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Abstract

This thesis aims to improve the accuracy of fault classification in Induction Motor
(IM) bearings by developing and applying advanced Artificial Intelligence (Al) and Machine
Learning (ML) techniques for condition monitoring data. The proposed framework utilises
several approaches, namely, Multimodal Data Preprocessing, Artificial Thermal Image
Creation, Customised Radial Load Assessment, Multimodal Systems Decision Fusion, and
Graph Convolutional Networks (GCN) on Tabular Datasets to achieve better classification
accuracies over existing methods.

This study's first significant contribution is the proposed novel approach in the
preprocessing of multimodal condition monitoring data for classifying induction motor
faults that employs Convolutional Neural Networks (CNNSs), such as Residual Network-18
(ResNet-18) and SqueezeNet, to fuse vibration signals and thermal images. This approach
enhances fault classification accuracy by 14.81% and proves exceptionally effective in
scenarios with compromised image quality. Further refinement using Gramian Angular Field
(GAF) processing enhances the detection of subtle fault indicators, achieving better accuracy
than Continuous Wavelet Transform (CWT).

Secondly, this thesis explores the creation of high-quality artificial thermal images
using Wasserstein GAN with Gradient Penalty (WGAN-GP) and its conditional variant,
conditional Wasserstein GAN with Gradient Penalty ((WGAN-GP), to address the scarcity
of thermal imaging data. The artificial thermal images replicate complex thermal patterns of
IMs under various fault conditions with remarkable accuracy, as evidenced by the improved
Maximum Mean Discrepancy (MMD) scores and a 40.00% reduction in training times. The
high fidelity of these artificially generated images, validated against real images,
underscores their practical use in fault classification.

Thirdly, the Customised Load Adaptive Framework (CLAF) introduces a novel
approach to incorporating load variations into fault classification. Through a two-phase
process involving ANOVA and optimal CWT, load-dependent fault subclasses—Mild,
Moderate, Severe, and Normal (fault-free) or Healthy—are identified. The CLAF achieved

an accuracy of 96.30% + 0.50% in 18.155 s during five-fold cross-validation using a Wide



Neural Network (WNN), demonstrating its ability to detect subtle fault variations across
different Load Factors (LFs).

Fourthly, building upon the CLAF’s load-dependent fault subclass structure, the
research proposed two key methodologies for enhancing load-specific condition monitoring
accuracy while optimising training time relative to complexity using the MFPT bearing
dataset namely, the Load-Dependent Multimodal Vibration Signal Enhancement and Fusion
(LD-MVSEF) method, and the Hybrid Graph-CNN Decision Fusion (HG-CDF) method.
The LD-MVSEF employs a multimodal approach across multiple channels, with different
signal encoding techniques achieving a fault classification accuracy of 99.04% + 0.22% over
five runs in 18 min 30 s. It performed particularly well in the Moderate class, achieving
99.15% + 0.89% testing accuracy, and scored 97.20% = 1.75% in the Mild class.

The proposed HG-CDF combines the structural strengths of Graph Convolutional
Networks (GCNs) with the pattern-detection capabilities of 1D-Convolutional Neural
Networks (1D-CNNs) for CLAF load-dependent fault subclass classification. The study
began by optimising the GCN through Taguchi experiments, converting tabular data into
graph structures using the k-Nearest Neighbours method and achieving a mean accuracy of
89.01% + 1.25 across nine configurations. HG-CDF further improved performance, reaching
an overall accuracy of 99.19% in just 3 minutes and 28 seconds, surpassing LD-MVSEF in
the Mild class with 98.92% accuracy while also providing a faster and more efficient
solution.

The methodologies proposed in this research significantly enhance the IM fault
classification task, improve the decision-making process, and offer scalable solutions

adaptable to other domains.
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Chapter 1: Introduction



1.1 Background

Induction Motors (IMs) play a crucial role across various industries, but a significant
percentage of IM failures, estimated at 40% to 50%, stem from issues related to rolling
bearings (Frosini and Bassi, 2010). Recent studies have highlighted that bearing faults
account for up to 50% of mechanical failures in high-power IMs, underscoring their critical
importance in modern machinery (Nishat Toma et al., 2021). Furthermore, a 2020 IEEE
survey focused on 200 hp motors revealed that bearing faults constituted more than 40% of
all IM faults (Sihag and Sangwan, 2020).

IMs are widely recognised in manufacturing for their simplicity, affordability, and
reliability, powering nearly 40% of global electric consumption across diverse industrial
sectors. These motors, characterised by rotating components, such as rotors, bearings, and
gears, rely heavily on bearings for smooth operation. Bearings typically consist of inner and
outer races enclosing rolling balls within a cage to maintain uniform ball spacing. IM faults
due to excessive loads, fatigue, inadequate lubrication, and misalignment pose significant
operational and safety risks ( Toma et al., 2022a).

Bearings play a critical role in supporting IM components to ensure smooth rotation.
Typically, a bearing consists of inner and outer races enclosing rolling balls within a cage,
maintaining consistent ball spacing. Bearing faults often develop gradually, underscoring
the importance of early detection to minimise their impact and associated risks. As these
faults progress, they can impair IM performance, threaten worker safety, disrupt operational
efficiency, compromise product quality, and lead to substantial maintenance costs (Frosini
and Bassi, 2010; Sihag and Sangwan, 2020; Wei et al., 2021).

Hence, the urgent need to establish robust condition monitoring systems for IM
machines is evident. Leveraging Industry 4.0 capabilities and available data to develop
Data-driven Fault Diagnosis (DFD) systems incorporating Deep Learning (DL) techniques
for feature extraction and pattern recognition is essential to address these challenges (Niu et
al., 2020; Nishat Toma et al., 2021). In the Artificial Intelligence (Al) era of advanced
manufacturing, a dependable condition monitoring system for fault detection and
recognition is indispensable to uphold stringent quality standards and effectively manage

the production process (Niu et al., 2020).



In the realm of maintenance, Non-Invasive Inspection (NII) is a well-established
tool for monitoring the health of machinery. This technique enables the assessment of the
current health status without disrupting ongoing operations. N1I can be categorised into two
main approaches based on sensing methods. The first is Contact-based Non-Invasive
Inspection (CNI), which involves placing sensors directly on the machine’s body. This
includes techniques such as magnetic flux sensing, voltage analysis, machine current
analysis, vibration analysis, and wear debris monitoring. The second approach is Non-
Contact-Based Non-Invasive Inspection (NCNI), whereby sensors are not directly attached
to the inspected part of the machinery system. NCNI methods encompass technologies like
Radio Frequency (RF), radar technology, ultrasonic sensing, camera-based imaging,
Acoustic Emission (AE) sensing, thermographic sensing (which utilises Infrared (IR)
technology), and laser-based techniques (Alotaibi et al., 2021).

Among these approaches, Vibration Signal Analysis (VSA) is recognised as the
conventional method for fault classification (Jia et al., 2019). However, in the domain of
rotational-machine fault diagnosis using signals, signal preprocessing can be conducted
using various techniques, including time-domain, frequency-domain, or time-frequency
domain analysis (Sinitsin et al., 2022). On the other hand, thermal imaging has demonstrated
its superiority in terms of fault classification accuracy compared to vibration signals, as
supported by research conducted by Jia et al. (2019), McGhan and Feayherston (2020), and
Shao et al. (2021). Thermal image-based condition monitoring can achieve nearly 100%
accuracy by leveraging Convolutional Neural Network (CNN) transfer learning capabilities,
with the added benefit of requiring less preprocessing than vibration signal fault
classification (Choudhary et al., 2021; Khanjani and Ezoji, 2021). Furthermore, thermal
images exhibit less sensitivity to speed fluctuations, making them more efficient in specific
scenarios (Shao et al., 2023).

However, it is essential to acknowledge the limitations of thermal images, including
the installation costs for cameras and the potential for camera misalignment, which can
affect the recognition process (Gangsar and Tiwari, 2020). Additionally, the limited
availability and imbalanced distribution of thermal images across specific or all health
conditions can significantly affect the performance of condition monitoring systems (Niu et

al., 2020). Consequently, each input has its strengths and limitations. The motivation for the



current research stemmed from recognising the complementary nature of vibration signals
and thermal images and the need to address data availability issues and incorporate load-
dependent factors. This comprehensive exploration of various aspects of condition
monitoring involves combining modalities, enhancing accuracy, and considering load-
dependent factors.

This thesis proposes a multifaceted approach to enhance IM condition monitoring
in light of these considerations. Firstly, the thesis introduces a novel preprocessing
technique which combines contact- and non-contact-based sensing methods, specifically
vibration signals and thermal images. This approach addresses the limitations of thermal
image fault classification found in the literature, including noise and local blur, which can
hinder fault recognition (Fan et al., 2022). By integrating vibration signals as a
complementary data source, it is possible to develop a more reliable condition monitoring
system capable of mitigating noisy data through a holistic view and valuable knowledge
extraction from diverse factors. This approach contributes to the multimodal paradigm and
multi-sensor fusion by proposing a holistic multi-sensor fault classification methodology
with a novel preprocessing technique that creates a fused image incorporating valuable
knowledge extracted from various sources using CNNs and DL capabilities. The thesis also
explores signal encoding techniques, including Continuous Wavelet Transform (CWT) and
Gradient Angular Difference Field (GADF).

Second, this thesis addresses the need to generate an artificial thermal image dataset
mimicking real images under seven health conditions. These conditions include bearing
damages, such as the Inner Race Fault (IRF) type, Outer Race Fault (ORF) type, and ball
damage, as well as rotor damages, including one broken bar, four broken bars, and eight
broken bars, in addition to a Normal (fault-free) or Healthy condition. This approach offers
a promising solution to address the lack of public datasets containing IM thermal images
representing different health states. This is achieved by utilising various Generative
Adversarial Network (GAN) architectures, namely, the Deep Convolutional Generative
Adversarial Network (DCGAN), Wasserstein Generative Adversarial Network with
Gradient Penalty (WGAN-GP), and conditional Wasserstein Generative Adversarial
Network with Gradient Penalty (c(WGAN-GP).



Third, this thesis advances traditional fault classification methodologies by
introducing a Customised Load Adaptive Framework (CLAF), which accounts for load
variations and dataset customisation. The CLAF represents a pioneering approach,
employing a meticulous two-phase process to reveal load-dependent fault subclasses that
are not readily identified by traditional methods. The study explores how radial load
characteristics influence fault behaviours, employing advanced techniques such as Time and
Frequency Domain (TFD) feature extraction, feature reduction, CWT for time-frequency
analyses, Wavelet Singular Entropy (WSE), and CWT energy to identify novel load-
dependent fault subclasses. The CLAF is customised and tested on the Machinery Failure
Prevention Technology (MFPT) bearing dataset to reveal intricate load-dependent patterns,
providing a profound understanding of the interplay between load dynamics and bearing
fault behaviour. Various Machine Learning (ML) classifiers, including Wide Neural
Network (WNN), Cubic Support Vector Machine (CubicSVM), and Fine Tree, are
incorporated to validate the proposed framework.

Fourth, the thesis proposes the Load-Dependent Multimodal Vibration Signal
Enhancement and Fusion (LD-MVSEF) methodology to improve the classification
accuracy of CLAF load-dependent fault subclasses. ldentifying appropriate features has
been recognised as a challenge, as it can be time-consuming and, in certain cases,
impractical, particularly for specific faults or complex machinery (Resendiz-Ochoa et al.,
2018). This method employs a three-channel decision fusion technique, integrating GADF,
CWT, and time and frequency domain features. By utilising this multimodal approach, LD-
MVSEF enhances fault classification accuracy and enables more precise, load-specific
condition monitoring. It consolidates data from multiple channels, optimising classification
across various load conditions and facilitating informed decision-making.

Fifth, the thesis introduces the Hybrid Graph-CNN Decision Fusion (HG-CDF)
approach, which also focuses on improving the classification accuracy of CLAF load-
dependent fault subclasses. A key challenge in using Graph Neural Networks (GNNs) lies
in handling multivariate sensor data, where each sensor represents different factors, often
causing confusion during training (Deng and Hooi, 2021). In contrast, HG-CDF focuses
exclusively on tabular vibration signals, transforming features from the TFD into graph

structures using the k-Nearest Neighbours (KNN) method. It combines the strengths of



Graph Convolutional Networks (GCNSs), which capture complex relationships within graph
data, and One-Dimensional Convolutional Neural Networks (1D-CNNs), which excel at
detecting sequential patterns in time-series data.

While the previous literature has seldom explored the use of GCNs for fault
classification in IMs, particularly for fault classes derived from the CLAF, GNNs and k-
Nearest Neighbour Graphs (k-NNGs) have been shown to be complementary techniques for
analysing graph data. In particular, k-NNG is essential for constructing graphs from data
points (Wang et al., 2021b; Rangel-Rodriguez et al., 2023), while GNNs excel at identifying
patterns and relationships within graph data, as demonstrated in various fields such as
micro-service systems (Zhang et al., 2023b), power systems (Su et al., 2021), and fault

location in power networks (Mo et al., 2023).
1.2 Aim and Objectives

The aim of this research is to enhance the accuracy of fault classification in IM
bearings by developing and implementing novel artificial intelligence (Al) and Machine
Learning (ML) techniques utilising condition monitoring data. The research objectives are
organised into five main themes as follows:

1) Multimodal Data Preprocessing Methodology: To develop a preprocessing
methodology that integrates multimodal data (thermal images and vibration signals)
to improve fault classification accuracy. Discussed in Chapter 3.

2) Artificial Thermal Image Creation: To create high-quality artificial thermal
images using conditional Generative Adversarial Networks (cGANS) to represent
various IM health conditions. Explored in Chapter 4.

3) Customised Radial Load Assessment: To develop a Comprehensive Load-
dependent Analysis Framework (CLAF) for classifying IM faults into load-
dependent subclasses. Detailed in Chapter 5.

4) Multimodal Systems Decision Fusion Approach: To develop a Load-Dependent
Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF) method for
improved CLAF load-dependent fault subclass classification accuracy. Described in
Chapter 6.



5)

Graph Convolutional Network (GCN) on a Tabular Dataset Application: To
apply a Graph Convolutional Network (GCN) for classifying CLAF load-dependent

fault subclasses. Outlined in Chapter 7.

1.3 Alignment of Research Objectives with Methodologies and Chapter Structures

The research objectives outlined in Section 1.2 are systematically addressed

throughout the chapters of this thesis, ensuring a structured approach to achieving the

overall aim. The objectives and chapters are linked through the integration of multimodal

data, which includes four key inputs:

1)

2)

3)

4)

Raw Vibration Signal (from the Machinery Failure Prevention Technology (MFPT)
Bearing Dataset): This dataset contains unprocessed vibration signals from MFPT
bearing, serving as primary indicators of IM bearing conditions. The signals were
recorded under various conditions, including healthy states, ORF, and IRF.
Lab-Collected Thermal Images (Cardiff University): Thermal images were captured
using an FLIR thermal camera at Cardiff University's Wolfson Magnetics
Laboratory. These images document the thermal profiles of IM bearings under
different load conditions (8 bars, 4 bars, and 1 bar) and specific faults (IRF, ORF,
and ball faults). A baseline image representing a Normal (fault-free) or Healthy
condition is also included.

Compromised Quality Thermal Images (Simulating Real-World Conditions): These
images are artificially degraded versions of the lab-collected thermal images. They
simulate real-world scenarios where thermal images may be noisy or unclear,
helping to test the robustness of fault detection algorithms under suboptimal
conditions.

Categorised Load Factor (LF) (from the MFPT Bearing Dataset): The MFPT dataset
is categorised by different operational load conditions (e.g., 50, 100, 150, 200, 250,
and 300). This categorisation allows for the analysis and classification of faults with
respect to varying loads, which is crucial for developing load-specific monitoring
and fault classification techniques.

Figure 1.1 illustrates how each research objective aligns with the specific

methodologies and analyses detailed in the thesis chapters, ensuring a coherent progression

toward improving fault classification accuracy in IM bearings using Al and ML techniques.
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The research objectives are explored in depth in the following chapters (refer to Figure 1.1):
1) Objective 1: Develop a Multimodal Data Preprocessing Methodology
Chapter 3: This chapter addresses the preprocessing stage, where noisy thermal images
(input 3) and vibration signals (input 1) from different datasets are merged into a unified
image. It also assesses different signal encoding methodologies to enhance fault

classification accuracy in induction motor (IM) bearings.

2) Objective 2: Create High-Quality Artificial Thermal Images

Chapter 4: This chapter focuses on the creation of high-quality artificial thermal images
using Generative Adversarial Networks (GANS). It explores the generation of artificial
thermal images from (input 2) that represent various induction motor (IM) health

conditions, thereby improving fault detection capabilities.

3) Objective 3: Develop a Comprehensive Load-dependent Analysis Framework
(CLAF)

Chapter 5: This chapter introduces the Customised Radial Load Assessment,

developing a Comprehensive Load-dependent Analysis Framework (CLAF) that

classifies induction motor faults into load-dependent fault subclasses based on varying

LFs from the MFPT dataset (input 4).

