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Abstract: Healthcare data is often fragmented across different institutions (hospitals, clinics,
research centers), creating data silos. Privacy-enhancing technologies (PETs) play a funda-
mental role in collaborative healthcare analysis, enabling healthcare providers to improve
care while protecting patient privacy. By providing a compliant framework for data sharing
and research, PETs facilitate collaboration while adhering to stringent regulations like
HIPAA and GDPR. This work conducts a comprehensive survey to investigate PETs in
healthcare industry. It investigates the privacy requirements and challenges specific to
healthcare, and the key enabling PETs are explored. A review of recent research trends that
identify challenges, and AI related concerns is presented.
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1. Introduction
Digitisation of health and patient data is significantly changing the clinical, operating,

and business models which continue to impact the world of economy for the foreseeable
future [1]. In parallel, there is a significant increase in the volume of collected, stored, and
processed data. According to The US International Data Corporation (IDC) prediction, that
by 2025 the amount of data created will rise to around 163 zetta bytes (ZB) worldwide [2].
Consequently, the vast number of connected devices and the increasing quantity of data
fuelling an ever-growing number of applications, are collectively raising significant concerns
in related security and privacy issues surrounding this data. While this change has improved
patient care workflow and reduced costs, it also increases the probability of security and
privacy breaches. In addition, one of the key barriers to widely adopting clinically-validated
artificial intelligence (AI) applications is preserving patients’ privacy [3].

Based on Statista [4], the healthcare industry is considered one of the most vulnerable
to cybercrime. In 2023, it remained the most targeted by cyber-attacks in the US, resulting
in data compromises. The number of data compromise incidents in the US increased more
than twice compared to 2022. In addition, between 2016 and 2022 the highest number of
reported breached records was registered in 2022, totalling 51.4 million. These findings
reveal a critical need for healthcare providers to adopt more proactive and comprehensive
cyber security strategy to protect against growing cyber threats. In light of these issues,
several techniques have emerged to mitigate privacy threats, known as PETs. These
technologies that are designed to achieve data sharing and privacy preservation are gaining
an expanding interest.

In the past decade, there is a significant interest in using PETs technologies to enhance
privacy in healthcare industry. A comprehensive literature review was conducted to pro-
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vide researchers with an overview of PETs in healthcare and identify research opportunities.
It is based on data from three major academic databases (SCOPUS, IEEE, and ScienceDirect)
illustrating the increasing adoption of PETs in healthcare environment. Figure 1 indicates
the number of recent publications in PETs in healthcare industry. The numbers include
studies in PETs in general, as well as specific technologies including Data Minimisation,
Anonymization, Pseudonymization, Homomorphic Encryption (HE), Secure Multiparty Computa-
tion (SMPC), Differential Privacy, Zero-Knowledge Proofs (ZKP), and Federated Learning. As
a result, this paper investigates PETs and then provides a brief overview of key enable
technologies in healthcare field, including summary of their challenges, to encourage future
research to enhance privacy.

Figure 1. The number of publications in PETs in healthcare industry.

Aiming at providing a comprehensive overview of the use of PETs in the healthcare
industry, this work reviewed the most recent PET solutions. This survey addresses three
guiding research questions: (1) Which key PETs are currently deployed in a healthcare
system, and how do they function? (2) What privacy requirements and challenges define
their application in this domain? (3) What barriers hinder their widespread adoption,
particularly regarding data utility in collaborative analysis? The main contributions can be
summarised as

(1) A comprehensive literature review has been conducted to focus on recent research
studies using PETs in healthcare systems and investigations of the privacy require-
ments and challenges in healthcare industry.

(2) This work investigates key enabling PETs, including federated learning, differential
privacy, homomorphic encryption, synthetic data generation, multi-party computa-
tion (MPC), etc., and analysed how they affect the data utility in collaborative analysis.

(3) Key recent research trends in the protection of healthcare data analysis were addressed,
specifically highlighting privacy protection schemes within AI models utilizing health-
care data, and their impact on data utility.

2. Related Works
Numerous comprehensive surveys have examined various aspects of PETs in different

fields such as AI and IoT. Collectively, these surveys offer a detailed understanding of PETs
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evolution and current trends. By summarising key insights from these reviews, existing
gaps are identified, that provide a basis for the contributions presented in this paper.

