies can lead to significant variations in battery behaviour, further 

complicating the task of developing universally applicable estimation methods. 

In recent years, the development of DT has undergone transformative advancements, 

with the emergence of cloud computing (Botta et al., 2016) and the IoT (Grieves and 

Vickers, 2017) leading the way. These innovations have presented solutions to the 

challenges traditionally faced by the BMS. Among these solutions is the concept of 

cloud-based digital twins, which involves crafting digital replicas of physical battery 

systems. These replicas, serving as virtual mirrors of their physical counterparts, 

transmit real-time battery data to cloud platforms. The synergy between these digital 
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twins and the robust data processing, analytics, and storage capabilities of cloud 

platforms unlocks a plethora of applications, ranging from real-time monitoring, 

diagnostics, and anomaly detection to predictive maintenance and optimisation (Li et 

al., 2020, Grieves, 2014). However, the journey to seamlessly integrate digital twins 

into BMS is not without hurdles. Assembling precise digital models of batteries 

requires a diverse range of full-scale real-world datasets that are rarely available. 

Additionally, battery degradation, which is highly variable due to many factors, creates 

additional layers of complexity in the modelling process. Despite these challenges, the 

potential benefits of melding digital twins with BMS are manifold. They promise 

enhanced battery performance, bolstered safety measures, and an extended battery 

lifespan (Wu et al., 2020), heralding a promising future for BMS augmented by digital 

innovations. 

In this study, a DT for battery systems is introduced, encompassing its structure, 

operational mechanisms, modelling, and state estimation. The TCN-LSTM network, 

as delineated herein, has been developed for the SOC estimation, SOH monitoring and 

RUL prediction of lithium-ion batteries. Its effectiveness is corroborated through 

comprehensive validation. The notable work of this research encompasses: 1) 

Established DT for computing SOC, SOH, and RUL across diverse operational 

conditions, obviating the requirement for multiple models or reference tables. 2) 

Established the TCN-LSTM network which directly captures measurements from the 

battery, thus facilitating streamlined SOC estimation. 3) Introduced an approach that 

considers the impact of local regeneration on SOH monitoring, utilising the LSTM-

TCN network for enhanced battery performance prediction. 4) The incorporation of 

transfer learning, allows the DT to be configured for various battery conditions, 

thereby mitigating modelling costs and dataset prerequisites. 

The remainder of this chapter is structured as follows. Section 4.2 outlines the brief 

review of battery state estimation. Section 4.3 articulates the proposed framework and 

relevant algorithms associated with battery digital twins. In Section 4.4, the SOC and 
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SOH estimation, as well as RUL prediction using the TCN-LSTM network, are 

detailed, followed by results analysis and discussion in Section 4.5. Section 4.6 

summarises this chapter. 

The management of batteries is critical for the optimal operation, safety, reliability, 

and cost efficiency of prevalent battery-powered energy systems, including electrified 

transportation and renewable-integrated smart grids (Hu et al., 2017). Given the 

intricate electrochemical dynamics and multi-physics interactions, a simplistic, black-

box approximation of batteries, which solely measures voltage, current, and surface 

temperature, is insufficient for developing high-calibre battery management systems. 

A central technological advancement for advanced battery management lies in the 

precise and consistent estimation and monitoring of vital internal states. Reliable data 

on SOC and SOH are essential for proficient charging, thermal regulation, and overall 

health upkeep of batteries. Fundamental battery behaviours are typically delineated by 

a synergised electrochemical-thermal-aging framework, with each subcomponent of 

the multi-physics model operating on its distinct timescale. Notably, certain battery 

states, such as SOC, fluctuate contemporaneously due to rapidly evolving microscopic 

electrochemical attributes. The macroscopic temperature distribution undergoes 

adjustments at a median timescale, influenced by the battery's physical configuration 

and thermal transference properties. Conversely, the battery's SOH, associated with 

gradual variations in parameters like internal impedance augmentation and capacity 

degradation, exhibits minor shifts over brief durations. The overarching safety state of 

a battery can be ascertained through the assessment of the states previously mentioned. 

Figure 4.1 shows a general procedure of DT-supported battery state estimation that by 

data, mechanism and semi-empirical model, the dynamic model of the complex 

coupling system of battery and environment was accurately identified and evaluated. 
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Figure 4.1 State estimation for the battery-environment coupled systems. 

In this section, we delve into the virtual aspect of the framework, which integrates both 

model-driven and data-driven algorithms. These algorithms work in tandem, and their 

combined operation is central to the framework. As battery capacity decreases, an 

iterative learning methodology is employed to update the model parameters, enabling 

the continuous updating of the digital twin. 

The DT framework is distinguished by its hierarchical structure, bidirectional 

interaction capability, and inherent ability to evolve autonomously. Within this 

structure, specific models are designed for various objectives, including state 

estimation, RUL prediction, and energy management. It is essential that data, 

regardless of its multi-dimensional nature, can flow smoothly across these hierarchical 

divisions. 

Our research's primary objective is to leverage the DT to uncover the underlying 

relationship between the SOC and the variables measured. Figure 4.2 presents a 

detailed battery DT framework, which forms the backbone of our entire system. This 

system is organised into four key segments:  

Physical End: This pertains to the real-world components of the system, such as 

battery packs, motors, BMS, and sensors. It enables real-time monitoring of 

parameters like open-circuit voltage, current, and temperature. 
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Digital End: This is the digital reflection of the physical components, designed to 

emulate real-world systems to meet specific objectives. At its core, it employs a mix 

of algorithms, both model-driven and data-driven, to integrate objectives from 

different hierarchical levels and timeframes. 

Cloud End: This segment is reserved for storing both the system's initial data and its 

historical records. Additionally, it sets the optimisation objectives and defines the time 

scales for the entire digital twin. 

Output: This end provides essential outputs like cell status monitoring, SOC 

estimation, and reliability recommendations, aiding technicians in making well-

informed decisions. 

In the proposed experimental framework, the DT of the BESS is conceived as a 

dynamic, multi-dimensional entity. This entity continuously evolves through the 

integration of data from its physical, virtual, and cloud-based components. Central to 

this system is the Information Flow mechanism, which enables a bidirectional 

exchange of data among these components. Such an exchange is critical for the 

autonomous evolution of the digital twin, allowing it to adapt and enhance its 

performance progressively. The virtual segment of the system is of paramount 

importance. It employs a combination of model-driven and data-driven algorithms to 

accurately predict and simulate the system's future states. This predictive modelling is 

vital for developing pre-emptive maintenance strategies, optimising operational 

efficiency, and extending the lifespan of the BESS. The virtual component, by 

integrating both real-time and historical data from the cloud, conducts a thorough 

analysis of the system's performance and health. This integration significantly 

improves the efficiency and adaptability of the BESS. Moreover, the output from this 

system is not limited to data collection; it provides actionable insights. These insights 

are essential for technicians and engineers, enabling them to make informed decisions 

and drive innovation in battery storage technologies. In summary, this paper highlights 

the synergistic effect of the virtual component within the DT framework, emphasising 
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its critical role in enhancing the BESS's overall functionality and resilience. 

 

Figure 4.2 The battery digital twin framework for the proposed method. 

Several model-driven methodologies are available, such as the internal resistance 

model, the n-RC model, the PNGV model, and the GNL model (Thiruvonasundari and 

Deepa, 2020, Salameh et al., 1992). In this study, we have chosen the Thevenin model, 

commonly known as the 2-RC model, for its adeptness at simulating both the steady-

state and transient behaviours of the battery (Johnson, 2002). While more complex 

models might increase computational demands, their selection becomes redundant. 

This is because the TCN-LSTM (Shin et al., 2021) can effectively mitigate errors 

arising from model uncertainties. 
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Figure 4.3 illustrates the 2-RC equivalent circuit model. In this representation, 𝑈𝑜𝑐 

denotes the open-circuit voltage, while R0 is indicative of the ohmic resistance. The 

circuits 𝑅1  and 𝐶1 , which represent electrochemical polarisation resistance and 

capacitance, capture the rapid increase in discharge voltage. On the other hand, the 𝑅2 

and 𝐶2  circuits, symbolising concentration polarisation resistance and capacitance, 

depict the slow stabilisation phase of the discharge voltage. Notably, the elements 𝑅1, 

𝑅2, 𝐶1, and 𝐶2 together reflect the battery's polarisation, with 𝑈𝑡 representing the 

terminal voltage. 

In a theoretical context, these parameters undergo dynamic changes influenced by 

factors like SOC state, temperature, and ageing state, leading to potential estimation 

errors. However, within the digital twin paradigm, such errors are adeptly rectified by 

the TCN-LSTM neural network. 

 

Figure 4. 3 The 2nd-order ECM structure 

Within the purview of BMSs, the SOC stands as a pivotal parameter and can be 

represented through diverse mathematical formulations (Hannan et al., 2017). 

Fundamentally, SOC delineates the available capacity 𝑄a as a fraction of the nominal 

capacity 𝑄n , with 𝑄n  denoting the peak charge a battery can retain. Drawing a 

parallel to vehicular fuel tanks, SOC assumes an analogous role to that of a fuel 

indicator. Given a current I that is positive during charging and negative during 

discharging, a standard formulation for SOC is:  
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) +  ∫
𝐼(𝑡)−𝜂

𝑄𝑛
𝑑𝑡

𝑡

𝑡0
                    (4.1) 

Here, 𝑆𝑂𝐶(𝑡)  and 𝑆𝑂𝐶(𝑡0)  represent the SOC values at instances t and the 

commencement time 𝑡0 , respectively. The parameter η signifies the coulombic 

efficiency, mirroring the quotient of energy discharged fully to the requisite energy for 

restoring original capacity. 

From an electrochemical perspective concerning batteries, SOC denotes the charge 

encompassed within both the anode and cathode electrode constituents. More precisely, 

the flux in SOC epitomises the lithium concentration distribution amidst the electrode 

components. Given that the quantum of accessible charge is intrinsically linked to the 

lithium reserve within the electrodes, SOC can be explicitly ascertained in relation to 

the average lithium concentration Cs as:  

𝑆𝑂𝐶(𝑡) =
(𝐶𝑠(𝑡) − 𝐶𝑠,𝑚𝑖𝑛)

𝐶𝑠,𝑚𝑎𝑥 − 𝐶𝑠,𝑚𝑖𝑛
                       (4.2) 

In this equation, 𝐶𝑠(𝑡)  symbolises the mean surface lithium-ion concentration at 

instance 𝑡 , while 𝐶𝑠,𝑚𝑖𝑛 and 𝐶𝑠,𝑚𝑎𝑥  denote surface lithium-ion concentrations at 

battery states of full depletion and full charge, respectively. 

For BMSs, precise SOC data is imperative, signifying the residual accessible energy 

within a battery during operational phases. State intelligence provides essential 

knowledge for the charging and discharging methods of the battery. Under controlled 

lab environments, post-ascertainment of the initial SOC, the benchmark SOC values 

are predominantly derived through a rigorously managed coulomb counting technique 

that aggregates the transmitted charge (Chang, 2013). Nonetheless, owing to 

multifaceted electrochemical interplays and pronounced interactive traits, direct 

measurement of battery SOC in practical settings proves challenging. As such, real-

time SOC estimation emerges as an essential competency within BMSs, thereby 

garnering significant scholarly attention. 



66 Digital Twin-Supported Battery State Estimation 

 

 

The EKF method for SOC estimation, due to its merits of expediency and swift 

response, aligns well with the real-time demands of DT systems (Shin et al., 2021). 

However, its accuracy is heavily influenced by the initial SOC and the impedance 

model, highlighting the need for accurate initial SOC values and precise sensors. 

Addressing this, the LSTM algorithm is used to adjust the initial SOC before the EKF 

estimation stages. The LSTM algorithm, while adept at estimating the battery's charge 

state amidst initial state uncertainties (Liu et al., 2021c), encounters a significant 

drawback due to its computational intensity, leading to time inefficiencies. To address 

this, the TCN emerges as a viable alternative. TCN's primary advantage lies in its 

flexibility to adjust the receptive field size, coupled with its effective management of 

the model's memory duration. This combination not only preserves accuracy in charge 

state estimation but also significantly enhances computational efficiency. One of its 

key advantages is the ability to address issues such as gradient explosion or vanishing 

gradients, often seen in RNN. Additionally, TCN requires less memory during training, 

especially with long input sequences. This efficiency is credited to its unique dilated 

causal convolution and the inclusion of the residual model. Combining the strengths 

of both TCN and LSTM can potentially optimise input parameters and reduce training 

time. 

Figure 4.4 depicts the process for SOC estimation. A combined TCN-LSTM network 

is designed to capture the non-linear relationship between SOC, current, voltage and 

temperature, allowing accurate initial SOC values for real-time EKF-based SOC 

estimation. The raw data refers to the historical data collected from the sensor, 

including parameters such as battery terminal voltage, charge/discharge current, and 

temperature readings collected over time. To further adapt to varying environments, a 

rolling learning approach (Guo et al., 2021a) is implemented to continuously adjust 

the TCN-LSTM model parameters. 

Selecting the right inputs for an estimation algorithm is a complex task. It's worth 

noting that current, temperature, and voltage, as directly measurable parameters, have 
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been proven to significantly influence battery state estimations (Hannan et al., 2017). 

As a result, these parameters serve as inputs for both the ECM and TCN-LSTM in this 

study. To enhance accuracy, the TCN-LSTM is first initialised and trained using data 

from the battery's early operational cycles. The EKF then provides the final adjustment 

for SOC. This methodology, in comparison to traditional EKF estimation, delivers 

improved SOC estimation and reduces the uncertainties in initial battery state data. 

 

Figure 4.4 Flowchart of the SOC estimation in Digital End. 

During their operational lifespan, electrochemical batteries invariably undergo 

incremental performance attrition due to side reactions (Li et al., 2019a). This leads to 

the ageing phenomenon characterised by the depletion of lithium inventory and loss 

of active materials (Berecibar et al., 2016). The SOH is a pivotal metric, quantitatively 

assessing battery ageing, specifically about capacity diminution and internal resistance 

alterations (Zheng et al., 2016). Mathematically, SOH is articulated as:  

𝑆𝑂𝐻 =  
𝐶𝑎

𝐶𝑟
 × 100% or  𝑆𝑂𝐻 =  

𝑅𝑎−𝑅𝑟

𝑅𝑟
 × 100%             (4.3) 
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In this equation, 𝐶𝑎 and 𝐶𝑟 present internal and nominal capacity values. 𝑅𝑎 and 

𝑅𝑟 present internal and nominal resistances. 

For automotive battery applications, demarcations for a battery's End-of-Life (EOL) 

typically include a 20% capacity reduction or a 100% surge in internal resistance. SOH 

of a battery underscores its safety, reliability, and operational efficacy (Hu et al., 

2018b). It's of utmost importance to have a precise and timely SOH gauge during 

vehicular operations, which aids in battery anomaly detection, and SOC estimations 

and dictates maintenance or replacement schedules. Both the capacity and internal 

resistance parameters evade direct measurements with conventional sensors. Thus, the 

quest is on for pioneering estimation algorithms that facilitate real-time SOH 

determinations through an affordable sensor suite. This has spurred a plethora of 

academic endeavours, resulting in a vast repository of scholarly insights. It's critical to 

note that to assess these estimation algorithms, a benchmark SOH must be accurately 

determined. Standard practice dictates conducting battery ageing tests under 

meticulously regulated settings. During these tests, a battery's actual capacity or 

internal resistance is intermittently gauged with precision instruments. Data procured 

from these empirical endeavours become the gold-standard SOH for validating 

estimation methodologies. 

The RUL is defined as:  

𝑅𝑈𝐿(𝑡) = 𝑡 − 𝑡𝐸𝑂𝐿                       (4.4) 

where 𝑡𝐸𝑂𝐿  Denotes the cycle count upon the battery's EOL and t represents the 

ongoing cycle iteration. Thus, the difference between these two values represents the 

RUL, essentially quantifying the remaining cycles before the battery is expected to fail 

or degrade beyond acceptable performance thresholds. Equation (4.4) conceptually 

illustrates the definition and relationship of RUL, while the practical determination of 

RUL within our digital twin system is conducted directly by the deep learning 

algorithm. The overarching challenge is to devise strategies that enable multi-step 
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RUL forecasts utilising archived datasets (Dong et al., 2014). 

The TCN model employs 1-D causal convolution for the extraction of historical data 

and provides the preservation of temporal sequences. This model benefits from the 

inclusion of residual connections, promoting faster convergence. Additionally, its 

utilisation of dilated convolution is pivotal for temporal feature extraction. In parallel, 

the LSTM model, characterised by its nonlinear nature, functions as a complex 

component within a comprehensive deep neural network. This characteristic 

empowers the LSTM to exhibit robust nonlinear fitting capabilities, thereby optimising 

its feature extraction proficiency. As illustrated in Figure 4.5, during the feature 

extraction procedure, data features are conveyed to the TCN layer for convolutional 

computations. After these calculations, parameters are normalised across each layer. 

The Rectified Linear Unit (ReLU) function is then employed to map these normalised 

features. Post-computation, the derived sequence features are further refined in the 

TCN layer by combining expansion and causal convolution techniques. This 

combination allows a more exhaustive extraction of sequence features, tapping into a 

wider spectrum of information dependencies. Following this, the TCN layer's output 

feeds into the LSTM network layer. Here, an additional layer of feature extraction 

takes place, consolidating features from both the TCN and LSTM. This combined 

methodology aids in preventing potential feature degradation. The amalgamated 

features are then channelled into the fully connected layer. To make the model remain 

generalised and avoid overfitting, a Dropout mechanism is integrated. The TCN-

LSTM estimation process can be categorised into two phases: offline training and 

online estimation. In the offline training phase, the network is inundated with an 

extensive set of battery data, equipping it to identify the nonlinear associations 

between battery metrics and the corresponding SOH and RUL. Here, the offline 

training data refers to historical battery data collected from sensors, including current, 

voltage, and temperature. From these historical datasets, capacity data is derived 

through calculation. Meanwhile, the online test data denotes the real-time sensor 

measurements collected directly from the battery system during operation, similarly 
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including current, voltage, and temperature. 

 

Figure 4. 5 The framework for battery health prognostics. 

Regular updates are critical for a battery digital twin, particularly given the impact of 

battery ageing on SOC estimation. Therefore, a rolling transfer learning method is 

introduced, focusing on updating the TCN-LSTM model parameters to address ageing 

effects. Transfer learning involves adapting a model trained for one application to 

another. Given that lithium-ion battery measurement parameters exhibit varied but 

related spatial features, a primary TCN-LSTM model is trained for SOC estimation. 

