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Abstract 

Ammonia (NH3) has been considered a potential fuel for energy production to achieve zero carbon emissions. 

However, several challenges must be addressed to ensure its widespread use and safety. The current work focuses 

on developing a kinetic reaction mechanism that not only accurately predicts laminar flame speeds and the 

emissions from NH3 and NH3/H2 flames across various conditions but also ensures seamless applicability in 

Computational Fluid Dynamics (CFD) simulations, particularly in scenarios involving turbulent flows, such as 

swirl burners or complex engine chamber conditions. Using code Optima++, the rate parameters of the San Diego 

NH3 mechanism (only 21 species and 64 reactions) were optimised against a large collection of laminar burning 

velocity data, and concentration data measured in jet-stirred reactors and burner-stabilised stagnation flame 

experiments to develop a compact, yet robust model for CFD simulations. Due to its small size, the mechanism 

lacks important chemical pathways, so the requirement for physically realistic rate coefficients had to be sacrificed 

in order to achieve the best possible predictivity for practical applications. The mechanism has been tested for 

70/30 vol% NH3/H2 mixtures in CFD simulations of a general swirl burner against experimentally measured 

concentrations. Its predictions demonstrated good qualitative and often quantitative agreement with the 

experimental data for NO, N2O, and NO2 emissions, and NH3 slip in the whole equivalence ratio range, while 

allowing accelerated simulations compared to other leading mechanisms. 
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1. Introduction 

The increasing concerns regarding oil resources and 

carbon dioxide (CO2) emissions highlight the 

urgency to find alternatives to traditional liquid 

fossil fuels. Hydrogen (H2) is seen as a promising 

alternative, however, its application raises safety 

concerns due to its volatility and low flash point [1]. 

In response to these challenges, using ammonia 

(NH3) as a carbon-free fuel in combustion systems 

is gaining attention. It functions similarly to 

hydrogen in its role as a clean energy carrier and 

storage solution [1,2]. Additionally, storing and 

transporting NH3 is relatively easier and safer than 

dealing with H2 [2,3] due its extensive existing 

infrastructure, lower reactivity, and easier 

liquefaction, which also reduce overall costs 

compared to H2 [4]. However, despite these 

advantages, the use of NH₃ in combustion presents 

notable challenges. Ideally, ammonia combustion 

should produce only nitrogen (N₂) and water (H₂O); 

however, in real-world applications, significant 

formation of nitrogen oxides (NOₓ) is observed, 

especially under fuel-lean conditions [5]. NOx refers 

to a group of compounds including nitrous oxide 

(N₂O), nitric oxide (NO), nitrogen dioxide (NO₂), 

dinitrogen trioxide (N₂O₃), and dinitrogen pentoxide 

(N₂O₅) [6]. Among these, N₂O, NO, and NO₂ have 

received considerable research attention due to their 

significant health and environmental impacts [6]. 

Other major drawbacks are its unfavourable 

combustion properties: low burning velocity and 

high ignition point. As a result, various techniques 

are employed to improve its combustion 

characteristics, one of which is blending with H₂ to 

enhance its overall combustion efficiency. Another 

important byproduct of concern is unburned NH₃, 
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particularly in fuel-rich mixtures of NH₃/H₂ blends. 

Similarly to NOx species unburned NH3 also has 

environmental and health challenges due to its 

toxicity and pollution potential [7].  

To develop highly efficient and reliable combustion 

systems that produce minimal emissions, a full 

understanding of the chemical processes is needed, 

which can be achieved by developing kinetic 

reaction mechanisms. Numerous studies [8–28] 

have focused on developing kinetic models to 

accurately predict NH₃ combustion behaviour and 

emissions under a wide range of conditions. Many 

of these efforts utilise the mechanism of Miller and 

Bowman [29] as the core mechanism for improved 

kinetic models under specific conditions. Enhancing 

model accuracy involves either incorporating newly 

identified chemical reaction pathways [30], 

extending parameterization (e.g. with pressure 

dependence, enhanced third body efficiencies for 

additional species [31]), or tuning the rate 

parameters of specific key reactions based on 

improved theoretical calculations or experimental 

measurements [13,32,33]. Despite these efforts, 

discrepancies in the predictive performance of the 

improved kinetic models persist and require further 

investigation [34–36]. Chemical kinetic models are 

usually developed using quantum chemical method 

and statistical rate theory, with their kinetic 

parameters often manually tuned based on indirect 

experimental measurements of ignition delay times 

(IDT), laminar burning velocities (LBV), and 

concentrations in jet-stirred reactors (JSR), flow 

reactors (FR), and burner stabilised flames (BSF), 

whose simulation is relatively straightforward using 

either 0D or 1D reactor models. However, the 

development of modern combustion devices with 

intricate geometries and flow fields requires 

Computational Fluid Dynamics (CFD) simulations 

[37], which are computationally very demanding 

and thus can be run effectively only with small 

kinetic models. Consequently, the challenge in 

developing a reaction mechanism for CFD 

applications lies in achieving good predictive 

performance across various conditions and finding 

the balance between the complexity of the chemistry 

involved and its flexibility for CFD simulations with 

affordable computational costs. In detailed NH₃/H₂ 

mechanisms, the H/N/O kinetic system comprises 

over 30 species and around 200 reversible reactions, 

making CFD simulation computationally intensive. 

Simplifying the chemistry in kinetic models by 

including only the species and reactions relevant to 

specific conditions is a commonly used approach to 

reduce computational time  [38–42].  

Chemical Reactor Network (CRN) modelling allows 

approximate simulation of combustion systems with 

complex geometries by representing the flow field 

as a network of interconnected simple 0D reactors. 

CRN modelling allows a significant reduction in 

computational effort compared to CFD simulations, 

which enables the use of detailed kinetic models. 

Since the CRN is constructed based on CFD results 

and is usually tailored for specific results, it provides 

an efficient alternative for simulating NOx chemistry 

in complex systems such as industrial gas turbine 

(GT) engines [43–48]. 

Early efforts to optimise kinetic parameters for 

combustion mechanisms were led by Frenklach et al. 

[49,50], followed by Sheen and Wang [51,52], 

Turányi et al. [53], and Pitsch and coworkers [54]. 

Building on the PrIMe data format of fundamental 

combustion experiments [55], Turányi and 

colleagues developed the ReSpecTh Kinetics Data 

(RKD) format [56], the ReSpecTh information 

system [57], and the Optima++ code [53,58,59], 

enabling the storage, simulation, and optimisation of 

combustion experiments across various fuel systems 

including hydrogen [60], H2/NOx [61] and ammonia 

[34,35].  

The current work aims to develop a compact 

reaction mechanism for NH₃/H₂ blends with high 

predictive accuracy for laminar burning velocity and 

NOₓ and NH3 concentrations in CFD simulations by 

parameter optimization of the San Diego kinetic 

model [35]. The San Diego model was selected as a 

baseline for improvement due to its exceptionally 

small size (21 species and 64 reactions) and it 

showed good to satisfactory predictive performance 

over a wide range of conditions, based on the 

findings of Szanthoffer et al [35]. 