Cha et al. conducted a comprehensive survey on PETs in internet of things (IoT)
applications via a newly proposed categorization [5]. In addition, the works in [2,6] focused
on classifing PETs into classes, whereas [7] proposed a framework for PETs application
in IoT communications and evaluated according to stakeholder and GDPR requirements.
In smilier context, a paper investigated the privacy issues of individual privacy in the
healthcare industry related to wearable IoT and reviewed the international guidelines
and laws that support it [8,9]. This work is an endeavor to investigate the use of PETs to
enhance privacy in collaborative healthcare analysis. Recently, PETs technologies have
been increasingly employed to enhance the privacy in various environments, and a number
of new solutions have developed specifically to improve the privacy in collaborative
healthcare analysis. Due to the healthcare ecosystems consisting of many dimensions,
vulnerability could be exploited to undertake several attacks and breach privacy. To ensure
a comprehensive review, this paper systematically surveyed literature from sciencedirect,
IEEE Xplore, and Google scholar, using keywords such as ‘privacy enhancing technologies’
and ‘PETs in healthcare’. It focused on peer-reviewed studies from 2018–2024, selecting
papers that applied PETs and provided empirical insights. Table 1 summarise related
works, including their focus area, contributions, and limitations.

Table 1. Summary of existing works of PET methods.

Ref. Methods Strengths Limitations

[6] Various PETs
the legal foundation of PETs and provided
a classification of PETs and a selection of
some of the most relevant PETs.

Economic, social and usability aspects
of PETs.

[10] Various PETs/IoT
area

Assess the development of PETs across
fields, evaluating their compliance with
legal standards and effectiveness in
mitigating privacy threats.

Need research of PETs in the category of
holistic privacy preservation

[11] Various PETs/IoT
area

Analyse, evaluate, and compare various
PETs that can be deployed at different
layers of a layered IoT architecture to meet
the privacy requirements of the individuals
interacting with the IoT systems.

A careful consideration of the unique
features associated with the IoT, including
the use of heterogeneous power-limited
devices and the massive need for
streaming data flow

[2] Various PETs
A taxonomy classifying eight categories of
PETs into three groups, and for
better clarity.

Point out which PETs best fit each
personalized service category. The
trade-off between privacy preservation and
personalized services, Technical, user
experience, legal, and economic challenges.

[7] Various PETs/IoT
area

A framework for the application of PETs in
IoT communications. discuss an example
implementation based on a
car-sharing service.

Develop a security model for the
framework. Possible threats include, e.g.,
rogue framework instances and malicious
traffic injection.

[12] Various
PETs/Blockchain

present PETchain: a novel privacy enhancing
technology using blockchain and
smart contract.

Checking PETchain compatibility with
GDPR to improve it.
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Table 1. Cont.

Ref. Methods Strengths Limitations

[13] Various PETs
Investigates several industrial use cases,
their characteristics, and the potential
applicability of PETs to these.

Handle large volumes of data and
address requirements.

[11] Federated Learn-
ing/Healthcare

Take Alzheimer’s disease (AD) as an
example and design a convenient and
privacy-preserving system named
ADDETECTOR with the assistance of
Internet of Things (IoT) devices and
security mechanisms.

Discover more effective features to
represent the characteristics of ADs and
evaluate the feasibility of ADDETECTOR
on a larger dataset.

[14] Various PETs/IoT
area

Reveal the landscape of PETs in data
markets for the IoT. Identify and filter the
studies aiming to solve this
landscape’s challenges.

The IoT challenges for privacy
enhancement, consequences of a lack of
interoperability, computation and storage
constraints, and the privacy disparity
across jurisdictions.

[15] SMPC, HE, DP, CC

a detailed analysis of collaborative ML
approaches from a privacy perspective,
and a detailed threat model and security
and privacy considerations for each
collaborative method. Deeply analyse
(PETs) in the context of collaborative ML.

Verifiability of computations to provide
proof points in collaborative ML/AI
message flow

[16] FL/Smart
Healthcare

Review on the emerging applications of FL
in key healthcare domains, including
health data management, remote health
monitoring, medical imaging, and
COVID-19 detection. Analyse Several
recent FL-based smart healthcare projects

Communication Issues in FL-based Smart
Healthcare. Standard Specifications for
Federated Healthcare Deployment.
Security Issues in FL-based
Smart Healthcare

[17] Various
PETs/healthcare

An overview of how to integrate PETs into
pandemic preparedness

Privacy/Utility Trade-Off, Infrastructure
Deployment, Public Trust and Acceptance.

[18] DP/Smart Home
Data

Employ the Local Differential Privacy
(LDP) technique and propose a framework
for securing data collection in smart homes
based on the k-Anonymity Ran-domized
Response (k-RR) algorithm.

Explored alternative probabilistic models,
such as the Maximum Entropy Markov
Model (MEMM), Gaussian distribution,
or Dirichlet distribution,
for comparative purposes.

[19] DP/IoMT

A Group-based DP (GDP)framework for
Process Mining to protect the privacy of
healthcare data in specific columns which
are neither activity nor class ID. evaluate of
prominent PM algorithms.

Striking a balance between DP and data
utility in PM poses a challenge.
Resource optimization

[20] FL, AI/IoT

Investigate developments in FL for edge
AI, with an emphasis on strengthening
security and resilience against adversarial
attacks.Examine privacy-preserving
methods. Explore personalization
techniques that enable FL models to adjust
to the unique needs of individual IoT
devices, enhancing system performance
and user experience.