This model then acts as the base for training another SOC estimation model. During 

transfer learning, network parameters are adjustable, allowing for updates during the 

training phase. Figure 4.6 illustrates this transfer learning approach. Both models have 

congruent structures, with the target model initialised using the source model's 

parameters and subsequently trained with a new dataset. As the battery DT functions, 

it consistently collects data. When the cumulative operational time surpasses a set 

duration T, a secondary TCN-LSTM network undergoes retraining and recalibration 

remotely. The main TCN-LSTM combines these updated parameters to enable 

continuous changes and the use of past information in the digital twin. 
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Figure 4. 6 The rolling transfer learning approach. 

In this section, we present experimental validations and engage in discussions to 

validate the effectiveness of the proposed framework. Our case study leverages data 

from the National Aeronautics and Space Administration's (NASA) dataset on lithium-

ion battery charge and discharge experiments to verify the DT model (Saha and Goebel, 

2007). An observation was made regarding the battery tester's logging mechanism: due 

to its inconsistencies, several drive cycles were consolidated into a single extensive 

file, causing some data repetition. For data integrity, it is critical to remove the 

redundancy, which could be indicative of data-logging anomalies. Notably, within the 

framework of supervised learning, the TCN-LSTM's capacity loss is quantified by Ah, 

serving as the foundation for the reference SOC. 

Drawing from the calibrated battery DT model detailed earlier, we can incorporate a 

range of state estimation algorithms, distinguished by their accuracy and resilience, 

into the digital endpoint. The process commences with the input of parameters such as 
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voltage, current, and temperature, followed by the extraction of ECM parameters like 

R0, R1, R2, C1, and C2. Thereafter, both the state equation and the measurement 

equation for the equivalent circuit model are formulated. To refine the estimation, the 

TCN-LSTM algorithm is applied for error adjustments, while the final SOC estimation 

is realised through the EKF. As part of this cyclical mechanism, the TCN-LSTM 

network is periodically retrained and refined, assimilating real-time data at predefined 

intervals T. Figure 4.7 is the schematic diagram of DT running. The three models, SOC 

estimation, SOH monitoring and RUL prediction, are intricately linked, working 

collaboratively to provide real-time updates and comprehensive insights throughout 

the battery's operational phase. This collaboration creates a comprehensive view and 

enhances the control of the battery system.  

Figure 4. 7 Schematic diagram of DT running.   

At the physical end, the evaluation of the digital twin and battery state estimation 

algorithm will be conducted experimentally using lithium-ion batteries. This approach 

aims to validate the precision and robustness of both the model and algorithm within 
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the DT framework. 

For the cloud end, the Mean Absolute Error (MAE) and the Root Mean Square Error 

(RMSE) have been selected as the primary metrics to assess estimation accuracy. It is 

defined as:  

𝑀𝐴𝐸 =  
1

𝐾
 ∑ |𝑙(𝑘) −  𝑙(̇𝑘)|𝐾

𝑘=1                     (4.5) 

𝑅𝑀𝑆𝐸 = √ 
1

𝐾
∑ (𝑙(𝑘)  −  𝑙(𝑘))2𝐾

𝑘=1                  (4.6) 

The RMSE serves as an indicator of the disparity between predicted and actual values. 

It is expressed as:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑆𝑂𝐶𝑒𝑖 − 𝑆𝑂𝐶𝑡𝑖)2𝑛

𝑖=1                  (4.7) 

In this equation, n signifies the total number of observations, while 𝑆𝑂𝐶𝑒𝑖 and 𝑆𝑂𝐶𝑡𝑖 

correspond to the ith estimated SOC and true SOC, respectively. 

Utilising the Jupyter Notebook platform, equipped with a deep learning environment, 

this investigation was centred on the development and assessment of the TCN-LSTM 

network. This network comprises an input layer with a single time series and three 

specific features: voltage, current, and temperature. After conducting a series of 

repeated tests and verifications, the relatively optimal parameter is selected based on 

both the operating time and the test results. This method enables a more precise and 

effective approach to parameter optimisation. While the output layer is for SOC 

estimation, the hidden layer integrates 150 nodes. For refining the model, we adopted 

the MAE loss function and the Adam optimiser, with an operational batch size of 32. 

The primary role of both the loss function and the optimiser is to hone the model, 
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driving the loss closer to 0. As presented in Figure 4.8, post 20 epochs, the model's 

loss during training and testing phases converges, not surpassing 0.04. The training set 

exhibits a particularly low loss of under 0.005, indicative of the model's robust 

performance. However, a slight elevation in the validation loss compared to the 

training loss points to a potential overfitting issue. 

Figure 4.9 provides a comparative analysis of the SOC, as determined by the EKF after 

the TCN-LSTM correction, against a reference SOC. The graphical representation 

includes three distinct lines symbolising the reference value, estimated value during 

training, and estimated value during testing. While the model aligns well with the 

training data, there are discernible deviations in the SOC estimation when processing 

new data. The RMSE is recorded at 1.1% for training and 2.7% for testing. It is 

generally understood that a model with a lower RMSE is indicative of better SOC 

estimation precision. 

 

Figure 4.8 The model loss of TCN-LSTM at training and test  
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Figure 4. 9 The SOC estimation by TCN-LSTM   

Table 4.1 The comparison of SOC estimation for different methods 

Methods RMSE 

EKF 3.9% 

SVM 3.2 % 

CNN 2.2 % 

LSTM-EKF 1.7% 

TCN-LSTM 1.1 % 

The observed discrepancy in RMSE values between the training and testing data in our 

study can be attributed to overfitting, which might affect the model's handling of 

previously unseen data. The RMSE values mentioned in the Table 4.1 were calculated 

based on a dataset using the pervasive network structures. This dataset was also the 

basis for the reference methods introduced in the analysis. When benchmarked against 

other algorithms in Table 4.1, the proposed method showcases the least RMSE across 

the four algorithms evaluated. This underscores the algorithm's enhanced accuracy, 
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particularly once overfitting issues are rectified. The introduction of the reference 

methods for the same dataset further supports the reliability and robustness of our 

findings. 

Using the capacity series data outlined in the manuscript, this study subjected the 

model's parameters and structure to an intensive experimental analysis. The study 

focuses on the SOH of battery B0005, starting from its nth (30th, 60th and 90th) cycle. 

The first n cycles are thus treated as the training set, and the cycles that follow are the 

prediction set. By adopting the method, which is similar to the sliding window 

technique, the model systematically incorporates predicted values. This process aids 

in predicting the SOH value, leveraging the aggregated SOH data until the complete 

test set is covered. The choice of parameters mainly draws from the control variable 

method, a standard practice in neural networks to ascertain optimal parameters. Such 

a method requires the modification of only one parameter during each tuning phase. 

The model's core parameters include 1000 iterations, a mini-batch size of 128, a 3 × 1 

kernel dimension, 256 convolution kernels, dilation factors of [1, 2, 4, 8, 16, 32, 64], 

and it utilises the Adam optimiser. 

Accurate SOH monitoring, marked by a minimal error in predicting subsequent SOH 

values, is critical for dependable RUL prediction. Such precise estimations further 

facilitate proactive battery maintenance. Therefore, to closely emulate real-world 

scenarios, monitoring commenced from the 30th cycle. In addition, the SOH was 

assessed at various starting points to validate the predictive precision and resilience of 

the model. Table 4.2 provides a comparison of the TCN-LSTM model's prediction 

capabilities for three specific battery cycles (30th, 60th, and 90th) against established 

methods. For a fair comparison, models like LSTM, TCN, and CNN were all designed 

with two hidden layers. The model maintained a consistent parameter setup throughout 

the prediction stage, having been fine-tuned through multiple experiments. 
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Table 4.2 affirms the model's consistent performance, regardless of the prediction start 

point. For complex neural networks, an ample amount of training data typically 

bolsters prediction accuracy. Figure 4.10 visually represents battery cells B0005 under 

different models and starting points. These visuals emphasise the TCN-LSTM model's 

proficiency in tracking the degradation trend of the capacity series, surpassing current 

models, and adeptly highlighting local regeneration instances. 

Table 4.2 Performance of SOH monitoring 

Training 

cycle 

RMSE MAE 

CNN LSTM TCN TCN-LSTM CNN LSTM TCN TCN-LSTM 

30C 4.8% 12.3% 10.1% 1.4% 4.6% 11.1% 9.2% 0.9% 

60C 3.1% 12.0% 8.7% 1.3% 2.8% 11.4% 8.3% 0.8% 

90C 2.0% 4.4% 1.9% 0.8% 1.5% 4.0% 1.5% 0.6% 
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Figure 4. 10 The SOH monitoring of B0005 with 30th, 60th and 90th start cycle 

 



Digital Twin-Supported Battery State Estimation 79 

 

 

This section evaluates the TCN-LSTM model's performance in RUL prediction using 

offline data, comparing it with other models. Accurate RUL prediction is essential not 

only for timely battery replacement but also for maintaining system stability and safety. 

In the context of this analysis, batteries B0006 and B0018 were used for offline training, 

while battery B0005 was designated as the test data. To gauge the accuracy of the 

TCN-LSTM model, we defined several starting points and compared the results with 

those from different models. During the prediction process, the model, already trained 

with offline data, was further refined using a selected portion of available online data, 

aiming to bolster its predictive precision. The presented results encapsulate the best 

outcomes from multiple experimental iterations. Table 4.3 indicates that the LSTM 

model outperforms the CNN model in terms of RUL prediction. While the TCN 

model—an enhanced iteration of CNN—might not excel in early prediction stages, its 

integration with LSTM consistently delivers optimal RUL outcomes. It's noteworthy 

that the accuracy of predictions increases as they draw closer to the battery's failure 

point. In real-world scenarios, the accuracy of predictions made closer to the end of 

the battery's life is of paramount importance. The TCN-LSTM model's prediction 

accuracy for the 90th cycle reaches an impressive 0.9%, highlighting the model's 

effectiveness. Figure 4.11 corroborates this, showing the TCN-LSTM model's 

alignment with the degradation trend of the volume sequence during the 90th cycle. 

Finally, Table 4.3 contrasts the prediction accuracies, underlining the proficiency of  
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Figure 4.11 The RUL prediction of B0005 with a) 30th, b) 60th and c) 90th start cycle  
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our model in reliably predicting the RUL of lithium batteries.  

Table 4.3 Comparison of evaluation RUL prediction among different methods 

Training 

cycle 

RMSE MAE 

CNN LSTM TCN 
TCN-

LSTM 
CNN LSTM TCN TCN-LSTM 

30C 3.7% 2.9% 3.0% 2.0% 3.3% 2.3% 2.3% 1.7% 

60C 4.4% 2.7% 1.8% 1.5% 4.2% 2.4% 2.5% 1.2% 

90C 3.6% 2.4% 1.5% 0.9% 3.4% 2.1% 1.3% 1.6% 

 

In this section, we conduct a detailed comparative analysis using two distinct TCN-

LSTM models, with the primary distinction being the application of transfer learning, 

to validate the real-time updating ability. We use the NASA dataset to train both models 

by the first 30th cycles, with subsequent data reserved for the validation. The analysis 

revealed RMSE for SOH predictions at 1.4% for the model incorporating transfer 

learning and 1.42% for its counterpart, indicating a slight difference. However, as 

Figure 4.12 demonstrates, initial assessments of both TCN-LSTM algorithms during 

the early battery cycle tests showed significant consistency. As the study progressed 

beyond 105 cycles, a clear disparity emerged: the model without transfer learning 

displayed notable jitter in its SOH estimations—a contrast to the model that employed 

transfer learning. This performance gap underscores the models' varying adaptation to 

the complex, evolving nature of battery data through successive cycles and highlights 

transfer learning's critical role in enhancing battery state estimation stability. The 

transfer learning-augmented model's ability to dynamically adjust its parameters and 

neural networks in reaction to real-time data showcases its exceptional adaptability 

and resilience, important for accurate state estimation. 
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Figure 4.12 The SOH prediction of B0005 with the 30th start cycle 

This chapter introduces a DT-supported battery state estimation framework that 

employs a combination of TCN and LSTM networks. The discussion emphasises the 

importance of incorporating deep learning techniques into DT frameworks for battery 

management systems. The proposed DT framework is notable for its adaptability to 

diverse battery operating conditions and its capability to accurately estimate battery 

states, including SOC, SOH and RUL. 

The primary contribution of this research is its innovative application of TCN and 

LSTM networks, which significantly enhance the robustness and accuracy of battery 

state estimation. The proposed model leverages the hierarchical DT structure and the 

strengths of both TCN and LSTM to overcome the limitations of conventional battery 

management systems. Specifically, combining TCN's sequence modelling capabilities 

with LSTM's memory retention properties enables precise feature extraction from 

battery data, even under diverse operating conditions. Additionally, incorporating 

transfer learning into the BDT enables dynamic model updates using real-time data. 

The experimental results further validate the effectiveness of the proposed method. 
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The TCN-LSTM model consistently outperformed traditional methods based on 

RMSE and MAE. The model demonstrates exceptional adaptability and superiority in 

battery digital twins, achieving average RMSE values of 1.1%, and maximum errors 

of 0.8% and 0.9% in these respective areas. This enhanced performance can be 

attributed to the model's capability to capture temporal dependencies in battery data 

and adjust to new operating conditions through transfer learning. The proposed method 

provides accurate real-time insights into battery health and performance, thereby 

contributing to the optimisation of battery utilisation and extending the lifespan of 

energy storage systems. 

In conclusion, this study significantly advances the field of battery management by 

proposing a robust DT framework supported by TCN-LSTM models for state 

estimation. The findings provide a strong foundation for future advancements in 

battery management systems and the development of more efficient and reliable 

energy storage solutions. Future research should aim to address the current limitations 

and explore integrating DT with emerging technologies to enhance its applicability 

and scalability. 

In conclusion, this study has presented a methodology for battery state estimation and 

RUL prediction. Utilising an equivalent circuit as its foundational basis, a DT model 

has been developed, integrating factors such as voltage, current, and ambient 

temperature. Recognising the complexities of battery state estimation, we introduced 

the TCN-LSTM approach. This innovative method is specifically designed to reduce 

dependence on initial values, especially in scenarios with limited training data. The 

study included the battery digital twin framework and applied transfer learning 

methods to maintain model improvements throughout the operational phases using 

rolling learning. 

This research offers a comprehensive analysis of the digital twin framework, focusing 
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on its complex structure and key stages in the learning process. The empirical results 

confirm the efficiency of combining online SOC estimation, SOH monitoring, and 

RUL prediction. Underlining the practical implementation aspect of the method, the 

formation of a multi-layered digital twin structure enables the integration of SOC 

estimation, SOH monitoring, and RUL prediction. This consolidated approach offers 

profound insights into battery health and operational performance, laying the 

groundwork for advanced battery management strategies. Consequently, battery 

operations are minimised, thereby improving the life cycle of the battery and also 

elevating system efficacy. The integration of TCN-LSTM techniques with the digital 

twin paradigm is an innovative combination that contributes to breakthroughs in 

battery management and storage system optimisation in a variety of applications. 
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Chapter 5 Multi-faceted Situational 

Awareness of Digital Twin-driven 

Battery Storage 

The estimation of accurate battery states is important in energy storage technology 

owing to the inherent complexity and non-linearity of these systems. Multi-faceted 

modelling has drawn increasing research attention over a diverse range of research 

domains, including energy storage because it can reflect real-world problems from 

multiple perspectives (Che et al., 2021, Hu et al., 2020). For example, a variety of 

material composition, operating conditions and environmental factors can influence 

the performance of a battery (Ren et al., 2022). Considering these multiple facets 

allows for a better understanding of the behaviour of a battery, which in turn improves 

BESS decision-support in battery management systems. Traditional techniques for 

monitoring and managing battery systems do not fully capture the multifaceted nature 

of battery behaviour. These methods employ single source data or models which are 

not capable of fully representing the dynamic changes of a battery system. Because of 

the limitation, situational awareness of the battery system is poor, and there are risks 

to battery management, including over-charging/discharging, and thermal runaway 

(Qin et al., 2021). Therefore, there is a need for an advanced method to estimate 

multiple battery states, to combine various estimation techniques, to provide decision 

support based on different battery states, and to achieve continuous and accurate 
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monitoring and management of the battery. 

Recent advancements in battery state estimation have introduced sophisticated 

approaches that leverage deep neural networks and multi-timescale feature extraction 

to enhance predictive accuracy. Fan et al. proposed a SOC and SOH co-estimation 

framework that utilises convolutional filters of varying sizes to extract multi-timescale 

features, improving estimation accuracy across both laboratory and real-world 

scenarios (Fan et al., 2023). Similarly, Zhou et al. developed a novel capacity 

estimation method based on singular value decomposition (SVD) and information 

energy theory, which demonstrated strong robustness against environmental variations 

and driving conditions (Zhou et al., 2022). These studies underscore the potential of 

advanced data-driven methodologies in battery management while also highlighting 

persistent challenges in achieving reliable real-world implementation. Many existing 

models, despite their success in controlled environments, lack the flexibility to adapt 

to dynamic operational conditions. Furthermore, they often overlook the 

interconnected nature of battery states, which is crucial for accurate long-term 

monitoring and predictive maintenance. By incorporating these insights, our study 

strengthens the understanding of battery management challenges and emphasises the 

necessity of an adaptive and intelligent framework for state estimation and decision 

support. 

In the last decade, Digital Twin (DT) has become an important technique across many 

industries as a dynamic digital replica of physical assets with the ability to collect real-

time data and incorporate advanced simulation models. Michael Grieves first 

conceptualised Digital twins in 2002, and their use has become common due to their 

ability to improve operational efficiency, optimise performance, and predict the future 

behaviour of physical assets (Drath and Horch, 2014, Dubarry et al., 2023).  

The complexity of battery systems makes DT valuable. Renewable energy relies 

heavily on batteries, whose complicated performance is influenced by many factors 

(Grieves, 2005, Tuegel et al., 2011, Semeraro et al., 2023a). However, the multi-facets 
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of these systems are overlooked by the traditional monitoring methods leading to 

inefficiencies and safety risks (Naguib et al., 2021). Combining multi-faceted 

modelling and real-time updating of system performance, DT provides a general 

solution. This capability allows the remaining useful life of the battery to be extended, 

provides safety guarantees, and improves the overall energy storage system efficiency. 

