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Abstract  

This thesis aims to improve the accuracy of fault classification in Induction Motor 

(IM) bearings by developing and applying advanced Artificial Intelligence (AI) and Machine 

Learning (ML) techniques for condition monitoring data. The proposed framework utilises 

several approaches, namely, Multimodal Data Preprocessing, Artificial Thermal Image 

Creation, Customised Radial Load Assessment, Multimodal Systems Decision Fusion, and 

Graph Convolutional Networks (GCN) on Tabular Datasets to achieve better classification 

accuracies over existing methods.  

This study's first significant contribution is the proposed novel approach in the 

preprocessing of multimodal condition monitoring data for classifying induction motor 

faults that employs Convolutional Neural Networks (CNNs), such as Residual Network-18 

(ResNet-18) and SqueezeNet, to fuse vibration signals and thermal images. This approach 

enhances fault classification accuracy by 14.81% and proves exceptionally effective in 

scenarios with compromised image quality. Further refinement using Gramian Angular Field 

(GAF) processing enhances the detection of subtle fault indicators, achieving better accuracy 

than Continuous Wavelet Transform (CWT). 

Secondly, this thesis explores the creation of high-quality artificial thermal images 

using Wasserstein GAN with Gradient Penalty (WGAN-GP) and its conditional variant, 

conditional Wasserstein GAN with Gradient Penalty (cWGAN-GP), to address the scarcity 

of thermal imaging data. The artificial thermal images replicate complex thermal patterns of 

IMs under various fault conditions with remarkable accuracy, as evidenced by the improved 

Maximum Mean Discrepancy (MMD) scores and a 40.00% reduction in training times. The 

high fidelity of these artificially generated images, validated against real images, 

underscores their practical use in fault classification. 

Thirdly, the Customised Load Adaptive Framework (CLAF) introduces a novel 

approach to incorporating load variations into fault classification. Through a two-phase 

process involving ANOVA and optimal CWT, load-dependent fault subclasses—Mild, 

Moderate, Severe, and Normal (fault-free) or Healthy—are identified. The CLAF achieved 

an accuracy of 96.30% ± 0.50% in 18.155 s during five-fold cross-validation using a Wide 
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Neural Network (WNN), demonstrating its ability to detect subtle fault variations across 

different Load Factors (LFs).   

Fourthly, building upon the CLAF’s load-dependent fault subclass structure, the 

research proposed two key methodologies for enhancing load-specific condition monitoring 

accuracy while optimising training time relative to complexity using the MFPT bearing 

dataset namely, the Load-Dependent Multimodal Vibration Signal Enhancement and Fusion 

(LD-MVSEF) method, and the Hybrid Graph-CNN Decision Fusion (HG-CDF) method. 

The LD-MVSEF employs a multimodal approach across multiple channels, with different 

signal encoding techniques achieving a fault classification accuracy of 99.04% ± 0.22%  over 

five runs in 18 min 30 s. It performed particularly well in the Moderate class, achieving  

99.15% ± 0.89%  testing accuracy, and scored 97.20% ± 1.75% in the Mild class. 

The proposed HG-CDF combines the structural strengths of Graph Convolutional 

Networks (GCNs) with the pattern-detection capabilities of 1D-Convolutional Neural 

Networks (1D-CNNs) for CLAF load-dependent fault subclass classification. The study 

began by optimising the GCN through Taguchi experiments, converting tabular data into 

graph structures using the k-Nearest Neighbours method and achieving a mean accuracy of 

89.01% ± 1.25 across nine configurations. HG-CDF further improved performance, reaching 

an overall accuracy of 99.19% in just 3 minutes and 28 seconds, surpassing LD-MVSEF in 

the Mild class with 98.92% accuracy while also providing a faster and more efficient 

solution. 

The methodologies proposed in this research significantly enhance the IM fault 

classification task, improve the decision-making process, and offer scalable solutions 

adaptable to other domains.  
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𝑥[𝑛]: The current value of the signal at time index 𝑛. 
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Chapter 1: Introduction 
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1.1 Background 

Induction Motors (IMs) play a crucial role across various industries, but a significant 

percentage of IM failures, estimated at 40% to 50%, stem from issues related to rolling 

bearings (Frosini and Bassi, 2010). Recent studies have highlighted that bearing faults 

account for up to 50% of mechanical failures in high-power IMs, underscoring their critical 

importance in modern machinery (Nishat Toma et al., 2021). Furthermore, a 2020 IEEE 

survey focused on 200 hp motors revealed that bearing faults constituted more than 40% of 

all IM faults (Sihag and Sangwan, 2020).  

IMs are widely recognised in manufacturing for their simplicity, affordability, and 

reliability, powering nearly 40% of global electric consumption across diverse industrial 

sectors. These motors, characterised by rotating components, such as rotors, bearings, and 

gears, rely heavily on bearings for smooth operation. Bearings typically consist of inner and 

outer races enclosing rolling balls within a cage to maintain uniform ball spacing. IM faults 

due to excessive loads, fatigue, inadequate lubrication, and misalignment pose significant 

operational and safety risks ( Toma et al., 2022a). 

Bearings play a critical role in supporting IM components to ensure smooth rotation. 

Typically, a bearing consists of inner and outer races enclosing rolling balls within a cage, 

maintaining consistent ball spacing. Bearing faults often develop gradually, underscoring 

the importance of early detection to minimise their impact and associated risks. As these 

faults progress, they can impair IM performance, threaten worker safety, disrupt operational 

efficiency, compromise product quality, and lead to substantial maintenance costs (Frosini 

and Bassi, 2010; Sihag and Sangwan, 2020; Wei et al., 2021).  

Hence, the urgent need to establish robust condition monitoring systems for IM 

machines is evident. Leveraging Industry 4.0 capabilities and available data to develop 

Data-driven Fault Diagnosis (DFD) systems incorporating Deep Learning (DL) techniques 

for feature extraction and pattern recognition is essential to address these challenges (Niu et 

al., 2020; Nishat Toma et al., 2021). In the Artificial Intelligence (AI) era of advanced 

manufacturing, a dependable condition monitoring system for fault detection and 

recognition is indispensable to uphold stringent quality standards and effectively manage 

the production process (Niu et al., 2020).  
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In the realm of maintenance, Non-Invasive Inspection (NII) is a well-established 

tool for monitoring the health of machinery. This technique enables the assessment of the 

current health status without disrupting ongoing operations. NII can be categorised into two 

main approaches based on sensing methods. The first is Contact-based Non-Invasive 

Inspection (CNI), which involves placing sensors directly on the machine’s body. This 

includes techniques such as magnetic flux sensing, voltage analysis, machine current 

analysis, vibration analysis, and wear debris monitoring. The second approach is Non-

Contact-Based Non-Invasive Inspection (NCNI), whereby sensors are not directly attached 

to the inspected part of the machinery system. NCNI methods encompass technologies like 

Radio Frequency (RF), radar technology, ultrasonic sensing, camera-based imaging, 

Acoustic Emission (AE) sensing, thermographic sensing (which utilises Infrared (IR) 

technology), and laser-based techniques (Alotaibi et al., 2021).  

Among these approaches, Vibration Signal Analysis (VSA) is recognised as the 

conventional method for fault classification (Jia et al., 2019). However, in the domain of 

rotational-machine fault diagnosis using signals, signal preprocessing can be conducted 

using various techniques, including time-domain, frequency-domain, or time-frequency 

domain analysis (Sinitsin et al., 2022). On the other hand, thermal imaging has demonstrated 

its superiority in terms of fault classification accuracy compared to vibration signals, as 

supported by research conducted by Jia et al. (2019), McGhan and Feayherston (2020), and 

Shao et al. (2021). Thermal image-based condition monitoring can achieve nearly 100% 

accuracy by leveraging Convolutional Neural Network (CNN) transfer learning capabilities, 

with the added benefit of requiring less preprocessing than vibration signal fault 

classification (Choudhary et al., 2021; Khanjani and Ezoji, 2021). Furthermore, thermal 

images exhibit less sensitivity to speed fluctuations, making them more efficient in specific 

scenarios (Shao et al., 2023).  

However, it is essential to acknowledge the limitations of thermal images, including 

the installation costs for cameras and the potential for camera misalignment, which can 

affect the recognition process (Gangsar and Tiwari, 2020). Additionally, the limited 

availability and imbalanced distribution of thermal images across specific or all health 

conditions can significantly affect the performance of condition monitoring systems (Niu et 

al., 2020). Consequently, each input has its strengths and limitations. The motivation for the 
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current research stemmed from recognising the complementary nature of vibration signals 

and thermal images and the need to address data availability issues and incorporate load-

dependent factors. This comprehensive exploration of various aspects of condition 

monitoring involves combining modalities, enhancing accuracy, and considering load-

dependent factors. 

This thesis proposes a multifaceted approach to enhance IM condition monitoring 

in light of these considerations. Firstly, the thesis introduces a novel preprocessing 

technique which combines contact- and non-contact-based sensing methods, specifically 

vibration signals and thermal images. This approach addresses the limitations of thermal 

image fault classification found in the literature, including noise and local blur, which can 

hinder fault recognition (Fan et al., 2022). By integrating vibration signals as a 

complementary data source, it is possible to develop a more reliable condition monitoring 

system capable of mitigating noisy data through a holistic view and valuable knowledge 

extraction from diverse factors. This approach contributes to the multimodal paradigm and 

multi-sensor fusion by proposing a holistic multi-sensor fault classification methodology 

with a novel preprocessing technique that creates a fused image incorporating valuable 

knowledge extracted from various sources using CNNs and DL capabilities. The thesis also 

explores signal encoding techniques, including Continuous Wavelet Transform (CWT) and 

Gradient Angular Difference Field (GADF). 

Second, this thesis addresses the need to generate an artificial thermal image dataset 

mimicking real images under seven health conditions. These conditions include bearing 

damages, such as the Inner Race Fault (IRF) type, Outer Race Fault (ORF) type, and ball 

damage, as well as rotor damages, including one broken bar, four broken bars, and eight 

broken bars, in addition to a Normal (fault-free) or Healthy condition. This approach offers 

a promising solution to address the lack of public datasets containing IM thermal images 

representing different health states. This is achieved by utilising various Generative 

Adversarial Network (GAN) architectures, namely, the Deep Convolutional Generative 

Adversarial Network (DCGAN), Wasserstein Generative Adversarial Network with 

Gradient Penalty (WGAN-GP), and conditional Wasserstein Generative Adversarial 

Network with Gradient Penalty (cWGAN-GP). 
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Third, this thesis advances traditional fault classification methodologies by 

introducing a Customised Load Adaptive Framework (CLAF), which accounts for load 

variations and dataset customisation. The CLAF represents a pioneering approach, 

employing a meticulous two-phase process to reveal load-dependent fault subclasses that 

are not readily identified by traditional methods. The study explores how radial load 

characteristics influence fault behaviours, employing advanced techniques such as Time and 

Frequency Domain (TFD) feature extraction, feature reduction, CWT for time-frequency 

analyses, Wavelet Singular Entropy (WSE), and CWT energy to identify novel load-

dependent fault subclasses. The CLAF is customised and tested on the Machinery Failure 

Prevention Technology (MFPT) bearing dataset to reveal intricate load-dependent patterns, 

providing a profound understanding of the interplay between load dynamics and bearing 

fault behaviour. Various Machine Learning (ML) classifiers, including Wide Neural 

Network (WNN), Cubic Support Vector Machine (CubicSVM), and Fine Tree, are 

incorporated to validate the proposed framework. 

Fourth, the thesis proposes the Load-Dependent Multimodal Vibration Signal 

Enhancement and Fusion (LD-MVSEF) methodology to improve the classification 

accuracy of CLAF load-dependent fault subclasses. Identifying appropriate features has 

been recognised as a challenge, as it can be time-consuming and, in certain cases, 

impractical, particularly for specific faults or complex machinery (Resendiz-Ochoa et al., 

2018). This method employs a three-channel decision fusion technique, integrating GADF, 

CWT, and time and frequency domain features. By utilising this multimodal approach, LD-

MVSEF enhances fault classification accuracy and enables more precise, load-specific 

condition monitoring. It consolidates data from multiple channels, optimising classification 

across various load conditions and facilitating informed decision-making. 

Fifth, the thesis introduces the Hybrid Graph-CNN Decision Fusion (HG-CDF) 

approach, which also focuses on improving the classification accuracy of CLAF load-

dependent fault subclasses. A key challenge in using Graph Neural Networks (GNNs) lies 

in handling multivariate sensor data, where each sensor represents different factors, often 

causing confusion during training (Deng and Hooi, 2021). In contrast, HG-CDF focuses 

exclusively on tabular vibration signals, transforming features from the TFD into graph 

structures using the k-Nearest Neighbours (kNN) method. It combines the strengths of 
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Graph Convolutional Networks (GCNs), which capture complex relationships within graph 

data, and One-Dimensional Convolutional Neural Networks (1D-CNNs), which excel at 

detecting sequential patterns in time-series data. 

While the previous literature has seldom explored the use of GCNs for fault 

classification in IMs, particularly for fault classes derived from the CLAF, GNNs and k-

Nearest Neighbour Graphs (k-NNGs) have been shown to be complementary techniques for 

analysing graph data. In particular, k-NNG is essential for constructing graphs from data 

points (Wang et al., 2021b; Rangel-Rodriguez et al., 2023), while GNNs excel at identifying 

patterns and relationships within graph data, as demonstrated in various fields such as 

micro-service systems (Zhang et al., 2023b), power systems (Su et al., 2021), and fault 

location in power networks (Mo et al., 2023).  

1.2 Aim and Objectives  

The aim of this research is to enhance the accuracy of fault classification in IM 

bearings by developing and implementing novel artificial intelligence (AI) and Machine 

Learning (ML) techniques utilising condition monitoring data. The research objectives are 

organised into five main themes as follows: 

1) Multimodal Data Preprocessing Methodology: To develop a preprocessing 

methodology that integrates multimodal data (thermal images and vibration signals) 

to improve fault classification accuracy. Discussed in Chapter 3. 

2) Artificial Thermal Image Creation: To create high-quality artificial thermal 

images using conditional Generative Adversarial Networks (cGANs) to represent 

various IM health conditions. Explored in Chapter 4. 

3) Customised Radial Load Assessment: To develop a Comprehensive Load-

dependent Analysis Framework (CLAF) for classifying IM faults into load-

dependent subclasses. Detailed in Chapter 5. 

4) Multimodal Systems Decision Fusion Approach: To develop a Load-Dependent 

Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF) method for 

improved CLAF load-dependent fault subclass classification accuracy. Described in 

Chapter 6. 
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5) Graph Convolutional Network (GCN) on a Tabular Dataset Application: To 

apply a Graph Convolutional Network (GCN) for classifying CLAF load-dependent 

fault subclasses. Outlined in Chapter 7.  

1.3 Alignment of Research Objectives with Methodologies and Chapter Structures 

The research objectives outlined in Section 1.2 are systematically addressed 

throughout the chapters of this thesis, ensuring a structured approach to achieving the 

overall aim. The objectives and chapters are linked through the integration of multimodal 

data, which includes four key inputs: 

1) Raw Vibration Signal (from the Machinery Failure Prevention Technology (MFPT) 

Bearing Dataset): This dataset contains unprocessed vibration signals from MFPT 

bearing, serving as primary indicators of IM bearing conditions. The signals were 

recorded under various conditions, including healthy states, ORF, and IRF. 

2) Lab-Collected Thermal Images (Cardiff University): Thermal images were captured 

using an FLIR thermal camera at Cardiff University's Wolfson Magnetics 

Laboratory. These images document the thermal profiles of IM bearings under 

different load conditions (8 bars, 4 bars, and 1 bar) and specific faults (IRF, ORF, 

and ball faults). A baseline image representing a Normal (fault-free) or Healthy 

condition  is also included. 

3) Compromised Quality Thermal Images (Simulating Real-World Conditions): These 

images are artificially degraded versions of the lab-collected thermal images. They 

simulate real-world scenarios where thermal images may be noisy or unclear, 

helping to test the robustness of fault detection algorithms under suboptimal 

conditions. 

4) Categorised Load Factor (LF) (from the MFPT Bearing Dataset): The MFPT dataset 

is categorised by different operational load conditions (e.g., 50, 100, 150, 200, 250, 

and 300). This categorisation allows for the analysis and classification of faults with 

respect to varying loads, which is crucial for developing load-specific monitoring 

and fault classification techniques. 

Figure 1.1 illustrates how each research objective aligns with the specific 

methodologies and analyses detailed in the thesis chapters, ensuring a coherent progression 

toward improving fault classification accuracy in IM bearings using AI and ML techniques.
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Figure 1.1: Alignment of Research Objectives with Chapters’ Methodologies. 
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The research objectives are explored in depth in the following chapters (refer to Figure 1.1): 

1) Objective 1: Develop a Multimodal Data Preprocessing Methodology 

Chapter 3: This chapter addresses the preprocessing stage, where noisy thermal images 

(input 3) and vibration signals (input 1) from different datasets are merged into a unified 

image. It also assesses different signal encoding methodologies to enhance fault 

classification accuracy in induction motor (IM) bearings. 

2) Objective 2: Create High-Quality Artificial Thermal Images 

Chapter 4: This chapter focuses on the creation of high-quality artificial thermal images 

using Generative Adversarial Networks (GANs). It explores the generation of artificial 

thermal images from (input 2) that represent various induction motor (IM) health 

conditions, thereby improving fault detection capabilities. 

3) Objective 3: Develop a Comprehensive Load-dependent Analysis Framework 

(CLAF) 

 Chapter 5: This chapter introduces the Customised Radial Load Assessment, 

developing a Comprehensive Load-dependent Analysis Framework (CLAF) that 

classifies induction motor faults into load-dependent fault subclasses based on varying 

LFs from the MFPT dataset (input 4). 

4) Objective 4: Establish a Load-Dependent Multimodal Vibration Signal 

Enhancement and Fusion (LD-MVSEF) Method 

Chapter 6: Building on Chapter 5 load-dependent fault subclasses, this chapter 

presents the LD-MVSEF method, which integrates multimodal data (including GADF 

and CWT. The thesis also explores signal encoding techniques, including Continuous 

Wavelet Transform (CWT) and Gradient Angular Difference Field (GADF) images) to 

improve the classification accuracy of CLAF load-dependent fault subclasses using 

advanced decision fusion techniques tailored to specific load conditions. 

5) Objective 5: Apply Graph Convolutional Networks (GCNs) to Tabular Datasets 

 Chapter 7: Building on Chapter 5, this chapter explores the application of Graph 

Convolutional Networks (GCNs) for classifying load-dependent fault subclasses. It 

involves constructing graphs from tabular datasets and applying GCNs to enhance 

classification accuracy and efficiency by leveraging the relational dynamics within the 
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data. Additionally, it proposes a Hybrid Graph-CNN Decision Fusion (HG-CDF) 

approach, which focuses on further improving the classification accuracy of CLAF 

load-dependent fault subclasses. 

1.4 Research Questions 

Based on the above objectives, this research aims to answer the following questions: 

• Q1: How can the integration of multimodal data sources, specifically thermal images 

and vibration signals, enhance the accuracy of fault classification in induction motor 

(IM) bearings, especially under compromised thermal image quality? 

• Q2: How effective are conditional Generative Adversarial Networks (cGANs) in 

generating high-quality artificial thermal images for IM health conditions, and how 

do these images compare with the original dataset? 

• Q3: How can a Comprehensive Load-dependent Analysis Framework (CLAF) be 

developed to classify IM bearings faults into load-dependent subclasses (‘Mild,’ 

‘Moderate,’ and ‘Severe’) based on varying LFs? 

• Q4: How can the Load-Dependent Multimodal Vibration Signal and Energy Fusion 

(LD-MVSEF) method achieve high accuracy in load-specific condition monitoring 

of IMs, and what are the benefits of using a weighted decision fusion technique? 

• Q5: How can transforming time and frequency domain features into k-Nearest 

Neighbour Graphs (k-NNGs) and applying them to a Graph Convolutional Network 

(GCN) enhance the accuracy and efficiency of load-dependent fault classification in 

IM bearings, and how does integrating a GCN with a 1D-CNN in a hybrid approach 

further improve this classification? 

1.5 Thesis Outline and Contribution  

This thesis is organised as follows:  

Chapter 1: Introduction 

This chapter provides an overview of the research context, articulates the study’s 

purpose, sets out the objectives and research questions, outlines the thesis structure, and 

discusses the limitations and assumptions of the research. 

Chapter 2: Literature Review 
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This chapter explores Artificial Intelligence (AI) techniques applicable to IMs, 

focusing on ML and DL. It covers AI algorithms, DL architectures, two-dimensional (2D) 

vibration signal encoding techniques, and feature extraction methods. The chapter highlights 

state-of-the-art research across five key themes: Multimodal Data Preprocessing, Artificial 

Thermal Image Creation, Customised Radial Load Assessment, Decision Fusion in 

Multimodal Systems, and GCNs on Tabular Datasets. It also identifies research gaps within 

each theme. 

Chapter 3: Novel Preprocessing of Multimodal Condition Monitoring Data for 

Classifying Induction Motor Faults Using Deep Learning Methods 

This chapter presents a novel preprocessing approach for multimodal data in fault 

classification of IMs using DL methods. The Stitched Multimodal Image Dataset Encoding 

Technique integrates vibration signals and thermal images through signal-to-image 

encoding techniques, such as CWT and Gramian Angular Field (GAF). By applying CNN 

architectures like Residual Network (ResNet) and SqueezeNet, the study demonstrates that 

this multimodal feature fusion enhances classification accuracy, particularly under IRF 

conditions, even with lower-quality thermal images. The proposed approach improved 

classification accuracy by 12.50%, achieving 99.10% ± 0.50% when using both ResNet-18 

and SqueezeNet compared to using compromised thermal images alone.  

This chapter’s main contribution is as follows: 

1) Proposing a novel preprocessing method for multimodal condition monitoring data 

to classify IM faults using DL techniques. 

Chapter 4: A Novel Approach Using Wasserstein Generative Adversarial Networks 

with Gradient Penalty (WGAN-GP) and Conditional WGAN-GP for Generating 

Artificial Thermal Images of Induction Motor Faults 

This chapter investigates the use of GANs for generating artificial thermal images of 

IM faults. Initially, the DCGAN is evaluated to establish a baseline for generating these 

images. The chapter then introduces the Wasserstein GAN with Gradient Penalty (WGAN-

GP) and the cWGAN-GP, which produce thermal images closely resembling real ones. The 

cWGAN-GP model achieved a Maximum Mean Discrepancy (MMD) score of 1.023, 

indicating strong similarity to real images, while the WGAN-GP outperformed it with an 

Earth Mover’s Distance (EMD) score of 4.663 compared to cWGAN-GP’s 4.816. 
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Additionally, the cWGAN-GP dataset achieved a classification accuracy of 98.41% using a 

pre-trained AlexNet model. 

This chapter’s main contributions are as follows: 

1) Exploring the use of DCGAN and WGAN to generate artificial thermal images that 

closely mimic real thermal images of IM bearing faults. 

2) Introducing a novel approach using WGAN-GP and cWGAN-GP for generating 

artificial thermal images of IM faults.  

Chapter 5: A Novel Customised Load Adaptive Framework (CLAF) for Induction 

Motor Fault Classification Utilising the MFPT Bearing Dataset 

This chapter presents the CLAF for classifying IM faults into load-dependent 

subclasses: ‘'Normal (fault-free) or Healthy condition,’ ‘Mild,’ ‘Moderate,’ and ‘Severe.’ 

The framework improves traditional fault classification by incorporating load variations and 

tailoring the analysis to specific conditions. Developed in two phases, the first phase 

identifies load-dependent patterns using statistical ranking and ML classifiers, while the 

second phase refines classification with CWT techniques. The chapter details the design, 

methodology, and application of the CLAF for enhanced fault classification.  

Thus, the contributions of this chapter are as follows: 

1) Conducting a comprehensive TFD analysis under six load conditions to reveal 

patterns and variations in fault severity. 

2) Selecting an optimal CWT approach using Wavelet Singular Entropy (WSE) to 

improve feature extraction, denoising, and pattern recognition. 

3) Introducing a method for identifying and classifying load-dependent fault 

subclasses, including ‘Mild,’ ‘Moderate,’ and ‘Severe,’ which enhances the 

understanding of fault severity under different load scenarios. 

4) Proposing the CLAF, extending traditional fault classification methods by 

incorporating load variations and customising the analysis for different IM datasets. 

Chapter 6: Novel Load-Dependent Multimodal Vibration Signal Enhancement and 

Fusion (LD-MVSEF) for Load-Specific Condition Monitoring 

This chapter introduces the LD-MVSEF approach, which advances load-specific 

condition monitoring by building on the CLAF. The LD-MVSEF method improves the 

classification accuracy of CLAF load-dependent fault subclasses by integrating raw 
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vibration feature extraction with signal encoding techniques such as CWT and GADF image 

conversion. It employs various classifiers to enhance load-dependent fault classification 

accuracy, achieving 99.04% ± 0.22%  across five runs, with an average training time of 18 

min and 30 s, providing a valuable methodology for monitoring machinery conditions. 

This chapter’s main contributions are as follows: 

1) Proposing the LD-MVSEF approach, which integrates information from GADF, 

CWT, and time-frequency domain data to enhance Load-Dependent Fault 

Classification, building on the CLAF. This approach improves accuracy, particularly 

by using a weighted decision fusion method. 

2) Combining diverse analytical dimensions, including one-dimensional (1D) vibration 

signals and two-dimensional (2D) RGB images (CWT and GADF-encoded), to 

improve classification accuracy. 

Chapter 7: Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault 

Classification. 

This chapter highlights the potential of GCNs for condition monitoring, particularly 

in scenarios requiring fast model training and accurate fault categorisation. By transforming 

tabular data into graph structures using the kNN method, GCNs demonstrated a strong 

performance in load-dependent fault classification, with a mean accuracy of 89.01% ± 

1.25% across nine experiments using the Taguchi design, where each experiment takes 

around 28 s. However, the GCN performed lower in the Mild class, prompting the 

introduction of the HG-CDF method, which integrates GCN and 1D-CNNs. The hybrid 

approach significantly improved accuracy across all CLAF load-dependent fault subclasses, 

achieving 99.19% overall accuracy while maintaining computational efficiency with a total 

training time of 3.28 min. 

The chapter’s main contributions are as follows: 

1) Utilising CLAF subclasses in GCNs by refining fault classification through 

incorporating CLAF load-dependent subclasses (‘Mild,’ ‘Moderate,’ ‘Severe,’ and 

‘Healthy’), offering a tailored approach to condition monitoring. 

2)  Advancing Feature Extraction by moving beyond raw VSA by applying advanced 

feature extraction techniques from both time and frequency domains, enhancing 

node relationship modelling, and improving fault detection accuracy. 
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3) Proposing GCNs using Taguchi, which involved transforming data representation by 

introducing GCNs for fault classification in IMs, using the k-NNG method to 

transform traditional tabular data into graph-based structures, capturing relational 

dynamics and advancing the potential of GCNs in this field and selecting the optimal 

GCN configuration using Taguchi.  

4) Proposing GCN using Taguchi with Selective Weighted Loss (SWL) to enhance 

class-specific accuracy, with a particular focus on improving the performance of the 

Mild class. By adjusting the model’s focus, SWL effectively boosted the accuracy of 

the Mild class while ensuring strong results were maintained across other classes. 

5) Proposing an HG-CDF, which combines GCNs and 1D-CNNs to address the GCN’s 

limitations in the Mild fault class and in order to improve classification performance 

across all subclasses. 

Chapter 8: Conclusion 

 The final chapter summarises the key contributions of the thesis, identifies the 

study’s limitations, and offers recommendations for future research. 

1.6 Thesis Limitations and Assumptions  

While this thesis primarily focuses on the MFPT bearing dataset for IM condition 

monitoring (a publicly available resource), it is essential to acknowledge this research’s 

specific scope and context. The proposed frameworks are highly detailed, providing step-by-

step procedures that facilitate easier customisation of different datasets or industrial settings. 

However, the current research is tailored to the MFPT bearing dataset and may not cover all 

possible real-world scenarios. While efforts have been made to ensure the representativeness 

of the MFPT bearing dataset, inherent limitations associated with any dataset may exist. The 

study primarily explores vibration signals and thermal images as data sources, leaving scope 

for the potential exploration of other types of data. The thermal images used in this study 

were collected in a controlled laboratory environment at Cardiff University, representing 

seven distinct health conditions with artificially created faults. Although carefully designed, 

these conditions may not perfectly replicate all real-world scenarios.  
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2.1 Induction Motors (IMs) 

Induction Motors (IMs) play a crucial role in the manufacturing sector and are valued 

for their straightforward operation, cost-effectiveness, and dependability. They account for 

nearly 40% of global electricity consumption and are integral across diverse industries (Toma 

et al., 2022a). A defining characteristic of any rotating machinery, including IMs, is its 

components, such as rotors, bearings, and gears. Bearings ensure smooth motor operation, 

comprising inner and outer races, rolling balls, and a cage that maintains uniform ball 

spacing. Potential IM faults can arise from excessive loads, fatigue, insufficient lubrication, 

and misalignment (Toma et al., 2022a). 

2.1.1 Induction Motor Bearing Fault Frequency  

Each bearing element has a rotating frequency. When a defect occurs, and the rolling 

part moves across this damaged part, the vibration energy also deviates at a fixed rate, 

generating periodic impulses. So, each defect (Outer Race Fault (ORF), Inner Race Fault 

(IRF), and balls fault) has a unique frequency, as shown in Equation (2.1), (2.2) and (2.3), 

where, 𝑁𝑏𝑎𝑙𝑙 represents the number of balls, 𝑓𝑚 is the rotational frequency, 𝛽 is the load 

angle, and 𝐷𝐶𝑎𝑔𝑒 and 𝐷𝐵𝑎𝑙𝑙  refer to cage and ball diameter, respectively (Toma et al., 2022a). 

𝑓𝑂𝑅𝐹  =  
𝑁𝑏𝑎𝑙𝑙

2
× 𝑓𝑚 × (1 − (

𝐷𝑏𝑎𝑙𝑙

𝐷𝑐𝑎𝑔𝑒
× 𝑐𝑜𝑠 𝛽))  (2.1) 

 𝑓𝐼𝑅𝐹  =  
𝑁𝑏𝑎𝑙𝑙

2
× 𝑓𝑚 × (1 + (

𝐷𝑏𝑎𝑙𝑙

𝐷𝑐𝑎𝑔𝑒
× cos 𝛽))  (2.2) 

 𝑓𝐵𝑎𝑙𝑙  =  
𝐷𝐶𝑎𝑔𝑒

2𝐷𝐵𝑎𝑙𝑙
× 𝑓𝑚 × (1 − (

𝐷𝑏𝑎𝑙𝑙

𝐷𝑐𝑎𝑔𝑒
× cos 𝛽)

2

)  (2.3) 

2.2 Artificial Intelligence (AI)  

Machine Learning (ML) and Deep Learning (DL) fall under the umbrella of Artificial 

Intelligence (AI), as shown in Figure 2.1. ML, a component of AI, operates autonomously 

with minimal human intervention and typically relies on structured data. In contrast, DL, a 

subset of ML, employs Artificial Neural Networks (ANNs) to emulate the learning 

mechanisms of the human brain. DL thrives on vast datasets and can handle structured and 

unstructured data (Martin, 2021).  
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2.2.1 Machine Learning (ML) 

ML is a branch of computer science and an AI component that enables computers to 

learn and make decisions without explicit programming. It is applied across different 

computational tasks with the primary goal of training machines using provided data, which 

may be labelled in supervised learning scenarios or unlabelled in unsupervised learning 

cases, to enhance results for specific problems. The key emphasis in ML is on enabling 

computers to learn from previous experiences (Mehmood and Selwal, 2020). The choice of 

data representation is crucial for the performance of ML models in fault classification, 

impacting accuracy, speed, and generalisability. Key factors include feature selection, which 

ensures essential information is captured while avoiding overfitting (Kareem and Hur, 2022), 

data normalisation to balance feature scales (Jang and Cho, 2021), and data augmentation to 

expand the training set and reduce overfitting (Yousuf et al., 2024). Dimensionality reduction 

techniques like Principal Component Analysis (PCA) and t-Distributed Stochastic 

Neighbour Embedding (t-SNE) help by minimising noise (Wodecki and Michalak, 2021). 

Advanced methods, including graph-based representations (Jang and Cho, 2021), knowledge 

graphs (Radtke et al., 2023), domain-specific ontologies (Delgoshaei et al., 2022), and hybrid 

approaches (Chao et al., 2019), integrate domain knowledge and further optimise model 

performance. 

Figure 2.1: The Relationship Between Artificial Intelligence, Machine Learning and Deep 

Learning (Martin, 2021). 
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ML can be divided into three categories. Figure 2.2 shows how supervised learning 

uses labelled data to train an agent with predetermined correct actions, optimising a policy 

based on explicit feedback like rewards or penalties. Unsupervised learning, lacking labelled 

data and explicit feedback, involves the agent discovering patterns through trial and error 

(Tangirala, 2020). Reinforcement learning (RL), the third category, trains an agent through 

interactions with its environment, where it learns from rewards or penalties to develop a 

strategy that maximises cumulative rewards, making it suitable for complex environments 

(Borga and Carlsson, 1992). 

 

Figure 2.2: Supervised and Unsupervised Machine Learning Techniques (Tangirala, 2020; Edeh et 

al., 2022). 

2.2.1.1 Supervised Learning 

Supervised learning in ML features a range of algorithms designed for specific data 

types and predictive needs. Below are concise descriptions of some frequently utilised 

supervised learning algorithms (Mehmood and Selwal, 2020; Martin, 2021): 

1. Support Vector Machine (SVM): An SVM is a powerful classification method that 

identifies the optimal hyperplane to separate data into classes, making it particularly 

effective in high-dimensional spaces. It can also be applied to regression problems. 

SVM transforms data into a new space using a kernel function, enabling linear 

classification with the maximum margin between categories. The choice of the 

kernel—such as Linear, Polynomial, or Gaussian—determines the effectiveness of 
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this transformation (Khanjani and Ezoji, 2021; Rangel-Rodriguez et al., 2023). A 

Cubic Support Vector Machine (CubicSVM), a supervised learning classifier, is well-

suited for high-dimensional data and structured datasets, making it popular for 

classification and regression tasks (MathWorks-3, 2024). 

2. Naive Bayes: A simple yet powerful classifier based on Bayes' theorem, assuming 

predictor independence, Naive Bayes is effective for large datasets and is commonly 

used for tasks like spam filtering and sentiment analysis (Prabha, 2022). It can also 

be applied to fault detection and maintenance by analysing sensor data to classify 

system states (Bodo et al., 2021). It predicts defects in processes like investment 

casting using various process parameters in manufacturing. Different variants, such 

as Gaussian, Multinomial, Complement, and Bernoulli Naive Bayes, can be 

evaluated for the best fit (Sawant and Agashe, 2022). 

3. Decision Tree (DT): This model visualises decisions through a graph showing 

various outcomes. It is easy to understand, works for classification and regression 

tasks, and accommodates categorical and numerical data (Diao and Zhang, 2021). It 

utilises a DT to classify pairs of managers dealing with maintenance outsourcing 

cases into either “abnormal” or “normal” behaviour patterns, presenting a binary 

classification challenge (Chen et al., 2021). Also, the DTs, specifically Classification 

and Regression Trees (CART), are used to solve classification and regression 

predictive modelling problems. It illustrates this with an example of predicting a 

college student’s first-year GPA based on high school GPA, SAT scores, and other 

relevant parameters (Njoku, 2019). 

4. k-Nearest Neighbours (kNN): k-NN can be used for regression and classification 

tasks within supervised learning. It is not exclusively categorised under one or the 

other; its application depends on the specific task. It can also be used for classification 

and regression problems. For classification, kNN identifies the class of a new sample 

based on the majority vote of its nearest neighbours. For instance, kNN has been 

applied in classifying brain tumour images, achieving an average accuracy of about 

62.00% (Najwaini et al., 2023). For regression, kNN predicts a continuous value for 

a new sample based on the average (or weighted average) of the values of its nearest 

neighbours. For instance, kNN is effectively used in stock market forecasting, 
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demonstrating its strength in numeric prediction tasks by processing relationships 

between numerical data and achieving an accuracy of 70.00% (Ltha et al., 2022).  

5. Artificial Neural Networks (ANNs): ANNs are trained with labelled data in 

supervised learning to minimise prediction errors. They excel in tasks like gesture 

recognition using electromyographic (EMG) signals (Shamsin et al., 2018; Mustaqim 

et al., 2023) and regression tasks like residential load forecasting, outperforming 

traditional methods like AutoRegressive Integrated Moving Average (ARIMA) 

(Chandran et al., 2021). During the COVID-19 pandemic, ANNs such as the 

Multilayer Perceptron (MLP) were used for accurate time series forecasting of cases 

and deaths, surpassing classical approaches (Borghi et al., 2021). ANNs typically 

consist of an input layer, fully connected layers with Rectified Linear Unit (ReLU) 

activation, and a softmax layer for classification. Their complexity ranges from 

narrow networks with fewer neurons to wide and multi-layered networks that handle 

intricate data relationships but are harder to interpret (MathWorks-3, 2024; 

MathWorks-6, 2024)  

• Ensemble Learning for Fault Detection 

Ensemble learning is employed to enhance ML model performance for fault 

detection in machinery. The techniques include a voting classifier, combining 

predictions from various models like DTs, Random Forests, SVMs, kNNs, and 

XGBoost, using soft and hard voting methods. The ensemble models developed using 

these base models show improved accuracy in detecting bearing faults in IMs through 

Vibration Signal Analysis (VSA). An Ensemble AdaBoost Decision Tree (EADT) 

method is proposed for defect detection, utilising features extracted via a Stationary 

Wavelet Transform (SWT). These approaches demonstrate the effectiveness of 

ensemble methods in achieving more accurate and reliable fault diagnosis in 

machinery (Jose et al., 2022). 

2.2.1.2 Unsupervised Learning 

Unsupervised learning is a branch of ML that focuses on identifying patterns in 

unlabelled datasets, making it valuable for discovering hidden relationships in data. 

Algorithms are provided with input data without output labels, aiming to detect patterns for 
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tasks like clustering, association, and rule prediction. Common unsupervised learning 

techniques include k-means clustering, hierarchical clustering, and PCA (Martin, 2021). The 

following are some frequently used unsupervised learning methods (Mehmood and Selwal, 

2020; Martin, 2021): 

1) k-Means clustering: k-Means is a widely used clustering algorithm that groups nearby 

points into clusters by assigning them to the nearest cluster centre based on distance 

(Edeh et al., 2022)While simple and effective, k-Means relies on the random selection 

of initial cluster centres, which can affect its results (Masud et al., 2019). It is also 

used in software engineering to cluster classes by their attributes, helping identify 

more maintainable software systems and reducing maintenance time and resources 

(Mathur and Kaushik, 2018). 

2) Artificial Neural Networks (ANNs): While typically used in supervised learning for 

classification and regression, ANNs can also be adapted for unsupervised tasks to 

uncover hidden patterns. Autoencoders, a type of ANN, are effective for 

dimensionality reduction, anomaly detection, and generative modelling, especially 

with high-dimensional data (Sewak et al., 2020; Wu et al., 2021). Advancements in 

ANNs for clustering and unsupervised learning are highlighted in studies like those 

presented at the International Conference on Artificial Neural Networks (ICANN) 

(Ve et al., 2019). Notable research has demonstrated the integration of deep ANNs 

with clustering techniques for predicting Noncommunicable Diseases (NCDs), 

showcasing their effectiveness in disease prediction (Moreno-Gutierrez and Garcia-

Lopez, 2023). 

3) Principal Component Analysis (PCA): PCA is a statistical method that reduces data 

complexity by transforming correlated variables into uncorrelated principal 

components while preserving essential information. It is commonly used in data 

analysis and predictive modelling. For example, PCA has simplified industrial sensor 

data for better visualisation and decision-making (Grabowski et al., 2023), reduced 

pollutant indices in water quality assessments to highlight key contaminants (Xu et 

al., 2021), and improved efficiency in Magnetic Anomaly Detection for real-time 

applications (Sheinker and Moldwin, 2016). 
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2.2.1.3 Reinforcement Learning (RL) 

RL is a branch of ML where an agent learns decision-making through rewards or 

penalties for actions without explicit instructions (Sun, 2020). It is applied in robotics, 

autonomous driving, healthcare, finance, logistics, and energy management (Thaipisutikul et 

al., 2019; Xiang and Foo, 2021). Key RL algorithms include Q-Learning, Deep Q-Networks 

(DQN), Policy Gradient Methods, Actor-Critic Methods, Proximal Policy Optimisation 

(PPO), Asynchronous Advantage Actor-Critic (A3C), Monte Carlo Tree Search (MCTS), 

Temporal Difference (TD) Learning, and State-Action-Reward-State-Action (SARSA), each 

of which is suitable for various complex environments and tasks (Fazel et al., 2018; Haarnoja 

et al., 2018; Speck and Bucci, 2018; Naresh et al., 2023; Niu et al., 2023; Zhu et al., 2023a; 

Ekpo and Eke, 2024).  

2.2.2 Deep Learning Approaches for Fault Classification  

Both ML and DL play a crucial role in improving fault diagnostics by minimising 

false alarms and enabling early prediction of equipment failures due to their capacity to 

process large datasets and learn complex, nonlinear relationships (Arellano-Espitia et al., 

2020; Zhu et al., 2023b). DL techniques, such as Convolutional Neural Networks (CNNs), 

Deep Neural Networks (DNNs), and Deep Belief Networks (DBNs), have outperformed 

traditional ML methods like SVMs, ANNs, and kNN in fault detection, particularly in 

extracting features from vibration signals (Ye et al., 2020; Gao et al., 2023; Qiu et al., 2023). 

DL’s multi-layered networks are particularly effective in complex diagnostics, enabling 

time-dependent modelling to capture time-shifted effects (Zhang et al., 2020). 

Traditional ML techniques remain foundational in various industries, effectively 

handling complex datasets in manufacturing and power generation (Zhou et al., 2019; Ren 

et al., 2021; Elshenawy et al., 2022; Hakim et al., 2023). DL models, inspired by the human 

brain, consist of interconnected layers (neurons) that excel in areas like image recognition 

and natural language processing, learning complex patterns from extensive datasets (Abdel-

Jaber et al., 2022; Kufel et al., 2023). Table 2.1 summarises commonly used DL algorithms, 

their applications, advantages, and limitations. 
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Table 2.1: Common Deep Learning Networks. 

Algorithm 

Type 

Applications Advantages Limitations References 
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N
et

w
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rk
s 

(C
N

N
s)

 

Object detection, image 

classification, 

segmentation, facial 

recognition, 

autonomous driving, 

and medical image 

analysis. 

Excel at identifying 

spatial and temporal 

relationships in data, 

inherently capable of 

handling data 

translation. 

They require extensive 

labelled data and high 

computational demand. 

(Abdel-

Jaber et al., 

2022) 

(Wang and 

Sng, 2015) 
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ti
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l 

N
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l 
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(1
D

-C
N

N
s)

 

Handling and learning 

from 1D sequential 

inputs, such as 

financial and structural 

sensor data. 

Feature a more 

straightforward 

design than higher-

dimensional CNNs, 

enabling faster 

training and direct 

processing of 1D 

sequential data like 

time-series without 

conversion. 

They are less effective 

for higher-dimensional 

data than deeper, multi-

dimensional CNNs. 

(Tran et al., 

2024) 

(Liu and Si, 

2022) 

(Xiao et al., 

2021a) 

G
en

er
a
ti

v
e 

A
d

v
er

sa
ri

a
l 

N
et

w
o
rk

s 
 

(G
A

N
s)

 

Image and video 

enhancement, data 

augmentation, 

cybersecurity. 

Are known for their 

capability to produce 

high-quality, realistic 

synthetic data, 

especially valuable in 

areas where data are 

rare or costly to 

acquire. 

GANs require 

considerable 

computational 

resources to train two 

models—the generator 

and discriminator—

through an iterative 

process. 

(Alqahtani 

et al., 2021) 

(Sauer et 

al., 2021) 
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l 

N
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w
o
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s 
 

(G
N

N
s)

 

Graph-structured data, 

including computer 

vision, bioinformatics, 

recommendation 

systems, traffic 

forecasting, anomaly 

detection in time series 

data. 

Can effectively 

capture and leverage 

both node features 

and graph 

topology/structure 

 

They can be 

computationally 

expensive for large 

graphs. 

(Abdel-

Jaber et al., 

2022) 

(Chen et 

al., 2022a) 

R
ec

u
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t 

N
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l 

N
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w
o
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s 

(R
N

N
s)

 Language modelling, 

machine translation, 

speech recognition, and 

video analytics for 

urban surveillance, 

Apt at processing 

sequential data, 

learning from past 

inputs 

Prone to 

vanishing/exploding 

gradients, 

computationally 

intensive. 

(Guney et 

al., 2021) 

(Wang and 

Sng, 2015) 
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T
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R
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u
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U
n

it
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G
R

U
) 

Language modelling, 

machine translation, 

speech recognition. 

Superior at managing 

long-term 

dependencies in 

sequence data 

compared to 

traditional RNNs. 

Its complex structure 

has a high 

computational load. 

(Abdelrazik 

et al., 2023) 

(Xue et al., 

2022) 
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Algorithm 

Type 

Applications Advantages Limitations References 

A
u

to
e
n

co
d

er
s 

Dimensionality 

reduction, denoising, 

anomaly detection, data 

compression. 

Capable of 

unsupervised 

learning, 

autoencoders excel at 

data representation 

and compressing 

input into smaller 

forms for effective 

dimensionality 

reduction and data 

compression. 

Training is challenging 

and can result in data 

loss, with a sensitivity 

to hyperparameters and 

initialisation that 

requires careful tuning. 

 

(Abdel-

Jaber et al., 

2022) 

(Koehler et 

al., 2021) 

(Refinetti 

and Goldt, 

2022) 

 

D
ee

p
 

B
el

ie
f 

N
et

w
o

rk
s 

(D
B

N
s)

 Dimensionality 

reduction, feature 

learning, collaborative 

filtering 

Can be trained layer 

by layer, making the 

training process more 

efficient than training 

the entire network. 

High computational 

costs, challenging 

training process. 

(Li et al., 

2023a) 

(Zambra et 

al., 2023) 
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DBNs are well-suited 

for dimensionality 

reduction, feature 

learning, and 

initialising feedforward 

neural networks. 

Utilise top-down 

feedback connections 

across layers for both 

training and inference. 

Unlike DBNs, which 

are trained layer-by-

layer, all DBM layers 

are trained 

simultaneously, 

enabling them to 

capture dependencies 

and influences across 

layers. 

Practical use of DBMs 

has been more limited 

than other DL models, 

primarily because of 

their complex training 

requirements. 

(Taniguchi 

et al., 2023) 

(Li et al., 

2023a) 

(Souza et 

al., 2017) 

(You et al., 

2013) 

 

2.2.2.1 Advancements in Deep Learning for Fault Classification 

The evolution from basic neural networks to advanced models like CNNs and Graph 

Neural Networks (GNNs) has been driven by the need to process complex data and patterns 

across various domains. This progression has focused on optimising DL architectures to 

handle more intricate tasks and integrate graph structures for improved performance. In the 

1990s, neural networks were primarily applied to RL in partially observable Markov 

Decision Processes (POMDPs). By the late 2010s, the focus had shifted to optimising 

network structures, hyperparameters, and training methods, enhancing computational power 

and complexity (Miikkulainen, 2023). 

CNNs, developed in the 1980s, became essential in image processing and three-

dimensional (3D) construction, often paired with Generative Adversarial Networks (GANs) 
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for cost-effective model creation (Lyu and Yu, 2021). GNNs, a newer development, extend 

neural network capabilities by incorporating graph structures, although they sometimes 

struggle in heterophilic environments where connected nodes differ. Recent advances, such 

as Adaptive Channel Mixing (ACM), address these limitations by dynamically adjusting 

information aggregation across nodes (Luan et al., 2022).  

In predictive maintenance, particularly for Induction Motor (IM) fault classification, 

DNNs and GANs play critical roles. DNNs, primarily used in supervised learning, have 

shown high fault detection and diagnosis accuracy, surpassing GAN-based oversampling 

techniques (Lee et al., 2017). GANs, effective in unsupervised tasks like data generation and 

augmentation, enhance predictive maintenance by estimating missing values and predicting 

faults (Lee et al., 2020). Additionally, ANNs combined with Park’s vector analysis have 

achieved over 99.00% accuracy in motor health classification (Mahesh et al., 2022). 

2.2.3 Convolutional Neural Networks (CNNs) 

CNNs are specialised Neural Networks (NNs) optimised for pattern recognition, 

particularly in computer vision and image processing. Inspired by the human brain's visual 

cortex, CNNs are structured to handle grid-like data, such as images, effectively, utilising 

local connectivity and spatial relationships to learn efficiently. Consequently, CNNs are 

considered powerful tools for image and video recognition. They consist of two main parts: 

the feature extractor and the classifier. The feature extractor uses specialised layers to find 

essential patterns in the input data. It includes convolutional layers that detect local features 

and pooling layers that reduce the data’s size. These layers work together to create a 

hierarchical representation of the input. After the feature extractor, the classifier makes 

predictions based on the extracted features (LeCun et al., 1998).  

All types of CNNs share three essential layers: the convolutional layer, the pooling 

layer, and the fully-connected layer. While the softmax function plays a crucial role in the 

output layer of a CNN, it is not considered one of the fundamental layers in a basic CNN 

architecture softmax function applied at the output layer for multi-class classification. The 

convolutional layer utilises convolutional operations to extract more advanced feature 

representations. These operations help to identify patterns and structures within the input 

data, enabling CNN to learn meaningful features. Next, the pooling layer downsamples the 

data through local averaging or selecting the maximum value. This downsampling process 
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concentrates the extracted features, enhancing the efficiency of the CNN. Lastly, the fully-

connected layer aims to understand the relationship between the input and output of the CNN. 

It inputs the features that have passed through the convolutional and pooling layers. By 

analysing these features, the fully connected layer generates the final output of the CNN. 

Combining the convolutional layer, the pooling layer, and the fully connected layer forms 

the foundation of CNNs, allowing them to effectively process and extract relevant 

information from the input data (Yuan et al., 2020; Zhang et al., 2021a).  

2.2.3.1 Transfer Learning with Convolutional Neural Networks 

Transfer learning with CNNs involves leveraging previously acquired knowledge in 

classification tasks and applying that knowledge to similar problems within the same domain 

or experimental contexts using the same pre-trained classifier. This approach offers 

significant advantages by reducing the need for extensive training time, large datasets, and 

computational resources (Cinar, 2022). Training a DL model from scratch demands 

considerable time and numerous parameter adjustments, presenting significant challenges. 

However, transfer learning has been introduced to address these challenges. Transfer 

learning involves transferring knowledge and patterns from a source domain to a target 

domain, often entailing the reuse of a pre-trained model on a new dataset. As a result, 

similarities between datasets are identified (Bai et al., 2022). 

Several pre-trained CNN transfer learning architectures are widely used across 

various domains, including medical imaging, traffic sign recognition, food image 

classification, and clinical predictions. Key architectures include Residual Network 

(ResNet), known for its benchmark-setting performance in image classification; Visual 

Geometry Group Network (VGGNet), effective on the ImageNet dataset; MobileNet, 

optimised for mobile applications; Inception-v3 and EfficientNet-B0, both renowned for 

their top-tier performance; Extreme Inception (Xception) and DenseNet-121, excelling in 

image classification benchmarks; and TimeNet, a deep recurrent neural network used for 

clinical predictions. These models facilitate the transfer of learned features, making them 

valuable in scenarios with limited labelled data or restricted computational resources (Gupta 

et al., 2018; Alzubaidi et al., 2021; Fatima Ezzahra et al., 2023; Singh and Susan, 2023). 
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2.2.4 Generative Adversarial Networks (GANs) 

GANs are ML models that learn the distribution of each class without explicitly 

separating them into distinct categories, unlike traditional techniques, such as DTs or SVMs. 

Instead, GANs generate new data points (𝒙) similar to the training data without considering 

the relationship between x and y, i.e., p(x|y). This type of DL model will be extensively 

explored in Chapter 4, with a focus on Basic Deep Convolutional Generative Adversarial 

Networks (DCGAN), Wasserstein GAN with Gradient Penalty (WGAN-GP), and 

conditional WGAN-GP. 

2.2.5 Graph Neural Networks (GNNs): Definition and Overview 

GNNs are a class of DL models designed to analyse and learn from data that are 

structured as graphs. GNNs have found wide application in tasks related to graph data, such 

as node classification, link prediction, and graph classification (Wei et al., 2020). They 

leverage graphs' detailed structural and feature information to perform these tasks effectively 

(Huang et al., 2024).  

These capabilities make GNNs highly effective for diverse applications that involve 

graph-based data. The following are key aspects of GNNs (Huang et al., 2024):  

1) Message-Passing Framework: 

• GNNs operate using a message-passing mechanism that repeatedly aggregates 

and updates information from the nodes' local neighbourhoods within a graph. 