Data Heterogeneity,
Communication Efficiency,
Privacy and Security,
Scalability and Resource Constraints,
Personalization and Model Adaptation,
AND Incentive Mechanisms

Since FL is designed to solve the problem of privacy data protection in machine
learning, it faces challenges in ensuring privacy protection. It is important to ensure that the
training model does not expose users’ private information in FL process. Another challenge
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is the insufficient amount of data. A high performance model training in traditional
machine learning required a large amount of data in a distributed environment, but the
amount of data on each mobile device is insufficient [21]. Another complex challenge is
systems heterogeneity. FL must support multiple devices with different hardware and
configuration, resources, and operating system to achieve robust distributed learning
performance [22]. Also, Although FL has decentralized nature and able to address some
privacy concerns by maintaining data on local devices, but there is a security risks such as
data poisoning, model inversion, and adversarial attacks. FL has been adopted in initiatives
like MELLODDY which was comprised of 10 pharmaceutical companies, academic research
labs, large industrial companies and startups apply FL to drug discovery by creation of a
global federated model for drug discovery without sharing the confidential data sets of
the individual partners [23]. Yet, FL faces model inversion attacks, where attackers can
reconstruct patient features, posing risks in small-scale healthcare settings. Defences like
DP in healthcare applications, minimize this but reduce utility.

Privacy-Enhancing Technologies

In the past decade, the field of PETs has evolved rapidly with diverse approaches.
Figure 2 summarises the key taxonomy of key PETs based on their usage. The choice
of technique is determined by resource availability and the nature of the privacy issues.
However, there are limitations to the adoption of PETs in general applications due to many
obstacles varying from degradation of utility of data, to high costs of computational and
communication [24].

The initial introduction of the term “Privacy-enhancing Technologies” was in 1995 in a
report on PETs, which was published by Dutch Data Protection Authority in collaboration
with the Privacy Commissioner in Ontario/Canada that investigated a novel approach to
privacy protection [6].

Figure 2. The taxonomy of key PETs based on their usage.

There is a growing body of literature that recognizes the importance of PETs in different
fields. In 2017, Fischer-Hbner & Berthold [6] defined the legal foundation of PETs and
classified PETs into three classes based on the legal privacy principles. In 2020, Kaaniche
et al. [2] classified PETs into three different groups and eight categories, based on the main
entity involved in the privacy-preserving decision. The groups are user-side techniques,
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server-side techniques, and channel-side techniques. They also identified the potential of
PETs to satisfy both usually divergent economic and ethical purposes. Cha et al. conducted
a comprehensive literature review on PETs in IoT applications using a newly proposed
categorization [5].

It outlined the current status, limitations, and future research directions related to PETs
in the IoT. It found that existing PETs in the IoT are not advanced enough to fully align with
the principles outlined by the GDPR and the ISO 29100 standard [25]. On average, each
research paper addressed six privacy principles. Kunz et al. have presented a framework for
PETs application in IoT communications. It identified stakeholder and GDPR requirements
and evaluated the framework design based on these requirements to demonstrate its
ability to support requirements such as data minimization and data protection by design.
In addition, an example implementation based on a car sharing service was presented and
discussed [7]. A study published in 2022 by Li et al. develop a privacy-preserving smart
healthcare system for low-cost Alzheimer’s disease (AD) detection. In the system, the audio
from smart devices are used as the input and the differential privacy based mechanism
and federated learning based framework are applied to prevent the leakage of raw data
and model details during transmission. The experimental results proved that AD Detector
achieves a high level of accuracy while ensuring strong security protection [26].

In 2020, Terhorst et al. proposed privacy evaluation protocols (PEPs) for the evaluation
of Soft-Biometric PETs. The framework assessed PETs in the most critical attack scenario,
where a function creep attacker that knows and adapts to the systems privacy-mechanism.
They proposed three PEPs to ensure that the data is used appropriately, considering the
nature of the PETs evaluated. It is based on Kerckhoffs‘s principle of cryptography to
guarantee that the protocol meets the highest standards in both cases [27]. In the same
context, Haddad proposed a privacy-preserving handover protocol that utilizes blockchain
and zero knowledge poof (ZKP) to enhance privacy and security in 5G networks [28] . It
ensures a seamless and secure transition for user equipment, maintains confidentiality,
and strengthens the defense of the network against potential adversaries. Gatha et al.
investigated the existing PETs and their applicability to real-world data. It established that
PETs depend on the nature of the data and its intended use. It explored the combining
both syntactic and semantic PETs applicability and shown the effectively of comprehensive
approach [29]. In 2021, Javed et al. proposed a PET using blockchain and smart contract [12].
The technique aims to comprehensively address user privacy by allowing users to define
their access control policy by deploying their smart contract. Garrido et al. studied PETs
challenges and provided guidelines synthesized from expert interviews and a literature
review focus mainly on automotive use cases in 2021 [13].