4) Objective 4: Establish a Load-Dependent Multimodal Vibration Signal
Enhancement and Fusion (LD-MVSEF) Method
Chapter 6: Building on Chapter 5 load-dependent fault subclasses, this chapter
presents the LD-MVSEF method, which integrates multimodal data (including GADF
and CWT. The thesis also explores signal encoding techniques, including Continuous
Wavelet Transform (CWT) and Gradient Angular Difference Field (GADF) images) to
improve the classification accuracy of CLAF load-dependent fault subclasses using

advanced decision fusion techniques tailored to specific load conditions.

5) Objective 5: Apply Graph Convolutional Networks (GCNs) to Tabular Datasets
Chapter 7: Building on Chapter 5, this chapter explores the application of Graph
Convolutional Networks (GCNSs) for classifying load-dependent fault subclasses. It
involves constructing graphs from tabular datasets and applying GCNs to enhance

classification accuracy and efficiency by leveraging the relational dynamics within the



data. Additionally, it proposes a Hybrid Graph-CNN Decision Fusion (HG-CDF)
approach, which focuses on further improving the classification accuracy of CLAF

load-dependent fault subclasses.
1.4 Research Questions

Based on the above objectives, this research aims to answer the following questions:

e Q1I1: How can the integration of multimodal data sources, specifically thermal images
and vibration signals, enhance the accuracy of fault classification in induction motor
(IM) bearings, especially under compromised thermal image quality?

e Q2: How effective are conditional Generative Adversarial Networks (CGANS) in
generating high-quality artificial thermal images for IM health conditions, and how
do these images compare with the original dataset?

e Q3: How can a Comprehensive Load-dependent Analysis Framework (CLAF) be
developed to classify IM bearings faults into load-dependent subclasses (‘Mild,’
‘Moderate,” and ‘Severe’) based on varying LFs?

e Q4: How can the Load-Dependent Multimodal Vibration Signal and Energy Fusion
(LD-MVSEF) method achieve high accuracy in load-specific condition monitoring
of IMs, and what are the benefits of using a weighted decision fusion technique?

e Q5: How can transforming time and frequency domain features into k-Nearest
Neighbour Graphs (k-NNGs) and applying them to a Graph Convolutional Network
(GCN) enhance the accuracy and efficiency of load-dependent fault classification in
IM bearings, and how does integrating a GCN with a 1D-CNN in a hybrid approach

further improve this classification?
1.5 Thesis Outline and Contribution

This thesis is organised as follows:
Chapter 1: Introduction

This chapter provides an overview of the research context, articulates the study’s
purpose, sets out the objectives and research questions, outlines the thesis structure, and
discusses the limitations and assumptions of the research.

Chapter 2: Literature Review
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This chapter explores Artificial Intelligence (Al) techniques applicable to IMs,
focusing on ML and DL. It covers Al algorithms, DL architectures, two-dimensional (2D)
vibration signal encoding techniques, and feature extraction methods. The chapter highlights
state-of-the-art research across five key themes: Multimodal Data Preprocessing, Artificial
Thermal Image Creation, Customised Radial Load Assessment, Decision Fusion in
Multimodal Systems, and GCNs on Tabular Datasets. It also identifies research gaps within
each theme.

Chapter 3: Novel Preprocessing of Multimodal Condition Monitoring Data for
Classifying Induction Motor Faults Using Deep Learning Methods

This chapter presents a novel preprocessing approach for multimodal data in fault
classification of IMs using DL methods. The Stitched Multimodal Image Dataset Encoding
Technique integrates vibration signals and thermal images through signal-to-image
encoding techniques, such as CWT and Gramian Angular Field (GAF). By applying CNN
architectures like Residual Network (ResNet) and SqueezeNet, the study demonstrates that
this multimodal feature fusion enhances classification accuracy, particularly under IRF
conditions, even with lower-quality thermal images. The proposed approach improved
classification accuracy by 12.50%, achieving 99.10% + 0.50% when using both ResNet-18
and SqueezeNet compared to using compromised thermal images alone.

This chapter’s main contribution is as follows:

1) Proposing a novel preprocessing method for multimodal condition monitoring data
to classify IM faults using DL techniques.
Chapter 4: A Novel Approach Using Wasserstein Generative Adversarial Networks
with Gradient Penalty (WGAN-GP) and Conditional WGAN-GP for Generating
Artificial Thermal Images of Induction Motor Faults

This chapter investigates the use of GANSs for generating artificial thermal images of
IM faults. Initially, the DCGAN is evaluated to establish a baseline for generating these
images. The chapter then introduces the Wasserstein GAN with Gradient Penalty (WGAN-
GP) and the cWGAN-GP, which produce thermal images closely resembling real ones. The
CWGAN-GP model achieved a Maximum Mean Discrepancy (MMD) score of 1.023,
indicating strong similarity to real images, while the WGAN-GP outperformed it with an
Earth Mover’s Distance (EMD) score of 4.663 compared to ¢cWGAN-GP’s 4.816.
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Additionally, the cWGAN-GP dataset achieved a classification accuracy of 98.41% using a
pre-trained AlexNet model.
This chapter’s main contributions are as follows:
1) Exploring the use of DCGAN and WGAN to generate artificial thermal images that
closely mimic real thermal images of IM bearing faults.
2) Introducing a novel approach using WGAN-GP and cWGAN-GP for generating
artificial thermal images of IM faults.
Chapter 5: A Novel Customised Load Adaptive Framework (CLAF) for Induction
Motor Fault Classification Utilising the MFPT Bearing Dataset

This chapter presents the CLAF for classifying IM faults into load-dependent
subclasses: “‘Normal (fault-free) or Healthy condition,” ‘Mild,” ‘Moderate,” and ‘Severe.’
The framework improves traditional fault classification by incorporating load variations and
tailoring the analysis to specific conditions. Developed in two phases, the first phase
identifies load-dependent patterns using statistical ranking and ML classifiers, while the
second phase refines classification with CWT techniques. The chapter details the design,
methodology, and application of the CLAF for enhanced fault classification.

Thus, the contributions of this chapter are as follows:
1) Conducting a comprehensive TFD analysis under six load conditions to reveal
patterns and variations in fault severity.
2) Selecting an optimal CWT approach using Wavelet Singular Entropy (WSE) to
improve feature extraction, denoising, and pattern recognition.
3) Introducing a method for identifying and classifying load-dependent fault
subclasses, including ‘Mild,” ‘Moderate,” and ‘Severe,” which enhances the
understanding of fault severity under different load scenarios.
4) Proposing the CLAF, extending traditional fault classification methods by
incorporating load variations and customising the analysis for different IM datasets.
Chapter 6: Novel Load-Dependent Multimodal Vibration Signal Enhancement and
Fusion (LD-MVSEF) for Load-Specific Condition Monitoring

This chapter introduces the LD-MVSEF approach, which advances load-specific
condition monitoring by building on the CLAF. The LD-MVSEF method improves the
classification accuracy of CLAF load-dependent fault subclasses by integrating raw
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vibration feature extraction with signal encoding technigues such as CWT and GADF image
conversion. It employs various classifiers to enhance load-dependent fault classification
accuracy, achieving 99.04% + 0.22% across five runs, with an average training time of 18
min and 30 s, providing a valuable methodology for monitoring machinery conditions.

This chapter’s main contributions are as follows:

1) Proposing the LD-MVSEF approach, which integrates information from GADF,
CWT, and time-frequency domain data to enhance Load-Dependent Fault
Classification, building on the CLAF. This approach improves accuracy, particularly
by using a weighted decision fusion method.

2) Combining diverse analytical dimensions, including one-dimensional (1D) vibration
signals and two-dimensional (2D) RGB images (CWT and GADF-encoded), to
improve classification accuracy.

Chapter 7: Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault
Classification.

This chapter highlights the potential of GCNs for condition monitoring, particularly
in scenarios requiring fast model training and accurate fault categorisation. By transforming
tabular data into graph structures using the kNN method, GCNs demonstrated a strong
performance in load-dependent fault classification, with a mean accuracy of 89.01% +
1.25% across nine experiments using the Taguchi design, where each experiment takes
around 28 s. However, the GCN performed lower in the Mild class, prompting the
introduction of the HG-CDF method, which integrates GCN and 1D-CNNs. The hybrid
approach significantly improved accuracy across all CLAF load-dependent fault subclasses,
achieving 99.19% overall accuracy while maintaining computational efficiency with a total
training time of 3.28 min.

The chapter’s main contributions are as follows:

1) Utilising CLAF subclasses in GCNs by refining fault classification through
incorporating CLAF load-dependent subclasses (‘Mild,” ‘Moderate,” ‘Severe,” and
‘Healthy’), offering a tailored approach to condition monitoring.

2) Advancing Feature Extraction by moving beyond raw VSA by applying advanced
feature extraction techniques from both time and frequency domains, enhancing

node relationship modelling, and improving fault detection accuracy.
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3) Proposing GCNs using Taguchi, which involved transforming data representation by
introducing GCNs for fault classification in IMs, using the k-NNG method to
transform traditional tabular data into graph-based structures, capturing relational
dynamics and advancing the potential of GCNs in this field and selecting the optimal
GCN configuration using Taguchi.

4) Proposing GCN using Taguchi with Selective Weighted Loss (SWL) to enhance
class-specific accuracy, with a particular focus on improving the performance of the
Mild class. By adjusting the model’s focus, SWL effectively boosted the accuracy of
the Mild class while ensuring strong results were maintained across other classes.

5) Proposing an HG-CDF, which combines GCNs and 1D-CNNs to address the GCN’s
limitations in the Mild fault class and in order to improve classification performance
across all subclasses.

Chapter 8: Conclusion
The final chapter summarises the key contributions of the thesis, identifies the

study’s limitations, and offers recommendations for future research.
1.6 Thesis Limitations and Assumptions

While this thesis primarily focuses on the MFPT bearing dataset for IM condition
monitoring (a publicly available resource), it is essential to acknowledge this research’s
specific scope and context. The proposed frameworks are highly detailed, providing step-by-
step procedures that facilitate easier customisation of different datasets or industrial settings.
However, the current research is tailored to the MFPT bearing dataset and may not cover all
possible real-world scenarios. While efforts have been made to ensure the representativeness
of the MFPT bearing dataset, inherent limitations associated with any dataset may exist. The
study primarily explores vibration signals and thermal images as data sources, leaving scope
for the potential exploration of other types of data. The thermal images used in this study
were collected in a controlled laboratory environment at Cardiff University, representing
seven distinct health conditions with artificially created faults. Although carefully designed,

these conditions may not perfectly replicate all real-world scenarios.
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2.1 Induction Motors (IMs)

Induction Motors (IMs) play a crucial role in the manufacturing sector and are valued
for their straightforward operation, cost-effectiveness, and dependability. They account for
nearly 40% of global electricity consumption and are integral across diverse industries (Toma
et al.,, 2022a). A defining characteristic of any rotating machinery, including IMs, is its
components, such as rotors, bearings, and gears. Bearings ensure smooth motor operation,
comprising inner and outer races, rolling balls, and a cage that maintains uniform ball
spacing. Potential IM faults can arise from excessive loads, fatigue, insufficient lubrication,

and misalignment (Toma et al., 2022a).
2.1.1 Induction Motor Bearing Fault Frequency

Each bearing element has a rotating frequency. When a defect occurs, and the rolling
part moves across this damaged part, the vibration energy also deviates at a fixed rate,
generating periodic impulses. So, each defect (Outer Race Fault (ORF), Inner Race Fault
(IRF), and balls fault) has a unique frequency, as shown in Equation (2.1), (2.2) and (2.3),
where, N4y represents the number of balls, f,,, is the rotational frequency, S is the load

angle, and D¢q4. and Dg,; refer to cage and ball diameter, respectively (Toma et al., 2022a).

forr = % X fin X (1 - (gba” X cosﬂ)) (2.1)
cage
_ Npau Dpan
fire = ==X fn X <1 + <_Dcage X cos ﬁ)) (2.2)
Dcage Dpan 2
Ball cage

2.2 Artificial Intelligence (Al)

Machine Learning (ML) and Deep Learning (DL) fall under the umbrella of Artificial
Intelligence (Al), as shown in Figure 2.1. ML, a component of Al, operates autonomously
with minimal human intervention and typically relies on structured data. In contrast, DL, a
subset of ML, employs Artificial Neural Networks (ANNs) to emulate the learning
mechanisms of the human brain. DL thrives on vast datasets and can handle structured and
unstructured data (Martin, 2021).
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Artificial
Intelligence (Al) Al: is a broad field that
encompasses creating systems

capable of human-like tasks

Machine
Learning (ML)

\ ML: is a subset of Al that focuses
/ on algorithms that learn from data

Deed Learning
(DL)

DL: is a subset of ML that uses
complex neural networks to
process and learn from large data
sets.

Figure 2.1: The Relationship Between Atrtificial Intelligence, Machine Learning and Deep
Learning (Martin, 2021).

2.2.1 Machine Learning (ML)

ML is a branch of computer science and an Al component that enables computers to
learn and make decisions without explicit programming. It is applied across different
computational tasks with the primary goal of training machines using provided data, which
may be labelled in supervised learning scenarios or unlabelled in unsupervised learning
cases, to enhance results for specific problems. The key emphasis in ML is on enabling
computers to learn from previous experiences (Mehmood and Selwal, 2020). The choice of
data representation is crucial for the performance of ML models in fault classification,
impacting accuracy, speed, and generalisability. Key factors include feature selection, which
ensures essential information is captured while avoiding overfitting (Kareem and Hur, 2022),
data normalisation to balance feature scales (Jang and Cho, 2021), and data augmentation to
expand the training set and reduce overfitting (Yousuf et al., 2024). Dimensionality reduction
techniques like Principal Component Analysis (PCA) and t-Distributed Stochastic
Neighbour Embedding (t-SNE) help by minimising noise (Wodecki and Michalak, 2021).
Advanced methods, including graph-based representations (Jang and Cho, 2021), knowledge
graphs (Radtke et al., 2023), domain-specific ontologies (Delgoshaei et al., 2022), and hybrid
approaches (Chao et al., 2019), integrate domain knowledge and further optimise model

performance.
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ML can be divided into three categories. Figure 2.2 shows how supervised learning
uses labelled data to train an agent with predetermined correct actions, optimising a policy
based on explicit feedback like rewards or penalties. Unsupervised learning, lacking labelled
data and explicit feedback, involves the agent discovering patterns through trial and error
(Tangirala, 2020). Reinforcement learning (RL), the third category, trains an agent through
interactions with its environment, where it learns from rewards or penalties to develop a
strategy that maximises cumulative rewards, making it suitable for complex environments
(Borga and Carlsson, 1992).

Machine Learning

Supervised Unsupervised
Classification Regression Clustering Dimension Reduction

Predicting: categorical
Variable
Input: Labeled dataset

Predicting: numerical
Variable
Input: Labeled dataset

Identify: pattern or
group similar objects
Input: Unlabeled

Lowers the count of
variables under
consideration to

dataset pinpoint the necessary
Algorithms Algorithms information.
-Support Vector -Support Vector Algorithms
Machine (SVM) Machine (SVM) -K-Means Clustering Algorithms

-Artificial Neural
Network (ANN)

-Naive Bayes
-Decision Tree

- K-Nearest
Neighbours (KNN)
-Artificial Neural
Network (ANN)

-Principal Component
Analysis (PCOA)

-Linear Regression
-Decision Tree
-Random Forest

- K-Nearest
Neighbours (KNN)
-Artificial Neural
Network (ANN)

Figure 2.2: Supervised and Unsupervised Machine Learning Techniques (Tangirala, 2020; Edeh et
al., 2022).

2.2.1.1 Supervised Learning

Supervised learning in ML features a range of algorithms designed for specific data
types and predictive needs. Below are concise descriptions of some frequently utilised
supervised learning algorithms (Mehmood and Selwal, 2020; Martin, 2021):

1. Support Vector Machine (SVM): An SVM is a powerful classification method that
identifies the optimal hyperplane to separate data into classes, making it particularly
effective in high-dimensional spaces. It can also be applied to regression problems.
SVM transforms data into a new space using a kernel function, enabling linear
classification with the maximum margin between categories. The choice of the

kernel—such as Linear, Polynomial, or Gaussian—determines the effectiveness of
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this transformation (Khanjani and Ezoji, 2021; Rangel-Rodriguez et al., 2023). A
Cubic Support Vector Machine (CubicSVM), a supervised learning classifier, is well-
suited for high-dimensional data and structured datasets, making it popular for
classification and regression tasks (MathWorks-3, 2024).