This process enables GNNs to develop representations incorporating the graph 

data's structural and feature-related aspects (Huang et al., 2024). 

• The graph structure is typically represented by 𝐺 = {𝑉, 𝐴}, where V is the set of 

nodes, and A is the adjacency matrix. In this matrix, an element 𝐴𝑖𝑗=1 signifies 

the presence of an edge between node 𝑖 and node 𝑗. Each node 𝑖 is also associated 

with a feature vector 𝑥𝑖
0 (Huang et al., 2024). 

2)  GNN Framework: 

• The GNN framework processes graph data by taking an initial set of node features 

𝑋 =  {𝑥𝑖
0| 𝑖 ∈ 𝑉} and the adjacency matrix A as inputs. This input is then utilised 

to gather iteratively and pool information from the neighbours of each node. For 
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instance, the feature update for a node 𝑖 in the 𝑙-th layer of message passing can 

be described in Equation (2.4):  

where pool{⋅} is a function that aggregates the features from neighbouring nodes 

𝑁𝑖, and 𝑓1 and 𝑓2 are trainable functions parameterised by 𝜃1
𝐼 and 𝜃2

𝐼  (Huang et 

al., 2024).  

2.2.5.1 Graph Convolutional Network (GCN) Applications 

Graph Convolutional Networks (GCNs) are utilised across various domains, 

including computer vision, social networks, bioinformatics, recommendation systems, and 

traffic prediction. In computer vision, they model label correlation for multi-label images, 

capturing spatial dependencies and contextual information between pixels or image regions 

(Cao et al., 2022). Additionally, GNNs are particularly effective at representing data with 

inherent graph structures, such as social networks, protein interfaces, and images, by 

highlighting relationships and dependencies among entities (Tepe and Bilgin, 2022). For data 

that do not naturally form graphs, like audio signals, techniques that employ deep features 

from pre-trained models as node information are used to facilitate graph construction 

(Castro-Ospina et al., 2024). This versatility makes GCNs and GNNs powerful tools for 

handling structured and unstructured data in various classification tasks. 

The search results do not mention using GCN architecture for Induction Motor (IM) 

fault classification. However, they highlight the effectiveness of GCNs across various fields, 

such as image classification, graph analysis, and human activity recognition. For image 

classification, Fei et al. (2023) introduced a novel end-to-end GNN that integrates local and 

global attention features for more accurate predictions (Fei et al., 2023). This model includes 

a CNN block for local feature learning and a GCN for global feature assimilation. In graph 

analysis, Zhang et al. (2022) described a hybrid accelerator for GNNs that utilises the Xilinx 

Versal ACAP architecture (Zhang et al., 2022a). This system enhances GNN inference by 

dividing graphs into subgraphs for efficient processing using programmable logic and AI 

engines. In human activity recognition, Lee et al. (2023) developed the Multimodal Two-

stream GNN Framework for Efficient Point Cloud and Skeleton Data Alignment (MTGEA), 

which leverages the Spatial-Temporal Graph Convolutional Network (ST-GCN) architecture 

𝑥𝑖
𝑙 =  𝑓2(𝑝𝑜𝑜𝑙{𝑓1(𝑥𝑗

𝐼−1|𝜃1
𝐼)| 𝑗 ∈ 𝑁𝑖}, 𝑥𝑖|𝜃2

𝐼}) (2.4) 
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to enhance recognition accuracy by focusing on skeletal features extracted from Kinect 

models (Lee and Kim, 2023).  

However, Table 2.2 summarises the state-of-the-art GCN application in fault 

classification over the years starting from 2019 to 2024 with studies that used GCN in their 

research.  

Table 2.2: Summary of State-of-the-Art GCN Applications in Fault Classification. 

Application Description Outcomes 

GCN-Based 

Compound Fault 

Diagnosis in 

Gearboxes (Zeng et 

al., 2024). 

Employs GCNs to analyse correlations among 

single faults in gearboxes to improve multi-

label fault diagnosis. Each fault is treated as a 

label node, with GCN mapping features to 

enhance the classification of compound faults. 

Enhances gearbox fault 

diagnosis accuracy using 

GCNs and self-attention 

to analyse correlations 

between single faults. 

Multi-Scale Neural 

Transformation 

Graph (MNT-G) in 

Micro-Service 

System Fault 

Classification 

(Zhang et al., 2023b). 

This framework combines graph structure 

adjacency matrix learning with multi-scale 

neural transformation to analyse adjacency 

matrices and temporal features of system 

metrics separately. It uses a GCN to integrate 

spatio-temporal features for classifying faults 

in micro-services. 

Demonstrates superior 

performance over 

traditional methods on the 

Sock Shop benchmark, 

with a macro-F1 score 

improvement of 7.16%. 

Super Resolution - 

Graph Neural 

Network (SR-GNN) 

for Fault 

Classification and 

Location in Power 

Networks (Mo et al., 

2023). 

Integrates super-resolution techniques with 

GNNs to efficiently classify and pinpoint 

faults in power distribution networks, 

focusing on cost reduction and accuracy. 

Shows strong noise 

resistance and 

adaptability to various 

network conditions on the 

IEEE 37 Bus system, 

enhancing classification 

accuracy. 

Temporal GCN for 

Transient Stability 

in Power Systems 

(Su et al., 2021). 

Develops a rapid-response Temporal Graph 

Convolutional Network (TGCN) that 

combines GCN for topology analysis with 

temporal convolution layers to quickly assess 

transient stability in power systems. 

Exceeds performance of 

existing models in 

stability classification and 

predicting critical 

generator statuses on the 

IEEE 39 Bus system. 

GCN for Testability 

Analysis in EDA 

(Ma et al., 2019). 

A specialised GCN model processes non-

standard graph representations of logic 

circuits in Electronic Design Automation 

(EDA). This classifier is trained to identify 

optimal observation point candidates in 

netlists, targeting hard-to-detect nodes. 

Matches fault coverage of 

commercial tools while 

reducing observation 

points by 11.00% and test 

patterns by 6.00%. 

 

Although GCNs are not directly associated with Induction Motor (IM) fault 

classification in the available literature, their demonstrated benefits in various applications—

such as enhanced accuracy, robustness, and the capability to integrate global information 

from node connections—suggest potential utility in diverse domains. 
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2.3 Two-Dimensional (2D) Signal Encoding Techniques 

2.3.1 Gram Angular Field Signal Encoding (GAF) 

Wang and Oates introduced the concept of GAF encoding, a method that transforms 

time series data into images (Wang and Oates, 2015). GAF’s distinctive matrix construction 

maintains the integrity of the original data while capturing relationships between 

neighbouring elements. This methodology proves beneficial for CNN models, enabling 

automatic feature extraction and enhancing classification performance (Wang and Oates, 

2015). The core concept behind converting time-series data into images using GAF involves 

creating a matrix based on polar coordinates. This matrix preserves the temporal 

relationships within the one-dimensional (1D) time-series signal, maintaining accurate 

temporal correlations compared to Cartesian coordinates. The process yields two types of 

GAF images: Gramian Angular Summation Field (GASF) and Gramian Angular Differential 

Field (GADF) (Toma et al., 2022a), which will be discussed further in Chapter 3. 

2.3.2 Wavelet Transform (WT) 

The Wavelet Transform (WT) provides an alternative to the Short-Time Fourier 

Transform (STFT) for non-stationary signal analysis. WT is advantageous because it can 

capture both temporal and spectral details. It offers adaptability across various frequencies 

and time-based resolutions (Nishat Toma et al., 2021; Yang et al., 2023b). Distinguishing 

WT from STFT, which uses fixed windows, WT utilises wavelet families with predefined 

shapes, including Haar, Symlets, and Daubechies. The mother wavelet function ψ(t) can be 

computed as in Equation (2.5) (Ahmed and Nandi, 2022): 

𝜓(𝑠,𝜏)(𝑡) =  
1

√𝑠
 𝜓 (

𝑡 −  𝜏

𝑠
) 

(2.5) 

In this context, 𝑠 represents the scaling parameter, 𝑡 corresponds to time, and 𝜏 denotes the 

transformation parameter. In the original wavelet, s = 1 and τ = 0.  

Wavelets offer three essential transformations: the Continuous Wavelet Transform 

(CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Transform (WPT). From 

the literature on the IM vibration signal encoding, the CWT has been extensively utilised by 

researchers to create vibration image representations where the family of time-scale 

waveforms is derived by adjusting the position and scale of the mother wavelet (Kaji et al., 
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2020). While there is no universal method for choosing the mother wavelet, it is common 

practice to visually inspect and select a suitable mother wavelet function based on shape 

matching (Kaji et al., 2020). CWT can be computed in the following Equation (2.6) (Ahmed 

and Nandi, 2022;):  

𝐶𝑊𝑇𝑥(𝑡)(𝑠, 𝜏) =  
1

√𝑠
 ∫ 𝑥(𝑡)𝜓∗ (

𝑡 −  𝜏

𝑠
) 𝑑𝑡 

(2.6) 

Here, 𝜓∗ represents the complex conjugate of 𝜓(𝑡), which can be shifted using the translation 

parameter τ and scaled using the scale parameter s. These coefficients measure the degree of 

correlation between the waveform and the wavelet at different translations and scales. These 

coefficients are often displayed in a scalogram, illustrating the energy distribution across the 

coefficients. 

2.4 Feature Extraction Domains in Signal Processing 

Feature extraction operates within three primary domains: temporal, spectral, and 

time-frequency. These distinct domains serve as tools to capture distinctive aspects of signal 

behaviour. The section starts with Time and Frequency Domain (TFD) feature extraction and 

moves to the 2D time-frequency domain features. The feature extraction from vibration 

signals in the time domain is a crucial component of machinery fault diagnosis, enabling the 

early detection and continuous monitoring of machinery faults. This method entails 

computing diverse statistical parameters from the original vibration signal, which can 

subsequently be employed to assess the machinery’s condition and detect potential problems. 

Various key parameters are utilised in VSA to extract vital information. These parameters 

include the Peak or Max value, which denotes the highest observed amplitude in the signal, 

and the Root Mean Square (RMS), which provides insights into signal magnitude. Skewness 

assesses distribution asymmetry, whereas Standard Deviation (std) quantifies average 

deviation from the mean. Kurtosis indicates distribution “tailedness,” potentially identifying 

outliers or impulses. The Crest Factor, calculated as the peak amplitude-to-RMS ratio, 

reflects peak sharpness. Peak-to-peak measures the range between maximum and minimum 

values, whereas the Impulse Factor accentuates impulsive behaviours often linked to 

machinery faults. These parameters contribute to a comprehensive understanding of 

vibration signal characteristics, facilitating effective fault diagnosis and condition 
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monitoring  (Liu and Weng, 2019; Pinedo-Sánchez et al., 2020; Jain and Bhosle, 2021; 

Narayan, 2021).  

On the other hand, extracting features from the frequency domain can provide 

insights into the data's periodic components and harmonic structures. The frequency domain 

analysis of vibration signals involves examining the amplitude changes for different 

frequencies (Ahmed and Nandi, 2018). These features capture frequency-specific aspects of 

the signal and contribute to a better understanding of the vibration behaviour (Shi et al., 

2020). Analysing the frequency domain of vibration signals is crucial for understanding 

periodic components and harmonic structures. Key features include Root Mean Square 

Frequency (RMSF), Centre Frequency (CF), Mean Square Frequency (MSF), Frequency 

Variance (FV), and Root Frequency Variance (RVF), providing insights into signal 

characteristics and power distribution (Shi et al., 2020). Standard harmonic features, such as 

Total Harmonic Distortion (THD), quantify frequency content (Tian et al., 2022; Granados-

Lieberman et al., 2023). Signal-to-Noise Ratio (S/N) and Signal-to-Noise and Distortion 

Ratio (SINAD) assess signal quality, particularly in gearbox fault analysis (Kumar et al., 

2022). Spectral analysis transforms signals from the time domain to the frequency domain, 

with the AR model being a popular choice. Various methods, like Yule-Walker and Burg’s, 

compute AR coefficients, whereas the forward-backwards approach enhances classification, 

especially in machinery fault diagnosis (Hu and Zhang, 2019; Metwally et al., 2020). 

Spectral features like Peak Amplitude, Peak Frequency, and Band Power offer 

comprehensive insights into frequency characteristics (Ahmed and Nandi, 2018; Hu and 

Zhang, 2019; Shi et al., 2020; Tian et al., 2022; Djemili et al., 2023; Granados-Lieberman et 

al., 2023). 

2.5 Multimodal Fusion Techniques 

Sensors serve as the foundation for any machine’s condition monitoring systems. The 

concept of smart sensors is currently an active area of research, where sensor data are linked 

to a data processing unit. Algorithms and DL techniques enable advanced interpretations of 

the collected sensor data. In the past, thermography was used as a secondary approach to 

condition monitoring. However, Infrared Thermography (IRT) is increasingly recognised as 

a qualified primary or direct approach for condition monitoring (Alvarado-Hernandez et al., 

2022). The data used in the fusion process may come from different sources. This leads to 
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two types of sensor fusion: heterogeneous and homogeneous. In heterogeneous sensor 

fusion, data are gathered from various types of sensors, like vibration and current sensors. 

On the other hand, homogeneous sensor fusion involves using data from the same 

kind of sensors, such as vibration sensors measuring the X, Y, and Z axes. Depending on the 

stage at which the information sources are combined, the fusion process can be classified 

into three levels: data-level fusion, feature-level fusion, and decision-level fusion (Debie et 

al., 2021). However, data processing can occur in multimodal fusion at three levels, as 

illustrated in Figure 2.3.  

 

Figure 2.3: The Three Levels of Fusion (a) Sensor Fusion, (b) Sensor Data Represented by Feature 

Vectors, (c) Decision Fusion After the Classification Model (Debie et al., 2021). 

Firstly, multiple sensors are employed at the sensor level fusion to capture raw data. 

Secondly, at the feature level, features are independently extracted from different sensors 

and then combined into a single feature vector, known as a fused vector. Thirdly, at the 

decision level, features are extracted independently and passed through separate classifiers 

to obtain individual decisions. The fusion process is then responsible for consolidating these 

decisions into a final classification decision. Furthermore, hybrid models can support 

multiple fusion levels (Debie et al., 2021) where, in fact, the effectiveness of sensor-level 

fusion and feature-level fusion strategies significantly relies on the characteristics of the data. 

Comparatively, the decision-level fusion strategy emerges as a more pragmatic choice among 

the three (Yang et al., 2022). 
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2.6 State of the Art, Research Gaps, and Directions in Each Research Theme 

This section discusses the state of the art across five research themes: Multimodal 

Data Preprocessing Methodology, Artificial Thermal Image Creation, Customised Radial 

Load Assessment, Multimodal Systems Decision Fusion Approach, and Graph 

Convolutional Network (GCN) on Tabular Datasets. 

2.6.1 Multimodal Data Preprocessing Methodology 

Numerous researchers have sought to improve Induction Motor (IM) fault 

classification capabilities (Shao et al., 2020). Fault classification can be challenging, causing 

irrelevant rule generation for three main reasons: dataset size, noise, and overfitting problems 

(Packianather et al., 2019). According to the literature, Non-Invasive Inspection (NII) is a 

widely employed maintenance tool that monitors machines’ health status. It helps to 

investigate the current health status without affecting or interrupting the operation. It can be 

divided into two categories according to the sensing approaches: contact and noncontact 

sensing (Alotaibi et al., 2021).  

Contact-based Non-Invasive Inspection (CNI) does not require physical contact with 

the inspected parts; they must be attached to the machine system or body. For example, 

magnetic flux sensing, voltage sensing, machine current analysis, the vibration technique, 

and wear debris (Alotaibi et al., 2021). VSA is the traditional fault classification method (Jia 

et al., 2019), but different signals are used, such as current, acoustic, and temperature (Toma 

et al., 2021). However, in rotational-machine fault diagnosis using signals, signal 

preprocessing can be undertaken using time-domain, frequency-domain, or time-frequency 

domain analysis (Sinitsin et al., 2022). Time-domain analysis finds statistical parameters 

such as kurtosis, structural resonance, RMS, etc. On the other hand, frequency-domain 

analysis offers more benefits in signal analysis because it filters key frequency components, 

such as Fast Fourier Transform (FFT) and spectrum analysis (Sinitsin et al., 2022). 

Moreover, time-frequency analysis is used to empower frequency-domain analysis for 

volatile signals, for example, STFT, WT, and Empirical Mode Decomposition of the Hilbert-

Huang Transform (HHT) (Nguyen et al., 2021).  

Wavelet is considered the most recent and popular time-frequency analysis of the 

available methodologies, especially in bearing fault type recognition (Zhang et al., 2022d). 
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A recent study compared three CWT techniques on vibration signal encoding: Morse, Morlet, 

and Bump. All methods achieved more than 98.00% accuracy in bearing fault diagnosis. The 

PCA method was also used instead of wavelet and scored 10.00% lower than wavelet (Toma 

et al., 2021). Current signals were also used to classify IM faults using the GAF algorithm to 

generate 2D images. Subsequently, a two-layer deep CNN model was used for fault 

classification. The experiment showed that GAF images outperformed continuous wavelet 

images. Wavelet has fewer capabilities in generating significant patterns from current raw 

data relative to GAF due to the drawbacks of the current signal or low S/N (Toma et al., 

2022a).  

On the other hand, in Non-Contact-Based Non-Invasive Inspection (NCNI), sensors 

are not directly attached to the inspected part and nor is the machine system (e.g., Radio 

Frequency (RF), radar technology, ultrasonic sensing, camera-based imaging, Acoustic 

Emission (AE) sensing, thermographic sensing or Infrared (IR) and laser) (Alotaibi et al., 

2021). Thermal images result in more accurate fault classification than vibration signals (Jia 

et al., 2019; McGhan and Feayherston, 2020; Shao et al., 2021). Hence, thermal image 

condition monitoring can achieve almost 100% accuracy when utilising CNN transfer 

learning capabilities (Choudhary et al., 2021; Khanjani and Ezoji, 2021). 

Studies were not restricted to single-input modal creation. They also considered 

multimodal fault classification using the same sensing approach, combining current and 

vibration signals into one modal. Shao et al. (2020) used time-frequency distribution, 

continuous wavelet, and CNN capabilities in multi-signal fault diagnosis without utilising 

CNN transfer learning capabilities. The main contribution was using vibration and current 

signals in fault classification using CNN capabilities in image classification on time-

frequency distribution images. The authors demonstrated that the multi-signal modal 

outperforms the single-signal modal input (Shao et al., 2020). A recent study proposed a 

multimodal neural network-based model using only vibration signals. Vibration signals are 

converted into time-frequency domain graphs using CWT and dot pattern graphs, creating 

two inputs for the CNN and two-level information fusion from the same signal. This model 

performed better than single-modal CNN (Ma et al., 2022).  
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In the most recent research, the vibration signal captured using CNI acquisition tools 

is considered the most popular input for bearing fault diagnosis. It contains valuable 

information about each fault type, giving a good prescription for the machine’s health. At 

the same time, it has a high S/N and requires extra preprocessing and strict sensor installation 

requirements (Jia et al., 2019). The most common preprocessing methodology is converting 

a 1D signal into 2D time-frequency graphs using CWT, where GAF encoding was rarely 

used. Consequently, NCNI data acquisition techniques were introduced, primarily utilising 

IRT due to its non-contact nature, high accuracy, and reduced requirement for signal 

preprocessing knowledge. Nonetheless, many studies have concluded that thermal images 

offer an excellent substitute for vibration signals, resulting in higher fault classification 

accuracy. However, thermal image fault classification has some known limitations, including 

deviation in the region of interest due to camera misalignment and blurred images. This can 

result in fault misclassification, which has not been discussed in the previous literature (Li et 

al., 2021; Shao et al., 2021).  

On the other hand, multimodal DL is a new paradigm in AI that requires further 

attention and exploration. Hence, relying on a single input using a single sensing approach 

often fails to extract the full knowledge from data, especially in abnormal operation 

conditions (Jia et al., 2019). However, few research studies have explored Multimodal DL 

using similar data types, such as numerical signals or signals captured using CNI to 

demonstrate its efficiency. Consequently, there is a need to research Multimodal further 

using different sensors, which will be explored in Chapter 3.  

2.6.2 Artificial Thermal Image Creation 

DCGAN has demonstrated its efficiency (Du et al., 2019) for image generation in 

solving imbalanced datasets in the chemical industry's fault diagnosis field. It was also used 

by He et al. (2021) for axial piston pump bearing fault diagnosis to mitigate data availability 

and missing fault labelling challenges. DCGAN has also been used in Induction Motor (IM) 

fault classification using the Case Western Reserve University (CWRU) bearing centre 

dataset, a well-regarded dataset in which CWT images were synthesised (Zhong et al., 2023). 

A previous paper focused on Wasserstein Generative Adversarial Network (WGAN) usage 
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in thermal images, with fault creation in IMs being used to increase fault samples, namely, 

IRF, ORF, and Normal (fault-free) or Healthy condition (Ma et al., 2023; Shao et al., 2023). 

It is apparent from the literature that researchers have sought to generate highly 

trustworthy data to enhance training performance on limited fault types or generate look-

alike vibration signals without focusing on thermal image fault creation (Ma et al., 2023). A 

recent paper explored the generation of thermal images on three conditions to enhance fault 

classification accuracy using a single input model (Shao et al., 2023). 

.. 

Bearing VSA is the traditional means of fault classification, where raw vibration 

signals are rarely used; hence, vibration signals need to be pre-processed using either time-

domain analysis or frequency-domain analysis (Sinitsin et al., 2022). On the other hand, 

thermal images result in more accurate fault classification with up to 100% accuracy whilst 

requiring less preprocessing time than vibration signal fault classification, as demonstrated 

by Choudhary et al. (2021) and Khanjani and Ezoji (2021). Thermal images are more stable 

than vibration signals; hence, they are less sensitive to speed fluctuation scenarios, making 

them more efficient (Shao et al., 2023).  

However, thermal images have certain known drawbacks. For instance, the 

installation cost of cameras and the potential for camera misalignment can result in 

inaccurate recognition (Gangsar and Tiwari, 2020). Furthermore, the limited availability of 

data and the imbalanced distribution of thermal images across specific or all health 

conditions can significantly affect the performance of condition monitoring systems (Niu et 

al., 2020). To mitigate these limitations, various oversampling techniques have been 

employed to generate additional samples from the minority classes. One such technique is 

the Synthetic Minority Oversampling Technique (SMOTE), which uses interpolation based 

on nearest neighbours. Another approach is the Adaptive Synthetic Sampling Technique 

(ADASYN) (Liu et al., 2021). However, it is essential to note that oversampling techniques 

can be susceptible to overfitting and noise creation, especially when dealing with high-

dimensional and sparse data. These techniques may also generate samples that are more 

similar to the majority class rather than to the desired class (Engelmann and Lessmann, 

2021). 
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Moreover, while improving classification accuracy is a common approach, it may not 

be effective when the degree of imbalance is high unless more data are added to the training 

model (Han et al., 2020). Expanding image data by including noise and local blur can be 

seen as an artificial preprocessing technique. However, it is essential to note that these 

methods may not adequately capture the diversity in the original samples and so can 

potentially hinder fault recognition (Fan et al., 2022). In contrast, GANs offer a new and 

promising approach to sample generation. GANs provide a framework for learning complex 

features from high-dimensional, imbalanced, and small dataset distributions, and they have 

been widely utilised in fault diagnosis applications (Han et al., 2020; Engelmann and 

Lessmann, 2021; Liu et al., 2021; Fan et al., 2022). 

The selection of an appropriate GAN for generating artificial images of thermal IM 

health conditions is critical to the current research. Previous studies in this field have been 

limited, with only a few papers released (Wu et al., 2019). Commonly used GAN models in 

fault diagnoses include DCGAN, Auxiliary Classifier GAN (ACGAN), Wasserstein GAN 

(WGAN), and variational auto-encoding GAN. However, it has been observed that the 

quality of data generated by the original GAN and improved DCGAN is still relatively low 

(Han et al., 2020; Fan et al., 2022). Meanwhile, the WGAN-GP has demonstrated improved 

training stability, mode collapse prevention, and the generation of high-quality images 

(Gulrajani et al., 2017; Pan et al., 2019; Gao et al., 2020). WGAN-GP has also proven its 

effectiveness in fault sample generation (Wang et al., 2021a) and in supplementing low-

dimensional fault data (Zhong et al., 2023). Wasserstein distance in WGAN provides a more 

meaningful measure of the difference between probability distributions and leads to better 

convergence by avoiding vanishing gradients (Arjovsky et al., 2017a). 

Additionally, the training process in WGAN-GP does not require a careful balance 

between the generator and discriminator (Arjovsky et al., 2017b). WGAN-GP has also been 

employed in the imbalance fault classification of bearings, overcoming convergence issues 

observed in the original GAN structures. WGAN-GP demonstrated faster convergence 

within 400 iterations and improved model performance compared to the original WGAN due 

to the gradient penalty (GP) (Han et al., 2020).  

WGAN-GP was utilised to generate additional vibration signal spectra for 

imbalanced bearing fault classification problems, demonstrating improved convergence and 
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faster training speed with the GP (Shao et al., 2023). Chang et al. (2022) examined GANs 

and CNNs for imbalanced vibration signal datasets in IMs, confirming their efficiency. 

However, there was still room for improvement in utilising labelled data for IM fault 

classification because models trained on the generated data differed in accuracy compared to 

real data (Chang et al., 2022). Meanwhile, Ma et al. (2023) focused on WGAN-GP to create 

vibration signals in the rotor-bearing system, showing high-quality signal generation and 

increased diagnostic accuracy. Shao et al. (2023) generated thermal images for various health 

conditions in rotating machinery, achieving good results but suggesting the incorporation of 

label information in GANs training.  

The scarcity of IM datasets collected under diverse health conditions poses 

challenges due to data availability, confidentiality, and time constraints. While GANs have 

been used to generate additional tabular vibration data for condition monitoring, utilising 

GANs for thermal image synthesis in IM condition monitoring is a promising but relatively 

new research area. Hence, GANs are commonly employed to generate supplementary tabular 

vibration data. At the same time, thermal image condition monitoring offers more accurate 

results with minimal preprocessing steps due to its lower sensitivity to noise, which will be 

explored in Chapter 4.  

2.6.3 Customised Radial Load Assessment 

Bearing fault diagnosis is recognised as a pattern recognition challenge, emphasising 

the importance of dominant eigenvectors for fault features. Accurate feature identification is 

critical to enhance the reliability of fault detection and diagnosis systems. Toma et al. (2022b) 

used Wavelet Scattering Transform (WST)-based features, whereas Nayana and Geethanjali 

(2020) employed statistical TFD features to contribute to IM fault classification. Other 

techniques include time-domain features from current signals (Toma et al., 2020), 

homogeneity and kurtosis from electrical current during motor startup (Martinez-Herrera et 

al., 2022), and the use of CWT for fault diagnosis (Yuan et al., 2020). This method, tested 

on the CWRU bearing centre dataset and Machinery Failure Prevention Technology (MFPT) 

bearing datasets, demonstrated superior diagnostic accuracy and stability.  

The approach increasingly leans towards treating it as a pattern recognition challenge 

in bearing fault diagnosis, relying on dominant eigenvectors to represent fault features, 

enabling more reliable detection and categorisation of bearing faults (Nemani et al., 2022). 
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To determine the precise location and intensity of a bearing defect, various VSA techniques 

are available, broadly categorised into the time domain, frequency domain, and time-

frequency domain analyses (Jain and Bhosle, 2022). Feature extraction in ML for bearing 

fault diagnosis is pivotal, particularly in analysing vibration signals, resulting in a multi-

domain feature set. The goal is often to derive features with strong discriminatory capabilities 

(Shi et al., 2020). Time–domain features assume a stationary signal, but signals frequently 

exhibit changes in statistical properties over time (Sayyad et al., 2021). However, obtaining 

suitable features may require a long period of recorded signals, making it expensive, time-

consuming, or even impossible for certain fault types or with complex equipment (Resendiz-

Ochoa et al., 2018). RMS and kurtosis are commonly used in the time domain, especially 

kurtosis, which is highly effective in early fault detection (Pinedo-Sánchez et al., 2020). 

In contrast, frequency-domain features require more significant computational effort 

than their time-domain counterparts and operate under the assumption of a wide-sense 

stochastic signal (Narayan, 2021). FFT, while powerful in stationary conditions, has 

limitations when applied to non-stationary data, that is, signals that change over time or 

exhibit variations in their frequency content. In such cases, FFT’s assumption of a constant 

frequency spectrum over the entire signal duration does not hold. Alternative time–frequency 

signal processing techniques have been developed to address this limitation (Resendiz-

Ochoa et al., 2018). 

Nevertheless, transitioning to time-frequency domain analysis, which combines time 

and frequency information to understand the signal’s frequency band over a specific time 

interval (He et al., 2010), offers a localised signal analysis by considering smaller time 

segments. This approach proves valuable for non-stationary signals where the frequency 

content changes over time (Zhang et al., 2021a). The CWT is a powerful tool for analysing 

non-linear and non-stationary data in the time-frequency domain. It outperforms other 

techniques, such as the STFT, Gabor transform, WT, and Wigner-Ville transform, effectively 

addressing the limitations of the FFT in dealing with such data (Toma et al., 2021; Guo et 

al., 2022). The WT can analyse specific regions within a more prominent signal without 

sacrificing spectral details, revealing concealed facets undetected by alternative methods 

(Kaji et al., 2020). This enables the distinctly different analysis of both frequency and time 

domains, breaking down signals into various frequency components and analysing each 
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element with the time domain corresponding to its specific scale (Ozaltin and Yeniay, 2023). 

It is crucial, however, to carefully consider or create the most suitable wavelet foundation 

(Guo et al., 2022). Pinedo-Sánchez et al. (2020) explored the effectiveness of three prevalent 

mother wavelet functions in conjunction with pre-trained CNNs on the automatic 

classification of an electrocardiogram (ECG) dataset. Specifically, the study used AlexNet 

and SqueezeNet, revealing that Amo (often called a Morlet wavelet) and Morse wavelet 

functions enhanced class recognition with AlexNet. In contrast, the Bump wavelet function 

demonstrated superior classification accuracy with pre-trained SqueezeNet (Pinedo-Sánchez 

et al., 2020). 

Beyond CWT, techniques such as wavelet entropy, wavelet packet energy entropy, 

and Wavelet Singular Entropy (WSE) have also been utilised. Wavelet entropy, combining 

WT and Shannon entropy, captures complexity and information content within signals at 

different scales or frequencies. In the CWT realm, this approach is valuable for analysing 

time-frequency representations and revealing patterns associated with structural damage (Li 

et al., 2019a; Guo et al., 2022). Examined on IM bearings, selecting the optimal contentious 

transform wavelet (Guo et al., 2022) and indicating the complexity of the analysed transient 

signal in the time-frequency domain (He et al., 2010) makes it possible to distinguish 

between transients with different complexities intuitively and quantitatively. Wavelet 

energy, measuring the energy distribution across different scales in the WT of a signal, was 

used to track changes in energy over time for fault localisation and categorisation (Jayamaha 

et al., 2019). This information is then employed to create a set of features for classification, 

followed by Artificial Neural Network (ANN) training to categorise these features. 

Researchers have increasingly focused on the fault detection and diagnosis systems 

of various operational parameters of bearings, such as friction torque, radial internal 

clearance, and slippage. In a notable study, Wu et al. (2023a) investigated the friction torque 

behaviours of thrust ball bearings with self-driven textured guiding surfaces. This study 

sought to facilitate the starved lubrication conditions often encountered in rolling bearings 

by introducing innovative textures on the guiding surfaces. Notably, the results indicated that 

implementing a gradient groove texture could significantly reduce the friction torque of 

bearings. This texture facilitates a one-way self-driving function for liquid droplets, 

highlighting its potential for practical applications in bearing design (Wu et al., 2023a). 
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Meanwhile, Ambrożkiewicz et al. (2023) explored the effect of various surface 

textures on thrust ball bearings’ vibration and friction torque behaviours, including dimples, 

grooves, and gradient grooves. The study found that the gradient texture effectively reduces 

vibration acceleration and friction torque (Ambrożkiewicz et al., 2023). Furthermore, 

research on the slipping behaviour of H7006C angular contact ball bearings under 

operational conditions demonstrated similar benefits from this texture design in reducing 

vibration and friction torque, thus enhancing bearing performance (Yang et al., 2023a). 

However, there remains a notable gap in our understanding of the influence of 

varying loads on the manifestation of faults (Zhang et al., 2022b). Previous research has 

delved into areas such as estimating the remaining useful life from run-to-failure datasets 

(Zhang et al., 2022b). Nevertheless, the domain of load’s impact on faults remains relatively 

unexplored. Radial impact was discussed by Jain and Bhosle (2021), where traditional 

statistical indicators were used to study the effects of IRF and ORF in bearings under 

different loads. The MFPT bearing dataset was utilised to propose combinations of 

indicators, including Kurtosis × RMS, Kurtosis × Peak, and RMS × Peak for early fault 

detection, including IRF and ORF. A similar analysis was conducted on the CWRU dataset, 

thoroughly investigating various traditional and new vibration indicators for detecting 

bearing defects and monitoring their progression (Jain and Bhosle, 2022). 

In recent years, detecting faults in IMs has attracted considerable attention, given 

their crucial role in various industries. As a result, there has been a concerted effort to develop 

reliable and cost-effective methods for diagnosing faults in IMs. The early detection of 

potential failures is of paramount importance because it can prevent significant damage to 

machinery (Nayana and Geethanjali, 2020; Toma et al., 2020; Yuan et al., 2020; Martinez-

Herrera et al., 2022; Toma et al., 2022b). Despite the recognised significance of feature 

extraction and selection within intelligent diagnosis systems, relatively little attention has 

been paid to assessing load impact in the literature (Han et al., 2021b; Zhang et al., 2022b). 

A notable gap has emerged in intelligent diagnosis systems where feature extraction and 

selection are crucial, especially in evaluating load impact (Ahmed and Nandi, 2018). 

Extensive research has explored fault classification under varying loads, but the nuanced 

effects of load variations on the intrinsic nature of faults have not been thoroughly addressed. 
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Thus, Chapter 4 introduces the proposed novel Customised Load Adaptive Framework 

(CLAF) in detail. 

2.6.4 Multimodal Systems Decision Fusion Approach 

The field of fault detection in manufacturing systems has witnessed remarkable 

advances, particularly in analysing vibration signals for condition monitoring and fault 

detection. This dynamic area of research, focusing primarily on identifying faults in rolling 

element bearings amid substantial noise, highlights the critical role of feature selection in 

ensuring classification accuracy. Researchers have been actively developing various 

methods to extract robust statistical data from vibration signals, using techniques ranging 

from time, frequency, and spectral feature extraction to AR models. Integrating ML and the 

advanced capabilities of deep CNNs has facilitated a significant advance in this quest. 

Additionally, innovative classification fusion methods, including sensor, feature, and 

decision fusion, have been implemented to enhance accuracy. Techniques including GAF 

and CWT are utilised for deeper signal analysis. At the same time, transfer learning 

approaches with architectures such as AlexNet and ResNet are applied for more precise fault 

diagnosis. Despite these achievements, the field faces complex challenges, emphasising the 

need for ongoing exploration and innovation. 

Lorenz et al. (2022) delved into various techniques for fault detection in 

manufacturing systems, employing vibration data analysis. They discuss time-domain 

features such as RMS, variance, and kurtosis alongside frequency-domain features such as 

spectral attributes. Time-domain features have shown particular efficacy for early fault 

detection (Pinedo-Sánchez et al., 2020), although real-world signals often exhibit temporal 

variations (Sayyad et al., 2021). The challenge of acquiring suitable features has been noted 

because it can be laborious and sometimes impractical for specific faults or in the context of 

complex machinery (Resendiz-Ochoa et al., 2018). The study investigates fault detection in 

rotating element bearings, emphasising time-domain features (median, peak-to-peak value, 

and mean) and frequency-domain features (spectral centroid and kurtosis). Considerable 

emphasis is placed on using ML classifiers, especially the quadratic SVM from MATLAB, 

for the multi-class classification of machinery health states. This method has demonstrated 

its effectiveness in accurately identifying faults (Lupea and Lupea, 2022). Advances in ML 



 

44 

 

have significantly increased model accuracy, primarily through ensemble learning, which 

combines multiple models to enhance overall prediction effectiveness (Jose et al., 2022). 

The research described in the document introduces a unique feature extraction 

approach known as One-Dimensional Ternary Patterns (1D-TP) for bearing fault detection 

using vibration signals. This approach extracts statistical measures from these signals in both 

the time and frequency domains. For classification purposes, the study employs a variety of 

ML classifiers, including Random Forests, kNN, SVM, BayesNet, and ANNs. This 

methodology effectively pinpoints faults in bearings, highlighting the potential of 1D-TP and 

these classifiers in the field (Kuncan et al., 2020). Additionally, the paper explains the 

workings of SVM, a state-of-the-art algorithm primarily used for categorisation based on the 

principle of margin calculation. It effectively separates data groups by drawing a line 

between them, optimising margins to reduce the difference with labelled classes, thereby 

minimising classification errors. 

Furthermore, the study touches upon DTs, which consist of nodes and branches used 

primarily for classification purposes. This method sorts attributes based on their values, 

grouping them accordingly, where each node represents a category attribute and each branch 

a specific value of that node (Kadam et al., 2021). Despite these notable contributions to fault 

diagnosis and ML, the thesis identifies a gap in load-dependent fault condition monitoring. 

It underscores the need for further exploration of advanced deep-learning techniques. 

Moreover, there has been a significant focus on spectral feature extraction using AR 

models in bearing fault classification, as detailed in the existing research. AR models extract 

vital features from vibration signals, which have proven effective in identifying various 

operational states. Research indicates that AR-derived features are comparably compelling, 

achieving classification accuracies similar to those obtained with power spectral features in 

areas such as emotion recognition and signal processing (Ganapathy et al., 2014 . This has 

led to a growing interest in the Forward-Backward Autoregressive (FBAR) model, a 

variation of the AR model, particularly in feature extraction for diverse signal-processing 

applications (Vaibhaw et al., 2020). Therefore, using AR models for feature extraction is 

emerging as a promising approach to enhance the classification of bearing faults based on 

vibration signals. This exploration suggests that AR models could complement traditional 

TFD features, warranting further investigation. 
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The CNN, a potent model in DL (Nishat Toma et al., 2021), is employed in 

architectures such as AlexNet and ResNet), notably for diagnosing bearing faults. Utilising 

these CNNs through transfer learning has demonstrated significant efficacy in various 

applications, as highlighted by Lu et al. (2020). These collective findings emphasise the 

promise of pre-trained CNNs and transfer learning techniques in bearing fault classification 

using vibration signals, offering a compelling approach to automated fault diagnosis in 

machinery. AlexNet (Lu et al., 2020; Asutkar and Tallur, 2023) combined with transfer 

learning has effectively classified casting surface defects. Its efficacy lies in utilising pre-

trained models for specific tasks, balancing simplicity with reliable performance (Thalagala 

and Walgampaya, 2021). The ResNet family has also shown promise within the bearing fault 

diagnosis domain. The principal advantage of ResNet-18 is its intricate architecture and 

residual connections, which enhance training efficiency and task performance, especially in 

complex scenarios (Chang et al., 2023; Wu et al., 2023b). 

In contrast, AlexNet, known for its straightforward and dependable framework, is 

better suited to simpler classification tasks, making it a practical choice in environments with 

limited computational capacity (Ramzan et al., 2020). However, the advanced design of 

ResNet, with its deeper layers and residual blocks, requires greater computational power 

compared to AlexNet, presenting a need to balance efficiency and computational demands 

in CNN applications (Kadam et al., 2021; Thalagala and Walgampaya, 2021). Thus, both 

ResNet and AlexNet represent two well-established deep-learning approaches with the 

potential for further advances in condition monitoring. 

Additionally, 2D signal encoding techniques, such as GAF and CWT, have 

significantly improved the feature extraction capabilities of CNNs. GAF, in particular, has 

shown promise in high-precision fault signal classification (Zhang et al., 2023a) and mental 

well-being state classification (Woodward et al., 2024). Toma et al. (2022a) demonstrated 

the efficacy of converting current signals into 2D images using GAF, followed by CNN 

classification, in bearing fault classification. On the other hand, CWT signal encoding has 

been highly effective, especially when paired with Ensemble Empirical Mode 

Decomposition (EEMD) for intrinsic mode function selection. This combination has 

achieved more than 99.00% accuracy in fault detection in some instances (Nishat Toma et 

al., 2021) and has been successful in early fault detection (Kaji et al., 2020). The synergy of 
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CWT with multiscale feature fusion and enhanced channel attention mechanisms has also 

been investigated to further refine feature extraction from vibration signals (Xiao et al., 

2021b). In 2023, an innovative approach that combines the GASF with CWT was introduced 

for intelligent fault diagnosis in wind turbine gearboxes. This method leverages GAF and 

CWT techniques to improve fault detection accuracy (Yang et al., 2023b). However, it is 

essential to note that, based on current research trends and to the best of the author's 

knowledge, GAF and, notably, GADF are not yet widely recognised as established 

techniques for vibration signal encoding and have seen limited exploration. In contrast, CWT 

signal encoding is much more prevalent. This disparity indicates a significant opportunity 

for further research and development regarding 2D signal encoding techniques, particularly 

in exploring the potential of GAF and GADF for VSA. 

Researchers have developed promising fusion techniques in rotating machinery fault 

diagnosis. One notable approach is the multi-sensor fusion technique, which has 

demonstrated enhanced fault classification accuracy and quicker convergence than single-

source sensor data. A 2023 study introduced an innovative bearing fault classification 

method using multi-sensor fusion technology combined with an advanced binary one-

dimensional ternary pattern (EB-1D-TP) encoding algorithm; this combination achieved 

classification rates over 98.00%, demonstrating its potential for broader industrial 

applications and integration into Industry 4.0 (Pan et al., 2023). Cinar (2022) highlighted 

data-level sensor fusion, achieving up to 100% validation accuracy. Inspired by standard 

CNN pooling methods, this technique merges sensor channels using overlaid spectrogram 

images to select the highest spectral power at each frequency and time point for improved 

classification with a pre-trained SqueezeNet model (Cinar, 2022). 

Kullu and Cinar (2022) also utilised raw TFD data from two sensor types, 

transforming them into time-frequency images via the STFT. The time-frequency images 

were combined with raw time series data and used in a DL model for fault detection, 

demonstrating promising results in terms of fault classification on datasets from Paderborn 

University and Eskisehir Osmangazi University (Kullu and Cinar, 2022). Furthermore, a 

method employing current, vibration, and torque signals applied STFT to each, creating 

spectrograms that were combined into a single image for analysis with pre-trained 

SqueezeNet, demonstrating efficacy in fault diagnosis (Cinar, 2022). While the concept of 
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2D vibration signal encoding has previously been explored, there remains significant 

potential for advancement, particularly in identifying more efficient input combinations for 

the final condition monitoring system. This ongoing exploration is vital to develop tailored 

solutions to specific monitoring challenges. 

Recent advances in feature fusion techniques for rotating machinery fault diagnosis 

have shown considerable promise, and the field remains ripe for innovative approaches. In 

2022, a notable development was a multi-sensor feature fusion approach for rolling bearing 

fault diagnosis. This technique enhances accuracy by amalgamating data from various 

sensors. It incorporates Variational Mode Decomposition preprocessing and a deep 

autoencoder network, outperforming alternative methods which rely on single-sensor data. 

Toma et al. (2022b) introduced a feature fusion method for bearing fault classification in 

IMs. This method utilised the WST to extract features from current signal data, achieving 

99.00% accuracy when combined with ensemble ML algorithms. 

Further exploration in 2021 saw the integration of CNN knowledge transfer with 

time-frequency domain features in the Feature Fusion Convolutional Neural Network-

Support Vector Machines (FFCNN-SVM) method. Multi-Level Features Fusion Network 

(MLFNet), an innovative CNN, also demonstrated its ability to extract and fuse multi-scale 

features from noisy vibration signals, attaining an exceptional 99.75% recognition accuracy 

(Ye and Yu, 2022). The potential of combining time-domain and frequency-domain data was 

also highlighted using the GAF method and processed by the ECA-ConvMixer model for 

motor fault diagnosis (Xie et al., 2023).. Decision fusion multi-dimensional feature 

extraction techniques have also been employed to create comprehensive feature vectors. 

These vectors are amalgamated using algorithms, such as the Yager algorithm, for extensive 

fault pattern recognition (Li et al., 2019b). In 2022, a fuzzy decision fusion strategy was 

developed, integrating outputs from CNN models trained on datasets processed through 

various transforms (Yang et al., 2022). Wang et al. (2023b) presented an innovative 

algorithm for industrial motor bearing fault diagnosis, which integrates multi-source 

information using a noise reduction autoencoder and bidirectional Long Short-Term Memory 

(LSTM) networks. While these fusion techniques have demonstrated promising results in 

numerous studies, there remains significant potential for further research. More specifically, 

there is an opportunity to tailor and customise fusion techniques for load-dependent condition 
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monitoring on specialised datasets. This offers a pathway for more nuanced and compelling 

IM bearings condition-monitoring solutions, which will be explored in Chapter 6.  

2.6.5 Graph Convolutional Networks (GCNs) on a Tabular Dataset Application 

GCNs are specialised neural networks designed to handle data structured in graphs, 

where the data points are nodes interconnected by edges. GNNs excel at managing the 

intricate relationships and patterns present within graphs, making them ideal for various 

applications, including drug discovery, fraud detection, and recommendation systems. GNNs 

can predict and analyse the interconnections between data points by applying DL techniques 

to graph data. They typically employ message-passing mechanisms to incorporate 

information about nodes and their adjacent nodes, enabling the network to identify patterns 

and make informed predictions based on the graph’s structure. In recent years, GNNs have 

attracted considerable attention for their ability to represent complex relationships and 

patterns, which conventional neural networks may find challenging to handle (Li et al., 

2023b). 

Using GNNs for classification offers several advantages: GNNs are adept at 

capturing complex interdependencies between entities, thus providing significant benefits in 

structured data classification (Du et al., 2023; Lee et al., 2023). They frequently outperform 

traditional ML methods and CNNs in specific tasks, such as classifying colorectal 

histopathological images (Tepe and Bilgin, 2022). Additionally, GNNs can utilise 

constructed graphs in a self-supervised manner, facilitating knowledge transfer to pairwise 

neural networks for practical applications (Du et al., 2023). 

CNNs are designed for grid-like data such as images and use convolutional layers 

with filters to learn features. In contrast, GNNs are for graph-structured data and employ 

message passing to incorporate information about nodes and their connections. The critical 

difference between CNNs and GNNs lies in the data they handle and the mechanisms they 

use to learn features. CNNs are commonly used in computer vision tasks such as image 

recognition, whereas GNNs are better suited for applications involving complex data 

relationships (Lin et al., 2021). 

Applying 1D-CNNs in fault detection across various industries showcases their 

efficiency in processing time-series data and extracting meaningful features for diagnosis. 

For instance, Wang et al. (2024) combined features from multiple sensors using a 1D-CNN 
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to predict bearing faults in aircraft engines, while Abdeljaber et al. (2022b) demonstrated 

their effectiveness in detecting structural damage (Chen et al., 2022b). 1D-CNNs are 

particularly effective for detecting sequential patterns because they apply convolution 

operations across one dimension, which is well-suited for time series or any sequential data 

(Camacho-Bello et al., 2022; Zhang et al., 2023c; Ahmadzadeh et al., 2024).  

K-Nearest Neighbour graphs (k-NNGs) have proven useful in diverse applications, 

including healthcare diagnostics and machinery fault detection. Chandaliya et al. (2023) used 

k-NNGs with GNNs to classify cough sounds for disease detection, revealing complex 

relationships even with limited labelled data (Chandaliya et al., 2023). Similarly, Rangel-

Rodriguez et al. (2023) applied the kNN method to generate graphs from vibration signals 

for crack detection in rotating machinery, with these graphs serving as inputs for ML 

algorithms (Rangel-Rodriguez et al., 2023). Earlier, Wang et al. (2021b) employed the kNN 

method to create graphs from vibration signals for fault diagnosis in rotating machinery, 

using these graphs as input for a GCN for fault classification (Wang et al., 2021b).  

GNNs and k-NNGs are complementary techniques for analysing and processing 

graph data. K-NNGs are crucial in constructing graphs from data points, while GNNs excel 

in identifying patterns and relationships within the graph data. For example, the NN-Descent 

algorithm efficiently handles the construction of k-NNGs by iteratively refining neighbour 

connections (Dong et al., 2011). While the GCN architecture is not explicitly mentioned in 

the search results for Induction Motor (IM) fault classification, it is evident that GCNs have 

shown promising results in various domains. GCNs have been effectively applied in diverse 

areas, enhancing fault classification and predictive maintenance. These applications include 

Multi-Scale Neural Transformation Graph Method (MNT-G) frameworks in micro-service 

systems, which improve classification accuracy (Zhang et al., 2023b), high-performance 

GCNs in electronic design for better testability analysis, Super Resolution - Graph Neural 

Network (SR-GNN) in power networks for precise fault location (Mo et al., 2023), temporal 

GCNs for rapid transient stability assessment in power systems (Su et al., 2021), and 

compound fault diagnosis in gearboxes using GCN-based models (Zeng et al., 2024). These 

practical implementations demonstrate the versatility and efficacy of GCNs in handling 

complex data and improving fault detection across various industries. 
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The general advantages of GCNs across various domains include improved accuracy 

and robustness and the ability to aggregate global information through the interconnected 

relationships of different nodes. Consequently, it is feasible to develop more robust and 

adaptable models for various graph-based applications by integrating these approaches. 

While the potential of GCNs for fault classification in IMs is theoretically plausible due to 

their ability to model complex graph structures, the current research does not explicitly 

discuss the specific application of GCNs in this context. Therefore, further research focusing 

on applying GCNs in the fault classification of IMs would be necessary to validate this 

assumption. 

While GNNs have not been widely applied to IM fault detection, their ability to 

process graph-structured data is seen as valuable for analysing complex systems like IMs. 

Complex relationships within motor data can be captured by GNNs, aiding in anomaly 

detection and predictive maintenance. Similarly, 1D-CNNs have been shown to effectively 

analyse sequential motor signals to detect faults under various conditions. These neural 

networks, including GNNs and 1D-CNNs, have been recognised for improving fault 

detection accuracy in IMs (Skowron et al., 2020; Rahmawan et al., 2023) 

In this study, tabular data will be represented as graphs for VSA using the kNN 

method, where nodes represent time points, and edges represent signal similarities. The 

Taguchi method will be employed to optimise key factors affecting performance in this new 

approach. To address the gaps identified in GNN performance, the 1D-CNN will be explored 

as a tentative candidate for a hybrid methodology, providing complementary strengths in 

fault classification. 

2.7 Summary 

This chapter provides an in-depth overview of IMs, the primary focus of the current 

research. It delves into the broader realm of AI, encompassing ML and DL. It outlines a 

variety of AI algorithms and networks pertinent to IM condition monitoring. This includes 

supervised, unsupervised, and RL techniques. The chapter further discusses DL 

architectures, particularly CNNs, CNN transfer learning, GANs, and GNNs. Each section 

explores the theoretical aspects and discusses the practical applications of these technologies. 

Additionally, the chapter introduces signal encoding techniques such as the GAF and 

CWT. It also reviews multimodal fusion approaches. The exploration extends to encoding 
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tabular datasets using GNNs and the analysis of feature extraction in signal processing across 

the time, frequency, and time-frequency domains, illustrating applications in each context. 

The chapter concludes by summarising the current state of the art and identifying 

research gaps within five key themes: Multimodal Data Preprocessing, Artificial Thermal 

Image Creation, Customised Radial Load Assessment, the Decision Fusion Approach in 

Multimodal Systems, and a GCN on Tabular Datasets. It highlights the gaps and outlines 

future research directions for each theme, aligning with the thesis’ stated aim to enhance fault 

classification in IMs significantly. This enhancement seeks to improve decision-making 

accuracy and augment algorithms' intelligence within IM condition monitoring systems, 

directly supporting the thesis’ objectives. The proceeding chapters will deal with the five 

themes mentioned above in that order. 
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Chapter 3: Novel Preprocessing of Multimodal 

Condition Monitoring Data for Classifying 

Induction Motor Faults Using Deep Learning 

Methods 
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3.1 The Impact of Data Representation on the Performance of Machine Learning 

Models in Fault Classification 

The choice of data representation can significantly impact the performance of 

Machine Learning (ML) models in fault classification. The selection of relevant features, 

normalisation, data augmentation, dimensionality reduction, graph-based representations, 

knowledge graphs, and hybrid approaches can all contribute to improved model 

performance. The impact of data representation on the performance of ML models in fault 

classification is significant. The choice of data representation can affect the models’ 

accuracy, speed, and generalisability. Some of the critical aspects of data representation that 

can influence the performance of ML models in fault classification include the following: 

1) Feature selection: The choice of features used to represent the data can significantly 

impact the model’s performance. Relevant features should be selected to ensure that 

the model captures the most essential information related to the fault. Inversive 

features sometimes lead to overfitting or reduced performance (Kareem and Hur, 

2022). This will be addressed in this chapter.  