2. Methods 

2.1 Kinetic model optimization 

Accuracy of a combustion kinetic model can be 

characterised by an error function, which measures 

the deviation of the simulation results from the 

experimental data for a data collection. Turányi et al. 

proposed the following experimental uncertainty 

normalised mean square error function [53], and 

implemented into Optima++ for performance 

evaluation and parameter optimization of 

combustion kinetic models, 

𝐸(𝑷) =
1

𝑁
∑ ∑

𝑤𝑓𝑠

𝑁𝑓𝑠𝑑
∑ (

𝑌𝑓𝑠𝑑
sim(𝐏) − 𝑌𝑓𝑠𝑑

exp

𝜎(𝑌𝑓𝑠𝑑
exp

)
)

2

.

𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1

𝑁𝑓

𝑓=1

 (1) 

N, Nf , Nfs, Nfsd  are the number of data series in all 

RKD data files, the number of files, the number of 

data series in the f th file, and the number of data in 

the sth data series of the f th
 file, respectively. 𝑌𝑓𝑠𝑑

exp
and 

𝜎(𝑌𝑓𝑠𝑑
exp

) are the d th experimental data in the sth data 

series of the f th
 file and its one standard deviation 
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uncertainty, respectively. 𝑌𝑓𝑠𝑑
sim(𝐏) is the 

corresponding value simulated by the investigated 

kinetic model at vector of model parameter values P. 

If the experimental uncertainty of the measured data 

y can be characterised with relative error, e.g. in the 

case of IDTs, then logarithmic transformation 

Y = lny is applied, as symmetric relative error 

spanning even orders of magnitude deviations can 

be represented as absolute error on natural 

logarithmic scale. The error function averages the 

squared normalised prediction errors of the 

mechanism within each data series, and in the case 

of wfs = 1 (for all f and s), it weights each data series 

equally, so it is not biased by the different sizes of 

individual data series. In some cases, one might want 

to deviate from this approach, using non-unit 𝑤𝑓𝑠 

weights either to emphasise more important data 

series or to correct biases arising from highly 

imbalanced data quantities or highly different 

magnitudes of errors for different types of 

experiments.  

The predictive power of a combustion kinetic model 

can often be improved significantly by tuning their 

rate coefficients, or more specifically, the 

corresponding Arrhenius parameters. The current 

study utilises the highly efficient Optima++ code 

[53,58,59], which relies on the very robust 

FOCTOPUS optimization algorithm in tuning the 

Arrhenius parameters of rate constants within loose 

uncertainty limits [62,63] to fit the model 

predictions to experimental data collected from 

previous studies while considering the associated 

experimental uncertainties. The value of the error 

function has an absolute meaning, as √𝐸 measures 

the uncertainty normalised root-mean-square 

deviation (“RMSD error”) between the model and 

the experimental results, thus for the “perfect” 

model √𝐸 ≤ 1, if  √𝐸 ≈ 2 the model is usually 

considered a great model, and a model is considered 

satisfactorily predictive if √𝐸 < 3. The error 

function can also be evaluated only for a part of the 

data collection, for example only for laminar 

burning velocities or concentrations of a given 

species, thus different aspects of the model 

performance can be assessed. 

The influential reactions are usually identified by 

local sensitivity analysis of the simulation results 

with respect to the rate coefficients (e.g. Aj pre-

exponential factors) [64], which ranks reactions 

based on their log-normalised local sensitivity 

coefficient, 

𝑆𝑓𝑠𝑑,𝑗  =
𝜕 ln 𝑌𝑓𝑠𝑑

sim

𝜕 ln 𝑃𝑗

 (2) 

The identified most important parameters are called 

the active parameters of the optimization, as their 

values are tuned to minimise the error function. 

There are more advanced methods, such as the 

PCALIN method [65] which was derived from the 

second-order Taylor expansion of the error function. 

As a results, it inherently accounts for the 

uncertainty of the rate coefficients and experimental 

data while also incorporating all normalization and 

weighting within the error function. This enables a 

more effective selection of parameters, leading to a 

more efficient improvement of the model. 

Due to the small size of the San Diego 2018 

mechanism compared to other detailed models that 

incorporate the latest theoretical findings (e.g. [24]), 

it inevitably misses important chemical species and 

pathways. Consequently, even if its rate coefficients 

had the physically exact temperature and pressure 

dependences, its performance would be suboptimal 

due to its mechanistic deficiencies. During the 

optimization of the reaction rate parameters, the 

uncertainty ranges of the rate coefficients of the 

individual elementary reactions determined by the 

present state of knowledge are disregarded. This 

approach allows us to expand the search range of the 

rate coefficient values to compensate for simulation 

errors caused by the incomplete chemical 

description. Therefore, a wide, ±1 order of 

magnitude uncertainty range was defined around the 

nominal rate coefficient curves in the temperature 

range of 500–2500 K. This assumed uncertainty 

corresponds to uncertainty parameter value f = 1, 

which was used in Optima++ for uniform sampling 

of lnA, n and E/R transformed Arrhenius parameters 

as proposed by Nagy et al. [63].  

It is important to note that all the kinetic mechanisms 

for ammonia are still likely to be neither structurally 

nor parametrically complete. A key poorly described 

phenomenon is ammonia’s role as a third body. In 

NH₃/H₂ combustion, NH₃ is a major component and 

a strong collider regarding energy transfer due to its 

multiple vibrational modes that effectively absorb 

and redistribute energy, as well as its strong 

intermolecular interactions, including dipole forces 

and hydrogen bonding, which enhance collisional 

deactivation and stabilization of reactive species. 

This leads to unusually large (e.g. 5–20 relative to 

N2 or Ar) temperature-dependent third-body 

efficiencies, as supported by experimental and 

theoretical studies [66–68]. However, most 

mechanisms either neglect this or apply 

temperature-independent enhanced third-body 

efficiencies (e.g. Zhu 2024). Since no model fully 

captures NH₃ third-body effects yet, their accuracy 

is often achieved through off-tuned rate coefficients 

that compensate for these gaps. 

Finally, the performance of the improved San Diego 

2018 reaction mechanism developed in this study 

was evaluated by assessing its accuracy against 21 
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reaction mechanisms from the literature [8–28]. 

These mechanisms were selected based on their 

optimised performance, incorporating recent 

findings in kinetic modelling, such as corrections to 

the rate constants of key reactions in NH₃ kinetics 

and the inclusion of new NOx formation pathways. 

These advancements contribute to a more precise 

representation of ammonia combustion chemistry. 

2.2 Experimental data and its uncertainty 

To develop an improved model with robust 

performance for different burner designs, a large 

collection of NH3/H2 LBV, and concentration data 

measured in JSRs and burner-stabilised stagnation 

flames (BSSF) [69] were considered as optimisation 

targets. All JSR data and a large part of the LBV data 

have been collected and previously used for model 

performance evaluation by Szanthoffer et al. 

[35,70], encoded into RKD format data files [56], 

and stored in the ReSpecTh database [57]. The 

newly collected data (LBV and BSSF) has also been 

encoded into RKD files and are available in the 

ReSpecTh database with the publication. Each RKD 

file contains a single series of experiments, in which 

one or more properties are measured as a function of 

a systematically varied condition parameter, giving 

one or more data series, while other parameters are 

kept unchanged or varied only a little. In the case of 

LBV measurements, LBV is usually measured as a 

function of equivalence ratio (), in the case of JSR 

measurements, outlet concentrations of multiple 

species are measured as a function of temperature. 