Naive Bayes: A simple yet powerful classifier based on Bayes' theorem, assuming
predictor independence, Naive Bayes is effective for large datasets and is commonly
used for tasks like spam filtering and sentiment analysis (Prabha, 2022). It can also
be applied to fault detection and maintenance by analysing sensor data to classify
system states (Bodo et al., 2021). It predicts defects in processes like investment
casting using various process parameters in manufacturing. Different variants, such
as Gaussian, Multinomial, Complement, and Bernoulli Naive Bayes, can be
evaluated for the best fit (Sawant and Agashe, 2022).

Decision Tree (DT): This model visualises decisions through a graph showing
various outcomes. It is easy to understand, works for classification and regression
tasks, and accommodates categorical and numerical data (Diao and Zhang, 2021). It
utilises a DT to classify pairs of managers dealing with maintenance outsourcing
cases into either “abnormal” or “normal” behaviour patterns, presenting a binary
classification challenge (Chen et al., 2021). Also, the DTs, specifically Classification
and Regression Trees (CART), are used to solve classification and regression
predictive modelling problems. It illustrates this with an example of predicting a
college student’s first-year GPA based on high school GPA, SAT scores, and other
relevant parameters (Njoku, 2019).

4. k-Nearest Neighbours (kNN): k-NN can be used for regression and classification
tasks within supervised learning. It is not exclusively categorised under one or the
other; its application depends on the specific task. It can also be used for classification
and regression problems. For classification, KNN identifies the class of a new sample
based on the majority vote of its nearest neighbours. For instance, KNN has been
applied in classifying brain tumour images, achieving an average accuracy of about
62.00% (Najwaini et al., 2023). For regression, KNN predicts a continuous value for
a new sample based on the average (or weighted average) of the values of its nearest

neighbours. For instance, KNN is effectively used in stock market forecasting,
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demonstrating its strength in numeric prediction tasks by processing relationships
between numerical data and achieving an accuracy of 70.00% (Ltha et al., 2022).

5. Artificial Neural Networks (ANNSs): ANNs are trained with labelled data in
supervised learning to minimise prediction errors. They excel in tasks like gesture
recognition using electromyographic (EMG) signals (Shamsin et al., 2018; Mustagim
et al., 2023) and regression tasks like residential load forecasting, outperforming
traditional methods like AutoRegressive Integrated Moving Average (ARIMA)
(Chandran et al., 2021). During the COVID-19 pandemic, ANNs such as the
Multilayer Perceptron (MLP) were used for accurate time series forecasting of cases
and deaths, surpassing classical approaches (Borghi et al., 2021). ANNs typically
consist of an input layer, fully connected layers with Rectified Linear Unit (ReLU)
activation, and a softmax layer for classification. Their complexity ranges from
narrow networks with fewer neurons to wide and multi-layered networks that handle
intricate data relationships but are harder to interpret (MathWorks-3, 2024;
MathWorks-6, 2024)

e Ensemble Learning for Fault Detection

Ensemble learning is employed to enhance ML model performance for fault
detection in machinery. The techniques include a voting classifier, combining
predictions from various models like DTs, Random Forests, SVMs, kNNs, and
XGBoost, using soft and hard voting methods. The ensemble models developed using
these base models show improved accuracy in detecting bearing faults in IMs through
Vibration Signal Analysis (VSA). An Ensemble AdaBoost Decision Tree (EADT)
method is proposed for defect detection, utilising features extracted via a Stationary
Wavelet Transform (SWT). These approaches demonstrate the effectiveness of
ensemble methods in achieving more accurate and reliable fault diagnosis in

machinery (Jose et al., 2022).
2.2.1.2 Unsupervised Learning

Unsupervised learning is a branch of ML that focuses on identifying patterns in
unlabelled datasets, making it valuable for discovering hidden relationships in data.

Algorithms are provided with input data without output labels, aiming to detect patterns for

20



tasks like clustering, association, and rule prediction. Common unsupervised learning

techniques include k-means clustering, hierarchical clustering, and PCA (Martin, 2021). The

following are some frequently used unsupervised learning methods (Mehmood and Selwal,
2020; Martin, 2021):

1)

2)

3)

k-Means clustering: k-Means is a widely used clustering algorithm that groups nearby
points into clusters by assigning them to the nearest cluster centre based on distance
(Edehetal., 2022)While simple and effective, k-Means relies on the random selection
of initial cluster centres, which can affect its results (Masud et al., 2019). It is also
used in software engineering to cluster classes by their attributes, helping identify
more maintainable software systems and reducing maintenance time and resources
(Mathur and Kaushik, 2018).

Anrtificial Neural Networks (ANNs): While typically used in supervised learning for
classification and regression, ANNSs can also be adapted for unsupervised tasks to
uncover hidden patterns. Autoencoders, a type of ANN, are effective for
dimensionality reduction, anomaly detection, and generative modelling, especially
with high-dimensional data (Sewak et al., 2020; Wu et al., 2021). Advancements in
ANNSs for clustering and unsupervised learning are highlighted in studies like those
presented at the International Conference on Artificial Neural Networks (ICANN)
(Ve et al., 2019). Notable research has demonstrated the integration of deep ANNSs
with clustering techniques for predicting Noncommunicable Diseases (NCDs),
showcasing their effectiveness in disease prediction (Moreno-Gutierrez and Garcia-
Lopez, 2023).

Principal Component Analysis (PCA): PCA is a statistical method that reduces data
complexity by transforming correlated variables into uncorrelated principal
components while preserving essential information. It is commonly used in data
analysis and predictive modelling. For example, PCA has simplified industrial sensor
data for better visualisation and decision-making (Grabowski et al., 2023), reduced
pollutant indices in water quality assessments to highlight key contaminants (Xu et
al., 2021), and improved efficiency in Magnetic Anomaly Detection for real-time

applications (Sheinker and Moldwin, 2016).
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2.2.1.3 Reinforcement Learning (RL)

RL is a branch of ML where an agent learns decision-making through rewards or
penalties for actions without explicit instructions (Sun, 2020). It is applied in robotics,
autonomous driving, healthcare, finance, logistics, and energy management (Thaipisutikul et
al., 2019; Xiang and Foo, 2021). Key RL algorithms include Q-Learning, Deep Q-Networks
(DQN), Policy Gradient Methods, Actor-Critic Methods, Proximal Policy Optimisation
(PPO), Asynchronous Advantage Actor-Critic (A3C), Monte Carlo Tree Search (MCTS),
Temporal Difference (TD) Learning, and State-Action-Reward-State-Action (SARSA), each
of which is suitable for various complex environments and tasks (Fazel et al., 2018; Haarnoja
et al., 2018; Speck and Bucci, 2018; Naresh et al., 2023; Niu et al., 2023; Zhu et al., 2023a;
Ekpo and Eke, 2024).

2.2.2 Deep Learning Approaches for Fault Classification

Both ML and DL play a crucial role in improving fault diagnostics by minimising
false alarms and enabling early prediction of equipment failures due to their capacity to
process large datasets and learn complex, nonlinear relationships (Arellano-Espitia et al.,
2020; Zhu et al., 2023b). DL techniques, such as Convolutional Neural Networks (CNNS),
Deep Neural Networks (DNNs), and Deep Belief Networks (DBNs), have outperformed
traditional ML methods like SVMs, ANNSs, and kNN in fault detection, particularly in
extracting features from vibration signals (Ye et al., 2020; Gao et al., 2023; Qiu et al., 2023).
DL’s multi-layered networks are particularly effective in complex diagnostics, enabling
time-dependent modelling to capture time-shifted effects (Zhang et al., 2020).

Traditional ML techniques remain foundational in various industries, effectively
handling complex datasets in manufacturing and power generation (Zhou et al., 2019; Ren
et al., 2021; Elshenawy et al., 2022; Hakim et al., 2023). DL models, inspired by the human
brain, consist of interconnected layers (neurons) that excel in areas like image recognition
and natural language processing, learning complex patterns from extensive datasets (Abdel-
Jaber et al., 2022; Kufel et al., 2023). Table 2.1 summarises commonly used DL algorithms,

their applications, advantages, and limitations.
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Table 2.1: Common Deep Learning Networks.

Algorithm Applications Advantages Limitations References
Type
_ Object detection, image  Excel at identifying They require extensive (Abdel-
s - classification, spatial and temporal labelled data and high  Jaber et al.,
£ = T2 segmentation, facial relationships in data,  computational demand. 2022)
= = o Z .. B
SELEZ recognition, inherently capable of (Wang and
zZ 7 2 & autonomous driving, handling data Sng, 2015)
S and medical image translation.
analysis.
Handling and learning Feature a more They are less effective  (Tran et al.,
- B from 1D sequential straightforward for higher-dimensional 2024)
Sz - inputs, such as design than higher-  data than deeper, multi- (Liu and Si,
s E 2 2 financial and structural ~ dimensional CNNs, dimensional CNNs. 2022)
= R = . .
S s 0Z sensor data. enabling faster (Xiao et al.,
E2EQ training and direct 2021a)
2528 g
-} processing of 1D
5 Z sequential data like
S time-series without
conversion.
Image and video Are known for their GANSs require (Algahtani
- enhancement, data capability to produce considerable et al., 2021)
Y = . . . . . .
zT L~ augmentation, high-quality, realistic computational (Sauer et
E g 8z cybersecurity. synthetic data, resources to train two al., 2021)
S 5 8<% . . o
=280 especially valuable in  models—the generator
$STZz~ areas where data are and discriminator—
O <
rare or costly to through an iterative
acquire. process.

Graph-structured data, Can effectively They can be (Abdel-
= including computer capture and leverage computationally Jaber et al.,
5 2 - vision, bioinformatics, both node features expensive for large 2022)

v o @ .

Z S Z recommendation and graph graphs. (Chen et

- % (ZD systems, traffic topology/structure al., 2022a)

gz~ forecasting, anomaly

S detection in time series

data.
= - Langqage modell.lng, Apt at processing . Prone to . (Guney et
3 = ¥ = machine translation, sequential data, vanishing/exploding al., 2021)
E522 h ition, and  learning f di Wang and
52 = é speech recognition, an earning from past gradients, (Wang an
3z E &  video analytics for inputs computationally Sng, 2015)
= urban surveillance, intensive.
. Language modelling, = Superior at managing  Its complex structure  (Abdelrazik

, £ . . .
‘g g =~ machine translation, long-term has a high et al., 2023)
s 8 > § speech recognition. dependencies in computational load. (Xue et al.,
= a 3 sequence data 2022)

£ EQ d
:‘I 5= compared to

= traditional RNNs.
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simultaneously,
enabling them to
capture dependencies

Algorithm Applications Advantages Limitations References
Type
Dimensionality Capable of Training is challenging (Abdel-
reduction, denoising, unsupervised and can result in data Jaber et al.,
anomaly detection, data learning, loss, with a sensitivity 2022)
4 compression. autoencoders excel at  to hyperparameters and  (Koehler et
= data representation initialisation that al., 2021)
é and compressing requires careful tuning.  (Refinetti
g input into smaller and Goldt,
3 forms for effective 2022)
< di ionalit
imensionality
reduction and data
compression.
- Dimensionality Can be trained layer High computational (Lietal.,
o = g reduction, feature by layer, making the costs, challenging 2023a)
35 § g8 learning, collaborative  training process more training process. (Zambra et
ol E e filtering efficient than training al., 2023)
the entire network.
DBNs are well-suited Utilise top-down Practical use of DBMs  (Taniguchi
2 for dimensionality feedback connections  has been more limited et al., 2023)
£ reduction, feature across layers for both  than other DL models, (Lietal.,
'§ learning, and training and inference.  primarily because of 2023a)
s initialising feedforward ~ Unlike DBNs, which  their complex training  (Souza et
£ g neural networks. are trained layer-by- requirements. al., 2017)
S m layer, all DBM layers (You et al.,
§ 8 are trained 2013)
K
=9
3
a

and influences across
layers.

2.2.2.1 Advancements in Deep Learning for Fault Classification

The evolution from basic neural networks to advanced models like CNNs and Graph

Neural Networks (GNNSs) has been driven by the need to process complex data and patterns

across various domains. This progression has focused on optimising DL architectures to

handle more intricate tasks and integrate graph structures for improved performance. In the

1990s, neural networks were primarily applied to RL in partially observable Markov
Decision Processes (POMDPs). By the late 2010s, the focus had shifted to optimising

network structures, hyperparameters, and training methods, enhancing computational power

and complexity (Miikkulainen, 2023).
CNNs, developed in the 1980s, became essential in image processing and three-

dimensional (3D) construction, often paired with Generative Adversarial Networks (GANS)
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for cost-effective model creation (Lyu and Yu, 2021). GNNs, a newer development, extend
neural network capabilities by incorporating graph structures, although they sometimes
struggle in heterophilic environments where connected nodes differ. Recent advances, such
as Adaptive Channel Mixing (ACM), address these limitations by dynamically adjusting
information aggregation across nodes (Luan et al., 2022).

In predictive maintenance, particularly for Induction Motor (IM) fault classification,
DNNs and GANs play critical roles. DNNs, primarily used in supervised learning, have
shown high fault detection and diagnosis accuracy, surpassing GAN-based oversampling
techniques (Lee et al., 2017). GANS, effective in unsupervised tasks like data generation and
augmentation, enhance predictive maintenance by estimating missing values and predicting
faults (Lee et al., 2020). Additionally, ANNs combined with Park’s vector analysis have
achieved over 99.00% accuracy in motor health classification (Mahesh et al., 2022).

2.2.3 Convolutional Neural Networks (CNNs)

CNNs are specialised Neural Networks (NNs) optimised for pattern recognition,
particularly in computer vision and image processing. Inspired by the human brain's visual
cortex, CNNs are structured to handle grid-like data, such as images, effectively, utilising
local connectivity and spatial relationships to learn efficiently. Consequently, CNNs are
considered powerful tools for image and video recognition. They consist of two main parts:
the feature extractor and the classifier. The feature extractor uses specialised layers to find
essential patterns in the input data. It includes convolutional layers that detect local features
and pooling layers that reduce the data’s size. These layers work together to create a
hierarchical representation of the input. After the feature extractor, the classifier makes
predictions based on the extracted features (LeCun et al., 1998).

All types of CNNs share three essential layers: the convolutional layer, the pooling
layer, and the fully-connected layer. While the softmax function plays a crucial role in the
output layer of a CNN, it is not considered one of the fundamental layers in a basic CNN
architecture softmax function applied at the output layer for multi-class classification. The
convolutional layer utilises convolutional operations to extract more advanced feature
representations. These operations help to identify patterns and structures within the input
data, enabling CNN to learn meaningful features. Next, the pooling layer downsamples the

data through local averaging or selecting the maximum value. This downsampling process
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concentrates the extracted features, enhancing the efficiency of the CNN. Lastly, the fully-
connected layer aims to understand the relationship between the input and output of the CNN.
It inputs the features that have passed through the convolutional and pooling layers. By
analysing these features, the fully connected layer generates the final output of the CNN.
Combining the convolutional layer, the pooling layer, and the fully connected layer forms
the foundation of CNNs, allowing them to effectively process and extract relevant

information from the input data (Yuan et al., 2020; Zhang et al., 2021a).
2.2.3.1 Transfer Learning with Convolutional Neural Networks

Transfer learning with CNNs involves leveraging previously acquired knowledge in
classification tasks and applying that knowledge to similar problems within the same domain
or experimental contexts using the same pre-trained classifier. This approach offers
significant advantages by reducing the need for extensive training time, large datasets, and
computational resources (Cinar, 2022). Training a DL model from scratch demands
considerable time and numerous parameter adjustments, presenting significant challenges.
However, transfer learning has been introduced to address these challenges. Transfer
learning involves transferring knowledge and patterns from a source domain to a target
domain, often entailing the reuse of a pre-trained model on a new dataset. As a result,
similarities between datasets are identified (Bai et al., 2022).

Several pre-trained CNN transfer learning architectures are widely used across
various domains, including medical imaging, traffic sign recognition, food image
classification, and clinical predictions. Key architectures include Residual Network
(ResNet), known for its benchmark-setting performance in image classification; Visual
Geometry Group Network (VGGNet), effective on the ImageNet dataset; MobileNet,
optimised for mobile applications; Inception-v3 and EfficientNet-B0O, both renowned for
their top-tier performance; Extreme Inception (Xception) and DenseNet-121, excelling in
image classification benchmarks; and TimeNet, a deep recurrent neural network used for
clinical predictions. These models facilitate the transfer of learned features, making them
valuable in scenarios with limited labelled data or restricted computational resources (Gupta
et al., 2018; Alzubaidi et al., 2021; Fatima Ezzahra et al., 2023; Singh and Susan, 2023).
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2.2.4 Generative Adversarial Networks (GANS)

GANs are ML models that learn the distribution of each class without explicitly
separating them into distinct categories, unlike traditional techniques, such as DTs or SVMs.
Instead, GANSs generate new data points (x) similar to the training data without considering
the relationship between x and vy, i.e., p(x|y). This type of DL model will be extensively
explored in Chapter 4, with a focus on Basic Deep Convolutional Generative Adversarial
Networks (DCGAN), Wasserstein GAN with Gradient Penalty (WGAN-GP), and
conditional WGAN-GP.