2) Data normalisation: Normalising the data can help improve the performance of ML 

models by ensuring that all features are on a similar scale. This can prevent some 

features from dominating others and improve the model’s accuracy (Jang and Cho, 

2021). 

3) Data augmentation: Augmenting the data can help improve ML models' performance 

by increasing the training set's size. This can help the model learn more robust 

features and reduce overfitting (Yousuf et al., 2024). 

4) Dimensionality reduction: Reducing the dimensionality of the data can help improve 

the performance of ML models by reducing the noise and irrelevant features in the 

data. Techniques like Principal Component Analysis (PCA) and t-distributed 

Stochastic Neighbour Embedding (t-SNE) can reduce dimensionality (Wodecki and 

Michalak, 2021). 

5) Graph-based representations: Representing the data as a graph can help improve the 

performance of ML models by capturing the relationships and interactions between 

different data entities. Graph-based representations can be used for similarity search, 
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clustering, and other data mining tasks (Jang and Cho, 2021). This will be explored 

in Chapter 7.  

6) Knowledge graphs: Integrating Knowledge Graphs (KGs) into ML models can help 

improve their performance by incorporating domain-invariant knowledge. This can 

aid in solving specific tasks and handling domain shifts, such as variations in machine 

operation conditions (Radtke et al., 2023). 

7) Domain-specific ontologies: Using domain-specific ontologies expressed in the 

Resource Description Framework (RDF) and Web Ontology Language (OWL) can 

enhance building analytics through multi-domain knowledge integration and 

facilitate numerical representation (Delgoshaei et al., 2022). 

8) Hybrid approaches: Combining different techniques, such as physics-based 

performance models with Deep Learning (DL) algorithms, can help improve the 

performance of ML models in fault diagnostics (Chao et al., 2019). 

3.2 Proposed Methodology 

In condition monitoring, integrating diverse sensor data is a cornerstone for 

advancing fault classification capabilities and ensuring operational integrity in Induction 

Motors (IMs). The methodology presented herein capitalises on the fusion of thermal and 

vibration sensor outputs to create a robust multimodal monitoring framework. By initially 

establishing a baseline using thermal imagery, the approach sets a reference standard for 

comparison. Subsequently, vibration signals undergo a sophisticated transformation from 

one-dimensional (1D) time-series data to two-dimensional (2D) spatial representations 

suitable for image processing applications. These representations are further enhanced 

through Gramian Angular Field (GAF) and Continuous Wavelet Transform (CWT) encoding 

techniques, which encapsulate temporal dynamics and signal decomposition. Before fusion, 

thermal and vibration-derived images are meticulously pre-processed to ensure compatibility 

and maximised data integration. This process's culmination is synthesising a Stitched 

Multimodal Image Dataset, offering a comprehensive view of the monitored condition. A 

pre-trained Convolutional Neural Network (CNN), efficient in image-based analysis, will be 

trained and used to assess the model performance according to the accuracy metric.  
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3.2.1 Preprocessing Multimodal Data for Induction Motor Fault Classification 

Method 

The proposed method presents a comprehensive and reliable multimodal feature 

fusion approach for improved fault classification accuracy. The methodology incorporates 

sensor fusion (combining images from different sensors into one image) and feature fusion 

(integrating features from these images for classification). It combines vibration signals and 

thermal images to identify Induction Motor (IM) bearing faults, as summarised in Figure 3.1. 

The methodology comprises the following steps: 

1. Methodology Input Channels: The process begins with thermal images, which establish 

a baseline using a single-channel approach, serving as a reference for later multimodal 

analysis. The second input consists of raw vibration signals, which are sub-sampled and 

prepared for transformation in subsequent steps. This preparation includes creating sub-

files and splitting the dataset for further processing. 

2. Two-dimensional (2D) Signal Encoding: One-dimensional (1D) vibration signals are 

converted into a 2D format to enable image processing techniques. As a result, two 

datasets are created: one with CWT encoded images and another with Gramian Angular 

Difference Field (GADF) encoded images to capture temporal correlations and to 

decompose the signals into wavelets, respectively. This step then uses pre-trained CNNs 

for accuracy assessment (AlexNet, Residual Network-18 (ResNet-18)) and choosing 

between CWT and GADF. The chosen 2D encoding technique is then nominated for 

step 5.  

3. Preprocessing for Image Fusion: Both thermal images and the chosen approach for the 

2D encoded vibration data undergo a preprocessing step to ready them for image fusion. 

This process merges the encoded vibration images with thermal images, employing a 

novel methodology in multi-channel image fusion techniques. To ensure accurate 

correlation between fault types, images are paired based on their health condition. Each 

GADF image is matched with its corresponding thermal image, both labeled under the 

same health condition (e.g., Normal, Mild, Moderate, Severe). This alignment is verified 

by cross-referencing the fault labels from both the MFPT dataset and the lab experiment 

to ensure proper pairing of fault types. The resulting Stitched Multimodal Image Dataset 

is then prepared for input into the pre-trained CNN. 



 

56 

 

4. Pre-trained CNNs for Accuracy Assessment: The Stitched Multimodal Image Dataset 

images are input into a pre-trained CNN, capitalising on transfer learning capabilities. 

This approach utilises the pre-existing knowledge of CNNs trained on extensive 

datasets, thus improving their ability to analyse patterns and identify anomalies. 

Introducing transfer learning markedly enhances the efficiency and precision of the fault 

classification process. Specifically, SqueezeNet and ResNet-18 will be evaluated. It is 

also essential to preprocess the Multimodal Fusion Image Dataset to ensure the image 

dimensions are compatible with the required input size for the selected CNN, 

SqueezeNet or ResNet-18. 

 

Figure 3.1: Preprocessing of Multimodal Condition Monitoring Data for Classifying Induction 

Motor Faults Using Deep Learning Methods. 



 

57 

 

3.2.2 Dataset 

The proposed methodology was evaluated using the Machinery Failure Prevention 

Technology (MFPT) bearing dataset. The testing setup utilised a NICE bearing with eight 

elements or balls. For healthy conditions, three sets of data were collected, each sampled at 

a rate of 97,656 Hz for 6 s. Similarly, three sets of data were gathered for Outer Race Fault 

(ORF) conditions, also sampled at 97,656 Hz for 6 s. Furthermore, seven ORF conditions 

were recorded at a sample rate of 48,828 Hz for 3 s. Additionally, seven Inner Race Fault 

(IRF) conditions were sampled at the same rate of 48,828 Hz for 3 s. The test rig was 

equipped with a NICE bearing characterised by the following parameters (Bechhoefer, 

2016): 

• Roller diameter = 0.235 

• Pitch diameter = 1.245 

• Number of elements = 8 

• Contact angle = 0 

On the other hand, thermal images were captured in the Wolfson Magnetics 

Laboratory at Cardiff University School of Engineering using a Forward Looking InfraRed 

(FLIR) thermal camera connected to a computer. These images were taken under six 

artificially induced faulty conditions and one healthy condition (Al-Musawi et al., 2020; 

McGhan, 2020a). The dataset utilised here aligns with the health conditions presented in the 

MFPT bearing dataset, with a focus on methodology. 

The proposed methodology is illustrated in Figure 3.1. It begins with evaluating 

thermal image fault classification performance based on images captured over a 20-minute 

period in ideal laboratory conditions, encompassing seven health conditions, as shown in 

Figure 3.2. The thermal images were extracted from the lab-collected images stored in a 

RawMotorData file. These thermal images were extracted using a Jupyter notebook 

(APPENDIX 1). The selection of images depended on the health conditions presented in the 

MFPT bearing dataset, explicitly utilising the categories of Normal (fault-free) or Healthy 

condition, IRF, and ORF. 
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Figure 3.2: Thermal Images for all the Faults and Healthy Conditions: (a) 8 Bars; (b)IRF; (c) ORF; 

(d) Ball; (e ) 4 bars; (f) Normal (fault-free) or Healthy condition; and (g) 1 Bar. 

3.3 Results And Discussion  

3.3.1 Input Channels 

3.3.1.1 Thermal Images  

The thermal image dataset is the first input in the framework. In practical scenarios, 

camera misalignment or mistracking can lead to zooming in or out and variations in image 

brightness. As a result, image preprocessing was conducted on the thermal images. 

Consequently, new datasets were generated using the Python OpenCV library. Functions for 

brightness adjustment, rotation, and zoom were developed and applied to the files. Median 

blur was also applied to the images to replicate common defects in thermal images and 

simulate real-world conditions. The thermal image dataset presented challenges due to its 

inherent noise and small size. 

Subsequently, new datasets were generated using the OpenCV library 

(APPENDIX 1). Functions for brightness adjustment, rotation, and zoom were created and 

applied to the files. Median blur was also used in the images to replicate typical defects in 

thermal imagery. Pre-processed examples are displayed in Figure 3.3. 

A total of 180 images for each fault type were used, where 60.00% of the dataset was 

used for training, resulting in 115 images for training, 20.00% for validation (29 images), 

and 20.00% for testing (26 images). The dotted line in Figure 3.1 represents single-channel 

input for classification using thermal images only. It is the baseline data for comparing the 

proposed methodology to determine if it improves the classification accuracy. Only Normal 

(fault-free) or Healthy condition, IRF, and ORF were used in this study.  

a             b                  c               d            e                     f                     g
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3.3.1.2 Raw Vibration Signal Sub-Sampling 

Data were prepared from raw vibration signals to reasonably split folders into 

subsamples (CSV files) and produce useful 2D images. Data for 0.1 s were extracted from 

each fault condition (two Normal (fault-free) or Healthy condition files called baseline, five 

IRF, and seven ORF), resulting in 14 datasets for training and validation. On the other hand, 

one Normal (fault-free) or Healthy condition  file called baseline, IRF, and three ORF were 

used, resulting in six datasets for testing, as shown in Table 3.1.  

Table 3.1: Dataset Used and Subfiles Splitting Count. 

Dataset Sampling Rate (Hz) Duration (s) Subfiles 

Training 

baseline_1 97,656 6 117 

baseline_2 97,656 6 117 

InnerRaceFault_vload_1 48,828 3 58 

InnerRaceFault_vload_2 48,828 3 58 

InnerRaceFault_vload_3 48,828 3 58 

InnerRaceFault_vload_4 48,828 3 58 

InnerRaceFault_vload_5 48,828 3 58 

OuterRaceFault_1 97,656 6 117 

OuterRaceFault_2 97,656 6 117 

OuterRaceFault_vload_1 48,828 3 58 

OuterRaceFault_vload_2 48,828 3 58 

OuterRaceFault_vload_3 48,828 3 58 

OuterRaceFault_vload_4 48,828 3 58 

OuterRaceFault_vload_5 48,828 3 58 

Testing 

baseline_3 97,656 6 117 

InnerRaceFault_vload_6 48,828 3 58 

InnerRaceFault_vload_7 48,828 3 58 

OuterRaceFault_3 97,656 6 117 

OuterRaceFault_vload_6 48,828 3 58 

OuterRaceFault_vload_7  48,828 3 58 

Figure 3.3: Compromised-Quality Thermal Images (Preprocessing Stage). 
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3.3.2 Two Dimensional Signal Encoding Techniques 

The choice of data representation can significantly impact the performance of ML 

models in fault classification. Selecting relevant features, normalisation, data augmentation, 

dimensionality reduction, graph-based representations, knowledge graphs, and hybrid 

approaches can improve model performance by affecting the models' accuracy, speed, and 

generalisability. Key aspects of data representation that influence ML model performance 

include feature selection, where relevant features must be chosen to ensure the model 

captures essential information related to the fault. Conversely, irrelevant features can lead to 

overfitting or reduced performance (Kareem and Hur, 2022). In this chapter, various signal 

encoding techniques, such as GAF and CWT spectrograms, will be utilised to enhance data 

representation. Moreover, hybrid approaches combine different techniques, such as physics-

based performance models with DL algorithms, which can help improve the performance of 

ML models in fault diagnostics (Chao et al., 2019).  

3.3.2.1 Gramian Angular Field (GAF) 

A methodology that transforms time series into images using two steps: time-series 

data normalisation and polar coordinates representation of normalised data. There are two 

types of GAF: Gramian Angular Summation Field (GASF) and GADF. Time series data x 

are first normalised to values between 0 and 1, shown in Equation (3.1) (Han et al., 2021a): 

where 𝑥 𝑖 is the raw time-series signal at timestamp i and 𝑥̌𝑖 is the normalised signal. Further, 

𝑥𝑚𝑖𝑛 is the minimum value in the time series data and 𝑥𝑚𝑎𝑥 is the maximum value in the 

time series data (Han et al., 2021a). After that, polar coordinates are used to represent 

normalised data 𝑋̌𝑖 rather than regular cartesian coordinates by computing the angular cosine 

value. Equation (3.2) (Ferraro et al., 2020; Han et al., 2021a):  

Here, t denotes the timestamp code at moment i, and radius 𝑟 defines the timestamp.  

𝑥̌𝑖 =  
𝑥 𝑖 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛
  (3.1) 

 {
𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠(x̃𝑖), 0 ≤ x̃𝑖 ≤  1,  x̃𝑖 ∈  𝑋̃ 

𝑟 =  𝑡𝑖,  𝑡𝑖  ∈  ℕ
  (3.2) 
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In contrast to the Cartesian coordinate system, GAF preserves temporal features by 

constructing an image from the upper-left to the lower-right corner over time. It quantifies 

temporal correlations across various time intervals using an angular perspective. 

Specifically, GAF represents either the triangular GASF or the difference GADF between 

individual points, as detailed in Equations (3.3) and (3.4). This method defines temporal 

correlations across different intervals using an angular perspective, illustrated by the 

triangular GASF or the difference GADF between points, as shown in Equations (3.3) and 

(3.4) (Han et al., 2021a; Kou et al., 2022): 

 

where 𝜙𝑖 represents the angle polar coordinates of the ith timestamp. The diagonal positions 

keep the original information, while other positions measure the relationship between 

different time sequences. Consequently, for a time series signal of length n, a numerical 

matrix of 𝑛×𝑛 size can be concluded by the GAF encoding technique, resulting in a 2D image 

(Han et al., 2021a).  

The core concept behind converting time-series data into images using GAF involves 

creating a matrix based on polar coordinates. This matrix preserves the temporal 

relationships within the 1D time-series signal, maintaining accurate temporal correlations 

compared to Cartesian coordinates. The process yields two types of GAF images: GASF and 

GADF (Toma et al., 2022a). 

To transform a given time series X = 𝑥1, 𝑥2, ..., 𝑥𝑛 into a range of [-1, 1], we use 

Equation (3.1) to normalise and scale X where 𝑥𝑖 is the element of the time series (Cui et al., 

2022; Toma et al., 2022a). The normalisation and scaling process is further detailed in 

Equation (3.5). This ensures that the data are appropriately scaled for the creation of GAF 

images:  

𝐺𝐴𝑆𝐹 = [

𝑐𝑜𝑠(𝜙1 + 𝜙1) … 𝑐𝑜𝑠(𝜙1 + 𝜙𝑛)
𝑐𝑜𝑠(𝜙2 + 𝜙1) … 𝑐𝑜𝑠(𝜙2 + 𝜙𝑛)

⋮ 𝑐𝑜𝑠(𝜙𝑖 + 𝜙𝑖) ⋮
𝑐𝑜𝑠(𝜙𝑛 + 𝜙1) … 𝑐𝑜𝑠(𝜙𝑛 + 𝜙𝑛)

]  (3.3) 

𝐺𝐴𝐷𝐹 = [

𝑐𝑜𝑠(𝜙1 − 𝜙1) … 𝑐𝑜𝑠(𝜙1 − 𝜙𝑛)
𝑐𝑜𝑠(𝜙2 − 𝜙1) … 𝑐𝑜𝑠(𝜙2 − 𝜙𝑛)

⋮ 𝑐𝑜𝑠(𝜙𝑖 − 𝜙𝑖) ⋮
𝑐𝑜𝑠(𝜙𝑛 − 𝜙1) … 𝑐𝑜𝑠(𝜙𝑛 − 𝜙𝑛)

]  (3.4) 
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𝑥̅𝑖 =
((𝑥𝑖 − max(𝑋)) + (𝑥𝑖 − min(𝑋)))

max(𝑋) − min(𝑋)
 

(3.5) 

The angle 𝜑 is the inverse cosine of 𝑥𝑖, the radius 𝑟 is the timestamp, and the time 

series 𝑋 is converted into polar coordinates as shown in Equation (3.6) (Cui et al., 2022; 

Toma et al., 2022a). 

 

where 𝑡𝑖 is the timestamp, and 𝑁 is a constant for adjusting image distortion in polar 

coordinates with time progression. In this context, a mapping is termed a bijection when 𝜙 

is within [0, π], ensuring a unique result for any time series in polar coordinates, preserving 

distinct temporal relationships, unlike Cartesian coordinates. 

3.3.2.2 Continuous Wavelet Transform (CWT) 

Wavelet deals with highly fluctuated signals, making it a widespread method of 

mechanical fault diagnosis. CWT outperforms other methodologies focusing on time-

frequency approaches, such as the Short-Time Fourier Transform (STFT) and Gabor 

Transform (Nishat Toma and Kim, 2020). In general, Wavelet Transform (WT) is a 

mathematical tool commonly used to reduce the signal's noise effect by splitting the selected 

signal into small sub-signals, consequently projecting signals into the frequency-time domain 

utilising subsets of wavelet functions (Divya and Devi, 2021). Hence, the most common 

faults in bearing components occur periodically and affect the outer, ball, cage, and inner 

races. Therefore, noise is isolated or shrinks from the signal in the wavelet domain. The 

periodic impulse of a specific fault will be represented as “energy” in a few significant 

magnitude coefficients. On the other hand, incoherent noises are translated into many small-

magnitude coefficients (Zhang et al., 2022d). 

WT is a powerful tool in signal processing, and CWT is a wavelet type. It converts 

time-domain signals into a time-frequency domain using a convolution operation that leads 

to correlation coefficients between the mother wavelet function and the original signal 

(Nishat Toma et al., 2021). The convolution operation is as in Equation (3.7) (Wei et al., 

2021): 

{
 𝜑 = arccos(𝑥𝑖) , −1 ≤  𝑥̅𝑖  ≤ 1,  𝑥̅𝑖 ∈  𝑋̅ 

𝑟 =  
𝑡𝑖

𝑁
, 𝑡𝑖  ∈ 𝑁

  
(3.6) 
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𝑐𝑤𝑡(𝛼, 𝛽) = 𝛼
1
2  ∫ 𝑥(𝑡)𝜑  ∗  (

𝑡 − 𝛽

𝛼
) 𝑑𝑡 (3.7) 

where 𝛼 and 𝛽 represent the scale factor and the shifting parameter, respectively, x(t) is the 

selected signal over time-domain t. 𝜑 is the wavelet function. Where * represents the 

operation of the complex conjugate. Hence, CWT converts 1D time-domain signals into 2D 

time-frequency images (Wei et al., 2021). 

However, the mother of the wavelet has two control parameters. First, the scaling 

parameter is responsible for stretching and contracting the shape of the mother wavelet. 

Second, the shifting parameter is responsible for the control of the mother wavelet movement 

along the studied signal. By changing the control parameters on the mother wavelet, the 

dynamic frequency characteristic of the signal can be revealed (Nishat Toma et al., 2021). In 

machine fault diagnosis, the Morlet wavelet is combined with the CWT to examine vibration 

signals. This technique generates time-frequency images, which can be leveraged by CNNs 

for fault identification. The method is highly efficient and capable of handling complex data 

rapidly, making it ideal for real-time machinery fault detection (Łuczak, 2024). Therefore, 

this chapter uses the analytical Morlet (Gabor) wavelet, a kind of CWT that uses the vibration 

signal subsampling rate as the unit step.  

3.3.2.3 Two-Dimensional (2D) Encoded Images: Gramian Angular Difference Field 

(GADF) and Continuous Wavelet Transform (CWT)   

This section tested two signal encoding methodologies to convert vibration signal 

subsamples into 2D images. The first method was the GADF, a type of GAF. Second, the 

analytical Morlet (Gabor) wavelet, a CWT type, uses the vibration signal subsampling rate 

as the unit step.  

Each vibration signal subfile presented in Table 3.1 was used as input for the GAF 

and CWT 2D image signal encoding step; the code is provided (APPENDIX 2). On the other 

hand, the GAF images were created using Python libraries and shown in (APPENDIX 1). 

Vibration images are more extensive than thermal images, resulting in 1,398 images for each 

encoding methodology. Four hundred sixty-six images were set aside for testing, 

representing 33.33% of the entire dataset. The remaining data were divided into an 80:20 
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ratio for training and validation purposes, with 745 images allocated for training and 187 for 

validation. These images were generated from each subfile,  

as indicated in Table 3.1, where the number of images matches the number of 

subfiles. Therefore, these images retain the information of the signal in 2D diagrams. Figure 

3.4 illustrates the GADF signal encoding image, while Figure 3.5 depicts the CWT 2D 

vibration signal encoding. 

 

3.3.2.4 CNN Transfer Learning Examples Using AlexNet, ResNet-18 and SqueezeNet  

Pre-trained CNNs offer numerous advantages, such as improved accuracy, as they 

often achieve state-of-the-art performance on various image classification benchmarks 

(Salehi et al., 2023). These models reduce training time since they come equipped with 

fundamental features and require only fine-tuning for specific tasks (Alzubaidi et al., 2021). 

This efficiency extends to using computational resources, making them ideal for handling 

large datasets or scenarios with limited processing power (Alzubaidi et al., 2021; Salehi et 

al., 2023). Additionally, pre-trained CNNs can help address class imbalances in datasets, 

such as those in medical imaging, where some classes may lack sufficient data (Salehi et al., 

Figure 3.4: GADF Encoded Images Demonstration.  

Figure 3.5: CWT Encoded Images Demonstration. 
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2023). They can automatically feature extraction, which is crucial in medical imaging for 

accurate analysis (Zheng et al., 2023). 

Moreover, these models maintain translation invariance, which is vital for consistent 

image recognition, and include regularisation techniques like Pseudo-task Regularisation 

(PtR) to dynamically enhance network training without relying on specific regularisation 

objectives or additional annotations. Their flexibility allows for adaptation to various 

applications, including image classification, object detection, and segmentation (Salehi et al., 

2023). Pre-trained CNNs also benefit from being trained on large-scale datasets, enhancing 

their performance on downstream tasks, and they are well-suited for domain adaptation in 

fields like medical imaging, where data availability may be limited (Salehi et al., 2023). 

CNN transfer learning can be applied with any pre-trained CNN architecture. The 

idea is to start with a pre-trained CNN model and adjust it to meet the specific needs of a 

new task by training it further on a different dataset. This method is especially beneficial 

when the new dataset is too small or lacks sufficient data to develop a CNN from scratch 

(Hussain et al., 2019). This chapter will focus on ResNet-18 and SqueezeNet, which are 

commonly used in Induction Motor (IM) fault diagnosis. Conversely, ResNet-18 and 

AlexNet were used for performance evaluation, as will be discussed in Chapter 6. On the 

other hand, AlexNet will also be used in Chapter 4. 

In Cinar's (2022) study, SqueezeNet showed promising accuracy levels in fault 

detection. On the other hand, transfer learning can be utilised on customised CNN 

architecture (Ye et al., 2021). SqueezeNet was used in 2022 for fault detection in IMs, 

achieving a high classification score (Cinar, 2022). ResNet-18 was also used by Yuan et al. 

in 2020 for rolling bearing fault diagnosis on the two publicly available datasets widely used, 

namely, the MFPT bearing and Case Western Reserve University (CWRU) datasets (Yuan 

et al., 2020). AlexNet was also utilised by Pinedo-Sánchez et al. (2020) on an unlabelled 

dataset of vibration signal-encoded images from Intelligent Maintenance Systems. The study 

exhibited encouraging outcomes in contrast to various other CNN architectures. Notably, 

using AlexNet to diagnose bearing failure through vibration images was rare.  

Pre-trained CNNs can be customised and fine-tuned to the desired dataset to learn 

features faster and more efficiently than creating a CNN from scratch. Hence, it was proved 

from the literature in section 2.2.3.1 that using simple CNN architecture resulted in better 
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performance; SqueezeNet and ResNet-18, which is a short form of the residual net, were 

explored. Moreover, some applications showcase the versatility of SqueezeNet in addressing 

challenges related to IMs, ranging from fault diagnosis to image classification. The 

SqueezeNet model, a type of CNN, has found applications in IMs. One such application is 

in the fault diagnosis of IMs. Research has been conducted using DL CNN architectures, 

including SqueezeNet, for fault diagnosis of such defects as broken rotor bars in IMs 

(Barrera-Llanga et al., 2023). 

SqueezeNet networks have also been evaluated for document image classification, 

demonstrating SqueezeNet’s applicability in this domain (Hassanpour and Malek, 2019). A 

recent study has shown the effectiveness of using SqueezeNet combined with CWT for 

bearing fault detection in IMs. It achieved outstanding classification accuracies: 99.79% with 

Morse Wavelet, 98.71% with Bump Wavelet, and 97.64% with Morlet Wavelet. These 

results highlight the potential of DL  models, like SqueezeNet, for precise and efficient fault 

diagnosis in industrial settings (Boudiaf et al., 2024). 

The evolution of DL architectures over the years has been marked by significant 

milestones, particularly in image classification tasks. AlexNet, introduced in 2012, 

revolutionised the field by winning the ImageNet challenge, demonstrating the power of 

Deep Neural Networks (DNNs) (Krizhevsky et al., 2007). Following this, ResNet-18 

emerged in 2015 with its innovative residual blocks, enabling the training of even deeper 

networks by addressing the vanishing gradient problem (He et al., 2016). ResNet-18 is 

moderate, with 18 fully connected layers and 11.7 million parameters (Kadam et al., 2021; 

MathWorks-5, 2023). SqueezeNet, published in 2016, further advanced the domain by 

offering a highly efficient model that achieves comparable accuracy to AlexNet with 

significantly fewer parameters (Iandola et al., 2016a). SqueezeNet is a simple network with 

18 fully connected layers and 1.24 million parameters (Kadam et al., 2021; MathWorks-5, 

2023). Table 3.2 compares this thesis's CNN transferred learning architecture (MathWorks-

5, 2023).  

Table 3.2: CNN Architecture Comparison (MathWorks-5, 2023). 

Layer Type AlexNet (2012) ResNet-18 (2015) SqueezeNet (2016) 

Input 227x227x3 224x224x3 224x224x3 

Convolutional 5 layers 

Conv1: 7x7, 64, 

stride 2 

Fire modules (squeeze and expand 

layers) 
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Layer Type AlexNet (2012) ResNet-18 (2015) SqueezeNet (2016) 

Max Pooling 3 layers Pool1: 3x3, stride 2 - 

Fully Connected 3 layers 1 layer (classifier) 1 layer (classifier) 

Output 1000 classes 1000 classes 1000 classes 

 

The following section also discusses the CNN architectures presented in Table 3.2 in 

detail: 

1) AlexNet: AlexNet is a deep CNN composed of five convolutional layers followed by 

three fully connected layers. It achieved victory in the ImageNet Large Scale Visual 

Recognition Challenge in 2012, thanks to the work of Alex Krizhevsky, Ilya 

Sutskever, and Geoffrey Hinton, as presented in their paper titled “ImageNet 

Classification with Deep Convolutional Neural Networks” (Krizhevsky et al., 2017). 

AlexNet’s architecture comprises eight layers, including five convolutional layers 

and three fully connected layers (Yu et al., 2021). It also has a 1,000-way softmax 

output layer for classification. It introduced the Rectified Linear Unit (ReLU) 

activation function for faster training and implemented overlapping max pooling to 

reduce representation size and computational load. AlexNet employed normalisation 

layers, dropout techniques, and data augmentation strategies to prevent overfitting 

for improved model robustness (Thalagala and Walgampaya, 2021). 

2) SqueezeNet: The SqueezeNet model is a CNN that is 18 layers deep and can classify 

images into 1,000 object categories. It has been trained on over a million images and 

has learned rich feature representations for many images (MathWorks-4, 2023). Fine-

tuning the pre-trained SqueezeNet model with domain-specific data can also enhance 

its performance for the specific application, allowing it to learn features relevant to 

the fault diagnosis task (Iandola et al., 2017). 

In the domain of DL for image classification, the SqueezeNet architecture 

stands out for its strategic reduction of parameters without compromising accuracy. 

Remarkably, SqueezeNet attains comparable accuracy to the well-established 

AlexNet on the ImageNet dataset, yet with a model size that is 50 times smaller 

(Iandola et al., 2016b; Iandola et al., 2017). This parameter reduction enhances 

computational efficiency, a critical advantage in resource-constrained environments. 

A key factor in optimising SqueezeNet's performance is manipulating the Squeeze 
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Ratio (SR), which is defined as the ratio of filters in the squeeze layers versus those 

in the expand layers. Adjusting this ratio upwards can improve ImageNet's top-5 

accuracy up to a certain threshold. Beyond this threshold, the benefits plateau, 

suggesting that excessively high squeeze ratios may inflate the model's size without 

yielding accuracy gains. This observation underscores the importance of 

SqueezeNet's design principles, such as incorporating fire modules and the deliberate 

balance between minimising parameters and maintaining accuracy (Iandola et al., 

2017). 

3) ResNet-18: ResNet-18 is a CNN architecture introduced in the paper “Deep Residual 

Learning for Image Recognition” by Kaiming He, Xiangyu Zhang, Shaoqing Ren, 

and Jian Sun, published in December 2015. This paper introduced the concept of 

residual learning, which marked a significant advancement in DL architectures. 

ResNet-18 is a member of the ResNet family, notable for its depth and the utilisation 

of residual blocks, which effectively address the vanishing gradient problem when 

training DNNs (He et al., 2016).  

ResNet-18’s deep residual network architecture is known for its balance 

between depth and performance for anomaly detection in Scanning Electron 

Microscope (SEM) images of nanofibrous materials. ResNet-18, chosen for its 

optimal trade-off between computational efficiency and accuracy, includes five 

convolutional stages and is pre-trained on the ImageNet dataset. This architecture 

facilitates the detection of unexpected anomalous patterns in SEM images, 

demonstrating its effectiveness in recognising complex scenes and objects, which is 

crucial for identifying anomalies within the intricate textures of nanofibrous materials 

(Napoletano et al., 2018). 

The architecture of ResNet-18 consists of a total of eighteen layers, including 

seventeen convolutional layers and a fully-connected layer; it also has an additional 

softmax layer for classification tasks. The convolutional layers use 3 x 3 filters, 

doubling the number of filters as the output feature map size halves. Downsampling 

is achieved through convolutional layers with a stride of 2, followed by average 

pooling and a fully connected layer leading to the softmax layer. A key feature of 

ResNet-18 is the inclusion of residual shortcut connections between layers, which 
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help address the vanishing gradient problem and facilitate the training of  networks 

(Ramzan et al., 2020; Pandey and Srivastava, 2023).  

This stage is pivotal in selecting the proposed methodology's 2D encoding technique. 

Table 3.1 enumerates all the models created, with the outcomes of this stage detailed in 

models (3-6). For this analysis, SqueezeNet and ResNet-18 were employed. CWT was 

identified as yielding superior accuracy. To comply with network specifications, the image 

sizes were adjusted as required: ResNet and AlexNet necessitate an input size of 224 x 224 

pixels. The last fully connected layer in both networks was also modified to address a three-

class problem. 

3.3.3 Multimodal Image Fusion Preprocessing  

The number of generated stitched images was 180, which is comparable to the 

baseline data or thermal images. These images were merged using the Excel Power Query, 

which links each image with its saved path. The first column holds the path of the GADF 

images, the second column contains the path of the thermal images, and the third column 

indicates the health condition. Consequently, images with the same row number will be 

stitched together using the proposed methodology, as shown in Figure 3.6. Each thermal 

image is paired with a unique GADF image, grouped by health condition as depicted in 

Figure 3.7; the condition is denoted as Normal (fault-free) or Healthy.  

 

 

Figure 3.6: Stitched Multimodal Image Dataset Samples Per Health Condition. 
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Figure 3.7: Microsoft Excel PowerQuery CSV. File for The Stitched Multimodal Image 

Arrangement. 

After that, image stitching was done by merging similar RGB channels, giving 

vibration images a higher portion in stitched dataset generation. Image stitching was done 

using Python Jupyter Notebook, as shown in Figure 3.8. The vibration image has a higher 

weight in stitched image generation. This is because the encoded GADF vibration signal 

images shown in Table 3.1 proved more accurate than the thermal images in classifying the 

health types. Consequently, in the stitched dataset, the vibration images are given a higher 

weight, accounting for 66.66% of the image, while the thermal images comprise 33.33%. 

This weighting emphasises the knowledge extracted from the vibration data while leveraging 

the unique insights of thermal imaging. This is demonstrated in model 5, where the GADF 

images dataset scored 99.14% using SqueezeNet and 97.64% using ResNet-18. On the other 

hand, the thermal images dataset scored 87.96% using SqueezeNet and 85.19% using 

ResNet-18. Consequently, a stitched image comprises 66.66% vibration encoded image and 

33.33% thermal image, emphasising the knowledge from vibration image; see the complete 

code in (APPENDIX 2). 
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3.3.4 Pre-trained CNNs for Fault Classification 

CNNs are suitable for high-dimensional feature extraction. CNNs are stable in terms 

of pattern recognition from images (Han et al., 2021b). Furthermore, CNNs are known for 

their feature extraction capability from images but encounter difficulties with 1D time series 

signals (Zhou et al., 2022). Furthermore, CNNs have proved their rotating machinery fault 

classification capabilities through Vibration Signal Analysis (VSA) (Pinedo-Sánchez et al., 

2020). Therefore, CNNs have improved our ability to recognise and understand visual 

information by automatically learning and capturing relevant patterns in images and videos 

(Reshadi et al., 2023). Researchers have discovered a variety of CNN architectures to 

improve classification performance, starting with LeNet-5, designed explicitly for 

handwritten digit recognition tasks introduced by Yann LeCun, along with his colleagues, in 

1998 (LeCun et al., 1998). AlexNet, a notable deep CNN model designed by Krizhevsky et 

al. (2017), effectively countered overfitting in the 2012 ImageNet challenge through tactics 

like ReLU activation, dropout, and data augmentation. It comprises an input layer 

(224 × 224 × 3), five convolutional layers, and three fully connected layers. Activation 

functions bolster nonlinearity and convergence (Amanollah et al., 2023). In 2016, 

SqueezeNet was introduced by Forrest Iandola, Song Han, Matthew W. Moskewicz, Khalid 

Ashraf, William J. Dally, and Kurt Keutzer, aiming for a streamlined CNN architecture with 

Figure 3.8:  Stitched Multimodal Image Dataset Encoding Technique.  
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high accuracy and minimal model size. This design allows for deployment on resource-

constrained devices without compromising performance (Iandola et al., 2016c).  

Classification problems involve mapping inputs to outputs, which is typically 

achieved through supervised learning. After training a classification model, its quality of 

learning is evaluated by testing it on unseen data and predicting the respective classes. 

Alternatively, pre-trained CNN models can be used to assess the similarity between 

generated and real images. This involves training the pre-trained model on an artificial image 

dataset and evaluating its performance on a real dataset (Alrashedy et al., 2022).. Various 

CNN architectures have been employed, including Residual Network 152V2, MobileNetV2, 

and AlexNet (Alrashedy et al., 2022). Evaluation of deep transfer learning models commonly 

utilises accuracy Equation (3.7), precision Equation (3.8), and recall Equation (3.9) metrics. 

These metrics rely on the correct classification of True Positives (TP) and True Negatives 

(TN) to accurately identify positive and negative instances. Additionally, they consider False 

Positives (FP) and False Negatives (FN), which refer to the incorrect classification of 

negative and positive instances, respectively (Nishat Toma and Kim, 2020). 

However, in this section, accuracy was used as an evaluation metric, as shown in 

Equation (3.7), representing the number of times the model correctly classified fault type 

over the total number of predictions. Hence, True Positive (TP) represents correctly 

identified faults, and False Positive (FP) indicates incorrectly classified faults. Similarly, TN 

denotes correctly identified normal conditions, while incorrectly classifying a normal 

condition is referred to as False Negative (FN) (Nishat Toma and Kim, 2020). 

Two CNN architectures, ResNet-18 and SqueezeNet, were tested for DL model 

training. Mainly, ResNet-18 and SqueezeNet were used to train, validate, and test the 

research models, starting with the baseline, which is the compromised thermal image quality 

dataset in models number 1 and 2, then generated CWT images in models 3 and 4, moving 

to GADF-generated images in 5 and 6. Finally, after resizing images, the Stitched 

Multimodal Image Dataset matched each CNN input requirement. Stitched Multimodal 

Accuracy = (TP + TN)/(TP + FN + TN + FP) (3.7) 

Precision = TP/TP + FP (3.8) 

Recall = TP/TP + FN (3.9) 
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Image Dataset was split into 60.00% for training, 20.00% for validation, and 20.00% for 

testing. DL network training and signal analysis were done using MATLAB. Microsoft Excel 

PowerQuery was also used to support the work. Eight different models were trained and 

validated. Then, the testing split was used to assess the models’ performance, as shown in 

Table 3.3.  

Table 3.3: Tested Model Performance. 

 

The first two models focused on fault classification and condition monitoring 

performance on compromised thermal image quality modified using OpenCV to mimic 

critical conditions. Then, ResNet-18 and SqueezeNet were applied to assess each CNN’s 

performance on the test dataset, as shown in Table 3.3. Using either ResNet-18 or 

SqueezeNet will result in low accuracy and needs further improvement, although, 

SqueezeNet performed better than ResNet-18 in accuracy by almost 2.77%. The trained 

model misclassified the IRF nearly 30.55% of the time using ResNet-18 and 16.66% using 

SqueezeNet, as shown in Figure 3.9 where Inner represents the IRF, Outer (ORF), and 

Normal (fault-free) or Healthy condition.  

Model 

No. 

Inputs  Image 

Encoding 

CNN Test 

Accuracy (%) 

1 Thermal images None SqueezeNet 87.96% 
 

2 Thermal images None ResNet-18 85.19% 

3 Vibration images CWT SqueezeNet 97.85% 

4 Vibration images CWT ResNet-18 95.92% 

5 Vibration images GAF SqueezeNet 99.14% 

6 Vibration images GAF ResNet-18 97.64% 

7 Thermal+vibration (Stitched Images) GAF(vibration) SqueezeNet 98.15% 

8 Thermal+vibration (Stitched Images) GAF(vibration) ResNet-18 100% 
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Figure 3.9: Thermal Images Vs. Proposed Methodology Accuracy Per Fault. 

Consequently, fault classification with a single input in noisy conditions and limited 

data is unreliable and needs further enhancement. Hence, this chapter proposed a multimodal 

condition monitoring system, leading to a reliable fault classification system with a holistic 

learning experience using transfer learning capabilities in feature extraction. 

Vibration signals were analysed individually to help choose the optimal model that would 

be used to elevate thermal image performance. Thus, the following four models analysed 

vibration signals by determining the performance of GAF and CWT encoding methodologies 

on subsamples using two CNNs, ResNet-18 and SqueezeNet, resulting in four different 

combinations. Then, the highest-performing model in terms of overall accuracy was selected. 

However, the difference was slight between Model 3 and Model 6 vibration models, 

as shown in Table 3.3. The overall accuracy of using the GADF encoding methodology was 

better than the CWT encoding methodology in fault classification. Specifically, GADF signal 

encoding achieved a mean accuracy of 98.39% ± 1.07%, with Model 5 reaching 99.14% 

using SqueezeNet and Model 6 reaching 97.64% using ResNet-18. On the other hand, CWT 

signal encoding resulted in a slightly lower mean accuracy of 96.89% ± 1.38%, with Model 

3 reaching 97.85% using SqueezeNet and Model 4 reaching 95.92% using ResNet-18.  
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However, Figure 3.10 shows the difference between vibration signal encoding 

methodologies in terms of fault classification accuracy by fault type on the test dataset. 

Hence, Model 5 is considered the most accurate compared to other models. Consequently, 

the GADF encoding methodology was adapted to the proposed methodology. Models could 

classify the IRF as higher than other fault types presented in Figure 3.10. Conversely, Model 

1 and Model 2 struggled to classify the IRF type the most, as shown in Figure 3.9.  

 

The proposed methodology was implemented using SqueezeNet in Model 7 and 

ResNet-18 in Model 8. However, the selected vibration signal encoding technique was 

GADF. Also, the Stitched Multimodal Image Dataset Encoding Technique was used to 

merge encoded vibration images with the thermal image. As shown in Table 3.3, the 

proposed methodology, using both CNNs, performed better than Model 1 and Model 2. The 

model’s accuracy using ResNet-18 jumped from 85.19% to 100%, leading to a 14.81% 

improvement. Also, it rose from 87.96% using SqueezeNet to 98.15.00%, making a 10.19% 

improvement in accuracy.  

Furthermore, Figure 3.9 compares the first two models, depending on a single sensor 

fault classification system, with the proposed Novel Preprocessing of Multimodal Condition 

Monitoring Data methodology. It was clear from Figure 3.9 that the proposed methodology 

enhanced the fault classification accuracy, especially IRF type classification, by almost 

31.00% using ResNet-18 and 14.00% using SqueezeNet. The accuracy enhancement of other 

conditions was also remarkable; ORF classification was improved by the same percentage, 
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Figure 3.10: Vibration Signal Encoding Models Accuracy Per Fault. 
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8.00%, using both CNNs. Also, the Normal (fault-free) or Healthy condition classification 

was enhanced by 8.00% using SqueezeNet and 6.00% using ResNet-18. 

3.4 Summary 

Data-driven fault classification aims to improve detection in Induction Motor (IM) 

bearings. The study began by testing fault classification accuracy using compromised 

thermal image quality alone with pre-trained CNNs. The highest score achieved was 87.96% 

using SqueezeNet, indicating that fault classification with a single input in noisy conditions 

and limited data has scope for improvement.  

To address this, the chapter proposes the Preprocessing of Multimodal Condition 

Monitoring Data for classifying induction motor faults using DL methods. This methodology 

investigates two signal-to-image encoding methods: CWT and GAF. The results revealed 

minimal differences between CWT and GAF, with GAF outperforming CWT by 1.50% on 

average. Specifically, GAF showed a 1.72% higher accuracy using ResNet-18 and a 1.29% 

higher accuracy using SqueezeNet, leading to an overall mean accuracy of 98.39% ± 1.07% 

for GAF compared to 96.89% ± 1.38% for CWT. 

The proposed methodology employs a Stitched Multimodal Image Dataset Encoding 

Technique, combining GAF images with compromised thermal images. This process 

involves merging encoded vibration images (weighted at 66.66%) and thermal images 

(weighted at 33.33%) to emphasise the knowledge extracted from vibration data while 

leveraging thermal imaging insights. This approach significantly improved overall 

classification accuracy by 14.81% for ResNet-18 and 10.19% for SqueezeNet compared to 

using compromised thermal images as single-channel inputs. Consequently, the proposed 

approach improved classification accuracy by 12.50%, achieving 99.10% ± 0.50% when 

using both ResNet-18 and SqueezeNet compared to using compromised thermal images 

alone. 

The main contribution of this chapter is the novel preprocessing methodology for 

multimodal condition monitoring data to classify IM faults using DL methods with 

compromised thermal image quality. Among the numerous noteworthy sub-contributions are 

the following: 

1. Integration of multiple data types (sensor fusion): The methodology combines data 

from various sensors, specifically, thermal images and vibration signal data encoded 



 

77 

 

as images (using GADF). This integration is a classic example of feature fusion, 

whereby data from various sources or different types are merged to enhance decision-

making. 

2. Weighted combination (feature fusion): Assigning different weights to thermal and 

vibration images ensures that the most relevant features from each data type are 

emphasised. The approach weights the thermal and vibration images (66.66% 

vibration encoded and 33.33% thermal images), a key feature fusion aspect. This 

weighted combination ensures that the most relevant features from each data type are 

emphasised in the analysis. 

3. Enhanced data representation: Fusing features from compromised-quality thermal 

images and vibration data creates a comprehensive signal representation, capturing 

more nuances of the fault conditions than either data type could achieve 

independently. 

4. Use in ML models: The fused data are then used to train ML models (CNNs like 

SqueezeNet and ResNet-18). Feature fusion before model training is a strategic 

approach to improve the model’s ability to learn from a richer set of features, thereby 

enhancing the overall accuracy and robustness of the fault classification. 

While the proposed Preprocessing of Multimodal Condition Monitoring Data for 

classifying induction motor faults using DL methods improved the baseline accuracy using 

compromised thermal images as single-channel inputs, the small sample size of the thermal 

image dataset (180 images per health condition) remains a limitation. To overcome this, 

Chapter 4 (the following chapter in the thesis) aims to expand the dataset and employ data 

augmentation techniques using GANs.   
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Chapter 4: A Novel Approach Using Wasserstein 

Generative Adversarial Networks with Gradient 

Penalty (WGAN-GP) and Conditional WGAN-GP 

for Generating Artificial Thermal Images of 

Induction Motor Faults 
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4.1 Proposed Methodology  

Training Generative Adversarial Networks (GANs) involves updating the parameters 

of the Generator (G) and Discriminator (D) using optimisation methods like Stochastic 

Gradient Descent (SGD), Adaptive Moment Estimation (Adam), or Root Mean Square 

Propagation (RMSProp). The goal is to reach a Nash equilibrium, where D is no longer able 

to distinguish between real images 𝑥 and generated fake images (𝑥′ = 𝐺(𝑧)) (Pang et al., 

2022). GANs have two probability distributions, namely, 𝑃𝑔 , the distribution from G's 

implicit distribution, and 𝑃𝑟, the probability distribution of real images. The D outputs a 

number between 0 and 1, representing the probability that the input image is real, with a 

score close to 1 indicating a real image. The G and D are continuously updated to improve 

the model's ability to generate data closer to real images and discriminate between real and 

fake data using the objective Equation (4.1) (Han et al., 2020):  

 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∽𝑃𝑟(𝑥)[log(𝐷(𝑥))] + 𝔼𝑧∽𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] (4.1) 

Equation (4.1) consists of two terms: G takes a noise vector z sampled from a prior 

distribution. 𝑃𝑧 and generates a sample G(z) in the target data distribution. D takes a sample 

𝑥 from either the real data distribution 𝑃𝑟 or the generated data distribution 𝑃𝑧 (i.e., D(G(z))), 

and outputs a probability score indicating whether the input is a real or fake sample. The first 

term in the equation is the expected value of the logarithm of D’s output on real samples 𝑥, 

while the second term is the expected value of the logarithm of D’s output on fake samples 

G(z) (Han et al., 2020). 

The proposed methodology is structured into two main parts to investigate the 

generation of artificial thermal images for induction motor fault detection using GANs. In 

the first part, the study begins with a foundational exploration of GANs, focusing on 

understanding their behaviour and evaluating the impact of various parameters on their 

performance. Initially, the basic Deep Convolutional Generative Adversarial Network 

(DCGAN) architecture is employed with an original image size of 224 x 224 x 3 pixels. 

Subsequently, the study introduces Wasserstein Generative Adversarial Networks with 

Gradient Penalty (WGAN-GP), leveraging advanced training parameters and GPU resources 

to specifically analyse the Inner Race Fault (IRF) at a resolution of 32 x 32 x 3 pixels. 
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The second part of the study expands to include four separate WGAN-GP models 

trained for IRF, Outer Race Fault (ORF), 8-bars, and Normal (fault-free) or Healthy 

condition. Following this, all health conditions are collectively trained using the conditional 

Wasserstein Generative Adversarial Network with Gradient Penalty (cWGAN-GP) model, 

generating high-quality artificial thermal images at a resolution of 128 x 128 pixels. 

The proposed frameworks of WGAN-GP and cWGAN-GP are detailed in the 

subsequent sections. They emphasise their applications and outcomes in generating artificial 

thermal images that closely resemble real images from the dataset, specifically for detecting 

faults in the bearings of Induction Motors (IMs).  

4.1.1 Foundational Study of Generative Adversarial Networks (GANs)  

This section explores the behaviour of GANs and assesses how various parameters 

affect their performance. It includes experiments with the DCGAN architecture to generate 

artificial thermal images that closely resemble real images from the dataset, specifically 

targeting IRF, ORF, and Normal (fault-free) or Healthy condition. Additionally, it introduces 

the use of WGAN-GP to generate artificial thermal images that accurately replicate real 

images from the dataset, focusing on IRF. 

4.1.1.1 Basic Deep Convolutional Generative Adversarial Networks (DCGAN) 

The Basic DCGAN is a type of GAN discovered by Radford, Metz, and Chintala in 

2014; they proved it could generate realistic images not added during the training stage 

(Kusiak, 2020). It is considered one of the most recent significant improvements in GAN 

architecture in vision modelling. Its deep architecture can stabilise the training, generating 

high-quality images. DCGAN utilises Convolutional Neural Network (CNN) architecture 

with GANs (Niu et al., 2020).  

One of the critical innovations of DCGANs is the replacement of pooling layers with 

convolutions that use strides and convolutions with fractional strides. ‘Strides’ refers to the 

step size with which the filter moves across the input image, while fractional strides are used 

to increase the spatial dimensions of the input. This allows the Generator (G) and 

Discriminator (D) to learn convolutional operations, spatial downsampling, and upsampling 

individually. By doing this, DCGAN ensures that the G and D networks can learn 

independently, which can help to stabilise the training process. 
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The second innovation in DCGAN is Batch Normalisation (BN), which stabilises 

learning. BN is a technique used to normalise the input to a layer, which helps solve the 

vanishing gradient problem and prevents the deep G from collapsing all samples to the same 

points. Finally, DCGANs use Rectified Linear Unit (ReLU) and LeakyReLU activation 

functions to allow the model to learn quickly and perform well. The ReLU activation 

function is used in all G layers except for the last layer, which uses the Tanh activation 

function to produce image pixel values between -1 and 1. LeakyReLU activation functions 

are used in all D layers to prevent the problem of "dying ReLU" and enable the model to 

learn from small gradients. (Alotaibi, 2020; Wang et al., 2021c). On the other hand, 

DCGANs produce high-quality images but require a long training duration (Al-Qerem et al., 

2019).  

DCGAN proved its efficiency (Du et al., 2019) for image generation in solving 

imbalanced datasets in the chemical industry fault diagnosis field. It was also used by He et 

al. (2021) for axial piston pump bearing fault diagnosis to mitigate data availability and 

missing fault labelling challenges. DCGAN was also used in IM fault classification using 

Case Western Reserve University's (CWRU) famous dataset in which Continuous Wavelet 

Transform (CWT) images were synthesised (Zhong et al., 2023). 

Consequently, the first architecture in this section is the DCGAN model, which was 

trained on Google Colab using a Tesla T4 GPU. Training and testing images of size 224 x 

224 x 3 were stored in a Google Drive directory. The G model takes a random noise vector 

of size 100 as input and generates an image, while the D model predicts whether the image 

is real or fake. Both models were trained alternately using the binary cross-entropy loss 

function and the Adam optimiser. The complete code of DCGAN is shown in (APPENDIX 

3). 

Images were loaded and processed using the ImageDataGenerator function from the 

Keras API, which also handled data augmentation. Augmenting the data can help improve 

the performance of Machine Learning (ML) models by increasing the size of the training set. 

This process allows the model to learn more robust features and reduces overfitting (Yousuf 

et al., 2024). Pixel values of the images were rescaled to range between 0 and 1. The training 

dataset contained 288 images, and the batch size was set to 32. Images in the training dataset 

were labelled 'inner' with the class_mode set to 'binary'. The validation dataset, stored in the 
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same Google Drive directory, consisted of 72 images, resized to 224  224 pixels and similarly 

labelled. 

The G model consists of several dense and reshaping layers, followed by transposed 

convolutional layers with BN and ReLU activation. The output layer uses a Tanh activation 

function to generate values between -1 and 1. In contrast, the D model includes several 

convolutional layers with BN and LeakyReLU activation, culminating in a flattened layer 

and multiple dense layers. The output layer employs a sigmoid activation function to produce 

values between 0 and 1, indicating the probability that the input image is real. 

Both the G and D models are compiled with binary cross-entropy loss, and the 

adversarial model is compiled with the Adam optimiser using LRs of 0.0001 and 0.0002 and 

beta_1 of 0.5. During training, the models are trained alternately—the G aims to create 

images that fool the D. In contrast, the D learns to distinguish real images from fakes 

generated by the G. All experiments were conducted on a Tesla T4 GPU using the Google 

Colab Pro platform. 