In BSSF measurements, the outlet concentration is 

measured as a function of equivalence ratio. The 

total number of RKD files (Nfiles), experiments 

(Nexp), data series (Nseries), and data points (Npoint) and 

the covered ranges of conditions regarding hydrogen 

mole fraction in fuel blend (xH2; same as volume 

fraction), equivalence ratio (), pressure (𝑝), and 

unburnt gas temperature (Tu for LBV and BSSF) or 

temperature (T for JSR) are shown in Table 1. Our 

data collection is highly imbalanced as it contains 7 

BSSF concentration, 47 JSR concentration, and 179 

LBV data series. 

Regarding BSSF measurements, only a single data 

series for 70 vol% ammonia and 30 vol% hydrogen 

mixtures was used, as measured by Hayakawa et al. 

[69]. The 70/30 vol% NH3/H2 mixture optimises 

combustion by combining ammonia's high energy 

density and carbon-free nature with hydrogen's fast 

flame speed and wide flammability range. This 

balance improves ignition, flame stability, and 

emissions performance, making it a promising clean 

fuel blend for engines and gas turbines [23]. There 

is significant disagreement in the experimentally 

measured concentration values obtained by different 

laboratories in JSR experiments with pure NH₃ fuel 

under the same experimental conditions. Therefore, 

such JSR experiments were ignored in this study, 

and only data for NH3/H2 mixtures, measured by 

Zhang et al. [23] and Osipova et al. [71], were 

considered. Nevertheless, the measurements of 

Zhang et al. [23] for NH3/H2 mixtures with 10-70 

vol% H2 content, spanning NH3 concentrations from 

90-30 vol%, encompass ammonia-dominant fuel 

blends, and thereby provide useful information on 

the chemical kinetics of ammonia blended turbulent 

flames. LBV measurements were available from 26 

publications, listed in Table 2 which contains similar 

information as Table 1, and it also provides 

information on the applied experimental method 

used for determining LBV: OPF, HF, and FC stand 

for outwardly propagating spherical flame, heat flux 

and flame cone methods, respectively. Some 

experiments were discarded due to various reasons. 

From the JSR data series, three experiments were 

removed from both the Zhang et al. [23] and 

Osipova et al. [71] measurements, due to either 

enormous prediction errors across all mechanisms, 

or convergence issues during simulations. The 14 

LBV measurements of Karan et al. [72] using OPF 

with the constant volume method provided 14 data 

series, each with a large number (from 37 to 291) of 

densely sampled LBV data points with unburnt gas 

pressure and temperature varying monotonically. 

These data series have significant redundancy; 

therefore, to avoid unnecessary simulations, each 

series was subsampled to have only 10 points 

(equidistantly by index), resulting in 140 points 

instead of 2102. LBV data which include 

measurements with helium bulk gas were not 

considered in this study, as it is not relevant for 

practical applications. 

The present work focuses on model development for 

burners, where laminar and turbulent flame zones 

can be well approximated by 1D (freely propagating 

and/or burner-stabilised) laminar flame simulations 

and 0D jet-stirred reactor simulations, respectively. 

Table 1. Optimisation targets from different reactor types used in the current study 

Measurement Publication Ref. Nfiles Nseries Nexp Npoint xH2%  p/atm T or Tu/K 

BSSF conc. Hayakawa et al. 2022 [69] 1 7 17 119 30 0.57-1.40 1 298 

JSR conc. Zhang et al. 2021 [23] 8 14 71/74 284/296 10-70 0.15-0.79 1 800-1281 
 Osipova et al. 2022 [71] 3 33 51/54 254/269 38-61 0.60-1.50 1 800-1300 

LBV See Table 2. - 179 179 1283 1283 0-100 0.20-2.00 1.0-36.6 295-584 

All TOTAL - 191 233 1416 1940 0-100 0.20-2.00 1.0-36.6 295-1281 
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However, to develop a more robust model for a 

wider range of applications, or to mimic the 

chemistry in certain smaller regions within the 

burner, concentration and ignition delay data from 

plug flow and micro flow reactors (e.g. Nakamura 

and co-workers [26]) could also be incorporated for 

parameter optimisation. 

Experimental data uncertainty is an essential 

component of the error function (Eq. (1)); therefore, 

its estimation is a central issue in model evaluation 

and parameter optimization studies. Many authors 

often publish too optimistic uncertainty estimates, 

and the statistical noise of the data series is often 

larger than the published uncertainties. A method for 

the a posteriori assessment of statistical noise in a 

data series was developed and implemented into the 

Minimal Spline Fit code by Nagy and Turányi [73]. 

This code estimates the standard deviation of the 

statistical noise in an experimental data series 

(𝜎𝑓𝑠,stat for the sth data series in fth RKD file) which 

was measured as a function of a single 

systematically varied condition parameter. The 

uncertainty published by the experimentalist 

(𝜎𝑓𝑠𝑑,exp) and the statistical uncertainty (𝜎𝑓𝑠,stat) 

were assumed to be independent of each other and 

were combined using the following formula 

proposed by Olm et al. [74] to give a more 

conservative estimate for the uncertainty of the 

experimental data: 

𝜎(𝑌𝑓𝑠𝑑
exp

) = √𝜎𝑓𝑠,stat
2 + 𝜎𝑓𝑠𝑑,exp

2   . (3) 

This procedure was followed by Szanthoffer et al. 

[35] and also in this work for the previously and 

newly collected experimental data. 