A robust DT for battery management includes several key components: physical 

battery and sensors, data acquisition systems, computational models, and user 

interfaces. Real-time data of various parameters (temperature, voltage, current etc.) are 

collected by the physical battery and its associated sensors. Computational models are 

then used to process this data to simulate battery behaviour (e.g., state of charge (SOC), 

state of health (SOH), and thermal dynamics). Predictive maintenance comes with a 

digital twin which enables real-time monitoring of equipment and predictive fault 

detection. Chen et al. (Chen et al., 2023) have done a comprehensive review of DT-

based PdM that integrates different sources of sensor data and machine learning 

techniques to improve prediction accuracy.  The DT can be interacted with by its user 

interfaces where stakeholders can pass on DT insights on battery performance and 

make informed decisions (Tang et al., 2022, Qu et al., 2020). Through interacting with 

these components, a detailed and dynamic view of the battery system can be 

continuously monitored and optimised. 

Preliminary research on DT in battery management systems shows promising results. 

The accuracy in SOC and SOH estimates is improved and the risk of overcharging or 

over-discharging is minimised while system reliability is improved (Panwar et al., 

2021). For instance, case studies have shown that DT can effectively monitor and 

manage the performance of lithium-ion batteries in electric vehicles and results in 

longer battery useful life and better overall performance (Zhu et al., 2022). This 

research shows the potential that DT has to revolutionise battery management through 

a more sophisticated and more reliable approach to monitoring and maintenance. 
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However, there are many challenges and limitations to the use of DT. A major problem 

is the high cost and complexity involved with developing and maintaining accurate 

digital models. The process of producing a DT is expensive in terms of data collection 

and processing. Moreover, technical challenges include the integration of different 

data sources and the requirement for continuous real-time updates (Naseri et al., 2023). 

Another concern is the reliability of the data used; inaccurate or incomplete data can 

lead to erroneous predictions and suboptimal decision-making (Wang et al., 2022). In 

addition, the systems must be interconnected so that integrity and confidentiality of 

the data can be enforced, and the cybersecurity risks involved. As a result, there is an 

urgent need for more cost-effective, reliable, and secure DT solutions that can be easily 

integrated into existing systems. 

To address these challenges, we present a hierarchical and self-evolving digital twin 

(HSE-DT) specifically designed for battery management systems. This method utilises 

transformer and convolutional neural network (CNN) models to improve predictive 

accuracy and flexibility. The data used in this paper was pre-processed to get the 

quality and reliability of the input data. The method comprises data acquisition, storage, 

processing and real-time update mechanisms to keep the digital twin up to date. 

Moreover, we have added some extra advanced cybersecurity measures which will 

help us maintain the data integrity and have a secure link between the physical and the 

virtual ends (Li et al., 2020, Wang et al., 2021a). 

Traditional battery monitoring approaches primarily rely on single-source data and 

static models, limiting their ability to comprehensively capture the dynamic and 

multifaceted nature of battery behaviour. Integration of multi-source data plays a very 

important role in efficient predictive modelling of a complex system. In the work by 

Qin et al. (Qin et al., 2018), they proposed a hybrid approach to combine deep learning 

and clustering techniques with IoT data in order to optimise energy consumption in 

Additive Manufacturing (AM). Deep learning has shown significant promise in 

predictive maintenance applications, particularly when integrating diverse data 
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sources. Chen et al. (Chen et al., 2021a) introduced a Merged Long Short-Term 

Memory (M-LSTM) network to model both sequential and spatial data for predictive 

maintenance. Inspired by these methodologies, our work applies similar multi-source 

data analytics principles to improve digital twin-driven situation awareness for battery 

management. The HSE-DT method enhances real-time adaptability by integrating 

diverse data streams and dynamically updating system models to reflect the evolving 

state of the battery. Furthermore, it provides predictive insights that enable proactive 

maintenance and optimised battery control strategies. By leveraging a multi-layered 

structure, HSE-DT ensures that decision-making is informed by accurate and up-to-

date information. This approach not only improves battery longevity but also enhances 

the overall efficiency and reliability of battery energy storage systems. 

The HSE-DT method is developed and implemented in this paper as a method for 

battery management systems. The framework simulation models and mechanism are 

detailed and the components and functionalities of the method are described. The 

results from the case study show that the method is effective for battery monitoring 

and state estimation. We also discuss broader potential applications of DT to other 

complex systems and future research directions for improving and validating this new 

method. 

The remainder of this chapter is structured as follows. In Section 5.2, the components 

and functions of the method are introduced in detail, including physical modelling, 

deep learning algorithms, integration mechanisms and self-renewal mechanisms. 

Section 5.3 reports the experimental setup using data from the real world. The results 

are discussed in Section 5.4. Finally, Section 5.5 summarises this chapter. 

As discussed in the preceding sections, the complexities and dynamic nature of battery 

systems necessitate a robust and adaptive approach to enable effective battery 

management. Traditional methods often fall short in addressing the multifaceted 
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aspects of battery state estimation and management.  

Firstly, data relevant to the battery’s state, such as current, voltage and temperature, is 

collected from various sensors embedded in the physical battery system. This data is 

then processed and integrated into a unified framework, forming the foundation for the 

digital twin. The integrated data is utilised to develop the digital model, which 

replicates the physical battery’s electrochemical, thermal, and ageing behaviours. 

Secondly, advanced machine learning algorithms, specifically CNN and Transformer 

models, are employed to analyse both historical and real-time data. These models work 

in tandem to provide accurate predictions and estimations of SOC and SOH. Thirdly, 

the self-evolving mechanism of the HSE-DT framework leverages continuous learning 

techniques to adapt the DT models based on new data. This allows the models to 

remain relevant and accurate over time, accounting for changes in battery conditions 

and usage patterns. Finally, the insights derived from the digital twin are used for 

predictive maintenance and optimisation of battery performance. This comprehensive 

method enhances battery situation awareness, improves safety, and extends the life of 

the battery system.  

The HSE-DT method is designed to integrate multi-faceted layers within a structured 

digital twin architecture. It consists of multiple layers, each responsible for specific 

aspects of battery management, enabling a comprehensive method for battery situation 

awareness. 

Physical end: The actual battery system, with sensors to collect real-time data of 

parameters. These sensors deliver the requisite data for state estimation. 

Cloud end: This end integrates, and preprocesses data collected at the physical layer. 

This includes noise filtering, data normalising, and having consistency over various 

data resources. 

Digital end: The DT models that mimic the physical battery’s behaviour are served on 
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this end. The models include electrochemical models, thermal models, and ageing 

models that are coupled to give a complete representation of the state of the battery. 

Real-time data is used to keep the models updated and accurate. On the digital end, 

advanced algorithms (CNN and Transformer models) are used to estimate SOC and 

SOH. These models use machine learning to analyse historical and real-time data 

predict future states and detect anomalies. 

Output end: Critical outputs such as cell status monitoring, SOC estimation, and 

reliability recommendations are delivered at this end, to help technicians make 

informed decisions. 

Decision Support end: The estimations and predictions are used to provide insights 

and recommendations on the topmost end. The user interfaces for stakeholders to 

interact with the digital twin, visualise data and make informed decisions on battery 

management are part of this layer. 

There are three commonly used approaches for battery modelling, each offering 

distinct advantages and limitations: the electrochemical model, the equivalent circuit 

model (ECM), and the data-driven model (Wang et al., 2021b). This study adopts the 

ECM approach, as depicted in Figure 2. The ECM is a grey-box model that represents 

the dynamic behaviour of a battery by integrating resistors, capacitors, and voltage 

sources. The model's parameters are refined using collected data. 
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Figure 5.1 The first-order ECM for a lithium-ion cell. 

The electrochemical model offers a detailed representation of internal battery 

mechanisms, including ion transport and electrode reactions. While highly accurate, 

this model requires an extensive understanding of battery chemistry and relies on 

computationally intensive numerical solutions. Consequently, its application in real-

time battery management is limited. Instead, it is primarily utilized for in-depth 

electrochemical analysis and long-term degradation studies, where precision in 

capturing microscopic processes is paramount. 

The data-driven model, in contrast, utilizes machine learning techniques to establish 

correlations between input features and battery behaviour without incorporating 

explicit physical relationships. This approach is particularly advantageous when 

substantial historical data is available, as it enables adaptive learning and predictive 

capabilities. However, data-driven models often demand significant computational 

resources and may suffer from limited generalizability when applied to unseen 

conditions, restricting their effectiveness in real-time embedded systems. 

By comparison, the ECM provides a well-balanced solution, making it the most 

suitable choice for this study. It achieves an optimal trade-off between modelling 

accuracy and computational feasibility, offering a sufficiently precise representation 
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of battery dynamics while enabling real-time implementation. Its straightforward 

parameterization, low computational complexity, and ease of integration facilitate 

seamless deployment in digital twin environments for battery management 

applications (Du et al., 2021). By adopting the ECM, this study ensures an efficient 

and reliable modelling framework that captures essential battery characteristics 

without imposing the computational burden associated with more complex models. 

The ECM is defined by a simple mathematical formulation, in which the dynamics of 

the charging and discharging processes are governed by the following set of equations: 
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where the superscript 𝑛 denotes the nth cell in the battery module, which consists of 

a total of N cells; η is the coulombic efficiency of the battery; 𝐼 is the current and 𝐸 

is the battery capacity in Amp Hour; 𝑅0 is the internal resistance; 𝑅1 and 𝐶1 are the 

polarisation resistance and capacitance, respectively; 𝑈1  and 𝑈𝐿  are terminal 

voltage of the polarisation capacitance and the battery cell, respectively; ω1 and ω2 

are process noise, and β is measurement noise; 𝑈𝑜𝑐  is the open circuit voltage 

dependent on SOC. 

To make the ECM more suitable for computer simulation and model-driven predictive 

control, the continuous-time model is discretised with a sampling time T, as shown in 

the following equation:  

𝑆𝑂𝐶𝑘+1
𝑛 =  𝑆𝑂𝐶𝑘

𝑛 −  η
𝐼𝑘

𝑛

𝐸𝑛 𝑇 + 𝜔1,𝑘                   (5.4) 
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Accurate battery state estimation is vital for the effective management of battery 

systems, particularly given their inherent complexity and dynamic behaviour. 

Traditional estimation methods often fall short of capturing the nonlinear and temporal 

dependencies present in battery data. To address these challenges, CNN and 

Transformer models are used within the HSE-DT method. 

CNN and Transformer models are selected for battery state estimation due to their 

demonstrated ability to deal with large-scale data with complex patterns and 

dependencies. CNN is suited for extracting spatial features from time series data and 

making them an optimal choice for processing sensor data such as battery voltage, 

current and temperature readings. CNN can effectively capture local patterns and 

correlations within the data with a convolutional filter, which is needed for accurate 

state estimation. 

However, long-term dependencies and contextual relationships in sequential data are 

effectively learned by Transformers through their self-attention mechanism. In 

particular, this is important for understanding the temporal dynamics of battery states 

(e.g., SOC and SOH). Transformers have a self-attention mechanism that weighs the 

importance of different parts of the input sequence and thus gives you a complete 

picture of the data over time. 

The strengths of CNN and Transformer models are utilised through the integration. 

CNN is designed to extract spatial features and Transformers are designed to extract 

temporal features of data. The HSE DT method combines this complementary 
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combination to provide increased overall accuracy and robustness of battery state 

estimation. 

While the use of Transformer-CNN models is not advanced in itself, they are effective 

in a wide variety of domains, including natural language processing and computer 

vision. The models could improve the reliability and accuracy of our battery 

management system to allow that battery systems perform and last better. The design, 

implementation, and integration of the Transformer-CNN model into the HSE DT 

method is elaborated in this section and how it improves battery state estimation 

accuracy and robustness is shown. 

Several critical stages in the design and implementation of the CNN and Transformer 

model within the HSE-DT method are needed to take advantage of their 

complementary strengths for battery state estimation. The architecture, as well as the 

data processing pipeline and steps required to deploy the Transformer–CNN model, 

are presented in this section. 

Transformer-CNN is also designed to accommodate the complex and dynamic nature 

of battery data, which includes spatial and temporal nature. The architecture comprises 

two primary modules: The CNN module and the Transformer module. The 

transformer-CNN model within the HSE-DT method is shown in Figure 5.2. 
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Figure 5. 2 The Transformer-CNN model within the HSE-DT method 

The CNN module processes time series data coming from battery sensors such as 

voltage, current, and temperature. The CNN module takes in the input data and extracts 

spatial features by passing the data sequentially through a series of convolutional filters. 

After each convolutional layer comes down with an activation function, like ReLU 

and a set of pooling layers to reduce the dimensionality, retaining the important 

information. The output of the convolutional layers gives a set of feature maps that 

encode local patterns and correlations in the battery data, and explicitly have a spatial 

nature. 

CNN is structured in three layers: the input layer, hidden layers, and output layer. The 

input layer receives the original data and forwards it to the hidden layers for feature 

extraction. The hidden layers include fully connected layers, max-pooling layers, and 

convolutional layers, which facilitate hierarchical representation learning. The output 

layer then generates the final predictions based on the learned features. 



Multi-faceted Situational Awareness of Digital Twin-driven Battery Storage 97 

 

 

The CNN architecture is effective in capturing local features hierarchically through 

convolutional operations. It extracts spatial patterns from battery data, such as voltage, 

current, and temperature, by progressively refining localized representations. The 

CNN branch begins with an input layer that preprocesses and structures the incoming 

raw data. Convolutional layers extract local variables while preserving time-

independent characteristics over long distances. Max-pooling layers enhance 

computational efficiency by reducing dimensionality while retaining essential spatial 

information. Finally, fully connected layers consolidate the hierarchical 

representations before passing the processed data to the Transformer module for 

further analysis. 

This is further processed by the transformer module on top. The first thing is to add 

positional encoding to keep track of the relative positions of data points so that we can 

understand the sequence of events over time. The transformer module then applies 

self-attention to different parts of the input sequence to give different weights to parts 

of the sequence and learn about long-term dependencies and contextual relationships. 

Feedforward layers generate the final feature embeddings, and summarised battery 

data temporal dynamics. 

The Transformer module combines pointwise layers with stacked self-attention layers 

and fully connected layers to support both encoding and decoding operations through 

its structured design. The self-attention mechanism eliminates both recurrence and 

convolutional dependencies through its components scaled-dot-product attention and 

multi-head attention to achieve global feature aggregation. The Transformer module 

incorporates positional encoding which maintains input data sequence order through 

value assignments between 0 and 1 to uphold temporal coherence. 

Through its encoding process, the Transformer produces embedded representations 

that detect hidden relationships between sequential input segments to extract an 

extensive range of features. The decoder works with generated decoder outputs and 

these embeddings to create the sequence of final outputs. Through self-attention 
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mechanisms, the Transformer can reweight importance according to changing battery 

states while focusing on vital fluctuations and long-term patterns. The adaptive 

weighting system improves predictive accuracy through its ability to model short-term 

changes and sustained patterns in battery activity which produces better state 

estimation results. 

The transformer-CNN model is effective only if the data processing pipeline is 

designed carefully so that the input data is optimised for model performance. Real-

time measurements of critical parameters are recorded by continuous data collection 

from battery sensors, which is the basis for subsequent processing steps. Normalisation 

in data preprocessing is critical for the consistency of different measurement scales 

and improves model performance. Then, we segment time-series data into smaller 

sequences of fixed time windows so that the CNN and Transformer modules can 

efficiently process the data. 

Following the feature extraction, segmented and normalised data is first processed by 

the CNN module, where convolutional layers extract intricate spatial features from the 

battery data. Then, we feed them into the Transformer module, which comprises 

positional encoding, then performs self-attention and feed-forward layers to capture 

the temporal dependency and contextual relationships to yield an accurate estimation 

of the state. 

The HSE-DT method seamlessly integrates the transformer-CNN model for real-time 

battery state estimation and management. In turn, the model is trained in a supervised 

learning way using labelled data with SOC and SOH known values. In the training 

process, the parameters of a model are optimised for a minimum loss function (e.g. 

Mean Squared Error that tells how far are predicted and actual values from each other). 

The trained transformer-CNN model receives real-time sensor data to estimate the 

state continuously. The SOC and SOH estimation is used by the HSE-DT method to 

monitor and manage the battery system. Transfer learning are used to update the model 

parameters with new data that was not present at training so that the model remains 
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accurate and timely over time without necessitating full retraining. 

The transformer-CNN module extracts local features progressively through its CNN 

branch which then passes enriched details to Transformer modules for global 

perception enhancement. All data structures undergo standardisation as a 

preprocessing step since CNN and Transformer exhibit possible discrepancies in data 

formats and feature patterns. Cross-entropy losses serve as training mechanisms which 

unite CNN-derived local features with Transformer-based global information during 

model learning. The predictive model produces its results through flattened layers 

which transform multidimensional outputs into a single-dimensional space for 

effortless model propagation. Dropout layers use random neuron selection to reduce 

model overfitting. Network density enables every neuron to gather information from 

all preceding neurons leading to a complete interconnected decision path. The 

transformer-CNN hybrid framework delivers reliable battery state estimation by 

maximizing local features and strengthening global dependencies to achieve better 

prediction outcomes. 

The HSE-DT method with the transformer-CNN model provides a robust and efficient 

method for battery state estimation. This model combines the spatial feature extraction 

capability of CNNs with the temporal analysis strengths of transformers to 

significantly improve the accuracy and reliability of battery management systems. 

Further optimisations and real-world applications will be investigated in future work 

to validate the model's performance in various operational scenarios. 

The synergistic interaction between the HSE and the DT method is critical to 

improving battery state estimation and management. The mechanisms by which 

different components of the HSE-DT method interact and collaborate to present a 

complete and accurate representation of the battery system state are discussed in this 

section. 
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1) Multi-faceted Integration  

The battery management functions are organised into several multi-faceted 

components of the HSE-DT method. That seamless integration makes it so that the 

system can effectively take advantage of the strengths of each component to give a 

holistic view of the battery system. The first part of this is to acquire real-time data 

from sensors embedded within the battery system. This data covers important voltage, 

current, temperature and other relevant metrics. The data undergoes preprocessing to 

remove noise and get consistent so that the data is suitable for further analysis. The 

second component, modelling and simulation, uses the pre-processed data as input to 

digital twin models of electrochemical, thermal, and ageing processes. These models 

model the physical and chemical activities within the battery and hence provide insight 

into the battery's internal states such as SOC and SOH. The estimation and prediction 

component then makes use of advanced algorithms (including the Transformer-CNN 

model) to analyse the data and predict the future states of the battery. Using a 

combination of historical and real-time inputs, these predictions are based on dynamic 

state estimation. Finally, the estimation process provides insights and predictions that 

the decision support component uses to inform decision-making. Maintenance 

recommendations, charging strategies and operational adjustments are all provided for 

this component. Furthermore, available to stakeholders are also user interfaces, in the 

form of detailed reports and visualisations to support informed decision making. 