4.1.1.2 Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) 

on Inner Race Fault (IRF) 

A Wasserstein Generative Adversarial Network (WGAN) differs from traditional 

GANs by not using a sigmoid activation function at the end of the critic model and by 

employing the Wasserstein Distance (Earth Mover's Distance, or EMD) as its loss function, 

instead of the Jensen-Shannon Divergence (JSD) used in standard GANs. In WGAN, the 

discriminator is called the "critic" because it evaluates the quality of generated samples by 

assigning them a continuous score rather than classifying inputs as real or fake (Gulrajani et 

al., 2017). Equation (4.2) consists of two parts. In the first part, the critic applies the function 

f to a real image x from the real probability distribution. In the second part, x is taken from 

the output of Generator (G), generated from a latent noise vector, and then the critic is applied 

to the generated image. The critic is constrained with max
‖𝑓‖𝐿≤1

, ensuring the function is Lipchitz 

continuous. This constraint is important for the critic to differentiate between real and 

generated samples. The critic estimates the Wasserstein distance between the real and 

generated data distributions, guiding G to generate more realistic samples. The critic aims to 

maximise the expression, while G aims to minimise this distance (Arjovsky et al., 2017a). 
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max
‖𝒇‖𝐿≤1

𝔼𝑥~𝑃𝑟
[F(𝑥)] − 𝔼𝑥~𝑃𝑔

[𝐹(𝑥)] (4.2) 

Consequently, the second architecture is the WGAN-GP, a type of GAN architecture 

that uses a gradient penalty (GP) to enforce the Lipschitz continuity of the D. The D is trained 

to output a scalar value instead of a probability. The G is trained to minimise the Wasserstein 

distance between the distribution of real and generated samples. The G loss is the negative 

Wasserstein distance, and the D loss is the difference between the average D output on the 

real samples and the generated samples, plus a GP term. The GP term is added to ensure the 

D satisfies the Lipschitz continuity condition with a 0.0001 Learning Rate (LR), batch size 

of 64 and Adam optimiser (Gulrajani et al., 2017). 

As mentioned, the dataset consists of 288 training images for the IRF class and 72 

test images, with an original image size of 224 x 224. Since the training dataset size is 

relatively small and the dataset resolution of 224 x 224 is relatively big, the images in the 

dataset were resized to 32 x 32, and the WGAN-GP model was trained for 10,000 iterations 

with a batch size of 64 on a GPU in Colab. This second architecture is a proof of concept 

which will represent the baseline for Part 2, aiming for further improvement in image 

resolution, including other faults, and similarity assessment compared to real datasets.  

4.1.2 Advanced GANs Framework  

4.1.2.1 Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) 

WGAN-GP addresses the limitations of weight clipping in regular WGAN. Instead 

of weight clipping, the GP is used to enforce the Lipschitz constraint on the critic. WGAN-

GP, introduced in 2017 by Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent 

Dumoulin, and Aaron Courville (Gulrajani et al., 2017), improves stability, resolves mode 

collapse, and optimises hyperparameters in training. The Wasserstein distance metric 

measures the difference between generated and real images. Additionally, the algorithm 

includes a GP term in the critic for smoothness. The number of Generator (G) and critic 

iterations, as well as the strength of the gradient penalty, can be adjusted using a lambda term 

(Wang and Wang, 2019). 
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4.1.2.2 Proposed Wasserstein Generative Adversarial Network with Gradient Penalty 

(WGAN-GP) Methodology 

Figure 4.1 illustrates the overall WGAN-GP methodology for generating thermal 

images of IMs under various health conditions. The framework involves training the 

Discriminator (D) and Generator (G) to produce realistic images. D distinguishes between 

real and fake images, while G generates images to fool D. The loss function is based on the 

Wasserstein distance between the distributions of real and fake images with a GP to control 

D’s power. Training alternates between D and G until convergence. The G is a neural 

network that takes a 100-dimensional latent vector as input and uses transpose convolutional 

layers to generate images of size C x 128 x 128, where C is the number of channels. The 

model uses a main module consisting of several convolutional layers followed by a Tanh 

activation function to generate the image. The output of the main module is then passed 

through the Tanh function to normalise the pixel values between -1 and 1. D is a neural 

network with three layers of filters (256, 512, 1024), taking images of size 128 x 128 with C 

channels and outputting a single value indicating real or fake. The input image is passed 

through a sequential module and then flattened to be fed into a fully connected layer. The 

full code is available in the thesis supplementary file. 

The proposed methodology aims to comprehensively assess the performance of the 

WGAN-GP model on the IM dataset (refer to section 4.1.3) with varying resolutions. 

Experiment results demonstrated that the WGAN-GP model effectively generated IM images 

that closely resembled real images in the dataset. However, challenges arose with the small 

sample sizes and lower image quality in certain classes, such as the 'ball' and '1bar' classes, 

which impacted the model's performance. To address these issues, the following section will 

explore methods to augment the dataset and enhance the model’s performance for classes 

with smaller sample sizes and lower image quality. Specifically, the cWGAN-GP will be 

used, where the author plans to incorporate bearing fault types as a condition in the cWGAN-

GP and train all fault types simultaneously to reduce training time.  
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4.1.2.1 Conditional Wasserstein Generative Adversarial Network with Gradient Penalty 

(cWGAN-GP) 

The cWGAN-GP is an extension of traditional GANs called conditional Generative 

Adversarial Networks (cGANs). It introduces an additional input, denoted as 𝑦, to the 

network, representing additional information such as class names, data from another model, 

vectors, or images. This conditional factor adds a new dimension to the min-max game 

between the Generator (G) and Discriminator (D) (He et al., 2022). 

The objective function of cWGAN-GP, as shown in Equation (4.3), involves D 

outputting a high value when given real data point x conditioned on a label y drawn from the 

true distribution 𝑃𝑟 (He et al., 2022; Pang et al., 2022). The second part of the objective 

function calculates the expected value of the logarithm of D’s output when given a fake data 

point generated by G using a noise vector z drawn from a prior distribution P(z) conditioned 

on the same label y (He et al., 2022). The goal is to optimise G and D to minimise this 

objective function, generating high-quality conditional samples. 
 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∽𝑃𝑟(𝑥)[log(𝐷(𝑥|𝑦))] + 𝔼𝑧∽𝑃𝑧(𝑧)[log(1 − 𝐺(𝑧|𝑦))] (4.3) 

Figure 4.1: Proposed Wasserstein GAN with Gradient Penalty (WGAN-GP) Methodology. 
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4.1.2.2 Proposed Conditional Wasserstein Generative Adversarial Network  with Gradient 

Penalty (cWGAN-GP) Methodology 

To enhance the generation of Induction Motor (IM) thermal images under different 

health conditions, we introduce the cWGAN-GP. This approach incorporates label 

information into the model inputs, enabling Generator (G) and Discriminator (D) networks 

to generate class-specific images that benefit from patterns of other classes, leading to faster 

convergence. Figure 4.2 illustrates the cWGAN-GP methodology, which represents the 

image class and includes a condition vector as input for both G and D networks. The loss 

function incorporates the Wasserstein distance and a GP term for smoothness in D. The G in 

the cWGAN-GP methodology is similar to the WGAN-GP, with the addition of a one-hot 

encoded condition vector representing all health state classes. It takes a concatenated input 

of the latent vector and condition vector, using transpose convolutional layers to generate 

C x 128 x 128 images.  

The model includes a main module with convolutional layers and a Tanh activation 

function. The D in cWGAN-GP is similar to WGAN-GP, with the addition of a condition 

vector concatenated with the input image, resulting in an input shape of (10, 128, 128) after 

Figure 4.2: Proposed Conditional Wasserstein GAN with Gradient Penalty (cWGAN-GP) Methodology. 
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combining the label information. The output of D is a single value indicating real or fake. 

The complete code is available in the thesis supplementary file. 

4.1.3 Dataset  

Wolfson Magnetics Laboratory is located at Cardiff University School of 

Engineering. The laboratory conducted experiments to simulate six different failure modes 

and Normal (fault-free) or Healthy condition. To create these failure modes, a 2mm diameter 

drill was used to make holes in both the inner and outer parts of the bearing, as illustrated in 

Figure 4.3 (Al-Musawi et al. 2020)..  

 

 

 

 

 

 

 

 

This chapter explicitly investigates three conditions: IRF, ORF, and Normal (fault-

free) or Healthy condition.  

To achieve this, thermal images of bearing faults were collected using a forward-

looking infrared (FLIR) thermal camera positioned 30cm from the centre of the housing. The 

camera was connected to a computer to capture images of six artificially induced faults and 

one health condition, Figure 4.4. One hundred twenty images were captured under three load 

types, with 360 images per condition. The data were split into 80.00% for training, equivalent 

to 288 RGB images, and 20.00% for testing, equal to 72 RGB images (Al-Musawi et al., 

2020; McGhan, 2020b). 

 

Figure 4.4: Thermal Images for all the Faults and Normal Health Conditions: (a) 8Bars; (b)IRF; (c) 

ORF; (d) Ball; (e ) 4Bars; (f) Normal (fault-free) or Healthy condition; and (g) 1Bar. 

     (a)                                          (b)            

Figure 4.3: Bearing Faults (a) IRF, (b) ORF (Al-Musawi et al. 2020). 

a             b                  c               d            e                     f                     g
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4.2 Results and Discussion 

4.2.1 Basic Deep Convolutional Generative Adversarial Network (DCGAN) and 

WGAN-GP 

The Basic DCGAN was tested on three health condition datasets: IRF, ORF, and 

Normal (fault-free) or Healthy condition. The experiments varied in terms of 

hyperparameters, such as LR (0.0001, 0.0002), batch size (16,32), and the number of epochs 

(50, 500). The training and test dataset was in the Google Drive directory and contained 288 

images. The images were resized to 224 x 224 pixels, and the batch size was 32. On the other 

hand, the WGAN-GP was tested on IRF only with advanced training parameters. The IRF 

dataset consists of 288 training images for the “IRF” class and 72 test images, with an original 

image size of 224 x 224. Since the training dataset size is relatively small, the author resized 

the images to 32 x 32 and trained the model for 10,000 iterations with a batch size of 64 on 

a GPU in Colab, as shown in Table 4.1.  

To evaluate the performance of each experiment, the Generator (G) and 

Discriminator (D) losses were assessed. A lower D loss relative to the G indicates superior 

D performance. Conversely, a lower G loss suggests a better performance of the G. These 

findings align with the results presented in Table 4.1, where the performance of each model 

can be observed based on their respective losses. The experiments were conducted in two 

stages: the first involved using basic DCGAN with simple parameters (Experiments 1-12) to 

test various health condition datasets. In contrast, the second stage focused on utilising 

WGAN-GP with advanced parameters for the IRF.  

• DCGAN Architecture: Three conditions were tested, starting with the IRF 

(Experiments 1-4): longer training time led to better performance, with the best result 

observed in Experiment 2. It used 500 epochs, LR of 0.0001, a batch size of 32, and 

achieved a G loss of 4.627 and a D loss of 0.0002. ORF (Experiments 5-8): increasing 

the batch size led to better performance, with the best result obtained in experiment 

7, which used 50 epochs, LR of 0.0002, a batch size of 16, and achieved a G loss of 

0.0021 and D loss of 3.4129. Normal (fault-free) or Healthy condition (Experiments 

9-12): longer training time resulted in improved performance, with the best outcome 

observed in Experiment 12, which utilised 1,000 epochs, LR of 0.0002, a batch size 
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of 32, and achieved a G loss of 8.3201 and a D loss of 5.0697. However, visual 

inspection results were less promising than the project objective. 

• WGAN-GP Architecture: the IRF was exclusively tested using WGAN-GP 

(Experiment 13) with more epochs and longer training times. The experiment 

required 11 hours of training time. The G loss was a high negative number, while the 

D loss was -1897.3366 for fake samples and -1548.9419 for real samples. These 

findings suggest that the D network distinguished between real and fake samples, 

minimising the loss during training. Similarly, the G loss was also a high negative 

number, specifically -1,896.8599. This indicates that the G successfully generates 

samples that D classifies as real samples with high confidence. 

Table 4.1: GAN Performance for Fault Detection Experiments. 

 

Consequently, the choice of hyperparameters significantly impacts model 

performance. Generating artificial fault images of large size and high complexity posed 

challenges requiring significant time and GPU capabilities. Table 4.1 has provided insights 

into the performance of GANs using DCGAN. Implementing WGAN-GP with advanced 

No. Model Dataset LR 
Batch 

Size 
Epochs 

Training 

time (min) 
(G) Loss (D) Loss 

1 DCGAN IRF 0.0001 16 500 48 3.2172 5.537 

2 DCGAN IRF 0.0001 32 500 41 4.627 0.0002 

3 DCGAN IRF 0.0002 16 50 5 0.0019 3.5658 

4 DCGAN IRF 0.0002 32 500 40 5.0668 7.6786 

5 DCGAN ORF 0.0001 16 50 4 0.0045 3.0554 

6 DCGAN ORF 0.0001 32 50 4 0.0079 2.782 

7 DCGAN ORF 0.0002 16 50 4 0.0021 3.4129 

8 DCGAN ORF 0.0002 32 50 4 0.00308 3.2324 

9 DCGAN Normal 0.0001 16 50 4 0.00681 2.8419 

10 DCGAN Normal 0.0001 32 50 4 0.0068 2.8419 

11 DCGAN Normal 0.0002 16 50 5 0.00681 2.84186 

12 DCGAN Normal 0.0002 32 500 50 8.32011 5.0697 

13 WGAN-

GP 

IRF 0.0001 64 10,000 660 

(11 hours) 

-

1896.86

00 

Loss Fake: -

1897.3366 

Loss Real: -

1548.9419 
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hyperparameters (10,000 epochs, batch size 64) on a GPU yielded an efficient generation of 

motor images closely resembling real images over time, as shown in Figures 4.5, 4.6, and 

4.7.  

 

Figure 4.5: WGAN-GP Generated images at Epoch 0. 

 

Figure 4.6: WGAN-GP Generated Images at Epoch 100. 
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Figure 4.7: WGAN-GP Generated Images at Epoch 10000. 

4.2.2 Advanced WGAN-GP and cWGAN-GP 

4.2.2.1  Generated Images Similarity Assessment: Visual Quality Assessment  

  The WGAN-GP and cWGAN-GP approaches yielded promising results in generating 

realistic thermal images. The cWGAN-GP approach, which incorporates class information 

(using health condition classes as cWGAN-GP conditions), demonstrated further 

improvements in image generation, allowing for better control over the generated images. 

Figure 4.8 showcases generated images using the cWGAN-GP approach, exhibiting a 

resolution of 128 x 128 and belonging to seven different health condition classes. Each row 

represents a different health condition class from row one to row seven, representing 8 bars, 

IRF, ORF, Ball, 4 bars, Normal (fault-free) or Healthy condition, and 1 bar, respectively. 

Meanwhile, Figure 4.9 presents images generated using the WGAN-GP approach, with a 

resolution of 128 x 128 and belonging to the Normal (fault-free) or Healthy condition class. 

Both types of generated images visually demonstrate high variability and closely resemble 

real motor thermal images. However, additional quantitative assessment is needed. 
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4.2.2.2 Generated Images Similarity Assessment: GAN Similarity Metrics (MMD, EMD) 

Evaluating GAN performance is challenging due to the lack of standardised metrics 

and the subjectivity of human visual evaluation. However, visual similarity assessment is 

used with other quantitative metrics (Niu et al., 2020; Shao et al., 2023). This section uses 

non-visual quantitative metrics to assess image similarity, providing insights into the quality, 

diversity, and similarity of generated images using GAN compared to real images. The 

following metrics are used to evaluate the quality and similarity of generated images in the 

context of GANs: 

• Fréchet Inception Distance (FID) 

Fréchet Inception Distance (FID) was introduced by Heusel et al. in 2017. It measures 

the distance between the real distribution and the distribution generated by the trained model 

(Niu et al., 2020). It is computed using Equation (4.4), where, 𝜇𝑟 and 𝜇𝑔 are the mean value 

Figure 4.9: Generated Images with Resolution 128 x 128 using cWGAN-GP. Each Row Represents a 

Different Health Condition Class from Row One to Row Seven, Representing 8 Bars, IRF, ORF, Ball, 4 

Bars, Normal (fault-free) or Healthy, and 1 Bar, Respectively. 

 

Figure 4.8: Generated Images Class: (Normal (fault-free) or Healthy condition) with Resolution 

128 x 128 Using WGAN-GP. 
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for real images and generated images, respectively, and 𝐶𝑟 and 𝐶𝑔 are the covariance of the 

image features (Niu et al., 2020). A lower FID indicates a better model with images closer 

to real ones. Hence, FID fits a Gaussian distribution to the hidden activation of InceptionNet 

for each image set and computes the Fréchet Distance (also known as Wasserstein-2 

distance) between the Gaussians (Chen et al., 2020a). 

• Maximum Mean Discrepancy (MMD) 

Measures the dissimilarities between generated and real images by capturing 

independent samples from each distribution. It quantifies the distance between the actual and 

generated distribution, with a lower score indicating better model performance (Pan et al., 

2019). Equation (4.5) presents the MMD score using the Gaussian kernel. 𝑃𝑟 and 𝑃𝑔 represent 

the real and generated image distribution, respectively, while x and y are samples drawn from 

these distributions. The first term captures the similarity of samples within the real 

distribution 𝑃𝑟, the second term measures the similarity between samples from the real and 

generated distributions v and 𝑃𝑔, and the third term assesses the similarity of samples within 

the generated distribution 𝑃𝑔 (Borji, 2019). 

• Earth Mover’s Distance (EMD) 

Also known as the Wasserstein distance, EMD measures the distance between two 

probability distributions (Borji, 2019). It represents the minimum amount of work or effort 

needed to transform one distribution into another (Gao et al., 2020). Equation (4.6) defines 

EMD, where 𝛾 is a transport plan specifying the amount of mass to be transported from each 

point in 𝑃𝑟  to each point in 𝑃𝑔. ∏(𝑃𝑟 , 𝑃𝑔) represents the set of all joint distributions, and 

𝛾(𝑥, 𝑦) indicates the amount of work needed to transform the distributions Pr into Pg from 

point 𝑥 to point 𝑦. The Wasserstein distance is calculated as the infimum (greatest lower 

bound) of the expected distance ‖x-y‖ between randomly sampled pairs of points (𝑥, 𝑦) from 

γ (Arjovsky et al., 2017b). 

𝐹𝐼𝐷(𝑃𝑟 , 𝑃𝑔) =  ‖𝜇𝑟 − 𝜇𝑔‖ + 𝑇𝑟(𝐶𝑟 + 𝐶𝑔 − 2(𝐶𝑟𝐶𝑔))1 2⁄  (4.4) 

𝑀𝑀𝐷(𝑃𝑟 , 𝑃𝑔) =  𝔼𝑥,𝑥′∽𝑃𝑟
[𝑘(𝑥, 𝑥′)] − 2𝔼𝑥,𝑥′∽𝑃𝑟,𝑦∽𝑃𝑔

[𝑘(𝑥, 𝑦)] +  𝔼𝑦,𝑦′∽𝑃𝑔
[𝑘(𝑦, 𝑦′)] (4.5) 

𝑊(𝑃𝑟 , 𝑃𝑔) =  𝑖𝑛𝑓𝛾∈∏(𝑃𝑟,𝑃𝑔) 𝔼(𝑥,𝑦)∼𝛾[‖𝑥 − 𝑦‖] (4.6) 
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FID measures image similarities using the Inception network to extract and compare 

features. However, FID scores can be misleading if the Inception network is biased or 

mismatched, mainly when working with datasets lacking visual diversity or exhibiting high 

similarity. In contrast, EMD and MMD are robust metrics that focus on comparing 

distributions. They allow for evaluating the similarity between generated samples and the 

real data distribution, even when visual appearances may appear similar to the human eye. 

EMD measures the distance between probability distributions, while MMD quantifies the 

distance between data sets, capturing their statistical properties (Heusel et al., 2017; 

Alqahtani et al., 2019; Borji, 2019; Chen et al., 2020b). 

Thermal images present unique challenges for human visual perception, necessitating 

a comprehensive evaluation. This section compares the WGAN-GP and cWGAN-GP 

approaches for generating thermal images of IMs under various health conditions. Two 

evaluation metrics, EMD and MMD, are used to assess the similarity between generated and 

real images. The experiments were conducted using NVIDIA T4 and NVIDIA V100 GPUs 

with different training times and epochs. The NVIDIA V100 GPU demonstrated superior 

performance, processing nearly three times faster than the NVIDIA T4 GPU. All experiments 

were performed on Google Colab Pro, utilising the allocated GPUs. 

Table 4.2 provides a detailed performance comparison of the WGAN-GP and 

cWGAN-GP approaches. Initially, WGAN-GP trained models for each health condition, 

starting with a 32 x 32 resolution for the IRF as a baseline. Subsequently, the scope expanded 

to include four health condition classes. Training duration and epochs varied for each 

condition, ranging from 18.5 hours for IRF and ORF to 36 hours for 8-bar faults. The training 

was terminated based on plateaued evaluation metrics and visually acceptable generated 

images. While training individual models resulted in high-quality 128 x 128 images, it 

required substantial time, which varies per health condition; for instance, the ORF condition 

model took more than one day.  

In contrast, the cWGAN-GP approach trained all fault types together, reducing 

overall training time and increasing efficiency. WGAN-GP evaluation indices represent the 

average of four conditions, while cWGAN-GP evaluation indices represent the average of 

all conditions. The EMD metric quantifies dissimilarity in terms of spatial alignment and 

intensity variations. WGAN-GP achieved a lower average EMD score of 4.663 for four 
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conditions than cWGAN-GP's score of 4.816, indicating a slightly higher similarity between 

the generated and real images regarding spatial alignment and intensity characteristics. 

Table 4.2: Comparison of GPU types, Training Time, Epochs, FID, MMD, EMD, Resolution, 

Class Name, and Method Used for Generating Synthetic Images. 

GPU Type TrainingTim

e  

(Hours) 

Epochs MM

D 

EMD Resolutio

n 

Class 

Name 

Method 

NVIDIA T4 4.5 5000 0.24 0.32 32x32 IRF WGAN-GP 

NVIDIA V100 12 10000 1.10 4.64 128x128  IRF 

NVIDIA T4 18.5 5000 1.07 4.70 Normal 

NVIDIA T4 18.5 5000 1.10 4.72 ORF 

NVIDIA T4 36 10000 1.04 4.59 8 bars 

      1.078 4.663 Average (8bars, IRF, ORF, 

Normal)(128x128) 

NVIDIA T4 11 10000 0.21 0.29 32x32 IRF cWGAN-

GP 0.59 0.18 8 bars 

0.81 0.13 ORF 

0.25 0.18 Ball 

0.66 0.15 4 bars 

0.30 0.21 Normal 

0.31 0.21 1bar 

0.09 0.12 All 

Classes 

NVIDIA V100 7.25 10000 1.07 4.83 128x128 IRF 

1.02 4.78 8 bars 

1.01 4.74 ORF 

1.26 4.80 Ball 

1.08 4.75 4 bars 

0.99 4.88 Normal 

1.23 5.08 1 bar 

1.13 4.70 All 

Classes 

      1.023 4.816 Average (8bars, IRF, ORF, 

Normal)(128x128) 

The table includes results for four classes using WGAN-GP and all seven classes using cWGAN-

GP. 
 

The MMD metric compares the mean feature representations of real and generated 

image distributions. It was found that the cWGAN-GP obtained a lower MMD score of 

1.023, suggesting a better capture of real image characteristics, while WGAN-GP had a 

slightly higher score of 1.078. Thus, the cWGAN-GP approach outperforms the WGAN-GP 

approach in capturing the distribution and characteristics of real images. Additionally, the 

cWGAN-GP approach's advantage lies in training all fault types together, reducing the 

overall training time and increasing methodology efficiency. Considering the better MMD 
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similarity scores achieved by the cWGAN-GP approach and its reduced training time, it can 

be concluded that the cWGAN-GP approach is superior to the WGAN-GP approach in 

generating thermal images that closely resemble real images of IMs under various health 

conditions while also being more efficient in terms of training time. 

4.2.2.3 Generated Images Similarity Assessment: Pre-Trained AlexNet Classification  

This section discusses using pre-trained CNN models for non-visual image similarity 

assessment. A pre-trained CNN model called AlexNet was used to enhance the evaluation 

process further, using the Stochastic Gradient Descent with Momentum (SGDM) optimiser 

and 0.0001 LR with seven classes (health conditions) and 56.8M total learnable parameters. 

These parameters include weights and biases associated with the layers in the network. By 

leveraging the knowledge and features learned by AlexNet from large-scale image 

classification tasks, we can evaluate the generated samples based on their classification 

accuracy or other relevant metrics. This approach enables us to assess the discriminative 

capabilities of the generated samples and their alignment with the real data distribution. An 

artificial dataset was generated using cWGAN-GP, which had 288 images per health 

condition. The images were first divided randomly into 80.00% training and 20.00% 

validation and then tested on unseen original lab-collected images. This resulted in 98.41% 

overall classification accuracy, 98.41% precision, and 98.49% recall. However, the 

following Table 4.3 shows the accuracy per health condition type as follows:  

Table 4.3: Accuracy Per Health Condition Using AlexNet. 

4.3 Summary 

Part 1 (Section 4.1.1: Foundational Study of Generative Adversarial Networks 

(GANs)) highlighted the significant impact of hyperparameters on the performance of GANs 

and successfully demonstrates the remarkable ability of GANs to create thermal images of 

IMs. This study confirmed the applicability of the WGAN-GP for generating artificial 

thermal images; however, it requires considerable computational power. The research in Part 

2 aims to optimise the dataset creation process by training all fault types simultaneously 

using conditional GANs at higher image resolutions. The results showed that the WGAN-

GP model effectively generated motor images with advanced training parameters and GPUs 

8 bars IRF ORF Ball 4 bars Normal 1 bar 

100% 95.83% 100% 100% 93.06 % 100% 100% 
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that closely resembled the real images in the dataset. However, there remains scope for 

improvement, particularly in testing other bearing faults. 

This part investigated the feasibility of using GANs to create realistic IM thermal 

RGB image datasets for multimodal condition-monitoring systems. Generating high-quality 

thermal images presents computational challenges. The current study used two GAN 

frameworks, DCGAN and WGAN-GP, under different health conditions. Initially, DCGAN 

was applied to three conditions using various hyperparameters, but the results required 

further improvement. Subsequently, WGAN-GP was utilised with an extensive training 

duration of 11 hours, using 10,000 epochs and a batch size 64, targeting the IRF dataset. This 

resulted in artificial images being generated which closely resembled real images. This study 

highlights the effect that hyperparameters have on GAN performance. It demonstrates the 

capability of GANs in creating artificial thermal image datasets, paving the way for further 

improvement with WGAN-GP in Part 2. 

Part 2 (Section 4.1.2: Advanced GANs Framework) explored and compared two 

frameworks (WGAN-GP and cWGAN-GP) for generating artificial thermal images of IMs 

with different health conditions. The evaluation process for comparing the similarity between 

the real images and the artificially created images included visual quality assessment, 

evaluation using GAN similarity metrics (MMD and EMD), and classification using a pre-

trained AlexNet model. Both approaches produced high-quality thermal images resembling 

real IM faults and thermal images of Normal (fault-free) or Healthy condition when 

evaluated visually and qualitatively. Quantitatively, the generated images were evaluated 

using two similarity metrics: EMD and MMD. While WGAN-GP achieved a marginally 

better EMD score of 4.663 for four conditions compared to cWGAN-GP's score of 4.816 for 

all conditions, cWGAN-GP recorded a lower MMD score of 1.023, thereby indicating a 

closer resemblance to real images in terms of statistical properties. 

This suggests that the generated images from cWGAN-GP exhibit similar texture, 

shape and overall distribution as observed in the real images. To further validate the 

generated images, a pre-trained AlexNet model was utilised for classification on the 

cWGAN-GP dataset, which achieved an overall classification accuracy of 98.41% and higher 

accuracy rates for some health conditions. 
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In conclusion, previous studies have primarily focused on creating artificial image 

models for each fault type separately, presenting a significant gap in the research. This 

chapter sought to address this gap using cGANs to simultaneously create artificial thermal 

images for various health conditions in IMs. By incorporating health conditions as a new 

input for the cWGAN-GP model, representing the network condition, the cWGAN-GP 

approach proved superior in generating thermal images that closely resemble real images of 

IMs under various health conditions. Its ability to integrate class information facilitated faster 

convergence, enhanced pattern recognition, and greater diversity in image generation. The 

proposed approach achieved a higher similarity with the MMD score and reduced training 

time, and demonstrated high classification accuracy on real datasets, thus highlighting its 

effectiveness and efficiency. These findings contribute significantly to thermal image 

generation and demonstrate potential applications in motor condition monitoring and fault 

classification.  

Thus, this chapter's main contribution is the generation of a novel dataset of artificial 

thermal images representing various health conditions of IM and evaluating the effectiveness 

of GANs in enhancing the accuracy of CNN-based condition monitoring systems. This was 

achieved through two key segments, each containing specific sub-contributions: 

Part 1: Explored the use of DCGAN and WGAN-GP for generating IM fault images from 

thermal data. 

Part 2: Introduced a novel approach using WGAN-GP and cWGAN-GP to generate artificial 

thermal images of IM faults. Significant contributions of Part 2 in this chapter to the field of 

IM condition monitoring include the following: 

1. Generating synthetic thermal images that represent various health conditions using 

WGAN-GP. 

2. Examining the effectiveness of training individual WGAN-GP models for each health 

state. 

3. Enhancing the quality of the generated images and reducing the training time required by 

incorporating health state labels through cWGAN-GP. 

4. Comparing and contrasting the WGAN-GP and cWGAN-GP approaches through a 

combined assessment method. 
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Chapter 5: A Novel Customised Load Adaptive 

Framework (CLAF) for Induction Motor Fault 

Classification Utilising the MFPT Bearing Dataset 
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5.1 Proposed Methodology  

The Customised Load Adaptive Framework (CLAF) proposed in this research is a 

two-phase approach designed to enhance our understanding of how radial loads influence 

system behaviour, particularly in the presence of faults and varying load conditions. The term 

‘Customised’ is used because this framework can be tailored to any dataset; in this study, it 

is specifically customised for the Machinery Failure Prevention Technology (MFPT) bearing 

dataset. The term ‘Load Adaptive’ is used because it emphasises and deepens the 

understanding of how load variations impact Induction Motor (IM) faults, leading to changes 

in Time and Frequency Domain (TFD) patterns and the identification of load-dependent fault 

subclasses—'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-free) or Healthy condition’—

through Continuous Wavelet Transform (CWT) energy analysis. This approach focuses on a 

tailored assessment of load effects and is implemented using MATLAB R2023a. 

5.1.1 Time and Frequency Domain (TFD) Load-Dependent Pattern Analysis 

Phase 1 unveils load-dependent patterns in varying load conditions, as depicted in 

Figure 5.1, shedding light on the intricate interplay between load dynamics and bearing fault 

behaviour through the following steps: 

1. Data preprocessing and general load-dependent feature extraction: the MFPT bearing 

dataset is segmented into smaller, manageable portions, involving the division of the 

continuous signal into smaller segments stored as separate CSV files. 

2. Data segmentation and load-dependent subfile creation: TFD features are extracted 

from the segmented data, focusing on assessing feature variations during faults and 

their sensitivity to load changes. 

3. TFD feature extraction from data segmentation: generate a load-dependent time and 

frequency feature set, where an initial load-dependent feature set is created for use in 

the following step. 

4. Significant load-dependent feature selection and validation: Identify and validate the 

most significant load-dependent features from the time domain, frequency domain, 

and spectral features using an iterative one-way Analysis of Variance (ANOVA) 

approach. The selected features are then validated by assessing the accuracy of 
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various classifiers. This step examines how load variations affect these features. One-

way ANOVA, a reliable method for feature reduction, is employed to streamline the 

analysis by focusing on the most relevant features. (Suresh and Naidu, 2022; Alharbi 

et al., 2023; Zhang et al., 2023d).  

 

Figure 5.1: Time and Frequency Domain Load-Dependent Pattern Analysis Methodology . 
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5.1.1.1 . Feature Extraction  

Feature extraction operates within three primary domains: temporal, spectral, and 

time-frequency. These distinct domains serve as tools to capture distinctive aspects of 

signal behaviour. The section starts with TFD feature extraction and moves to the 2D time-

frequency domain features. 

1) Time Domain Analysis 

Traditional Statistical Features (TSFs) are fundamental measures in the time domain 

derived from vibration or time series data. The formulas and descriptions of TSFs are 

presented in Table 5.1 (Liu and Weng, 2019; Pinedo-Sánchez et al., 2020; Shi et al., 2020; 

Jain and Bhosle, 2021). These features collectively capture the temporal characteristics of 

signals, enabling the examination of behaviour over time. Analysing vibration signals in the 

time domain is crucial for understanding signal dynamics and detecting anomalies or faults 

(Shi et al., 2020). 

Table 5.1: Traditional Statistical Features (TSFs). 

Parameter Formula Description 

Peak or Max 𝑋𝑚𝑎𝑥 
The highest amplitude value is observed within a given signal or 

dataset. 

Root Mean 

Square 

(RMS) 
√

1

𝑁
∑(𝑥𝑖)2

𝑁

𝑖=1

 Gives a measure of the magnitude of the signal. 

Skewness 

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)3𝑛
𝑖=1

[
1
𝑛

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ]

3
2

 Measures the asymmetry of the distribution about the mean. 

Standard 

deviation 

(std) 
√

1

𝑛
∑(𝑥𝑖)2

𝑛

𝑖=1

 
The square root of the variance represents the average deviation 

from the mean. 

Kurtosis  

1
𝑁

∑ (𝑥𝑖 − 𝑥̅)4𝑁
𝑖=1 

[
1
𝑛

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ]

2 
Indicates the “tailedness” of the distribution. A high kurtosis 

might indicate the presence of outliers or impulses in the signal. 

Crest Factor  
𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 

The peak amplitude ratio to its RMS value indicates the relative 

sharpness of peaks. 

Peak to Peak  𝑋𝑚𝑖𝑛 − 𝑋𝑚𝑎𝑥 
Difference between the maximum and minimum values of the 

signal. 

Impulse 

Factor 

𝑚𝑎𝑥|𝑋𝑖|

1
𝑛

∑ |𝑋𝑖|𝑛
𝑖=1

 Highlights the impulsive behaviours indicative of machinery 

faults. 

In the table, N is the sample size, 𝑥𝑖 represents individual data points and 𝑥̅ is the average data point. 
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2) Frequency Domain Analysis 

Extracting features from the frequency domain offers insights into data’s periodic 

components and harmonic structures, as represented in Table 5.2 (Kumar et al., 2022; Tian 

et al., 2022; Granados-Lieberman et al., 2023). 

Table 5.2: Frequency Domain Features. 

Parameter Formula Description  

H
a
rm

o
n

ic
 F

ea
tu

re
s 

THD √
(∑ 𝐴𝑖

2𝑁
𝑖=2 )

𝐴𝐼
 

Frequency domain, measuring the distortion caused 

by harmonics in the signal. 

S/N 10 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) 

Compares the level of a desired signal to the level of 

background noise. 

SINAD 10 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
) 

A measure of signal quality compares the level of 

desired signal to the level of background noise and 

harmonics. 

S
p

ec
tr

a
l 

F
ea

tu
re

s 

Peak 

amplitude 
|𝑥𝑓−𝑝𝑒𝑎𝑘| 

Represents the highest point (or peak) of the signal’s 

waveform when viewed in the frequency domain. 

Peak 

frequency 
𝑓 − 𝑝𝑒𝑎𝑘 

Corresponds to the frequency component that is 

most prominent or dominant in the signal. 

Band 

power 
∑ |𝑥(𝑓)|2

𝑓−𝑒𝑛𝑑 

𝑓−𝑠𝑡𝑎𝑟𝑡
 

Quantifies the total energy within a specific 

frequency range, providing insights into the 

distribution of signal energy across the spectrum. 

In the context of frequency domain analysis, 𝐴𝐼 is the amplitude of the fundamental frequency, and 

𝐴𝑖 is the amplitude of the i-th harmonic. For S/N and SINAD calculations, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 is the signal 

power, 𝑃𝑛𝑜𝑖𝑠𝑒 is the noise power, and 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 is the power of harmonic distortion. Peak amplitude 

𝑥𝑓−𝑝𝑒𝑎𝑘 is the frequency domain’s complex value at bin 𝑓 − 𝑝𝑒𝑎𝑘. 𝑥(𝑓) is the complex value at 

frequency bin ‘f’, and |𝑥(𝑓)|2 represents its squared magnitude. 
 

Frequency domain analysis of vibration signals involves examining amplitude 

variations across different frequencies, contributing to a better understanding of vibration 

behaviour (Ahmed and Nandi, 2018; Shi et al., 2020). Frequency domain features such as 

Root-Mean-Square Frequency (RMSF), Centre Frequency (CF), and Total Harmonic 

Distortion (THD) are vital in analysing a signal’s power distribution and harmonics (Shi et 

al., 2020). The Signal-to-Noise Ratio (S/N) and Distortion Ratio (SINAD), expressed in 

decibels (dB), merge time, and frequency domain aspects, aid in gearbox fault analysis 

(Kumar et al., 2022). 
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On the other hand, spectral feature extraction transforms a signal from the time to the 

frequency domain, revealing its frequency content (MathWorks-7, 2024). In rotating 

machine fault diagnosis, the Autoregressive (AR) model, especially with the forward–

backwards approach, improves classification over traditional methods (Hu and Zhang, 2019; 

Metwally et al., 2020). This model, effective in bearing diagnosis, isolates noise and fault 

impulses dependent on the optimal AR order (Djemili et al., 2023). The resulting spectral 

features from the AR model, such as peak amplitude, peak frequency, band power, and 

formulas and descriptions, are shown in Table 5.2. The AR model denoted as 𝐴𝑅(𝑃), is 

formulated as in Equation (5.1) (Hu and Zhang, 2019): 

𝑥[𝑛] =  ∑ 𝑎𝑝𝑥[𝑛 − 𝑝] + 𝑒[𝑛]

𝑝

𝑝=1

 (5.1) 

where 𝑥[𝑛] is the signal’s current value, influenced by its past values 𝑥[𝑛 − 𝑝] and AR 

coefficients 𝑎𝑝, with 𝑒[𝑛] as the random noise component (Hu and Zhang, 2019; Silik et al., 

2021). 

5.1.2 Customised Load Adaptive Framework for IM Bearings Fault Classification 

In Phase 2, this research customises explicitly the methodology for the MFPT bearing 

dataset, focusing on Wavelet Transform and load-dependent fault subclasses, as shown in 

Figure 5.2. The chapter explored different CWT approaches to find the optimal wavelet 

function or mother of wavelets, which was determined using Wavelet Singular Entropy 

(WSE), followed by preprocessing and load effect assessment, resulting in the proposed 

CLAF. This framework introduced a new dimension to traditional fault classification by 

considering load variation dataset customisation, revealing load-dependent fault subclasses’ 

signatures, which are absent in conventional approaches: 

1. CWT signal encoding and optimal technique selection: Various CWT methods are 

explored to represent signals concerning fault types, leading to selecting the most 

appropriate approach (Amor, Bump, or Morse). 

2. CWT energy assessment for each Load Factor (LF) involves preprocessing, health 

condition classification, and categorisation into thirteen classes corresponding to 

specific load levels. The research calculates WSE and mean energy, providing 

insights into fault severity and energy distribution. 
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3. CLAF: the research proposes load-dependent fault subclasses tailored to assess 

radial load impact under different conditions, incorporating insights from the 

analysis for a customised evaluation. 

4. CLAF Validation: we train different classifiers on proposed load-dependent fault 

subclasses to examine the classification accuracy of the proposed classes. 

 

 

 

     Figure 5.2: Customised Load Adaptive Framework (CLAF). 
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5.1.1 Dataset 

This research comprises two phases, each dedicated to investigating the radial effects 

of loads under various operational conditions, encompassing both faulty and Normal (fault-

free) or Healthy condition utilising the MFPT bearing dataset. The experimental setup for 

the MFPT bearing dataset involved a test rig equipped with a NICE bearing, including a 

roller diameter of 0.235 inches, a pitch diameter of 1.245 inches, and eight rolling elements 

positioned at a contact angle of zero degrees. This setup allowed vibration data to be collected 

under various loading conditions, accurately replicating both bearings with faults and those 

without faults for comprehensive fault analysis research. The Normal (fault-free) or Healthy 

condition (formerly called ‘baseline’) data were collected under a 270 lb load, with a 

sampling rate of 97,656 samples per second (SPS) over 6 s. Simultaneously, fault signals 

originating from Inner Race Defect (IRD) or Inner Race Fault (IRF) and Outer Race Defect 

(ORD) or Outer Race Fault (ORF) were acquired from the bearing test rig under six different 

load conditions, 50, 100, 150, 200, 250, and 300 lbs, all while maintaining a constant speed 

of 25 Hz (Bechhoefer, 2013; Bechhoefer, 2016).  

An essential aspect of this study involves categorising the severity of load-dependent 

fault subclasses within the MFPT bearing dataset. This categorisation is based on changes in 

wavelet energy compared to Normal (fault-free) or Healthy condition, with a 20.00% 

increase classified as Mild severity, 20.00% to 50.00% as Moderate severity, and anything 

exceeding 50.00% as Severe. While acknowledged as an assumption, this categorisation is a 

fundamental component of the methodology, ensuring a structured and systematic approach 

to assessing fault severity under varying load scenarios. The following section will present 

the results obtained from this framework, covering Phase 1 and Phase 2. 

5.2 Results and Discussion  

5.2.1 Time and Frequency Domain (TFD) Load-Dependent Pattern Analysis 

This phase (Phase 1) involves data preprocessing for data preprocessing, general 

feature extraction, and segmentation and data segmentation for LF subset creation. 
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5.2.1.1 Step1: Data Preprocessing and General Load-Dependent Feature Extraction 

The dataset was categorised for separate analysis to assess the load-dependent impact 

in fault scenarios, explicitly focusing on IRF, as presented in Table 5.3, and ORF, as shown 

in Table 5.4. This study involved a comparison of six different LFs (50, 100, 150, 200, 250, 

and 300 lbs) against the Normal (fault-free) or Healthy condition at LF 270 lbs. The Normal 

(fault-free) or Healthy condition dataset served as a baseline for comparative analysis, aiding 

in identifying distinctive features that indicate the presence of a fault in both IRF and ORF 

datasets. 

Table 5.3: IRF Dataset Splitting Per Load. 

 

 Table 5.4: ORF Dataset Splitting Per Load. 

• General Load-Dependent Behaviour Analysis 

This study conducted general TFD feature extraction, resulting in 13 features for IRF 

(Table 5.5) and ORF (Table 5.6). Additionally, spectral features were extracted using an AR 

model with an order of 15, focusing on two significant resonant peaks in the frequency 

spectrum and providing five additional load-dependent feature patterns, as detailed in Table 

5.5. Key findings regarding the impact of changing the radial load on these extracted features 

are as follows: Firstly, the Clearance Factor (CF) exhibited a noticeable decrease with 

increasing radial loads for both IRF and ORF. Specifically, IRF decreased by 12.10% (from 

40.04 at load 50 to 35.24 at load 300), while ORF experienced a decrease of about 68.00% 

Inner Race Fault Dataset Code LF(lbs/kg) Sampling Rate(Hz) Duration (s) 

baseline_2 data_normal 270/122.47 97,656 6 

InnerRaceFault_vload_2 IRF_50 50/22.68 48,828 3 

InnerRaceFault_vload_3 IRF_100 100/45.36 48,828 3 

InnerRaceFault_vload_4 IRF_150 150/68.04 48,828 3 

InnerRaceFault_vload_5 IRF_200 200/90.72 48,828 3 

InnerRaceFault_vload_6 IRF_250 250/113.40 48,828 3 

InnerRaceFault_vload_7 IRF_300 300/136.08 48,828 3 

Outer Race Fault Dataset  Code LF(lbs/kg) Sampling Rate(Hz) Duration (s) 

baseline_2 data_normal 270/122.47 97,656 6 

OuterRaceFault_vload_2 ORF_50 50/22.68 48,828 3 

OuterRaceFault_vload_3 ORF_100 100/45.36 48,828 3 

OuterRaceFault_vload_4 ORF_150 150/68.04 48,828 3 

OuterRaceFault_vload_5 ORF_200 200/90.72 48,828 3 

OuterRaceFault_vload_6 ORF_250 250/113.40 48,828 3 

OuterRaceFault_vload_7  ORF_300 300/136.08 48,828 3 
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(from 10.26 at LF 50 to 27.18 at LF 300). Secondly, the Crest Factor consistently decreased 

with higher radial loads, showing a decrease of approximately 16.00% for IRF (from 15.46 

at LF 50 to 12.99 at LF 300) and a comparable reduction of roughly 50.60% for ORF (from 

6.39 at LF 50 to 12.92 at LF 300). Mean values significantly increased, with higher radial 

loads for IRF and ORF. IRF exhibited an increase of approximately 10.90% in its peak value 

(from 23.06 at LF 150 to 25.585 at LF 300), while ORF showed a substantial increase of 

about 294.90% in its peak value(from 4.93 at LF 100 to 19.43 at LF 300). 

Table 5.5: General Time and Frequency Domain Features (IRF). 

L
F

 (
lb

s)
 

C
F

 

C
re

st
 

F
a

ct
o

r 

Im
p

u
ls

e 

F
a

ct
o

r 

K
u

rt
o

si
s 

M
ea

n
 

P
ea

k
 

V
a

lu
e 

R
M

S
 

S
h

a
p

e 

F
a

ct
o

r 

S
k

ew
n

es
s 

S
td

 

S
IN

A
D

 *
 

S
/N

 *
 

T
H

D
 *

 

50 40.04 15.46 28.69 27.97 −0.22 27.50 1.78 1.86 0.62 1.76 −21.32 −21.31 −5.36 

100 37.30 14.49 26.96 30.53 −0.22 26.59 1.84 1.86 0.87 1.82 −21.05 −21.03 −0.53 

150 33.30 13.25 24.31 33.13 −0.22 23.06 1.74 1.84 1.28 1.72 −19.05 −19.05 −10.06 

200 38.15 13.54 26.92 37.28 −0.21 27.38 2.02 1.99 1.15 2.01 −18.22 −18.21 −6.31 

250 37.52 13.02 26.18 37.49 −0.20 27.14 2.08 2.01 0.72 2.08 −17.70 −17.68 −5.46 

300 35.24 12.99 25.17 35.30 −0.19 25.58 1.97 1.94 0.68 1.96 −17.35 −17.34 −8.41 

270 ** 7.75 5.230 6.56 3.02 −0.14 4.65 0.89 1.25 0.00 0.88 −23.60 −23.60 −11.39 

* Frequency domain features. ** Normal (fault-free) or Healthy condition . 

Table 5.6: General Time and Frequency Domain Features (ORF). 

L
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 (
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s)
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S
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S
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A
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 *
 

S
/N

 *
 

T
H

D
 *

 

50 10.26 6.39 8.48 5.09 −0.19 6.35 0.99 1.33 0.04 0.98 −14.41 −14.40 −11.97 

100 9.15 5.84 7.62 4.40 −0.18 4.93 0.84 1.31 −0.01 0.82 −13.15 −13.12 −9.06 

150 9.54 6.10 7.94 4.04 −0.18 5.21 0.85 1.30 −0.04 0.83 −12.59 −12.56 −9.934 

200 21.81 12.46 17.67 11.90 −0.17 12.28 0.99 1.42 0.31 0.97 −17.54 −17.52 −5.54 

250 15.03 9.07 12.30 6.59 −0.16 8.66 0.96 1.36 0.12 0.94 −16.09 −16.06 −4.92 

300 27.18 12.92 20.80 17.69 −0.16 19.43 1.50 1.61 0.27 1.50 −15.10 −15.10 −14.69 

270 ** 7.75 5.23 6.56 3.02 −0.14 4.65 0.89 1.25 0.01 0.88 −23.60 −23.60 −11.39 

* Frequency domain features. ** Normal (fault-free) or Healthy condition. 
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In Table 5.7, variations in peak amplitudes (PeakAmp1 and PeakAmp2), peak 

frequencies (PeakFreq1 and PeakFreq2), and Band Power for both IRF and ORF across a 

range of LFs (from 50 to 300 lbs) were observed. Notably, with increasing radial load, IRF 

exhibited higher peak amplitudes at 300lbs compared to ORF, while their peak frequencies 

tended to converge. Furthermore, Band Power showed a more pronounced rise as LF 

increased, especially for IRF, underscoring its sensitivity to LF variations. When compared 

to the reference condition at LF of 270, we observed significant differences in peak 

amplitudes and frequencies, highlighting the discernible impact of varying loads on fault 

characteristics. 

Table 5.7: Spectral Features by AR Model (IRF and ORF). 

LF PeakAmp1 PeakAmp2 PeakFreq1 PeakFreq2 BandPower 

(lbs) IRF ORF IRF ORF IRF ORF IRF ORF IRF ORF 

50 0.00034 0.000109 0.00031 0.000093 4363.937 1413.267 13,991.090 14,179.042 1.474 0.454 

100 0.00046 0.000075 0.00012 0.000028 4256.059 1379.739 13,968.668 14,258.280 1.476 0.322 

150 0.00046 0.000080 0.00005 0.000036 4191.394 1377.111 14,127.206 14,462.995 1.330 0.327 

200 0.00031 0.000063 0.00011 0.000058 4025.383 4947.698 10,622.786 1391.188 1.663 0.461 

250 0.00061 0.000058 0.00009 0.000049 4124.988 1621.552 10,365.553 5212.034 1.807 0.430 

300 0.00077 0.000302 0.00058 0.000296 4081.332 2915.517 748.668 11,675.566 1.618 1.101 

Normal 

270 
0.00003 0.000028 0.00003 0.000028 5490.855 5490.855 14,478.764 14,478.764 0.279 0.302 

 

Further exploration is needed to fully understand the nuanced impact of each LF 

through detailed feature extraction, as represented in Table 5.8. Analysing standard deviation 

(Std) and range across various features revealed distinctions between IRF and ORF. 

In the frequency domain, PeakFreq1 and PeakFreq2 show notable variability, with 

IRF having lower variability in PeakFreq1 (510.38 vs. 1788.4) compared to ORF. Regarding 

impulse characteristics, IRF exhibits higher variability in ImpulseFactor (7.6174 vs. 5.5733), 

indicating diverse impulse characteristics compared to ORF. ClearanceFactor exhibits more 

significant variability for IRF (11.237 vs. 7.4289), indicating significant changes in 

mechanical conditions. Vibration amplitudes also vary, with IRF showing higher variability 

in PeakValue (8.2942 vs. 5.4215). Additionally, IRF features display more pronounced 

changes in vibration characteristics compared to ORF, as seen in kurtosis (12.08 vs 5.3444), 

Skewness (0.41466 vs 0.13983), Std (0.40479 vs 0.23206), RMS (0.40468 vs 0.22898), and 
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ShapeFactor (0.25877 vs 0.11854). Signal quality parameters (S/N and SINAD) vary more 

in ORF, indicating alterations in signal-to-noise characteristics. These insights contribute to 

a comprehensive understanding of vibration signals’ dynamic response to IRF and ORF 

conditions, aiding condition monitoring and load-dependent behaviour analysis for fault 

detection. 
 

 

Table 5.8: Std and Range of Time And Frequency Domain Extracted Features for  IRF and ORF. 

Feature IRF ORF 

 Std Range Std Range 

PeakFreq2        4916.5 13730 5336.1 13088 

PeakFreq1        510.38 1465.5 1788.4 4113.7 

Kurtosis         12.08 34.47 7.4289 19.431 

ClearanceFactor  11.237 32.294 5.5733 14.24 

PeakValue        8.2942 22.848 5.4215 14.783 

ImpulseFactor    7.6174 22.127 5.3444 14.669 

THD              3.5994 10.863 3.7308 11.036 

CrestFactor      3.3591 10.232 3.7247 11.013 

S/N              2.3024 6.2569 3.5022 9.7777 

SINAD            2.2989 6.2471 3.2456 7.6881 

Skewness         0.41466 1.2782 0.23206 0.67179 

Std              0.40479 1.1962 0.22898 0.66026 

RMS              0.40468 1.1953 0.13983 0.3453 

ShapeFactor      0.25877 0.75648 0.11854 0.35602 

Mean             3.00 x 10-2 8.59 x 10-2 1.73 x 10-2 5.11 x 10-2 

PeakAmp1         2.36 x 10-4 7.44 x 10-4 9.63 x 10-5 2.69 x 10-4 

PeakAmp2         1.99 x 10-4 5.57 x 10-4 9.15 x 10-5 2.74 x 10-4 
 

5.2.1.2 Step2: Data Segmentation and Load-Dependent Subfile Creation 

First, the dataset was categorised by Normal (fault-free) or Healthy condition and 

fault types, each corresponding to LF of 50, 100, 150, 200, 250, and 300 lbs. Then, based on 

different sampling rates, the Normal (fault-free) or Healthy condition baseline signals were 

differentiated from fault signals: IRF and ORF. The Normal (fault-free) or Healthy condition 

baseline signals were captured at 97,656 SPS for 6 s, while fault signals were sampled at 

48,828 SPS for 3 s. Subfiles were created to enhance statistical robustness, each containing 

2,500 vibration data points. This led to 117 subfiles for the Normal (fault-free) or Healthy 

condition baseline and 58 for each fault category (IRF and ORF), strengthening the sample 

size and signal integrity; see Table 5.9. Such meticulous preparation establishes a solid 

foundation for the subsequent one-way ANOVA analysis, enabling the identification of 
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significant variations in vibration signals linked to different LF levels and fault occurrences 

(APPENDIX 2). 