A study conducted by Soykan et al. in 2022 noted that deeply analyzed PETs, includ-
ing secure multiparty computation, homomorphic encryption, differential privacy, and
confidential computing in the context of collaborative machine learning [15]. It presented a
guideline for selecting privacy-enhancing technologies for collaborative machine learning
and privacy practitioners. This study is the first survey aimed at providing an in-depth
focus on collaborative ML requirements and challenges for privacy solutions while also of-
fering guidelines for PETs selection. Then, an extensive literature review of PETs applicable
for collaborative machine learning is provided. PETs establish the foundation for pan-
demic preparedness by addressing social concerns related to data collection and analysis,
thereby supporting various data analysis and learning tasks for future application scenarios.
Liu et al. presented an overview of how PETs can be integrated into pandemic prepared-
ness and proposed a vision of future directions for leveraging more data for pandemic
response during public health emergencies, ensuring privacy, effectiveness, efficiency, and
explainability [30].
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In 2023, Waheed et al. proposed a framework for securing data collection in smart
homes based on the k anonymity randomized response (k-RR) algorithm to ensure com-
prehensive security for data generated by smart homes. This approach achieved a dual
layer of privacy protection, addressing the security concerns associated with IoT devices
in smart cities. The results demonstrated the effectiveness of the proposed framework
in evaluating the privacy risk of both obfuscated and original high-risk home data [18].
Sahlabadi et al. presented a Group-Based DP (GDP) framework for process mining to
protect the individuals privacy, while enabling healthcare organizations to extract valuable
insights from their logs [19]. Miller et al. paper explored data privacy research as applicable
to database programming curriculum in information technology. It outlined the differential
privacy concepts and definitions, used to obfuscate sensitive data collected and stored in
modern relational database schemes. It provided knowledge for integrating the differential
privacy concept and closely related PETs into undergraduate level relational database
management system class with focus on traditional business model [31].

This highlights the critical need to identify privacy requirements and challenges for
wearable IoT (WIoT) health devices, particularly given the vast amounts of sensitive user
data they collect. Li et al. comprehensively reviewed the state-of-the-art, considering IoT
architecture, current privacy laws, and representative PETs. They analyzed, evaluated, and
compared various PETs applicable at different layers of the IoT architecture to meet indi-
vidual privacy needs. Their findings emphasized the importance of carefully considering
the unique characteristics of IoT when adopting existing PETs, while acknowledging the
significant potential of many PETs for IoT applications [32]. Nguyen et al. provided a de-
tailed review of FL usage in smart healthcare and discussed recently advanced FL designs
and the key applications that would be useful to federated smart healthcare. Moreover,
it highlighted health data management, remote health monitoring, medical imaging, and
COVID-19 detection [16]. In the same context, in 2024, Rane et al. investigated federated
learning for edge AI development, focusing on enhancing security and resilience against ad-
versarial attacks like model inversion and data poisoning. It examined privacy-preserving
methods such as homomorphic encryption and differential privacy to ensure the safety of
private information [20].

3. Privacy Requirements and Challenges in Healthcare Industry
Modern healthcare systems rely heavily on advanced technologies like IoT devices

and cloud computing to collect and analyse personal health data at an unprecedented scale.
While these analytics offer significant benefits, such as remote patient monitoring, early
disease diagnosis, and personalized treatments, they also raise serious privacy concerns.
Without robust safeguards, this data analysis can become a privacy nightmare. The pro-
tection of privacy is as essential as the development and delivery of quality healthcare
services. The promised services will not be delivered as expected without privacy. This
section will highlight privacy challenges and requirements in the healthcare industry.

In [8], the authors identified key challenges and requirements for wearable IoT (WIoT)
health devices, outlining four essential capabilities for IoT applications. These include:
(1) seamless and secure connectivity with other devices for managing device functions and
encrypting data; (2) efficient power management for long-term, uninterrupted monitoring,
a critical design consideration; and (3) user-centric design, prioritizing comfort and ease
of wear. To meet these requirements, the devices should be small and lightweight. The
last challenge is that the collected data should be stored securely in the microcontroller
with large memory to avoid data loss in case of disconnection. Moreover, it summarized
the privacy requirements for WIoT in the healthcare industry based on many studies
and researches as follows: data minimization, user participation, data anonymization,
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authentication and authorization, level of availability, efficiency, and effectiveness of privacy
capabilities, limit the personally identifiable information (PII) processing, the right to
process a patient’s own protected health information (PHI) by the patient only anytime,
users right to limit usage of their health data, the right to complain, and Hide and encrypt
the personal data from plain view. Hari et al. study highlighted integrity and scalability as
challenges related to data privacy [33].