2) Feedback Mechanisms  

That digital twin can continuously adapt and evolve using new data and new conditions 

–or not– and it requires effective feedback mechanisms for it to be enabled. The HSE-

DT method combines several feedback loops to improve its accuracy and reliability. 

This method relies heavily on real-time feedback to monitor the battery system 

continuously. This ongoing observation also allows for immediate changes to the 

digital twin models, so they stay accurate and current with the state of the battery. Also, 

real-time feedback allows our system to quickly discern anomalies and take corrective 
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action before any failures occur. 

In addition to real-time adjustment, the HSE-DT method also includes periodic updates 

of the models to provide further refinement. The Transformer–CNN has its internal 

parameters retrained on fresh data, causing an improvement in its predictive accuracy. 

Transfer learning techniques are used to update the model parameters in an efficient 

and adaptable manner without a full retraining process. 

3) Collaborative Analysis  

The HSE-DT method greatly improves the effectiveness of battery state estimation 

through the collaborative interaction between different models and algorithms. This 

collaboration is enabled through several important mechanisms that combine to 

increase accuracy and reliability. 

This method relies on a critical mechanism of data fusion by which data from various 

sensors and models are fused to form a complete picture of the battery’s state. This 

procedure capitalises the strong point of every information source in a great estimation. 

The refined predictions of the Transformer CNN model are then further improved 

using the fused data. 

However, another important mechanism is cross-validation by which we can make 

sure all predictions and the insights drawn from different models are accurate and 

consistent. In this, we compare the outputs of various models and algorithms to 

determine inconsistencies and reconcile conflicts. Cross validation strengthens the 

robustness of the digital twin, and provides reliable and trustworthy information 

derived from said digital twin. 

The HSE-DT method contains adaptive learning: the models get infused with new data 

and new knowledge. That process requires a continuous learning structure to keep the 

digital twin relevant and accurate over time. Moreover, the digital twin can adapt to 
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changes in the operating conditions of the battery system, e.g., temperature, load, or 

usage pattern, through adaptive learning. 

To provide accurate and complete battery state estimations, the synergistic interaction 

within the HSE-DT method is required. The HSE-DT method integrates multiple 

facets, includes effective feedback mechanisms, and enables collaborative analysis to 

improve the management and performance of battery systems overall. 

4) The Self-Evolving Mechanism 

A key part of the HSE-DT method is the self-evolution mechanism. Models in digital 

twin are dynamically adapted to remain relevant and effective to the changing 

conditions and user patterns of the battery as it updates. The self-evolution mechanism 

consists of three key elements: transfer learning, continuous learning, and adaptive 

algorithms. Taken together, these elements enable the digital twin models to remain 

robust and truthful as these react to new data and changing operational conditions. 

To minimise the need for full retraining, new data is used to update digital twin models 

using transfer learning. With this we only apply this technique to pre-trained models 

and adapt them to new tasks or datasets, saving us from the computational prerequisites 

and making it more efficient. In the HSE–DT method, transfer learning enables the 

digital twin to learn new battery data such as temperature, voltage and current changes 

without having to start from scratch. Variations in battery chemistry, ageing effects and 

different operational environments are particularly useful for this. 

This leads to fresh data updating and refining the DT. It is supervised and unsupervised 

learning. To improve the accuracy of the models for the mentioned tasks of SOC and 

SOH estimation, models are trained under supervised learning in the labelled data. One 

technique, however, unsupervised learning, discovers patterns and anomalies in the 

data using features inside the dataset without any labels previously added, making it 

better suited for the model to adjust to unexpected changes in battery behaviour. The 
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HSE-DT method can be continually learned and thus becomes more accurate and more 

reliable with time. 

They are adaptive algorithms, which means that they will change their behaviour upon 

detecting anomalies or shifts in the operational environment of the battery. The 

feedback mechanisms of this algorithm adaptively refine model parameters to achieve 

near-optimal performance despite changes in the environment. As an example, if the 

adaptive algorithm detects a sudden change in temperature, it can update its thermal 

model. The adaptability is important for real-time monitoring and management such 

as electric vehicles and renewable energy storage systems where the operating 

conditions vary greatly. 

In this section, experimental validations and discussions are conducted to validate the 

feasibility of the proposed method.  

In this section, experimental validation of the HSE-DT method is presented using data 

from NASA lithium-ion battery charge and discharge experiments.   We use this 

dataset as a robust testbed to demonstrate the effectiveness of our digital twin model. 

The NASA dataset comprises many charge and discharge cycles of lithium-ion 

batteries under different conditions with critical parameters like voltage, current, 

temperature and capacity. Accurate models for battery state estimation require these 

parameters. The dataset is highly comprehensive and of high quality, making it suitable 

for our study, offering a rich set of time series data which characterises the dynamic 

behaviour of batteries.  In the data collection phase, we observed inconsistencies with 

the battery tester logging mechanism. Data was repeated as several drive cycles were 

consolidated into a single extensive file. However, this consolidation introduced 

redundancy and possible anomalies, which had to be resolved to allow the integrity of 

data used in training and validating the models. 
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Redundant entries indicative of data-logging anomalies were removed to allow data 

integrity. Data cleaning process consisted of identifying and removing duplicated 

entries and implementing algorithms to philtre out spurious data points that did not 

follow expected battery behaviour. To improve the performance of machine learning 

models used in the HSE-DT method, normalisation was applied to scale the data to a 

standard range. To make them consistent across different measurement scales, we 

scaled parameters like voltage, current, and temperature to a range of 0 to 1, and 

transformed the data to have a mean of 0 and a standard deviation of 1.  

The CNN and Transformer models were trained over small, manageable sequences of 

continuous time series data to allow efficient processing.   To capture complete 

cycles of battery charge and discharge, the data was segmented into segments of equal 

length, and to capture transitional behaviours and improve model robustness, the 

overlap between segments was introduced. The preprocessed data was further 

extracted to extract key features to feed in the Transformer-CNN model. To do this, 

the time-dependent characteristics like the slope of voltage and current versus time and 

measures like mean, variance, and skewness were calculated for each segment to give 

a complete picture of the battery state. 

Several advantages of the NASA dataset for our study are provided. It covers a broad 

range of operating conditions and thus allows robust models to be built which can 

generalise across different situations.   The data is meticulously recorded, well 

documented and thus reliable and suitable for research purposes. In addition, the 

NASA dataset is widely used in the battery research community, and, as such, enables 

meaningful comparisons with other studies and methods. Using this dataset, our results 

are comparable to existing research, which confirms the efficiency of our HSE-DT 

method. 

In the next section, the above data preprocessing steps are necessary to prepare the 

NASA dataset for the use of the HSE-DT method. Data redundancy is addressed, data 

is normalised, time–series sequences are segmented, and relevant features are 
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extracted to allow that the input data is of high quality and usable for accurate battery 

state estimation. The objective is to demonstrate the effectiveness in enhancing battery 

situational awareness, which includes not only an accurate estimation of battery states 

such as SOC and SOH but also a comprehensive understanding of battery conditions 

and behaviours under various scenarios. We performed a series of experiments using 

the transformer-CNN model to assess the performance of the HSE-DT method. The 

purpose of these experiments was to validate the accuracy, robustness and overall 

situational awareness capabilities provided by the method. 

We evaluate the performance of the HSE-DT method using the pre-processed NASA 

dataset. The objective is to demonstrate the effectiveness in enhancing battery 

situational awareness, which includes not only an accurate estimation of battery states 

such as SOC and SOH but also a comprehensive understanding of battery conditions 

and behaviours under various scenarios. To assess the performance of the HSE-DT 

method, we conducted a series of experiments utilising the Transformer-CNN model. 

These experiments were designed to validate the accuracy, robustness, and overall 

situational awareness capabilities provided by the method.  

The evaluation process began with training the Transformer-CNN model using the pre-

processed NASA dataset. Supervised learning techniques were employed, utilising 

labelled data with known SOC and SOH values to optimise the model parameters.   

The mean squared error (MSE) was used as the loss function to measure the 

discrepancy between the predicted and actual values, guiding the optimisation process. 

This training phase allows the model could learn from historical data and develop 

accurate predictive capabilities.  

Following the training phase, the model's performance was evaluated on a separate test 

dataset that was not used during training. This test dataset included various battery 

cycles under different operating conditions to assess the model's generalisation 
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capabilities. The key metrics used for performance evaluation included MAE and 

RMSE, which quantified the accuracy of the SOC and SOH estimation mentioned in 

previous sections. Furthermore, other metrics such as  are computed as:   

                          (5.7) 

Here,  denotes the actual capacity,  represents the estimated value, and K is 

the total number of cycles.  

1) Battery State Monitoring and SOC Estimation  

The HSE-DT method proposed in this study was validated using public datasets. Due 

to the absence of specific conditions required for battery model parameter 

identification, the SOC was provisionally estimated using the EKF as a reliable 

alternative. The estimation results of the proposed model, along with comparisons to 

three well-established superior algorithms, are detailed in Figure 5.3 and Table 5.1. 

Overall, all four methods demonstrated strong estimation performance across the 

NASA battery datasets.  

Figure 5.3 provides voltage, current, temperature and a comparative analysis of SOC 

determined by the EKF, measured against a reference SOC. The graph illustrates SOC, 

current, voltage, and temperature over time during each cycle for batteries B0005, 

B0006, B0007, and B0018. Although the model aligns well with the training data, 

noticeable deviations are observed in SOC estimation when processing new data. 

These deviations are reflected in the RMSE values, which are 0.9% for training and 

2.5% for testing. Generally, a lower RMSE signifies better SOC estimation accuracy, 

but the discrepancy between training and testing RMSE suggests potential overfitting, 

which may affect the model's performance on previously unseen data. These RMSE 

values were computed using a dataset that employed pervasive network structures, the 
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same dataset used for the reference methods introduced in the analysis. When 

compared to other algorithms in Table 5.1, the proposed method demonstrated the 

lowest RMSE among the four algorithms evaluated, underscoring its superior accuracy. 

This accuracy is anticipated to improve further as overfitting issues are addressed. The 

consistent use of reference methods with the same dataset further supports the 

reliability and robustness of these findings. 

Table 5.1 The comparison of SOC estimation for different methods USING the B5 dataset 

Methods RMSE 

HSE-DT 0.009 

LSTM 0.032 

CNN-LSTM 0.011 

Transformer 0.017 
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Figure 5. 3 SOC, current, voltage and temperature over time during each cycle of B0005, 

B0006, B0007 and B0018.  
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2) SOH Estimation  

Pearson correlation coefficient (PCC) analysis measures the linear relationship 

between two variables. It is defined as the ratio of the covariance of the two variables 

to the product of their standard deviations (Kong et al., 2021). The PCC is calculated 

as follows: 

𝑃𝐶𝐶 =  
∑ (𝑧𝑖−𝑧̅)(𝑞𝑖−𝑞̅)𝑛

𝑖=1

√∑ (𝑧𝑖−𝑧̅)2𝑛
𝑖=1 √∑ (𝑞𝑖−𝑞̅)2𝑛

𝑖=1

                  (5.8) 

where zi is the values of the x-variable in a sample, z is the mean of the values of the 

x-variable, qi is the values of the y-variable in a sample, and q̅ is the mean of the 

values of the y-variable (Jebli et al., 2021).  

PCC is a statistical metric used to determine the linear relationship between two 

variables and it is in the range from -1.0 to 1.0. An absolute value of 1.0 means a 

perfect linear relationship, that is all data points lie exactly on a straight line in either 

positive or negative direction. A value of zero for the PCC indicates no linear 

dependency of the variables and positive or negative values indicate direct or inverse 

linear dependences, respectively. In the framework of battery SOH modelling, PCC 

analysis is employed to choose input features from each discharging cycle: capacity 

(Ah), output current (A), terminal voltage (V), sampling time (s), and temperature (°C). 

These features are quantitatively evaluated based on their linear dependencies, which 

are categorised into five levels of strength: Correlations were extremely strong (0.9-1), 

strong (0.7-0.89), moderate (0.4-0.69), weak (0.1-0.39), or negligible (0-0.1) (Benesty 

et al., 2008). By categorising these correlations, we can find out which features are 

most relevant for accurate SOH prediction. 

It is necessary to evaluate these features to understand the relationships between 

battery characteristics and how they affect SOH estimation. Battery capacity, the 

primary target of prediction, has a moderate correlation with temperature (0.15), weak 
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correlations with current (0.13) and voltage (-0.14), and a negligible correlation with 

sampling time, according to PCC analysis. According to this analysis, terminal voltage, 

output current, temperature and capacity are chosen as the input features for the 

prediction model. Correlation diagrams further visualise these relationships as 

measures of correlation strength and direction between battery characteristics, to 

facilitate the identification of major factors that will impact performance of battery life 

and performance. Figure 5.5 shows a strong negative correlation (-0.92) between 

cycles and capacity, meaning as the number of cycles increases the capacity decreases 

and better battery health is associated with higher capacity. On the other hand, a strong 

negative correlation is observed between cycles and SOH, meaning that battery health 

decreases as the cycles increase. Knowing these correlations is necessary to estimate 

battery life and performance correctly, and it identifies important features—number of 

cycles, capacity, and SOH—for battery lifetime. Through detailed diagrams of these 

correlations, these interrelationships of the battery characteristics are visualised and 

enable effective feature selection and model development of SOH estimation.  

As discussed in previous sections, data from four batteries labelled B5, B6, B7, and 

B18, sourced from NASA, were utilised to validate the prediction performance of the 

HSE-DT method. In our experiment, the complete dataset starting from the 30th, 60th, 

and 90th cycles were used for offline training, while the remaining data were employed 

for online testing. To further evaluate the robustness and effectiveness of the CNN-

Transformer model, three additional methods—LSTM, Transformer, and CNN-

LSTM—were also employed to estimate battery SOH using the same offline training 

strategy.  

Figure 5.6 presents the SOH estimation from the proposed model along with the 

relative errors for each cycle of B0005. As depicted in Figures 5.6(a)-(c), the predicted 

SOH values align closely with the reference SOH values, clearly demonstrating the 

effectiveness of the HSE-DT method. 
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Figure 5. 4 The theoretical SOH of the NASA dataset 

  

Figure 5. 5 PCC analysis of all features 
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(a) 

 

(b) 
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(c) 

Figure 5. 6 The SOH estimation regarding B5 by training at (a), 30th cycle (b), 60th cycle 

(c), 90th cycle  

A summary of the results of the first 90 cycles for pre-training across all four datasets 

is given in Table II. As can be seen, the MAEs, MAPEs and RMSEs of the proposed 

model are less than 0.5% while the 𝑅2  value exceeds 99%, which means the 

transformer-CNN model outperforms the others in SOH estimation. Additionally, 

these results show a substantial reduction of SOH estimation error for lithium-ion 

batteries using the HSE-DT method.  

The results indicated that the HSE-DT method achieved high accuracy in estimating 

battery states. The MAE, MAPE, RMSE and 𝑅2 values for SOC and SOH estimation 

were significantly lower compared to traditional methods, demonstrating the model's 

effectiveness in capturing complex relationships and dependencies within the battery 

data. These metrics confirmed the model's ability to provide reliable and precise 

estimations, which are important for comprehensive situational awareness.  
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Table 5.2 The comparison of SOH estimation for different methods 

Dataset Methods MAE MAPE RMSE 𝑹𝟐 

B5(90th) 

Transformer-CNN 0.0024 0.0031 0.0029 0.9901 

LSTM 0.0043 0.0624 0.0071 0.8981 

CNN-LSTM 0.0029 0.0160 0.0041 0.9721 

Transformer 0.0035 0.0740 0.0045 0.9610 

B6(90th) 

Transformer-CNN 0.0024 0.0038 0.0028 0.9938 

LSTM 0.0105 0.0575 0.0135 0.8425 

CNN-LSTM 0.0030 0.0168 0.0045 0.9848 

Transformer 0.0035 0.0752 0.0051 0.9816 

B7(90th) 

Transformer-CNN 0.0018 0.0050 0.0022 0.9908 

LSTM 0.0037 0.0520 0.0056 0.9215 

CNN-LSTM 0.0017 0.0335 0.0025 0.9869 

Transformer 0.0021 0.0711 0.0029 0.9809 

B18(90th) 

Transformer-CNN 0.0024 0.0038 0.0029 0.9981 

LSTM 0.0569 0.0768 0.0666 0.8491 

CNN-LSTM 0.0204 0.0394 0.0283 0.9330 

Transformer 0.0425 0.0712 0.0498 0.7885 

 

Additionally, the self-evolving mechanism of the HSE DT method enhances its 

situational awareness capability by leveraging the transfer learning technique, which 

periodically updates the model with new data, such that predictions are accurate and 

up to date. This continuous learning process results in the method being able to adjust 

to changing battery behaviours over time and to improve estimation accuracy and lead 

time of the battery condition and operational status information. 
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In addition to state estimation, the HSE-DT method provides a broader understanding 

of the battery's health and operational context, which is important for optimising 

performance, enabling safety, and extending the battery's lifespan. The integration of 

the Transformer-CNN model with the self-evolving mechanism further enhances the 

method's ability to monitor and manage battery systems effectively by enabling more 

precise analysis and decision-making.  

Finally, the performance evaluation using the NASA dataset shows that the HSE-DT 

method can improve the situational awareness of battery systems. Finally, the 

performance evaluation using the NASA dataset shows that the HSE-DT method can 

improve the situational awareness of battery systems under typical operating 

conditions. However, real-world applications often present more challenging 

environments, such as extreme temperatures which can influence the accuracy and 

reliability of state estimations. The dataset used in this study was limited in scope 

resulting in an evaluation of the model’s performance across a wider range of 

temperature variations that was not feasible. Nevertheless, the results show that the 

HSE-DT method can accurately and reliably monitor and manage under typical 

conditions, thus providing accurate condition estimates. 

In this chapter, the HSE-DT method is proposed and integrates advanced machine 

learning models with a structured digital twin framework to address the complexities 

of battery state estimation and management. The methodology employed a 

Transformer-CNN model within a multi-layered architecture that includes real-time 

data acquisition, continuous learning, and dynamic model adaptation. This systematic 

approach enhances the accuracy and reliability of the estimations, enabling effective 

battery management and optimisation. 