Table 5.9: Dataset Segmentation and Subfiles Creation Demonstration. 

Dataset Segmentation CSV Files Code LF 
Subfiles 

Count 

Example on baseline (Normal (fault-free) or Healthy 

condition) with MATLAB code. The segment is based 

on ratio, i.e., each segment in IRF and ORF contains 

2500 samples, and each sample in Normal conditions 

contains 5000 data points. 

 
 

 

IRF_50 {‘IRF−50’} 58 

IRF_100 {‘IRF−100’} 58 

IRF_150 {‘IRF−150’} 58 

IRF_200 {‘IRF−200’} 58 

IRF_250 {‘IRF−250’} 58 

IRF_300 {‘IRF−300’} 58 

Normal {‘Normal’} 117 

ORF_50 {‘ORF−50’} 58 

ORF_100 {‘ORF−100’} 58 

ORF_150 {‘ORF−150’} 58 

ORF_200 {‘ORF−200’} 58 

ORF_250 {‘ORF−250’} 58 

ORF_300 {‘ORF−300’} 58 

   

5.2.1.3 Step3: Time and Frequency Domain Feature Extraction from Data Segmentation 

Section 5.1.1 discussed the impact of LF variations on features. In this stage, we 

generate load-dependent time and frequency features from Table 5.9 subfiles for IRF, ORF, 

and Normal (fault-free) or Healthy condition. This allows for detailed analysis and 

subsequent one-way ANOVA feature ranking. 

First, ten time-domain features, namely, Shape Factor, Peak Value, Clearance Factor, 

Impulse Factor, Mean, Crest Factor, Kurtosis, RMS, standard deviation (Std), and Skewness, 

were extracted. Second, there were three general frequency domain features: SINAD, S/N, 

and THD. Third, AR model estimation was applied to transform the time domain signal into 

the frequency domain to extract specific spectral features: peak amplitude, peak frequency, 

and Band Power. 

This research explored two AR models for spectral feature extraction: one of order 

two with a single peak (Figure 5.3a) and another of order fifteen with five peaks (Figure 

5.3b). This strategic approach aimed to unravel how the complexity of modelling influences 

the representation of frequency components in the signal. The order-two model, being 

n 
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simpler, offers a foundational perspective, capturing fundamental frequency components. 

These features are extracted within a smaller frequency band of 600–18,000 Hz, excluding 

peaks beyond 18,000 Hz. On the other hand, the order-fifteen model, with its higher 

complexity, aspires to provide a more detailed and nuanced representation of intricate 

frequency variations. Here, feature extraction focuses on a smaller band of frequencies 

between 10,000–25,000 Hz, excluding peaks after 25,000 Hz. Five spectral peaks were 

extracted for each signal, generating five frequency features for each peak. 

  
(a) (b) 

 

Figure 5.3: AR Model: (a) Order Two and Peak = 1; (b) Order Fifteen and Peak = 5. 

 

The first AR model added three extra features to the 13 TFD features. Conversely, 

the second AR model generated a more extensive set of 24 features, including general TFD 

features and 11 features derived explicitly from the AR model. The disparity in feature count 

resulted primarily from variations in the extracted frequency domain features. When testing 

different AR models, the decision to calculate peak amplitude and peak frequency for each 

peak aimed to achieve a more detailed and adaptable analysis of the signal’s spectral 

characteristics. This approach acknowledges variations in frequency modes captured by 

different models, facilitating the identification and individual analysis of each peak. 

This exploration assesses the trade-off between model simplicity and accuracy, a 

crucial consideration for fault classification. Furthermore, testing different peak 

configurations allows for a nuanced understanding of how the chosen models identify and 

distinguish peaks in the frequency spectrum. In essence, this approach yields valuable 
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insights into the suitability of various model configurations for capturing the diverse 

characteristics of the signal under investigation. 

5.2.1.4 Step 4: Significant Load-Dependent Feature Selection and Validation 

Diverse classifier algorithms were systematically examined, focusing on optimal 

accuracy and minimal confusion. AR models with different peak counts were explored, with 

the first model (order two, peak one) and the second model (order fifteen, peak five) 

achieving the highest performance. Subsequently, the dataset was split into testing (20.00%), 

validation (20.00%), and training (60.00%) subsets, with five-fold cross-validation for test 

accuracy comparison. Feature richness varied with peak counts, where the first model 

showcased robust performance with a single peak, emphasising the power of a strategically 

selected minimal feature. The second model, with five peaks, offered a more detailed 

representation of spectral characteristics. Features scoring below 20 one-way ANOVA 

scores were excluded, refining the selection based on substantial impact. This step 

highlighted load-changing trends on extracted features, providing valuable insights into load 

impact during faults. Key steps include feature subset selection, classifier training, and 

selecting the highest-performing classifier with the optimal feature set. One-way ANOVA 

was employed to determine statistically significant variations in feature values across LF, 

aligning with the project’s aim to analyse LF influences comprehensively. ANOVA ranking 

was used to systematically rank features based on their significance in distinguishing fault 

types. The values associated with ANOVA ranking represent the effectiveness of each 

feature in differentiating between groups in vibration signal data. 

(a) Autoregressive Model: Order Two, Peak = 1 

Features in the first AR model were reduced based on their ANOVA scores, with lower-

scoring features removed first, as shown in Table 5.10. The initial set of the top 13 features 

had ANOVA scores higher than 20, forming the baseline for further reduction. From this set, 

the top eight features with ANOVA scores greater than 350 were retained, followed by a 

subset of the top seven features, each with a score exceeding 370. Additionally, the two 

highest-scoring features, with ANOVA scores above 600, were selected. These feature sets 

were designed to investigate the impact of various combinations on classification accuracy, 

providing insights into the relationship between feature selection and model performance. 

However, Table 5.11 explores classifier performance across these different feature selection 
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thresholds, offering notable insights. With the top 13 features (ANOVA scores > 20), the 

Boosted Trees classifier demonstrated superior adaptability, achieving the highest accuracy 

at 74.10%, highlighting the discriminative power of the selected features. Reducing the 

feature set to the top eight (ANOVA scores > 350) and top seven (ANOVA scores > 370) 

resulted in a trade-off between feature reduction and accuracy, with Boosted Trees still 

maintaining a competitive edge. However, the drastic reduction to only two features 

(ANOVA scores > 600) significantly affected accuracy across all classifiers, particularly 

impacting the Fine Gaussian Support Vector Machine (SVM). Interestingly, increasing the 

feature count to 629 did not proportionally improve performance, suggesting a saturation 

point beyond which additional features may introduce noise. These findings highlight the 

nuanced relationship between feature selection and classifier performance, with Boosted 

Trees exhibiting robustness across various feature sets. 

Table 5.10: One-way ANOVA Ranking Including Spectral Features Extracted By AR Model (a) 

Order Two, Peak = 1. 

 

Table 5.11: Classifier Performance Across Feature Selection Thresholds For AR Model (a) and 

Peak = 1. 

 

(b) Autoregressive Model: Order Fifteen, Peak = 5 

In the context of the second AR model, applying the one-way ANOVA Rank generated 24 

spectral features, a notable increase from the initial 16; see Table 5.12. These spectral 

features, which include time domain features like SINAD and S/N, alongside the frequency 

domain feature peakfrequency2, contribute to a comprehensive feature set. The top 19 

Feature Rank One-way ANOVA Score Feature Rank One-way ANOVA Score 

1. ShapeFactor 638.7770 9. Std 344.1456 

2. PeakValue 629.7172 10. BandPower 215.4163 

3. ClearanceFactor 583.7172 11. Skewness 61.1082 

4. ImpulseFactor 539.9968 12. PeakAmp1 50.9148 

5. Mean 451.5449 13. PeakFrequency1 43.5724 

6. CrestFactor 380.0333 14. SINAD 19.2070 

7. Kurtosis 373.6953 15. S/N 19.1580 

8. RMS 345.8699 16. THD 0 

No. of Features Used in Classifier Training  Classifier  Test Accuracy 

Top 13 (ANOVA scores  > 20) Boosted Trees 74.10% 

Top 8  (ANOVA scores  > 345) Narrow Neural Network 72.80% 

Top 7 (ANOVA scores  > 373) 
Bi-layered Neural 

Network 
73.50% 

Top 2 (ANOVA scores  > 629) Fine Gaussian SVM 59.90% 
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features (ANOVA scores > 20) chosen for classifier training were exported to the 

classification learner, reserving 20.00% of the data for testing. 

Table 5.12: One-way ANOVA Ranking Including Spectral Features Extracted by AR Model (b) 

Order Fifteen, Peak = 5. 

 

The second AR model (Order 15) and peak five features exhibit compelling insights 

into classifier performance across distinct feature selection thresholds; see Table 5.13.  

Table 5.13: Classifier Performance Across Feature Selection Thresholds for AR Model (b) Order 

Fifteen, Peak = 5. 

 

Utilising the top 19 features, Bagged Trees and Cubic Support Vector Machine 

(CubicSVM) achieved remarkable accuracy scores of 86.40%, underlining the efficacy of 

these classifiers in leveraging a relatively more extensive set of features. The reduction to 

the top 14 features (ANOVA scores > 72) maintained high accuracy across all classifiers, 

emphasising their robustness. Notably, even with a more stringent selection of 14 features, 

all classifiers sustained accuracy levels above 80.00%, indicating resilience to feature 

reduction. The decrease to the top 13, 11, and 8 features demonstrated a nuanced trade-off 

between feature reduction and accuracy, with Bagged Trees consistently leading in 

performance. The findings reinforce the adaptability of the classifiers to varying feature sets, 

Feature Rank One-way ANOVA Score Feature Rank One-way ANOVA Score 

1.ShapeFactor 638.7770 13. PeakAmp2 129.8349 

2. PeakValue 629.7172 14. PeakFreq3 72.5228 

3. ClearanceFactor 583.5995 15. PeakAmp3 68.3653 

4. ImpulseFactor 539.9968 16. Skewness 61.1082 

5. Mean 451.5449 17. PeakAmp5 49.5351 

6. CrestFactor 380.0333 18. PeakFreq1 45.4170 

7. Kurtosis 373.6953 19. PeakFreq5 38.6599 

8. RMS 345.8699 20. SINAD 19.2070 

9. Std 344.1456 21. S/N 19.1580 

10. BandPower 263.0314 22. PeakFreq2 18.4450 

11. PeakAmp1 171.6077 23. PeakAmp4 14.1606 

12. PeakFreq4 162.5469 24. THD 0 

Number of Selected Features from 

ANOVA Ranking 
Classifier Test Accuracy  

Top 19  (ANOVA scores  > 20) Bagged Trees 86.40% 

Top 14  (ANOVA scores  > 72) CubicSVM 86.40% 

Top 13  (ANOVA scores  > 129) Quadratic SVM 83.30% 

Top 11 (ANOVA scores  > 171) Quadratic Discriminant 84.60% 

Top 8  (ANOVA scores  > 345) Quadratic SVM 76.50% 
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providing valuable insights for future considerations in feature selection strategies for this 

AR model and peak feature combination. 

The effectiveness of a classifier depends heavily on the chosen features, showing a 

delicate balance between feature quantity and classification accuracy. Simply adding more 

features can sometimes reduce performance because of overfitting. Therefore, features with 

high ANOVA scores are preferable for training a Machine Learning (ML) model, as they are 

more likely to enhance accuracy. Moreover, different classifiers exhibit varied sensitivities 

to feature selection, with some performing well with a concise set of informative features 

while others benefit from a more extensive feature set. In the context of the AR model, 

considering the number of peaks proves crucial. Utilising multiple peaks enhances sensitivity 

to changes in spectral composition, accommodates the potential introduction of new peaks, 

and furnishes a fine-grained feature set that adeptly captures the distinct contribution of each 

frequency component. 

• Summary of Selected Features  

The 86.40% accuracy of the test dataset is credited to 14 features derived from an AR 

model (order 15, peak = 5), covering the time domain, frequency domain, and spectral 

categories. These features, such as shape factor, peak value, clearance factor, impulse factor, 

mean, crest factor, kurtosis, RMS, standard deviation (Std), band power, and various peak 

amplitudes and frequencies, are distinctly represented through a histogram colour scheme 

(Table 5.14). The LF Colour Code Legend aids in differentiating LF associated with IRF, 

ORF, and Normal (fault-free) or Healthy condition. Out of 24 features, these 14 were selected 

for their superior class discrimination ability. 

The colour coding in the histograms is crucial for demonstrating the distribution of 

these features and their impact on the Bagged Trees classifier's accuracy. Specific colours 

indicate intense feature discrimination for certain LFs. For example, the shape factor 

histogram separates the IRF_300 LF (purple colour), the peak value excels in distinguishing 

the IRF_250 class (light green), the clearance factor is more effective for the Normal (fault-

free) or Healthy condition, and the impulse factor better identifies the ORF_150 class. This 

indicates the necessity of a collection of features with varied segregation capabilities for 

adequate classification. 
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Table 5.12’s one-way ANOVA ranking is essential in this context, pinpointing 

features that accurately differentiate between LFs and assisting in selecting an optimal 

feature subset for classifier training. This systematic approach is validated by classification 

accuracy, confirming the chosen features' ability to identify specific LFs precisely under 

various conditions. 

Table 5.14: Top 14 Selected Features Distinguishing Load-Dependent Fault Types: A Histogram 

Visualisation. 

Load Factor Colour Code Legend for the Top 14 Features Ranked by One-Way ANOVA 

 

Feature 

(ANOVA Rank) 
      Feature Histogram 

Feature 

(ANOVA 

Rank) 

       Feature Histogram 

1. Shape Factor 

 

2. Peak 

Value 

 

3. Clearance 

Factor 

 

4. Impulse 

Factor 

 

5.Mean 

 

6.Crest 

Factor 
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Load Factor Colour Code Legend for the Top 14 Features Ranked by One-Way ANOVA 

 

Feature 

(ANOVA Rank) 
      Feature Histogram 

Feature 

(ANOVA 

Rank) 

       Feature Histogram 

7. Kurtosis 

 

8.RMS 

 

9.Standard 

deviation 

 

10.Band 

Power 

 

11.Peak 

Amplitude1 

 

12.Peak 

Frequency4 

 

13.Peak 

Amplitude 2 

 

14.Peak 

Frequency3 
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5.2.2 Customised Load Adaptive Framework for IM Bearings Fault Classification 

This phase (Phase 2) delves into time-frequency feature analysis for different fault 

types, focusing on the CWT applied to vibration signals with various mother wavelets. The 

best wavelet function or mother of wavelets was identified using WSE, which aided in 

developing the CLAF for the MFPT bearing dataset. 

5.2.2.1 Step1: CWT Signal Encoding and Optimal Technique Selection 

This step involved determining the optimal CWT mother wavelet approach for the 

MFPT bearing dataset using CWT Time–Frequency Diagrams and WSE, enabling effective 

feature extraction, denoising, and pattern recognition.  

Time-frequency domain analysis, crucial for understanding non-stationary data, 

merges time and frequency data to examine signal frequency over time intervals (He et al., 

2010). Techniques like the Wavelet Transform (WT), using mother wavelets like Amor, 

Bump, and Morse, are vital in localising frequency information in time (Zhang et al., 2022c). 

The CWT and WSE are especially effective in damage detection. (Silik et al., 2021). CWT 

offers a two-dimensional (2D) view of the signal across time and frequency (Kaji et al., 

2020). Meanwhile, WSE, derived from wavelet singular values, quantifies signal complexity 

(He et al., 2010; Tian et al., 2022). CWT is mathematically expressed as in Equation (5.2), 

with coefficients indicating the wavelet’s scale and position as represented in Equation (5.3) 

(Amanollah et al., 2023): 

 𝑊𝑇𝑓(𝑎, 𝜏) = (
1

√𝑎
) ∫ 𝑓(𝑡)𝜑̅ (

𝑡−𝜏

𝑎
) 𝑑𝑡,  (5.2) 

𝑊𝑇𝑓(𝑎, 𝜏)𝑓(𝑡) = 𝑓(𝑡) ∗ 𝜑(𝑎,𝜏)(𝑡), (5.3) 

where 𝑊𝑇𝑓(𝑎, 𝜏) denotes the wavelet coefficient at a specific scale, 𝑎, and position, τ. The 

term 𝑎 is the scaling factor that instead stretches or compresses the wavelet, while τ is the 

translation factor that shifts the wavelet along the signal’s time axis. The function 𝜑 

represents the scaled and translated versions of the mother wavelet. Different mother 

wavelets yield distinct wavelet coefficients, highlighting varied facets of the signal 

(Amanollah et al., 2023). 

On the other hand, WSE is calculated based on the singular values obtained from the 

WT of the signal. It reflects the uncertainty of the energy distribution of the characteristic 
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mode of the analysed signal. A smaller WSE indicates a more straightforward and 

concentrated energy distribution, while a higher WSE suggests a more complex and 

dispersed energy distribution. The singular values are non-negative and arranged in 

descending order. The WSE can be defined as represented in Equation (5.4) (He et al., 2010): 

WSEk = -∑(λi/Σλi) log(λi/Σλi), (5.4) 

where λi denotes the i-th singular value from the WT, representing the magnitude of 

coefficients in the analysis. The sum Σλi is the total of all singular values, providing a 

normalisation factor. The logarithmic component, log(λi/Σλi), calculates the entropy, thus 

capturing the distribution complexity of the signal’s energy (Zhang et al., 2022c). 

• CWT Vibration Signal Time-Frequency Analysis 

The analysis was initiated with the original MFPT bearing dataset and categorised 

into IRF, ORF, and Normal (fault-free) or Healthy condition. The objective was to evaluate 

the capability of CWT in fault recognition, given its suitability for time-frequency analysis. 

CWT generates wavelet scalograms and 2D representations that illustrate the local energy 

density across time and frequency, offering insights into system behaviour over time. 

Scalograms present time on the x-axis and scale on the y-axis, providing a comprehensive 

view of time-frequency domain characteristics compared to one-dimensional (1D) signals. 

The CWT filters transient and non-smooth signal segments, as shown in Table 5.15. In Figure 

5.4a, 12 impulses in the IRF vibration signal, corresponding to the bearing’s IRF frequency, 

are observed. This results in 12 distinct peaks in the 2D time-frequency diagram in Table 

5.15, with more apparent patterns produced by the Amor and Morse wavelets. Similarly, in 

Figure 5.4b, eight peaks for ORF faults are observed, with the most distinct pattern generated 

by Amor wavelets in Table 5.15. In contrast, in Figure 5.4c, a lack of clear patterns or features 

is observed in the Normal (fault-free) or Healthy condition signal, regardless of the wavelet 

used; refer to Table 5.15. The count of distinct peaks is valuable for distinguishing between 

IRF, ORF, and Normal (fault-free) or Healthy condition. The following section will employ 

WSE to validate the selection of the optimal mother wavelet quantitatively (APPENDIX 2). 
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(a) 

 

(b) 

 

(c) 

Figure 5.4: (a) IRF Signal Trace Peak Count (Represented By Red Boxes) For 

Innerracefault_Vload_1 Dataset, (b) ORF Signal Trace Peak Count For Outerracefault_3 Dataset 

(Represented By Red Boxes) and (c) Normal (fault-free) or Healthy Condition Signal Trace for 

Baseline_1 Dataset, No Peaks. 
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Table 5.15: Comparative Visualisation of Health Condition Signals: 2D Time–Frequency 

Diagrams Using Three Types of Mother Wavelet Functions. 

Health 

State  
            IRF         ORF     Normal 

Dataset       InnerRaceFault_vload_1 ‘OuterRaceFault_3.mat’ ‘baseline_1.mat’ 

2D time-frequency diagrams 

Bump    

Morse   

 

Amor    

The colour bar adjacent to the scalogram represents the magnitude of the wavelet coefficients. Colours closer to 

red indicate higher values, which may correspond to signal peaks or areas of high power, while colours closer to 

blue represent lower values. 
 

• WSE Analysis for Appropriate CWT Selection 

A meticulous comparison of WSE scores identified the most suitable mother wavelet 

function for fault scenarios. The highest WSE score indicates a more scattered signal with a 

less noticeable pattern, likely representing the Normal (fault-free) or Healthy condition; see 

Figure 5.4c. WSE is a crucial quantitative measure for CWT, guiding the selection of suitable 

wavelet foundations in wavelet analysis. The chosen mother wavelet significantly influences 

denoising, signal preservation, and feature extraction, enhancing the frequency spectrum of 

the denoised signal (Silik et al., 2021; Guo et al., 2022). Average WSE was subsequently 

calculated by selecting the optimal mother wavelet function by comparing WSE scores 
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across different wavelet types (Zhang et al., 2022c). The selection process involves 

evaluating (𝑊𝑆𝐸𝑗) scores across various mother wavelet functions in Equation (5.5): 

𝑊𝑆𝐸𝑗 =  ∑ |𝐶𝑓𝑠(𝑡, 𝑗)|
2

. 𝑙𝑜𝑔 (|𝐶𝑓𝑠(𝑡, 𝑗)|
2

)𝑛
𝑡=1 , (5.5) 

where 𝐶𝑓𝑠 is the WT coefficient obtained from W, and fs (Hz) is the sampling frequency 

determining the number of samples taken per second. The summation range depends on the 

number of wavelet coefficients obtained from the transform and the chosen wavelet scale. 

Each coefficient corresponds to a specific scale, j, and time, t, capturing information about 

the signal’s frequency content and time location (He et al., 2010; Zhang et al., 2022c). 

Afterwards, Mean WSE(𝑊) is calculated in Equation (5.6), where D represents the 

dataset (e.g., Normal (fault-free) or Healthy condition, IRF, or ORF), W represents the 

wavelet type (e.g., ‘Bump’, ‘Morse’, or ‘Amor’), and N is the total number of datasets. 

Subsequently, the average mean WSE score (AvgMean WSE(𝑊)) across all datasets for 

specific wavelets is determined in Equation (5.7): 

 

Table 5.16 scores provide valuable insights into energy distribution patterns in 

signals under different fault conditions, with two randomly chosen datasets assessed using 

WSE (APPENDIX 2): 

1) Bump: 

The IRF's WSE scores are low (0.017424 and 0.039571), indicating a more concentrated 

energy distribution and simpler signals. In contrast, the ORF exhibits higher scores 

(2.0282 and 1.7431), suggesting a more complex energy distribution. The scores in 

Normal (fault-free) or Healthy condition are relatively low (1.4832 and 1.5995), 

indicating a simpler energy distribution. 

2) Morse: 

In the case of the IRF, low scores (0.011188 and 0.022887) suggest simpler signals. 

Conversely, the ORF displays higher scores (2.311 and 2.2253), indicating a more 

𝑀𝑒𝑎𝑛 𝑊𝑆𝐸(𝑊, 𝐷) =  
1

𝑛
∑ 𝑊𝑆𝐸𝑗 ,

𝑛

𝑗=1

 (5.6) 

𝐴𝑣𝑔𝑀𝑒𝑎𝑛 𝑊𝑆𝐸(𝑊) =  
1

𝑁
∑ 𝑀𝑒𝑎𝑛 𝑊𝑆𝐸(𝑊, 𝐷),

𝐷
 (5.7) 
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complex energy distribution. The Normal (fault-free) or Healthy condition scores are 

relatively low (2.2357 and 2.836), suggesting a simpler energy distribution. 

3) Amor: 

Low scores (0.0090466 and 0.019031) indicate simpler signals for the IRF. The ORF, 

however, shows a positive score (0.61065), suggesting a more dispersed energy 

distribution. In the Normal (fault-free) or Healthy condition, higher scores (2.6529, 

5.3807, and 15.826) indicate more complex energy distributions. 

Table 5.16: WSE Scores Comparison with Three Types Mother of Wavelet Functions. 

 

The mother of wavelet analysis can be summarised in Figure 5.5, where it shows the 

visual comparison; the “Amor” wavelet type shows relatively better discrimination between 

the Normal (fault-free) or Healthy condition and faulty conditions, as it exhibits lower WSE 

scores for the faulty conditions compared to the Normal (fault-free) or Healthy condition. 

However, based on the analysis of the WSE scores, three wavelet coefficients were 

evaluated: Morse, Bump, and Amor. For the Normal (fault-free) or Healthy condition dataset, 

the Morse coefficient had an average WSE score of 2.53585, the Bump coefficient had a 

score of 1.54135, and the Amor coefficient had the highest score of 10.60335, indicating a 

more dispersed energy distribution. When considering the IRF dataset, the Morse, Bump, 

and Amor coefficients had average WSE scores of 0.0170375, 0.0284975, and 0.0140388, 

respectively. For the ORF dataset, the average WSE scores were 2.26815, 1.88565, and 

1.631775 for the Morse, Bump, and Amor coefficients, respectively. The results show that 

the Amor coefficient exhibited the highest average WSE score for the Normal (fault-free) or 

Healthy condition dataset, suggesting a distinct energy distribution. Consequently, the Amor 

coefficient emerges as a potential candidate for identifying Normal (fault-free) or Healthy 

condition in contrast to faulty ones. 

Health State Training Set  Code Morse Bump Amor 

Normal 
baseline_1 data_normal 2.236 1.483 5.381 

baseline_2 data_normal_2 2.836 1.600 15.830 

WSE Avg. for 0.1 s 2.536 1.541 10.603 

IRF 
InnerRaceFault_vload_1 data_inner 0.011 0.017 0.009 

InnerRaceFault_vload_2 data_inner_2 0.023 0.040 0.019 

WSE Avg. for 0.1 s 0.017 0.028 0.014 

ORF 
OuterRaceFault_3 data_outer 2.311 2.028 0.611 

OuterRaceFault_1 data_outer_2 2.225 1.743 2.653 

WSE Avg. for 0.1 s 2.268 1.886 1.632 
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Figure 5.5: Mean Absolute WSE Values for Different Mothers of Wavelets. 

5.2.2.2 Step 2: CWT Energy Assessment for Each Load Factor 

This section uses the data segmentation subfiles in Table 5.9 in Section 5.2.1.2. For 

further mean energy analysis per LF for IRF and ORF, types per LFi,  where ‘i’ indexes the 

different LFss.calculate the wavelet energy values using the CWT technique. Let 𝑥𝑖(𝑡) 

represent the vibration signal for LFi at time 𝑡. The CWT coefficients are denoted as 𝐶𝑖,𝑗(𝑡), 

where j represents the selected wavelet scale (Jayamaha et al., 2019; Silik et al., 2021). 

Following these steps: 

• Extract the vibration signal for LFi: 𝑥𝑖(𝑡). 

• Perform the CWT on the vibration signal: 𝐶𝑖,𝑗(𝑡); see Equation (5.8). The scale used 

in this study was 5. 

• Calculate the wavelet energy 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 
𝑗

 for each scale j, 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 
𝑗

, in Equation (5.9): 

𝐶𝑖,𝑗(𝑡) = 𝐶𝑊𝑇(𝑥𝑖(𝑡), 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑡𝑦𝑝𝑒, 𝑗), (5.8) 

𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 
𝑗

=  ∑ |𝐶𝑖,𝑗(𝑡)|
2

𝑡
 (5.9) 

Hence, the concept of “scale” j is crucial in understanding the CWT technique in 

wavelet analysis. The CWT is a method used to examine signals at various scales, allowing 

the detection of different frequency components in a signal with varying levels of detail. 

Each scale j corresponds to a specific width of the analysing wavelet, a mathematical function 
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used in the transformation process. Smaller scales represent narrower wavelets sensitive to 

high-frequency details, enabling the capture of rapid signal variations. Conversely, larger 

scales correspond to wider wavelets, capturing lower-frequency signal components with 

broader coverage but less fine detail. In equations involving wavelet analysis, such as 

|𝐶𝑖,𝑗(𝑡)|
2
, the squared absolute value of wavelet coefficients at a particular scale j and for a 

specific LF i is calculated. This squared magnitude is summed across time t, resulting in the 

computation of the wavelet energy at that scale j. This energy measure provides valuable 

insights into the contribution of different frequency components to the overall energy content 

of the signal (Jayamaha et al., 2019). 

Subsequently, the mean energy tables for each LFi, covering IRF, ORF and Normal 

(fault-free) or Healthy condition, were created by aggregating the calculated wavelet energy 

values. Let 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 =  [𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
1 , 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖

2 , … , 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑁𝑠𝑐𝑎𝑙𝑒𝑠 ] be the vector of wavelet energy 

values for LF i. Then, calculate the mean wavelet energy wavelet, 𝐸̅𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 for each LF i by 

taking the average of the wavelet energy values across all scales, shown in Equation (5.10): 

𝐸̅𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 =  
1

𝑁𝑠𝑐𝑎𝑙𝑒𝑠
∑ 𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 

𝑗

𝑁𝑠𝑐𝑎𝑙𝑒𝑠

𝑗=1

 (5.10) 

Here, building upon the foundation of wavelet energy, the mean wavelet energy 𝐸̅𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 is 

computed by averaging energy values over all scales. This metric provides a concise yet 

powerful representation of the energy behaviour post-fault for each LF. 

• CWT Energy Assessment for Each LF Using Optimal CWT Technique 

In the assessment of mean energy values for IRF and ORF with LF 270 as Normal 

(fault-free) or Healthy condition shown in Table 5.17, the following observations were made: 

For IRF, LF 270 (Normal (fault-free) or Healthy condition) exhibited a mean energy value 

of 5.7012, indicating a lower energy content. LF 50, 100, and 150 had mean energy values 

ranging from 24.915 to 27.547, indicating a relatively lower energy content. In contrast, LF 

200, 250, and 300 showed mean energy values ranging from 32.199 to 36.147, suggesting a 

higher energy content and a more pronounced presence of IRFs. Similarly, LF 50, 100, 150, 

200, and 250 for ORF bearings had mean energy values ranging from 5.4309 to 7.6992, 

indicating a relatively lower energy content than LF 270. LF 270 (Normal (fault-free) or 

Healthy condition) had a mean energy value of 5.7012, representing the Normal (fault-free) 
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or Healthy condition with a lower energy content. LF 300 exhibited a mean energy value of 

18.612, indicating a substantial 226.88% increase compared to Normal (fault-free) or 

Healthy condition. 

In summary, ORF and IRF showed notable increases in mean energy with distinct 

patterns. ORF exhibited the highest increase at LF 300 (226.88%), while IRF showed higher 

increases, with the highest at LF 250 (533.49%). The increased variability ranged from 

2.08% to 226.88% for ORF and 337.68% to 533.49% for IRF. IRF generally displayed higher 

percentage increases than ORF, providing insights for effective fault detection and system 

management. The complete code is in (APPENDIX 2). 

Table 5.17: IRF and ORF CWT Mean Energy. 

 

• Two-Sample t-Test for Significance Testing 

In this study, a two-sample t-test was conducted using MATLAB R2023a to assess 

differences in mean CWT energy between the Normal (fault-free) or Healthy LF condition 

(LF 270 lbs) and other LFs (50, 100, 150, 200, 250, and 300 lbs) for IRF in Figure 5.6 and 

ORF in Figure 5.7. Individual t-tests for each LF determined whether the mean energy of the 

Normal (fault-free) or Healthy condition load differed significantly from other LFs, with a 

significance level of 0.05. Results consistently demonstrated a clear and significant 

distinction in mean CWT energy between the Normal (fault-free) or Healthy condition and 

various loads. The null hypothesis (H0), suggesting no significant difference in CWT mean 

energy between LF 270 and other LFs, was rejected in favour of the alternative hypothesis 

(H1), indicating a substantial distinction. This finding held for IRF and ORF LFs, with low 

p-values, large sample sizes, substantial t-values, and confidence intervals, all supporting the 

robustness and reliability of these results. 

LF IRF Type  ORF Type 

(lbs) Mean Energy Mean Energy 

 Increase (%) 

Mean Energy Mean Energy Increase (%) 

50 25.549 347.70% 7.699 35.16% 

100 27.547 383.65% 5.431 4.76% 

150 24.915 337.68% 5.573 2.08% 

200 33.742 491.88% 7.604 33.35% 

250 36.147 533.49% 7.178 25.90% 

270 5.7012 0% (baseline) 5.701 0% (baseline) 

300 32.199 464.25% 18.612 226.88% 
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Figure 5.6: Two Samples’ t-Test Results Compare IRF Load Factors (50, 100, 150, 200, 250, 300) 

With Normal (fault-free) or Healthy Load Factor Condition (Load Factor 270). 

 

Figure 5.7: Two Samples’ t-Test Results Compare ORF Load Factors (50, 100, 150, 200, 250, 300) 

With Normal (fault-free) or Healthy Load Factor Condition (Load Factor 270). 

5.2.2.3 Step 3: Customised Load Adaptive Framework (CLAF) 

The Load Index, developed based on optimal CWT energy to capture the influence 

of LF variations during fault occurrences, is a qualitative representation of the effects of 

varying LFs on bearing behaviour. Subsequently, bearing faults were categorised into load-

dependent fault subclasses, displaying distinct severity levels: Mild, Moderate, and Severe, 

using the CLAF. This comprehensive classification helps explain how varying LFs 

contribute to the manifestation and progression of bearing faults by following these steps; 

see the full code in (APPENDIX 2): 

1. Calculate normalised energy values:  

For each LF i, the normalised CWT energy values 𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖
𝑗

 were calculated using 

min–max scaling. This process ensures that the wavelet energy values𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

 range 

between 0 and 1. The normalisation is expressed by Equation (5.11): 

  𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖
𝑗

=  
𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖 

𝑗
− 𝑚𝑖𝑛(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡 

𝑗
)

𝑚𝑎𝑥(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

) − 𝑚𝑖𝑛(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

)
 ,  (5.11) 

In this normalised range, 0 represents the minimum energy value in the dataset, and 1 

represents the maximum energy value in the dataset. Hence, data normalisation helps 

improve the performance of ML models by ensuring that all features are on a similar 

   LoadFactor      Mean     StdDev    SEMean     MeanDiff    CI_Lower    CI_Upper    tValue         DF        pValue    Significant 

       50         25.549    80.211    0.20958     19.848     -20.259     -19.437     -94.663    2.923 x105       0            true     

       100        27.547    80.949     0.2115     21.846     -22.261     -21.431     -103.25    2.923 x105          0           true     

       150        24.915    74.066    0.19352     19.214     -19.594     -18.835     -99.238    2.923 x105          0           true     

       200        33.742    109.49    0.28607      28.04     -28.601      -27.48     -97.997    2.923 x105          0           true     

       250        36.147    113.29    0.29599     30.445     -31.026     -29.865     -102.84    2.923 x105          0           true     

       300        32.199     94.74    0.24753     26.498     -26.983     -26.013     -107.01    2.923 x105          0           true     

    LoadFactor     Mean     StdDev     SEMean     MeanDiff    CI_Lower    CI_Upper    tValue         DF          pValue       Significant 

        50        7.6992    7.3528    0.019211      1.9981    -2.0376     -1.9585     -99.051    2.923 x105          0         true     

       100        5.4309    4.0811    0.010663    -0.27028    0.24616     0.29441      21.955    2.923 x105          9.364 x10107     true     

       150        5.5728    4.0481    0.010577    -0.12837    0.10439     0.15235      10.491    2.923 x105          9.573 x1026      true     

       200        7.6036    14.487    0.037852      1.9024    -1.9776     -1.8273     -49.609    2.923 x105          0               true     

       250        7.1779    9.5466    0.024943      1.4767    -1.5271     -1.4264      -57.48    2.923 x105          0               true     

       300        18.612    51.481     0.13451      12.911    -13.175     -12.647     -95.882    2.923 x105          0               true     
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scale. This can prevent some features from dominating others and improve the model’s 

accuracy (Jang and Cho, 2021). All other energy values are linearly scaled within this 

range. Here, min (𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡 
𝑗

) represents the minimum wavelet energy value across all LFs 

and scales, and max(𝐸𝑤𝑎𝑣𝑒𝑙𝑒𝑡,𝑖
𝑗

) represents the maximum wavelet energy value across all 

LFs and scales. 

2. Identify Normal (fault-free) or Healthy condition indices:  

𝐼𝑛𝑜𝑟𝑚𝑎𝑙 represents the indices corresponding to the Normal (fault-free) or Healthy 

condition. In the analysis context, it refers to the index where the LF is 270, which is 

considered the Normal (fault-free) or Healthy condition or baseline. These indices are 

used to calculate the deviation from the Normal (fault-free) or Healthy condition for each 

LF and wavelet energy value. 

In the mathematical notation, 𝐼𝑛𝑜𝑟𝑚𝑎𝑙 is a set of indices i for which the LF is equal to 

270; see Equation (5.12): 

3. Quantify deviation: calculate deviation from Normal (fault-free) or Healthy condition; 

see Equation (5.13): 

where deviations 𝐷𝑖
𝑗
 from the Normal (fault-free) or Healthy condition are calculated, 

highlighting differences between the normalised energy values and the baseline. When 

an LF is not within 𝐼𝑛𝑜𝑟𝑚𝑎𝑙, the corresponding normalised energy value 𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖 
𝑗

 is 

considered. Otherwise, the deviation is set to zero. 

4. Severity of changing LF: threshold setting 

4.1  Define adjustable severity thresholds 

4.2  Categorise the severity 𝑆𝑖
𝑗
 based on the deviation magnitude 𝐷𝑖

𝑗
.and threshold; see 

Equation (5.14): 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙 =  {𝑖|𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 = 270} (5.12) 

𝐷𝑖
𝑗

 = {
𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑖 

𝑗
, 𝑖𝑓 𝑖 ∉  𝐼𝑛𝑜𝑟𝑚𝑎𝑙

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5.13) 

𝑆𝑖
𝑗

=  {

′𝑀𝑖𝑙𝑑′, 𝑖𝑓                               𝐷𝑖
𝑗

 ≤  𝑚𝑖𝑙𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

′𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒′, 𝑖𝑓  𝑚𝑖𝑙𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 <  𝐷𝑖
𝑗

 ≤  𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

′𝑆𝑒𝑣𝑒𝑟𝑒′, 𝑖𝑓                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (5.14) 
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Hence, the severity of deviations 𝐷𝑖
𝑗
 is categorised to assess the impact post-fault. Adjustable 

severity thresholds differentiate between ‘Mild’, ‘Moderate’ and ‘Severe’ conditions and 

store severity as a cell array value. This step is vital in determining the gravity of the 

machinery’s response to various fault scenarios, enabling efficient resource allocation and 

timely interventions, and preventing potential escalations. In this chapter, the author chose 

the following thresholds, which can be adjusted according to the application: mild_threshold 

= 0.2; moderate_threshold = 0.5. 

5. Categorise severity 𝑆𝑖
𝑗
 based on the deviation magnitude 𝐷𝑖

𝑗
 

The normalised energy values allow us to effectively compare the energy levels of different 

LFs, as they are all scaled within the same range. However, it is essential to note that the 

normalised energy values are not directly related to the severity categorisation (‘Mild’, 

‘Moderate’, or ‘Severe’). The severity categorisation is based on the ‘Deviation’ column, 

which represents the deviation of each LF’s mean energy from the mean energy of the 

Normal (fault-free) or Healthy condition. Following are the IRF and ORF types after the 

assessment, as shown in Table 5.18: 

Table 5.18: IRF and ORF Load-Dependent Fault Subclasses Through CLAF. 

 

• IRF Customised LF Assessment: 

Min-max scaling was employed to normalise the energy values, transforming the 

original energy values into a range of [0, 1]. In this normalised range, 0 signifies the 

minimum energy value in the dataset, while 1 represents the maximum energy value. 

All other energy values are linearly scaled within this range. The ‘Normalised Energy’ 

column in the provided table reflects the energy values post min-max scaling, where one 

corresponds to the maximum energy value. For instance, the energy value of ‘LF’ 250 

LF Mean Energy NormalisedEnergy Deviation 
Load-Dependent 

Subclasses 

(lbs) IRF ORF IRF ORF IRF ORF IRF ORF 

50 25.549 7.6992 0.14035 0.05758 0.1403 0.05758 {‘Mild’} {‘Mild’} 

100 27.547 5.4309 0.15053 0.023062 0.15053 0.023062 {‘Mild’} {‘Mild’} 

150 24.915 5.5728 0.14063 0.031372 0.14063 0.031372 {‘Mild’} {‘Mild’} 

200 33.742 7.6036 0.28444 0.092816 0.28444 0.092816 {‘Moderate’} {‘Mild’} 

250 36.147 7.1779 0.29911 0.061822 0.29911 0.061822 {‘Moderate’} {‘Mild’} 

270 5.7012 5.7012 0.00930 0.027659 0 0 {‘Normal’} {‘Normal’} 

300 32.199 18.612 0.23412 0.89814 0.23412 0.89814 {‘Moderate’} {‘Severe’} 
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is relatively the highest compared to other LFs in the dataset, as evidenced by its 

proximity to 1 in the normalised range. 

Conversely, ‘LF’ 50, ‘LF’ 100, and ‘LF’ 150 had normalised energy values around 

0.14, indicating that their energy values were closer to the lower end of the normalised 

range (0). These LFs exhibited lower energy values compared to others in the dataset. 

Notably, the normalised energy values did not directly correspond to the severity 

categorisation (‘Mild,’ ‘Moderate,’ or ‘Severe’). The severity categorisation was based 

on the ‘Deviation’ column, which represents the deviation of each LF’s mean energy 

from the mean energy of the Normal (fault-free) or Healthy condition. 

• ORF Customised LF Assessment: 

Long-duration operation at higher LFs for the ORF significantly influences 

degradation. Across LFs 50, 100, 150, 200, and 250, the mean energy values ranged 

from 5.4309 to 7.6992, indicating relatively lower energy content in the vibration signals 

compared to LF 270, which represents the Normal (fault-free) or Healthy condition with 

a mean energy value of 6.0981. The Normal (fault-free) or Healthy condition exhibited 

relatively lower energy levels, as expected. However, LF 300 stood out with a higher 

mean energy value of 18.612, suggesting that the associated ORF condition had a 

notably higher energy content in the vibration signals than the other LFs. This detailed 

energy analysis provides valuable insights into the variations related to different LFs 

and fault conditions, enhancing the understanding of the degradation process. 

5.2.2.4 Step 4: CLAF Validation 

The proposed CLAF is a fault condition monitoring system designed to identify 

issues based on load-dependent fault subclasses. In this step, the efficiency of the CLAF is 

validated by evaluating time, frequency, and spectral features, which have been ranked using 

one-way ANOVA.  

In real-world scenarios, not all extracted features are equally important. Some 

features are more critical for classification, while others can negatively impact accuracy by 

hindering the algorithm's ability to generalise patterns. One-way ANOVA is used to select 

the most robust subset of features, addressing the challenge of extracting key components 

for damage detection in structural health monitoring (Zhang et al., 2023d). Structural 
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dynamic measurements often exhibit complex, time-varying behaviour, making them 

sensitive to changes in time-frequency characteristics (Silik et al., 2021). 

Time, frequency, and spectral features were carefully selected and ranked within this 

context using one-way ANOVA. Following this, classifiers were trained to determine the 

optimal feature set based on accuracy, as detailed in Section 5.2.1.4 (see Table 5.12). The 

study generated 24 features within the 2,500–25,000 Hz frequency band, with each signal 

contributing five spectral peaks, resulting in five frequency features per peak. Subsequently, 

a one-way ANOVA test was conducted on the CLAF load-dependent fault subclasses to 

refine feature selection further (see Table 5.19). 

Table 5.19: CLAF Load-Dependent Fault Subclasses (One-Way ANOVA Ranking, AR Model 

Order Fifteen, Peaks = 5). 

Feature Rank One-way ANOVA 

Score 

Feature Rank One-way ANOVA 

Score 

1. Mean 316.4447 13. PeakAmp5 84.3280 

2. ShapeFactor 288.4202 14. Skewness 73.1278 

3. PeakValue 245.4272 15. PeakAmp2 70.5038 

4. RMS 240.9294 16. PeakFreq1 69.1381 

5. Std 240.2707 17. SINAD 58.7164 

6. ClearanceFactor 235.2321 18. S/N 58.6086 

7. ImpulseFactor 225.2555 19. PeakAmp4 51.3935 

8. Kurtosis 211.9440 20. PeakAm3 38.7712 

9. CrestFactor 198.2645 21. PeakFreq4 25.1821 

10. PeakAmp1 161.2217 22. PeakFreq2 17.6449 

11. BandPower 126.8539 23. PeakFreq5 13.9307 

12. PeakFreq3 116.7983 24. THD 0 
 

Features with ANOVA scores below 26 were excluded from further study. This step 

aimed to enhance the selection process by concentrating on features that had a more 

significant impact. Observing the initial trial’s high accuracy, the author systematically 

reduced the number of features, utilising accuracy as a metric for efficient feature reduction. 

This reduction process was carried out gradually, guided by accuracy measures. 

Subsequently, several classifiers were evaluated in the study, and their performance was 

meticulously documented across various feature subsets. The training dataset, comprising 

813 subfolders, was divided into 60.00% for training, 20.00% for validation, and 20.00% for 

testing.    

A five-fold cross-validation was implemented to ensure robust performance 

assessment. The feature selection process, guided by one-way ANOVA scores, began with 
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the top 20 features (ANOVA scores > 26) and these were systematically narrowed down to 

the top 5 features (ANOVA scores > 240), allowing for refined classifier selection based on 

accuracy and efficiency. Table 5.20 shows that the RUSBoostedTrees model, tested with the 

top 20 features, achieved an accuracy of 93.80% with a training time of 11.539 s.  

Table 5.20: CLAF Load-Dependent Fault Subclasses Classifiers Training on Various Feature 

Subsets. 

Classifier ANOVA 

Ranking  

TTime 
1 

 Test Dataset 

(s) VA 2 NA 3 MA 4 MoA 5 SA 6 
Overall 

Accuracy 

RUSBoostedTrees Top 20 >26 11.539 92.60% 100% 92.40% 91.20% 100% 93.80% 

Fine Tree Top 17 >58.6 4.393 92.60% 100% 95.70% 82.40% 100% 93.80% 

WNN Top 10 >161 18.155 91.20% 100% 97.80% 88.20% 100% 96.30% 

CubicSVM Top7 (a) >215 8.1055 93.10% 100% 96.70% 82.40% 100% 94.40% 

Medium Gaussian 

SVM 
Top 7 (b) >215 5.8059 91.60% 100% 96.70% 82.40% 100% 94.40% 

Fine Gaussian SVM Top 5 >240 12.711 92.90% 100% 97.80% 82.40% 100% 95.10% 

1 TTime is the training time, 2 VA is the validation accuracy, 3 NA is the Normal (fault-free) or Healthy 

condition accuracy, 4 MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, and 6 SA is 

the Severe state accuracy. 

The Fine Tree model, using 17 features, matched this accuracy but with a shorter 

training time of 4.393 s. The Wide Neural Network (WNN), which used the top 10 features 

(with ANOVA scores > 161), achieved an accuracy of 96.30% with a standard deviation of 

± 0.50% in 18.155 s during five-fold cross-validation. This performance is attributed to the 

WNN's single-layer architecture with 100 neurons and a Rectified Linear Unit (ReLU) 

activation function without regularisation (Lambda set to 0). The accuracy was determined 

by dividing the dataset into five parts, training the model on four parts, and testing the 

remaining part. This process was repeated five times, with the ± 0.50% standard deviation 

reflecting the variability across the different folds. Cross-validation helps ensure the model 

performs consistently on unseen data, reducing the risk of overfitting. The careful selection 

of the top 10 features maintained interpretability while achieving a solid testing performance. 

Iteration refers to the repeated updates to the model's parameters during training to minimise 

the loss function. The network's validation accuracy of 91.00% over 57 iterations further 

illustrates its effectiveness. While cross-validation evaluates how well the model generalises 
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to new data, iteration focuses on improving the model's performance during training. The 

WNN, known for handling datasets with many input features, is well-suited for tabular or 

structured data (MathWorks-3, 2024). All these experiments were conducted using the 

Classification Learner application in MATLAB 2023a. 

Such a high level of accuracy demonstrates the CLAF's nuanced understanding of 

fault patterns and its capability to effectively distinguish between 'Mild,' 'Moderate,' and 

'Severe'  fault categories under different LFs. 

5.3 Summary 

This research proposes the CLAF for classifying faults in Induction Motors (IMs) 

into load-dependent fault subclasses, namely 'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-

free) or Healthy condition’ categories. The framework provides a comprehensive 

understanding of fault severity under varying LFs, offering an insightful method for fault 

analysis. Tailored to the MFPT bearing dataset, this research highlights patterns in TFD 

features under six different LFs. It demonstrates how fault severity varies across various LF 

conditions using an optimal CWT energy approach selected by WSE. 

In this research, the CLAF was developed in two phases: 

1) Phase 1: Load-dependent patterns in TFD features were explored using one-way 

ANOVA ranking, and validation was carried out with bagged tree classifiers. The 

findings revealed consistent deviations in key features for both fault types, with IRF 

showing more pronounced alterations. The one-way ANOVA test ranked the shape 

factor feature as the most significant, followed by peak value, whereas THD was 

insignificant. Two AR models were employed in the frequency domain feature 

extraction. Subclassification based on these extracted features for each LF revealed 

distinct patterns, which helped to identify load-induced patterns and improve 

understanding of the relationship between LFs and feature expression in bearing health 

assessment. The approach using Bagged Tree classifiers with the top 19 features, as 

determined by ANOVA scores, achieved an accuracy of 86.40%. 

2) Phase 2: WSE determined ‘Amor’ as the optimal CWT method, surpassing alternatives 

such as ‘Bump’ and ‘Morse’ in the Normal (fault-free) or Healthy condition dataset. 

This phase highlighted a significant correlation between fault severity and LF, 

significantly when loads exceeded 300 lb. Severe ORF faults demonstrated a notable 
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226.88% increase in CWT energy compared to the Normal (fault-free) or Healthy 

condition. Similarly, IRFs exhibited significant energy increases at different LF levels, 

rising by 491.00%, 533.49%, and 464.25% at 200 lb, 250 lb, and 300 lb, respectively. 

A two-sample t-test confirmed the significance of these results. The study defined load-

dependent fault subclasses within the MFPT bearing dataset, establishing specific 

thresholds for Mild, Moderate, and Severe fault levels based on the energy deviation 

from Normal (fault-free) or Healthy condition. The CLAF framework was validated for 

its load-dependent fault subclass creation using TFD features. It achieved 96.30% ± 

0.50% standard deviation classification accuracy, reflecting the variability across the 

five different folds with a WNN and the top 10 features ranked by ANOVA. It was 

particularly effective at classifying Severe faults, achieving 100% accuracy, Moderate 

faults at 88.30%, and Mild faults at 97.80%, thereby demonstrating its ability to detect 

nuanced fault variations under different LF conditions in IMs. These results underscore 

the practical benefits of the CLAF in enhancing fault classification for IMs and its 

potential in advancing condition monitoring. 

This chapter’s main contributions are as follows: 

1. Comprehensive Time and Frequency Analysis: This study conducted a detailed TFD 

analysis under six LF conditions, highlighting patterns and variations in fault severity 

and providing valuable insights into IM behaviour. 

2. Optimal CWT Approach: Selecting an optimal CWT approach using WSE improves 

signal processing for TFD feature extraction, denoising, and pattern recognition. 

3. Revealing Load-Dependent Fault Subclasses: This research identified and classified 

load-dependent fault subclasses, including Mild, Moderate, and Severe, enhancing 

the understanding of fault severity in different LF scenarios. 

4. Proposing a CLAF: The research introduces a novel CLAF, extending traditional 

fault classification methodologies by considering LF variations and dataset 

customisation. 
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Chapter 6: A Novel Load-Dependent Multimodal 

Vibration Signal Enhancement and Fusion (LD-

MVSEF) for Load-Specific Condition Monitoring 
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6.1 Proposed Methodology  

This section outlines the systematic approach of the proposed novel Load-Dependent 

Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF) for Load-Specific 

Condition Monitoring, building upon the Customised Load Adaptive Framework (CLAF) 

load-dependent fault subclasses introduced in Chapter 5. The methodology was applied to 

the Machinery Failure Prevention Technology (MFPT) bearing dataset. It involves the 

independent extraction of features from different data representations within this single data 

source, implemented across three separate feature extraction channels. Features extracted 

from each channel are then directed to their respective classification modules, where 

individual classification decisions are made. Subsequently, a fusion module consolidates 

these individual decisions into a unified classification result. The processing for the proposed 

methodology was conducted using MATLAB R2023a software. This section provides an 

overview of the methodology framework and details of the data used.  

6.1.1  Load-Dependent Multimodal Vibration Signal Enhancement and Fusion 

The LD-MVSEF framework incorporates multiple data channels and decision fusion 

approaches, complemented by the CLAF for creating load-dependent fault subclasses. 