Tandon et al. explained and conducted a comparative study of security and privacy
challenges in healthcare identified key requirements, including confidentiality, integrity,
authentication, availability, data freshness, data maintenance, non-repudiation, interop-
erability, privacy, fault tolerance, and secure booting. It also highlighted several security
and privacy challenges including data management, shield architecture, authentication,
computational and memory limitations, authorization and access control, eavesdropping,
data leakage and destruction, trust mechanism, secure network, and scalability [34].

Moreover, it classified IoT systems to three-layer as perception, transportation, and
application, and identified issues and weaknesses in the security at each layer. The per-
ception layer is vulnerable to physical attacks, impersonation, denial-of-service, routing
attacks, and data transit attacks. The transport layer is susceptible to routing attacks, denial-
of-service, and data transit attacks. The application layer is vulnerable to data leakage,
denial-of-service, and malicious code injection [35]. Louassef et al. identified two key
requirements for maximizing patient data privacy in IoT systems: content requirements
and contextual requirements [36].

• Content Privacy: ensures and preserves patient data to prevent attackers from reveal-
ing it. However, this is insufficient for robust privacy, as attackers can potentially
identify patient data by targeting the receiving doctor’s identification.

• Contextual Privacy: this involves two distinct sub-requirements: pseudonymity,
where pseudonyms are used in lieu of real identities; and anonymity, which goes
further by ensuring that patient identities remain unidentifiable from their data or
actions. Anonymity includes preserving both patient and medical anonymity, along
with unlinkability and unobservability.

Zhang et al. summarized the privacy requirements for healthcare blockchains, encom-
passing user anonymity, patient control over data, confidential transactions, fine-grained
access control to transactions, and user authentication [37]. In 2021, a study conducted
to investigated requirements for security, privacy, and trust of the precision health and
categorised them into three requirements as follow law requirements, ethics requirements,
and health domain requirements. The study identified a number of major requirements
from regulatory aspects, including a proper informed consent, secure and privacy of data
processing, data transfer security, proper administrative, confidentiality, physical and tech-
nical safeguards, integrity checks, transparency, availability, fairness, breach notification,
and minimal and limited data use. From ethical perspectives, key considerations include
obtaining ethics approval, raising awareness, granting control to individuals, maintaining
ownership, minimising information leakage, managing data-sharing properly, and con-
ducting risk analysis and management. These ethical requirements along with regulations
requirements, including privacy, security, confidentiality, trust, and breach notification,
represent the essential requirements.

Moreover, while the sensitivity of PH data usage in health decision making has critical
role, the trustworthiness of health data is a particular requirement. This requires delivering
precision health data in a standard format that is simple, clear, complete, accurate, timely,
and transparent to guarantee the effectiveness and correctness when making inferences for
decisions. Based on these requirements, it identified four significant challenges; they are
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health data security and privacy whilst computing, consent management, precision health
data trustworthiness, and legal and ethical compliance [38].

Figure 3 illustrate the essential requirements and challenges associated with privacy
in the healthcare industry, classifying requirements into regulatory, ethical, and technical
requirements and essential challenges.

(a)

(b)

Figure 3. Privacy Requirements and Challenges in Healthcare industry. (a) Essential Privacy require-
ments; (b) Key challenges.

4. Key Enabling Privacy Enhancing Technologies (PETs)
This section provides an overview of key PETs that can be used to mitigate privacy

attacks. It focuses on the following PETs: data minimisation, federated Learning, homomorphic
encryption, and anonymization.

4.1. Data Minimisation

Data minimization, the practice of collecting and using only the personal data neces-
sary for a specific purpose, is a core principle of many privacy regulations, such as GDPR,
HIPAA, and CPRA [39,40]. These regulations dictate that only required data be collected to
fulfil a certain purpose [41,42]. In the literature, data minimisation is commonly defined
with phrase such as: specifying the purpose of data processing when the data is collected,
deleting data when no more required for the specified purpose, limiting the amount of
shared data to the minimum required, and to minimise collection of personal data. similar
phrases found in privacy regulatory documents, For example, HIPAA states “to limit the
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scope of the PHI (Protected Health Information) the health systems use, disclose or request
to the minimum necessary”.

Data minimization aims to limit personal data collection and retention to the minimum
necessary, ensuring its use and sharing are purpose-specific. However, existing definitions
often reiterate regulatory language, providing little practical guidance on implementation [43].

Data minimization poses a challenge for system designers. Developers must ensure
data usage is adequate, relevant, and limited to the system’s specific purpose. However,
modern software systems often rely on vast datasets, not all of which may be directly
related to the initial collection purpose. Consequently, developers frequently find data
minimization the most challenging privacy regulation to implement, often citing conflicts
with business interests [44]. A recent study revealed that while software developers often
prioritize minimizing data storage and sharing when implementing data minimization,
they struggle to effectively minimize data use within these processes. This challenge
arises from the complex and sometimes counterintuitive nature of implementing data
minimization in system design. That is, developers lack a clear foundation logic to guide
their decisions to avoid the use of a particular data item [44].