2.3 Accelerated flame simulations 

Sensitivity analysis, when dealing with many 

reactions in the model, and model optimization, 

when involving many active parameters, require 

numerous repeated simulations using the same 

mechanism with modified parameters. A 

comprehensive database of numerical simulation 

results is established in Optima++ to reduce the 

computational overhead of repeated simulations. In 

order to accurately account for the high relative 

diffusivity of hydrogen in NH3/H2 combustion, 

simulations were run considering multicomponent 

transport and thermal diffusion. Furthermore, to 

ensure the numerical accuracy, strict convergence 

Table 2. Laminar burning velocity measurement considered in the current study 

# Publication Ref. Methoda NXML Npoint xH2%  p/atm Tu/K 

1 Lee et al. 2009 [75] OPF 5 10 10-50 0.6-1.67 1.0 298 

2 Lee et al. 2010 [76] OPF 3 15 69-100 0.6-1.67 1.0 298 

3 Hayakawa et al. 2015 [77] OPF 3 13 0 0.8-1.2 1.0-4.9 298 

4 Ichikawa et al. 2015 [78] OPF 3 22 0-100 1.0 1.0-4.9 298 

5 Li et al. 2018 [79] OPF 1 6 0 0.8-1.3 1.0 300 

6 Han et al. 2019 [80] HF 6 99 0-45 0.7-1.6 1.0 298 

7 Liu et al. 2019 [81] OPF 5 26 0 0.2-2.0 0.5-1.6 298 

8 Mei et al. 2019 [82] OPF 7 51 0 0.6-1.5 1.0-5.0 298 

9 Han et al. 2020 [83] HF 7 63 0 0.7-1.5 1.0 298-448 

10 Lesmana et al. 2020 [84] FC 3 21 0-8 0.9-1.2 1.0 295 

11 Lhuillier et al. 2020 [85] OPF 35 240 5-60 0.8-1.4 1.0 298-473 

12 S. Wang et al. 2020 [86] HF 5 67 40-60 0.6-1.6 1.0-4.9 298 

13 D. Wang et al. 2020 [87] OPF 9 51 0 0.6-1.4 1.0 303-393 

14 Xia et al. 2020 [88] OPF 2 15 0 0.6-1.6 1.0 298 

15 Kim et al. 2021 [89] OPF 3 12 0 0.9-1.2 1.0 298 

16 Li et al. 2021 [90] OPF 4 22 0 0.6-1.4 1.0 300 

17 Mei et al. 2021 [24] OPF 7 40 14-86 0.7-1.4 1.0-10.0 298 

18 Osipova et al. 2021 [91] FC 1 9 30 0.7-1.5 1.0 368 

19 Shrestha et al. 2021 [92] OPF 23 105 0-30 0.8-1.4 1.0-9.4 298-476 

20 N. Wang et al. 2021 [93] OPF 3 17 10-20 0.5-1.5 1.0-4.9 360 

21 Gotama et al. 2022 [13] OPF 2 14 40 0.8-1.8 1.0-4.9 298 

22 Han et al. 2022 [94] HF 4 49 4-60 0.6-1.6 1.0 298 

23 Hou et al. 2022 [95] OPF 6 32 0 0.7-1.3 1.0-14.8 298 

24 Ji et al. 2022 [96] OPF 10 92 0-87 0.6-2.0 1.0 303 

25 Karan et al. 2022 [72] OPF 14 140b 0 0.8-1.3 2.0-36.6 369-584 

26 Zitouni et al. 2023 [97] OPF 8 52 0-80 0.6-1.4 1.0 298 
a OPF: Outwardly Propagating spherical Flame method, HF: Heat Flux method, FC: Flame Cone method. 
b Originally published 2102 data points in 14 series were subsampled, resulting 10 points in each series. 
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criteria with low gradient and curvature thresholds 

(0.02) were applied. It was recently shown by 

Nakamura et al. [27] and Stagni et al. [31] that the 

consideration of thermal radiation is also crucial for 

NH3 flames [31]. Flame simulations of such quality 

could be done relatively quickly on a single core of 

a modern CPU (e.g. AMD Ryzen 9 7950X) for half 

of the laminar flame conditions with the San Diego 

mechanism using the Cantera 2.6 solver [98], which 

was employed in this study. However, a large part of 

the conditions required hundreds of seconds, and 

convergence issues were experienced (eight points 

did not converge even within ten minutes if thermal 

radiation was considered) even if the calculations 

were initialised using converged solutions under 

similar condition and fine sweeping was applied 

between their conditions. Given the large number of 

flame conditions (1283 experiments) and the 

extensive repeated simulations required for the 

optimization of several parameters, it was necessary 

to accelerate the simulations to ensure the 

optimization could be completed within a reasonable 

timeframe. Consequently, as a compromise between 

accuracy and fast simulations free from convergence 

issues, loose thresholds for gradient (0.06) and 

curvature (0.12) convergence criteria were 

employed and thermal radiation was neglected 

during optimization.  

At these loose integrator thresholds, individual 

simulation results can sometimes exhibit significant 

variation (e.g., 20%). However, its effect is mainly 

stochastic and approximately symmetric, so when a 

large number of simulations are considered, the 

random deviations average out and cause little 

change in the overall error. To validate the 

applicability of this approximation for model 

optimization, a convergence analysis was performed 

on the error function value of freely propagating 

laminar flame simulations using both the original 

San Diego 2018 mechanism and the optimised 

model (present work), with and without thermal 

radiation. As shown in Figure 1, tightening the 

relative thresholds for gradient and curvature led to 

high-accuracy convergence of the overall RMSD 

error function for laminar burning velocities from 

1283 simulations. The plot indicates a maximum 

deviation of 0.12 in the overall LBV RMSD error 

value (e.g. 3.36-3.24) due to the high applied 

thresholds and up to 0.7 due to the neglect of thermal 

radiation (e.g. 2.07-2.00). These inaccuracies are 

very small compared to the decrease in the error 

function at the tightest thresholds with thermal 

radiation considered (3.21→2.07). Similarly small 

variations are expected for other literature 

mechanisms, which would have only a minor impact 

on their predictivity ranking (see later in Table 4.). 

Thus, it is an acceptable trade-off, as significantly 

larger improvements are realised following 

parameter optimization. The time required to 

evaluate the performance of the San Diego 

mechanism with a modified parameter set reduced 

to 110 s on the whole data collection (32 threads of 

an AMD Ryzen9 7950X CPU with 64GB of DDR5 

RAM, and a fast NVME M.2 SSD drive), which 

enabled fast optimization.  

When sensitivity analysis is conducted with loose 

convergence thresholds, the added noise in the 

solution can result in significant sensitivity 

coefficients even for non-influential reactions. This 

noise is partially cancelled if the solution for the 

perturbed model is initialised from the solution of 

the unperturbed model (i.e., the noise is partially 

inherited) and can be further dampened by applying 

large perturbations (e.g., factors of 2 or 5). However, 

in the present study, due to the limited number of 

rate coefficients (a total of 69 low- and high-pressure 

limits across 64 reactions), brute-force sensitivity 

analysis of LBV calculations could be performed at 

tight convergence thresholds (GRAD = 0.01, CURV 

= 0.02) within a reasonable timeframe, without 

incorporating thermal radiation. 

2.4 CFD simulations 

This section describes the numerical setup for the 

computational fluid dynamics (CFD) simulation of a 

turbulent swirl flame, with a constant burning power 

of 10 kW and selected equivalence ratios of 0.6, 0.8, 

1.0, and 1.2. The novel burner geometry and 

experimental setup were presented in detail by 

Mashruk et al. [99]. The raw experimental data from 

[99] were standardised using the averaged oxygen 

Fig. 1. Convergence of the error function for 

laminar burning velocities in the original and 

optimized San Diego 2018 models, with and 

without thermal radiation. Level of convergence is 

increased by tightening the relative gradient 

(GRAD) and curvature (CURV) thresholds in 

flame simulations. 
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and water content and presented as 15 vol% O2 on a 

dry gas basis. The simulations were conducted using 

Ansys Fluent 2024r1 [100] with the Reynolds-

averaged Navier-Stokes (RANS) approach and the 

Reynolds Stress Model (RSM) for turbulence. The 

Stress-Menters Baseline (Stress-BSL) model was 

selected to represent the pressure-strain term in the 

transport equation for stresses. It improves standard 

omega closure by removing the sensitivity to free-

stream sensitivity conditions, enabling more 

accurate modelling of complex swirling flows. 

Although it offers potential improvements, it is 

important to note that the model may inherit certain 

limitations of omega-based models. The reacting 

flow calculations used the Eddy Dissipation Concept 

(EDC) combustion model. Calculations were 

performed using the default turbulent Schmidt 

number value (0.7) and including thermal diffusion. 

The calculations included the determination of heat 

transfer rates for the burner and quartz glass at a 

temperature of 288 K, with and a heat transfer 

coefficient of 20 W/m²K. The radiative heat flux was 

modelled using the Discrete Ordinates (DO) model.  