Various data sources are integrated, including Gradient Angular Difference Field (GADF) 

images, Continuous Wavelet Transform (CWT) images, and features from the time and 

frequency domains. These inputs enhance the efficacy of condition monitoring by leveraging 

complementary patterns across different modalities for improved fault classification. The 

outputs from multiple classifiers are consolidated using decision fusion techniques, ensuring 

robust and accurate classification. The methodology includes six detailed steps, as presented 

in Figure 6.1: 

1. Data Preprocessing with the CLAF: 

In this stage, the input data are segmented and prepared for further analysis. The 

process begins with splitting the raw MFPT bearing data vibration signals according to 

their respective classes— Normal (fault-free) or Healthy condition and fault (Inner Race 

Fault (IRF) and Outer Race Fault (ORF). After splitting, the raw vibration signals are 

encoded into equivalent image formats. 
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• This multichannel approach is critical for identifying differences in vibration signals 

associated with varying Load Factor (LF) conditions and fault types. The structured 

preparation of the dataset into load classes (IRF50, IRF100, IRF150, IRF200, IRF250 

and IRF300, ORF50, ORF100, ORF150, ORF200, ORF250 and ORF300, 

Normal270)is essential for its subsequent application in the CLAF, ensuring that the 

framework receives correctly segmented and analysed data for optimal performance. 

2.  Multichannel Input Preparations: 

In this stage, The first phase establishes three distinct data channels for 

comprehensive analysis. In Channel 1, raw vibration signals are processed. Channel 2 

generates two-dimensional (2D) CWT images from these signals, and Channel 3 

produces 2D encoded GADF images. After splitting, the raw vibration signals are 

encoded into equivalent image formats: 

• Channel 1: Raw vibration signal. 

• Channel 2: The class-specific raw vibration signals are encoded into CWT images 

using the Amor technique. 

• Channel 3: The class-specific raw vibration signals are encoded into 2D GADF 

images. 

• Applying the CLAF to create load-dependent fault subclasses—'Mild,' 'Moderate,' 

'Severe,' and 'Normal (fault-free) or Healthy condition’—tailored to specific 

datasets, forming the foundation for subsequent analysis.  

3. Feature Extraction and Classifier Selection for Channel 1 (Raw Vibration Signal): 

In the third step, the raw vibration signal data (Channel 1) are subject to feature 

extraction and subsequent selection through the one-way Analysis of Variance 

(ANOVA)  ranking method. Various classifiers are employed, and the highest classifier 

accuracy for the raw vibration signal subfiles is determined where Channel 1 inputs are 

switched from raw vibration signal to (Channel 1): Optimal Time and Frequency Domain 

(TFD) feature subset selection. 

After that, a data preprocessing step was added to address the data imbalance issue 

and link the TFD features with the equivalent GADF and CWT images into a single data 

store. This adjustment enhances the dataset by ensuring all classes are balanced before 
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classification. This involved oversampling the minority classes to ensure that each class 

had an equal number of samples, matching the class with the highest number of samples. 

4. Channels Classification Approaches and Training Methods: Training and Selection 

of Classifiers for TFD features, including spectral features using Autoregression 

(Channel 1) and CNN Architectures for Channels 2 and 3 (CWT and GADF images): 

Step four focuses on the training and selection of classifiers for the different data 

channels: 

• For Channel 1 (TFD features, including spectral features using Autoregression), 

classifiers such as Cubic Support Vector Machine (CubicSVM) and Wide Neural 

Network (WNN) are trained on the extracted features. The best-performing model 

is selected for further analysis. 

• For Channels 2 and 3 (CWT and GADF images), pre-trained Convolutional Neural 

Networks (CNNs), such as AlexNet and ResNet-18, originally trained on the 

ImageNet dataset, are fine-tuned on the 2D encoded images. The final fully 

connected layer of each network is replaced with a new layer containing four output 

neurons, where each neuron corresponds to one of the four categories: 'Mild,' 

'Moderate,' 'Severe,' and 'Normal (fault-free) or Healthy condition’. The images, 

including CWT spectrograms and 2D GADF-encoded images, are resized to match 

the input dimensions of the CNN architectures: 227 x 227 x 3 for AlexNet and 

224 x 224 x 3 for ResNet-18.  

5. Single Channel Performance Analysis: 

In this step, the performance of classifiers for each of the three channels—raw 

vibration signals, CWT images, and GADF images—is analysed. The classifiers are 

evaluated on their ability to classify the data into four classes ('Mild,' 'Moderate,' 'Severe,' 

and 'Normal (fault-free) or Healthy condition’). For each channel, the classifier with the 

highest overall accuracy is selected.  

6. Weighted Decision Fusion:  

In the final step, two weighting systems are used for decision fusion: Weighting 

System 1 (Adaptive Weighting), where weights are dynamically assigned based on the 

classifier's performance for specific conditions, and Weighting System 2 (Equal 

Weighting), where all channels receive equal weights regardless of their individual 
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performance. Two- and three-channel configurations are evaluated to determine the most 

effective fusion model for optimising classification accuracy and robustness. 
 

 

Figure 6.1: Load-Dependent Multimodal Vibration Signal Enhancement and Fusion (LD-MVSEF) 

Methodology. 
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6.1.2 Dataset  

The current study utilises the MFPT bearing dataset obtained from a NICE bearing 

test rig. The dataset includes samples representing the Normal (fault-free) or Healthy 

condition, ORF, and IRF, as illustrated in Figure 6.2. Key details of the dataset include three 

Normal (fault-free) or Healthy condition samples recorded at 97,656 Hz for 6 s each, three 

ORF samples at the same frequency (with LF ranging from 25 to 300 lbs), and an additional 

seven ORF samples at 48,828 Hz (with LFs varying from 0 to 300 lbs). Furthermore, the 

dataset contains IRF samples at 48,828 Hz, with LFs ranging from 0 to 300 lbs. This dataset 

serves as a standardised benchmark, providing essential information such as radial LF, shaft 

speed, and signal characteristics while maintaining a consistent shaft speed of 1,500 rpm (25 

Hz). 

This thesis recommends splitting the dataset using a 5,000/97,566 ratio to ensure 

consistent and efficient data segmentation while preserving fault classification features. This 

interval captures essential characteristics across samples. Consistency ensures 

reproducibility for Machine Learning (ML). Each subfile represents the signal’s behaviour 

for accurate fault detection within the specified timeframe. Consistency is maintained across 

the three channels to avoid bias in training. 
 

 

                (a)        (b) 

Figure 6.2: Computer-Aided Drawings of Defects Made on (a) ORF; (b) IRF (Jain and Bhosle, 

2022). 

6.2 Results and Discussion  

This section presents a comprehensive analysis and interpretation of the outcomes 

obtained from the experimental study. The focal point of the analysis revolves around the 

performance evaluation of various fusion techniques utilised for the classification of LF 

conditions. These techniques encompass diverse feature representations and models. The 

overarching goal of the current study is to discern effective strategies for enhancing the 

accuracy of load index prediction, thereby improving the reliability and robustness of 
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machinery fault classification. Steps 3 and 4 show the three approaches used in the single 

channel, starting with TFD extraction features on the original vibration signal, then with pre-

trained CNNs (AlexNet and Residual Network-18 (ResNet-18)) on encoded vibration signals 

into two forms: CWT vibration-encoded images and GADF vibration-encoded images.  

6.2.1 Data Preparation  

This section presents the preprocessing performed on the MFPT bearing dataset, 

detailing the process of dividing the data based on LF conditions. This division is crucial for 

applying the CLAF to identify LF-dependent patterns that differ from conventional fault 

classification methods used in Induction Motor (IM) bearings. The dataset has been 

systematically split per the CLAF approach, which marks a significant departure from 

traditional fault classification by factoring in LF conditions and adapting the dataset for 

specialised analysis, as indicated in Chapter 5. The research includes a comparative study 

across six distinct LF conditions (50, 100, 150, 200, 250, and 300 lbs) against a Normal 

(fault-free) or Healthy condition LF condition set at 270 lbs. This results in 13 categories: 

six each for IRF and ORF under varying LFs and one for Normal (fault-free) or Healthy 

condition, as illustrated in Figure 6.3. 

Figure 6.3: MFPT Bearing Dataset Load Factor Splitting. 

This division evaluates the effect of LF on fault scenarios, emphasising IRF and ORF, 

which are detailed in Tables 6.1 and 6.2, respectively.  

Table 6.1: IRF Dataset Splitting Per Load Factor. 

Inner Fault Dataset Code LF (lbs/kg) Sampling Rate 

(Hz) 

Duration 

(s) 

Subfile 

Count 

baseline_2 data_normal 270/122.47 97,656 6 117 

InnerRaceFault_vload_2 IRF_50 50/22.68 48,828 3 58 

InnerRaceFault_vload_3 IRF_100 100/45.36 48,828 3 58 

InnerRaceFault_vload_4 IRF_150 150/68.04 48,828 3 58 

InnerRaceFault_vload_5 IRF_200 200/90.72 48,828 3 58 

InnerRaceFault_vload_6 IRF_250 250/113.40 48,828 3 58 

InnerRaceFault_vload_7 IRF_300 300/136.08 48,828 3 58 
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Table 6.2: ORF Dataset Splitting Per Load Factor. 

Outer Fault Dataset  Code LF (lbs/kg) 
Sampling Rate 

(Hz) 

Duration 

(s)  

Subfile 

Count 

baseline_2 data_normal 270/122.47 97,656 6 117 

OuterRaceFault_vload_2 ORF_50 50/22.68 48,828 3 58 

OuterRaceFault_vload_3 ORF_100 100/45.36 48,828 3 58 

OuterRaceFault_vload_4 ORF_150 150/68.04 48,828 3 58 

OuterRaceFault_vload_5 ORF_200 200/90.72 48,828 3 58 

OuterRaceFault_vload_6 ORF_250 250/113.40 48,828 3 58 

OuterRaceFault_vload_7  ORF_300 300/136.08 48,828 3 58 

 

As illustrated in Figure 6.4, this segmentation process produced 117 subfiles for the 

Normal (fault-free) or Healthy condition baseline and 58 subfiles for each fault category (IRF 

and ORF). It also illustrates data segmentation for the Normal (fault-free) or Healthy 

condition associated with the MATLAB code. This preparatory phase sets the foundation for 

CLAF load-dependent fault subclass division.  

 

 

Figure 6.4: Dataset Segmentation Example on the Normal (fault-free) or Healthy Condition. 

6.2.2 Multichannel Input Preparations  

This section outlines the creation of three distinct data channels from the raw vibration 

signal for analysis. Channel 1 contains the raw segmented vibration signals, Channel 2 

encodes the signals into CWT images, and Channel 3 encodes them into GADF images. The 

dataset was analysed using the CLAF, focusing on load-dependent subclasses: Mild, 

Moderate, Severe, and Normal (fault-free) or Healthy condition. 

To ensure consistency and fairness in classifier performance evaluation, the datasets for 

Channels 1, 2, and 3—derived from the same pool of 813 subfiles—were divided in a 

uniform manner. Figure 6.5 illustrates the structure of the MATLAB datastore. In this 
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datastore, the Index column, as shown in the attached image, represents the unique subfolder 

name used to encode both the CWT images (stored in ImagePath_cwt) and the GADF images 

(stored in ImagePath_GADF). This ensures that the files corresponding to each load 

condition (e.g., IRF_50) are consistently linked across all three channels. 

  

 

Figure 6.5: Datastore Structure Linking Raw Vibration Signals with CWT and GADF Images. 
 

As illustrated in Table 6.3, this uniform approach is critical for a thorough and 

unbiased evaluation across all three channels. It ensures that the performance of the CNN 

models, which are trained on various types of encoded image data such as CWT and GADF 

in Channels 2 and 3, and tabular features extracted for each segment in Channel 1, is 

evaluated under similar conditions. 

Table 6.3: Multichannel Input Preparations. 

Subfiles Channel 1 

Tabular features 

extracted from 

the raw vibration 

signal  

Channel 2 

CWT  

2D encoded 

image 

Channel 3 

GADF 

2D encoded 

image 

CLAF 

Load-dependent 

fault subclasses 

 The time and 

frequency 

domain features. 

 

  

Normal (fault-

free) or Healthy 

condition. 

 

6.2.2.1 Channel 1: Raw Tabular Vibration Signal 

 Accordingly, the dimensions of each vibration image are set to 227 x 227 x 3 and 

224 x 224 x 3. These size specifications align with the input requirements of the AlexNet 

and ResNet-18 architectures, respectively. Figure 6.6 visually details the connection between 

each channel and outlines the process of creating each channel, starting with the raw vibration 

signal. The following subsection provides a comprehensive analysis of each channel. 
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 TFD features, including spectral features using Autoregression will be extracted from 

this channel and used as the Channel 1 input in the proposed methodology. The extracted 

features are detailed in Section 6.2.3, as shown in Table 6.4.  

 

Figure 6.6: Input Channels General Overview. 

6.2.2.2 Channel 2: Continuous Wavelet Transform 

Converting vibration signals to scalogram images in MATLAB involves several 

systematic steps. The dataset comprises Normal (fault-free) or Healthy condition and IRF 

and ORF types and is first partitioned based on distinct LF conditions. Each signal subset is 

then processed through a Wavelet Transform (WT) using the CWT method with the ‘Amor’ 

wavelet. The transformed signals are converted into scalogram images by taking the absolute 

values of the CWT coefficients, flipping and scaling them. These images are then colour-

mapped using the ‘jet’ colour map and resized to a uniform size of 224 x 224 pixels for 

consistency. The images of some of the generated samples are presented in Figure 6.7. 

Each processed signal subset and its corresponding scalogram image are saved as an 

image file and a CSV file, categorically organised in folders named after the ensemble types 

and indices. This meticulous process is repeated for each subset of the signal, ensuring that 

every part of the signal is represented as a distinct image. This approach visualises the time-

frequency information of vibration signals and prepares the data for further analysis, such as 

fault detection or ML applications. 
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Figure 6.7: CWT 2D Encoded Image Examples From IRF, ORF and The Normal (fault-free) or 

Healthy Condition. 

6.2.2.3 Channel 3: Gramian Angular Difference Field (GADF) 

Creating GADF images from vibration signals involves several key steps. Initially, 

the time series signal is segmented into smaller subsets. For each subset, a Gramian matrix 

is computed using the GADF algorithm, which involves calculating the pairwise dot product 

of the signal and then manipulating the resulting sine and cosine matrices. The Gramian 

matrix is then transformed into a GADF image. This transformation includes scaling the 

matrix values to a range between 0 and 1, inverting this scaled matrix and resizing the image 

to a specified size. This process is iteratively applied to the entire signal, converting each 

segment into a GADF image representing the underlying time series data. This method offers 

an alternative way to analyse and interpret vibration signals, facilitating more profound 

insights into their characteristics. 

GADF encoding produces distinct patterns for various health conditions, which need 

further analysis to validate their ability to differentiate between health conditions, as 

illustrated in Figure 6.8. 
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Figure 6.8: GADF 2D Encoded Image Examples From IRF, ORF and the Normal (fault-free) or 

Healthy Condition. 

6.2.3 Feature Extraction and Classifier Selection for Channel 1 (Raw Vibration 

Signal): 

This section conducts a one-way ANOVA test to rank the extracted general TFD 

features. Additionally, spectral features are extracted using an Autoregressive (AR) model 

of order 15 and a maximum of 5 peaks, creating 24 features. The selection of features for 

data representation plays a crucial role in the model's performance. Choosing the most 

relevant features is essential to ensure the model effectively captures the critical information 

related to the fault. On the other hand, including irrelevant features can sometimes result in 

overfitting or decreased performance (Kareem and Hur, 2022). One-way ANOVA feature 

selection involves comparing the means of each feature across different target classes to 

determine if there is a statistically significant difference. Features are ranked based on their 

p-values from the ANOVA test; the lower the p-value, the more likely the feature is to be 

influential in distinguishing between classes. These p-values are often transformed into 
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scores by taking the negative logarithm, with higher scores indicating more significant 

features for classification. In Table 6.4, the first column represents the extracted features, 

and the second column represents the one-way ANOVA scores, ranked from highest to 

lowest significance. Features that scored less than 26 (Peak frequency 4, Peak frequency 2, 

Peak frequency 5, and Total Harmonic Distortion (THD)) were not included in the current 

study due to their low scores, which could lead to confused training. 

Table 6.4: One-way ANOVA Ranking Including Spectral Features Extracted by Autoregressive 

(AR) Model (b) Order Fifteen, Peak = 5. 

 

A critical analysis of classifier performance, based on the top 20 feature sets ranked 

by the one-way ANOVA score, provides diverse insights, as presented in Table 6.4. Various 

classifiers, including Support Vector Machines (SVMs), Neural Networks (NN), and 

Ensembles, were employed using MATLAB 2023a (MathWorks-3, 2024). The efficacy of 

SVM hinges on how effectively the input data are represented in this new space, a 

determination often made through the utilisation of diverse kernels like Linear, Polynomial 

(including quadratic and cubic), Gaussian, and others (Khanjani and Ezoji, 2021). The 

CubicSVM is a classifier that falls under the umbrella of supervised learning. SVMs are 

effective for high-dimensional data and are versatile in handling various structured datasets. 

Hence, they are widely used for classification and regression tasks (MathWorks-3, 2024) 

The objective was to identify the classifier with the highest accuracy, making it a 

strong candidate for the proposed LD-MVSEF for Load-Specific Condition Monitoring. The 

training dataset, comprising 813 subfolders, was divided as follows: 60.00% for training, 

20.00% for validation, and 20.00% for testing. Five-fold cross-validation was implemented 

Feature Rank One-way ANOVA 

Score 

Feature Rank One-way ANOVA 

Score 

1. Mean 316.44 13. PeakAmplitude 5 84.33 

2. ShapeFactor 288.42 14. Skewness 73.13 

3. PeakValue 245.43 15. PeakAmplitude 2 70.50 

4. RMS 240.93 16. PeakFreq1 69.14 

5. Std 240.27 17. SINAD 58.72 

6. ClearanceFactor 235.23 18. S/N 58.61 

7. ImpulseFactor 225.26 19. PeakAmplitude 4 51.39 

8. Kurtosis 211.94 20. PeakAmplitude 3 38.77 

9. CrestFactor 198.26 21. PeakFreq4 25.18 

10. PeakAmplitude 1 161.22 22. PeakFreq2 17.64 

11. BandPower 126.85 23. PeakFreq5 13.9307 

12. PeakFrequency 3 116.80 24. THD 0 
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to ensure a robust performance assessment (see Table 6.5), divided by the load-dependent 

fault subclasses.  

The Ensemble: The Boosted Trees classifier recorded a notable 94.40% accuracy, 

demonstrating its ability to effectively harness a larger feature set. Reducing the feature set 

to the top 17 had a minimal effect on accuracy, which consistently remained above 90.00%, 

demonstrating the classifiers’ robustness and efficiency with a minor feature set. A further 

reduction in the feature set to the top 10, 7, and 5 revealed a nuanced interplay between 

feature count and accuracy. The WNN, using the top 10 features, outperformed its 

counterparts with a peak accuracy of 92.02%, suggesting its superior capability in working 

with a more compact yet pertinent feature set. 

Classifier performance exhibited considerable variation in the Mild class, with the 

following Ensemble: Boosted Trees classifier’s accuracy ranging from 89.20% with the top 

17 features to 95.40% with the top 20 features. The CubicSVM classifier recorded the lowest 

accuracy in the Moderate class, scoring 85.70% and 91.40% with the top 7 and 5 feature 

subsets, respectively. In contrast, WNN achieved 91.40% with the top 10 feature subset. 

Remarkably, the Normal (fault-free) or Healthy condition class maintained a stable 100% 

accuracy across all classifiers and feature subsets, underscoring the classifiers’ consistent 

ability to identify Normal (fault-free) or Healthy condition accurately. This consistency 

indicates a shared strength among the classifiers. At the same time, the variability in the load-

dependent fault subclasses (Mild and Moderate classes) underscores the critical importance 

of appropriate feature subset selection for optimal classifier performance. 

In a direct comparison, the accuracy of the CubicSVM and the WNN was closely 

matched. However, the selection of the top 10 features by one-way ANOVA demonstrated a 

well-calibrated compromise between training feature quantity and test dataset accuracy. The 

CubicSVM and WNN achieved 94.60% and 93.40% overall testing accuracies, respectively. 

Breaking this down further, the CubicSVM recorded 92.50% in the Mild class, 85.70% in 

the Moderate class, and 100% in the Severe class. Meanwhile, the WNN scored 90.3% in the 

Mild, 91.40% in the Moderate, and 91.70% in the Severe class. Notably, the CubicSVM 

outperformed the WNN in the Severe class by 8.30% and the Mild class by 2.20%. 
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Conversely, the WNN outperformed the CubicSVM in the Moderate class by 5.70%. 

As a result, these two classifiers were selected as the top performers for Channel 1. 

CubicSVM is designated as Channel 1a, while WNN is designated as Channel 1b. 

Table 6.5: Classifier Performance on Channel 1 Across Distinct Feature Sets Ranked by One-Way 

ANOVA Feature Significance. 

Classifier ANOVA 

ranking  

TTime1 

 

 
Test Dataset 

(s) VA2 NA3 MA4 MoA5 SA 6 Overall 

Accuracy 

Ensemble: 

Boosted Trees 

Top 20 >26 114.4 94.50% 100% 95.40% 88.50% 93.50% 94.40% 

Ensemble: 

Boosted Trees 

Top 17 

>58.6  

16.8 95.10% 100% 89.20% 85.70% 91.70% 91.70% 

CubicSVM 
Top 10 (a) 

>161 

5.9 94.30% 100% 92.50% 85.70% 100% 94.60% 

WNN 
Top 10 (b) 

>161  

15.7 92.20% 100% 90.30% 91.40% 91.70% 93.40% 

CubicSVM Top 7 >215 7.1 93.20% 100% 90.30% 85.70% 100% 94.00% 

CubicSVM Top 5>240 9.4 93.70% 100% 90.30% 85.70% 100% 94.00% 

1 TTime is the training time, 2 VA is validation accuracy, 3 NA is Normal (fault-free) or Healthy 

conditioncondition accuracy, 4MA is Mild state accuracy, 5 MoA is Moderate state accuracy, 6 SA is Severe 

state accuracy 

6.2.4 . Channels Classification Approaches and Training Methods 

This section focuses on balancing the dataset and training each channel separately. 

The classifiers were evaluated on the CLAF load-dependent fault subclasses—'Mild,' 

'Moderate,' 'Severe,' and ‘Normal (fault-free) or Healthy condition.' A total of 60.00% of the 

data was allocated for training, 20.00% for validation, and the remaining 20.00% for testing, 

with a Random Seed (S) of 1 set for reproducibility. The results are shown in Table 6.6:  

Table 6.6: Dataset Information. 

Total Dataset Description  Dataset Splitting Count Per Class 

Class distribution: 

Healthy: 0         464 

Mild: 1              464 

Moderate: 2      464 

Severe : 3          464  

Training set class distribution: Counter ({1: 278, 2: 278, 0: 278, 3: 

278}) 

Validation set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3: 

92}) 

Test set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3: 93}) 
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6.2.4.1 Channel 1: CubicSVM and WNN  

In this section, the top 10 extracted features from Channel 1—Mean, ShapeFactor, 

PeakValue, RMS, Std, ClearanceFactor, ImpulseFactor, Kurtosis, CrestFactor, and 

PeakAmplitude 1—were used to train classifiers, specifically the WNN and CubicSVM. 

These features, as presented in Table 6.4, were trained using MATLAB's Classification 

Learner application. The results, summarised in Table 6.7, indicate that both classifiers 

performed well. CubicSVM achieved a slightly higher overall accuracy of 96.28%, while 

WNN reached 94.95%. Both classifiers showed perfect accuracy in the Normal (fault-free) 

or Healthy condition and Severe states, with CubicSVM displaying superior performance in 

the Mild and Moderate states. Despite WNN requiring more time for training (48.63 s 

compared to CubicSVM's 26.71 s), both models demonstrated strong classification 

capabilities across the load-dependent fault subclasses. 

Table 6.7: Channel 1 Classifiers Training. 

Classifier 

TTime 1  Test Dataset 

(s) VA2 NA3 MA4 MoA5 SA 6 

Overall 

Accuracy 

a. CubicSVM 26.71 96.80% 100% 89.36% 95.74% 100% 96.28% 

b. WNN  48.63  96.70%  100%  95.74%  84.04%  100%  94.95%  
1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy 

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the 

Severe state accuracy. 

6.2.4.2 Channels 2 and 3: Pre-trained CNN Selection  

In this section, Channel 2 and Channel 3 were utilised to exploit the transfer learning 

capabilities of CNNs, training on uniquely encoded images: CWT for Channel 2 and GADF 

for Channel 3. AlexNet and ResNet-18, trained initially on the extensive ImageNet dataset 

for classifying 1,000 distinct image classes, were repurposed to fit the specific dataset 

requirements in the current study. These pre-trained networks were fine-tuned to classify 

four distinct load-dependent fault subclasses using a learning rate of 0.0001, a mini-batch 

size of 30, and a maximum of 5 epochs, with validation performed every 30 iterations. The 
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effectiveness of these adapted models was then assessed based on their accuracy with the test 

dataset. 

For both channels, the signal-encoded RGB images, with a resolution of 224 × 224 

pixels, required uniform image preprocessing steps before the training of the CNNs could 

commence. The images were resized accordingly in the case of AlexNet, which has an 

original input dimension of 227 x 227 x 3. Subsequently, the network’s final fully connected 

layer was replaced with a new one containing four neurons, corresponding to the categories 

of Normal (fault-free) or Healthy condition, Mild, Moderate, and Severe, to adapt to the 

classification needs of the study. 

Similarly, ResNet-18, initially trained on the ImageNet dataset, required the images 

to be adjusted to their input size 224 x 224 x 3. Following the study’s requirements, the last 

layer of ResNet-18 was replaced with a 4-neuron layer to fine-tune the model for the CLAF 

load-dependent fault subclasses—'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-free) or 

Healthy condition.'. 

• Channel 2: CWT-Enhanced Transfer Learning with ResNet-18 and AlexNet in 

CNN Models 

Table 6.8 compares the performance of ResNet-18 and AlexNet on Channel 2, 

focusing on CWT signal-encoded images.  

Table 6.8: Pre-trained CNN Performance on Channel 2 (CWT Signal Encoded Images). 

 

ResNet-18 required 17.35 min of training to achieve a validation accuracy of 97.55% 

and an overall test accuracy of 98.94%. It performed well across all fault subclasses, reaching 

100% accuracy in Normal (fault-free) or Healthy, Moderate, and Severe conditions and 
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1. ResNet-18 17.35 97.55% 100% 95.74% 100% 100% 98.94% 

2.AlexNet 7.20 97.28% 100% 96.81% 96.81% 100% 98.40% 
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95.74% in the Mild condition. AlexNet, on the other hand, completed training in 7.20 min, 

achieving a validation accuracy of 97.28% and a test accuracy of 98.40%. It also maintained 

100% accuracy in the Normal (fault-free) or Healthy and Severe conditions, with 96.81% 

accuracy in both Mild and Moderate conditions. 

Although ResNet-18 had a slight edge in overall test accuracy and performance in 

Mild conditions, AlexNet required less than half the training time with only a minimal 

difference in accuracy. Considering its efficiency and competitive accuracy, AlexNet has 

been chosen to handle CWT signal-encoded images on Channel 2. 

• Channel 3: GADF-Enhanced Transfer Learning with  Residual Network-18 

(ResNet-18) and AlexNet in CNN Models 

Table 6.9 compares the performance of two pre-trained CNNs: ResNet-18 and 

AlexNet on Channel 3, which encodes images using the GADF signal. Both networks used 

a learning rate of 0.0001 and validated every five epochs. 

ResNet-18 completed training in 18.5 min, achieving a validation accuracy of 96.47% 

and an overall test accuracy of 95.21%. It performed strongly in the Normal (fault-free) or 

Healthy  and Severe conditions, achieving 100% and 98.94% accuracy, respectively. 

However, its performance in the Mild and Moderate conditions was lower, with 89.36% 

accuracy in Mild and 92.55% in Moderate conditions. 

In contrast, AlexNet completed training in 7.53 min, matching ResNet-18’s 

validation accuracy of 96.47%, but outperformed ResNet-18 on the test dataset with an 

overall accuracy of 98.67%. AlexNet achieved 100% accuracy in the Normal (fault-free) or 

Healthy and Severe conditions, and also showed stronger performance in the Mild and 

Moderate conditions, with accuracies of 96.81% and 97.87%, respectively. 

Although both models performed well, AlexNet demonstrated a better overall test 

performance, particularly in Mild and Moderate conditions, requiring less training time. 

Given its balance of efficiency and accuracy, AlexNet is the preferred model for handling 

GADF signal-encoded images in Channel 3. 
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Table 6.9: Pre-trained CNN Performance on Channel 3 (GADF Signal Encoded Images). 

 

6.2.5 Single-Channel Performance Analysis 

Figure 6.9 presents the load-dependent subclass accuracy assessment for each 

channel. All classifiers performed well for the Normal (fault-free) or Healthy and Severe 

condition classes, with each achieving 100% accuracy. This high performance, while 

expected for these extreme conditions where the patterns are more distinct and more 

straightforward to differentiate, could be attributed to the more apparent fault or non-fault 

signals in the data. The clear distinction between the Healthy and Severe conditions allowed 

the classifiers to identify them without error consistently. 

In the Mild condition class, Channel 2, using CWT (AlexNet), showed the best 

performance with an accuracy of 96.81%, followed closely by Channel 3 (GADF with 

AlexNet) at 95.74%. However, Channels 1a and 1b, which utilise CubicSVM and WNN 

classifiers, struggled more in detecting Mild conditions, with accuracies of 89.36% and 

84.04%, respectively. This suggests that the Mild class presents more challenges for accurate 

classification, likely due to the less distinct signal patterns associated with early or mild 

faults. 

While performance remained strong for the Moderate condition class, there were 

noticeable differences between the channels. Channel 3 (GADF with AlexNet) showed the 

highest accuracy at 97.87%, followed by Channel 2 (CWT with AlexNet) at 96.81% and 

Channel 1b (WNN) at 95.74%. Channel 1a (CubicSVM) exhibited the lowest performance 

in this category, with an accuracy of 84.04%. This indicates that Moderate conditions are 

more difficult to classify than extremes as the signal patterns become less clear. 
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Figure 6.9: CLAF Load-Dependent Fault Subclass Accuracy Assessment Per Channel Using 

Different Approaches. 

6.2.6 Decision Fusion  

6.2.6.1 Weighted Decision Fusion Approach (Alternative Setting) 

This section explores two weighted decision fusion approaches across three distinct 

alternatives, each employing two different systems of weight allocation for decision fusion. 

In the following alternatives, Weighting System 1 refers to Adaptive Weighting, where 

weights are dynamically assigned based on each classifier's accuracy for specific conditions. 

Higher-performing channels receive greater weight for the conditions in which they excel. 

Meanwhile, Weighting System 2 refers to Equal Weighting, where equal weights are 

assigned to all channels across all conditions, ensuring no single classifier dominates the 

decision-making process. 

In all scenarios, the sum of the weights corresponds to one of the conditions, 

maintaining balance in the decision fusion system and ensuring a proportional contribution 

from each classifier based on their accuracy. The weight allocation in the decision fusion 

systems of the LD-MVSEF approach is justified by the accuracy assessments per channel for 

the different load-dependent fault subclasses, as illustrated in Figure 6.9. This chart 

highlights the performance of each classifier under Mild, Moderate, and Severe conditions, 

directly informing the weight distribution across the systems. Table 6.10 outlines the 

alternative setting and decision fusion weighting system : 
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Table 6.10: Alternative Setting and Decision Fusion Weighting System. 

1 TFD is the time and frequency domain extracted features 
 

• Alternative 1In Weighting System 1, Channel 1b (WNN with TFD features) is assigned 

a weight of 0.5 for the Healthy and Severe conditions, reflecting its accuracy of 100% in 

these categories. For the Mild and Moderate conditions, Channel 1b receives lower 

weights of 0.4 and 0.3, respectively, corresponding to its accuracies of 95.74% and 

84.04%. In comparison, Channel 2 (CWT with AlexNet) performed better in Mild and 

Moderate conditions, with accuracies of 96.81% and 97.87%, and is therefore assigned 

higher weights of 0.6 and 0.7 in these categories. Both channels receive equal weights of 

0.5 for the Healthy and Severe conditions. Under Weighting System 2, equal weights of 

0.5 are assigned to both channels across all conditions, ensuring an equal contribution 

from WNN and AlexNet. 

• Alternative 2: For Weighting System 1, Channel 1a (CubicSVM with TFD features) is 

given a weight of 0.5 for the Healthy and Severe conditions due to its 100% accuracy. 

For the Mild condition, Channel 1a receives a lower weight of 0.3, based on its accuracy 

of 89.36%, while Channel 2 (CWT with AlexNet) achieves a higher accuracy of 96.81% 

and is given a weight of 0.7. In the Moderate condition, Channel 1a achieves an accuracy 

of 95.74% and is assigned a weight of 0.4, while Channel 2 is given a slightly higher 

Channel 

No. 

Input  Classifier  Weighting System 1 Weighting System 2 

Healthy  Mild Moderate  Severe Healthy Mild Moderate  Severe 

Alternative No. 1.1 (TFDb -CWT)  1.2 (TFDb-CWT) 

A
lt

er
n

at
iv

e 
1
 

1b TFD   WNN 0.5 0.4 0.3 0.5 0.5 0.5 0.5 0.5 

2 CWT  AlexNet 0.5  0.6 0.7 0.5 0.5 0.5 0.5 0.5 

Alternative No. 2.1 (TFDa -CWT)  2.2 (TFDa -CWT) 

A
lt

er
n
at

iv
e 

2
 

1a TFD 

  

CubicSVM  0.5 0.3 0.4 0.5 0.5 0.5 0.5 0.5 

2 CWT  AlexNet 0.5 0.7 0.6 0.5 0.5 0.5 0.5 0.5 

Alternative No.   3.1 ( TFDa -CWT-GADF) 3.2 (TFDa -CWT-GADF) 

A
lt

er
n
at

iv
e 

3
 1a TFD   CubicSVM  0.33 0.2 0.2 0.33 0.33 0.33 0.33 0.33 

2 CWT  AlexNet 0.33 0.4 0.4 0.33 0.33 0.33 0.33 0.33 

3 GADF  AlexNet 0.33 0.4 0.4 0.33 0.33 0.33 0.33 0.33 
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weight of 0.6 due to its accuracy of 96.81%. Under Weighting System 2, both channels 

receive equal weights of 0.5 across all conditions, maintaining a balanced approach 

between CubicSVM and AlexNet. 

• Alternative 3: In Weighting System 1, where three channels are used, weights are 

distributed according to each channel’s performance. Channel 1a (CubicSVM with TFD 

features) is given a lower weight of 0.2 for the Mild and Moderate conditions, where it 

achieved 89.36% and 84.04% accuracy. Channel 2 (CWT with AlexNet) and Channel 3 

(GADF with AlexNet) performed better in these categories, with 96.81% and 97.87% 

accuracy, and are therefore assigned higher weights of 0.4 each. All three channels 

achieved 100% accuracy for the Healthy and Severe conditions and were given equal 

weights of 0.33. Under Weighting System 2, all three channels are assigned equal weights 

of 0.33 across all conditions, providing a balanced decision-making approach. 

6.2.6.2  Choose the Highest-Performing Weighted Decision Fusion Approach  

The following outlines the weighing system alternatives. Each alternative within the 

weighted decision fusion system was meticulously designed, with weights assigned to each 

classifier based on their demonstrated accuracy under specific load-dependent fault 

subclasses. This approach helps establish a robust and precise condition-monitoring tool. 

Furthermore, the experiment was repeated five times, changing the training, validation, and 

test datasets for each run. This required training the selected single models for five runs 

across each channel, using a Random Seed (S) for reproducibility, varying from 1 to 12. 

• Channel 1: 

• a) Cubic Support Vector Machine (CubicSVM) 

• b) Wide Neural Network (WNN) 

Both classifiers were trained using the top 10 features selected by one-way ANOVA, 

explained in section 6.2.4.1. CubicSVM took an average of 15.68 s and achieved an average 

accuracy of 96.44%. WNN, on the other hand, required an average training time of 25.18 s 

and yielded an average accuracy of 97.50% (as shown in Tables 6.11 and 6.12). Below are 

the details of each run.  

 



 

158 

 

 Table 6.11: a) CubicSVM 5 Runs. 

1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy 

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the 

Severe state accuracy. 
 

 Table 6.12: b) Wide Neural Network 5 Runs. 

1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy 

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the 

Severe state accuracy. 
 

• Channel 2: AlexNet was trained using the Stochastic Gradient Descent with Momentum 

(SGDM) solver with a Learning Rate (LR) of 0.0001, a mini-batch size of 30, and a 

maximum of 5 epochs. Validation was performed every 30 iterations to monitor 

performance during training. The training was conducted on CWT-encoded images for 

five runs, with training times varying across each run. On average, AlexNet took 

9.36 min to complete the training and achieved an average accuracy of 97.37%. Below 

is the performance breakdown for each run (see Table 6.13). 

• Channel 3: AlexNet was trained on GADF-encoded images over five runs with the same 

solver settings. The average training time for AlexNet on Channel 3 was 9.47 min, and 

the model achieved an average accuracy of 95.49%. Below (Table 6.14) is the 

performance breakdown for each run. 

 

 

Run Classifier 
TTime1  Test Dataset Overall 

Accuracy  
(s) VA2 NA3 MA4 MoA5 SA 6  

1, S1 CubicSVM 26.71  96.80%  100% 89.36%  95.74%  100%  96.28%  
 
 

2, S3 CubicSVM 12.87  95.80%  100% 88.36%  98.94%  100%  96.83%  
 
 

3, S 6 CubicSVM 11.56  97.50%  100% 91.49%  95.74%  100%  96.81%  
 
 

4, S9 CubicSVM 10.85  95.50%  100% 89.36%  98.94%  100%  97.08%  
 
 

5, S12 CubicSVM 16.41 95.90% 100% 95.74% 100% 100% 95.18% 
 
  

Run Classifier 
TTime1 

(s)  

 

VA2 

Test Dataset Overall 

Accuracy  
NA3 MA4 MoA5 SA 6  

1, S1 WNN 48.63 96.70% 100% 95.74% 84.04% 100% 94.95% 
 
 

2, S3 WNN 18.74 97.20% 100% 91.49% 100% 100% 97.87% 
 
 

3, S 6 WNN 16.75 97.50% 100% 94.68% 100% 100% 98.67% 
 
 

4, S9 WNN 19.75 97.00% 100% 89.36% 98.94% 100% 97.08% 
 
 

5, S12 WNN 22.07 97.50% 100% 95.74% 100% 100% 98.94% 
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Table 6.13: Accuracy of Channel 2 (AlexNet) Over 5 Runs on CWT Images. 

Run 
Pre-trained 

CNN (CWT) 

TTime 1 

(min) 

 

VA2 

Test Dataset  Overall 

Accuracy NA3 MA4 MoA5 SA 6 

1, S1 AlexNet 7.20 97.28% 100% 96.81% 96.81% 100% 98.41% 

2, S3 AlexNet 10.32 96.20% 100% 97.87% 97.87% 100% 98.94% 

3, S 6 AlexNet 7.54 97.83% 100% 90.43% 97.87% 100% 97.08% 

4, S9 AlexNet 7.34 96.74% 100% 91.49% 91.49% 100% 95.75% 

5, S12 AlexNet 12.4 98.64% 100% 94.62% 100% 100% 98.66% 
1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy 

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the 

Severe state accuracy. 
Table 6.14: Accuracy of Channel 3 (AlexNet) Over 5 Runs on GADF Images. 

Run 

Pre-trained 

CNN (GADF) 

TTime 1 
 

Test Dataset  

NA3 MA4 MoA5 SA 6 
Overall 

Accuracy 
(min) VA2 

1, S1 AlexNet 7.53 96.47% 100% 96.81% 97.87% 100% 98.67% 

2, S3 AlexNet 11.49 96.20% 100% 92.55% 95.74% 100% 97.07% 

3, S 6 AlexNet 7.56 93.21% 100% 98.94% 80.85% 100% 94.95% 

4, S9 AlexNet 8.20 96.20% 100% 91.49% 91.49% 100% 95.75% 

5, S12 AlexNet 11.59 95.65% 100% 87.00% 86.17% 100% 93.29% 
1 TTime is the training time, 2 VA is validation accuracy, 3 NA is the Normal (fault-free) or Healthy 

condition accuracy, 4MA is the Mild state accuracy, 5 MoA is the Moderate state accuracy, 6 SA is the 

Severe state accuracy. 
 

Consequently, the results of the five decision fusion runs were meticulously recorded 

(see APPENDIX 4), and the derived scores were obtained. The experiment was repeated ten 

times, and the outcomes for each class and overall accuracy are discussed below. The 

experiment's alternatives are detailed in Table 6.9: 1.1 (TFDb - CWT), 1.2 (TFDb-CWT), 

2.1 (TFDa - CWT), 2.2 (TFDa - CWT), 3.1 (TFDa - CWT - GADF), and 3.2 (TFDa - CWT 

- GADF). 

It was observed that all channels performed well in the Healthy and Severe classes. 

However, they encountered challenges in classifying the Mild and Moderate classes. The 

analysis conducted across the Mild and Moderate classes on the test dataset revealed the 

following : 

• Mild Class: Alternative 3.1 (TFDa - CWT - GADF) demonstrated the highest average 

accuracy of 97.02%, while Alternative 1.2 (TFDb - CWT) had a lower average accuracy 

of 94.25%. Although all alternatives performed reasonably well, there were noticeable 
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variations in the classification of the Mild class, which often presents more subtle patterns 

that can be challenging to detect (see Table 6.15). 

• Moderate Class: Alternative 3.1 again delivered consistent results, with an average 

accuracy of 99.15%. Alternative 1.1 (TFDb - CWT) showed high consistency, achieving 

100% accuracy across all five runs. However, Alternative 3.2 (TFDa - CWT - GADF) 

recorded an average accuracy of 98.01%, with some fluctuations in performance. This 

suggests that while all alternatives were effective, there were slight variations in handling 

the Moderate class, where the signal patterns are less distinct (see Table 6.16). 

Table 6.15: Decision Fusion Mild Class Analysis on Test Accuracy Over the 5 Runs. 

Alternatives 1 2 3 4 5 Min Max Avg. 

1.1 (TFDb -CWT) 94.68% 95.74% 95.74% 94.68% 96.81% 94.68% 96.81% 95.53% 

1.2 (TFDb-CWT) 95.74% 90.43% 94.68% 94.68% 95.74% 90.43% 95.74% 94.25% 

2.1 (TFDa -CWT) 95.74% 96.81% 90.43% 95.74% 93.62% 90.43% 96.81% 94.47% 

2.2 (TFDa -CWT) 96.81% 96.81% 92.55% 95.74% 94.68% 92.55% 96.81% 95.32% 

3.1 ( TFDa -CWT-GADF) 95.74% 95.74% 98.94% 95.74% 98.94% 95.74% 98.94% 97.02% 

3.2 (TFDa -CWT-GADF) 95.74% 95.74% 96.81% 95.74% 97.87% 95.74% 97.87% 96.38% 
 

Table 6.16: Decision Fusion Moderate Class Analysis on Test Accuracy Over the 5 Runs. 

Alternatives 1 2 3 4 5 Min Max Avg. 

1.1 (TFDb -CWT) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

1.2 (TFDb-CWT) 100.00% 97.87% 100.00% 100.00% 100.00% 97.87% 100.00% 99.57% 

2.1 (TFDa -CWT) 97.87% 97.87% 95.74% 98.94% 100.00% 95.74% 100.00% 98.08% 

2.2 (TFDa -CWT) 97.87% 98.94% 95.74% 98.94% 100.00% 95.74% 100.00% 98.30% 

3.1 (TFDa -CWT-GADF) 98.94% 100.00% 98.94% 100.00% 97.87% 97.87% 100.00% 99.15% 

3.2 (TFDa -CWT-GADF) 97.87% 94.29% 98.94% 100.00% 98.94% 94.29% 100.00% 98.01% 
 

The overall test accuracy for each run, along with the corresponding averages for the 

six decision fusion alternatives and training times, are shown in Table 6.17, where the 

training time of each alternative is shown in Table 6.18: 

1.1 (TFDb - CWT): Accuracies ranged from 98.67% to 99.07%, with an average 

accuracy of 98.86%. The average training time for this alternative was 9 min 23 s. 

2.1 (TFDa - CWT): Accuracies spanned from 97.08% to 98.94%, resulting in an average 

accuracy of 98.40%. The average training time was also 9 min 23 s. 

2.2 (TFDa - CWT): Accuracies ranged from 97.07% to 98.94%, averaging 98.46%. The 

average training time for this alternative was also 9 min 13 s. 
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3.1 (TFDa - CWT - GADF): This alternative recorded accuracies ranging from 98.67% 

to 99.47%, with an average of 99.04%. The training time was longer, averaging 18 min 

30 s. 

3.2 (TFDa - CWT - GADF): The minimum accuracy recorded was 97.51%, the maximum 

was 99.20%, and the average accuracy was 98.60%. The average training time for this 

alternative was also 18 min 30 s. 

Table 6.17: Decision Fusion Overall Test Accuracy Over the 5 Runs. 

 

Table 6.18: Decision Fusion Overall Training Time Over the 5 Runs. 

 

Based on these observations, Alternative 3.1 (TFDa - CWT - GADF) consistently 

offers strong performance, making it a reliable and effective option for condition monitoring 

across various severity levels. It achieved the highest overall average accuracy of 99.04% ± 

0.22%, based on five runs, with an average training time of 18 min 30 s. The uncertainty 

reflects the minor variability observed in these runs. Its robust performance in the Mild class, 

with an average testing accuracy of 97.20% ± 1.75%, and 99.15% ± 0.89%  testing accuracy 

in the Moderate class, demonstrates its suitability for load-specific condition monitoring and 

precise fault classification under different LF conditions.  

6.3 Summary 

This chapter introduced the LD-MVSEF framework, designed to enhance load-

specific condition monitoring using the MFPT bearing dataset. The LD-MVSEF framework 

Alternatives 1 2 3 4 5 Avg. 

1.1 (TFDb -CWT) 98.67% 98.94% 98.94% 98.67% 99.07% 98.86% 

1.2 (TFDb-CWT) 98.94% 97.08% 98.67% 98.67% 98.67% 98.40% 

2.1 (TFDa -CWT) 98.40% 98.67% 96.54% 98.67% 98.54% 98.16% 

2.2 (TFDa -CWT) 98.67% 98.94% 97.07% 98.67% 98.94% 98.46% 

3.1 (TFDa -CWT-GADF) 98.67% 98.94% 99.47% 98.94% 99.20% 99.04% 

3.2 (TFDa - CWT - GADF) 98.40% 97.51% 98.94% 98.94% 99.20% 98.60% 

Alternatives 1 2 3 4 5 Avg. 

1.1 (TFDb -CWT) 0:08:01 0:10:38 0:07:49 0:07:40 0:12:47 0:09:23 

1.2 (TFDb-CWT) 0:08:01 0:10:38 0:07:49 0:07:40 0:12:47 0:09:23 

2.1 (TFDa -CWT) 0:07:39 0:10:32 0:07:44 0:07:31 0:12:41 0:09:13 

2.2 (TFDa -CWT) 0:07:39 0:10:32 0:07:44 0:07:31 0:12:41 0:09:13 

3.1 ( TFDa -CWT-GADF) 0:15:11 0:22:01 0:15:18 0:15:43 0:24:16 0:18:30 

3.2 (TFDa - CWT - GADF) 0:15:11 0:22:01 0:15:18 0:15:43 0:24:16 0:18:30 
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incorporates load-dependent fault subclasses derived from the CLAF, shifting the focus from 

traditional fault classification to a load-specific approach. It integrates three distinct channels 

for analysis: Channel 1 extracts TFD features, including spectral features using 

Autoregression; Channel 2 converts vibration signals into CWT images; and Channel 3 

encodes the signals into GADF 2D images. 

Each channel was trained over five separate runs, and the best-performing classifiers 

were selected based on their accuracy in classifying four load-dependent fault subclasses: 

Healthy, Mild, Moderate, and Severe. In Channel 1, CubicSVM and WNN classifiers 

achieved average accuracies of 96.43% ± 0.76% and 97.50% ± 1.60%, respectively. For 

Channels 2 and 3, pre-trained AlexNet and ResNet-18 models were used, with AlexNet 

performing the best, achieving accuracies of 97.76% ± 1.33% on Channel 2 (CWT images) 

and 95.95% ± 2.05% on Channel 3 (GADF images). 

One of the main challenges observed was the classification of the Mild and Moderate 

fault subclasses, which presented subtler signal variations compared to the Healthy and 

Severe conditions. The LD-MVSEF framework addressed these challenges by employing a 

weighted decision fusion approach, where decisions were tailored according to the strengths 

of each channel for specific fault subclasses. For instance, Channel 2 (CWT with AlexNet) 

performed well in classifying the Moderate class, while Channel 3 (GADF with AlexNet) 

showed high accuracy in both the Mild and Moderate conditions. By assigning dynamic 

weights to each classifier based on their strengths, the LD-MVSEF framework improved the 

classification of these more challenging subclasses. 

The proposed weighted decision fusion approach demonstrated excellent 

performance across all fault conditions. Alternative 3.1 (TFDa - CWT - GADF) achieved the 

highest overall accuracy of 99.04% ± 0.22% across five runs, with an average training time 

of 18 min 30 s. This approach minimised the limitations of individual classifiers and 

effectively handled load-specific fault classification. 

The contribution of this chapter has been to propose a novel LD-MVSEF method for 

load-specific condition monitoring, which encompasses the following sub-contributions: 

1) Multimodal fusion and decision fusion: The LD-MVSEF framework combines 

features from GADF, CWT, and TFD data to enhance the Load-Dependent Fault 

Classification builds on the CLAF. By integrating these complementary patterns and 
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using a weighted decision fusion approach, the framework assigns classifier weights 

based on performance, helping to improve accuracy, particularly in the more 

challenging Mild and Moderate fault subclasses.  

2) Comprehensive data integration: Insights from both 1D vibration signals and 2D 

RGB images (CWT and GADF) were combined to capture complementary patterns, 

enhancing the classification. 
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Chapter 7: Hybrid Graph-CNN Decision Fusion 

(HG-CDF) for Load-Dependent Fault Classification 
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7.1 Proposed Methodology  

The proposed methodology of Hybrid Graph-CNN Decision Fusion (HG-CDF) for 

Load-Dependent Fault Classification builds on the Customised Load Adaptive Framework 

(CLAF) to enhance fault classification for the Machinery Failure Prevention Technology 

(MFPT) bearing dataset introduced in Chapter 5. This approach utilises Graph Convolutional 

Networks (GCNs) to transform tabular vibration signal data into graph structures, allowing 

for more effective load-specific condition monitoring. The methodology involves three key 

stages: First, the tabular vibration data are preprocessed to reflect different load conditions, 

and the k-Nearest Neighbour Graphs (k-NNGs) method is employed to convert the data into 

graph form, where nodes represent time-series points and edges are based on signal 

similarity. Second, the GCN model is optimised through the Taguchi Design of Experiments 

(DOE), where different configurations are tested to determine the optimal parameters, 

including the number of epochs, learning rate, and k-value. Lastly, recognising the 

limitations of GCNs in handling certain fault classes, particularly the Mild class, a hybrid 

approach is introduced, integrating One-Dimensional Convolutional Neural Networks (1D-

CNNs) with a GCN in a decision fusion mechanism to further improve classification 

accuracy across all fault subclasses. Google Colab was used to implement the proposed 

methodology. For the full code, see (APPENDIX 4). 

7.1.1 Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault 

Classification  

The HG-CDF for Load-Dependent Fault Classification for Transforming Tabular 

Data into Graph Structures methodology involves three main steps. These are presented in 

Figure 7.1 and described in detail below:  

1. Step 1: Dataset Introduction and Preprocessing:  

The research was initiated by preprocessing the MFPT bearing dataset 

utilising the CLAF to create load-dependent fault subclasses—'Mild,' 'Moderate,' 

'Severe,' and 'Normal (fault-free) or Healthy condition'—tailored to specific datasets, 

forming the foundation for subsequent analysis. Essential steps included the 

following: 
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1.1. Input Dataset Preparation: The MFPT bearing dataset was preprocessed with 

the CLAF methodology to refine the input data to create load-dependent fault 

subclasses—'Mild,' 'Moderate,' 'Severe,' and 'Normal (fault-free) or Healthy 

condition'—tailored to specific datasets, forming the foundation for subsequent 

analysis. 

1.2. Feature Extraction and Selection: Through the CLAF, critical Time and 

Frequency Domain (TFD) features were extracted and selected to serve as robust 

inputs for the model. 