4.2. Federated Learning (FL)

A federated learning has emerged as a powerful machine learning approach aims to
protecting the privacy of data. It based on a principle of training machine learning models
on decentralized entities holding local data without sharing them [45,46]. It was introduced
by Google in 2016 for updating models for Android mobile terminal users locally [47].
Since then, FL has received significant attention both in academic and industrial fields [48].
Instead of sharing the raw data to a centralized location, only the local models are updated
and exchanged between a parameter server and the clients. This decentralized approach
ensures the security of sensitive data, minimises the risks of unauthorized access, or data
breaches. Consequently, each entity can benefit from other entities, enhancing the accuracy
of model.

In recent years, there have been variety applications adopted FL in practice, such as
prediction loan status, health situation assessment, and next-word prediction [49,50]. FL
should include multiple users collaborate to build a shared machine learning model. Each
user participates in training by using their local data. During the process, the data will not
leave the local client. The relevant information of model such as model structure, and model
parameters can be securely shared in an encrypted format. Moreover, the performance of
FL model should be able to approach the ideal model performance, that is, the model that
collects all training data and trains it [51]. FL can be classified based on distribution of
data as horizontal federated learning, vertical federated learning, and federated transfer
learning [52,53].

Horizontal FL is appropriate when datasets share a substantial number of user features
but have limited user overlap. Vertical FL, on the other hand, is designed for situations
where datasets share few features but have significant user overlap. When both user
and feature overlap is minimal, transfer learning can be used to address data or label
scarcity [21]. Although a relatively new technology, FL has experienced rapid adoption
due to the increasing prevalence of deep learning applications. Healthcare, where patient
privacy is crucial, is a prime example of an industry benefiting from FL [9,54].

FL has recently been described as a key factor for the digital health future [49]. It
supports collaborative data sharing and analytics in health research by enabling rapid
responses to emerging threats and facilitating real-time international data exchange and
analysis [55]. Since FL is designed to solve the problem of privacy data protection in
machine learning, it faces challenges in ensuring privacy protection. It is important to
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ensure that the training model does not expose users’ private information in FL process.
Another challenge is the insufficient amount of data. Training of a high performance
model in traditional machine learning required a large amount of data in a distributed
environment, but the amount of data on each mobile device is insufficient [21]. Another
complex challenge is Systems heterogeneity. FL must support multiple devices with
different hardware and configuration, resources, and operating system to achieve robust
distributed learning performance [22].

4.3. Homomorphic Encryption (HE)

HE allows computations on encrypted data without decryption [56]. Using public-key
cryptography, data is encrypted with a public key, and only the corresponding private
key can decrypt it. HE ensures that identical mathematical operations on encrypted and
decrypted data yield equivalent results [56]. HE schemes vary in their supported operations.
FHE handles both addition and multiplication, while PHE supports only one, offering
significantly better performance. Schemes supporting a limited set of operations beyond
PHE are classified as somewhat homomorphic encryption (SHE) [14,17].

HE involves four key steps: (1) Key generation, producing public and private keys
for encryption and decryption; (2) Encryption, converting plaintext to ciphertext using the
public key; (3) Decryption, recovering the plaintext from ciphertext using the private key;
and (4) Evaluation, performing operations on ciphertext while maintaining its format [17].
The major limitation of Fully Homomorphic Encryption is its computation overhead, due to
its high computational complexity and the comparatively large storage requirements for its
cyphertext. This performance issue is considered a significant challenge leading the research
projects to adopt PHE instead of FHE [9]. The major limitation of Fully Homomorphic
Encryption is its computation overhead, due to its high computational complexity and
the comparatively large storage requirements for its cyphertext. This performance issue
is considered a significant challenge leading the research projects to adopt PHE instead
of FHE [9]. HE is computationally intensive, particularly when applied to large datasets
or complex computations, which lead to significant processing overhead and slow in
application performance. This can be a critical barrier in time-sensitive scenarios, such as
real-time data analysis or clinical decision-making. Additionally, a deep understanding of
advanced mathematical concepts and algorithms are required to implement it. Moreover,
It has limited functionality, and does not support all types of computations effectively.
Operations, such as non-linear computations, are challenging to perform which restrict the
applications range that can leverage HE effectively.

Although HE is very slow in performance and complex [8], it has the ability to preserve
sensitive information while maintaining a level of service [57,58]. It is one of the most
advanced PETs but still not capable of covering all real-world use cases [9]. AS A real-world
implementations of HE, IBM and Cleveland Clinic used it to enable secure AI analysis
of encrypted patient records, researchers can conduct studies without exposing sensitive
data. In addition, Biometric identifiers like human DNA and RNA sequences similar to
fingerprint and can disclosure a critical information such as disease risk or socially for the
identification of family of diseases, such as the presence of an Alzheimer’sallele or the
discovery of non-paternity. However , current strategies for genomics data protection are
come with high overhead on researchers. Homomorphic encryption can be highly suitable
for genomics data sharing [10].