A critical component of the HSE-DT method is its self-evolving mechanism, which 

utilises transfer learning to update the model parameters based on newly acquired data. 
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This process allows the model to refine its predictions incrementally without the need 

for complete retraining, significantly reducing computational overhead. The HSE-DT 

framework’s adaptability allows it to remain effective in capturing the nonlinear and 

dynamic behaviours of batteries, particularly as they age or operate under varying 

environmental conditions. By incorporating real-time data and historical records, the 

method can accurately estimate key battery states, such as SOC and SOH, thereby 

providing timely and actionable insights. 

The integration of the Transformer-CNN model within the HSE-DT framework serves 

a pivotal role in feature extraction and prediction. The CNN component captures 

intricate spatial features within the time-series data, while the Transformer component 

models long-term dependencies and contextual relationships. This hybrid approach 

leverages the strengths of both models, allowing for precise estimation of battery states 

even in the presence of noise or irregularities in the data. The unique combination of 

CNN and Transformer models not only enhances the robustness of the method but also 

enables it to provide a holistic understanding of battery health and performance. 

The experimental results presented in this study validate the proposed methodology, 

demonstrating its effectiveness in various scenarios. The HSE-DT method consistently 

outperformed conventional models, such as LSTM, CNN-LSTM, and standalone 

Transformer models, in terms of SOC and SOH estimation accuracy. The superior 

performance of the HSE-DT method can be attributed to its hierarchical structure, 

which systematically integrates multiple estimation layers and continuously refines 

predictions based on real-time observations. This systematic approach enables the 

HSE-DT framework to capture complex relationships within the data and adapt to 

changing battery conditions dynamically. 

The integration of real-time feedback mechanisms within the HSE-DT framework 

further enhances its capability to monitor and manage battery systems. By 

incorporating both predictive and diagnostic elements, the method not only provides 

accurate estimations of SOC and SOH but also identifies potential anomalies and 
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performance deviations. This proactive approach to battery management minimises 

the risk of unexpected failures and optimises battery utilisation, ultimately extending 

the lifespan of the energy storage system. 

In conclusion, the HSE-DT method proposed in this study provides a robust and 

scalable solution for battery state estimation and management. The innovative 

combination of the Transformer-CNN model within a hierarchical digital twin 

framework, coupled with the self-evolving mechanism, offers significant 

improvements over conventional methods. The experimental validation using the 

NASA dataset demonstrates the method’s high accuracy and adaptability, confirming 

its potential for real-time battery management and predictive maintenance. Future 

research should explore additional methodological enhancements, such as 

incorporating more advanced feature extraction techniques and expanding the 

framework’s applicability to other battery chemistries and configurations. 

In summary, this study introduced the HSE-DT method, designed to enhance battery 

situational awareness. Utilising a structured DT model, the method integrates critical 

parameters such as voltage, current, and temperature, alongside advanced estimation 

techniques. Recognising the complexities of battery situational awareness, the HSE-

DT method employs the Transformer-CNN model to effectively capture spatial and 

temporal dynamics, providing a comprehensive understanding of battery conditions 

and behaviours.  

The HSE-DT method incorporates a self-evolving mechanism that leverages transfer 

learning and continuous learning techniques. This approach allows the model to 

remain adaptive and relevant over time, capable of refining its insights with new data 

through rolling learning. Our research provides a detailed analysis of the HSE-DT 

method, describing its complex structure and key stages in the learning process. 

Empirical results indicate the efficiency of the method in combining online situational 



118 Multi-faceted Situational Awareness of Digital Twin-driven Battery Storage 

 

 

awareness, including real-time monitoring of battery states and prediction of future 

conditions. The Transformer-CNN model demonstrated high accuracy, achieving low 

RMSE and MAE values, supporting the utility of the HSE-DT method in enhancing 

battery situational awareness.  

The HSE-DT method is underscored by its multi-layered structure, which integrates 

various aspects of battery monitoring and analysis. This approach offers insights into 

battery health and operational performance, laying the groundwork for advanced 

battery management strategies. Consequently, battery operations can be optimised, 

enhancing the battery's lifecycle and overall system efficacy. The integration of 

advanced machine learning techniques with the digital twin paradigm represents a 

promising combination, contributing to improvements in battery management and 

situational awareness across various applications.  

Looking ahead, our research will focus on addressing key challenges to further refine 

the HSE-DT method for battery situational awareness. This involves developing a fully 

integrated digital twin that combines dynamic and static models and tries to integrate 

historical and real-time data to enrich situational awareness. Also, future studies will 

examine the model’s performance under extreme temperatures, varying battery health 

states, and different usage patterns. Additionally, optimising the digital twin to 

minimise latency will be key to its capability for real-time synchronous updates and 

adaptive feedback control. Exploring these research dimensions will augment the 

capabilities and impact of battery digital twin technologies. 
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Chapter 6 RUL-Based DT-Supported 

Optimisation for Operational Decision 

Support in BESS 

DT technology integrated with battery energy storage systems (BESS) is increasingly 

recognised as a way to improve operational decision support (Semeraro et al., 2023b). 

However, traditional maintenance strategies, either reactive or following predefined 

schedules, typically fail to capture the real-time health state of BESS components 

(Singh et al., 2021b). The use of these strategies may lead to suboptimal performance, 

higher costs and unexpected failures. Therefore, there is a need for advanced methods, 

which use real-time data and sophisticated analytical models to enable continuous 

monitoring and predictive maintenance of BESS for improved system reliability and 

longevity. The Digital Twins are a promising solution providing a complete digital 

replica of physical systems, able to collect real-time data, monitor health status and 

make operational decisions (Chen et al., 2023). 

Integrating DT technology into BESS is generally regarded as a very effective way to 

enhance operational decision support. Unlike DT-supported maintenance, reactive 

response or schedule-based approaches cannot capture the real-time health status of 

BESS components. Therefore, such approaches often lead to suboptimal performance, 

higher costs, and unexpected failures because they are based on fixed maintenance 
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intervals and lack predictive ability (You et al., 2022). 

To address these challenges, this chapter presents a DT-supported decision support 

system that employs advanced predictive maintenance and fault analysis 

methodologies. The proposed system incorporates two innovative strategies. First, an 

RUL-based maintenance approach integrates RUL estimates with equipment 

availability to optimise maintenance decisions dynamically (Ahmad and Kamaruddin, 

2012). Second, a large language model (LLM) based fault analysis framework 

enhances decision-making by offering contextually relevant recommendations based 

on unstructured textual data (Tao et al., 2025), such as maintenance logs and technical 

manuals. 

The RUL-based maintenance strategy significantly improves traditional approaches 

by integrating real-time health status data with equipment availability metrics 

(Alaswad and Xiang, 2017a). Unlike conventional methods that solely rely on RUL 

predictions, this approach incorporates both remaining lifespan and real-time 

equipment availability to determine optimal maintenance timing (Alaswad and Xiang, 

2017b). By balancing these two critical factors, the strategy minimises maintenance 

costs while maximising system availability and reliability. Additionally, integrating 

RUL with availability allows for more precise scheduling of maintenance activities 

and spare parts management, thereby reducing the risk of unexpected failures and 

stockouts (Prajapati et al., 2012). 

With the development of sensor technology, the use of real-time equipment health 

status information to predict the RUL and then use it for equipment health management 

decisions has become the core content of fault prediction and health management (Si 

et al., 2013, Mosallam et al., 2016, Zhang et al., 2018, Roemer et al., 2006). Based on 

RUL, scholars have developed a joint optimisation of maintenance and spare parts 

ordering decisions, and the sequential joint optimisation strategy model proposed by 

Wang (Wang et al., 2013) firstly determines the optimal time for equipment 

replacement and then optimises the ordering point. Based on this study, Jiang (JIANG 
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et al., 2015) optimised both the equipment replacement time and the spare parts 

ordering time and compared them with the results of the sequential joint strategy 

optimisation, which ultimately showed that the joint decision was more effective. 

However, none of them considered the costs associated with ordering spare parts 

(Wang et al., 2013, JIANG et al., 2015). Wang (Wang et al., 2014) proposed a joint 

spare parts ordering and replacement strategy for unrepairable systems, under which 

historical state information is used to predict the remaining life at any monitoring 

moment, and various scenarios that may occur at the ordering point, the time of 

preventive replacement, and the time of the next monitoring moment are combined to 

construct an objective function that minimises the expected cost per unit of time while 

optimising the ordering point and the replacement time. The objective function is 

constructed to minimise the expected cost per unit of time by combining various 

scenarios that may occur at the ordering point, the preventive replacement moment, 

and the next monitoring moment, while optimising the ordering point and preventive 

replacement moment. Although the above studies consider the remaining life of the 

equipment, they are mainly used in maintenance decisions, where the ordering 

decision for spare parts is based on the degradation level or the moment of equipment 

replacement. However, the decision maker will judge whether to order or not by 

comparing the length of the remaining useful life of the equipment with the length of 

the lead time for spare parts (Sikorska et al., 2011). 

These methodologies collectively establish a robust framework to enhance the 

operational decision-support capabilities of BESS (Lo Franco et al., 2021). By 

integrating diverse data sources—including real-time sensor data, historical 

operational records, and expert insights—the DT-supported system dynamically 

assesses the health state of BESS components and offers actionable maintenance 

strategies (Rathore et al., 2021). The RUL-based optimisation addresses the limitations 

of conventional maintenance strategies while extending the lifespan of BESS 

components, reducing operational costs, and improving system reliability (Wang et al., 

2009). 
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At the same time, the LLM-based fault analysis framework applies advanced natural 

language processing techniques to interpret and analyse complex maintenance records 

and operational manuals (Zheng et al., 2024). Specifically, through domain-specific 

fine-tuning of the LLM for energy storage systems, the framework extracts valuable 

insights that traditional analytical methods cannot easily obtain. Integrating LLM-

based insights with real-time monitoring and prognostic capabilities, the system offers 

comprehensive decision support that includes data-driven predictions and context-

aware recommendations. 

These methodologies collectively establish a robust framework to enhance the 

operational decision-support capabilities of BESS. By integrating diverse data 

sources—including real-time sensor data, historical operational records, and expert 

insights—the DT-supported system dynamically assesses the health state of BESS 

components and offers actionable maintenance strategies. The integration of RUL-

based optimisation and LLM-based fault analysis addresses the limitations of 

conventional maintenance strategies while extending the lifespan of BESS 

components, reducing operational costs, and improving system reliability. 

The remainder of this chapter is organised as follows: Section 6.2 outlines the 

methodology for the DT-supported operational decision support approach. Section 6.3 

describes the experimental setup used to validate the proposed approach, while Section 

6.4 presents the results and their implications, followed by a summary and future 

research directions in Section 6.5. 

This section outlines the methodological framework for developing the DT-supported 

operational decision support system for BESS. The approach is built on two key 

strategies: (1) optimised maintenance strategy based on RUL prediction and battery 

availability, and (2) LLM-based fault diagnosis and operational decision support. 

These strategies are integrated within the DT-supported system to enable real-time 
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monitoring, RUL prediction and advanced fault diagnosis. 

The first method utilises real-time operational data and equipment availability metrics 

to optimise maintenance scheduling, thereby minimising maintenance costs and 

reducing system downtime. Concurrently, the LLM-based method applies natural 

language processing techniques to analyse unstructured textual data, such as 

maintenance logs and technical manuals, providing context-aware insights that support 

maintenance planning and decision-making. Together, these approaches form a robust 

foundation for enhancing the operational performance and reliability of BESS. 

The subsequent sections describe each methodological component in detail. Section 

6.2.1 covers data acquisition and preprocessing, followed by Section 6.2.2, which 

discusses the DT model for fault diagnosis and prognostics. Section 6.2.3 details the 

predictive maintenance strategy based on RUL estimation, and Section 6.2.4 

introduces the LLM-based decision support model for maintenance optimisation. 

The reliable performance of the DT-supported operational decision support system 

hinges upon effective data gathering and preliminary processing. The dataset consists 

of real-time sensor data capturing key parameters such as voltage, current and 

temperature. These measurements offer detailed insights into the operational 

conditions and performance of BESS components. The data obtained from monitoring 

systems is used not only to assess the current health status of the physical asset but 

also to predict the RUL. By analysing RUL predictions and battery availability, the DT 

determines optimal maintenance scheduling and the necessity of ordering spare parts 

at specific monitoring points. This proactive approach minimises unexpected failures 

and reduces downtime by enabling the timely availability of replacement parts. 

Additionally, historical maintenance records and failure logs are incorporated to 

enhance the dataset, enabling accurate prognostics and fault analysis. Unstructured 
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textual data, including technical manuals and maintenance reports, are processed using 

natural language processing techniques to extract relevant contextual information for 

the LLM-based fault diagnosis model. This holistic integration of structured and 

unstructured data supports comprehensive decision-making for maintenance and spare 

parts management. 

The data pre-processing includes several steps. First, data cleaning is performed to 

eliminate errors and address missing values that could compromise model 

performance. This involves detecting and removing outliers, imputing missing values 

through statistical methods, and normalising sensor readings to a standard scale. Next, 

data transformation techniques such as feature engineering and dimensionality 

reduction are applied to improve data quality and relevance. These transformations 

involve extracting essential features from sensor readings, aggregating historical 

maintenance information, and reducing noise in textual data through tokenisation and 

removal of irrelevant terms. 

For unstructured textual data, a specialised preprocessing pipeline is implemented. 

This pipeline includes text cleaning, tokenisation, and vectorisation to convert 

unstructured text into structured numerical representations suitable for input into the 

LLM-based model. The resulting textual features are integrated with structured sensor 

data, creating a unified dataset that supports both RUL and battery availability-based 

predictive maintenance and LLM-based fault diagnosis. 

By combining multiple data sources and employing rigorous preprocessing techniques, 

the resulting dataset is optimised for real-time health state estimation, RUL prediction, 

and spare parts management. This comprehensive approach enables the DT-supported 

system to capture the dynamic behaviour of BESS components accurately, thereby 

effective decision support and maintenance strategy optimisation. 
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The integration of DT into decision support systems enhances the ability of BESS to 

monitor, diagnose, and predict the health status of its components. By leveraging real-

time operational data and historical maintenance records, the DT framework enables 

precise fault diagnosis and facilitates informed decision-making. This integration 

supports a comprehensive approach to maintenance optimisation and system reliability. 

In this section, the DT serves as a pivotal element that bridges fault diagnosis and 

decision support. Through continuous monitoring, the DT identifies anomalies and 

deviations from normal operating conditions, assesses the severity of emerging faults, 

and provides a dynamic health state estimation of BESS components. This real-time 

fault analysis enables the decision support system to proactively determine the 

necessity for maintenance actions, reducing the risk of unexpected failures. 

The insights generated through DT-supported fault diagnosis feed directly into the 

decision-support framework. This fusion guarantees that maintenance choices like best 

scheduling and part management rely on a precise and thorough grasp of the system's 

existing and future health. Consequently, the DT’s role in fault diagnosis is not isolated 

but is an integral part of the broader decision-making process, guiding maintenance 

strategies that enhance system availability and minimise operational costs. 

By establishing a seamless link between predictive maintenance strategy and decision 

support, the DT allows for dynamic adaptation to changing operational conditions. 

This capability is essential for the effective implementation of advanced maintenance 

strategies, including RUL and battery availability-based optimisation and context-

aware fault diagnosis using LLM.  

Maintenance strategies based solely on RUL predictions are often influenced by the 

accuracy of the estimation models, which may lead to discrepancies between the 
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predicted and actual service life. Such inaccuracies can result in increased maintenance 

costs and reduced system reliability. 

In contrast, operational availability offers a more comprehensive measure of the 

battery’s ability to perform its intended functions. Availability reflects the proportion 

of time the battery is operational, considering factors such as downtime due to 

maintenance or failures. By integrating RUL and availability, maintenance decisions 

can be made based on both the component’s health status and the system’s overall 

operational readiness. 

This section presents a predictive maintenance strategy that optimises maintenance 

decisions by considering both RUL and availability. The proposed method establishes 

a unified model that combines these two indicators to evaluate maintenance needs, 

prioritising actions that minimise maintenance costs and maximise battery life. 

A combined maintenance index is calculated using RUL predictions and availability 

metrics to assess the urgency and timing of maintenance activities. Maintenance is 

prioritised for batteries with lower index values, indicating a higher likelihood of 

imminent failure and a greater impact on system performance. This prioritisation 

allows maintenance to be performed at the most appropriate time, reducing unplanned 

downtime and preventing unnecessary replacements. 

Furthermore, the strategy incorporates a proactive spare parts ordering policy based 

on RUL predictions. Predicting when each part might fail allows ordering spare parts 

ahead of time to guarantee they are ready when required. This forward-thinking 

method decreases interruptions caused by insufficient stock and improves the way 

inventory is managed while lowering total operational expenses. 

Integrating RUL predictions and availability provides a method for measuring battery 

performance and optimising maintenance strategies. This approach supports rational 

and data-driven decision-making, enhancing the reliability and efficiency of BESS. 
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The integration of LLMs into fault analysis and maintenance decision-making 

frameworks offers a powerful tool for enhancing the operational decision-support 

capabilities of energy storage systems. As an approach to processing and 

understanding complex data, LLMs provide advanced natural language processing 

(NLP) techniques that enable the extraction of valuable insights from vast amounts of 

textual information, such as maintenance records, operation manuals, and historical 

reports. This capability is particularly beneficial when combined with DT technology, 

which provides a dynamic digital representation of physical systems, allowing for real-

time monitoring, simulation, and predictive analytics. This section introduces an LLM-

based decision support system that integrates with DT, providing a structured approach 

to maintenance optimisation for energy storage systems. 

The integration of LLMs with DT frameworks involves leveraging the language 

model’s capacity to process and interpret domain-specific knowledge, thereby 

enhancing the DT’s ability to support decision-making processes. In the context of 

energy storage systems, LLMs are used to analyse maintenance logs and operational 

documents, identifying patterns and correlations that may not be evident through 

conventional analytical methods. The LLM-based decision support system begins with 

the preprocessing of textual data, which includes cleaning, formatting, and augmenting 

the data to create a high-quality dataset for model training. This dataset serves as the 

foundation for fine-tuning the LLM, enabling it to specialise in understanding and 

generating maintenance-related insights. 

The fine-tuning process adapts the LLM to the specific domain of energy storage 

systems, where it learns to associate fault patterns with potential failure modes and 

recommended maintenance actions. This domain adaptation is achieved through 

transfer learning techniques, such as LoRA (Low-Rank Adaptation), which modify the 

base model’s weights to capture the nuances of energy storage system operations. As 

a result, the fine-tuned LLM becomes proficient in providing contextually relevant 
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recommendations, such as suggesting maintenance schedules based on detected fault 

trends or proposing corrective actions based on historical failure data. 