In consideration of the heat and flow models 

applied, the coupled pressure-velocity solver was 

employed with the Procedure for Efficient Solution 

of Transient and Steady-State Operations 

(PRESTO!) scheme for pressure discretization, and 

a second-order scheme was used for the remaining 

equations. 

The improved mechanism presented in this work 

was compared to the Stagni et al. 2020 [28] and 

Nakamura et al. 2019 [27] mechanisms, which were 

selected for their relatively small size, overall good 

performance, and very good predictive capability for 

emissions in rich ammonia-hydrogen flames 

[101,102]. In view of the relatively high projected 

heat loss to the ambient through the quartz wall, the 

available data on non-adiabatic stagnation flames 

were analysed and selected, with a primary focus on 

NO emissions, followed by N2O. Valuable insights 

into NO emissions predictions for BSSF modelling 

were presented in [103]. In rich conditions, the 

Stagni 2020 mechanism [28] demonstrated one of 

the best agreements for the BSSF model, while 

underestimating NO emissions in lean conditions. 

The Nakamura 2019 mechanism [27] demonstrated 

superiority in lean to stoichiometric conditions, 

exhibiting greater divergence in rich mixtures. 

Nevertheless, none of the mechanisms investigated 

in reference [103] were capable of reproducing the 

NO emission across the entire equivalence ratio 

range. Consequently, two mechanisms were selected 

for comparison with PW mechanism results. It is 

noteworthy that similar trends were observed in the 

CFD emission results, although the absolute 

differences were considerably smaller for the 

modelled turbulent flame than the 1D laminar flame. 

A 40-degree rotationally periodic section of the 

combustor above was represented with a three-

dimensional mesh of 1.6 million polyhedral 

elements for a radial cross-section (see Fig. 2). 

Simulations were carried out for a fully premixed 

mode of the burner operation, which allowed the 

mesh size to be reduced but neglected possible 

inhomogeneities in the H2 distribution, which in the 

experimental setup is supplied near the tangential 

swirler for safety reasons. A significant 

densification of the grid was performed for the 

region surrounding the projected flame position, the 

tangential swirler and the boundary layer near 

possible separation points. 

2.5 Chemical Reactor Network 

 Chaturvedi and coauthors have recently developed 

a Chemical Reactor Network (CRN) model [44] to 

investigate the NOx chemistry in experimental 

swirling NH₃/H₂ flames. This development is based 

on using CFD simulations to model the reacting flow 

field of a 70/30 vol% NH₃/H₂ blend in a generic 

swirl burner geometry developed at the 

Thermofluids Lab at Cardiff University [104].  

 
Fig. 2. Radial cross-section of a 40-degree periodic 

burner section showing the computational grid 

structure and domain configuration. 
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The computational domain was divided into zones 

based on the velocity field and the uniformity of 

temperature and species. The flame region was 

divided into seven main zones, each corresponding 

to a specific temperature range and individually 

modelled using Perfectly Stirred Reactors (PSRs) to 

capture their unique characteristics. The velocity 

field was defined by two recirculation zones, the 

Central Toroidal Recirculation Zone (CTRZ) and 

the Edge Recirculation Zone (ERZ), which are 

distinctive features of swirl flows in swirl-stabilised 

combustors and were modelled using PSRs. Finally, 

a Plug Flow Reactor (PFR) represented the burner 

exit zone. For further details, please refer to [44]. 

The developed CRN model will be used to evaluate 

the performance of the improved kinetic reaction 

mechanism and compare its predictive performance 

against the performance of eight kinetic models as 

detailed in Table 3. These models have been 

recognised in recent studies [102,103,107,108] for 

their accuracy in predicting the chemistry of NO 

[103], N₂O [102], NO₂ [107], and unburned NH₃ 

[108] across various equivalence ratios for a 70/30 

vol% NH3/H2 flames. Furthermore, the model's 

predictions will be validated against experimental 

measurements conducted using the same swirl 

burner employed for CRN model development, 

under similar fuel blend and atmospheric conditions 

[104]. 

3. Results 

3.1 Kinetic model optimization 

 In addition to the San Diego 2018 mechanism, 20 

NH3/H2 mechanisms published since 2018 were 

collected from the literature to evaluate the 

performance of the optimised model in comparison 

with the most accurate models currently available. 

As the simulated experiments contained no carbon 

atom containing species, all such species and their 

reactions were removed from all mechanisms to 

make a fair comparison of their size and accelerate 

simulations. The list of the considered 21 literature 

(“decarbonised”) mechanisms, together with the 

number of species (Nspec) and reactions (Nreac), are 

shown in Table 4. The table shows that most 

mechanisms have 31–35 species and 160–240 

reactions. The most detailed mechanisms were 

published by Meng et al. [19] and Zhu et al. [8] 

which have 269 and 312 reactions, respectively. The 

Table 3. Kinetic mechanisms used for comparison 

in CRN modelling 

# Mechanism  Ref. Nspec Nreac 

1 Lamoureux 2010 [105] 119 883 

2 Nakamura 2017 [33] 33 232 

3 Glarborg 2018 [21] 39 231 

4 Klippenstein 2018 [20] 33 211 

5 Stagni 2020 [28] 31 203 

6 Han 2021 [106] 36 298 

7 Zhang 2021 [23] 38 263 

8 Glarborg 2022 [15] 41 270 

9 Present work (PW) - 21 64 

Table 4. Size and prediction errors of the investigated NH3/H2 kinetic models in various combustion systems 

# Mechanisma Ref. Nspec
b Nreac

b √𝑬𝐋𝐁𝐕
c √𝑬𝐉𝐒𝐑

 c √𝑬𝐁𝐒𝐒𝐅
 c √𝑬𝐎𝐯𝐞𝐫𝐚𝐥𝐥

 c, d 

1 Zhu 2024 [8] 39 312 2.97 1.11 2.27 2.25 

2 Han 2023 [9] 32 171 2.24 1.63 3.70 2.67 

3 Present work - 21 64 1.97 2.72 3.24 2.70 

4 Jian 2024 [10] 32 233 3.23 1.80 3.79 3.06 

5 Otomo 2018 [11] 32 213 3.67 2.03 3.65 3.21 

6 X. Zhang 2021 [23] 34 224 2.45 2.78 4.59 3.41 

7 Stagni 2023 [12] 31 203 3.46 1.75 4.69 3.51 

8 Gotama 2022 [13] 32 165 3.28 2.91 4.59 3.67 

9 Nakamura 2019 [27] 34 229 3.75 2.87 4.71 3.85 

10 Stagni 2020 [28] 31 203 3.32 3.31 4.90 3.91 

11 Liu 2024 [14] 35 238 3.96 2.39 5.19 4.01 

12 Glarborg 2022 [15] 34 227 6.42 2.55 4.45 4.74 

13 Glarborg 2023 [25] 34 228 6.52 2.54 4.45 4.79 

14 He 2023 [16] 34 221 7.37 2.46 4.45 5.17 

15 Z. Zhang 2024 [17] 34 224 8.46 1.14 4.50 5.57 

16 Mei 2021 [24] 35 239 4.02 1.65 9.84 6.21 

17 Wang 2022 [18] 32 140 2.53 2.64 10.13 6.22 

18 Tamaoki 2024 [26] 33 228 3.29 2.14 10.17 6.29 

19 Meng 2023 [19] 39 269 10.14 3.11 4.62 6.68 

20 Klippenstein 2018 [20] 33 108 10.28 3.03 4.73 6.76 

21 Glarborg 2018 [21] 33 211 10.29 3.03 4.73 6.77 

22 San Diego 2018 [22] 21 64 3.36 2.43 13.94 8.40 
a Mechanism denoted by first author and the year of publication, except for San Diego 2018 [22] and the Present work mechanisms. 
b Green-yellow-red highlighting of cells corresponds to the minimum, the median and the maximum values, respectively. 
c Green-yellow-red highlighting of cells corresponds to √𝐸 = 2, 3, and 4 error values, respectively. 
d Root mean square of the √𝐸 errors for the three experiment types. 
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San Diego 2018 mechanism is the smallest in size, 

and even the next smallest mechanisms (e.g. Stagni 

2023, Klippenstein 2018) contains at least ten more 

species and forty more reactions, which made their 

flame simulations even more challenging. 