4.4. Anonymization

Data anonymization employs various techniques to protect private or personal infor-
mation during data collection (e.g., relational, graph-oriented). This involves removing,



Cryptography 2025, 9, 24 12 of 18

altering, or encrypting identifiers that could directly reveal identities or link data to specific
individuals or entities [9,14]. There are three commonly accepted data privacy constraints,
K-Anonymity L-Diversity, and T-Closeness [1].

Insufficient data anonymization may cause disastrous consequences and increase
identity disclosure or re-identification risks [59]. While some PETs protect sensitive data
from unauthorised access and ensure confidentiality while maintaining data and com-
putation integrity, the authorized receiver of the plaintext may still be able to reverse
engineer the output and link data records to individuals resulting in a re-identification
attack. Consequently, applying only secure and outsourced computation PETs is insuffi-
cient to achieve the required level of privacy in cases where the receiver may not be fully
trusted. Anonymization technologies offer a solution in these situations by preserving
implicit identifiers and sensitive attributes [14].

Data anonymisation is considered as the most mature technology developed, with a
high degree of usability, and the simplest approach at both theoretical and technical level.
It is widely accepted and commonly used in the real world, with sharing anonymised
datasets being routine. An ongoing debate questions the sufficiency of data anonymisation
techniques in protecting the privacy of entity, with several real-world cases highlighting
successful reidentification attacks in healthcare [60]. Nevertheless, anonymisation processes
need to be aligned with the nature, scope, context, and processing objectives, while consid-
ering the potential risks to the rights and freedoms of natural person, which requires some
specialised expertise. Current legislation takes anonymisation into account, significantly
reducing the legal and bureaucratic obstacles when handling anonymised data [9].

The anonymization technologies can be categorized into multiple groups; the first one
is syntactic technologies which assign a numerical value to the level of individuals’ pro-
tection in a dataset, leading to a notable perturbation of data, so it is harder to distinguish
between the three individuals for an attacker [61]. Semantic technologies is the second cate-
gory of anonymization technologies, enforce a privacy definition to a learning mechanism
used on a dataset, namely differential privacy, ensuring that the output distribution of the
mechanism unaffected by the removal or addition of an individual in the dataset. Semantic
technologies offer an advantage over syntactic technologies by providing a mathematical
guarantee of privacy independent of any background information, so an attacker unable to
use related information to re-identify an individual in the dataset. Other anonymization
technologies are perturbation and pseudonym creation [14,62]. Table 2 Privacy enhancing
technologies summaries.

Table 2. Key PET Technologies.

PET Description Use Cases Strengths Limitations

Data minimization
Restricting personal data
collection and use to the
minimum necessary

Privacy-by-design
systems, Data compliance

Legal compliance, High
level of privacy

Loss of utility, Conflict
with business interests,

Complex

FL

Training machine learning
models on decentralized
entities holding local data
without sharing them

AI development, Mobile
app, Healthcare

Data not shared,
Decentralization,

Scalability

Insufficient amount of
data, Privacy concerns,
Systems Heterogeneity

HE

Allows performing
computations on
encrypted data instead of
raw data

Financial analysis,
Healthcare, Cloud

computing

Data encrypted
throughout process,

Compatible with most
data types

Computation overhead,
Complex

Data anonymization
Techniques to protect
personal information
during data collection

Public dataset research,
Healthcare

Cost and risks reduction,
Easy to implement

Risk of re-identification,
Loss of utility
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5. Discussion and Future Works
This Section presents a critical discussion about previous enabling PETs techniques

and points to promising research directions that have not yet been widely considered as a
future works.

5.1. Discussion

The sheer magnitude of data, technologies, and systems makes achieving privacy in
any industry a gargantuan, and at times seemingly impossible task. However, there are
guidelines and research directions that can be followed to significantly improve the level
of privacy, especially in the future healthcare industry. This does not necessarily require
creating new PETs but rather applying existing ones on a large scale, effectively adopting a
more holistic approach. This section highlights challenges of PETs adoption in the context
of healthcare industry.

This surveys shows the complexity of adopting PETs including a large number of chal-
lenges. PETs have been considered as an expensive innovation. The computational cost and
overhead play a significant role when organizations consider adopting PETs especially if
AI or ML get involved. As AI/ML systems become more advanced, the need to balance pri-
vacy with performance and cost-efficiency becomes increasingly important. Implementing
a PET platform generally requires extensive software, hardware, and systems integration
investments. Moreover, timing of PETs implementation is critical. Integrating PETs during
new system deployments is generally cost-effective and often the only practical approach.
Retrofitting existing systems with PETs is considerably more complex and costly, exceeding
the expense of traditional measures. Consequently, computational cost and overhead re-
main significant concerns. Furthermore, balancing privacy and data utility presents a major
challenge, requiring professionals to carefully weigh individual privacy enhancements
against the need to preserve data utility. This challenge is the main cause of the conflict
between data owners seeking to maximize privacy and consumers aiming to maximize
utility, which is often determined by authenticity of the data. Furthermore, managing the
privacy-utility trade-off at each stage of information flow—input, computation, output,
transit, and storage—increases complexity for privacy officers. Conversely, the quality
of decisions made by data scientists and other decision-makers relies on the integrity of
computations and the authenticity of data and identities, factors directly influenced by this
same trade-off. PETs are often not adopted because of concerns that they could degrade
data quality and negatively impact the quality of the service provided.