2.2.5 Graph Neural Networks (GNNSs): Definition and Overview

GNNs are a class of DL models designed to analyse and learn from data that are
structured as graphs. GNNs have found wide application in tasks related to graph data, such
as node classification, link prediction, and graph classification (Wei et al., 2020). They
leverage graphs' detailed structural and feature information to perform these tasks effectively
(Huang et al., 2024).

These capabilities make GNNs highly effective for diverse applications that involve
graph-based data. The following are key aspects of GNNs (Huang et al., 2024):

1) Message-Passing Framework:

o GNNs operate using a message-passing mechanism that repeatedly aggregates
and updates information from the nodes' local neighbourhoods within a graph.
This process enables GNNs to develop representations incorporating the graph
data's structural and feature-related aspects (Huang et al., 2024).

e The graph structure is typically represented by G = {V, A}, where V is the set of
nodes, and A is the adjacency matrix. In this matrix, an element A;;_; signifies
the presence of an edge between node i and node j. Each node i is also associated
with a feature vector x? (Huang et al., 2024).

2) GNN Framework:

e The GNN framework processes graph data by taking an initial set of node features

X = {x?|i € V}and the adjacency matrix A as inputs. This input is then utilised

to gather iteratively and pool information from the neighbours of each node. For
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instance, the feature update for a node i in the [-th layer of message passing can
be described in Equation (2.4):

xi = fo(pool{fi(x/71161)|j € N}, x,163}) (2.4)
where pool{-} is a function that aggregates the features from neighbouring nodes

N;, and f; and f, are trainable functions parameterised by 87 and 6} (Huang et
al., 2024).

2.2.5.1 Graph Convolutional Network (GCN) Applications

Graph Convolutional Networks (GCNs) are utilised across various domains,
including computer vision, social networks, bioinformatics, recommendation systems, and
traffic prediction. In computer vision, they model label correlation for multi-label images,
capturing spatial dependencies and contextual information between pixels or image regions
(Cao et al., 2022). Additionally, GNNs are particularly effective at representing data with
inherent graph structures, such as social networks, protein interfaces, and images, by
highlighting relationships and dependencies among entities (Tepe and Bilgin, 2022). For data
that do not naturally form graphs, like audio signals, techniques that employ deep features
from pre-trained models as node information are used to facilitate graph construction
(Castro-Ospina et al., 2024). This versatility makes GCNs and GNNs powerful tools for
handling structured and unstructured data in various classification tasks.

The search results do not mention using GCN architecture for Induction Motor (1M)
fault classification. However, they highlight the effectiveness of GCNs across various fields,
such as image classification, graph analysis, and human activity recognition. For image
classification, Fei et al. (2023) introduced a novel end-to-end GNN that integrates local and
global attention features for more accurate predictions (Fei et al., 2023). This model includes
a CNN block for local feature learning and a GCN for global feature assimilation. In graph
analysis, Zhang et al. (2022) described a hybrid accelerator for GNNs that utilises the Xilinx
Versal ACAP architecture (Zhang et al., 2022a). This system enhances GNN inference by
dividing graphs into subgraphs for efficient processing using programmable logic and Al
engines. In human activity recognition, Lee et al. (2023) developed the Multimodal Two-
stream GNN Framework for Efficient Point Cloud and Skeleton Data Alignment (MTGEA),

which leverages the Spatial-Temporal Graph Convolutional Network (ST-GCN) architecture
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to enhance recognition accuracy by focusing on skeletal features extracted from Kinect
models (Lee and Kim, 2023).

However, Table 2.2 summarises the state-of-the-art GCN application in fault
classification over the years starting from 2019 to 2024 with studies that used GCN in their

research.

Table 2.2: Summary of State-of-the-Art GCN Applications in Fault Classification.

Application

Description

Outcomes

GCN-Based
Compound Fault
Diagnosis in
Gearboxes (Zeng et
al., 2024).

Employs GCNs to analyse correlations among
single faults in gearboxes to improve multi-
label fault diagnosis. Each fault is treated as a
label node, with GCN mapping features to
enhance the classification of compound faults.

Enhances gearbox fault
diagnosis accuracy using
GCNs and self-attention
to analyse correlations
between single faults.

Multi-Scale Neural
Transformation
Graph (MNT-G) in
Micro-Service
System Fault
Classification

(Zhang et al., 2023b).

This framework combines graph structure
adjacency matrix learning with multi-scale
neural transformation to analyse adjacency
matrices and temporal features of system
metrics separately. It uses a GCN to integrate
spatio-temporal features for classifying faults
in micro-services.

Demonstrates superior
performance over
traditional methods on the
Sock Shop benchmark,
with a macro-F1 score
improvement of 7.16%.

Super Resolution -
Graph Neural
Network (SR-GNN)
for Fault
Classification and
Location in Power
Networks (Mo et al.,
2023).

Integrates super-resolution techniques with
GNNs to efficiently classify and pinpoint
faults in power distribution networks,
focusing on cost reduction and accuracy.

Shows  strong  noise
resistance and
adaptability to various

network conditions on the

IEEE 37 Bus system,
enhancing classification
accuracy.

Temporal GCN for
Transient Stability
in Power Systems

Develops a rapid-response Temporal Graph
Convolutional Network (TGCN) that
combines GCN for topology analysis with

Exceeds performance of
existing models in
stability classification and

(Suetal., 2021). temporal convolution layers to quickly assess predicting critical
transient stability in power systems. generator statuses on the
IEEE 39 Bus system.

GCN for Testability
Analysis in EDA
(Maet al., 2019).

A specialised GCN model processes non-
standard graph representations of logic
circuits in FElectronic Design Automation
(EDA). This classifier is trained to identify
optimal observation point candidates in
netlists, targeting hard-to-detect nodes.

Matches fault coverage of
commercial tools while
reducing observation
points by 11.00% and test
patterns by 6.00%.

Although GCNs are not directly associated with Induction Motor (IM) fault
classification in the available literature, their demonstrated benefits in various applications—
such as enhanced accuracy, robustness, and the capability to integrate global information

from node connections—suggest potential utility in diverse domains.
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2.3 Two-Dimensional (2D) Signal Encoding Techniques
2.3.1 Gram Angular Field Signal Encoding (GAF)

Wang and Oates introduced the concept of GAF encoding, a method that transforms
time series data into images (Wang and Oates, 2015). GAF’s distinctive matrix construction
maintains the integrity of the original data while capturing relationships between
neighbouring elements. This methodology proves beneficial for CNN models, enabling
automatic feature extraction and enhancing classification performance (Wang and Oates,
2015). The core concept behind converting time-series data into images using GAF involves
creating a matrix based on polar coordinates. This matrix preserves the temporal
relationships within the one-dimensional (1D) time-series signal, maintaining accurate
temporal correlations compared to Cartesian coordinates. The process yields two types of
GAF images: Gramian Angular Summation Field (GASF) and Gramian Angular Differential
Field (GADF) (Toma et al., 2022a), which will be discussed further in Chapter 3.

2.3.2 Wavelet Transform (WT)

The Wavelet Transform (WT) provides an alternative to the Short-Time Fourier
Transform (STFT) for non-stationary signal analysis. WT is advantageous because it can
capture both temporal and spectral details. It offers adaptability across various frequencies
and time-based resolutions (Nishat Toma et al., 2021; Yang et al., 2023b). Distinguishing
WT from STFT, which uses fixed windows, WT utilises wavelet families with predefined
shapes, including Haar, Symlets, and Daubechies. The mother wavelet function y(t) can be
computed as in Equation (2.5) (Ahmed and Nandi, 2022):

i (t - T) (2.5)
Vs s

In this context, s represents the scaling parameter, t corresponds to time, and = denotes the

d’(s,‘c) (t) =

transformation parameter. In the original wavelet, s =1 and t = 0.

Wavelets offer three essential transformations: the Continuous Wavelet Transform
(CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Transform (WPT). From
the literature on the IM vibration signal encoding, the CWT has been extensively utilised by
researchers to create vibration image representations where the family of time-scale

waveforms is derived by adjusting the position and scale of the mother wavelet (Kaji et al.,
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2020). While there is no universal method for choosing the mother wavelet, it is common
practice to visually inspect and select a suitable mother wavelet function based on shape
matching (Kaji et al., 2020). CWT can be computed in the following Equation (2.6) (Ahmed
and Nandi, 2022;):

CWTy(5,7) = % f @y (<) dt 26)
Here, ¥* represents the complex conjugate of y(t), which can be shifted using the translation
parameter T and scaled using the scale parameter s. These coefficients measure the degree of
correlation between the waveform and the wavelet at different translations and scales. These
coefficients are often displayed in a scalogram, illustrating the energy distribution across the

coefficients.
2.4 Feature Extraction Domains in Signal Processing

Feature extraction operates within three primary domains: temporal, spectral, and
time-frequency. These distinct domains serve as tools to capture distinctive aspects of signal
behaviour. The section starts with Time and Frequency Domain (TFD) feature extraction and
moves to the 2D time-frequency domain features. The feature extraction from vibration
signals in the time domain is a crucial component of machinery fault diagnosis, enabling the
early detection and continuous monitoring of machinery faults. This method entails
computing diverse statistical parameters from the original vibration signal, which can
subsequently be employed to assess the machinery’s condition and detect potential problems.
Various key parameters are utilised in VSA to extract vital information. These parameters
include the Peak or Max value, which denotes the highest observed amplitude in the signal,
and the Root Mean Square (RMS), which provides insights into signal magnitude. Skewness
assesses distribution asymmetry, whereas Standard Deviation (std) quantifies average
deviation from the mean. Kurtosis indicates distribution “tailedness,” potentially identifying
outliers or impulses. The Crest Factor, calculated as the peak amplitude-to-RMS ratio,
reflects peak sharpness. Peak-to-peak measures the range between maximum and minimum
values, whereas the Impulse Factor accentuates impulsive behaviours often linked to
machinery faults. These parameters contribute to a comprehensive understanding of

vibration signal characteristics, facilitating effective fault diagnosis and condition
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monitoring (Liu and Weng, 2019; Pinedo-Sanchez et al., 2020; Jain and Bhosle, 2021;
Narayan, 2021).

On the other hand, extracting features from the frequency domain can provide
insights into the data's periodic components and harmonic structures. The frequency domain
analysis of vibration signals involves examining the amplitude changes for different
frequencies (Ahmed and Nandi, 2018). These features capture frequency-specific aspects of
the signal and contribute to a better understanding of the vibration behaviour (Shi et al.,
2020). Analysing the frequency domain of vibration signals is crucial for understanding
periodic components and harmonic structures. Key features include Root Mean Square
Frequency (RMSF), Centre Frequency (CF), Mean Square Frequency (MSF), Frequency
Variance (FV), and Root Frequency Variance (RVF), providing insights into signal
characteristics and power distribution (Shi et al., 2020). Standard harmonic features, such as
Total Harmonic Distortion (THD), quantify frequency content (Tian et al., 2022; Granados-
Lieberman et al., 2023). Signal-to-Noise Ratio (S/N) and Signal-to-Noise and Distortion
Ratio (SINAD) assess signal quality, particularly in gearbox fault analysis (Kumar et al.,
2022). Spectral analysis transforms signals from the time domain to the frequency domain,
with the AR model being a popular choice. Various methods, like Yule-Walker and Burg’s,
compute AR coefficients, whereas the forward-backwards approach enhances classification,
especially in machinery fault diagnosis (Hu and Zhang, 2019; Metwally et al., 2020).
Spectral features like Peak Amplitude, Peak Frequency, and Band Power offer
comprehensive insights into frequency characteristics (Ahmed and Nandi, 2018; Hu and
Zhang, 2019; Shi et al., 2020; Tian et al., 2022; Djemili et al., 2023; Granados-Lieberman et
al., 2023).

2.5 Multimodal Fusion Techniques

Sensors serve as the foundation for any machine’s condition monitoring systems. The
concept of smart sensors is currently an active area of research, where sensor data are linked
to a data processing unit. Algorithms and DL techniques enable advanced interpretations of
the collected sensor data. In the past, thermography was used as a secondary approach to
condition monitoring. However, Infrared Thermography (IRT) is increasingly recognised as
a qualified primary or direct approach for condition monitoring (Alvarado-Hernandez et al.,

2022). The data used in the fusion process may come from different sources. This leads to
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two types of sensor fusion: heterogeneous and homogeneous. In heterogeneous sensor
fusion, data are gathered from various types of sensors, like vibration and current sensors.

On the other hand, homogeneous sensor fusion involves using data from the same
kind of sensors, such as vibration sensors measuring the X, Y, and Z axes. Depending on the
stage at which the information sources are combined, the fusion process can be classified
into three levels: data-level fusion, feature-level fusion, and decision-level fusion (Debie et
al., 2021). However, data processing can occur in multimodal fusion at three levels, as
illustrated in Figure 2.3.

Sensors

©)
(a) @:5

Sensors

® :
(b)@@ Signal [:>: Feature

Processing Extraction

Sensors

® :
(C) @ :> Signal :> Feature :>: Learning Decision I:')Decision

Processing Extraction Model Fusion

Figure 2.3: The Three Levels of Fusion (a) Sensor Fusion, (b) Sensor Data Represented by Feature
Vectors, (c) Decision Fusion After the Classification Model (Debie et al., 2021).
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Firstly, multiple sensors are employed at the sensor level fusion to capture raw data.
Secondly, at the feature level, features are independently extracted from different sensors
and then combined into a single feature vector, known as a fused vector. Thirdly, at the
decision level, features are extracted independently and passed through separate classifiers
to obtain individual decisions. The fusion process is then responsible for consolidating these
decisions into a final classification decision. Furthermore, hybrid models can support
multiple fusion levels (Debie et al., 2021) where, in fact, the effectiveness of sensor-level
fusion and feature-level fusion strategies significantly relies on the characteristics of the data.
Comparatively, the decision-level fusion strategy emerges as a more pragmatic choice among
the three (Yang et al., 2022).
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2.6 State of the Art, Research Gaps, and Directions in Each Research Theme

This section discusses the state of the art across five research themes: Multimodal
Data Preprocessing Methodology, Artificial Thermal Image Creation, Customised Radial
Load Assessment, Multimodal Systems Decision Fusion Approach, and Graph
Convolutional Network (GCN) on Tabular Datasets.

2.6.1 Multimodal Data Preprocessing Methodology

Numerous researchers have sought to improve Induction Motor (IM) fault
classification capabilities (Shao et al., 2020). Fault classification can be challenging, causing
irrelevant rule generation for three main reasons: dataset size, noise, and overfitting problems
(Packianather et al., 2019). According to the literature, Non-Invasive Inspection (NII) is a
widely employed maintenance tool that monitors machines’ health status. It helps to
investigate the current health status without affecting or interrupting the operation. It can be
divided into two categories according to the sensing approaches: contact and noncontact
sensing (Alotaibi et al., 2021).

Contact-based Non-Invasive Inspection (CNI) does not require physical contact with
the inspected parts; they must be attached to the machine system or body. For example,
magnetic flux sensing, voltage sensing, machine current analysis, the vibration technique,
and wear debris (Alotaibi et al., 2021). VSA is the traditional fault classification method (Jia
et al., 2019), but different signals are used, such as current, acoustic, and temperature (Toma
et al.,, 2021). However, in rotational-machine fault diagnosis using signals, signal
preprocessing can be undertaken using time-domain, frequency-domain, or time-frequency
domain analysis (Sinitsin et al., 2022). Time-domain analysis finds statistical parameters
such as kurtosis, structural resonance, RMS, etc. On the other hand, frequency-domain
analysis offers more benefits in signal analysis because it filters key frequency components,
such as Fast Fourier Transform (FFT) and spectrum analysis (Sinitsin et al., 2022).
Moreover, time-frequency analysis is used to empower frequency-domain analysis for
volatile signals, for example, STFT, WT, and Empirical Mode Decomposition of the Hilbert-
Huang Transform (HHT) (Nguyen et al., 2021).

Wavelet is considered the most recent and popular time-frequency analysis of the

available methodologies, especially in bearing fault type recognition (Zhang et al., 2022d).
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A recent study compared three CWT techniques on vibration signal encoding: Morse, Morlet,
and Bump. All methods achieved more than 98.00% accuracy in bearing fault diagnosis. The
PCA method was also used instead of wavelet and scored 10.00% lower than wavelet (Toma
et al., 2021). Current signals were also used to classify IM faults using the GAF algorithm to
generate 2D images. Subsequently, a two-layer deep CNN model was used for fault
classification. The experiment showed that GAF images outperformed continuous wavelet
images. Wavelet has fewer capabilities in generating significant patterns from current raw
data relative to GAF due to the drawbacks of the current signal or low S/N (Toma et al.,
2022a).