1.3. Dataset Cleaning and Splitting: The dataset underwent cleaning and was 

stratified into training (60.00%), validation (20.00%), and testing (20.00%) sets to 

ensure a balanced representation of classes across each dataset. 

2. Step 2: Deep Learning Model Preparation:  

The model development phase is divided into two distinct paths. Path 2.1 (refer 

to Figure 7.1) involves constructing GCN models using a Taguchi L09 matrix to 

optimise hyperparameters methodically. Path 2.2 (refer to Figure 7.1) retains the 

tabular dataset for formulating the 1D-CNN model. For the GCN pathway, a detailed 

preparation process includes variable k-Nearest Neighbours (kNN) settings for 

producing graphs and the creation of masks for training, validation, and testing 

inputs. The GCN models are diligently built and subjected to a stringent training and 

validation routine, fostering iterative enhancements from the feedback. The Taguchi 

method refines the model configurations, precipitating a re-evaluation of experiments 

to delineate and endorse the most efficacious GCN strategy. Conversely, Path 2.2 

transforms tabular data into tensors and advances with the training of 1D-CNNs, 

guided by the optimal epochs and Learning Rates (LRs) derived from the Taguchi 

experiments. The following concerns the branching for the GCN and the 1D-CNN: 

2.1 Graph Convolutional Network (GCN): This branch has two main sub-stages. 

The first sub-stage, detailed in pathway 2.1.1 (refer to Figure 7.1), relates to 

Taguchi's Design of Experiments (DOE) and parameter configurations. The second 

sub-stage, described in pathway 2.1.2 (refer to Figure 7.1), involves building the 

GCN model.  
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2.1.1. Taguchi Method Preparation (L09) Matrix: In this step, Taguchi's design of 

the experimental approach was implemented using three control factors: k-

NNG number of neighbours, number of epochs, and LR. The first factor 

involves three steps:  

• Nodes were created to represent each dataset instance. 

• Edges were established using the kNN approach with k set to 3, 4, and 5. 

• Masks were generated to demarcate training, validation, and test sets. 

2.1.2. GCN Model building: GCN models were formulated. 
 

2.2 One-Dimensional Convolutional Neural Network (1D-CNN): This is the 

second branch, and it focuses on building the 1D-CNN architecture. 

2.2.1. 1D-CNN Model Formulation: 

• Data were prepared as tensors, facilitating subsequent Data Loader object 

creation in PyTorch. 

• 1D-CNN models were developed and then trained and validated. 

3. Step 3: Comparative Model Evaluation and Fusion Approach: 

The methodology encompassed a robust comparative analysis of models based 

on the test dataset: 

3.1. Convolutional Network (GCN) Design of Experiment using Taguchi 

Method and Signal-to-Noise (S/N) Ratio: Multiple GCN configurations are tested 

and optimised using the Taguchi Method and S/N ratio to enhance classification 

accuracy and minimise noise. 

3.2. One-Dimensional Convolutional Neural Network (1D-CNN) Training, 

Validation and Testing: A 1D-CNN model is trained on the vibration data to 

capture sequential patterns, providing an alternative classification method that 

complements the GCN’s structure-based approach. 

3.3. Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent 

Fault Classification: The GCN and 1D-CNN models are combined using a 

decision fusion mechanism, leveraging their complementary strengths to improve 

accuracy for challenging classes. 
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Figure 7.1: Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault 

Classification.  
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7.1.2 Dataset  

The chapter utilises the MFPT bearing dataset, previously described in Section 6.1.2, 

which includes Normal (fault-free) or Healthy condition, Outer Race Fault (ORF), and Inner 

Race Fault (IRF) samples recorded at different frequencies and Load Factors (LFs). The 

dataset serves as a benchmark, providing essential information such as radial LFs, shaft 

speed, and signal characteristics. A 5,000/97,566 split ratio is recommended to ensure 

consistent data segmentation and maintain reproducibility for accurate fault classification 

across the three channels.  

7.2 Results and Discussion  

7.2.1 Dataset Introduction and Preprocessing  

7.2.1.1 Input Dataset Preparations 

The MFPT bearing dataset is pre-processed using the CLAF methodology. The 

methodology was initiated by importing the MFPT bearing dataset into MATLAB 2023a and 

applying the CLAF. This pivotal step differentiated the dataset into new, load-dependent 

fault subclasses whilst extracting crucial TFD features, diverging from traditional fault 

classification approaches in Induction Motor (IM) bearings. By adhering to the CLAF’s 

principles, introduced in Chapter 5, the data were systematically segmented based on LF 

conditions, setting the stage for analysis that is fine-tuned to load-specific patterns and 

establishing a departure from conventional classification methods. 

7.2.1.2 Feature Extraction and Selection 

Building on the CLAF, the top 20 features were selected based on their one-way 

Analysis of Variance (ANOVA)  rankings, as detailed in Chapter 6 (see Table 6.4). These 

features include Mean, ShapeFactor, PeakValue, Root Mean Square (RMS), standard 

deviation (Std), ClearanceFactor, ImpulseFactor, Kurtosis, CrestFactor, PeakAmplitude, 

Band Power, and several PeakFrequency and PeakAmplitude measures. One-way ANOVA 

was instrumental in identifying the significance of these features, using p-values to rank their 

discriminative power, with lower values indicating greater relevance. These p-values were 

transformed into scores by taking the negative logarithm to further assess their importance 

for classification, culminating in a ranked list (see Table 7.1). Consequently, these top 20 
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features were utilised in the current research for graph representation, leveraging relational 

dynamics often overlooked by conventional analytical methods. Consequently, these features 

were captured for all data points corresponding to each severity class (see APPENDIX 4).  

Table 7.1: One-way ANOVA Ranking Including Spectral Features Extracted by Autoregressive 

(AR) Model; Order Fifteen, Peak = 5 (Top 20 Features). 

 

7.2.1.3 Dataset Cleaning and Splitting 

The MFPT bearing dataset was processed using the CLAF methodology presented in 

Chapter 5. The classes were encoded as follows: Class 0 for 'Normal (fault-free) or Healthy 

condition', Class 1 for 'Mild', Class 2 for 'Moderate', and Class 3 for 'Severe,' representing 

1,856 data points with balanced class distribution (see Table 7.2).  

Table 7.2: Dataset Information. 

 

In the preprocessing phase of the current study, the dataset was cleansed of any 

missing values by substituting them with zeros, thereby ensuring data integrity and 

facilitating computational efficiency. Following this initial step, the categorical labels 

indicating health status ('Healthy,' 'Mild,' 'Moderate,' and 'Severe') located in the first column 

of the dataset were transformed from their categorical format into a numeric format using a 

Feature Rank One-way ANOVA Score Feature Rank One-way ANOVA Score 

1. Mean 316.44 11. BandPower 126.85 

2. ShapeFactor 288.42 12. PeakFrequency 3 116.80 

3. PeakValue 245.43 13. PeakAmplitude 5 84.33 

4. RMS 240.93 14. Skewness 73.13 

5. Std 240.27 15. PeakAmplitude 2 70.50 

6. ClearanceFactor 235.23 16. PeakFreq1 69.14 

7. ImpulseFactor 225.26 17. SINAD 58.72 

8. Kurtosis 211.94 18. S/N 58.61 

9. CrestFactor 198.26 19. PeakAmplitude 4 51.39 

10. PeakAmplitude 161.22 20. PeakAmplitude 3 38.77 

Total Dataset Description  Dataset Splitting Count Per Class 

Class distribution: 

Healthy: 0         464 

Mild: 1              464 

Moderate: 2      464 

Severe : 3          464  

Training set class distribution: Counter ({1: 278, 2: 278, 0: 278, 3: 

278}) 

Validation set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3: 

93}) 

Test set class distribution: Counter ({1: 93, 2: 93, 0: 93, 3: 93}) 
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label encoding technique. This numeric conversion is crucial because it allows compatibility 

with Machine Learning (ML) algorithms requiring numerical inputs. 

Subsequently, these numeric labels were converted into a one-hot encoded format to 

more effectively address the requirements of multi-class classification tasks utilised in the 

neural network models. Specifically, one-hot encoding transforms each numeric label into a 

binary vector representing all possible categories, with '1' indicating the presence of the 

category and '0' indicating the absence of the category. For example, the categories would be 

encoded as follows: 

• 'Normal (fault-free) or Healthy condition': [1, 0, 0, 0] 

• 'Mild': [0, 1, 0, 0] 

• 'Moderate': [0, 0, 1, 0] 

• 'Severe': [0, 0, 0, 1] 

This encoding method ensures that each category is distinctly represented without 

any ordinal relationships implied, which is crucial for the unbiased functioning of the neural 

network in classifying these health statuses. Furthermore, the input features (X), excluding 

the label column, were isolated from the dataset and converted into a NumPy array. This 

transformation is essential because NumPy arrays are particularly well-suited to handle large 

data volumes efficiently, thus optimising the algorithm's performance during training. By 

ensuring that the features are in the appropriate format, the data are rendered ready for 

effective analysis and processing through advanced ML algorithms in subsequent stages. 

7.2.2 Deep Learning Model Preparation 

7.2.2.1 Graph Convolutional Network (GCN): Background and Formulation 

This section discusses the steps of the GCN’s formulation, beginning with the 

Taguchi method to propose the optimal GCN factors, followed by an overview of the 

GCN model’s background and construction. 

1) Taguchi Method Preparation (L09) Matrix   

The Taguchi method was used here to propose the optimal GCN factors. 

Taguchi L09 was selected because there were three factors with three levels. The 

application of the Taguchi method in the current study provides an efficient strategy 

for optimising the performance of the GCN. Using the L09 orthogonal array, suitable 
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for evaluating three factors at three levels, the study effectively reduced the number 

of necessary experiments from 27 to 9 while still gathering comprehensive data 

regarding each factor’s impact. The choice of factors and their specific levels in 

applying the Taguchi method for this study was driven by the objective of optimising 

the GCN for fault classification. The factors under consideration include the 

following: 

1. Factor A: Graph Creation: 

• Level 1: k-Nearest Neighbour Graph (k-NNG) with k =3 

• Level 2: k-NNG with k =4 

• Level 3: k-NNG with k =5 

The kNN algorithm classifies a new data point based on the labels of its closest 

neighbours. The number of neighbours, represented by “k,” determines how many 

nearby points influence the classification. For example, if k =3, the new point is 

classified by considering the three nearest neighbours within a defined proximity. 

Increasing k smooths the decision boundary, making the model more robust but less 

sensitive to local variations. When k is very high, the classification might lean towards 

the majority class, potentially overlooking more minor yet significant patterns (Naman 

et al., 2020).  

The selection of k in constructing a k-NNG is critical, impacting the graph’s 

accuracy, efficiency, recall, and scalability. Optimising k requires a balance of these 

factors, tailored to the application’s specific needs and computational resources. A 

higher k value enhances accuracy by considering more neighbours, better capturing 

the local data structure but increasing computational complexity and memory usage. 

Conversely, a lower k value speeds up computation but may overlook critical data 

connections, losing detail in the graph structure. Therefore, choosing k involves a 

trade-off between accuracy and computational speed, with higher values improving 

graph quality at the expense of efficiency and lower values boosting speed at the cost 

of accuracy (Dong et al., 2011; Yingfan et al., 2021). 

Thus, the kNN algorithm is fundamental in graph-based learning because it 

defines the graph structure by connecting each node with its closest points. The chosen 

levels represent a range that allows the model to capture varying degrees of locality 
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and globality in the data. Thus, k =3 represents a tighter, more local neighbourhood 

which could capture fine-grained patterns, whereas k =5 expands the scope to more 

global structures, potentially capturing broader trends in the data. k  =4 offers a mid-

point that balances local detail with global context. 

GCNs have been recognised for their ability to extract insight from data 

structured in graph form. The current study extends its application to tabular datasets 

in fault classification. A methodological transformation is proposed whereby 

traditional row-and-column data are envisioned as interconnected nodes. This section 

elaborates on the methodology employed to convert tabular data into graphs. Edges 

are drawn between nodes to represent relationships, with the kNN algorithm being 

utilised, setting k to 3, 4, and 5 to define these connections. 

The following subsections outline the step-by-step process, starting with 

feature representation and concluding with graph construction. The use of the kNN 

function from scikit-learn to establish edges based on the chosen settings is detailed. 

This transformation encodes the latent relational information within the dataset into a 

graph structure, facilitating analysis by the GCN. Each kNN configuration is explored 

to reveal different connectivity patterns within the data, which is crucial for capturing 

the complex, nonlinear relationships characteristic of fault patterns. 

Hence, this section delineates the conversion of tabular datasets into graph 

structures, an integral process for applying the GCN. Each instance in the dataset is 

treated as a node, with features as node attributes. 

• Graph Construction 

Graphs are constructed by defining edges that represent relationships 

between instances. The kneighbours_graph from the scikit-learn library was 

employed to determine these connections based on the kNN algorithm, which 

is executed as follows: 

• Distance Calculation: Distances between instances are computed using 

the Euclidean metric. 

• Neighbour Selection: The ‘k’ nearest instances are identified for each 

node. 
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• Edge Creation: Edges are created between each node and its ‘k’ nearest 

neighbours, resulting in a sparse adjacency matrix representation. 

• Sparse Matrix Representation 

The sparse matrix efficiently encodes the graph, mainly when the number 

of actual edges is much lower than the total possible number of edges, as is 

common in k-NNGs. The output is typically a sparse adjacency matrix, which 

efficiently represents the graph. This is beneficial when the graph is large, but 

the number of edges is relatively small compared to the number of possible 

edges (as is the case in a k-NNG). This matrix is then converted into a format 

(e.g., COO format) suitable for constructing a data object in PyTorch 

Geometric or for visualisation with libraries like NetworkX. 

In PyTorch Geometric, the graph is encapsulated in a data object containing 

the following: 

• x: Node feature matrix. 

• edge_index: Graph connectivity in COO format. 

• y: Labels for nodes (if applicable). 

• Graph Visualisation 

For visualisation, the NetworkX library is employed, translating the sparse 

matrix into a graphical format, which helps in understanding the graph’s 

structure and node interconnectivity. 

The lines or edges connecting the circles represent the ‘nearest neighbour’ 

relationships between records. An edge is drawn between two nodes if one of 

the nodes is among the ‘k’ nearest neighbours of the other based on their 

features. In this graph, settings of v=3 were selected, meaning that each node 

is connected to its three closest neighbours. These edges help to highlight the 

local structure of the data because nodes with numerous shared connections 

are likely to belong to the same or similar classes. 

This graph visualisation represents a dataset transformed into a k-NNG. 

Figure 7.2 illustrates the graph visualisation when v=3, Figure 7.3 when k =4, 

and Figure 7.4 when k =5. In these graphs, nodes correspond to individual 

records, and edges reflect their proximity based on feature similarities. Each 
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node is colour-coded to indicate its class, creating a visual distribution of the 

various categories: 'Normal (fault-free) or Healthy condition' (blue), 'Mild' 

(green), 'Moderate' (purple), and 'Severe' (red). 

The distribution of colours throughout the graph suggests that certain 

classes tend to cluster together, as seen with several densely connected nodes 

of the same colour. This indicates that records within the same class share 

more substantial similarities than records of different classes. Notably, there 

are regions where different classes intermingle, such as the interface between 

the ‘Mild’ and ‘Moderate’ clusters, thereby implying that these classes share 

overlapping characteristics that are less distinguishable. 

Furthermore, the visualisation highlights that 'Normal (fault-free) or 

Healthy condition'  instances are relatively well-separated from other classes, 

indicating distinct features that can be leveraged for classification tasks. 

However, ‘Severe’ cases appear less numerous and somewhat interspersed 

within clusters of different classes, suggesting a more challenging 

classification scenario for these instances. 

This graph provides valuable insights into the data structure, revealing 

patterns and relationships that can inform the development and refinement of 

predictive models. Understanding these visual cues is critical, especially in 

complex datasets that aim to discern intricate patterns that can improve model 

accuracy and interpretability. 

The nodes (circles) and edges (lines) represent the data, reflecting the 

feature-based similarities among individual records and the broader structure 

of the dataset’s classes. The visualisation thus serves as a tool for exploring 

and understanding complex relationships within the data, which can be 

particularly useful for tasks such as classification, clustering, and anomaly 

detection. 
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Figure 7.2: Graph Visualisation (k = 3). 

Figure 7.3: Graph Visualisation (k = 4). 
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2. Factor B: Number of Epochs: 

• Level 1: 200 

• Level 2: 300 

• Level 3: 400 

The number of epochs determines how often the model is exposed to the 

training dataset. Two hundred epochs ensure sufficient training without overfitting 

for simpler models; 300 epochs cater to more complex models, which may require 

additional training; and 400 epochs test the threshold for diminishing returns on 

model performance. 

3. Factor C: Learning Rate: 

• Level 1: 0.0001 

• Level 2: 0.0005 

• Level3: 0.0009  

The Learning Rate (LR) controls the step size in the optimisation algorithm, 

affecting the convergence speed and stability. The learning rates 0.0001, 0.0005, 

and 0.0009 were chosen with a linear increase of 0.0004 to allow controlled 

Figure 7.4: Graph Visualisation (k = 5). 
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exploration. Small learning rates ensure stable convergence in complex models 

like Graph Neural Networks (GNNs), preventing instability and overfitting by 

updating weights more cautiously. 

2) GCN Model Building 

A GCN is a neural network designed for graph-structured data, extending the 

convolution concept from traditional Convolutional Neural Networks (CNNs) to graphs. 

GCNs are ideal for analysing data represented as graphs, such as social networks, citation 

networks, and molecular structures (Wei et al., 2020). The typical inputs for a GCN include 

the following: 

• Adjacency Matrix (A): This matrix captures the graph's structure by detailing 

connections between nodes, allowing the GCN to learn from the graph's architecture 

(Niu et al., 2021; Yang, 2024)  

• Node Feature Matrix (X): This matrix contains feature representations for each node, 

such as attributes or embeddings, enabling the GCN to learn about individual node 

characteristics (Yang, 2024). 

Additional inputs may include edge features (e.g., edge weights) and node-level 

labels for tasks like node classification (Taslimipoor et al., 2019; Wang et al., 2023a). 

The core components of a GCN include the following: 

• Graph Convolution Layer: This layer performs spectral convolution operations on the 

graph, aggregating features from a node’s neighbours to capture structural details 

(Niu et al., 2021). 

• Multilayer Structure: GCNs typically consist of multiple graph convolution layers, 

allowing the network to learn local and global graph structures (Zhang et al., 2021b). 

• Nonlinear Activation: Functions, like Rectified Linear Unit (ReLU), follow each 

convolution layer, introducing nonlinearity to help the network learn complex 

patterns (Zhang et al., 2021b). 

• Input and Output: A GCN typically takes an adjacency matrix, representing the 

graph’s structure, and a node feature matrix detailing information on each node. 

Outputs can include node-level predictions like classification, edge-level predictions 

such as link prediction, or graph-level predictions like graph classification (Wang et 

al., 2023a). 



 

179 

 

This chapter defines a GNN model with two GCN convolutional layers for 

graph data and trained using 5-fold cross-validation. A brief overview of the steps 

follows: 

1. Initialising Masks: Boolean masks are created for the training, validation, 

and test sets. These masks indicate which indices belong to each split. Masks 

are typically Boolean arrays (or tensors) where each element corresponds to 

a node in the dataset: 

• True (1): If the element is True, the corresponding node is included in the 

operation (like training or evaluation). 

• False (0): If the element is False, the corresponding node is excluded from 

the operation.  

For example, if the dataset has 820 nodes divided into 60.00% training, 

20.00% validation, and 20.00% testing, the training mask would be an array 

with indices of training elements set to True and the rest to False. The test 

mask and validation mask would be similar. 

2. Data Masking: These masks are attached to the data object and will help 

select the correct data subsets during training, validation, and testing. 

3. GCN Model Definition: A simple GCN model with two GCNConv layers is 

defined. The model takes the number of input features and the number of 

output classes as arguments. The architecture of the GCN is designed to 

capture the complex relationships between nodes in the graph by leveraging 

adjacency information. The model consists of the following layers: 

1. Input Layer:  

The input to the GCN model consists of node features and edge 

indices, represented as data.x and data.edge_index, respectively. These 

inputs encode the graph structure and node attributes essential for learning 

node representations. In the described methodology for applying GCNs to 

tabular datasets for fault classification, the input type used primarily 

includes the following components: 

2. Feature Matrix (X): 
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• The top 20 features were selected through the CLAF based on their 

one-way ANOVA rankings. These features include various statistical 

and frequency domain features such as the Mean, ShapeFactor, 

PeakValue, RMS, standard deviation (Std), ClearanceFactor, 

ImpulseFactor, Kurtosis, CrestFactor, PeakAmplitude, Band Power, 

and several PeakFrequency and PeakAmplitude measures. 

• This matrix encapsulates the essential attributes of each node (data 

instance) in the graph, which are critical for the model to learn the 

patterns associated with fault classification. 

3. Graph Structure: The adjacency matrix, crucial for a GCN, is created 

using the kNN algorithm to define the edges between nodes based on 

their proximity in the feature space. Nodes are connected if they are 

among the 'k' nearest neighbours of each other, and this matrix is 

derived from the distances between these nodes. This structure is 

essential for a GCN because it effectively aggregates and learns from 

the neighbourhood features. The following section provides 

information about the GCN structure: 

3.1 Graph Convolution Layers: The self.conv1 = 

GCNConv(num_features, 16) and self.conv2 = GCNConv(16, 

num_classes) in the code are graph convolution layers. These 

layers perform the core function of aggregating information from 

neighbouring nodes, applying the graph convolution operation to 

the input data. Each layer processes the node features, with conv1 

transforming the input features to an intermediate dimension (16) 

and conv2 transforming these intermediate features to the final 

output size corresponding to the number of classes. 

3.2 Activation Function: F.relu(self.conv1(x, edge_index)) applies 

the ReLU activation function after the first convolutional layer, 

introducing non-linearity to the network. This is crucial to help 

the network learn complex patterns. 
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3.3 Normalisation and Regularisation: While specific normalisation 

such as L2 or Batch Normalisation (BN) is not applied here, 

dropout (F.dropout(x, training=self.training)) is used to prevent 

overfitting. This is especially useful in deep learning (DL) 

models like GCNs, where the model might learn too well from 

the training data at the expense of generalising it to new data. 

3.4 Aggregation Function: The aggregation function is implicitly 

handled by the GCNConv layer itself, which defines how the 

features of the node and its neighbours are aggregated. While the 

aggregation function is not explicitly customised in this snippet, 

GCNConv typically uses a mean aggregator to combine node 

features based on the graph structure. 

3.5 Output Layer: Return F.log_softmax(x, dim=1) serves as the 

output layer where the log softmax function is applied to the 

outputs from the last convolutional layer (conv2). This step 

converts the raw outputs to log probabilities essential for 

classification tasks, ensuring that the outputs are normalised and 

interpretable as probabilities. The final output of the model is 

obtained by applying a softmax function to the output features 

of the second graph convolutional layer. This step converts the 

features into log probabilities for each class, which are used for 

classification tasks. 

4. Node Labels (Y) (for supervised learning): Each node is associated with a 

label indicating the class (types of faults). 

5. Model Training: The model is trained and validated using 5-fold cross-

validation under different Taguchi experiment configurations and the 

Adaptive Moment Estimation (Adam) optimiser. Appropriate data subsets are 

used for training, validation, and testing.   
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7.2.2.2 One-Dimensional Convolutional Neural Network (1D-CNN) Model: Background 

and Formulation 

1D-CNNs are a specific type of neural network crafted to handle one-dimensional 

(1D) data, such as time series, signals, or sequential data. They are especially effective for 

applications such as fault detection, structural health monitoring, and various other pattern 

recognition tasks that involve sequential or time-series data (Camacho-Bello et al., 2022; 

Zhang et al., 2023c; Ahmadzadeh et al., 2024). 1D-CNN is a specialised neural network for 

handling 1D data such as time series, speech, or vibration signals. This architecture is a 

variation of the Two-Dimensional Convolutional Neural Network (2D-CNN), frequently 

used in image recognition tasks. Like its two-dimensional (2D) counterpart, the 1D-CNN 

architecture comprises 1D, activation, pooling, and fully connected layers. The convolutional 

layer utilises a set of learnable filters to process the input data and extract features. An 

activation layer follows, applying a nonlinear function to introduce non-linearity to the 

model. The pooling layer then reduces the data’s spatial dimensions, helping to decrease the 

model’s complexity and prevent overfitting. The fully connected layer finally projects the 

processed features into the desired output space (Qazi et al., 2022). 

The 1D-CNN has found applications in various fields, including network intrusion 

detection, signal processing, and speech recognition. Specifically, the 1D-CNN effectively 

extracts features from time-series data and classifies signals in Vibration Signal Analysis 

(VSA). For instance, it can detect anomalies in vibration signals, potentially indicating faults 

in machinery. It is suitable for processing data such as sequences or signals and is relatively 

easy to train (Huang and Li, 2021). 

Applying 1D-CNNs in fault detection is a prominent area of research in various 

fields. Researchers have utilised 1D-CNNs for fault diagnosis and detection in different 

domains, leveraging the unique capabilities of 1D-CNNs for processing time-series data 

efficiently. The following are some of the 1D-CNN applications in fault detection:  

1) Aircraft Engine Fault Diagnosis: Wang et al. proposed a novel method that combines 

features from multiple sensors using 1D-CNNs for predicting bearing faults in 

aircraft engines (Wu et al., 2024). 
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2) Damage Detection: Abdeljaber et al. adopted a 1D-CNN for damage detection, 

showcasing its effectiveness in identifying structural damage (Chen et al., 2022b). 

3) Unbalanced Data Fault Diagnosis: Researchers have developed new fault diagnosis 

methods for unbalanced data, utilising improved 1D-CNNs and the L2-Support 

Vector Machine (L2-SVM). The L2-SVM specifically uses the L2-norm of the error 

vector for regularisation in the loss function, effectively addressing the challenges 

posed by imbalanced datasets in fault detection (Hu et al., 2022). 

4) Rolling Bearing Fault Diagnosis: The use of a 1D-CNN with demodulated frequency 

features has been explored for fault diagnosis of rolling bearings under time-varying 

speed conditions, highlighting the versatility of 1D-CNNs in detecting faults in 

mechanical systems (Lu et al., 2022). 

5) Bearing Fault Diagnosis: An end-to-end intelligent fault diagnosis method for 

bearings combining 1D-CNN with Long Short-Term Memory (LSTM)  networks has 

been proposed, demonstrating the effectiveness of 1D-CNNs in diagnosing bearing 

faults (Sun and Zhao, 2021). 

These applications underscore the significance of 1D-CNNs in fault detection across 

various industries, showcasing its ability to process time-series data effectively and extract 

meaningful features for fault diagnosis and maintenance assurance. 

• 1D-CNN Model Architecture Formulation 

The comparison between the established 1D-CNNs and the proposed GNNs in the current 

study is pivotal for benchmarking the innovative graph approach against a recognised 

standard in sequence data analysis. This comparison highlights the GCN’s enhanced 

capability for relational data processing. It comprehensively evaluates its performance in 

handling tabular data for fault classification, a domain traditionally dominated by CNNs. 

The Simple 1D-CNN is a custom CNN that processes 1D input data. It is implemented 

using PyTorch’s neural network module, nn.Module. The architecture of this model is 

specifically tailored to applications where the input features are 1D, making it suitable for 

time series, sequence data or flattened representations of tabular data. 

• Key Components: 

Convolutional Layers: The model consists of two 1D convolutional layers. The first 

convolutional layer (conv1) has a single input channel and 16 output channels with a 
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kernel size of 3, a stride of 1, and a padding of 1. The second convolutional layer (conv2) 

increases the depth from 16 to 32 output channels with the same kernel size, stride, and 

padding. These layers extract hierarchical features from the input data (see Table 7.3).  

Table 7.3: 1D-CNN Model Summary. 

 

• Pooling Layer: A max pooling layer (pool) with a kernel size of 2 and a stride of 

2 follows each convolutional layer. Pooling layers reduce the dimensionality of 

the data by taking the maximum value over the window defined by the kernel 

size, helping to make the representation smaller and more manageable. 

• Flattening: After the convolution and pooling layers series, a flattening operation 

(flatten) is applied to transform the multi-dimensional output into a 1D vector. 

This step is necessary to transition from convolutional layers to fully connected 

layers. 

• Fully Connected Layers: The network transitions to dense layers by introducing 

two fully connected layers (fc1 and fc2). The first fully connected layer 

dynamically calculates its input size based on the output from the preceding 

pooling layer and connects to 120 units. The second fully connected layer (fc2) 

maps these 120 units to the number of classes (num_classes) in the dataset, 

serving as the output layer of the model. 

• Dynamic Initialisation: 

An innovative aspect of this model is its dynamic calculation of the input size for the 

first fully connected layer (fc1). This feature is implemented in the _init_fc1 method, 

which simulates a forward pass through the convolutional and pooling layers with a 

dummy input to determine the correct input size for fc1. This approach ensures that the 

model can adapt to different sizes of input features without manual adjustment. 

 

Layer Type             Output Shape  Param #     

Conv1d 16, L           64       

MaxPool1d Variable 0 

Conv1d 32, L           1,568 

Flatten Variable 0 

Linear 120 96,120 

Linear 4 484 

Total Params: 98,236 
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• Forward Pass: 

The forward method defines the data flow through the network. Input data are first 

unsqueezed to add a channel dimension, then sequentially passed through the 

convolutional, pooling, and fully connected layers. Activation functions (ReLU) are 

applied after each convolutional and the first fully connected layer to introduce non-

linearities into the model, thereby enabling it to learn complex patterns in the data. 

• Training Preparation: 

The model is moved to the appropriate device for training in Google Colab. The 

number of input features (num_features) and classes (num_classes) are specified based 

on the dataset's characteristics. A custom function reset_weights is also defined to 

reinitialise the model’s weights, ensuring that each training session or cross-validation 

fold starts with a fresh model. Both models (GCN and CNN) are trained using 5 cross-

validation to ensure the robustness of the results. 

• Input Preparation (Tabular Dataset Format as Tensors): 

• Regular Grid or Sequence: CNNs, especially 1D-CNNs designed for tabular 

data, expect data that can be interpreted as a regular grid or sequence. In the 

case of tabular data, each row (data point) can be seen as a sequence of 

features. 

• No Explicit Graph Structure: Unlike GCNs, CNNs for tabular data do not use 

an edge index or any graph connectivity information. They treat each dataset 

row independently, assuming that any relationships between features are 

captured through convolutional processing. 

• Batch Processing: While both models can use batch processing, how batches 

are prepared and fed into the model may differ. CNNs do not require masks 

to separate training, validation, and testing data within a graph structure. 

Instead, the dataset is split into separate tensors, or a Data Loader is used to 

manage batches and splits. 
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7.2.3 Comparative Model Evaluation and Fusion Approach 

7.2.3.1 Graph Convolutional Network (GCN) Design of Experiment using Taguchi Method 

and Signal-to-Noise (S/N) Ratio 

The Taguchi method, developed by Genichi Taguchi, aims to enhance the quality of 

products or processes by increasing their robustness to external variations. This is achieved 

through orthogonal arrays, which allow for the efficient analysis of multiple variables with 

relatively few experiments. Both methods improve decision-making and process 

optimisation across manufacturing, marketing, and quality control (de Oliveira et al., 2023). 

This section will use the Taguchi method to design this chapter’s experiments.  

The Taguchi method and the Signal-to-Noise (S/N) ratio are pivotal concepts in 

quality engineering and the DOE. Developed in the 1940s and 1950s by Genichi Taguchi, a 

prominent Japanese engineer, the Taguchi method streamlines product and process design 

optimisation. It focuses on pinpointing essential factors that influence quality and mitigates 

the effects of factors beyond control. This method employs orthogonal arrays for 

experimental design, facilitating the efficient examination of multiple variables at various 

levels (Pal and Gauri, 2017; Rathore, 2017). 

The S/N ratio, integral to the Taguchi method, quantifies the robustness of a design 

by comparing the desired output (signal) to the variability caused by uncontrollable factors 

(noise). A higher S/N ratio denotes a design that effectively withstands variability, enhancing 

its robustness. In the context of alternative analysis, the S/N ratio helps assess the efficacy 

of various design alternatives or configurations. By evaluating the S/N ratio, engineers can 

discern the most impactful factors on performance and refine the design to optimise 

outcomes. The general formula for the S/N ratio in the Taguchi method is shown in Equation 

(7.1) (Bisht et al., 2013): 
 

S/N = −10 log (𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑀𝑆𝐷)) (7.1) 

The Taguchi method recognises three types of S/N ratios: 

1. Smaller-the-better: This is used when the objective is to minimise a response 

variable, aiming to reduce process variability, for example. The S/N ratio 

increases as observed values decrease. It is calculated using the formula for 
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MSD: 𝑀𝑆𝐷 =  ∑(𝑦2)/𝑛 where y represents the observed data and n is the 

number of observations (Yang et al., 2023c). 

2. Nominal-the-best: This targets a specific value, such as achieving a precise 

dimension. The formula applied is 𝑀𝑆𝐷 = ∑(𝑦 − 𝑚)2/𝑛 , where 𝑚m is the 

target value, and 𝑛 is the number of observations. Higher S/N ratios 

correspond to values closer to the target, facilitating the optimisation towards 

desired outcomes (Bisht et al., 2013; Yang et al., 2023c). 

3. Larger-the-better: The goal here is to maximise response, such as enhancing 

the strength of a material. The mean square deviation is calculated as 𝑀𝑆𝐷 =

∑ (
1

𝑦2) /𝑛, with larger observed values yielding higher S/N ratios (Yang et 

al., 2023c). 

The Taguchi method is a systematic approach to optimise products or processes by 

minimising output variation and is applicable across various systems, including ML 

algorithms. In one instance, the Taguchi method optimises ML parameters for predicting 

turning precision and identifying key influential factors. This methodology trains three 

models, enhancing the best-performing model, XGBoost, with techniques like Synthetic 

Minority Over-sampling Technique for Regression with Gaussian Noise (SMOGN) and 

various optimisation algorithms, such as Centre Particle Swarm Optimisation (CPSO) (Wang 

et al., 2022). 

In another example, the Taguchi method is employed to refine hyperparameters in a 

Back Propagation Neural Network (BPNN) to predict plastic injection moulding outcomes. 

It identifies critical hyperparameters and optimises them using the Taguchi orthogonal 

approach to enhance prediction accuracy (Jong et al., 2020). Furthermore, the Taguchi 

method optimises rotor barrier designs in PM-assisted Synchronous Reluctance Machines 

(SynRMs). It identifies key factors affecting Power Factor (PF) and torque ripple, using these 

insights to refine rotor barrier designs through a Taguchi experimental approach (Naseh et 

al., 2022). 

In the evaluation phase, a 10-fold cross-validation strategy was employed to ensure 

the robustness of the models. For each fold, the model was trained on nine parts of the data 

and validated on the remaining part. This process was repeated ten times, and each part was 
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used once for validation. The test dataset, which was held constant across all folds, was used 

to evaluate the model post-training, as shown in Table 7.1. 

The S/N, in the context of the Taguchi method, is a metric used to measure the quality 

characteristic of a process. The S/N combines both the mean and the variability into a single 

statistic. When maximising the performance characteristic (the Overall Test Accuracy), the 

larger-the-better type of S/N is used, as indicated in the last column of Table 7.1. The Taguchi 

Approach Summary: S/N by Factor Levels is presented in Table 7.2. The formula for the 

larger-the-better S/N is given in Equation (7.2): 

           S/N=−10 log10 (
1

𝑛
∑

1

𝑦𝑖
2

𝑛
𝑖=1 ) 

(7.2) 

where n is the number of observations (or trials), 𝑦𝑖 is the value of the performance 

characteristic for the 𝑖-th observation, and  log10 represents the logarithm to base 10 (also 

known as the common logarithm).  

In this chapter’s Taguchi experiment, as shown in Table 7.4, each experiment is 

conducted only once (n= 1). Therefore, the S/N formula is simplified as shown in Equation 

(7.3): 

The negative sign is used because higher S/Ns are typically considered to be better, 

and a larger 𝑦 (which is better for larger-the-better quality characteristics) will yield a smaller 

one, that is, log10(
1

𝑦2) (hence the need to take the negative to make the S/N larger for better 

outcomes). These S/N values are in negative decibels (dB) because the reciprocal of a number 

less than 1 (when converted from a percentage) is greater than 1, and taking a log of a number 

greater than one yields a positive number. Because the S/N formula includes a negative sign, 

this results in negative values for the S/N. 

Each S/N value is calculated for the overall test accuracy of each experiment, and the 

mean S/N is then computed for each level of each factor. The level with the highest mean 

S/N is considered the most robust setting for that factor because it offers the highest quality 

with the slightest variation, as shown in Table 7.4. In this study, the overall accuracy of the 

GCN was assessed across nine experiments using the Taguchi design, emphasising the 

importance of fine-tuning model parameters for optimal performance and reducing the 

number of potential combinations. The mean accuracy was approximately 89.01%, with a 

S/N=−10 log10 (
1

𝑦2) (7.3) 
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standard deviation of ±1.25%, reflecting the variability observed across the experiments, 

where each experiment takes around 28 s.  

Table 7.4: Taguchi-Derived GCN Model Performance Evaluation. 

1 VA is validation accuracy, 2 MA is the Mild state accuracy, 3 MoA is the Moderate state accuracy,4 SA is the Severe state 

accuracy, 5 NA is the Normal (fault-free) or Healthy condition accuracy. 
 

For factor level analysis, the higher (less negative) the S/N, the better the 

performance. Therefore the highest S/N value should be targeted. Experiment 6 scores the 

least negative S/N, indicating the most robust performance. Further insights about S/N ratios 

are summarised in Table 7.5: 

 

Table 7.5: Taguchi Approach Summary: Signal-to-Noise Ratio by Factor Levels. 

Control 

 Factor 

Control Factor  

Levels 

Avg S/N for  

each factor  

A 

GCN with k =3 -0.98 

GCN with k =4 -0.95 

GCN with k =5 -1.10 

B 
200 -1.14 

300 -0.96 

400 -0.94 

C 
0.0001 -0.93 

0.0005 -1.01 

0.0009 -1.10 

 

No. 

Control Factors 
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Testing S/N Ratio   
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1 GCN with  k =3 200 0.0001 89.80% 60.22% 98.92% 97.85% 98.92% 88.98% -1.01 

2 GCN with  k =3 300 0.0005 90.02% 62.37% 97.85% 100% 100% 90.06% -0.91 

3 GCN with  k  =3 400 0.0009 89.42% 59.14% 98.92% 98.92% 98.92% 88.98% -1.02 

4 GCN with  k =4 200 0.0005 88.04% 59.14% 97.85% 95.70% 100% 88.17% -1.09 

5 GCN with  k  =4 300 0.0009 89.58% 61.29% 96.77% 98.92% 100% 89.25% -0.99 

6 GCN with  k  =4 400 0.0001 92.28% 66.67% 98.92% 100% 100% 91.40% -0.78 

7 GCN with  k =5 200 0.0009 88.03% 59.14% 93.55% 91.40% 100% 86.02% -1.31 

8 GCN with  k  =5 300 0.0001 90.10% 62.37% 95.70% 98.92% 100% 89.25% -0.99 

9 GCN with  k =5 400 0.0005 90.31% 60.22% 96.77% 98.92% 100% 88.98% -1.01 
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To enhance the clarity of the analysis, each factor was represented in a separate figure 

along with its corresponding levels. Factor A, involving Graph Creation using the k-NNG 

with three levels of the k factor, is shown in Figure 7.5. Factor B, representing Epochs, is 

depicted in Figure 7.6, while Factor C, representing the Learning Rate (LR), is illustrated in 

Figure 7.7. 

 

Figure 7.5: Levels of Control Factor A, S/N Ratio, and Test Accuracy. 

 

Figure 7.6: Levels of Control Factor B, S/N Ratio, and Test Accuracy. 
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Figure 7.7: Levels of Control Factor C, S/N Ratio, and Test Accuracy. 

From the S/N ratio analysis, it can be observed that the negative values of S/N may 

appear counterintuitive, but they result from the calculation method whereby performance 

characteristics are converted into a noise metric;the larger the S/N ratio the smaller the 

variation and therefore larger S/N results are selected.Experiment 6, which corresponds to a 

GCN with k =4, 400 epochs, and aLR of 0.0001, resulted in the highest overall accuracy and 

the largestS/N, thereby suggesting that it is the best performer among all of the tested 

experiments.  

While the GCN, leveraging the k-NNG approach, presents a novel and powerful 

method for detecting faults in complex systems, it displayed a notable limitation in the Mild 

fault class. Despite excelling in the Moderate (98.92%), Severe (100%), and Normal (fault-

free) or Healthy condition (100%) classes, its accuracy in the Mild class was significantly 

lower at 66.67%. This discrepancy can be attributed to the sparse distribution of Mild class 

samples within the graph structure, as depicted in the graph visualisation (Figure 7.3). The 

Mild fault samples were scattered and less connected, making it difficult for the GCN to 

exploit neighbourhood signals fully. Consequently, this led to misclassification, mainly due 

to an overlap with the Moderate and Normal (fault-free) or Healthy condition classes, 

limiting the GCN's ability to distinguish between them accurately. This observation 

underscores the need for further refinement and opens the path for improvement through the 

proposed hybrid approach.  
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7.2.3.2 Proposed GCN using Taguchi with Selective Weighted Loss (SWL) Method 

for Refining Mild Class Performance  

To refine the GCN model, particularly in the Mild class, after selecting the optimal 

Taguchi parameters, a weighted loss function approach was implemented to address the 

observed 33.33% misclassification rate in the Mild class. While the dataset was balanced, 

the lower accuracy for the Mild class could be attributed to its representation within the k-

NNG structure, which created challenges for the GCN in correctly classifying this class. To 

mitigate this, a custom weighting scheme was applied based on the optimal Taguchi factors 

from Experiment 6, which corresponds to a GCN with k =4, 400 epochs, and an LR of 0.0001 

(Table 7.4). The loss function was adjusted during training by assigning a higher weight to 

the Mild class. Specifically, the weight for the Mild class was doubled relative to the other 

classes, with the following weight vector: [1.0, 2.0, 1.0, 1.0]. This adjustment was 

incorporated using the torch.nn.CrossEntropyLoss function in PyTorch, allowing the model 

to focus more on correctly classifying the Mild class without sacrificing performance in the 

other classes. 

This adjustment aimed to improve the model's sensitivity to the Mild class, reducing 

its misclassification rate while maintaining overall accuracy across all classes. The training 

was repeated five times, and the results showed an improvement in Mild class accuracy, 

increasing from 66.67% to 84.52% ± 1.96%. Meanwhile, the overall testing accuracy 

remained almost the same, at 90.70% ± 0.15%, compared to the 91.40% achieved in 

Experiment 6 (Table 7.4), while maintaining the same training time of 28 s. However, while 

the model's performance in the Mild class improved, there was a slight compromise in its 

ability to classify the Moderate class accurately, with the accuracy dropping from 98.92% in 

Table 7.4 to 78.82% ± 2.33%. This supports the idea that the model was previously 

"confused" or was misallocating resources between these classes. 

This demonstrates the importance of SWL in addressing class-specific performance 

gaps, mainly when certain classes, like the Mild class, are harder to classify due to sparse 

graph connections or overlapping features. The SWL method effectively reallocated the 

model’s focus, allowing it to improve its performance in underperforming classes. 
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Table 7.6: GCN using Taguchi with Selective Weighted Loss (SWL) Trials for Mild Class 

Performance Improvement. 

 

7.2.3.3 One-Dimensional Convolutional Neural Network (1D-CNN) Compared with 

Proposed GCNs  

1D-CNNs and GNNs differ in the types of data they handle, their feature extraction 

mechanisms, and their areas of strength. 1D-CNNs are well-suited for detecting sequential 

patterns in structured, grid-like data, such as time series, where local dependencies and 

patterns can be effectively captured through convolutional layers. In contrast, GNNs, which 

include models like GCNs, excel at capturing relationships in irregular, graph-structured 

data, where the connections between data points are crucial for learning complex 

interdependencies in tasks such as fault classification in systems with complex data 

structures. 

This section explores the potential of 1D-CNNs in handling CLAF load-dependent 

fault subclasses. The training, validation, and test datasets used here are similar to those 

previously employed in the GCN model. The data were transformed into tensors to train the 

1D-CNNs, using an LR of 0.005 over 300 epochs, as shown in Table 7.6. The table compares 

the proposed GCN using Taguchi, presented earlier in Table 7.4 (Experiment 6), with the 

1D-CNN. Furthermore, it compares the proposed GCN with SWL (Table 7.7) to the 1D-

CNN.  

 

 

Training 

Runs 

Validation 

Accuracy 

Mild 

Accuracy 

Moderate 

Accuracy 

Severe 

Accuracy 

Normal 

Accuracy 

Overall 

Test 

Accuracy 

1 89.53% 84.95% 77.42% 100% 100% 90.59% 

2 91.60% 81.72% 81.72% 100% 100% 90.86% 

3 90.60% 83.87% 78.49% 100% 100% 90.59% 

4 90.59% 84.95% 78.49% 100% 100% 90.86% 

5 90.58% 87.10% 75.27% 100% 100% 90.59% 

Avg. 90.58% 84.52% 78.28% 100% 100% 90.70% 
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Table 7.7: 1D-CNN and Proposed GCN Configurations Performance Evaluation. 

Training Model Training 

Time 

Validation 

Accuracy 

Mild 

Accuracy 

Moderate 

Accuracy 

Severe 

Accuracy 

Normal 

Accuracy 

Overall Test 

Accuracy 

1D-CNN 3. min = 

180 sec 
95.31% 97.85% 92.47% 100% 100% 97.58% 

Proposed GCN 

using Taguchi 
28 sec 92.28% 66.67% 98.92% 100% 100% 91.40% 

Proposed GCN 

with SWL 
28 sec 90.58% 84.52% 78.28% 100% 100% 90.70% 

 

Comparison Summary from Table 7.7: 

• 1D-CNN compared to proposed GCN using Taguchi  

The 1D-CNN model performed exceptionally well in the Mild class, achieving an 

impressive accuracy of 97.85%. The 1D-CNN also showed a strong overall test performance, 

with an overall accuracy of 97.58%, which is higher than the proposed GCN's 91.40%, as 

shown in Table 7.4 (Experiment 6). However, the 1D-CNN faced challenges in classifying 

the Moderate class, achieving an accuracy of 92.47%, whereas the GCN excelled in this class 

with 98.92%. 

• 1D-CNN compared to proposed GCN using Taguchi with SWL  

When comparing the 1D-CNN and the proposed SWL method, it is clear that both 

approaches offer distinct advantages in handling the Mild class. The 1D-CNN achieved an 

impressive 97.85% accuracy for the Mild class, significantly outperforming the proposed 

SWL, which improved the Mild class accuracy to 84.52%. Additionally, the 1D-CNN 

maintained a high overall test accuracy of 97.58%, compared to 90.70% for the SWL method. 

However, SWL achieved these results with the same computational efficiency as the original 

GCN model (28 s), whereas the 1D-CNN required more training time (180 s). Despite the 

computational advantage of SWL, its moderate performance and the drop in accuracy for the 

Moderate class make it less suited for inclusion in the hybrid approach, which aims to balance 

class performance optimally. 
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7.2.3.4 Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault 

Classification 

Although the proposed GCN using Taguchi with SWL proved helpful in refining 

class-specific accuracy, the hybrid method is specifically designed to leverage the individual 

strengths of the GCN and the 1D-CNN without compromising performance in any class. In 

this setup, the GCN retains its strength in the Moderate class, while the 1D-CNN provides 

robustness in the Mild class, thereby avoiding the trade-offs introduced by SWL. The hybrid 

approach ensures better class performance across all fault types without needing selective 

loss weighting for balance. 

The GCN demonstrated significant strengths in capturing complex relationships, 

particularly excelling in the Moderate (98.92% accuracy), Normal (fault-free) or Healthy 

condition (100% accuracy), and Severe (100% accuracy) fault classes. One key advantage 

of the GCN is its ability to handle complex and large datasets efficiently, with experiments 

completed in approximately 28 s. However, its performance in the Mild class was limited, 

achieving only 66.67% accuracy due to sparse node connectivity and overlap with other 

classes, as shown in the graph visualisation (Figure 7.3). Despite these limitations, the k-

NNG approach employed by the GCN offers a robust method for fault classification in 

complex systems, mainly when modelling tabular vibration signals. To address the 

performance gap in the Mild class, the HG-CDF approach was proposed, combining the 

strengths of both the GCN and the 1D-CNN to ensure enhanced performance across all fault 

classes. The findings from the decision fusion approach are outlined in Table 7.8. 

Table 7.8 shows an optimised weighting system can significantly improve 

classification performance, particularly in the Moderate class. Two systems were evaluated: 

Equal Weighting and the Adaptive Weighting System. The Equal Weighting system, 

assigning equal weights (0.5) to both the GCN and the 1D-CNN for all classes, achieved a 

solid overall test accuracy of 98.66%. However, the Moderate class performed slightly below 

expectations at 95.70%, despite the GCN's inherent strengths in this class. In terms of training 

time, the GCN took only 28 s to complete training, while the 1D-CNN required around 3 

min. 
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When considering the total training time for the hybrid approach, the combined 

training time for both models amounts to approximately 3 min 28 s. This highlights the 

efficiency of the GCN in delivering high-accuracy results quickly and the role of the 1D-

CNN in complementing areas where the GCN struggles, such as the Mild class. 

In contrast, the Adaptive Weighting System, which gave a higher weight to the 1D-

CNN for the Mild class (0.7) and to the GCN for the Moderate class (0.6), led to a marked 

improvement. The overall test accuracy rose to 99.19%, with the Moderate class improving 

from 95.70% to 97.85%. This result demonstrates that leveraging the unique capabilities of 

both models—the GCN for complex graph-structured data and the 1D-CNN for sequential 

patterns—can enhance classification performance. Both systems maintained perfect 

accuracy in the Severe and Normal (fault-free) or Healthy condition classes, highlighting 

their robustness for these fault types. 

Table 7.8: Hybrid Graph-CNN Decision Fusion (HG-CDF) Weighting Systems and Performance 

Comparison. 

Weighting 

system 

Alternatives  

Class Proposed 

GCN 

using 

Taguchi 

1D-CNN 

Weight 

 

Testing 

Accuracy 

Overall 

Test 

Accuracy 

Notes 

1. Equal 

Weighting  

Mild  0.5 0.5 98.92% 

98.66% 

Basic equal 

weighting for 

all classes. 
Moderate 0.5 0.5 95.70% 

Severe  0.5 0.5 100% 

 Normal 0.5 0.5 100% 

2. Adaptive 

Weighting 

Mild  0.3 0.7 98.92% 

97.85% 

100% 

100% 

99.19% 

Higher CNN 

weight for 

Mild, higher 

GCN weight 

for Moderate 

Moderate 0.6 0.4 

Severe  0.5 0.5 

Normal 0.5 0.5 

7.2.4 Comparison of LD-MVSEF (Chapter 6) and HG-CDF (Chapter 7) in Mild and 

Moderate Class Fault Detection 

Comparing the performance of the Load-Dependent Multimodal Vibration Signal 

Enhancement and Fusion (LD-MVSEF) method from Chapter 6 and the HG-CDF approach 
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from Chapter 7, we can see that both methods demonstrate strong classification capabilities 

for the Mild and Moderate fault subclasses, as presented in Table 7.9. Both models achieved 

100% accuracy in the Normal and Severe fault classes. LD-MVSEF achieved a test accuracy 

of 97.20% for the Mild class and 99.15% for the Moderate class but required a training time 

of 18 min 30 s. In contrast, HG-CDF slightly outperformed LD-MVSEF in the Mild class 

with a test accuracy of 98.92%, though it achieved a slightly lower accuracy of 97.85% in 

the Moderate class. What sets HG-CDF apart is its efficiency, completing the training in just 

3 min 28 s—considerably faster than LD-MVSEF. This comparison shows that while LD-

MVSEF excels in Moderate class accuracy, HG-CDF offers a more efficient solution with 

competitive accuracy, particularly in the Mild class, suggesting its potential for faster, less 

complex condition monitoring. 

Table 7.9: Accuracy Comparison of LD-MVSEF (Chapter 6) and HG-CDF (Chapter 7) Across 

Fault Subclasses. 

Proposed 

Methodology 

Training 

Time 

Mild 

Accuracy 

Moderate 

Accuracy 

Severe 

Accuracy 

Normal 

Accuracy 

Overall 

Test 

Accuracy 

LD-MVSEF 

(Chapter 6) 

18 min 30 s 

 
97.20% 99.15% 100% 100% 99.04% 

 HG-CDF 

(Chapter 7) 
3 min 28 s 98.92% 97.85% 100% 100% 99.19% 

7.3 Summary 

This chapter presented a novel approach for load-dependent fault classification by 

applying GCNs to transform tabular vibration signal data into graph structures using k-NNG 

method. Through the Taguchi DOE, nine GCN configurations were tested, achieving a mean 

accuracy of 89.01% ± 1.25%, with a strong performance in the Moderate (98.92%), Severe 

(100%), and Normal (fault-free) or Healthy condition (100%) classes. However, the GCN 

encountered limitations in the Mild class, with accuracy reaching only 66.67% due to sparse 

node connectivity and class overlap. 