Nevertheless, it was possible to carry out all flame 

simulations with them using the approximate 

description. However, for most of them, accurate 

calculations had convergence issues for a large 

fraction of the collection experiments.  

To identify influential reactions whose rate 

coefficients should be optimised, sensitivity analysis 

was carried out on the whole data collection using 

+5% perturbation on the pre-exponential factor of all 

rate coefficients (64, and an additional 5 for low-

pressure limit rate coefficients). Sensitivity analysis 

showed that each of the 69 rate coefficients had a 

significant influence on the simulation results. The 

more sophisticated PCALIN method which directly 

assesses the variation of the error function upon 

variation of the parameters within their uncertainty 

ranges, also confirmed that all reactions can have 

significant influence if 1 order of magnitude 

variation was allowed for their pre-exponential 

factor. Consequently, all rate coefficients were 

considered in the optimization, and all three 

Arrhenius parameters of them were tuned to exploit 

maximum flexibility of the model to compensate for 

the mechanistic deficiencies. During optimization, 

the error function weights in Eq. (1) were set to 

1/179, 1/47 and 1/7 for the 179 LBV, 47 JSR and 7 

BSSF data series, respectively, to compensate for 

the imbalance in the data collection. The optimised 

mechanism is included as supplementary material. 

To characterise the model performance, the error 

function in equation (1) was evaluated separately for 

the three experimental data types using unit weights. 

Table 4 presents the performance of the 21 literature 

mechanisms and the optimised San Diego 2018 

mechanism (Present work, PW mechanism) in terms 

of the square root error function values (i.e. √𝐸, see 

Eq. (1) for E). √𝐸 was evaluated for LBV, BSSF 

concentration and JSR concentration measurements 

separately, and the overall error function value 

(√𝐸Overall
 ) was calculated as the root mean square 

average of the three errors. This way, each type of 

experiment has equal weight in the √𝐸Overall values. 

The mechanisms are ranked according to the overall 

error.   

The accuracy of the PW mechanism was greatly 

improved compared to the San Diego 2018 

mechanism in predicting LBVs of NH3/H2 mixtures 

(including pure NH3 and H2). Surprisingly, it has 

become the most accurate mechanism for LBV 

calculation despite its smallest size. The mechanism 

predicts 85% of the available LBV data within 3σ 

experimental uncertainty. Very good performance is 

Table 5. Prediction errors of the investigated kinetic models for BSSF and JSR concentration measurements 