On the other hand, in Non-Contact-Based Non-Invasive Inspection (NCNI), sensors
are not directly attached to the inspected part and nor is the machine system (e.g., Radio
Frequency (RF), radar technology, ultrasonic sensing, camera-based imaging, Acoustic
Emission (AE) sensing, thermographic sensing or Infrared (IR) and laser) (Alotaibi et al.,
2021). Thermal images result in more accurate fault classification than vibration signals (Jia
et al., 2019; McGhan and Feayherston, 2020; Shao et al., 2021). Hence, thermal image
condition monitoring can achieve almost 100% accuracy when utilising CNN transfer

learning capabilities (Choudhary et al., 2021; Khanjani and Ezoji, 2021).

Studies were not restricted to single-input modal creation. They also considered
multimodal fault classification using the same sensing approach, combining current and
vibration signals into one modal. Shao et al. (2020) used time-frequency distribution,
continuous wavelet, and CNN capabilities in multi-signal fault diagnosis without utilising
CNN transfer learning capabilities. The main contribution was using vibration and current
signals in fault classification using CNN capabilities in image classification on time-
frequency distribution images. The authors demonstrated that the multi-signal modal
outperforms the single-signal modal input (Shao et al., 2020). A recent study proposed a
multimodal neural network-based model using only vibration signals. Vibration signals are
converted into time-frequency domain graphs using CWT and dot pattern graphs, creating
two inputs for the CNN and two-level information fusion from the same signal. This model
performed better than single-modal CNN (Ma et al., 2022).
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In the most recent research, the vibration signal captured using CNI acquisition tools
is considered the most popular input for bearing fault diagnosis. It contains valuable
information about each fault type, giving a good prescription for the machine’s health. At
the same time, it has a high S/N and requires extra preprocessing and strict sensor installation
requirements (Jia et al., 2019). The most common preprocessing methodology is converting
a 1D signal into 2D time-frequency graphs using CWT, where GAF encoding was rarely
used. Consequently, NCNI data acquisition techniques were introduced, primarily utilising
IRT due to its non-contact nature, high accuracy, and reduced requirement for signal
preprocessing knowledge. Nonetheless, many studies have concluded that thermal images
offer an excellent substitute for vibration signals, resulting in higher fault classification
accuracy. However, thermal image fault classification has some known limitations, including
deviation in the region of interest due to camera misalignment and blurred images. This can
result in fault misclassification, which has not been discussed in the previous literature (Li et
al., 2021; Shao et al., 2021).

On the other hand, multimodal DL is a new paradigm in Al that requires further
attention and exploration. Hence, relying on a single input using a single sensing approach
often fails to extract the full knowledge from data, especially in abnormal operation
conditions (Jia et al., 2019). However, few research studies have explored Multimodal DL
using similar data types, such as numerical signals or signals captured using CNI to
demonstrate its efficiency. Consequently, there is a need to research Multimodal further

using different sensors, which will be explored in Chapter 3.
2.6.2 Artificial Thermal Image Creation

DCGAN has demonstrated its efficiency (Du et al., 2019) for image generation in
solving imbalanced datasets in the chemical industry's fault diagnosis field. It was also used
by He et al. (2021) for axial piston pump bearing fault diagnosis to mitigate data availability
and missing fault labelling challenges. DCGAN has also been used in Induction Motor (IM)
fault classification using the Case Western Reserve University (CWRU) bearing centre
dataset, a well-regarded dataset in which CWT images were synthesised (Zhong et al., 2023).

A previous paper focused on Wasserstein Generative Adversarial Network (WGAN) usage
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in thermal images, with fault creation in IMs being used to increase fault samples, namely,
IRF, ORF, and Normal (fault-free) or Healthy condition (Ma et al., 2023; Shao et al., 2023).

It is apparent from the literature that researchers have sought to generate highly
trustworthy data to enhance training performance on limited fault types or generate look-
alike vibration signals without focusing on thermal image fault creation (Ma et al., 2023). A
recent paper explored the generation of thermal images on three conditions to enhance fault

classification accuracy using a single input model (Shao et al., 2023).

Bearing VSA is the traditional means of fault classification, where raw vibration
signals are rarely used; hence, vibration signals need to be pre-processed using either time-
domain analysis or frequency-domain analysis (Sinitsin et al., 2022). On the other hand,
thermal images result in more accurate fault classification with up to 100% accuracy whilst
requiring less preprocessing time than vibration signal fault classification, as demonstrated
by Choudhary et al. (2021) and Khanjani and Ezoji (2021). Thermal images are more stable
than vibration signals; hence, they are less sensitive to speed fluctuation scenarios, making
them more efficient (Shao et al., 2023).

However, thermal images have certain known drawbacks. For instance, the
installation cost of cameras and the potential for camera misalignment can result in
inaccurate recognition (Gangsar and Tiwari, 2020). Furthermore, the limited availability of
data and the imbalanced distribution of thermal images across specific or all health
conditions can significantly affect the performance of condition monitoring systems (Niu et
al., 2020). To mitigate these limitations, various oversampling techniques have been
employed to generate additional samples from the minority classes. One such technique is
the Synthetic Minority Oversampling Technique (SMOTE), which uses interpolation based
on nearest neighbours. Another approach is the Adaptive Synthetic Sampling Technique
(ADASYN) (Liu et al., 2021). However, it is essential to note that oversampling techniques
can be susceptible to overfitting and noise creation, especially when dealing with high-
dimensional and sparse data. These techniques may also generate samples that are more
similar to the majority class rather than to the desired class (Engelmann and Lessmann,
2021).
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Moreover, while improving classification accuracy is a common approach, it may not
be effective when the degree of imbalance is high unless more data are added to the training
model (Han et al., 2020). Expanding image data by including noise and local blur can be
seen as an artificial preprocessing technique. However, it is essential to note that these
methods may not adequately capture the diversity in the original samples and so can
potentially hinder fault recognition (Fan et al., 2022). In contrast, GANs offer a new and
promising approach to sample generation. GANs provide a framework for learning complex
features from high-dimensional, imbalanced, and small dataset distributions, and they have
been widely utilised in fault diagnosis applications (Han et al., 2020; Engelmann and
Lessmann, 2021; Liu et al., 2021; Fan et al., 2022).

The selection of an appropriate GAN for generating artificial images of thermal IM
health conditions is critical to the current research. Previous studies in this field have been
limited, with only a few papers released (Wu et al., 2019). Commonly used GAN models in
fault diagnoses include DCGAN, Auxiliary Classifier GAN (ACGAN), Wasserstein GAN
(WGAN), and variational auto-encoding GAN. However, it has been observed that the
quality of data generated by the original GAN and improved DCGAN is still relatively low
(Han et al., 2020; Fan et al., 2022). Meanwhile, the WGAN-GP has demonstrated improved
training stability, mode collapse prevention, and the generation of high-quality images
(Gulrajani et al., 2017; Pan et al., 2019; Gao et al., 2020). WGAN-GP has also proven its
effectiveness in fault sample generation (Wang et al., 2021a) and in supplementing low-
dimensional fault data (Zhong et al., 2023). Wasserstein distance in WGAN provides a more
meaningful measure of the difference between probability distributions and leads to better
convergence by avoiding vanishing gradients (Arjovsky et al., 2017a).

Additionally, the training process in WGAN-GP does not require a careful balance
between the generator and discriminator (Arjovsky et al., 2017b). WGAN-GP has also been
employed in the imbalance fault classification of bearings, overcoming convergence issues
observed in the original GAN structures. WGAN-GP demonstrated faster convergence
within 400 iterations and improved model performance compared to the original WGAN due
to the gradient penalty (GP) (Han et al., 2020).

WGAN-GP was utilised to generate additional vibration signal spectra for

imbalanced bearing fault classification problems, demonstrating improved convergence and
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faster training speed with the GP (Shao et al., 2023). Chang et al. (2022) examined GANs
and CNNs for imbalanced vibration signal datasets in IMs, confirming their efficiency.
However, there was still room for improvement in utilising labelled data for IM fault
classification because models trained on the generated data differed in accuracy compared to
real data (Chang et al., 2022). Meanwhile, Ma et al. (2023) focused on WGAN-GP to create
vibration signals in the rotor-bearing system, showing high-quality signal generation and
increased diagnostic accuracy. Shao et al. (2023) generated thermal images for various health
conditions in rotating machinery, achieving good results but suggesting the incorporation of
label information in GANS training.

The scarcity of IM datasets collected under diverse health conditions poses
challenges due to data availability, confidentiality, and time constraints. While GANs have
been used to generate additional tabular vibration data for condition monitoring, utilising
GAN:Ss for thermal image synthesis in IM condition monitoring is a promising but relatively
new research area. Hence, GANs are commonly employed to generate supplementary tabular
vibration data. At the same time, thermal image condition monitoring offers more accurate
results with minimal preprocessing steps due to its lower sensitivity to noise, which will be

explored in Chapter 4.
2.6.3 Customised Radial Load Assessment

Bearing fault diagnosis is recognised as a pattern recognition challenge, emphasising
the importance of dominant eigenvectors for fault features. Accurate feature identification is
critical to enhance the reliability of fault detection and diagnosis systems. Toma et al. (2022b)
used Wavelet Scattering Transform (WST)-based features, whereas Nayana and Geethanjali
(2020) employed statistical TFD features to contribute to IM fault classification. Other
techniques include time-domain features from current signals (Toma et al., 2020),
homogeneity and kurtosis from electrical current during motor startup (Martinez-Herrera et
al., 2022), and the use of CWT for fault diagnosis (Yuan et al., 2020). This method, tested
on the CWRU bearing centre dataset and Machinery Failure Prevention Technology (MFPT)
bearing datasets, demonstrated superior diagnostic accuracy and stability.

The approach increasingly leans towards treating it as a pattern recognition challenge
in bearing fault diagnosis, relying on dominant eigenvectors to represent fault features,

enabling more reliable detection and categorisation of bearing faults (Nemani et al., 2022).
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To determine the precise location and intensity of a bearing defect, various VSA techniques
are available, broadly categorised into the time domain, frequency domain, and time-
frequency domain analyses (Jain and Bhosle, 2022). Feature extraction in ML for bearing
fault diagnosis is pivotal, particularly in analysing vibration signals, resulting in a multi-
domain feature set. The goal is often to derive features with strong discriminatory capabilities
(Shi et al., 2020). Time—domain features assume a stationary signal, but signals frequently
exhibit changes in statistical properties over time (Sayyad et al., 2021). However, obtaining
suitable features may require a long period of recorded signals, making it expensive, time-
consuming, or even impossible for certain fault types or with complex equipment (Resendiz-
Ochoa et al., 2018). RMS and kurtosis are commonly used in the time domain, especially
kurtosis, which is highly effective in early fault detection (Pinedo-Sanchez et al., 2020).

In contrast, frequency-domain features require more significant computational effort
than their time-domain counterparts and operate under the assumption of a wide-sense
stochastic signal (Narayan, 2021). FFT, while powerful in stationary conditions, has
limitations when applied to non-stationary data, that is, signals that change over time or
exhibit variations in their frequency content. In such cases, FFT’s assumption of a constant
frequency spectrum over the entire signal duration does not hold. Alternative time—frequency
signal processing techniques have been developed to address this limitation (Resendiz-
Ochoa et al., 2018).

Nevertheless, transitioning to time-frequency domain analysis, which combines time
and frequency information to understand the signal’s frequency band over a specific time
interval (He et al., 2010), offers a localised signal analysis by considering smaller time
segments. This approach proves valuable for non-stationary signals where the frequency
content changes over time (Zhang et al., 2021a). The CWT is a powerful tool for analysing
non-linear and non-stationary data in the time-frequency domain. It outperforms other
techniques, such as the STFT, Gabor transform, WT, and Wigner-Ville transform, effectively
addressing the limitations of the FFT in dealing with such data (Toma et al., 2021; Guo et
al., 2022). The WT can analyse specific regions within a more prominent signal without
sacrificing spectral details, revealing concealed facets undetected by alternative methods
(Kaji et al., 2020). This enables the distinctly different analysis of both frequency and time

domains, breaking down signals into various frequency components and analysing each
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element with the time domain corresponding to its specific scale (Ozaltin and Yeniay, 2023).
It is crucial, however, to carefully consider or create the most suitable wavelet foundation
(Guo et al., 2022). Pinedo-Sanchez et al. (2020) explored the effectiveness of three prevalent
mother wavelet functions in conjunction with pre-trained CNNs on the automatic
classification of an electrocardiogram (ECG) dataset. Specifically, the study used AlexNet
and SqueezeNet, revealing that Amo (often called a Morlet wavelet) and Morse wavelet
functions enhanced class recognition with AlexNet. In contrast, the Bump wavelet function
demonstrated superior classification accuracy with pre-trained SqueezeNet (Pinedo-Sanchez
et al., 2020).

Beyond CWT, techniques such as wavelet entropy, wavelet packet energy entropy,
and Wavelet Singular Entropy (WSE) have also been utilised. Wavelet entropy, combining
WT and Shannon entropy, captures complexity and information content within signals at
different scales or frequencies. In the CWT realm, this approach is valuable for analysing
time-frequency representations and revealing patterns associated with structural damage (L.
etal., 2019a; Guo et al., 2022). Examined on IM bearings, selecting the optimal contentious
transform wavelet (Guo et al., 2022) and indicating the complexity of the analysed transient
signal in the time-frequency domain (He et al., 2010) makes it possible to distinguish
between transients with different complexities intuitively and quantitatively. Wavelet
energy, measuring the energy distribution across different scales in the WT of a signal, was
used to track changes in energy over time for fault localisation and categorisation (Jayamaha
et al., 2019). This information is then employed to create a set of features for classification,
followed by Acrtificial Neural Network (ANN) training to categorise these features.

Researchers have increasingly focused on the fault detection and diagnosis systems
of various operational parameters of bearings, such as friction torque, radial internal
clearance, and slippage. In a notable study, Wu et al. (2023a) investigated the friction torque
behaviours of thrust ball bearings with self-driven textured guiding surfaces. This study
sought to facilitate the starved lubrication conditions often encountered in rolling bearings
by introducing innovative textures on the guiding surfaces. Notably, the results indicated that
implementing a gradient groove texture could significantly reduce the friction torque of
bearings. This texture facilitates a one-way self-driving function for liquid droplets,

highlighting its potential for practical applications in bearing design (Wu et al., 2023a).
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Meanwhile, Ambrozkiewicz et al. (2023) explored the effect of various surface
textures on thrust ball bearings’ vibration and friction torque behaviours, including dimples,
grooves, and gradient grooves. The study found that the gradient texture effectively reduces
vibration acceleration and friction torque (Ambrozkiewicz et al., 2023). Furthermore,
research on the slipping behaviour of H7006C angular contact ball bearings under
operational conditions demonstrated similar benefits from this texture design in reducing
vibration and friction torque, thus enhancing bearing performance (Yang et al., 2023a).

However, there remains a notable gap in our understanding of the influence of
varying loads on the manifestation of faults (Zhang et al., 2022b). Previous research has
delved into areas such as estimating the remaining useful life from run-to-failure datasets
(Zhang et al., 2022b). Nevertheless, the domain of load’s impact on faults remains relatively
unexplored. Radial impact was discussed by Jain and Bhosle (2021), where traditional
statistical indicators were used to study the effects of IRF and ORF in bearings under
different loads. The MFPT bearing dataset was utilised to propose combinations of
indicators, including Kurtosis x RMS, Kurtosis x Peak, and RMS x Peak for early fault
detection, including IRF and ORF. A similar analysis was conducted on the CWRU dataset,
thoroughly investigating various traditional and new vibration indicators for detecting
bearing defects and monitoring their progression (Jain and Bhosle, 2022).

In recent years, detecting faults in IMs has attracted considerable attention, given
their crucial role in various industries. As a result, there has been a concerted effort to develop
reliable and cost-effective methods for diagnosing faults in IMs. The early detection of
potential failures is of paramount importance because it can prevent significant damage to
machinery (Nayana and Geethanjali, 2020; Toma et al., 2020; Yuan et al., 2020; Martinez-
Herrera et al., 2022; Toma et al., 2022b). Despite the recognised significance of feature
extraction and selection within intelligent diagnosis systems, relatively little attention has
been paid to assessing load impact in the literature (Han et al., 2021b; Zhang et al., 2022b).
A notable gap has emerged in intelligent diagnosis systems where feature extraction and
selection are crucial, especially in evaluating load impact (Ahmed and Nandi, 2018).
Extensive research has explored fault classification under varying loads, but the nuanced

effects of load variations on the intrinsic nature of faults have not been thoroughly addressed.
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Thus, Chapter 4 introduces the proposed novel Customised Load Adaptive Framework
(CLAF) in detail.