Once integrated into the DT framework, the LLM-based decision support system 

functions as an intelligent assistant that complements the DT’s real-time monitoring 

and predictive maintenance capabilities. While the DT provides a real-time overview 

of the system’s operational state and health status, the LLM enhances this capability 

by offering in-depth analysis and interpretation of historical and contextual data. For 

example, when an anomaly is detected in the DT, the LLM can be queried to provide 

possible causes based on similar historical events, suggest preventive measures, or 

recommend spare parts provisioning strategies. This synergy between LLM and DT 

technologies enables a more comprehensive approach to maintenance decision-

making, combining data-driven insights with contextual knowledge for optimised 

maintenance outcomes. 

The integration of LLMs into DT-supported maintenance optimisation frameworks 

offers several distinct advantages. First, it reduces the dependency on human expertise 

for interpreting complex maintenance documentation and historical records. By 

automating the extraction and analysis of knowledge from these sources, the LLM-

based system can identify relevant information more efficiently and consistently than 

manual methods. Second, the ability of LLMs to understand and generate natural 

language allows for intuitive interaction between the system and operators. This 

capability facilitates seamless communication, enabling operators to query the LLM 

for explanations, recommendations, or clarifications in a conversational manner. Third, 

the integration of LLMs enhances the DT’s ability to simulate and predict maintenance 

scenarios, supporting proactive maintenance planning and reducing downtime. 

Furthermore, the LLM-based decision support system contributes to the overall 

operational efficiency and reliability of energy storage systems by enabling predictive 

maintenance strategies that are closely aligned with the system’s real-time and 

historical data. The combination of LLM and DT technologies provides a holistic view 
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of the system’s condition, incorporating both real-time sensor data and contextual 

knowledge derived from textual sources. This approach improves the accuracy and 

relevance of maintenance recommendations, ultimately leading to more effective 

resource utilisation and extended equipment lifespan. 

In summary, the integration of LLM-based decision support with DT frameworks 

creates a synergistic relationship that enhances the capabilities of both technologies. 

By leveraging the advanced NLP capabilities of LLMs to interpret and analyse 

domain-specific knowledge, the DT’s monitoring and predictive maintenance 

functions are significantly augmented. This integration offers a comprehensive 

solution for optimising maintenance strategies, reducing operational costs, and 

improving the overall reliability and sustainability of energy storage systems. The 

methodologies presented in this section demonstrate the potential of combining LLMs 

and DTs to create an intelligent and adaptive decision support system, paving the way 

for more efficient and resilient energy storage operations. 

This section outlines the experimental setup used to evaluate the effectiveness of the 

proposed DT-supported decision support system for BESS. The experiments focus on 

assessing the performance of predictive maintenance strategies based on RUL 

predictions and battery availability, as well as the integration of LLM-based fault 

diagnosis and decision support. 

Real-world operational data and domain-specific textual information are used to 

validate the system’s capability to enhance fault diagnosis, optimise maintenance 

decisions, and improve overall system performance. The following subsections detail 

the data sources, experimental procedures, and evaluation metrics used to analyse the 

proposed methodologies. 
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Effective integration of diverse data sources is essential for configuring the DT to 

accurately represent the health status and dynamic behaviour of BESS. This integration 

combines real-time sensor measurements, historical maintenance logs, and technical 

documentation into a unified dataset that offers a holistic view of system performance 

and operational conditions. 

Real-time sensor data, including voltage, current and temperature enables continuous 

monitoring of the battery's operating state. Historical maintenance records supplement 

this data by capturing long-term degradation trends and failure patterns of individual 

components. Moreover, unstructured textual data from maintenance reports and 

technical manuals are processed using natural language processing techniques to 

extract valuable insights, further enriching the structured dataset. 

After merging the data sets they receive preprocessing actions like normalisation and 

feature engineering to guarantee fit with the DT’s analysis tools. Sensor information 

undergoes normalisation to correct discrepancies and align measurement metrics; at 

the same time, critical attributes are pulled out to accentuate the influencing factors on 

system health. By tokenising and vectorising textual data we create numerical forms 

that can be analysed. The DT receives superior input from these preprocessing actions 

that allow for exact fault detection and the estimation of RUL. 

The final configuration of the DT involves defining relationships between physical 

components and their digital replica and setting parameters for real-time monitoring 

and state estimation. Leveraging this configuration, the DT continuously assesses the 

health status of the battery system, detects anomalies, and generates actionable insights 

to support predictive maintenance and decision. 
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Using health state information obtained from monitoring, the RUL is predicted, and it 

is determined whether spare parts should be ordered at the current monitoring point. 

At this point, an average repair or preventive maintenance time 𝑞 , is introduced, 

representing the upper limit of the difference between the RUL and the lead time. If, 

at monitoring time 𝑡𝑘, the difference between the equipment's remaining life 𝑡𝑘 and 

the 𝐿  satisfies the condition 𝑅𝑈𝐿𝑘 − 𝐿 ≤ 𝑞 then spare parts are ordered, with the 

order point recorded as 𝑡0 − 𝑡and the spare parts will arrive after the lead time 𝐿. 

Otherwise, no order is placed until the decision is reassessed at the next monitoring 

point. 

If, a time 𝑡, the equipment's health state is monitored and its RUL is predicted as , and 

the average repair or preventive maintenance time is 𝑞1, then if the condition 𝑅𝑈𝐿𝑘 −

𝐿 ≤ 𝑞1  holds, the spare parts are ordered at time 𝑡𝑘  , and they will arrive at the 

inventory after the lead time 𝐿. If the spare parts have arrived before the lead time, 

i.e., they have entered storage at time 𝑡𝑘+3 , and the average repair or preventive 

maintenance time is 𝑞2, then if 𝑅𝑈𝐿𝑘 − 𝐿 < 𝑞2, no order is placed at time 𝑡𝑘. 

In this joint strategy, the average repair or preventive maintenance time 𝑞 reflects the 

relationship between the remaining useful life and the lead time. When the RUL is 

longer than the lead time, no order is placed. Conversely, if the RUL is shorter than the 

lead time, spare parts are ordered. The value of the average repair or preventive 

maintenance time 𝑞 is determined through the joint strategy model and serves as a 

decision variable. 

1) Energy Storage Equipment Availability  

In practical use, the steady-state availability can be divided into inherent availability 

𝐴𝑖, achieved availability 𝐴𝑎, and operational availability 𝐴0. At the equipment usage 
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stage, operational availability is the most effective indicator of actual equipment 

utilisation and maintenance support conditions (Ahmad and Kamaruddin, 2012). It 

represents the proportion of time the equipment or system is capable of performing its 

intended function, indicating the relationship between reliability and maintainability. 

The size of operational availability is primarily influenced by three factors: Mean Time 

Between Maintenance (MTBM), Mean Corrective Maintenance Time (MCMT), and 

Mean Logistic Delay Time (MLDT). The magnitude of MLDT is determined by the 

system's support capability. Spare parts supply capability is critical for supportability, 

as it significantly impacts the frequency of maintenance cycles and overall system 

operational availability. 

In spare parts management, operational availability is calculated as shown in Equation 

6.1: 

𝐴0 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝐶𝑀𝑇+𝑀𝑃𝑀𝑇+𝑀𝑆𝐷
                    (6.1) 

Spare parts availability: 

𝐴𝑎 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝐶𝑀𝑇+𝑀𝑃𝑀𝑇
                       (6.2) 

Supply availability: 

𝐴𝑠 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀+𝑀𝑆𝐷
                         (6.3) 

Therefore, the operational availability can be derived as: 

𝐴0 =
1

1/𝐴𝑎+1/𝐴𝑠

                          (6.4) 

This model calculates availability by dividing it into two parts: achievable availability 
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and spare parts supply availability. Compared with the updated Markov renewal theory 

for calculating system availability, this method simplifies the calculation by making 

certain assumptions. However, when there is a constraint on spare parts supply, the 

model has limitations. Thus, many studies on inventory issues have been conducted to 

expand the model’s applicability (Ahmad and Kamaruddin, 2012). 

The method proposed in this text optimises the spare parts supply strategy by 

integrating operational availability with spare parts availability. The optimisation 

equation is given as: 

𝐴 =
𝑇

𝑇+𝑞
                             (6.5) 

Where 𝑇  refers to the mean maintenance time interval and 𝑞  average repair or 

preventive maintenance time, including corrective or preventive maintenance intervals. 

The RUL of the equipment is 𝑅𝑈𝐿𝑘  and the spare parts lead time is 𝐿 , where 𝑞 

satisfies: 𝑅𝑈𝐿𝑘 = 𝐿 + 𝑞, thereby combining availability with the spare parts supply 

process to achieve joint strategy optimisation. 

2) Joint Maintenance Strategy Optimisation Modelling 

Each time, the cost 𝐶𝑖 is used to monitor the system status. If 𝑙𝑝 ≤ 𝑅𝑈𝐿(𝑡𝑘) ≤ 𝐿𝑐, 

the cost 𝐶𝑅 will initiate preventive maintenance; otherwise, if 𝑅𝑈𝐿(𝑡𝑘) ≥ 𝐿𝑐, the 

cost 𝐶𝑅 will initiate corrective maintenance, which will result in losses 𝐶𝐹. The 

system availability and spare parts supply are comprehensively analysed to establish a 

joint strategy considering six potential updating events which is shown in Table 6.1. 

Among them, if a more critical system fault occurs, the spare parts are ordered 

immediately, leading to urgent replacement (E1 and E4). When the availability is 𝑞1, 

spare parts are ordered at time 𝑡𝑘 and the system may be maintained at time 𝑡𝑘, 𝑡𝑘+2, 

while the spare parts have not arrived and one has to wait for the spare parts to arrive 
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for replacement (E2 and E5). Typically, the cost of placing an emergency order, 𝐶𝑒𝑜, 

is higher than the cost of placing a normal order, 𝐶0. If the ordered spare part does not 

arrive, it incurs a shortage cost; if the spare part arrives and is not immediately replaced, 

it goes into storage and incurs a holding cost; where the shortage cost per unit of time 

is 𝐶𝑠; and the holding cost per unit of time is 𝐶ℎ. 

Table 6.1 All possible renewal scenarios of the joint policy modelling 

Events Status Spare parts status Decision 

E1 
𝑙𝑝 ≤ 𝑅𝑈𝐿(𝑡𝑘) ≤ 𝑙𝑐  

Preventive 

Maintenance 

Not Ordered 
Urgent order and immediate 

maintenance 

E2 
Ordered but not 

arrived 

Wait for spare parts to arrive for 

maintenance 

E3 Arrived Immediate maintenance 

E4 

𝑅𝑈𝐿(𝑡𝑘) ≥ 𝑙𝑐  

Fault maintenance 

Not Ordered 
Urgent order and immediate 

maintenance 

E5 
Ordered but not 

arrived 

Wait for spare parts to arrive for 

maintenance 

E6 Arrived Immediate maintenance 

 

Based on the expected cost and length of each update event, the update payoff theory 

is used to establish the objective function of minimising the expected cost per unit of 

time, and the optimal decision variables are obtained: the ordering threshold 𝑞∗ and 

the preventive maintenance threshold 𝐿𝑝
∗ . The specific formulas are as follows: 

min 𝐸 (𝐶(𝐿𝑝, 𝑞)) =
∑ 𝐸(𝐶𝑠(𝐿𝑝,𝑞))6

𝑠=1

∑ 𝐸(𝐿𝑠(𝐿𝑝,𝑞))6
𝑠=1

     

𝑠. 𝑡.      𝑙𝑘 − 𝐿 ≤ 𝑞; 𝐿𝑝 < 𝐿𝑐                    (6.6) 
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where 𝐸(𝐶𝑖(𝐿𝑝, 𝑞)) and 𝐸(𝐿𝑖(𝐿𝑝, 𝑞)) correspond to the expected cost and expected 

length.  

The steps of the experiment are as follows: 

Step 1: Set initial cost parameters 𝐶𝑖 , 𝐶𝑜 , 𝐶𝑒𝑜 , 𝐶𝑅 , 𝐶𝐹 , 𝐶𝑠, 𝐶ℎ and maximum number of 

calculations 𝑁𝑚𝑎𝑥 , 𝐿𝑝 = 0, 𝐴 =
𝑇

𝑇+𝑞
, 𝑞 =

𝑇

𝐴
− 𝑇. 

Step 2: Setting preventive maintenance thresholds 𝐿𝑝 = 𝐿𝑝 + 1, 𝑞 = 0. 

Step 3: Average repair/preventive maintenance time 𝑞 = 𝑞 + 1. 

Step 4: Total expected cost 𝑇𝐶 = 0; total expected duration 𝑇𝐿 = 0 and number of 

runs 𝑖 = 0. 

Step 5: With 𝐿𝑝 and 𝐴 fixed, the number of runs 𝑖 = 𝑖 + 1. 

Step 6: Updated the 𝑅𝑈𝐿(𝑡) of the system every 𝑇 period, at time 𝑡, if 𝑙𝑘 − 𝐿 ≤ 𝑞, 

then if 𝑡0 ≥ 0, if it has been ordered, if not, order spare parts, otherwise go to step 7. 

Step 7: If the RUL at time 𝑡, if 𝑅𝑈𝐿(𝑡) ≤ 𝐿𝑝, then return to step 5. If 𝐿𝑝 ≤ 𝑅𝑈𝐿(𝑡) ≤

𝐿𝑐, then perform preventive maintenance; and make the following decisions: when 

𝑡0 = 0, spare parts have not been ordered, E1 occurs; when 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝐿, spare 

parts have been ordered but not arrived, E2 occurs; when 𝑡0 + 𝐿 ≤ 𝑡, spare parts have 

arrived, E3 occurs. If 𝑅𝑈𝐿(𝑡) ≥ 𝐿𝑐 , then perform fault maintenance, similarly, 

according to the various states of spare parts, E4, 5, and 6 may occur. 

Step 8: If the number of operations under the current 𝑞, 𝐿𝑝 has reached the maximum 

number 𝑖 = 𝑁𝑚𝑎𝑥, if satisfied, calculate and record 𝐶(𝐴, 𝑙𝑝), otherwise return to step 

5. 
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Step 9: If 𝐶(𝐴, 𝐿𝑝) > 𝐶(𝐴 − 1, 𝐿𝑝) is satisfied, find the minimum objective function 

value and availability under fixed 𝐿𝑝, record it as 𝐶(𝐴∗, 𝐿𝑝), and return to step 2; 

otherwise, return to step 3. 

Step 10: If 𝐶(𝐴∗, 𝐿𝑝) > 𝐶(𝐴∗, 𝐿𝑝 − 1)  is satisfied, it means find the minimum 

objective function value, 𝑚𝑖𝑛𝐶(𝐴∗, 𝐿𝑝
∗) ,, the optimal preventive replacement 

threshold 𝐿𝑝
∗ and availability 𝐴∗; otherwise, return to step 2. 

3) Experimental Results 

To verify the model, the previously calculated RUL is used for the case study. The 

RUL is updated every T charge and discharge cycle, the fault threshold 𝐿𝑐 = 0, and 

the cost parameters are shown in Table 6.2. 

Table 6.2 Cost parameters 

𝐶𝑖 𝐶𝑜 𝐶𝑒𝑜 𝐶𝑅 𝐶𝐹 𝐶𝑠 𝐶ℎ 

500 100 4000 12000 50000 25 5 

 

Based on the above parameters, Python is used to program the discrete event 

simulation algorithm, and the minimum objective function value is 𝐸𝐶(𝐴∗, 𝐿𝑝
∗) =

 5.35 , where the optimal availability 𝐴∗ =  0.11 and the preventive maintenance 

threshold 𝐿𝑝
∗ = 16. Figure 6.1 shows the trend of the expected cost per unit time with 

the ordering threshold and the availability under different periods T. When 𝐿𝑝 is fixed, 

the expected cost per unit time shows a trend of first decreasing and then increasing 

with the increase of 𝐴. Because if 𝐴 is too small, ordering spare parts will easily lead 

to no spare parts available when the system fails, increasing downtime losses and costs; 

but a larger 𝐴 will increase the holding cost of spare parts. Similarly, when 𝐴 is fixed, 

the expected cost per unit time first decreases and then increases with the increase of 
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𝐿𝑝. This is because an excessively large 𝐿𝑝 increases the possibility of preventive 

replacement and reduces the expected length, resulting in a higher expected cost per 

unit time; a small 𝐿𝑝 is prone to failures, and failure to prevent them increases the 

expected cost per unit time. 

Table 6.3 The influence of the order lead time L on the optimal decisions 

𝐿 𝐴∗ 𝐿𝑝
∗  𝐸𝐶(𝐴∗, 𝐿𝑝

∗) 

100 0.14 15 6.03 

300 0.16 10 6.28 

500 0.19 10 6.49 

1000 0.17 9 7.14 

 

Figure 6.2 shows the impact of order lead time on the optimal decision, and Table 6.3 

shows that the expected cost per unit time 𝐸𝐶(𝐴∗, 𝐿𝑝
∗) gradually increases with the 

increase of 𝐿. The reason is the system degradation process does not change. As 𝐿 

increases, it is necessary to start ordering when the remaining life is longer, that is, 𝐴∗ 

gradually increases; and once the system needs preventive replacement or fault 

replacement if the spare parts have been ordered but have not arrived, the out-of-stock 

loss caused by the long wait for spare parts will increase, which increases the expected 

cost per unit time, so 𝐿𝑝decreases, making the preventive maintenance time closer to 

the arrival point. 

A joint maintenance and spare parts ordering strategy based on RUL is proposed for 

single-component systems. The maintenance strategy adopts a control limit strategy to 

determine the system degradation at each monitoring point to determine whether to 

perform preventive replacement or fault maintenance; at the same time, the predicted 

RUL is used to compare the difference between the remaining service life and the lead 
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time of the monitoring point with the size of the availability to determine whether to 

order spare parts, thereby integrating the spare parts ordering strategy with the real-

time health status of the system. A model for minimising the expected cost per unit 

time is constructed, and a discrete event simulation algorithm is designed to optimise 

the preventive replacement threshold and the availability threshold. The optimal 

solution is given through case analysis, and the influence of the monitoring cycle and 

the ordering lead time on the optimal decision is analysed. 
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Figure 6. 1 The expected cost per unit time in terms of the preventive maintenance threshold 

𝑳𝒑 and the availability 𝑨 with different period T (T=100, 200, 300) 

 

 

Figure 6. 2 The expected cost per unit time with different leading time L (=100, 300, 500 and 

1000) 
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With the application of cloud computing, big data analysis, the Internet of Things, 

digital twins and other technologies in industrial production processes, data is being 

generated at an unprecedented rate. Artificial intelligence technologies represented by 

LLM can mine and analyse data such as industrial documents, maintenance records, 

and standard manuals with their zero-sample learning and generalised answer 

capabilities and provide insights for fault analysis and maintenance decisions based on 

previous cases (Naqvi et al., 2024). The LLM large model fine-tuning process for 

energy storage system fault analysis and maintenance decision-making is shown in 

Figure 6.3. Its main process can be divided into four steps, including data 

preprocessing, model fine-tuning, evaluation and testing, and deployment and use. 