Regarding to data in healthcare industry, the analysis of patient data from multiple
sources can help in diagnostic and therapeutic decisions but, the exchange of information
across multiple parties represent a challenge to apply PETs due to systems and datasets het-
erogeneous nature. Differences in systems and datasets, arising from their varied sources
may affect in PETs performance, indicating a critical need for extensive preprocessing and
data homogenisation. Additionally, an important factor that should be considered when
using PETs is the need to combine multiple PETs technique altogether instead of adopting
only one of them to achieve an acceptable level of privacy. but would also come with its
own specificity and additional costs. Clearly, this approach needs a further investigated
regarding its applicability, maturity, potential limitations and effective implementation
strategies. In addition, security concerns represent one of the major challenges of deploy-
ing PETs especially which related to AI. These concerns including data poisoning which
occurred when attackers inject malicious data into a training dataset to cause the AI model
to produce inaccurate results or degrade its overall performance. Additionally, model in-
version attacks are another concern, involve trying to reconstruct private information, such
as medical records of individuals, by exploiting the AI model output. attackers also can
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create specialised inputs with the purpose of confusing AI model to generate an inaccurate
prediction which, a technique referred to as adversarial Attacks. Model extraction repre-
sents another concern when the attacker tries to steal an AI model by extract its parameters
and leveraging its responses to steal and replicate a model. This poses significant risks,
particularly if the model contains confidential or sensitive information [63].

Aside from these challenges that arise during PETs adoption, there are multiple issues
encompassing technical, regulatory, and ethical domains, including inherent complexity,
low maturity of some PETs, compatibility issues with legacy systems, scalability issues,
and regulatory compliance all of which need to be addressed and resolved.

5.2. Future Works

The future work for PETs appears promising, with advancements driving innova-
tion in response to heightened awareness around data privacy. This section highlighted
some emerging trends and potential research directions that could further enhance the
PETs landscape.

(1) Secure AI models training. Develop methods for training AI models in a way
that protects the privacy and security of the data, and the models themselves. This
approach is important specially in industries that involve sensitive data, like finance,
healthcare, and national security. This study will investigate potential vulnerabilities
in model updates and ensure the models integrity while preserving privacy during
the training process. The aim is to train accurate AI models without compromising
the confidentiality of the data or the model parameters.

(2) Hybrid privacy enhancing technologies. Construct hybrid solutions that adopt
multiple PETs instead of using only one of them. The goal is to enhance the diverse
requirements of data privacy in increasingly digital world. Clearly, further investi-
gations are need in this approach in regard to its applicability, maturity, potential
limitations and effective implementation strategies. An example of two promising
techniques that can be used to address this privacy issue are HE and DP. HE enables
secure computations on encrypted data, while DP offers strong privacy guarantees by
adding noise to the data.

(3) Lightweight PETs development. Developing lightweight versions of HE, SMC, or DP
that could be applied especially in real-world AI and machine learning environments.
These advancements will allow organizations to leverage the benefits of AI while
persevering robust privacy protection. This work would be especially significant in
industries that have strict privacy requirements, such as healthcare and finance, where
data protection is critical.

(4) Advances in Cryptographic Techniques. Advances in cryptographic techniques,
especially FHE, are crucial. While FHE offers strong security and privacy, its compu-
tational demands are significant. Balancing privacy with computational efficiency is
essential for practical real-world applications. Research in cryptography is anticipated
to lead to the development of sophisticated methods for data security.

6. Conclusions
As the digital era progresses, many opportunities brought to the healthcare industry,

supported by technology and IoT platforms, making e-healthcare more common than ever.
However, in the term of data privacy and data collaboration, one of the most sensitive
industry is the healthcare industry. The sensitive nature of healthcare records makes them
vulnerable to many attacks which in turns make data privacy a growing importance issue
in healthcare industry . Therefore, this work presented a comprehensive literature review
that focuses on recent research studies using PETs in healthcare systems exploring the
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privacy requirements and challenges in healthcare industry. It investigates key enabling
PETs. In addition, recent research trends on PETs are summarized and identified challenges,
AI related concerns, and data utility in healthcare environments. The result from this study
indicated that due to the growing in healthcare industry, it is crucially needed for using
PETs techniques in order to enhance the privacy and ensure data integrity, and availability.
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