2.6.4 Multimodal Systems Decision Fusion Approach

The field of fault detection in manufacturing systems has witnessed remarkable
advances, particularly in analysing vibration signals for condition monitoring and fault
detection. This dynamic area of research, focusing primarily on identifying faults in rolling
element bearings amid substantial noise, highlights the critical role of feature selection in
ensuring classification accuracy. Researchers have been actively developing various
methods to extract robust statistical data from vibration signals, using techniques ranging
from time, frequency, and spectral feature extraction to AR models. Integrating ML and the
advanced capabilities of deep CNNs has facilitated a significant advance in this quest.
Additionally, innovative classification fusion methods, including sensor, feature, and
decision fusion, have been implemented to enhance accuracy. Techniques including GAF
and CWT are utilised for deeper signal analysis. At the same time, transfer learning
approaches with architectures such as AlexNet and ResNet are applied for more precise fault
diagnosis. Despite these achievements, the field faces complex challenges, emphasising the
need for ongoing exploration and innovation.

Lorenz et al. (2022) delved into various techniques for fault detection in
manufacturing systems, employing vibration data analysis. They discuss time-domain
features such as RMS, variance, and kurtosis alongside frequency-domain features such as
spectral attributes. Time-domain features have shown particular efficacy for early fault
detection (Pinedo-Sanchez et al., 2020), although real-world signals often exhibit temporal
variations (Sayyad et al., 2021). The challenge of acquiring suitable features has been noted
because it can be laborious and sometimes impractical for specific faults or in the context of
complex machinery (Resendiz-Ochoa et al., 2018). The study investigates fault detection in
rotating element bearings, emphasising time-domain features (median, peak-to-peak value,
and mean) and frequency-domain features (spectral centroid and kurtosis). Considerable
emphasis is placed on using ML classifiers, especially the quadratic SVM from MATLAB,
for the multi-class classification of machinery health states. This method has demonstrated

its effectiveness in accurately identifying faults (Lupea and Lupea, 2022). Advances in ML
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have significantly increased model accuracy, primarily through ensemble learning, which
combines multiple models to enhance overall prediction effectiveness (Jose et al., 2022).

The research described in the document introduces a unique feature extraction
approach known as One-Dimensional Ternary Patterns (1D-TP) for bearing fault detection
using vibration signals. This approach extracts statistical measures from these signals in both
the time and frequency domains. For classification purposes, the study employs a variety of
ML classifiers, including Random Forests, kNN, SVM, BayesNet, and ANNs. This
methodology effectively pinpoints faults in bearings, highlighting the potential of 1D-TP and
these classifiers in the field (Kuncan et al., 2020). Additionally, the paper explains the
workings of SVM, a state-of-the-art algorithm primarily used for categorisation based on the
principle of margin calculation. It effectively separates data groups by drawing a line
between them, optimising margins to reduce the difference with labelled classes, thereby
minimising classification errors.

Furthermore, the study touches upon DTs, which consist of nodes and branches used
primarily for classification purposes. This method sorts attributes based on their values,
grouping them accordingly, where each node represents a category attribute and each branch
a specific value of that node (Kadam et al., 2021). Despite these notable contributions to fault
diagnosis and ML, the thesis identifies a gap in load-dependent fault condition monitoring.
It underscores the need for further exploration of advanced deep-learning techniques.

Moreover, there has been a significant focus on spectral feature extraction using AR
models in bearing fault classification, as detailed in the existing research. AR models extract
vital features from vibration signals, which have proven effective in identifying various
operational states. Research indicates that AR-derived features are comparably compelling,
achieving classification accuracies similar to those obtained with power spectral features in
areas such as emotion recognition and signal processing (Ganapathy et al., 2014 . This has
led to a growing interest in the Forward-Backward Autoregressive (FBAR) model, a
variation of the AR model, particularly in feature extraction for diverse signal-processing
applications (Vaibhaw et al., 2020). Therefore, using AR models for feature extraction is
emerging as a promising approach to enhance the classification of bearing faults based on
vibration signals. This exploration suggests that AR models could complement traditional

TFD features, warranting further investigation.

44



The CNN, a potent model in DL (Nishat Toma et al., 2021), is employed in
architectures such as AlexNet and ResNet), notably for diagnosing bearing faults. Utilising
these CNNSs through transfer learning has demonstrated significant efficacy in various
applications, as highlighted by Lu et al. (2020). These collective findings emphasise the
promise of pre-trained CNNs and transfer learning techniques in bearing fault classification
using vibration signals, offering a compelling approach to automated fault diagnosis in
machinery. AlexNet (Lu et al., 2020; Asutkar and Tallur, 2023) combined with transfer
learning has effectively classified casting surface defects. Its efficacy lies in utilising pre-
trained models for specific tasks, balancing simplicity with reliable performance (Thalagala
and Walgampaya, 2021). The ResNet family has also shown promise within the bearing fault
diagnosis domain. The principal advantage of ResNet-18 is its intricate architecture and
residual connections, which enhance training efficiency and task performance, especially in
complex scenarios (Chang et al., 2023; Wu et al., 2023b).

In contrast, AlexNet, known for its straightforward and dependable framework, is
better suited to simpler classification tasks, making it a practical choice in environments with
limited computational capacity (Ramzan et al., 2020). However, the advanced design of
ResNet, with its deeper layers and residual blocks, requires greater computational power
compared to AlexNet, presenting a need to balance efficiency and computational demands
in CNN applications (Kadam et al., 2021; Thalagala and Walgampaya, 2021). Thus, both
ResNet and AlexNet represent two well-established deep-learning approaches with the
potential for further advances in condition monitoring.

Additionally, 2D signal encoding techniques, such as GAF and CWT, have
significantly improved the feature extraction capabilities of CNNs. GAF, in particular, has
shown promise in high-precision fault signal classification (Zhang et al., 2023a) and mental
well-being state classification (Woodward et al., 2024). Toma et al. (2022a) demonstrated
the efficacy of converting current signals into 2D images using GAF, followed by CNN
classification, in bearing fault classification. On the other hand, CWT signal encoding has
been highly effective, especially when paired with Ensemble Empirical Mode
Decomposition (EEMD) for intrinsic mode function selection. This combination has
achieved more than 99.00% accuracy in fault detection in some instances (Nishat Toma et

al., 2021) and has been successful in early fault detection (Kaji et al., 2020). The synergy of
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CWT with multiscale feature fusion and enhanced channel attention mechanisms has also
been investigated to further refine feature extraction from vibration signals (Xiao et al.,
2021Db). In 2023, an innovative approach that combines the GASF with CWT was introduced
for intelligent fault diagnosis in wind turbine gearboxes. This method leverages GAF and
CWT techniques to improve fault detection accuracy (Yang et al., 2023b). However, it is
essential to note that, based on current research trends and to the best of the author's
knowledge, GAF and, notably, GADF are not yet widely recognised as established
techniques for vibration signal encoding and have seen limited exploration. In contrast, CWT
signal encoding is much more prevalent. This disparity indicates a significant opportunity
for further research and development regarding 2D signal encoding techniques, particularly
in exploring the potential of GAF and GADF for VSA.

Researchers have developed promising fusion techniques in rotating machinery fault
diagnosis. One notable approach is the multi-sensor fusion technique, which has
demonstrated enhanced fault classification accuracy and quicker convergence than single-
source sensor data. A 2023 study introduced an innovative bearing fault classification
method using multi-sensor fusion technology combined with an advanced binary one-
dimensional ternary pattern (EB-1D-TP) encoding algorithm; this combination achieved
classification rates over 98.00%, demonstrating its potential for broader industrial
applications and integration into Industry 4.0 (Pan et al., 2023). Cinar (2022) highlighted
data-level sensor fusion, achieving up to 100% validation accuracy. Inspired by standard
CNN pooling methods, this technique merges sensor channels using overlaid spectrogram
images to select the highest spectral power at each frequency and time point for improved
classification with a pre-trained SqueezeNet model (Cinar, 2022).

Kullu and Cinar (2022) also utilised raw TFD data from two sensor types,
transforming them into time-frequency images via the STFT. The time-frequency images
were combined with raw time series data and used in a DL model for fault detection,
demonstrating promising results in terms of fault classification on datasets from Paderborn
University and Eskisehir Osmangazi University (Kullu and Cinar, 2022). Furthermore, a
method employing current, vibration, and torque signals applied STFT to each, creating
spectrograms that were combined into a single image for analysis with pre-trained

SqueezeNet, demonstrating efficacy in fault diagnosis (Cinar, 2022). While the concept of
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2D vibration signal encoding has previously been explored, there remains significant
potential for advancement, particularly in identifying more efficient input combinations for
the final condition monitoring system. This ongoing exploration is vital to develop tailored
solutions to specific monitoring challenges.

Recent advances in feature fusion techniques for rotating machinery fault diagnosis
have shown considerable promise, and the field remains ripe for innovative approaches. In
2022, a notable development was a multi-sensor feature fusion approach for rolling bearing
fault diagnosis. This technique enhances accuracy by amalgamating data from various
sensors. It incorporates Variational Mode Decomposition preprocessing and a deep
autoencoder network, outperforming alternative methods which rely on single-sensor data.
Toma et al. (2022b) introduced a feature fusion method for bearing fault classification in
IMs. This method utilised the WST to extract features from current signal data, achieving
99.00% accuracy when combined with ensemble ML algorithms.

Further exploration in 2021 saw the integration of CNN knowledge transfer with
time-frequency domain features in the Feature Fusion Convolutional Neural Network-
Support Vector Machines (FFCNN-SVM) method. Multi-Level Features Fusion Network
(MLFNet), an innovative CNN, also demonstrated its ability to extract and fuse multi-scale
features from noisy vibration signals, attaining an exceptional 99.75% recognition accuracy
(Yeand Yu, 2022). The potential of combining time-domain and frequency-domain data was
also highlighted using the GAF method and processed by the ECA-ConvMixer model for
motor fault diagnosis (Xie et al., 2023).. Decision fusion multi-dimensional feature
extraction techniques have also been employed to create comprehensive feature vectors.
These vectors are amalgamated using algorithms, such as the Yager algorithm, for extensive
fault pattern recognition (Li et al., 2019b). In 2022, a fuzzy decision fusion strategy was
developed, integrating outputs from CNN models trained on datasets processed through
various transforms (Yang et al., 2022). Wang et al. (2023b) presented an innovative
algorithm for industrial motor bearing fault diagnosis, which integrates multi-source
information using a noise reduction autoencoder and bidirectional Long Short-Term Memory
(LSTM) networks. While these fusion techniques have demonstrated promising results in
numerous studies, there remains significant potential for further research. More specifically,

there is an opportunity to tailor and customise fusion techniques for load-dependent condition
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monitoring on specialised datasets. This offers a pathway for more nuanced and compelling

IM bearings condition-monitoring solutions, which will be explored in Chapter 6.
2.6.5 Graph Convolutional Networks (GCNs) on a Tabular Dataset Application

GCNs are specialised neural networks designed to handle data structured in graphs,
where the data points are nodes interconnected by edges. GNNs excel at managing the
intricate relationships and patterns present within graphs, making them ideal for various
applications, including drug discovery, fraud detection, and recommendation systems. GNNs
can predict and analyse the interconnections between data points by applying DL techniques
to graph data. They typically employ message-passing mechanisms to incorporate
information about nodes and their adjacent nodes, enabling the network to identify patterns
and make informed predictions based on the graph’s structure. In recent years, GNNs have
attracted considerable attention for their ability to represent complex relationships and
patterns, which conventional neural networks may find challenging to handle (Li et al.,
2023b).

Using GNNs for classification offers several advantages: GNNs are adept at
capturing complex interdependencies between entities, thus providing significant benefits in
structured data classification (Du et al., 2023; Lee et al., 2023). They frequently outperform
traditional ML methods and CNNs in specific tasks, such as classifying colorectal
histopathological images (Tepe and Bilgin, 2022). Additionally, GNNs can utilise
constructed graphs in a self-supervised manner, facilitating knowledge transfer to pairwise
neural networks for practical applications (Du et al., 2023).

CNNs are designed for grid-like data such as images and use convolutional layers
with filters to learn features. In contrast, GNNs are for graph-structured data and employ
message passing to incorporate information about nodes and their connections. The critical
difference between CNNs and GNNs lies in the data they handle and the mechanisms they
use to learn features. CNNs are commonly used in computer vision tasks such as image
recognition, whereas GNNs are better suited for applications involving complex data
relationships (Lin et al., 2021).

Applying 1D-CNNs in fault detection across various industries showcases their
efficiency in processing time-series data and extracting meaningful features for diagnosis.

For instance, Wang et al. (2024) combined features from multiple sensors using a 1D-CNN
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to predict bearing faults in aircraft engines, while Abdeljaber et al. (2022b) demonstrated
their effectiveness in detecting structural damage (Chen et al., 2022b). 1D-CNNs are
particularly effective for detecting sequential patterns because they apply convolution
operations across one dimension, which is well-suited for time series or any sequential data
(Camacho-Bello et al., 2022; Zhang et al., 2023c; Ahmadzadeh et al., 2024).

K-Nearest Neighbour graphs (k-NNGs) have proven useful in diverse applications,
including healthcare diagnostics and machinery fault detection. Chandaliya et al. (2023) used
k-NNGs with GNNs to classify cough sounds for disease detection, revealing complex
relationships even with limited labelled data (Chandaliya et al., 2023). Similarly, Rangel-
Rodriguez et al. (2023) applied the KNN method to generate graphs from vibration signals
for crack detection in rotating machinery, with these graphs serving as inputs for ML
algorithms (Rangel-Rodriguez et al., 2023). Earlier, Wang et al. (2021b) employed the kNN
method to create graphs from vibration signals for fault diagnosis in rotating machinery,
using these graphs as input for a GCN for fault classification (Wang et al., 2021b).

GNNs and k-NNGs are complementary techniques for analysing and processing
graph data. K-NNGs are crucial in constructing graphs from data points, while GNNs excel
in identifying patterns and relationships within the graph data. For example, the NN-Descent
algorithm efficiently handles the construction of k-NNGs by iteratively refining neighbour
connections (Dong et al., 2011). While the GCN architecture is not explicitly mentioned in
the search results for Induction Motor (IM) fault classification, it is evident that GCNs have
shown promising results in various domains. GCNs have been effectively applied in diverse
areas, enhancing fault classification and predictive maintenance. These applications include
Multi-Scale Neural Transformation Graph Method (MNT-G) frameworks in micro-service
systems, which improve classification accuracy (Zhang et al., 2023b), high-performance
GCNs in electronic design for better testability analysis, Super Resolution - Graph Neural
Network (SR-GNN) in power networks for precise fault location (Mo et al., 2023), temporal
GCNs for rapid transient stability assessment in power systems (Su et al., 2021), and
compound fault diagnosis in gearboxes using GCN-based models (Zeng et al., 2024). These
practical implementations demonstrate the versatility and efficacy of GCNs in handling

complex data and improving fault detection across various industries.
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The general advantages of GCNs across various domains include improved accuracy
and robustness and the ability to aggregate global information through the interconnected
relationships of different nodes. Consequently, it is feasible to develop more robust and
adaptable models for various graph-based applications by integrating these approaches.
While the potential of GCNs for fault classification in IMs is theoretically plausible due to
their ability to model complex graph structures, the current research does not explicitly
discuss the specific application of GCNSs in this context. Therefore, further research focusing
on applying GCNs in the fault classification of IMs would be necessary to validate this
assumption.

While GNNs have not been widely applied to IM fault detection, their ability to
process graph-structured data is seen as valuable for analysing complex systems like IMs.
Complex relationships within motor data can be captured by GNNs, aiding in anomaly
detection and predictive maintenance. Similarly, 1D-CNNs have been shown to effectively
analyse sequential motor signals to detect faults under various conditions. These neural
networks, including GNNs and 1D-CNNs, have been recognised for improving fault
detection accuracy in IMs (Skowron et al., 2020; Rahmawan et al., 2023)

In this study, tabular data will be represented as graphs for VSA using the KNN
method, where nodes represent time points, and edges represent signal similarities. The
Taguchi method will be employed to optimise key factors affecting performance in this new
approach. To address the gaps identified in GNN performance, the 1D-CNN will be explored
as a tentative candidate for a hybrid methodology, providing complementary strengths in

fault classification.
2.7 Summary

This chapter provides an in-depth overview of IMs, the primary focus of the current
research. It delves into the broader realm of Al, encompassing ML and DL. It outlines a
variety of Al algorithms and networks pertinent to IM condition monitoring. This includes
supervised, unsupervised, and RL techniques. The chapter further discusses DL
architectures, particularly CNNs, CNN transfer learning, GANs, and GNNs. Each section
explores the theoretical aspects and discusses the practical applications of these technologies.