 

Figure 6. 3 LLM model construction process 

The conducted experiment serves as an initial demonstration of the LLM-based Q&A 

system integrated within a DT environment, designed to validate its practical 

feasibility and operational utility rather than provide exhaustive validation. The system 

demonstrates its capacity to enhance battery management by delivering rapid, context-

aware responses to maintenance inquiries, significantly reducing diagnostic time and 

enabling efficient decision-making under dynamic operational conditions. By 

leveraging intuitive, dialogue-based interactions, the system improves accessibility for 

non-expert operators, allowing them to address technical issues with minimal training 

while maintaining operational flexibility. Furthermore, the LLM-based Q&A system 

facilitates predictive maintenance by identifying anomalies and generating targeted 
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recommendations, thereby supporting preventive actions to extend battery lifespan and 

improve system reliability. The system’s knowledge integration capability is 

demonstrated through its ability to synthesize diverse data sources including historical 

maintenance records and technical standards, to deliver timely and contextually 

relevant guidance. Collectively, these results underscore the LLM-based Q&A 

system’s potential to complement DT-driven BESS management by bridging data 

analytics with actionable insights, ultimately contributing to enhanced operational 

efficiency and reliability in renewable energy systems. 

1) Data Preprocessing and Fine-tuning 

Data preprocessing refers to the process that takes place before LLM fine-tuning, 

where original data is acquired from application scenarios and then processed through 

a series of steps to improve model training efficiency. These steps typically include 

data collection, data cleaning, text formatting, and data augmentation. Data collection 

involves extracting relevant information from various industrial documents related to 

fault diagnosis and operational decision-making. Once the data is collected, it 

undergoes a data cleaning procedure, which focuses on removing noise and irrelevant 

information, such as extra spaces, special characters, and HTML tags, to ensure data 

quality and consistency. The cleaned data is then subjected to text formatting, where 

the structure and representation of the data are standardised according to the 

requirements of the LLM training framework, requiring that all data is uniformly 

represented. After the data has been cleaned and formatted, it may be necessary to 

perform data augmentation, particularly when the existing data is insufficient for 

certain training scenarios. Data augmentation techniques include synonym 

replacement, linguistic transformations, and the use of generative language models to 

produce additional data that maintains contextual relevance and diversity. These 

augmentation strategies not only expand the dataset but also improve the 

generalisation capability of the model by increasing the volume and variability of the 

training data. 
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Fine-tuning is further training based on a conventional base model through vertical 

domain datasets to enable its ability to accomplish specific tasks in specific 

environments and scenarios. The process of model fine-tuning can be roughly divided 

into several stages, such as selecting a base model, choosing a fine-tuning method, 

setting the fine-tuning parameters, and starting the fine-tuning training. Due to the 

huge number of parameters of large models, cutting-edge researchers have designed a 

variety of fine-tuning methods for large models, and the mainstream supervised fine-

tuning methods mainly include but are not limited to, Adapter Tuning, Prefix-Tuning, 

Prompt Tuning, LoRA and so on. Among them, the Adapter Tuning method mainly 

refers to a fine-tuning method that introduces an adapter based on the original model 

framework without changing the overall structure of the original model and realises 

the training under specific tasks by adjusting the adapter parameters. The Prefix-

Tuning fine-tuning method is a kind of fine-tuning method by adding a prefix layer in 

the input layer of the model, and in the Attention mechanism computation, the prefix 

layer is involved in the computation together with the original input to realise the fine-

tuning method. The advantage is that the model can be adapted to a specific task 

quickly and with less computational resources. Prompt Tuning is a type of command 

fine-tuning approach, which is centred on providing the model with given commands 

or prompts to improve the efficiency of the model's answer to a question and is 

characterised by the fact that there is no need to fine-tune the model structurally. LORA 

fine-tuning is a type of fine-tuning approach that freezes some of the weights of the 

base model and adds trainable low-rank matrices to the structure of the model. The 

fine-tuning training method with a low-rank matrix is characterised by efficiently 

tuning the neural network layer of the model to achieve parameter optimisation 

through a flexible low-rank matrix. The LoRA low-rank parameter update matrix is 

shown in Equation 6.7, 𝐴  and 𝐵  are trainable matrices, 𝑊0  is the pre-trained 

weight matrix, ∆𝑊  represents the parameter update during fine-tuning, 𝑥  is the 

word embedding vector input, and ℎ is the output. 

ℎ = 𝑊0𝑥 + ∆𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥                     (6.7) 
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Setting up the fine-tuning model mainly refers to setting up the relevant parameters of 

fine-tuning in the process of fine-tuning, such as the learning rate, iteration number, 

maximum gradient paradigm, maximum number of samples, and truncation length. 

After completing the previous steps, fine-tuning training can be carried out for the fault 

analysis and maintenance decision-making model of the energy storage system. 

2) Evaluation Metrics 

The evaluation and testing of the model is carried out in terms of test data set selection, 

evaluation method selection, testing and recording, and feedback and optimisation. 

First of all, the fine-tuned model needs to provide a test dataset including questions 

and answers, and the model will answer the questions and compare the answers with 

the standard answers to measure the model's capability, for example, to ask about the 

cause of a component failure and how to deal with it to check whether the model's 

answer is in line with the standard answer given in the technical manual. According to 

the application scenarios of the model, the common evaluation indexes of the model 

capability mainly include BLEU-4, ROUGE-1 and ROUGE-2, etc. BLEU-4 is an 

index based on n-gram to measure the quality of machine translation, and the formula 

for BLEU algorithm accuracy is shown in Equation 6.8, and the formula of the length 

penalty factor BP is shown in Equation 6.9, and the BLEU formula is shown in 

Equation 6.10. ROUGE-1 and ROUGE-2 focus on the recall of a single word in a 

single sentence and the recall of two consecutive word groups in a sentence, 

respectively, and the formula for ROUGE-N is shown in Equation 6.11. The testing 

and recording phase mainly involves testing the model performance based on the test 

data set and evaluation metrics and recording the test results. Finally, the model is 

optimised based on the test results. 

𝑝𝑛 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝(𝑛−𝑔𝑟𝑎𝑚)𝑛−𝑔𝑟𝑎𝑚∈𝐶𝐶∈(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝(𝑛−𝑔𝑟𝑎𝑚′)𝑛−𝑔𝑟𝑎𝑚′∈𝐶′𝐶∈(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
            (6.8) 

Where the numerator represents the number of matched 𝑛 − 𝑔𝑟𝑎𝑚𝑠  and the 
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denominator represents the total number of 𝑛 − 𝑔𝑟𝑎𝑚𝑠 in the candidate sentence. 

𝐵𝑃 = {
1, 𝑖𝑓 𝑐 > 𝑟

exp (1 −
𝑟

𝑐
) , 𝑖𝑓 𝑐 ≤ 𝑟

                   (6.9) 

Where 𝑐 represents the number of characters in the candidate translation sentence; 𝑟 

represents the number of characters in the reference translation sentence. 

𝐵𝐿𝐸𝑈 = 𝐵𝑃 × exp (∑ 𝑤𝑛 log(𝑝𝑛)4
𝑁=1 )                 (6.10) 

where 𝑤𝑛 = 1/𝑁, and when 𝑁 = 4, Equation (4) is the expression for BLEU-4. 

𝑅𝑂𝑈𝐺𝐸 − 𝑁 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛∈𝑆𝑆∈(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠)

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)𝑔𝑟𝑎𝑚𝑛∈𝑆𝑆∈(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠)
    (6.11) 

Where the denominator represents the total number of 𝑛 − 𝑔𝑟𝑎𝑚  in the standard 

answer and the numerator represents the number of 𝑛 − 𝑔𝑟𝑎𝑚  generated by the 

model. 

3) Deployment and Use 

The deployment and use phase is the application phase after the model has been fine-

tuned. Existing model training requires a large memory of GPU, so most of the training 

process needs to be deployed on the cloud platform. Therefore, the deployment and 

use of the model can be roughly divided into the steps of training weight saving, local 

backup of the model, interactive interface construction and running use. Training 

weight preservation refers to the preservation of the parameters of the fine-tuned model. 

The conventional base model makes it difficult to provide professional advice on 

failure analysis and maintenance decisions of energy storage systems, but after fine-

tuning with domain knowledge and data, it can answer questions on failure analysis 

and operation and maintenance advice of energy storage systems, so it is necessary to 
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preserve the weights for subsequent reloading and recalling. Model local backup 

mainly refers to the process of downloading the model from the training platform to 

local backup after training the model in the cloud service platform. Finally, the 

interface for interacting with the model in terms of questions and answers needs to be 

constructed for operational use. 

4) Experimental Results 

This section presents the experimental results of the LLM-based fault diagnosis and 

maintenance decision support model for BESS. The experiments were conducted to 

evaluate the effectiveness and robustness of the proposed methodology, using a dataset 

constructed from two primary technical resources: the ‘GB/T 40090-2021 national 

standard’ and the ‘PowerTitan Operation and Maintenance Guide’. These documents 

contain detailed information regarding the standard operating procedures, fault 

diagnostics, and maintenance strategies for energy storage systems. The dataset 

includes information on fault categories, troubleshooting methods, component-level 

repair instructions, and decision-making strategies for optimal maintenance planning. 
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Figure 6. 4 Text normalisation 

After data cleaning, the two technical documents were converted from PDF type 

format to text format, and the corresponding question-answer(Q&A) dataset was 

constructed according to the descriptions in the technical documents, and the process 

of text formatting is shown in Figure 6.4. A total of 585 Q&A pairs were constructed, 
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covering a wide range of fault scenarios, maintenance procedures, and decision-

making strategies specific to energy storage systems. The dataset included a diverse 

set of faults and their corresponding solutions, with a total length of 52,996 characters, 

allowing both common and rare fault scenarios to be represented. 

The LLM used in this study was the Qwen1.5-14B-Chat model, a large-scale language 

model known for its capability to handle complex language tasks and domain-specific 

knowledge. The fine-tuning process was carried out on the Llama factory platform, 

leveraging GPU acceleration to expedite the process. The model has 14B parameters, 

and the specific basic requirements of the training environment are shown in Table 6.4. 

Table 6 4 Basic requirements of dependency 

Dependency Require 

python 3.11 

torch 2.4.0 

transformers 4.43.4 

datasets 2.20.0 

accelerate 0.32.0 

peft 0.12.0 

trl 0.9.6 

CUDA 12.2 

deepspeed 0.14.0 

bitsandbytes 0.43.1 

vllm 0.5.0 

flash-attn 2.6.3 
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After completing the construction of the basic training environment, enter the llama-

factory platform. The platform interface layout is shown in Figure 6.5. Select the 

constructed dataset and complete the setting of the corresponding parameters to start 

fine-tuning training. The specific fine-tuning algorithm used is the LoRA algorithm, 

and the specific fine-tuning parameters are shown in Table 6.5. 

 

Figure 6. 5 Llama-factory platform interface 

 

Figure 6. 6 Loss function of the LLM 
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Table 6.5 Fine-tuning parameters setup 

Parameter Value 

stage ft 

model_name_or_path /root/autodl-tmp/Qwen1.5-14B-Chat 

preprocessing_num_workers 16 

finetuning_type LoRA 

learning_rate 5e-5 

num_train_epochs 4 

template Qwen 

flash_attn auto 

dataset_dir /root/LaMA-Factory/data 

cutoff_len 1024 

max_samples 100000 

per_device_eval_batch_size 2 

gradient_accumulation_steps 8 

lr_scheduler_type cosine 

LoRA_rank 8 

LoRA _alpha 16 

LoRA_dropout 0.1 

LoRAplus_lr_ratio 16 
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Figure 6.7 Question and answer interactive system based on gradio 

Table 6.6 Evaluation scores 

BLEU-4 ROUGE-1 ROUGE-2 

86.28 88.97 84.57 

 

Finally, the safe tensors format file generated by platform training was saved, and an 

interactive question-and-answer interface was built based on gradio [15]. The model 

was tested in this interactive interface. The specific interface is shown in Figure 6.7 

The results show that after fine-tuning the knowledge data related to energy storage 

system fault diagnosis and maintenance recommendations, the model can quickly 

provide fault analysis causes, and standardised maintenance strategies based on the 

questions. Compared with the standard answers, it is found that the answers of the 

model are correct and can provide reasonable guidance for the maintenance of energy 

storage systems during use. 
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Table 6.7 Examples of the specific questions of the cold rolling process for user inquiries 

Inquiries Descriptions 

Q1 How should operators urgently handle serious faults in the energy storage 

system, such as smoking or fire? 

Q2 What standards should be met before an energy storage power station is put into 

operation through grid connection debugging and acceptance? 

Q3 What operational modes can an energy storage power station be divided into? 

Q4 What are the operating conditions of the energy storage system in an energy 

storage power station?  

Q5 How should faults occurring during shift change be handled?  

Q6 What reporting and cooperation work should operators do after handling 

equipment failures? 

Q7 What are the requirements for the inspection items of the battery room or battery 

compartment?  

Q8 What are the methods to handle the situation where the communication of the 

energy storage converter is abnormal and the remote measurement and remote 

signalling data are not refreshed in time?  

Q9 How should the situation where the available capacity deviation between battery 

cells is high but not exceeding the alarm value be handled? 

Q10 What are the methods to handle the undervoltage and overvoltage alarms of the 

battery cells? 

 

The experimental results presented in the previous sections demonstrate the 

effectiveness of integrating predictive maintenance strategies and LLM-based fault 

diagnosis into BESS. This discussion synthesises the findings from both experiments, 
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highlighting their significance, potential applications, and implications for future 

research and industrial implementation. 

The first experiment focused on optimising predictive maintenance strategies based on 

the integration of RUL prediction and battery availability. The findings illustrate that 

incorporating both RUL and availability information significantly improves 

maintenance decision-making, leading to a more efficient allocation of resources and 

reduction of unnecessary maintenance actions. By using RUL as a primary indicator, 

the model could identify the optimal timing for preventive maintenance, thus avoiding 

premature replacement and excessive downtime. Additionally, considering battery 

availability allowed the strategy to account for external factors such as component 

supply and system availability, which are critical in practical scenarios. This integrated 

approach outperformed traditional maintenance strategies, as evidenced by the 

reduced overall maintenance costs and improved system uptime achieved during the 

experimental evaluation. 

The second experiment, which employed an LLM-based model for fault diagnosis and 

operational decision support, further validates the feasibility and advantages of 

integrating advanced AI technologies into BESS maintenance frameworks. The LLM 

model demonstrated high accuracy in fault identification and decision support, 

achieving BLEU-4, ROUGE-1, and ROUGE-2 scores that indicate a strong alignment 

with expert-verified reference answers. The model’s ability to interpret complex 

queries and generate context-aware responses shows its potential to assist maintenance 

personnel in diagnosing faults and making informed decisions in real-time. 

Furthermore, the qualitative analysis revealed that the LLM could understand nuanced 

language and provide detailed recommendations that extend beyond predefined rules, 

highlighting its potential to serve as a flexible and intelligent support tool in 

maintenance operations. 

When comparing the two experiments, several complementary strengths can be 

observed. The RUL-based predictive maintenance model excels at optimising the 
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timing and frequency of maintenance activities based on quantitative metrics, thus 

enhancing operational efficiency and resource utilisation. In contrast, the LLM-based 

model adds qualitative value by providing detailed fault analysis and decision support, 

leveraging domain-specific knowledge to handle unstructured data and complex 

scenarios. Together, these approaches provide a holistic maintenance framework that 

combines data-driven optimisation with AI-based interpretability and support. 

The integration of these two models within a DT framework creates a synergistic effect, 

where the strengths of both approaches are leveraged to enhance the overall reliability 

and efficiency of BESS operations. The RUL-based model can inform the LLM model 

about potential failure modes and maintenance schedules, while the LLM model can 

provide context-aware recommendations and insights that complement the 

quantitative predictions. This dynamic interaction enables the system to adapt to 

changing conditions, continuously improve maintenance strategies, and provide real-

time decision support that aligns with operational needs. 

In summary, this chapter explores the integration of advanced data-driven approaches 

into DT to enhance maintenance decision support for BESS. Experimental results 

show that combining spare parts ordering strategy combining RUL prediction and 

availability with LLM-enabled insights can significantly improve maintenance 

planning, fault detection, and operational decisions. This chapter highlights the 

complementary strengths of these models and suggests that integrating them into a DT 

framework can provide a more comprehensive and adaptive approach to BESS 

management, thereby improving system reliability and reducing maintenance costs.
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Chapter 7 Achievements and 

Conclusions 

The thesis systematically presents the achievements of integrating DT technology into 

BESS through a series of research explorations and implementations. Each segment of 

the study contributes to different aspects of DT development, deployment, and 

evaluation, providing a comprehensive understanding of how DT can enhance BESS 

management. Firstly, the research begins by establishing the fundamental motivations, 

objectives, and research questions, which provide a solid foundation for the subsequent 

study. It introduces the necessity of a data-driven, real-time operational environment 

for BESS management, setting the context for the proposed DT-driven approach. The 

discussion emphasises the challenges and complexities associated with accurately 

estimating critical battery parameters such as SOC, SOH, and RUL. The limitations of 

conventional methods are highlighted, pointing out the need for advanced 

methodologies that can handle complex battery behaviours under varying conditions. 

The first chapter of this thesis contains four research questions. Based on the work 

achieved, the answers to the research questions are obtained. The first chapter of this 

thesis contains four research questions. Based on the work achieved, the answers to 

the research questions are obtained. 

Secondly, a literature review related to BDT technology is presented, with a focus on 
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its integration into BESS. The review delineates the key components of BESS, the 

advantages and constraints of BDT, and current research trends in the field. It 

concludes with a summary of research gaps that the proposed study aims to address, 

setting a clear direction for the following research. This review serves as a reference 

point for understanding the role of BDT in enhancing battery management and 

provides context for the methodologies introduced later. 