# Mechanisma Ref. 
√𝑬𝐉𝐒𝐑 b √𝑬𝐁𝐒𝐒𝐅

 b 

NH3 H2 O2 H2O N2 NO N2O RMSc NH3 H2 O2 H2O NO NO2 N2O RMSd 

1 Zhu 2024 [8] 2.1 0.8 0.8 1.4 0.6 0.4 0.5 1.1 0.9 0.9 1.3 1.9 0.7 1.5 5.2 2.3 

2 Han 2023 [9] 2.5 0.8 0.6 1.3 0.9 0.7 2.8 1.6 1.1 5.4 0.7 3.9 6.3 3.0 1.0 3.7 

3 Present work - 4.0 2.3 2.9 3.3 2.7 1.3 1.5 2.7 0.7 5.6 0.8 3.9 1.5 3.6 3.2 3.2 

4 Jian 2024 [10] 2.2 2.6 1.0 1.3 2.8 0.5 0.5 1.8 1.8 5.1 0.7 4.0 2.8 2.2 6.5 3.8 

5 Otomo 2018 [11] 2.9 1.4 2.5 2.3 2.4 0.5 1.0 2.0 0.8 5.3 0.8 3.8 5.4 1.9 4.1 3.7 

6 X. Zhang 2021 [23] 3.5 2.8 1.3 3.1 3.5 1.1 3.0 2.8 1.3 5.6 0.7 3.8 3.9 2.8 8.7 4.6 

7 Stagni 2023 [12] 2.0 1.3 0.8 1.8 2.1 0.6 2.7 1.8 1.5 5.4 0.7 4.0 3.3 2.7 9.4 4.7 

8 Gotama 2022 [13] 2.9 3.7 2.1 2.4 1.2 1.2 5.0 2.9 1.0 5.6 0.7 3.8 5.1 3.1 8.1 4.6 

9 Nakamura 2019 [27] 3.9 3.6 0.9 4.2 3.0 0.6 1.4 2.9 2.7 5.3 0.7 4.0 2.7 2.7 9.4 4.7 

10 Stagni 2020 [28] 2.0 1.3 0.5 1.6 1.5 0.7 8.1 3.3 1.1 5.7 0.7 3.8 7.2 2.8 7.6 4.9 

11 Liu 2024 [14] 2.7 1.4 1.4 2.7 1.1 1.2 4.3 2.4 1.5 5.5 0.7 3.9 6.2 3.2 9.6 5.2 

12 Glarborg 2022 [15] 3.1 2.4 1.2 2.8 3.2 1.4 2.9 2.5 2.1 5.3 0.8 4.1 1.8 2.2 9.0 4.4 

13 Glarborg 2023 [25] 3.1 2.4 1.2 2.8 3.2 1.4 2.9 2.5 2.2 5.3 0.8 4.0 1.8 2.2 9.0 4.4 

14 He 2023 [16] 3.2 2.7 1.1 2.7 3.1 1.0 2.4 2.5 2.9 4.1 0.8 3.9 2.5 2.3 9.3 4.4 

15 Z. Zhang 2024 [17] 2.1 0.6 1.1 1.5 0.6 0.5 0.4 1.1 3.1 4.1 0.7 4.0 2.9 2.4 9.2 4.5 

16 Mei 2021 [24] 2.3 1.7 2.0 1.6 1.8 0.6 0.8 1.6 17.1 6.1 9.4 10.4 1.8 3.6 11.6 9.8 

17 Wang 2022 [18] 3.6 3.5 2.7 3.0 2.0 1.5 0.9 2.6 17.2 8.2 9.3 10.9 5.1 3.8 10.5 10.1 

18 Tamaoki 2024 [26] 2.9 1.2 2.3 1.8 2.3 1.8 2.3 2.1 17.2 8.2 9.3 10.8 5.7 3.8 10.5 10.2 

19 Meng 2023 [19] 4.1 2.4 1.6 4.1 3.6 1.3 3.4 3.1 2.9 5.1 0.8 4.1 2.5 2.4 9.3 4.6 

20 Klippenstein 2018 [20] 4.1 2.4 1.6 4.1 3.6 1.3 2.8 3.0 2.9 5.1 0.8 4.2 2.9 2.2 9.6 4.7 

21 Glarborg 2018 [21] 4.1 2.4 1.6 4.1 3.6 1.3 2.8 3.0 2.9 5.1 0.8 4.1 2.9 2.2 9.6 4.7 

22 San Diego 2018 [22] 2.8 3.1 1.1 3.1 1.0 0.7 3.4 2.4 24.9 10.1 12.3 15.8 9.7 5.5 10.7 13.9 
a Mechanism denoted by first author and the year of publication, except for San Diego 2018 [22] and the Present work mechanisms. 
b Green-yellow-red highlighting of cells corresponds to √𝐸=2, 3, 4 error values, respectively. 
c Root mean square of the data series √𝐸 errors. The number of data series for the different species is not the same. 
d Root mean square of the species √𝐸 errors - there is only one data series for each species. 
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shown also by Han 2023 and the Z. Wang 2022 

mechanisms, but the simulations using these 

mechanisms take at least five times longer than those 

using the PW mechanism.  

The average performance in predicting JSR 

concentrations for NH3/H2 mixtures with at least 10 

vol% H2 content is acceptable for all models. 

Notably, the Zhu 2024 and Z. Zhang 2024 

mechanisms provided especially accurate 

descriptions (√𝐸 ~ 1). Additionally, the Han 2023, 

Mei 2021, Stagni 2023, Jian 2018, Otomo 2018, and 

Tamaoki 2024 mechanisms performed well 

(√𝐸 ~ 1.5–2.1). The San Diego 2018 mechanism 

shows fair performance with √𝐸 = 2.43, with slight 

deterioration upon optimization (√𝐸 = 2.72), yet its 

error remains below 3.  

In predicting BSSF concentration data, except for 

the most detailed Zhu 2024 mechanism (√𝐸 = 2.27),  

all mechanisms had unsatisfactory performance 

(√𝐸  3.65). While the San Diego 2018 mechanism 

had the highest error value of √𝐸 = 13.9, the PW 

mechanism emerged as the second-best one among 

the 22 mechanisms with √𝐸 = 3.24 for BSSF. Table 

5 shows the prediction errors of the mechanisms for 

the concentrations of different species measured in 

JSR and BSSF experiments. Regarding JSR 

experiments, the PW mechanism has very accurate 

predictions for NO and N2O (√𝐸 ≤ 1.5), and 

acceptable predictions for H2, O2, H2O and N2. Its 

accuracy for NH3 deteriorated significantly 

compared to the San Diego 2018 model 

(√𝐸 = 2.8 → 4.0), however, surprisingly, none of 

the mechanisms can perform excellently in this 

regard (all √𝐸 ≥ 2). Good descriptions are given 

only by the Stagni 2020, Stagni 2023, Zhu 2024, Z. 

Zhang 2024 and Jian 2024 mechanisms. Regarding 

NO emissions, all mechanisms perform well or 

excellently. For N2O, only eight mechanisms, 

including the PW mechanism, can give accurate 

estimates (√𝐸 < 2), and five models, including the 

San Diego 2018 mechanism were unreliable 

(√𝐸 ≥ 3.4. For O2 concentrations, almost all 

mechanisms perform accurately, and four 

mechanisms, including the PW model, have 

acceptable performance. For H2 concentrations, the 

predictions are also generally good or at least 

acceptable, and only the Gotama 2022, Nakamura 

2019, Wang 2022, and San Diego 2018 mechanisms 

have unacceptably large errors (√𝐸 > 3). In 

summary, three mechanisms: the Zhu 2024, the Z. 

Zhang 2024, and the Mei 2021 mechanisms showed 

reliable performance for all seven species. 

Regarding BSSF concentration measurements, the 

Zhu 2024 mechanism clearly stands out with its 

universal high accuracy for all species apart from 

N2O. For H2 and H2O, all other mechanisms give bad 

predictions (√𝐸 ≥ 4.1 and 3.8). For N2O, only the 

Han 2023 (√𝐸 = 1) and PW (√𝐸 = 3.2) mechanisms 

show good and acceptable performances, 

respectively, whereas all other mechanisms perform 

poorly (√𝐸 ≥ 4.1). Except for four mechanisms (Mei 

2021, Wang 2022, Tamaoki 2024, San Diego 2018), 

all models give good or acceptable predictions for 

NH3, with the PW emerging as the best. The trend is 

similar for O2: all mechanisms, except for the same 

four models, give excellent predictions. These four 

bad performing mechanisms and the PW model are 

also inaccurate (√𝐸 ≥ 3.6) for NO2, whereas most 

models predict it relatively accurately or at least 

acceptably with an error of √𝐸 = 1.9–3.2. After Zhu 

2024, the PW model has the best performance for 

NO (√𝐸 = 1.5), whereas half of the mechanisms 

perform badly (√𝐸 ≥ 3.0).  

3.2 CFD simulations 

The CFD simulations of 70/30 vol% NH3/H2 

mixture were carried out for a swirl burner at 0.6, 

0.8, 1.0. and 1.2 equivalence ratios. In the 

simulations, the tested mechanisms provided similar 

flow fields and temperature distributions across all 

the tested equivalence ratios. Figure 3 summarises 

the simulation result for outlet concentrations of 

NH3 and the three main NOx species obtained by the 

three mechanisms in comparison with the 

experimentally measured values. Emissions are 

normalised to a reference oxygen concentration of 

15 vol% in the dry exhaust, which excludes water 

vapor.  

Regarding NO emissions in the 𝜙 = 0.8–1.2 range, 

all mechanisms perform qualitatively well, with the 

Stagni 2020 mechanism demonstrating the best 

accuracy, whereas the other two significantly 

overpredict peak NO emissions in almost perfect 

agreement with each other. While all mechanisms 

demonstrated the highest NO emission at 0.8, the 

NO emission drop observed at very lean conditions 

was only captured by the improved mechanism. At 

very lean conditions, the PW mechanism predicts 

NH3 slip accurately, whereas the other two 

mechanisms predict no slip at all. All mechanisms 

accurately describe the complete consumption of 

NH3 under stoichiometric and slightly lean 

conditions, and they give a good qualitative 

description for the unburnt ammonia in rich flames.  
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Fig. 3. Outlet concentration of NH3, NO, N2O, and NO2 species measured experimentally by Mashruk et al. [99] 

and calculated using CFD simulations with three mechanisms (PW: present work) for 70/30 vol% NH3/H2 

blends in a swirl burner design. Emissions are normalised to 15 vol% O2 concentration in the dry exhaust (i.e. 

excluding water vapor). The results are connected by dotted lines only to make them easier to find and compare. 