Additionally, the chapter introduces signal encoding techniques such as the GAF and

CWT. It also reviews multimodal fusion approaches. The exploration extends to encoding
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tabular datasets using GNNSs and the analysis of feature extraction in signal processing across
the time, frequency, and time-frequency domains, illustrating applications in each context.
The chapter concludes by summarising the current state of the art and identifying
research gaps within five key themes: Multimodal Data Preprocessing, Artificial Thermal
Image Creation, Customised Radial Load Assessment, the Decision Fusion Approach in
Multimodal Systems, and a GCN on Tabular Datasets. It highlights the gaps and outlines
future research directions for each theme, aligning with the thesis’ stated aim to enhance fault
classification in IMs significantly. This enhancement seeks to improve decision-making
accuracy and augment algorithms' intelligence within IM condition monitoring systems,
directly supporting the thesis’ objectives. The proceeding chapters will deal with the five

themes mentioned above in that order.
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Chapter 3: Novel Preprocessing of Multimodal
Condition Monitoring Data for Classifying
Induction Motor Faults Using Deep Learning
Methods
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3.1 The Impact of Data Representation on the Performance of Machine Learning

Models in Fault Classification

The choice of data representation can significantly impact the performance of

Machine Learning (ML) models in fault classification. The selection of relevant features,

normalisation, data augmentation, dimensionality reduction, graph-based representations,

knowledge graphs, and hybrid approaches can all contribute to improved model

performance. The impact of data representation on the performance of ML models in fault

classification is significant. The choice of data representation can affect the models’

accuracy, speed, and generalisability. Some of the critical aspects of data representation that

can influence the performance of ML models in fault classification include the following:

1)

2)

3)

4)

5)

Feature selection: The choice of features used to represent the data can significantly
impact the model’s performance. Relevant features should be selected to ensure that
the model captures the most essential information related to the fault. Inversive
features sometimes lead to overfitting or reduced performance (Kareem and Hur,
2022). This will be addressed in this chapter.

Data normalisation: Normalising the data can help improve the performance of ML
models by ensuring that all features are on a similar scale. This can prevent some
features from dominating others and improve the model’s accuracy (Jang and Cho,
2021).

Data augmentation: Augmenting the data can help improve ML models' performance
by increasing the training set's size. This can help the model learn more robust
features and reduce overfitting (Yousuf et al., 2024).

Dimensionality reduction: Reducing the dimensionality of the data can help improve
the performance of ML models by reducing the noise and irrelevant features in the
data. Techniques like Principal Component Analysis (PCA) and t-distributed
Stochastic Neighbour Embedding (t-SNE) can reduce dimensionality (Wodecki and
Michalak, 2021).

Graph-based representations: Representing the data as a graph can help improve the
performance of ML models by capturing the relationships and interactions between

different data entities. Graph-based representations can be used for similarity search,
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clustering, and other data mining tasks (Jang and Cho, 2021). This will be explored
in Chapter 7.

6) Knowledge graphs: Integrating Knowledge Graphs (KGs) into ML models can help
improve their performance by incorporating domain-invariant knowledge. This can
aid in solving specific tasks and handling domain shifts, such as variations in machine
operation conditions (Radtke et al., 2023).

7) Domain-specific ontologies: Using domain-specific ontologies expressed in the
Resource Description Framework (RDF) and Web Ontology Language (OWL) can
enhance building analytics through multi-domain knowledge integration and
facilitate numerical representation (Delgoshaei et al., 2022).

8) Hybrid approaches: Combining different techniques, such as physics-based
performance models with Deep Learning (DL) algorithms, can help improve the

performance of ML models in fault diagnostics (Chao et al., 2019).
3.2 Proposed Methodology

In condition monitoring, integrating diverse sensor data is a cornerstone for
advancing fault classification capabilities and ensuring operational integrity in Induction
Motors (IMs). The methodology presented herein capitalises on the fusion of thermal and
vibration sensor outputs to create a robust multimodal monitoring framework. By initially
establishing a baseline using thermal imagery, the approach sets a reference standard for
comparison. Subsequently, vibration signals undergo a sophisticated transformation from
one-dimensional (1D) time-series data to two-dimensional (2D) spatial representations
suitable for image processing applications. These representations are further enhanced
through Gramian Angular Field (GAF) and Continuous Wavelet Transform (CWT) encoding
techniques, which encapsulate temporal dynamics and signal decomposition. Before fusion,
thermal and vibration-derived images are meticulously pre-processed to ensure compatibility
and maximised data integration. This process's culmination is synthesising a Stitched
Multimodal Image Dataset, offering a comprehensive view of the monitored condition. A
pre-trained Convolutional Neural Network (CNN), efficient in image-based analysis, will be

trained and used to assess the model performance according to the accuracy metric.

54



3.2.1 Preprocessing Multimodal Data for Induction Motor Fault Classification
Method

The proposed method presents a comprehensive and reliable multimodal feature
fusion approach for improved fault classification accuracy. The methodology incorporates
sensor fusion (combining images from different sensors into one image) and feature fusion
(integrating features from these images for classification). It combines vibration signals and
thermal images to identify Induction Motor (IM) bearing faults, as summarised in Figure 3.1.
The methodology comprises the following steps:

1. Methodology Input Channels: The process begins with thermal images, which establish
a baseline using a single-channel approach, serving as a reference for later multimodal
analysis. The second input consists of raw vibration signals, which are sub-sampled and
prepared for transformation in subsequent steps. This preparation includes creating sub-
files and splitting the dataset for further processing.

2. Two-dimensional (2D) Signal Encoding: One-dimensional (1D) vibration signals are
converted into a 2D format to enable image processing techniques. As a result, two
datasets are created: one with CWT encoded images and another with Gramian Angular
Difference Field (GADF) encoded images to capture temporal correlations and to
decompose the signals into wavelets, respectively. This step then uses pre-trained CNNs
for accuracy assessment (AlexNet, Residual Network-18 (ResNet-18)) and choosing
between CWT and GADF. The chosen 2D encoding technique is then nominated for
step 5.

3. Preprocessing for Image Fusion: Both thermal images and the chosen approach for the
2D encoded vibration data undergo a preprocessing step to ready them for image fusion.
This process merges the encoded vibration images with thermal images, employing a
novel methodology in multi-channel image fusion techniques. To ensure accurate
correlation between fault types, images are paired based on their health condition. Each
GADF image is matched with its corresponding thermal image, both labeled under the
same health condition (e.g., Normal, Mild, Moderate, Severe). This alignment is verified
by cross-referencing the fault labels from both the MFPT dataset and the lab experiment
to ensure proper pairing of fault types. The resulting Stitched Multimodal Image Dataset

is then prepared for input into the pre-trained CNN.
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4. Pre-trained CNNs for Accuracy Assessment: The Stitched Multimodal Image Dataset
images are input into a pre-trained CNN, capitalising on transfer learning capabilities.
This approach utilises the pre-existing knowledge of CNNs trained on extensive
datasets, thus improving their ability to analyse patterns and identify anomalies.
Introducing transfer learning markedly enhances the efficiency and precision of the fault
classification process. Specifically, SqueezeNet and ResNet-18 will be evaluated. It is
also essential to preprocess the Multimodal Fusion Image Dataset to ensure the image
dimensions are compatible with the required input size for the selected CNN,
SqueezeNet or ResNet-18.
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Figure 3.1: Preprocessing of Multimodal Condition Monitoring Data for Classifying Induction
Motor Faults Using Deep Learning Methods.
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3.2.2 Dataset

The proposed methodology was evaluated using the Machinery Failure Prevention
Technology (MFPT) bearing dataset. The testing setup utilised a NICE bearing with eight
elements or balls. For healthy conditions, three sets of data were collected, each sampled at
a rate of 97,656 Hz for 6 s. Similarly, three sets of data were gathered for Outer Race Fault
(ORF) conditions, also sampled at 97,656 Hz for 6 s. Furthermore, seven ORF conditions
were recorded at a sample rate of 48,828 Hz for 3 s. Additionally, seven Inner Race Fault
(IRF) conditions were sampled at the same rate of 48,828 Hz for 3s. The test rig was
equipped with a NICE bearing characterised by the following parameters (Bechhoefer,
2016):

o Roller diameter = 0.235
e Pitch diameter = 1.245
e Number of elements = 8
o Contactangle=0

On the other hand, thermal images were captured in the Wolfson Magnetics
Laboratory at Cardiff University School of Engineering using a Forward Looking InfraRed
(FLIR) thermal camera connected to a computer. These images were taken under six
artificially induced faulty conditions and one healthy condition (Al-Musawi et al., 2020;
McGhan, 2020a). The dataset utilised here aligns with the health conditions presented in the
MFPT bearing dataset, with a focus on methodology.

The proposed methodology is illustrated in Figure 3.1. It begins with evaluating
thermal image fault classification performance based on images captured over a 20-minute
period in ideal laboratory conditions, encompassing seven health conditions, as shown in
Figure 3.2. The thermal images were extracted from the lab-collected images stored in a
RawMotorData file. These thermal images were extracted using a Jupyter notebook
(APPENDIX 1). The selection of images depended on the health conditions presented in the
MFPT bearing dataset, explicitly utilising the categories of Normal (fault-free) or Healthy
condition, IRF, and ORF.
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Figure 3.: Thermal Images
(d) Ball; (e ) 4 bars; (f) Normal (fault-free) or Healthy condition; and (g) 1 Bar.

3.3 Results And Discussion
3.3.1 Input Channels
3.3.1.1 Thermal Images

The thermal image dataset is the first input in the framework. In practical scenarios,
camera misalignment or mistracking can lead to zooming in or out and variations in image
brightness. As a result, image preprocessing was conducted on the thermal images.
Consequently, new datasets were generated using the Python OpenCV library. Functions for
brightness adjustment, rotation, and zoom were developed and applied to the files. Median
blur was also applied to the images to replicate common defects in thermal images and
simulate real-world conditions. The thermal image dataset presented challenges due to its
inherent noise and small size.

Subsequently, new datasets were generated using the OpenCV library
(APPENDIX 1). Functions for brightness adjustment, rotation, and zoom were created and
applied to the files. Median blur was also used in the images to replicate typical defects in
thermal imagery. Pre-processed examples are displayed in Figure 3.3.

A total of 180 images for each fault type were used, where 60.00% of the dataset was
used for training, resulting in 115 images for training, 20.00% for validation (29 images),
and 20.00% for testing (26 images). The dotted line in Figure 3.1 represents single-channel
input for classification using thermal images only. It is the baseline data for comparing the
proposed methodology to determine if it improves the classification accuracy. Only Normal
(fault-free) or Healthy condition, IRF, and ORF were used in this study.
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Figure 3.3: Compromised-Quality Thermal Images (Preprocessing Stage).

3.3.1.2 Raw Vibration Signal Sub-Sampling

Data were prepared from raw vibration signals to reasonably split folders into
subsamples (CSV files) and produce useful 2D images. Data for 0.1 s were extracted from
each fault condition (two Normal (fault-free) or Healthy condition files called baseline, five
IRF, and seven ORF), resulting in 14 datasets for training and validation. On the other hand,
one Normal (fault-free) or Healthy condition file called baseline, IRF, and three ORF were
used, resulting in six datasets for testing, as shown in Table 3.1.

Table 3.1: Dataset Used and Subfiles Splitting Count.

Dataset Sampling Rate (Hz) Duration (s) Subfiles
Training
baseline_1 97,656 6 117
baseline_2 97,656 6 117
InnerRaceFault_vload_1 48,828 3 58
InnerRaceFault_vioad 2 48,828 3 58
InnerRaceFault_vload_3 48,828 3 58
InnerRaceFault_vload_4 48,828 3 58
InnerRaceFault_vload 5 48,828 3 58
OuterRaceFault_1 97,656 6 117
OuterRaceFault_2 97,656 6 117
OuterRaceFault_vload 1 48,828 3 58
OuterRaceFault_vload 2 48,828 3 58
OuterRaceFault_vload_3 48,828 3 58
OuterRaceFault_vload 4 48,828 3 58
OuterRaceFault_vload_5 48,828 3 58
Testing
baseline_3 97,656 6 117
InnerRaceFault_vload_6 48,828 3 58
InnerRaceFault_vload 7 48,828 3 58
OuterRaceFault_3 97,656 6 117
OuterRaceFault_vload_6 48,828 3 58
OuterRaceFault_vload 7 48,828 3 58
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3.3.2 Two Dimensional Signal Encoding Techniques

The choice of data representation can significantly impact the performance of ML
models in fault classification. Selecting relevant features, normalisation, data augmentation,
dimensionality reduction, graph-based representations, knowledge graphs, and hybrid
approaches can improve model performance by affecting the models' accuracy, speed, and
generalisability. Key aspects of data representation that influence ML model performance
include feature selection, where relevant features must be chosen to ensure the model
captures essential information related to the fault. Conversely, irrelevant features can lead to
overfitting or reduced performance (Kareem and Hur, 2022). In this chapter, various signal
encoding techniques, such as GAF and CWT spectrograms, will be utilised to enhance data
representation. Moreover, hybrid approaches combine different techniques, such as physics-
based performance models with DL algorithms, which can help improve the performance of
ML models in fault diagnostics (Chao et al., 2019).

3.3.2.1 Gramian Angular Field (GAF)

A methodology that transforms time series into images using two steps: time-series
data normalisation and polar coordinates representation of normalised data. There are two
types of GAF: Gramian Angular Summation Field (GASF) and GADF. Time series data x
are first normalised to values between 0 and 1, shown in Equation (3.1) (Han et al., 2021a):

where x ; is the raw time-series signal at timestamp i and X; is the normalised signal. Further,

561 — 2 min (31)

Xmax — Xmin
Xmin 1S the minimum value in the time series data and x;,,,, 1S the maximum value in the
time series data (Han et al., 2021a). After that, polar coordinates are used to represent

normalised data X; rather than regular cartesian coordinates by computing the angular cosine
value. Equation (3.2) (Ferraro et al., 2020; Han et al., 2021a):

{cp =arccos(%;,),0<% < 1, %€ X (3.2)

~lS
T:ti,tiEN

Here, t denotes the timestamp code at moment i, and radius r defines the timestamp.
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In contrast to the Cartesian coordinate system, GAF preserves temporal features by
constructing an image from the upper-left to the lower-right corner over time. It quantifies
temporal correlations across various time intervals using an angular perspective.
Specifically, GAF represents either the triangular GASF or the difference GADF between
individual points, as detailed in Equations (3.3) and (3.4). This method defines temporal
correlations across different intervals using an angular perspective, illustrated by the
triangular GASF or the difference GADF between points, as shown in Equations (3.3) and
(3.4) (Han et al., 2021a; Kou et al., 2022):

rcos(¢q + 1) cos(¢y + Pp)]

CASF = cos(qbzS + ¢1) COS(¢.i..+ o cos(qbzS + ¢, (3.3)
Lcos(¢p, + P1) cos(py, + dp) ]
rcos(¢p1 — ¢1) cos(¢1 — Pn)]

app = |00 o= 34)
Lcos(pn — 1) cos(¢n — ¢n).

where ¢; represents the angle polar coordinates of the i timestamp. The diagonal positions
keep the original information, while other positions measure the relationship between
different time sequences. Consequently, for a time series signal of length n, a numerical
matrix of nxn size can be concluded by the GAF encoding technique, resulting in a 2D image
(Han et al., 2021a).

The core concept behind converting time-series data into images using GAF involves
creating a matrix based on polar coordinates. This matrix preserves the temporal
relationships within the 1D time-series signal, maintaining accurate temporal correlations
compared to Cartesian coordinates. The process yields two types of GAF images: GASF and
GADF (Toma et al., 2022a).

To transform a given time series X = x4, X5, ..., X, into a range of [-1, 1], we use
Equation (3.1) to normalise and scale X where x; is the element of the time series (Cui et al.,
2022; Toma et al., 2022a). The normalisation and scaling process is further detailed in
Equation (3.5). This ensures that the data are appropriately scaled for the creation of GAF

images:
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(5 — max(X)) + (x; — min(X))) (3.5)
= max(X) — min(X)

The angle ¢ is the inverse cosine of x;, the radius r is the timestamp, and the time
series X is converted into polar coordinates as shown in Equation (3.6) (Cui et al., 2022;
Toma et al., 2022a).
¢ = arccos(X;), -1<x% <1,x€X (3.6)
ti

r= N,ti EN

where t; is the timestamp, and N is a constant for adjusting image distortion in polar
coordinates with time progression. In this context, a mapping is termed a bijection when ¢
is within [0, «t], ensuring a unique result for any time series in polar coordinates, preserving

distinct temporal relationships, unlike Cartesian coordinates.
3.3.2.2 Continuous Wavelet Transform (CWT)

Wavelet deals with highly fluctuated signals, making it a widespread method of
mechanical fault diagnosis. CWT outperforms other methodologies focusing on time-
frequency approaches, such as the Short-Time Fourier Transform (STFT) and Gabor
Transform (Nishat Toma and Kim, 2020). In general, Wavelet Transform (WT) is a
mathematical tool commonly used to reduce the signal's noise effect by splitting the selected
signal into small sub-signals, consequently projecting signals into the frequency-time domain
utilising subsets of wavelet functions (Divya and Devi, 2021). Hence, the most common
faults in bearing components occur periodically and affect the outer, ball, cage, and inner
races. Therefore, noise is isolated or shrinks from the signal in the wavelet domain. The
periodic impulse of a specific fault will be represented as “energy” in a few significant
magnitude coefficients. On the other hand, incoherent noises are translated into many small-
magnitude coefficients (Zhang et al., 2022d).