Following this, an innovative DT-driven framework for BESS is proposed to support 

real-time monitoring, predictive maintenance, and operational optimisation. The 

framework integrates multi-source data acquisition, advanced state estimation models, 

and decision support modules to improve battery management. The use of data-driven 

techniques combined with the hierarchical structure of the DT enhances the accuracy 

of state estimation and robustness of fault detection. This framework effectively 

addresses the nonlinearities and temporal dependencies in battery data, demonstrating 

its potential for comprehensive battery monitoring and management. 

Subsequently, the research explores an advanced methodology for battery state 

estimation by utilising the hybrid TCN-LSTM model to predict SOC, SOH, and RUL 

under various operational conditions. Experimental results validate the hybrid model’s 

effectiveness, showing significant improvements over traditional methods in 

prediction accuracy. Additionally, transfer learning is employed to dynamically update 

model parameters with real-time data, allowing the DT to adapt to new battery 

conditions with minimal computational overhead. This dynamic adaptation capability 

is critical for maintaining reliable performance over extended periods. 

Additionally, the research continued to advance the DT framework to include 

situational awareness and multi-faceted monitoring properties by utilising the 

Transformer-CNN model to extract complex features from multi-source battery data. 

When these models are integrated, the DT framework is more sensitive to the 

behaviour of the BESS. It offers real-time insights into managing energy storage 

systems' operational complexities. To incorporate a self-evolving mechanism, the 
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framework continuously improves its capabilities by adapting to new data inputs and 

improving the accuracy of its decision-making over time. 

This research introduces an innovative decision support system to the DT framework, 

focusing on predictive maintenance and operational optimisation. RUL-based 

optimisation strategies are seamlessly integrated into the DT framework, while an 

LLM-based fault diagnosis system enhances decision support by providing AI-driven 

insights into battery faults. Together, these components improve failure predictions 

and optimise maintenance scheduling, reducing downtime and streamlining spare part 

ordering for cost-efficient operations. 

The work presented in this thesis contributes to BESS management by proposing a 

framework that combines advanced modelling techniques for operational optimisation 

and predictive maintenance. This shows the promise of DT to change situational 

awareness and decision support, enabling more reliable, efficient, and cost-effective 

energy storage systems. The results demonstrate the importance of combining data-

driven insights with intelligent decision-making to improve energy storage systems' 

operational and financial performance. 

Future research will focus on overcoming existing challenges to further enhance the 

capabilities of the HSE-DT framework for battery storage systems. The primary 

objective is to develop a more comprehensive DT model that effectively integrates 

both dynamic and static models, leveraging historical and real-time data to enrich 

situational awareness. This approach will involve creating a synergistic framework that 

combines past battery performance data with real-time operational information, 

providing a more holistic view of the battery system’s health and performance. 

In addition, research efforts will be directed towards optimising the digital twin to 

reduce latency, enabling real-time synchronous updates and adaptive feedback control. 
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This improvement will empower the HSE-DT framework to respond swiftly to 

changes in battery conditions, increasing its accuracy and reliability in practical 

applications. Moreover, enhancing the interaction between the battery digital twin and 

external systems, such as Smart Local Energy Systems (SLES), will be a critical focus 

area. By integrating the digital twin with broader energy ecosystems, the research aims 

to expand its applicability and facilitate more effective energy management strategies. 

Future work will also explore advanced data integration strategies and machine 

learning techniques to augment the digital twin’s predictive capabilities. This includes 

refining the self-evolving mechanism within the HSE-DT framework to better handle 

data sparsity and variability, as well as incorporating new feature extraction methods 

to capture additional aspects of battery behaviour. Addressing these research 

dimensions will extend the functionality and robustness of the HSE-DT framework, 

paving the way for its widespread adoption and further development in diverse energy 

storage applications. 

In conclusion, this study aimed to enhance the management and optimisation of BESS 

by developing a comprehensive DT-driven framework. The research systematically 

addressed the critical challenges in real-time monitoring, state estimation, and 

predictive maintenance of battery systems. Through the integration of advanced 

machine learning models, multi-source data fusion, and intelligent decision support 

mechanisms, the proposed framework offers a robust solution for the dynamic and 

complex nature of battery operations. 

The study began by identifying the limitations of conventional battery management 

methods, particularly in accurately estimating key parameters such as SOC, SOH, and 

RUL. To address these limitations, a DT-supported framework was introduced, 

incorporating a hybrid TCN-LSTM model to improve the robustness and precision of 

battery state estimation. This framework effectively captures temporal dependencies 
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and nonlinear behaviours in battery data, enabling accurate real-time monitoring and 

fault diagnosis. 

Additionally, the research extended the DT framework to include situational awareness 

and multi-faceted monitoring capabilities, using advanced models such as Transformer 

and CNN to extract complex features from multi-source battery data. This approach 

significantly enhances the DT’s ability to provide a comprehensive view of battery 

health, allowing for proactive decision-making and efficient fault management. 

Including a self-evolving mechanism further improves the adaptability of the 

framework, enabling continuous updates and refinements based on new data inputs. 

Furthermore, the study proposed an innovative decision support system within the DT 

framework, focusing on predictive maintenance and operational decision-making. By 

utilising RUL-based strategies and incorporating an LLM-based fault diagnosis system, 

the research demonstrated a methodology for optimising maintenance schedules and 

reducing downtime. The experimental validation confirmed that integrating RUL 

predictions with LLM-enabled recommendations significantly improves the overall 

reliability and cost-effectiveness of BESS management. 

Overall, this research provides a robust and scalable DT-driven solution for managing 

BESS, offering substantial improvements in state estimation accuracy, situational 

awareness, and maintenance decision support. The findings of this study lay a strong 

foundation for future research and development in energy storage systems and 

highlight the potential of DT technology to revolutionise the management of battery 

operations. The proposed methodologies and frameworks not only address current 

limitations but also open new avenues for the application of intelligent systems in 

energy storage management, paving the way for more sustainable and efficient battery 

solutions in real-world scenarios. 
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Appendix A. Digital Twin Technology 

Digital Twin (DT) technology refers to the virtual representation of a physical entity, 

system, or process, which is used to simulate, monitor, and optimise its performance. 

A digital twin leverages real-time data and advanced computational models to create a 

dynamic, continuously updated counterpart of the physical object, enabling predictive 

analysis, fault detection, and optimization strategies. The DT concept has become 

foundational to achieving the goals of Industry 4.0 by integrating cyber-physical 

systems (CPS) and enabling smart manufacturing (Tao et al., 2018). 

According to Tao et al. (2018), the relationship between DT and CPS is both 

complementary and synergistic. While both concepts involve the integration of 

physical systems with computational models, their roles differ in focus and 

implementation. Cyber-Physical Systems are primarily concerned with the seamless 

integration of computation, networking, and physical processes, creating a feedback 

loop between the physical and cyber worlds. In contrast, Digital Twins provide a more 

comprehensive framework that not only captures the real-time state of physical entities 

but also incorporates historical data and predictive analytics. 

The key differentiator between DT and CPS, as highlighted by Tao et al. (2018), lies 

in their capacity to handle different levels of system complexity and abstraction. CPS 

typically operates at the machine or production line level, where it monitors and 



178 Appendix A. Digital Twin Technology 

 

 

controls operational processes in real-time. Digital Twins, on the other hand, operate 

at a higher level of abstraction, encompassing not only operational data but also 

simulating future scenarios and conducting "what-if" analyses for strategic decision-

making. 

Mathematically, a Digital Twin can be formulated using state-space representations. 

Let 𝑆(𝑡) represent the system’s state at time 𝑡, which evolves according to a set of 

differential equations: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑓(𝑆(𝑡), 𝑈(𝑡), 𝐷(𝑡))                   (A1) 

where 𝑈(𝑡)  denotes the control inputs and 𝐷(𝑡)  represents external disturbances. 

The function 𝑓  defines the behavior of the physical system. A Digital Twin 

continually refines this function by incorporating real-time observations, historical 

data, and predictive models, making it capable of addressing both operational and 

strategic challenges. 

Tao et al. (2018) also emphasise that the Digital Twin framework extends the 

functionality of CPS by integrating three core components: physical models, virtual 

models, and connection mechanisms. These components allow for comprehensive data 

acquisition, integration, and interaction between the physical and digital domains, 

facilitating advanced applications such as predictive maintenance, real-time 

performance optimization, and lifecycle management. The mathematical foundation 

of DT can be further enhanced through the inclusion of machine learning techniques, 

such as reinforcement learning, to optimise control strategies 𝑈(𝑡) or deep learning 

algorithms to enhance the predictive capabilities of the state function 𝑆(𝑡). 
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Appendix B. Advanced Data Analytics 

Technologies 

B1 Machine Learning 

Machine Learning (ML), a subfield of Artificial Intelligence (AI), is centered on 

developing algorithms and statistical models that enable computers to learn from data 

and make informed predictions or decisions. Unlike traditional programming, where 

explicit instructions are provided by human programmers, ML algorithms 

automatically identify patterns and relationships within the data, allowing systems to 

enhance their performance over time without being manually reprogrammed (Han et 

al., 2022). ML has been successfully applied in various domains, such as natural 

language processing, computer vision, and recommendation systems. The details of 

the benchmarking algorithms employed in this thesis are elaborated in the following 

sections.  

• LSTM 

LSTM networks, introduced by Hochreiter (1998), are a type of Recurrent Neural 

Network (RNN) designed to mitigate the vanishing gradient problem and effectively 

capture long-term dependencies in sequential data. Unlike standard RNN, LSTM 

feature a more sophisticated cell structure comprising memory cells and three distinct 

gates: input, forget, and output gates. These gates regulate the flow of information into, 
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out of, and within the memory cell, enabling the network to selectively retain or discard 

information over extended sequences. The memory cell retains the long-term state of 

the network, while the hidden state represents the output of the LSTM cell at each time 

step. 

The input gate regulates the extent to which new information is incorporated into the 

memory cell: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                  (B1) 

where 𝜎 is the Sigmoid activation function, which outputs values between 0 and 1. 

𝑊𝑥𝑓 is weight matrix for the input-to-forget gate connection, 𝑥𝑡 is the input vector 

at time step 𝑡, 𝑊ℎ𝑓 is weight matrix for the hidden-to-forget gate connection, ℎ𝑡−1 

is hidden state from the previous time step, and 𝑏𝑖 is the bias term for the input gate. 

The output gate controls how much of the memory cell state is output as the hidden 

state: 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)                    (B2) 

where 𝜎 is the Sigmoid activation function, which outputs values between 0 and 1. 

𝑊𝑥𝑜 is weight matrix for the input-to-output gate connection, 𝑥𝑡 is the input vector 

at time step 𝑡, 𝑊ℎ𝑜 is weight matrix for the hidden-to-output gate connection, ℎ𝑡−1 

is hidden state from the previous time step, and 𝑏𝑖 is the bias term for the input gate. 

By using these gates, LSTMs can effectively manage the flow of information over time, 

allowing them to capture long-term dependencies and mitigate the vanishing gradient 

problem. It makes LSTMs particularly effective for tasks involving sequential data, 

such as natural language processing, speech recognition, and time series forecasting. 

• RNN 

Recurrent Neural Networks (RNNs) are a class of deep learning algorithms 



Appendix B. Advanced Data Analytics Technologies 181 

 

 

specifically designed to process sequential data. Unlike CNN, RNN leverages 

feedback connections to incorporate information from previous states into the current 

state of hidden units. In this thesis, RNN models are applied to predict strip breakage 

during the cold rolling process. 

This architecture deviates from conventional network structures by accepting input 

sequences of variable lengths rather than a fixed number of vectors. By utilizing all 

available input data up to the current moment, RNNs effectively capture temporal 

dependencies. Moreover, the depth of RNNs can be adjusted to reflect real-world 

conditions, thereby enhancing their ability to learn complex patterns over time. 

Therefore, the final output depends not only on the current input but also on the 

cumulative influence of previous hidden states. 

The mathematical formulation of the RNN process is presented as follows: 

𝑡𝑖 = 𝑾ℎ𝑥𝑥𝑖 + 𝑾ℎℎ𝑥𝑖−1 + 𝒃ℎ                    (B3) 

ℎ𝑖 = 𝜎(𝑡𝑖)                           (B4) 

𝑠𝑖 = 𝑾𝑜ℎℎ𝑖 + 𝒃𝑦                        (B5) 

𝑜̂ = 𝑔(𝑠𝑖)                           (B6) 

where 𝑥𝑖 indicates the input variables, 𝑾ℎ𝑥, 𝑾ℎℎ and 𝑾𝑜𝑥 are weight matrices, 

𝒃ℎ and 𝒃𝑦 are bias vectors, 𝜎 and 𝑔 are sigmoid functions, 𝑡𝑖, ℎ𝑖 and 𝑠𝑖 are the 

temporary variables, and 𝑜̂ is the expected output. The cost function is defined as 

follows: 

𝑓 = ∑ (
‖𝑜̂𝑖−𝑜𝑖‖

2
)𝑖                       (B7) 

where 𝑜𝑖 is the actual output. As such, the output at 𝑡 + 1 is the joint function of the 



182 Appendix B. Advanced Data Analytics Technologies 

 

 

input at 𝑡 + 1 and the historical data. The RNN simulates the correlation in sequential 

data, and the depth of the network is the time span. 

• RF 

RFs are a widely used and effective ML algorithm categorized under ensemble 

learning methods. RFs consist of multiple decision trees and leverage the collective 

output of these trees to improve prediction accuracy and mitigate overfitting. To 

increase diversity and reduce variance, RFs introduce randomness by selecting data 

subsets and features randomly when constructing each decision tree. Each decision 

tree in RFs is constructed using a subset of the training data, typically selected through 

bootstrapping (sampling with replacement). 

Decisions at each node are based on a subset of features and determined by metrics 

such as Gini impurity or information gain for classification, and variance reduction for 

regression. For classification tasks, Gini impurity is calculated as: 

𝑚𝑔( 𝐗, 𝑌) = 𝑎𝑣𝑘𝑰(ℎ𝑘(𝐗) = 𝑌) − 𝐦𝐚𝐱
𝒋≠𝑌

𝑎𝑣𝑘𝑰(ℎ𝑘(𝐗) = 𝑗)     (B8) 

where 𝑰(∙) is the indicator function. The margin measures the extent to which the 

average number of votes at 𝐗, 𝑌 for the right class exceeds the average vote for any 

other class. The larger the margin, the more confidence in the classification. The 

generalization error is given below: 

𝑃𝐸∗ = 𝑃𝐗,𝑌(𝑚𝑔(𝐗, 𝑌) < 0)                (B9) 

where the subscript 𝐗, 𝑌 demonstrates that the probability is over the 𝐗, 𝑌 space. Eqs. 

(B10) indicates that {ℎ(𝑋, Θ𝑘)|k = 1, 2, … , 𝑁} follow the rule of large numbers as the 

value of 𝑁  is large enough for the model, and the classifier has enough trees. 

Meanwhile, it has been proved that the upper limit of generalization error is convergent 

as the almost everywhere convergence of random vectors 𝜃, … , 𝑃𝐸∗. It is given as 
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follows: 

𝑃𝐗,𝑌(𝑃Θ(ℎ(𝐗, 𝛩) = 𝑌) − 𝐦𝐚𝐱
𝒋≠𝑌

𝑃Θ(ℎ(𝐗, 𝛩) = 𝑗) < 0)        (B10) 

𝜀̅ ≤
𝜌̅(1−𝑠2)

𝑠2                          (B11) 

where 𝜀 ̅ indicates the upper limit of the generalization error, and 𝜌̅  means the 

average correlation coefficient between trees, and 𝑠  represents the average 

classification performance of the decision trees. Eqs. (A8) illustrates that the larger the 

average correlation coefficient is, the larger the upper limit of generalisation error will 

be. Likewise, the larger the average classification is, the larger the upper limit of 

generalisation error will be. Essentially, the classification performance is affected by 

two factors, one is the overall performance of trees, and the other is the diversity 

between trees. 
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Appendix C: Large Language Models (LLM) 

Large Language Models (LLMs) are advanced artificial intelligence systems designed 

to understand and generate human-like text, making them pivotal in numerous Natural 

Language Processing (NLP) applications. These models are typically built on the 

transformer architecture and consist of neural networks with billions of parameters 

trained on extensive datasets of text from diverse sources. The primary goal of LLMs 

is to learn the statistical patterns and structures of language, which enables them to 

perform a broad range of NLP tasks, such as text generation, translation, 

summarization, and question-answering. Their remarkable effectiveness stems from 

their ability to capture long-range dependencies and contextual information, facilitated 

by self-attention mechanisms and multi-layered architectures (Vaswani et al., 2017). 

The core of most LLMs is the transformer architecture, introduced by Vaswani et al. 

(2017). Transformers leverage self-attention mechanisms to weigh the importance of 

different words in a sentence, allowing the model to focus on relevant parts of the input. 

This architecture is particularly beneficial for understanding context and generating 

coherent text. The training process involves unsupervised learning on large text 

corpora, where the model learns to predict the next word in a sequence or to fill in 

missing words, thereby capturing the underlying structure of language. 

The transformer model can be mathematically expressed using a self-attention 

mechanism, where the relationship between input tokens is represented as: 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉            （C1） 

where 𝑄, 𝐾 𝑎𝑛𝑑 𝑉 are matrices representing the query, key, and value, respectively, 

and 𝑑𝑘 is the dimension of the key vectors. This mechanism allows the model to 

consider the influence of all other tokens when computing the representation of a 

particular token, capturing complex dependencies in the input text. 

LLMs have become transformative tools in NLP, driving significant advancements 

across various domains, from content creation and customer support to scientific 

research and software development. However, the ongoing development of LLMs 

poses challenges such as ethical considerations, data privacy, and model 

interpretability. Research is being directed toward improving model transparency and 

fairness, ensuring that these models are aligned with human values and can be safely 

deployed in real-world scenarios (Bender et al., 2021). 

Future research should also focus on enhancing the efficiency and scalability of LLMs. 

Techniques such as model pruning, knowledge distillation, and quantization are being 

explored to reduce the computational resources required for training and deployment. 

Additionally, hybrid models that integrate symbolic reasoning with neural networks 

are being investigated to improve the generalization and problem-solving capabilities 

of LLMs (Marcus, 2020). 

In conclusion, LLMs such as ChatGPT, Claude 2.0, LLaMA 2, and Mistral 7B 

represent the state-of-the-art in NLP, each with unique features and strengths. Their 

continued development and integration with emerging technologies will further 

expand their impact on various industries and research fields. 
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