In the latter case, considering that experimental NH3 

emissions exceed the measurement limits, the 

present mechanism and the Stagni 2020 mechanism 

provide the best and second-best predictions, while 

the Nakamura 2019 model underpredicts the result 

by at least one order of magnitude. Regarding N2O 

concentration predictions, all mechanisms are 

qualitatively correct as they give zero emissions 

only in the 𝜙 = 0.8–1.2 range. The Nakamura 2019 

mechanism is the most accurate, with 20% 

overprediction, whereas the PW mechanism and the 

Stagni 2020 mechanism overpredict by 80% and 

170%, respectively, compared to the experiment. 

Regarding NO2 concentration all models reproduce 

zero emissions at stoichiometric and rich conditions. 

All mechanisms predict the emergence of emission 

at 𝜙=0.8, however, they yield 3-4 times lower values 

than the experimental data. The Nakamura 2019 and 

the Stagni 2020 mechanisms give monotonically 

increasing emission with decreasing equivalence 

ratio, while the PW mechanism accurately captures 

the decreasing trend under very lean conditions.  

In summary, the PW model captures the NH3 slip 

and the rapid NO decrease at an equivalence ratio of 

0.6, and it also shows good qualitative agreement 

with the N2O and NO₂ concentrations. It should be 

noted that the resulting NO₂ emissions were under-

predicted, falling within the range of a few ppm, so 

this trend requires further investigation for 

confirmation. However, given the limited number of 

data points, especially in regions with large 

gradients, such as very lean and near stoichiometric 

conditions, these predictions should be viewed as an 

indication of the mechanism's capabilities rather 

than a direct fit. 

Figure 4 presents contour plots of the temperature 

and the NO concentration field, calculated with the 

Nakamura 2019 and present work mechanisms for 

φ = 0.8 lean conditions in a radial cross section of 

the burner. The most intense NO formation was 

observed on the inner side of the central 

recirculation zone and the flame tip.  
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Fig 4. Contour plots of temperature and NO mole fraction φ=0.8 for 70/30 vol% NH3/H2 blend in a radial cross-

section of a swirl burner obtained using CFD simulation with the Nakamura 2019 and present work 

mechanisms.

In contrast, a reduction was observed in the external 

recirculation zone, strongly correlated with the 

lower temperature region adjacent to the burner 

wall.  

The NO and temperature contours for both 

mechanisms are largely similar, suggesting 

comparable performance in predicting the 

temperature profile and NO formation rates. This 

indicates that the PW mechanism effectively 

captures key NO formation characteristics despite 

employing less detailed chemical pathways 

compared to the Nakamura 2019 mechanism. 

Additionally, it was found that all models were 

sensitive to changes in heat flux. A precise definition 

of the total heat transfer rates is essential, and while 

these rates are generally satisfactory, they may be 

underestimated for quartz walls due to the opacity of 

the walls. The results for the bottom of the burner 

were slightly overestimated, resulting in quenching 

and subsequent ammonia slip.  

The key advantage of the PW mechanism is its 

computational efficiency, as it could be simulated 

1.78 and 2.14 times faster than the Nakamura 2019 

and Stagni 2020 mechanisms, respectively. The total 

simulation time for one case using 96 CPU cores was 

7.5 hours with the PW mechanism and 16 hours for 

the Stagni mechanism. This improved efficiency is 

particularly notable, considering the good 

qualitative prediction of pollutant emissions 

achieved by the PW mechanism. 

3.3 CRN simulations 

A Chemical Reactor Network model, developed for 

another swirl burner based on CFD simulations of 

70/30 vol% NH3/H2 mixtures to predict NO 

emissions, was employed to assess the accuracy of 

various kinetic models (see Table 3). The simulated 

NO concentrations and those of other major 

pollutants (NH3, N2O, NO2) in comparison with 

experimental results over a wide range of 

equivalence ratios are shown in Figure 5.   

The CRN design can describe NO concentrations 

qualitatively well with all mechanisms, with the 

Stagni 2020 and the Nakamura 2017 models being 

the most accurate regarding the maximum and the 

position of the NO peak. The PW model together 

with Glarborg 2022 and X. Zhang 2021 models 

predict higher peak NO emissions and at lower 

equivalence ratios. The Nakamura 2017 model at 

rich conditions shows an artifact of sudden steep rise 

of NO emissions, whereas the other models capture 

the decreasing trend of NO correctly.  
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Regarding off-design species, the CRN design 

cannot capture NH3 slip at lean conditions with any 

of the tested models, while at rich conditions the 

present optimised model can qualitatively 

reproduced the steeply increasing concentration 

trend. N2O concentrations are captured qualitatively 

well with the Glarborg and the PW models, while 

the Klippenstein model predicts large emissions at 

all concentrations. NO2 emission are badly 

underpredicted by the tested models, nevertheless 

the PW model predicts its peak at similar 

equivalence ratios.  

In summary, this study also highlights the 

limitations of the CRN framework in predicting off-

design species concentration due to its simplified 

methodology. Key factors such as residence time 

[109] and the local fuel-air equivalence ratio [110] 

must be incorporated, as relying solely on 

temperature profiles proves inadequate. Addressing 

these gaps offers a pathway for advancing CRN-

based modelling approaches. 

4. Conclusions 

The optimised San Diego 2018 mechanism is the 

smallest NH3 mechanism available and has the 

shortest computation time for flame simulations. 

However, due to its small size it inevitably misses 

important chemical pathways, and its performance 

in predicting laminar burning velocities (LBV) and 

concentrations in jet-stirred reactors (JSR) and 

burner-stabilised stagnation flames (BSSF) is only 

fair. In this study, it was found that the accuracy of 

the San Diego 2018 mechanism could be greatly 

improved by rate parameter optimization if 

unphysically wide tuning ranges are allowed for its 

rate coefficients. The optimised model showed the 

best performance for LBV and gave reliable 

predictions for NH3, NO and N2O in BSSF and for 

  

  
Fig. 5. Outlet concentration of NH3, NO, N2O, and NO2 species measured experimentally by Mashruk et al. [104] 

and calculated using CRN with various mechanisms (P.W. Mech: present work) for 70/30 vol% NH3/H2 blends in 

a swirl burner design. Emissions are normalised to 15 vol% O2 concentration in the dry exhaust. Simulation results 

were calculated at dense equivalence ratio values and therefore are represented with lines. The experimental 

results are connected by dotted lines only to make them easier to find and compare. 
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NO and N2O in JSR, but its performance for NO2 in 

BSSF and for NH3 in JSR still needs to be improved. 

The model has also been tested in computational 

fluid dynamics simulations of a swirl burner, and it 

allowed rapid simulations there as well. Its 

predictions showed excellent qualitative and often 

good quantitative agreement with the 

experimentally measured emissions, which could 

not be provided by other widely used mechanisms.   

Despite the greatly improved performance of the 

optimised San Diego 2018 model, it is clear that the 

lack of potentially important reaction pathways can 

only be partially compensated for by tuning the rates 

of other reaction pathways. Possible development 

directions can be the extension of its chemistry with 

a few species and a few dozen reactions and the 

extension of its parameterization, as the pressure-

dependent description and relevant third body 

efficiencies, especially for NH3, are missing for 

some important reactions. 

Owing to the significant structural deficiencies of 

the San Diego 2018 model, the optimised rate 

parameters should by no means be considered as 

recommended physical values. Nevertheless, the 

optimised kinetic mechanism offers a good 

compromise between predictivity and computability 

and can thus serve as a useful model for developing 

practical applications using CFD simulations. 
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