WT is a powerful tool in signal processing, and CWT is a wavelet type. It converts
time-domain signals into a time-frequency domain using a convolution operation that leads
to correlation coefficients between the mother wavelet function and the original signal
(Nishat Toma et al., 2021). The convolution operation is as in Equation (3.7) (Wei et al.,
2021):
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where a and B represent the scale factor and the shifting parameter, respectively, x(t) is the
selected signal over time-domain t. ¢ is the wavelet function. Where * represents the
operation of the complex conjugate. Hence, CWT converts 1D time-domain signals into 2D
time-frequency images (Wei et al., 2021).

However, the mother of the wavelet has two control parameters. First, the scaling
parameter is responsible for stretching and contracting the shape of the mother wavelet.
Second, the shifting parameter is responsible for the control of the mother wavelet movement
along the studied signal. By changing the control parameters on the mother wavelet, the
dynamic frequency characteristic of the signal can be revealed (Nishat Toma et al., 2021). In
machine fault diagnosis, the Morlet wavelet is combined with the CWT to examine vibration
signals. This technique generates time-frequency images, which can be leveraged by CNNs
for fault identification. The method is highly efficient and capable of handling complex data
rapidly, making it ideal for real-time machinery fault detection (Luczak, 2024). Therefore,
this chapter uses the analytical Morlet (Gabor) wavelet, a kind of CWT that uses the vibration
signal subsampling rate as the unit step.

3.3.2.3 Two-Dimensional (2D) Encoded Images: Gramian Angular Difference Field
(GADF) and Continuous Wavelet Transform (CWT)

This section tested two signal encoding methodologies to convert vibration signal
subsamples into 2D images. The first method was the GADF, a type of GAF. Second, the
analytical Morlet (Gabor) wavelet, a CWT type, uses the vibration signal subsampling rate
as the unit step.

Each vibration signal subfile presented in Table 3.1 was used as input for the GAF
and CWT 2D image signal encoding step; the code is provided (APPENDIX 2). On the other
hand, the GAF images were created using Python libraries and shown in (APPENDIX 1).
Vibration images are more extensive than thermal images, resulting in 1,398 images for each
encoding methodology. Four hundred sixty-six images were set aside for testing,

representing 33.33% of the entire dataset. The remaining data were divided into an 80:20
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ratio for training and validation purposes, with 745 images allocated for training and 187 for
validation. These images were generated from each subfile,

as indicated in Table 3.1, where the number of images matches the number of
subfiles. Therefore, these images retain the information of the signal in 2D diagrams. Figure
3.4 illustrates the GADF signal encoding image, while Figure 3.5 depicts the CWT 2D

vibration signal encoding.

healthy

Figure 3.4: GADF Encoded Images Demonstration.

Inner outer healthy

Figure 3.5: CWT Encoded Images Demonstration.

3.3.2.4 CNN Transfer Learning Examples Using AlexNet, ResNet-18 and SqueezeNet

Pre-trained CNNs offer numerous advantages, such as improved accuracy, as they
often achieve state-of-the-art performance on various image classification benchmarks
(Salehi et al., 2023). These models reduce training time since they come equipped with
fundamental features and require only fine-tuning for specific tasks (Alzubaidi et al., 2021).
This efficiency extends to using computational resources, making them ideal for handling
large datasets or scenarios with limited processing power (Alzubaidi et al., 2021; Salehi et
al., 2023). Additionally, pre-trained CNNs can help address class imbalances in datasets,

such as those in medical imaging, where some classes may lack sufficient data (Salehi et al.,
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2023). They can automatically feature extraction, which is crucial in medical imaging for
accurate analysis (Zheng et al., 2023).

Moreover, these models maintain translation invariance, which is vital for consistent
image recognition, and include regularisation techniques like Pseudo-task Regularisation
(PtR) to dynamically enhance network training without relying on specific regularisation
objectives or additional annotations. Their flexibility allows for adaptation to various
applications, including image classification, object detection, and segmentation (Salehi et al.,
2023). Pre-trained CNNs also benefit from being trained on large-scale datasets, enhancing
their performance on downstream tasks, and they are well-suited for domain adaptation in
fields like medical imaging, where data availability may be limited (Salehi et al., 2023).

CNN transfer learning can be applied with any pre-trained CNN architecture. The
idea is to start with a pre-trained CNN model and adjust it to meet the specific needs of a
new task by training it further on a different dataset. This method is especially beneficial
when the new dataset is too small or lacks sufficient data to develop a CNN from scratch
(Hussain et al., 2019). This chapter will focus on ResNet-18 and SqueezeNet, which are
commonly used in Induction Motor (IM) fault diagnosis. Conversely, ResNet-18 and
AlexNet were used for performance evaluation, as will be discussed in Chapter 6. On the
other hand, AlexNet will also be used in Chapter 4.

In Cinar's (2022) study, SqueezeNet showed promising accuracy levels in fault
detection. On the other hand, transfer learning can be utilised on customised CNN
architecture (Ye et al., 2021). SqueezeNet was used in 2022 for fault detection in IMs,
achieving a high classification score (Cinar, 2022). ResNet-18 was also used by Yuan et al.
in 2020 for rolling bearing fault diagnosis on the two publicly available datasets widely used,
namely, the MFPT bearing and Case Western Reserve University (CWRU) datasets (Yuan
et al., 2020). AlexNet was also utilised by Pinedo-Sanchez et al. (2020) on an unlabelled
dataset of vibration signal-encoded images from Intelligent Maintenance Systems. The study
exhibited encouraging outcomes in contrast to various other CNN architectures. Notably,
using AlexNet to diagnose bearing failure through vibration images was rare.

Pre-trained CNNs can be customised and fine-tuned to the desired dataset to learn
features faster and more efficiently than creating a CNN from scratch. Hence, it was proved

from the literature in section 2.2.3.1 that using simple CNN architecture resulted in better
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performance; SqueezeNet and ResNet-18, which is a short form of the residual net, were
explored. Moreover, some applications showcase the versatility of SqueezeNet in addressing
challenges related to IMs, ranging from fault diagnosis to image classification. The
SqueezeNet model, a type of CNN, has found applications in IMs. One such application is
in the fault diagnosis of IMs. Research has been conducted using DL CNN architectures,
including SqueezeNet, for fault diagnosis of such defects as broken rotor bars in IMs
(Barrera-Llanga et al., 2023).

SqueezeNet networks have also been evaluated for document image classification,
demonstrating SqueezeNet’s applicability in this domain (Hassanpour and Malek, 2019). A
recent study has shown the effectiveness of using SqueezeNet combined with CWT for
bearing fault detection in IMs. It achieved outstanding classification accuracies: 99.79% with
Morse Wavelet, 98.71% with Bump Wavelet, and 97.64% with Morlet Wavelet. These
results highlight the potential of DL models, like SqueezeNet, for precise and efficient fault
diagnosis in industrial settings (Boudiaf et al., 2024).

The evolution of DL architectures over the years has been marked by significant
milestones, particularly in image classification tasks. AlexNet, introduced in 2012,
revolutionised the field by winning the ImageNet challenge, demonstrating the power of
Deep Neural Networks (DNNs) (Krizhevsky et al., 2007). Following this, ResNet-18
emerged in 2015 with its innovative residual blocks, enabling the training of even deeper
networks by addressing the vanishing gradient problem (He et al., 2016). ResNet-18 is
moderate, with 18 fully connected layers and 11.7 million parameters (Kadam et al., 2021;
MathWorks-5, 2023). SqueezeNet, published in 2016, further advanced the domain by
offering a highly efficient model that achieves comparable accuracy to AlexNet with
significantly fewer parameters (landola et al., 2016a). SqueezeNet is a simple network with
18 fully connected layers and 1.24 million parameters (Kadam et al., 2021; MathWorks-5,
2023). Table 3.2 compares this thesis's CNN transferred learning architecture (MathWorks-
5, 2023).

Table 3.2: CNN Architecture Comparison (MathWorks-5, 2023).

Layer Type AlexNet (2012) ResNet-18 (2015) SqueezeNet (2016)
Input 227x227x3 224x224x3 224x224x3
Convl: 7x7, 64, Fire modules (squeeze and expand
Convolutional 5 layers stride 2 layers)
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Layer Type AlexNet (2012) ResNet-18 (2015) SqueezeNet (2016)

Max Pooling 3 layers Pooll: 3x3, stride 2 -
Fully Connected 3 layers 1 layer (classifier) 1 layer (classifier)
Output 1000 classes 1000 classes 1000 classes

detail:
1)

2)

The following section also discusses the CNN architectures presented in Table 3.2 in

AlexNet: AlexNet is a deep CNN composed of five convolutional layers followed by
three fully connected layers. It achieved victory in the ImageNet Large Scale Visual
Recognition Challenge in 2012, thanks to the work of Alex Krizhevsky, llya
Sutskever, and Geoffrey Hinton, as presented in their paper titled “ImageNet
Classification with Deep Convolutional Neural Networks” (Krizhevsky et al., 2017).
AlexNet’s architecture comprises eight layers, including five convolutional layers
and three fully connected layers (Yu et al., 2021). It also has a 1,000-way softmax
output layer for classification. It introduced the Rectified Linear Unit (ReLU)
activation function for faster training and implemented overlapping max pooling to
reduce representation size and computational load. AlexNet employed normalisation
layers, dropout techniques, and data augmentation strategies to prevent overfitting
for improved model robustness (Thalagala and Walgampaya, 2021).

SqueezeNet: The SqueezeNet model is a CNN that is 18 layers deep and can classify
images into 1,000 object categories. It has been trained on over a million images and
has learned rich feature representations for many images (MathWorks-4, 2023). Fine-
tuning the pre-trained SqueezeNet model with domain-specific data can also enhance
its performance for the specific application, allowing it to learn features relevant to
the fault diagnosis task (landola et al., 2017).

In the domain of DL for image classification, the SqueezeNet architecture
stands out for its strategic reduction of parameters without compromising accuracy.
Remarkably, SqueezeNet attains comparable accuracy to the well-established
AlexNet on the ImageNet dataset, yet with a model size that is 50 times smaller
(landola et al., 2016b; landola et al., 2017). This parameter reduction enhances
computational efficiency, a critical advantage in resource-constrained environments.

A key factor in optimising SqueezeNet's performance is manipulating the Squeeze
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3)

Ratio (SR), which is defined as the ratio of filters in the squeeze layers versus those
in the expand layers. Adjusting this ratio upwards can improve ImageNet's top-5
accuracy up to a certain threshold. Beyond this threshold, the benefits plateau,
suggesting that excessively high squeeze ratios may inflate the model's size without
yielding accuracy gains. This observation underscores the importance of
SqueezeNet's design principles, such as incorporating fire modules and the deliberate
balance between minimising parameters and maintaining accuracy (landola et al.,
2017).

ResNet-18: ResNet-18 is a CNN architecture introduced in the paper “Deep Residual
Learning for Image Recognition” by Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun, published in December 2015. This paper introduced the concept of
residual learning, which marked a significant advancement in DL architectures.
ResNet-18 is a member of the ResNet family, notable for its depth and the utilisation
of residual blocks, which effectively address the vanishing gradient problem when
training DNNs (He et al., 2016).

ResNet-18’s deep residual network architecture is known for its balance
between depth and performance for anomaly detection in Scanning Electron
Microscope (SEM) images of nanofibrous materials. ResNet-18, chosen for its
optimal trade-off between computational efficiency and accuracy, includes five
convolutional stages and is pre-trained on the ImageNet dataset. This architecture
facilitates the detection of unexpected anomalous patterns in SEM images,
demonstrating its effectiveness in recognising complex scenes and objects, which is
crucial for identifying anomalies within the intricate textures of nanofibrous materials
(Napoletano et al., 2018).

The architecture of ResNet-18 consists of a total of eighteen layers, including
seventeen convolutional layers and a fully-connected layer; it also has an additional
softmax layer for classification tasks. The convolutional layers use 3 x 3 filters,
doubling the number of filters as the output feature map size halves. Downsampling
is achieved through convolutional layers with a stride of 2, followed by average
pooling and a fully connected layer leading to the softmax layer. A key feature of

ResNet-18 is the inclusion of residual shortcut connections between layers, which
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help address the vanishing gradient problem and facilitate the training of networks

(Ramzan et al., 2020; Pandey and Srivastava, 2023).

This stage is pivotal in selecting the proposed methodology's 2D encoding technique.
Table 3.1 enumerates all the models created, with the outcomes of this stage detailed in
models (3-6). For this analysis, SqueezeNet and ResNet-18 were employed. CWT was
identified as yielding superior accuracy. To comply with network specifications, the image
sizes were adjusted as required: ResNet and AlexNet necessitate an input size of 224 x 224
pixels. The last fully connected layer in both networks was also modified to address a three-

class problem.
3.3.3 Multimodal Image Fusion Preprocessing

The number of generated stitched images was 180, which is comparable to the
baseline data or thermal images. These images were merged using the Excel Power Query,
which links each image with its saved path. The first column holds the path of the GADF
images, the second column contains the path of the thermal images, and the third column
indicates the health condition. Consequently, images with the same row number will be
stitched together using the proposed methodology, as shown in Figure 3.6. Each thermal
image is paired with a uniqgue GADF image, grouped by health condition as depicted in

Figure 3.7; the condition is denoted as Normal (fault-free) or Healthy.

Image fusion t

Inner outer healthy

eJmlque

Figure 3.6: Stitched Multimodal Image Dataset Samples Per Health Condition.
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Vibration (GADF) Thermal Images Fault

C:\Users\Shahd\Documents\M£ C:\Users\Shahd\Documen healthy
C:h\Users\Shahd\Documents\M£ C:hUsers\Shahd\Documen healthy
C\Users\Shahd\Documents\M£ C:\Users\Shahd\Documen healthy
C:A\Users\Shahd\Documents\M£ C:h\Users\Shahd\Documen healthy
C:\Users\Shahd\Documents\M£ C:\Users\Shahd\Documen healthy
C:A\Users\Shahd\Documents\M£ C:h\Users\Shahd\Documen healthy
C:\Users\Shahd\Documents\M£ C:h\Users\Shahd\Documen healthy
C:\Users\Shahd\Documents\M£ C:\Users\Shahd\Documen healthy
C:\Users\Shahd\Documents\M£ C\Users\Shahd\Documen healthy
C:\Users\Shahd\Documents\M£ C:\Users\Shahd\Documen healthy
C:h\Users\Shahd\Documents\M£ C:hUsers\Shahd\Documen healthy
C:\Users\Shahd\Documents\M£ C:\Users\Shahd\Documen healthy
C:A\Users\Shahd\Documents\M£ C:hUsers\Shahd\Documen healthy

Figure 3.7: Microsoft Excel PowerQuery CSV. File for The Stitched Multimodal Image
Arrangement.

After that, image stitching was done by merging similar RGB channels, giving
vibration images a higher portion in stitched dataset generation. Image stitching was done
using Python Jupyter Notebook, as shown in Figure 3.8. The vibration image has a higher
weight in stitched image generation. This is because the encoded GADF vibration signal
images shown in Table 3.1 proved more accurate than the thermal images in classifying the
health types. Consequently, in the stitched dataset, the vibration images are given a higher
weight, accounting for 66.66% of the image, while the thermal images comprise 33.33%.
This weighting emphasises the knowledge extracted from the vibration data while leveraging
the unique insights of thermal imaging. This is demonstrated in model 5, where the GADF
images dataset scored 99.14% using SqueezeNet and 97.64% using ResNet-18. On the other
hand, the thermal images dataset scored 87.96% using SqueezeNet and 85.19% using
ResNet-18. Consequently, a stitched image comprises 66.66% vibration encoded image and
33.33% thermal image, emphasising the knowledge from vibration image; see the complete
code in (APPENDIX 2).
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Figure 3.8: Stitched Multimodal Image Dataset Encoding Technique.

3.3.4 Pre-trained CNNSs for Fault Classification

CNNs are suitable for high-dimensional feature extraction. CNNs are stable in terms
of pattern recognition from images (Han et al., 2021b). Furthermore, CNNs are known for
their feature extraction capability from images but encounter difficulties with 1D time series
signals (Zhou et al., 2022). Furthermore, CNNs have proved their rotating machinery fault
classification capabilities through Vibration Signal Analysis (VSA) (Pinedo-Sanchez et al.,
2020). Therefore, CNNs have improved our ability to recognise and understand visual
information by automatically learning and capturing relevant patterns in images and videos
(Reshadi et al., 2023). Researchers have discovered a variety of CNN architectures to
improve classification performance, starting with LeNet-5, designed explicitly for
handwritten digit recognition tasks introduced by Yann LeCun, along 