To address this limitation, the chapter first introduced the Selective Weighted Loss 

(SWL) method as an attempt to improve the Mild class accuracy by adjusting the loss 

function to focus more on this underperforming class. While the SWL method successfully 
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raised the Mild class accuracy to 84.52% ± 1.96%, it resulted in a drop in the Moderate class 

accuracy, showing a trade-off between classes that limited its overall effectiveness. 

Recognising the need for a more balanced solution, the HG-CDF method was 

proposed, integrating the GCN with a 1D-CNN. This hybrid approach leveraged the GCN's 

ability to model complex relationships and the 1D-CNN's strength in detecting sequential 

patterns. The HG-CDF method significantly improved performance, particularly in the Mild 

class, while maintaining perfect accuracy in the Severe and Normal (fault-free) or Healthy 

condition classes. Furthermore, the hybrid model demonstrated computational efficiency, 

completing training in just 3 min 28 s—combining the GCN's 28-second speed with the 1D-

CNN's 3-minute training time, and achieving a high testing accuracy of 99.19%. 

This chapter contributes to the field by validating the GCN's effectiveness for fault 

classification, exploring the use of SWL for class-specific improvement, and introducing a 

hybrid model that overcomes identified limitations, enhancing performance across all CLAF 

load-dependent fault subclasses. The main contributions of the current chapter are as follows 

1. Proposed GCN using Taguchi: Explored and validated the use of GNNs within the 

CLAF, using TFD features, including spectral features extracted via Autoregression instead 

of raw vibration signals. The k-NN algorithm was applied to represent extracted tabular data 

as k-NNGs, which were then used as inputs for the GCN. Optimal configurations for the 

GCN were selected based on Taguchi experiments. 

2. GCN using Taguchi with Selective Weighted Loss (SWL): Introduced the SWL method 

to improve class-specific accuracy, particularly targeting the Mild class. The SWL method 

allowed the model to reallocate focus and improve the accuracy of the Mild class, while still 

maintaining a strong performance across other classes. 

3. Hybrid Graph-CNN Decision Fusion (HG-CDF) for Load-Dependent Fault 

Classification: Developed the HG-CDF approach, combining the strengths of the GCN and 

the 1D-CNN for load-dependent fault classification. This hybrid model significantly 

improved performance across all fault classes, especially in the Mild class, while maintaining 

high computational efficiency with a total training time of 3.28 min. 
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8.1 Conclusion 

In the rapidly evolving fields of Machine Learning (ML) and Deep Learning (DL), 

innovative applications are continually being developed to address complex problems across 

various industries. These technologies have proven especially transformative in industrial 

machinery maintenance, enhancing fault classification accuracy and operational efficiency. 

This thesis has contributed to this transformative wave by advancing Induction Motor (IM) 

bearings fault classification through innovative methodologies that leverage multimodal 

data, Artificial Intelligence (AI), and adaptive techniques. 

The research has focused on multimodal data preprocessing for IM fault 

classification, proposing a methodology that combines multi-sensor images into a single 

Stitched Multimodal Image, which is then processed using pre-trained Convolutional Neural 

Networks (CNNs), specifically SqueezeNet and Residual Network-18 (ResNet-18). This 

study first assessed the classification accuracy of compromised-quality thermal images. 

Then, this was enhanced through multimodal preprocessing by integrating Continuous 

Wavelet Transform (CWT)-encoded vibration signals with the original thermal images and 

applying the Gramian Angular Field (GAF) technique. The results demonstrate that the 

images stitched with GAF achieved an overall mean accuracy of 98.39% ± 1.07%, while 

those using CWT recorded 96.89% ± 1.38%. The proposed image fusion preprocessing 

approach, utilising the GAF signal encoding technique, improved classification accuracy by 

12.5%, achieving 99.1% ± 0.5% accuracy when using both ResNet-18 and SqueezeNet, 

compared to the 87.96% accuracy achieved with compromised thermal images alone. 

Recognising the importance of thermal images, this research has explored generating 

artificial thermal images using   Wasserstein Generative Adversarial Networks withGradient 

Penalty (WGAN-GP) and conditional Wasserstein Generative Adversarial Networks with 

Gradient Penalty (cWGAN-GP). A three-level evaluation approach has been applied to 

ensure that the generated images for IM bearing faults closely resembled real images 

collected in the lab. This included visual and qualitative assessments, quantitative metrics 

such as Earth Mover’s Distance (EMD) and Maximum Mean Discrepancy (MMD), and 

classification accuracy using a pre-trained AlexNet model. The cWGAN-GP, which 

incorporates class information based on the bearing health conditions used as classes, 

demonstrated further improvements in image generation. While WGAN-GP slightly 
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outperformed in EMD, cWGAN-GP-generated images exhibited a closer statistical 

resemblance to real images with a lower MMD score. The cWGAN-GP dataset achieved 

98.41% accuracy on unseen real images, with the entire training process completed in just 

7.5 hours for all classes, compared to the 18-37 hours required by WGAN-GP for each class. 

This evaluation has demonstrated that the cWGAN-GP approach effectively generates 

artificial thermal images that resemble real images. Thus, this evaluation indicates that the 

cWGAN-GP approach is suitable for generating artificial thermal images that resemble real 

ones, making them effective for more accurate fault classification in IM bearings.  

Furthermore, this study has proposed a Customised Load Adaptive Framework 

(CLAF) to address the literature's rarely discussed impact of Load Factors (LFs). The CLAF's 

first phase has revealed load-dependent patterns using wavelet energy, while the second 

phase has dealt with tailored methodologies specifically for the Machinery Failure 

Prevention Technology (MFPT) bearing dataset, identifying new load-dependent fault 

subclasses: Mild, Moderate, Severe, and Normal (fault-free) or Healthy condition'. The 

CLAF has demonstrated its ability to detect nuanced fault variations under various LF 

conditions, achieving 96.30% ± 0.50% accuracy in 18.155 s during five-fold cross-validation 

with a Wide Neural Network (WNN). Building on CLAF, two methodologies for Load-

Dependent Fault Classification have been proposed: the Load-Dependent Multimodal 

Vibration Signal Enhancement and Fusion (LD-MVSEF) method and the Hybrid Graph-

CNN Decision Fusion (HG-CDF) method.  

The LD-MVSEF method has been used to effectively integrate diverse machine 

learning models to optimise CLAF load-dependent fault subclass classification. It extracts 

features independently from multiple data representations within a single source, utilising 

three distinct feature extraction channels. A fusion module has been used to consolidate these 

individual decisions into a unified classification result. LD-MVSEF utilises three channels: 

Channel 1 extracts features from the time and frequency domains, Channel 2 converts raw 

vibration signals into wavelet scalograms, and Channel 3 uses the Gramian Angular 

Difference Field (GADF) to generate two-dimensional (2D) images. Each channel was 

trained using different classifiers, with the most accurate being selected for all CLAF load-

dependent fault subclasses. Using top-performing models like CubicSVM and AlexNet 
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across these input channels, LD-MVSEF achieved an overall accuracy of 99.04% ± 0.22%, 

based on five runs, confirming its efficacy and stability across multiple trials. 

Furthermore, this thesis has explored the potential of Graph Convolutional Networks 

(GCNs) for condition monitoring, focusing on fast model training and accurate fault 

categorisation. The study began with the GCN using Taguchi, which transformed tabular 

data into graph structures using the k-Nearest Neighbours (kNN) method, demonstrating 

strong performance in load-dependent fault classification with a mean accuracy of 89.01% ± 

1.25% across nine experiments. The GCN performed exceptionally well in the Moderate 

(98.92%), Severe (100%), and Normal (fault-free) or Healthy condition (100%) classes, 

while showing room for improvement in the Mild class, achieving 66.67% accuracy. To 

address this, the GCN using Taguchi with Selective Weighted Loss (SWL) was introduced, 

enhancing class-specific accuracy and improving the Mild class performance from 66.67% 

to 84.52% ± 1.96% over five runs. This improvement was achieved while maintaining overall 

model robustness, with accuracy at 90.70% ± 0.15%. Finally, the HG-CDF method was 

developed to further enhance overall accuracy across all classes. By combining the GCN's 

ability to capture complex relationships with the 1D-CNN's strength in detecting sequential 

patterns, this hybrid approach resulted in an impressive overall accuracy of 99.19%, while 

maintaining computational efficiency with a total training time of just 3.28 min. 

LD-MVSEF and HG-CDF methodologies have demonstrated strong classification 

capabilities for the Mild and Moderate fault subclasses. LD-MVSEF achieved higher 

accuracy in the Moderate class (99.15%) than HG-CDF (97.85%). Still, HG-CDF 

outperformed LD-MVSEF in the Mild class (98.92%) and completed training in significantly 

less time—3 min 28 s compared to LD-MVSEF's 18 min 30 s. This comparison suggests that 

while LD-MVSEF excels in accuracy for Moderate conditions, HG-CDF offers a faster, more 

efficient solution with a competitive performance, making it a promising approach for 

condition monitoring. 

The methodologies developed in this thesis have the potential to be generalised for 

broader applications. This research lays the groundwork for advancing condition monitoring 

systems, providing a framework that could significantly enhance fault classification in future 

machinery maintenance and monitoring innovations. 
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8.2 Contributions to Knowledge 

This thesis has made significant strides in advancing fault classification technologies 

for IMs, aligning closely with the structured research questions designed and presented in 

Section 1.3 to probe various aspects of this field. The following clarifies how each 

contribution addresses the corresponding research question: 

1. Novel Multimodal Data Preprocessing for IM Fault Classification: This contribution 

addresses the first research question, demonstrating how integrating thermal and 

vibration data in a multimodal system enhances fault detection capabilities. 

2. Conditional Wasserstein Generative Adversarial Network with Gradient Penalty 

(cWGAN-GP) for Generating Artificial Thermal Images of Motor Faults: This 

technique relates to the second research question by demonstrating the use of 

Generative Adversarial Networks (GANs) to create a new dataset of artificial thermal 

images. It illustrates how these images are able to replicate various health conditions 

of IMs and discusses methods for effectively assessing their similarity to real images. 

3. Customised Load Adaptive Framework (CLAF) for Fault Classification: This 

framework supports the third research question by developing an innovative 

methodology to identify and classify new load-dependent fault subclasses using 

advanced techniques, thus enhancing fault classification precision. 

4. Load-Dependent Multimodal Vibration Signal Enhancement and Fusion (LD-

MVSEF) for Load-Specific Condition Monitoring: This contribution is linked to the 

fourth research question. It explains how the three-channel fusion technique can be 

optimised to improve the health assessment of machinery, focusing primarily on load-

dependent fault subclasses in industrial settings. 

5. Graph Convolutional Network (GCN) and Hybrid Graph-CNN Decision Fusion 

(HG-CDF) for Load-Dependent Fault Classification: This final contribution 

addresses the fifth research question, demonstrating how Graph Neural Networks 

(GNNs) effectively classify faults using tabular vibration signals by transforming 

them into graph structures through the k-Nearest Neighbour Graph (k-NNG) method. 

The introduction of the HG-CDF method, which integrates GCNs with 1D-CNNs, 

resolves classification limitations, enhancing performance across all CLAF load-

dependent subclasses while maintaining computational efficiency.  



 

204 

 

8.3 Study Limitations 

The current study was conducted using Google Colab's GPU resources and 

MATLAB software to manage computational demands. Notably, creating artificial images 

required significant computational capabilities, highlighting the need for robust processing 

environments. The current research utilised the MFPT bearing dataset, widely recognised as 

a standard dataset in this field, thereby helping to ensure the relevance and comparability of 

the findings. The artificial images were also generated based on data collected in a suitable 

environment at Cardiff University's laboratory. This controlled setting helped to maintain 

consistent conditions during image capture but may also have the effect of limiting the 

generalisability of the results to less controlled environments. Such factors should be 

considered when interpreting the outcomes and applicability of this research. 

8.4 Future Work 

Building on the achievements of this thesis, future research should focus on 

expanding the integration of additional sensory data, such as Acoustic Emission (AE) sensing  

and electrical signals, to enrich multimodal datasets for enhanced fault detection accuracy. 

Optimising models for real-time data processing and employing edge computing is critical 

to ensure that the methodologies developed are viable in operational environments. There is 

a significant opportunity to investigate advanced neural network structures, including further 

exploration of GNNs, to enhance model robustness and efficiency across various types of 

machinery. Developing algorithms that predict mechanical failures before they occur could 

significantly reduce maintenance costs and downtime, making fault classification more 

proactive. Further work is needed to make artificial image creation using the cWGAN-GP 

more successful and to test this approach on different datasets and potentially make these 

datasets available online for organisations concerned with data privacy. 

Additionally, exploring different data representations and developing more 

sophisticated decision fusion techniques could enhance algorithm decision accuracy, 

including utilising data augmentation techniques to handle anomalies in thermal images. 

Continuing to create the CLAF will enable deeper exploration into load-dependent fault 

classification, fostering a more customised approach that accommodates operational 

variances. Lastly, given the promising results in minimising training times and converting 
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tabular data into graphical structures, future research should extend the use of GNNs within 

industrial condition monitoring, potentially establishing GNNs as a cornerstone in future 

fault classification technologies. By prioritising these areas, future research will extend the 

theoretical advances made and focus on practical applications and real-world deployment, 

ensuring that the next generation of fault classification tools is innovative and directly 

applicable to the needs of the industry. 
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Appendix 1: Pythons Codes in Jupyter Notebook 
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1.1.  Chapter3: Thermal Images Extraction from Cardiff University File 

   import pandas as pd 

import numpy as np 

import os 

from shutil import copyfile 

data_dir = r'C:\Users\Shahd\OneDrive - Cardiff University\Cardiff\Phd\Year2\RawMotorData/' 

new_dir = r'C:\Users\Shahd\OneDrive - Cardiff University\Cardiff\Phd\Year2\MotorData26/' 

for adir in os.listdir(data_dir): 

  newadir = new_dir + adir 

  print(f"Processing {adir}...") 

  if not os.path.exists(newadir): 

    os.mkdir(newadir) 

  if not adir.startswith('.'): 

    bdir = data_dir + f'{adir}/' 

    for cdir in os.listdir(bdir): 

      if not cdir.startswith('.'): 

        ddir = bdir + f'{cdir}/' 

        for afile in os.listdir(ddir): 

          if afile.endswith('.csv') and 'vibration' in afile: 

            filepath = ddir + afile 

            data = pd.read_csv(filepath) 

            

            vib_data = data.loc[0:7000000:26, :] 

            print(vib_data) 

            vib_list = np.array_split(vib_data[' vibration'], 120) 

            for i, v in enumerate(vib_list): 

                

                vib_df = pd.DataFrame(data={"vibration": v}) 

                vib_df.to_csv(newadir + f"/{adir}_{cdir}_vibration_{i}.csv", index=False)  

                

          if afile.endswith('.csv') and 'current' in afile: 

            filepath = ddir + afile 

            data2= pd.read_csv(filepath) 

            cur_data = data2.loc[0:7000000:26, :] 
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            cur_list = np.array_split(cur_data[' phase1'], 120) 

 

            for i, c in enumerate(cur_list): 

               

                cur_df = pd.DataFrame(data={"current1": c}) 

                cur_df.to_csv(newadir + f"/{adir}_{cdir}_current_{i}.csv", index=False) 

              

          if afile.endswith('.png'): 

            filepath = ddir + afile  

            new_path = newadir + f"/{adir}_{cdir}_{afile}" 

            copyfile(filepath, new_path) 

             

1.2.  Chapter3:  Thermal Images Preprocessing (Jupyter Notebook) 

yyfrom pathlib import Path 

import cv2 

import os 

import numpy as np 

import random 

from shutil import copyfile 

pip install pillow 

thermal_path = r'C:\Users\Shahd\OneDrive - Cardiff 

University\Cardiff\Phd\Year2\MotorData26\Thermal_Resized_split' 

newadir = r'C:\Users\Shahd\OneDrive - Cardiff 

University\Cardiff\Phd\Year2\MotorData26\median_thermal/' 

#brightness 

def brightness(img, low, high): 

  value = random.uniform(low, high) 

  hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) 

  hsv = np.array(hsv, dtype = np.float64) 

  hsv[:,:,1] = hsv[:,:,1]*value 

  hsv[:,:,1][hsv[:,:,1]>255] = 255 

  hsv[:,:,2] = hsv[:,:,2]*value  

  hsv[:,:,2][hsv[:,:,2]>255] = 255 
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  hsv = np.array(hsv, dtype = np.uint8) 

  img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) 

  return img 

#rotation  

def rotation(img, angle): 

  angle = int(random.uniform(-angle, angle)) 

  h, w = img.shape[:2] 

  M = cv2.getRotationMatrix2D((int(w/2), int(h/2)), angle, 1) 

  img = cv2.warpAffine(img, M, (w, h)) 

  return img 

#zoom 

import cv2 

import random 

img = cv2.imread('arc_de_triomphe.jpg') 

def fill(img, h, w): 

  img = cv2.resize(img, (h, w), cv2.INTER_CUBIC) 

  return img 

def zoom(img, value): 

  if value > 1 or value < 0: 

    print('Value for zoom should be less than 1 and greater than 0') 

    return img 

  value = random.uniform(value, 1) 

  h, w = img.shape[:2] 

  h_taken = int(value*h) 

  w_taken = int(value*w) 

  h_start = random.randint(0, h-h_taken) 

  w_start = random.randint(0, w-w_taken) 

  img = img[h_start:h_start+h_taken, w_start:w_start+w_taken, :] 

  img = fill(img, h, w) 

  return img 

for adir in os.listdir(thermal_path): 

  newdir = newadir + adir 

   

  print(f"Processing {adir}...") 
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### 

  if not os.path.exists(newdir): 

    os.mkdir(newdir) 

  if not adir.startswith('.'): 

    bdir = thermal_path + f'/{adir}/' 

    print(bdir) 

    bnewdir = newadir + f'/{adir}/' 

    print(bnewdir) 

##    

    for cdir in os.listdir(bdir):  

      cnewdir = bnewdir + cdir 

       

      if not os.path.exists(cnewdir): 

        os.mkdir(cnewdir) #print faults type 

      if not cdir.startswith('.'): 

        ddir = bdir + f'/{cdir}/' 

        

        for afile in os.listdir(ddir): 

               

              v_path = Path(afile) 

              img1 = ddir + afile  

              img1= cv2.imread(img1) 

              median = cv2.medianBlur(img1,9 ) 

              median = brightness(median, 1, 2) 

              median= rotation(median, 40)  

              median = zoom(median, 0.4 ) 

              #cv2.imshow("median", median) 

              filepath = ddir + afile  

              new_path = cnewdir + f"/{v_path}" 

              cv2.imwrite(new_path, median) 

              cv2.waitKey(0) 

              cv2.destroyAllWindows() 

 

1.3.  Chapter 3: Preprocessing For Image Fusion  
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for index in data2.index: 

#Image new directory is merge_GADF_GADF_thermal 

#dirname = os.path.abspath(GADF_GADF_Thermal) 

#dirname= r'C:\Users\Shahd\OneDrive - Cardiff 

University\Cardiff\Phd\Year2\MotorData26\GADF_GADF_Thermal'   

       #assign columns using index 

  c= data2['current'][index] 

  v= data2['vibration'][index] 

  t= data2['thermal'][index] 

  fault = data2['Fault'][index] 

  dest_directory = merge_GADF_GADF_thermal + f"/{fault}/" 

  if not os.path.exists(dest_directory): 

    os.mkdir(dest_directory) 

  #reading pictures  

  c_im=cv2.imread(c) 

  v_im=cv2.imread(v) 

  t_im=cv2.imread(t) 

      #split channels for each feature 

  b1, g1, r1 = cv2.split(c_im) 

  b2, g2, r2 = cv2.split(v_im) 

  b3, g3, r3 = cv2.split(t_im) 

 

      #merge channels 

  blue_merge = cv2.merge((b1,b2,b3)) 

  green_merge = cv2.merge((g1,g2,g3)) 

  red_merge = cv2.merge((r1,r2,r3)) 

 

      #total image 

  total = blue_merge+green_merge+red_merge 

      # Using cv2.imwrite() method Saving the image 

  cv2.imwrite(os.path.join(dest_directory, f'{fault}_GADF_GADF_therm_{index}'+'.JPEG'), 

cv2.cvtColor(total, cv2.COLOR_BGR2RGB)) 
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Appendix 2: MATLAB Code 
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2.1 Chapter 3: MFPT Files Spitting, CSV. Files Creation, Scalograms Images 

(CWT images) Creation and Saving as JPG.  

Scalogram of Bearing Data Visualisation  

data_inner = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data', 'InnerRaceFault_vload_1.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(data_inner) 

% Import data with ORF 

data_outer = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'test_data', 'OuterRaceFault_3.mat')); 

% Plot original signal and its scalogram 

plotBearingSignalAndScalogram(data_outer) 

 

% Import normal bearing data 

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data', 'baseline_1.mat')); 

% Plot original signal and its scalogram 

plotBearingSignalAndScalogram(data_normal) 

Prepare Training Data 

Unzip the downloaded file. 

if exist('RollingElementBearingFaultDiagnosis-Data-master.zip', 'file') 

  unzip('RollingElementBearingFaultDiagnosis-Data-master.zip') 

end 

fileLocation = 

'C:\Users\Shahd\Documents\MATLAB\Examples\R2022a\predmaint_deeplearning\Rol

lingElementBearingFaultDiagnosisUsingDeepLearningExample\RollingElementBearin

gFaultDiagnosis-Data-master\train_data' 

ensembleTrain = fileEnsembleDatastore(fileLocation, fileExtension) 



 

251 

 

ensembleTrain.ReadFcn = @readMFPTBearing; 

ensembleTrain.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", 

"BSF"]; 

ensembleTrain.ConditionVariables = ["Label", "FileName"]; 

ensembleTrain.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", 

"BSF", "Label", "FileName"] 

% Wavelet scalograms creation 

reset(ensembleTrain) 

while hasdata(ensembleTrain) 

 folderName = 'train_image'; 

 convertSignalToScalogram(ensembleTrain,folderName); 

end 

% Create image datastore to store all training images 

path = fullfile('.', folderName); 

imds = imageDatastore(path, ... 

 'IncludeSubfolders',true,'LabelSource','foldernames'); 

% Use 20% training data as validation set 

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.8,'randomize'); 

Helper Functions 

function plotBearingSignalAndScalogram(data) 

% Convert 1-D bearing signals to scalograms through wavelet transform 

fs = data.bearing.sr; 

t_total = 0.1; % seconds 

n = round(t_total*fs); 

bearing = data.bearing.gs(1:n); 

[cfs,frq] = cwt(bearing,'amor', fs); 

% Plot the original signal and its scalogram 

figure 

subplot(2,1,1) 

plot(0:1/fs:(n-1)/fs,bearing) 

xlim([0,0.1]) 
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title('Vibration Signal') 

xlabel('Time (s)') 

ylabel('Amplitude') 

subplot(2,1,2) 

surface(0:1/fs:(n-1)/fs,frq,abs(cfs)) 

shading flat 

xlim([0,0.1]) 

ylim([0,max(frq)]) 

title('Scalogram') 

xlabel('Time (s)') 

ylabel('Frequency (Hz)') 

end 

function convertSignalToScalogram(ensemble,folderName) 

% Convert 1-D signals to scalograms and save scalograms as images 

data = read(ensemble); 

fs = data.sr 

x = data.gs{:}; 

label = char(data.Label); 

fname = char(data.FileName); 

ratio = 5000/97656; 

interval = ratio*fs  

N = floor(numel(x)/interval); 

% Create folder to save images 

path = fullfile('.',folderName,label); 

if ~exist(path,'dir') 

 mkdir(path); 

end 

%new added 

path_numerical = fullfile('.',folderName,label, 'sub_sample_split1'); 

if ~exist(path_numerical,'dir') 

 mkdir(path_numerical); 
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end 

for idx = 1:N 

 sig = envelope(x(interval*(idx-1)+1:interval*idx)); 

 file_path = fullfile('.',path_numerical,[fname '-' num2str(idx) '.csv']);%(new added) 

 writematrix(sig,file_path); %new 

 %like we are creating subfolders based on the interval equal data ineach 

 %file not using envelop transform  

 cfs = cwt(sig,'amor', seconds(1/fs)); 

 cfs = abs(cfs); 

 img = ind2rgb(round(rescale(flip(cfs),0,255)),jet(320)); 

 outfname = fullfile('.',path,[fname '-' num2str(idx) '.jpg']); 

 imwrite(imresize(img,[224,224]),outfname); 

end 

end 

2.2 Chapter 5: Phase 1: Step1: Data Preprocessing and General Load-Dependent 

Feature Extraction, and Phase 2: Step 3: CLAF 

Normal Dataset 

% Import normal bearing data 

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'test_data', 'baseline_2.mat')); 

Inner load comparison 

IRF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_2.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(IRF_50) 

IRF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_3.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(IRF_100) 

IRF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 
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  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_4.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(IRF_150) 

 

IRF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_5.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(IRF_200) 

IRF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_6.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(IRF_250) 

IRF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_7.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(IRF_300) 

Create Inner Load ensemble 

The code calculates the minimum length of the bearing signal data across all load factors before 

creating the ensemble. The subsequent extraction of the bearing signal data is limited to this 

minimum length, ensuring that all ensembles have the same number of entries because the 

baseline is 6 seconds while others are only 3 seconds; now they are the same.  

% Load dataset of different Inner load factors and corresponding variable names 

load_factors = [50, 100, 150, 200, 250, 270, 300]; 

variable_names = {'IRF_50', 'IRF_100', 'IRF_150', 'IRF_200', 'IRF_250', 

'data_normal','IRF_300'}; 

% Initialize an empty ensemble with two columns 

ensemble = table(); 

% Find the minimum length of bearing signal data across all load factors 

min_length = Inf; % Initialize with infinity 

for i = 1:length(load_factors) 
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  % Construct the variable name 

  variable_name = variable_names{i}; 

   

  if strcmp(variable_name, 'data_normal') 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = data_normal.bearing.sr; 

    t_total = 3; % seconds 

    n = round(t_total * fs); 

    bearing_data = data_normal.bearing.gs(1:n); 

  else 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = eval([variable_name '.bearing.sr']); 

    t_total = 3; % seconds 

    n = round(t_total * fs); 

    bearing_data = eval([variable_name '.bearing.gs(1:n)']); 

  end 

  % Update the minimum length 

  min_length = min(min_length, length(bearing_data)); 

end 

 

for i = 1:length(load_factors) 

  % Construct the variable name 

  variable_name = variable_names{i}; 

    if strcmp(variable_name, 'data_normal') 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = data_normal.bearing.sr; 

    bearing_data = data_normal.bearing.gs(1:min_length); 

  else 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = eval([variable_name '.bearing.sr']); 

    bearing_data = eval([variable_name '.bearing.gs(1:min_length)']); 

  end 

   

  % Create a timetable for the current variable 
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  timetable_data = timetable(seconds(0:1/fs:(length(bearing_data)-1)/fs)', bearing_data); 

  % Add the timetable and load factor as rows to the ensemble 

  ensemble = [ensemble; {timetable_data, load_factors(i)}]; 

end 

% Rename the columns of the ensemble 

ensemble.Properties.VariableNames = {'Timetable', 'LoadFactor'}; 

% Display the resulting ensemble 

disp(ensemble); 

%use the table in diagnosticFeatureDesigner the results are in the word 

%file then generate features after that do the ranking  

Features Ranking  

% Load the provided table load (INNERONLY_feature extraction_Phase1_thesis) 

% Exclude the 'LoadFactor' and 'BandPower' columns 

features = FeatureTable1_1(:, 2:end-1); 

% Calculate the standard deviation for each feature 

stdValues = varfun(@std, features); 

% Calculate the range for each feature 

rangeValues = varfun(@(x) max(x) - min(x), features); 

 

% Get the feature names 

featureNames = cellfun(@(x) x(strfind(x, '/')+1:end), features.Properties.VariableNames, 

'UniformOutput', false); 

% Create a ranking table with feature names, std, and range 

rankingTable = table(featureNames', stdValues.Variables', rangeValues.Variables', 

'VariableNames', {'Feature', 'Std', 'Range'}); 

% Sort the ranking table based on the desired metric (e.g., std or range) 

sortedTable = sortrows(rankingTable, 'Std', 'descend'); % Change 'Std' to 'Range' if you want to 

rank by range 

% Display the sorted table 

disp(sortedTable); 

%use the table in diagnosticFeatureDesigner the results are in the word 

%file then generate features after that do the ranking 

diagnosticFeatureDesigner 

%saved in 
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%C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearing

FaultDiagnosisExample\enessemble_inner 

%enessemble as variable (enessemble_inner_Full) in the same extenstion  

Use CWT "Amor" in finding the energy of each load and proof the difference 

% Define the wavelet type and parameters 

wavelet_type = 'amor'; 

num_scales = 5; 

% Initialize empty cell arrays to store load factors and energies 

load_factors = ensemble.LoadFactor; 

energies = cell(length(load_factors), 1); 

% Calculate wavelet energy for each load 

for i = 1:length(load_factors) 

  % Extract the timetable data for the current load 

  timetable_data = ensemble.Timetable{i}; 

  % Get the vibration signal from the timetable data 

  vibration_signal = timetable_data.Variables; 

  % Adjust the length of the vibration signal for load 270 if necessary 

  if strcmp(load_factors(i), 270) 

    target_length = length(vibration_signal) - (length(vibration_signal) - 

length(ensemble.Timetable{1}.Variables)); 

    vibration_signal = vibration_signal(1:target_length); 

  end 

  % Perform wavelet transform 

  [cfs, ~] = cwt(vibration_signal, wavelet_type, num_scales); 

   

  % Calculate wavelet energy as the squared absolute values of coefficients 

  wse = sum(abs(cfs).^2, 1); 

  % Store the energy 

  energies{i} = wse; 

end 

% Create separate tables for each load factor 

tables = cell(length(load_factors), 1); 

for i = 1:length(load_factors) 
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  tables{i} = table(repmat(load_factors(i), size(energies{i})), energies{i}, 'VariableNames', 

{'LoadFactor', 'WaveletEnergy'}); 

end 

% Concatenate the tables into a single table 

energy_table = vertcat(tables{:}); 

% Display the energy table 

disp(energy_table); 

% Sort the energy_table based on LoadFactor 

energy_table_sorted = sortrows(energy_table, 'LoadFactor'); 

% Find unique load factors and create group indices 

[unique_load_factors, ~, load_factor_group_indices] = 

unique(energy_table_sorted.LoadFactor); 

% Calculate mean energy using loop and if condition 

mean_energy = NaN(size(unique_load_factors)); % Initialize mean energy vector 

for i = 1:length(unique_load_factors) 

  idx = (load_factor_group_indices == i); 

  mean_energy(i) = mean(energy_table_sorted.WaveletEnergy(idx)); 

end 

% Create a new table to store the results 

mean_energy_table_inner = table(unique_load_factors, mean_energy, 'VariableNames', 

{'LoadFactor', 'MeanEnergy'}); 

% Display the mean energy table 

disp(mean_energy_table_inner); 

% Extract data for the normal load (270) 

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270); 

% Loop through each load and perform the t-test 

for load = unique(energy_table.LoadFactor)' 

  if load ~= 270 

    % Extract data for the current load 

    data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load); 

    % Perform the t-test 

    [h, p, ci, stats] = ttest2(data_normal, data_current); 

    % Display results 

    fprintf('\nLoad Factor %d vs. Normal (270):\n', load); 
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    fprintf('p-value: %f\n', p); 

    % Check for significance 

    if h 

      fprintf('Significant difference\n'); 

    else 

      fprintf('No significant difference\n'); 

    end 

     

    % Display confidence intervals if needed 

    fprintf('Confidence Interval: [%f, %f]\n', ci(1), ci(2)); 

     

    % Display t-test statistics if needed 

    disp(stats); 

  end 

end 

Significance  

% Initialize variables to store results 

loadFactors = unique(energy_table.LoadFactor)'; 

numLoads = numel(loadFactors); 

meanValues = zeros(numLoads, 1); 

stdValues = zeros(numLoads, 1); 

seValues = zeros(numLoads, 1); 

meanDiffValues = zeros(numLoads, 1); 

ciValues = zeros(numLoads, 2); 

tValues = zeros(numLoads, 1); 

dfValues = zeros(numLoads, 1); 

pValues = zeros(numLoads, 1); 

% Extract data for the normal load (270) 

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270); 

 

% Loop through each load and perform the t-test 

for i = 1:numLoads 

  load = loadFactors(i); 

   



 

260 

 

  if load ~= 270 

    % Extract data for the current load 

    data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load); 

    % Perform the t-test 

    [h, p, ci, stats] = ttest2(data_normal, data_current); 

    % Store results 

    meanValues(i) = mean(data_current); 

    stdValues(i) = std(data_current); 

    seValues(i) = std(data_current) / sqrt(length(data_current)); 

    meanDiffValues(i) = mean(data_current) - mean(data_normal); 

    ciValues(i, :) = ci; 

    tValues(i) = stats.tstat; 

    dfValues(i) = stats.df; 

    pValues(i) = p; 

    % Display results 

    fprintf('\nLoad Factor %d vs. Normal (270):\n', load); 

    fprintf('Number of Samples: %d\n', length(data_current)); 

    fprintf('Mean: %f\n', meanValues(i)); 

    fprintf('Standard Deviation: %f\n', stdValues(i)); 

    fprintf('Standard Error of the Mean: %f\n', seValues(i)); 

    fprintf('Mean Difference: %f\n', meanDiffValues(i)); 

    fprintf('95%% Confidence Interval: [%f, %f]\n', ciValues(i, 1), ciValues(i, 2)); 

    fprintf('t-test Value: %f\n', tValues(i)); 

    fprintf('Degrees of Freedom: %f\n', dfValues(i)); 

    fprintf('p-value: %f\n', pValues(i)); 

    % Check for significance 

    if h 

      fprintf('Significant difference\n'); 

    else 

      fprintf('No significant difference\n'); 

    end 

  end 

end 

% Initialize variables to store results 



 

261 

 

loadFactors = unique(energy_table.LoadFactor)'; 

numLoads = numel(loadFactors); 

resultsTable = table('Size', [numLoads, 11], 'VariableTypes', {'double', 'double', 'double', 

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'}, 'VariableNames', 

{'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff', 'CI_Lower', 'CI_Upper', 

'tValue', 'DF', 'Significant'}); 

% Extract data for the normal load (270) 

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270); 

% Loop through each load and perform the t-test 

for i = 1:numLoads 

  load = loadFactors(i); 

   

  if load ~= 270 

    % Extract data for the current load 

    data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load); 

    % Perform the t-test 

    [h, ~, ci, stats] = ttest2(data_normal, data_current); 

    % Store results in the table 

    resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current), 

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1), 

ci(2), stats.tstat, stats.df, h}; 

  end 

end 

% Display the results table 

disp(resultsTable); 

% Initialize variables to store results 

loadFactors = unique(energy_table.LoadFactor)'; 

numLoads = numel(loadFactors); 

resultsTable = table('Size', [numLoads, 12], 'VariableTypes', {'double', 'double', 'double', 

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'}, 

'VariableNames', {'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff', 

'CI_Lower', 'CI_Upper', 'tValue', 'DF', 'pValue', 'Significant'}); 

% Extract data for the normal load (270) 

data_normal = energy_table.WaveletEnergy(energy_table.LoadFactor == 270); 
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% Loop through each load and perform the t-test 

for i = 1:numLoads 

  load = loadFactors(i); 

   

  if load ~= 270 

    % Extract data for the current load 

    data_current = energy_table.WaveletEnergy(energy_table.LoadFactor == load); 

     

    % Perform the t-test 

    [h, p, ci, stats] = ttest2(data_normal, data_current) 

     

    % Store results in the table 

    resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current), 

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1), 

ci(2), stats.tstat, stats.df, p, h}; 

  end 

end 

% Display the results table 

disp(resultsTable); 

% Bar plot of mean energy 

figure; 

bar(mean_energy_table_inner.LoadFactor, mean_energy_table_inner.MeanEnergy); 

xlabel('Load Factor'); 

ylabel('Mean Energy'); 

title('Mean Energy vs. Load Factor (Inner Fault)'); 

xlim({"50","300"}) 

colorbar 

ylim([0.0 40.0]) 

set(gca,"XGrid","off","YGrid","on") 

colorbar 

Load Index 

% Calculate the energy values for each load factor 

load_factors = energy_table.LoadFactor; 

wavelet_energies = energy_table.WaveletEnergy; 
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% Normalize the energy values using min-max scaling 

min_energy = min(wavelet_energies); 

max_energy = max(wavelet_energies); 

normalized_energies = (wavelet_energies - min_energy) / (max_energy - min_energy); 

% Find the indices corresponding to the normal condition (load factor 270) 

normal_indices = find(load_factors == 270); 

% Calculate the deviation from the normal condition 

deviation = normalized_energies; 

deviation(normal_indices) = 0; 

% Define severity thresholds 

mild_threshold = 0.2; % Adjust according to your application 

moderate_threshold = 0.5; % Adjust according to your application 

% Categorize the severity based on deviation magnitude 

severity = cell(size(normalized_energies)); 

severity(deviation < mild_threshold) = {'Mild'}; 

severity(deviation >= mild_threshold & deviation < moderate_threshold) = {'Moderate'}; 

severity(deviation >= moderate_threshold) = {'Severe'}; 

% Determine the number of elements to keep 

num_elements = min([numel(load_factors), numel(normalized_energies), numel(deviation), 

numel(severity)]); 

% Print out the sizes of the arrays for debugging 

fprintf('Size of load_factors: %d\n', numel(load_factors)); 

fprintf('Size of normalized_energies: %d\n', numel(normalized_energies)); 

fprintf('Size of deviation: %d\n', numel(deviation)); 

fprintf('Size of severity: %d\n', numel(severity)); 

fprintf('Number of elements to keep: %d\n', num_elements); 

 

 

% Truncate the arrays to the common size 

load_factors = load_factors(1:num_elements); 

deviation = deviation(1:num_elements); 

severity = severity(1:num_elements); 

% Truncate the normalized_energies array separately 

normalized_energies = normalized_energies(1:numel(load_factors)); 
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% Reshape the arrays to have the same dimensions 

load_factors = reshape(load_factors, [], 1); 

normalized_energies = reshape(normalized_energies, [], 1); 

deviation = reshape(deviation, [], 1); 

severity = reshape(severity, [], 1); 

% Create a table to store the results 

degradation_table_inner = table(load_factors, mean_energy, normalized_energies, deviation, 

severity, 'VariableNames', {'LoadFactor', 'MeanEnergy', 'Normalized Energy','Deviation from 

Normal','Severity of Changing Load'}); 

% Display the degradation table 

disp(degradation_table_inner); 

Outer Load Comparison 

ORF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_2.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(ORF_50) 

ORF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_3.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(ORF_100) 

 

ORF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_4.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(ORF_150) 

ORF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_5.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(ORF_200) 

ORF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 
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  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_6.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(ORF_250) 

ORF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_7.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(ORF_200) 

Outer ensemble 

% Load dataset of different Inner load factors and corresponding variable names 

load_factors = [50, 100, 150, 200, 250, 270, 300]; 

variable_names = {'ORF_50', 'ORF_100', 'ORF_150', 'ORF_200', 'ORF_250', 'data_normal', 

'ORF_300'}; 

 

 

% Initialize an empty ensemble with two columns 

ensemble_outer = table(); 

 

% Find the minimum length of bearing signal data across all load factors 

min_length = Inf; % Initialize with infinity 

for i = 1:length(load_factors) 

  % Construct the variable name 

  variable_name = variable_names{i}; 

   

  if strcmp(variable_name, 'data_normal') 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = data_normal.bearing.sr; 

    t_total = 3; % seconds 

    n = round(t_total * fs); 

    bearing_data = data_normal.bearing.gs(1:n); 

  else 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = eval([variable_name '.bearing.sr']); 
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    t_total = 3; % seconds 

    n = round(t_total * fs); 

    bearing_data = eval([variable_name '.bearing.gs(1:n)']); 

  end 

  

  % Update the minimum length 

  min_length = min(min_length, length(bearing_data)); 

end 

for i = 1:length(load_factors) 

  % Construct the variable name 

  variable_name = variable_names{i}; 

   

  if strcmp(variable_name, 'data_normal') 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = data_normal.bearing.sr; 

    bearing_data = data_normal.bearing.gs(1:min_length); 

  else 

    % Extract the desired portion of the bearing signal from the loaded dataset 

    fs = eval([variable_name '.bearing.sr']); 

    bearing_data = eval([variable_name '.bearing.gs(1:min_length)']); 

  end 

  % Create a timetable for the current variable 

  timetable_data = timetable(seconds(0:1/fs:(length(bearing_data)-1)/fs)', bearing_data); 

  % Add the timetable and load factor as rows to the ensemble 

  ensemble_outer = [ensemble_outer; {timetable_data, load_factors(i)}]; 

end 

% Rename the columns of the ensemble 

ensemble_outer.Properties.VariableNames = {'Timetable', 'LoadFactor'}; 

% Display the resulting ensemble 

disp(ensemble_outer); 

Use CWT "Amor" in finding the energy of each load and proof the difference 

% Define the wavelet type and parameters 

wavelet_type = 'amor'; 

num_scales = 5; 
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% Initialize empty cell arrays to store load factors and energies 

load_factors = ensemble_outer.LoadFactor; 

energies = cell(length(load_factors), 1); 

% Calculate wavelet energy for each load 

for i = 1:length(load_factors) 

  % Extract the timetable data for the current load 

  timetable_data = ensemble_outer.Timetable{i}; 

  % Get the vibration signal from the timetable data 

  vibration_signal = timetable_data.Variables; 

  % Adjust the length of the vibration signal for load 270 if necessary 

  if strcmp(load_factors(i), 270) 

    target_length = length(vibration_signal) - (length(vibration_signal) - 

length(ensemble_outer).Timetable{1}.Variables); 

    vibration_signal = vibration_signal(1:target_length); 

  end 

  % Perform wavelet transform 

  [cfs, ~] = cwt(vibration_signal, wavelet_type, num_scales); 

  % Calculate wavelet energy as the squared absolute values of coefficients 

  wse = sum(abs(cfs).^2, 1); 

  

  % Store the energy 

  energies{i} = wse; 

end 

% Create separate tables for each load factor 

tables = cell(length(load_factors), 1); 

for i = 1:length(load_factors) 

  tables{i} = table(repmat(load_factors(i), size(energies{i})), energies{i}, 'VariableNames', 

{'LoadFactor', 'WaveletEnergy'}); 

end 

% Concatenate the tables into a single table 

energy_table_outer = vertcat(tables{:}); 

% Display the energy table 

disp(energy_table_outer); 
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% Find unique load factors and create group indices 

[unique_load_factors, ~, load_factor_group_indices] = unique(energy_table_outer.LoadFactor); 

% Calculate mean energy using loop and if condition 

mean_energy = NaN(size(unique_load_factors)); % Initialize mean energy vector 

 

for i = 1:length(unique_load_factors) % organised by numbers orders  

  idx = (load_factor_group_indices == i); % Find indices for current load factor group 

  mean_energy(i) = mean(energy_table_outer.WaveletEnergy(idx)); % Calculate mean energy 

end 

% Create a new table to store the results 

mean_energy_table_outer = table(unique_load_factors, mean_energy, 'VariableNames', 

{'LoadFactor', 'MeanEnergy'}); 

 Display the mean energy table 

disp(mean_energy_table_outer); 

%information 

whos ensemble_outer 

head(ensemble_outer) 

ensemble_outer.Properties.VariableNames 

properties(ensemble_outer{1, 1}{1}) 

ensemble_outer(1:5, :) 

ensemble_outer.Properties.VariableNames 

summary(ensemble_outer{1, 1}{1}) 

 

 

 

% Bar plot of mean energy 

figure; 

bar(mean_energy_table_outer.LoadFactor, mean_energy_table_outer.MeanEnergy); 

xlabel('Load Factor'); 

ylabel('Mean Energy'); 

title('Mean Energy vs. Load Factor (Outer Fault)'); 

xlim({"50","300"}) 

colorbar 

colorbar 
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ylim([0.0 40.0]) 

set(gca,"XGrid","off","YGrid","on") 

colorbar 

Load Index 

% Calculate the energy values for each load factor 

load_factors = energy_table_outer.LoadFactor; 

wavelet_energies = energy_table_outer.WaveletEnergy; 

% Normalize the energy values using min-max scaling 

min_energy = min(wavelet_energies); 

max_energy = max(wavelet_energies); 

normalized_energies = (wavelet_energies - min_energy) / (max_energy - min_energy); 

% Find the indices corresponding to the normal condition (load factor 270) 

normal_indices = find(load_factors == 270); 

% Calculate the deviation from the normal condition 

deviation = normalized_energies; 

deviation(normal_indices) = 0; 

 

 

% Define severity thresholds 

mild_threshold = 0.2; % Adjust according to your application 

moderate_threshold = 0.5; % Adjust according to your application 

% Categorize the severity based on deviation magnitude 

severity = cell(size(normalized_energies)); 

severity(deviation < mild_threshold) = {'Mild'}; 

severity(deviation >= mild_threshold & deviation < moderate_threshold) = {'Moderate'}; 

severity(deviation >= moderate_threshold) = {'Severe'}; 

% Determine the number of elements to keep 

num_elements = min([numel(load_factors), numel(normalized_energies), numel(deviation), 

numel(severity)]); 

% Print out the sizes of the arrays for debugging 

fprintf('Size of load_factors: %d\n', numel(load_factors)); 

fprintf('Size of normalized_energies: %d\n', numel(normalized_energies)); 

fprintf('Size of deviation: %d\n', numel(deviation)); 

fprintf('Size of severity: %d\n', numel(severity)); 
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fprintf('Number of elements to keep: %d\n', num_elements); 

% Truncate the arrays to the common size 

load_factors = load_factors(1:num_elements); 

deviation = deviation(1:num_elements); 

severity = severity(1:num_elements); 

% Truncate the normalized_energies array separately 

normalized_energies = normalized_energies(1:numel(load_factors)); 

% Reshape the arrays to have the same dimensions 

load_factors = reshape(load_factors, [], 1); 

normalized_energies = reshape(normalized_energies, [], 1); 

deviation = reshape(deviation, [], 1); 

severity = reshape(severity, [], 1); 

% Create a table to store the results 

degradation_table_outer = table(load_factors, mean_energy, normalized_energies, deviation, 

severity, 'VariableNames', {'LoadFactor', 'MeanEnergy', 'Normalized 

Energy','Deviation','Severity of Changing Load'}); 

% Display the degradation table 

disp(degradation_table_outer); 

Significance  

% Initialize variables to store results 

loadFactors = unique(degradation_table_outer.LoadFactor)'; 

numLoads = numel(loadFactors); 

meanValues = zeros(numLoads, 1); 

stdValues = zeros(numLoads, 1); 

seValues = zeros(numLoads, 1); 

meanDiffValues = zeros(numLoads, 1); 

ciValues = zeros(numLoads, 2); 

tValues = zeros(numLoads, 1); 

dfValues = zeros(numLoads, 1); 

pValues = zeros(numLoads, 1); 

% Extract data for the normal load (270) 

data_normal = energy_table_outer.WaveletEnergy(degradation_table_outer.LoadFactor == 

270); 

% Loop through each load and perform the t-test 
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for i = 1:numLoads 

  load = loadFactors(i); 

   if load ~= 270 

    % Extract data for the current load 

    data_current = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == load);  

    % Perform the t-test 

    [h, p, ci, stats] = ttest2(data_normal, data_current); 

    % Store results 

    meanValues(i) = mean(data_current); 

    stdValues(i) = std(data_current); 

    seValues(i) = std(data_current) / sqrt(length(data_current)); 

    meanDiffValues(i) = mean(data_current) - mean(data_normal); 

    ciValues(i, :) = ci; 

    tValues(i) = stats.tstat; 

    dfValues(i) = stats.df; 

    pValues(i) = p; 

    % Display results 

    fprintf('\nLoad Factor %d vs. Normal (270):\n', load); 

    fprintf('Number of Samples: %d\n', length(data_current)); 

    fprintf('Mean: %f\n', meanValues(i)); 

    fprintf('Standard Deviation: %f\n', stdValues(i)); 

    fprintf('Standard Error of the Mean: %f\n', seValues(i)); 

    fprintf('Mean Difference: %f\n', meanDiffValues(i)); 

    fprintf('95%% Confidence Interval: [%f, %f]\n', ciValues(i, 1), ciValues(i, 2)); 

    fprintf('t-test Value: %f\n', tValues(i)); 

    fprintf('Degrees of Freedom: %f\n', dfValues(i)); 

    fprintf('p-value: %f\n', pValues(i)); 

    % Check for significance 

    if h 

      fprintf('Significant difference\n'); 

    else 

      fprintf('No significant difference\n'); 

    end 

  end 
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end 

% Initialize variables to store results 

loadFactors = unique(energy_table_outer.LoadFactor)'; 

numLoads = numel(loadFactors); 

resultsTable = table('Size', [numLoads, 11], 'VariableTypes', {'double', 'double', 'double', 

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'}, 'VariableNames', 

{'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff', 'CI_Lower', 'CI_Upper', 

'tValue', 'DF', 'Significant'}); 

 

% Extract data for the normal load (270) 

data_normal = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == 270); 

% Loop through each load and perform the t-test 

for i = 1:numLoads 

  load = loadFactors(i); 

   

  if load ~= 270 

    % Extract data for the current load 

    data_current = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == load); 

    

    % Perform the t-test 

    [h, ~, ci, stats] = ttest2(data_normal, data_current); 

    % Store results in the table 

    resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current), 

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1), 

ci(2), stats.tstat, stats.df, h}; 

  end 

end 

% Display the results table 

disp(resultsTable); 

% Initialize variables to store results 

loadFactors = unique(energy_table_outer.LoadFactor)'; 

numLoads = numel(loadFactors); 

resultsTable = table('Size', [numLoads, 12], 'VariableTypes', {'double', 'double', 'double', 

'double', 'double', 'double', 'double', 'double', 'double', 'double', 'double', 'logical'}, 
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'VariableNames', {'LoadFactor', 'NumSamples', 'Mean', 'StdDev', 'SEMean', 'MeanDiff', 

'CI_Lower', 'CI_Upper', 'tValue', 'DF', 'pValue', 'Significant'}); 

% Extract data for the normal load (270) 

data_normal = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == 270); 

% Loop through each load and perform the t-test 

for i = 1:numLoads 

  load = loadFactors(i); 

  

  if load ~= 270 

    % Extract data for the current load 

    data_current = energy_table_outer.WaveletEnergy(energy_table_outer.LoadFactor == load); 

    

    % Perform the t-test 

    [h, p, ci, stats] = ttest2(data_normal, data_current) 

  % Store results in the table 

    resultsTable(i, :) = {load, length(data_current), mean(data_current), std(data_current), 

std(data_current) / sqrt(length(data_current)), mean(data_current) - mean(data_normal), ci(1), 

ci(2), stats.tstat, stats.df, p, h}; 

  end 

end 

% Display the results table 

disp(resultsTable); 

 

SPLITTING 

diagnosticFeatureDesigner 

Features Ranking  

% Load the provided table 

% Load the provided table load (OuterONLY_feature extraction_Phase1_thesis) 

% Exclude the 'LoadFactor' and 'BandPower' columns 

features = FeatureTable1_3(:, 2:end-1); 

% Calculate the standard deviation for each feature 

stdValues = varfun(@std, features); 

% Calculate the range for each feature 

rangeValues = varfun(@(x) max(x) - min(x), features); 



 

274 

 

% Get the feature names 

featureNames = cellfun(@(x) x(strfind(x, '/')+1:end), features.Properties.VariableNames, 

'UniformOutput', false); 

% Create a ranking table with feature names, std, and range 

rankingTable = table(featureNames', stdValues.Variables', rangeValues.Variables', 

'VariableNames', {'Feature', 'Std', 'Range'}); 

% Sort the ranking table based on the desired metric (e.g., std or range) 

sortedTable = sortrows(rankingTable, 'Std', 'descend'); % Change 'Std' to 'Range' if you want to 

rank by range 

% Display the sorted table 

disp(sortedTable); 

tableHeadings_o = FeatureTable1_3.Properties.VariableNames; 

Wavelet coefficents comparison (Inner) 

plotWaveletCoefficients(IRF_50); 

plotWaveletCoefficients(IRF_100); 

plotWaveletCoefficients(IRF_150); 

plotWaveletCoefficients(IRF_200); 

plotWaveletCoefficients(IRF_250); 

plotWaveletCoefficients(IRF_300); 

Wavelet coefficents comparison (Outer) 

plotWaveletCoefficients(ORF_50); 

plotWaveletCoefficients(ORF_100); 

plotWaveletCoefficients(ORF_150); 

plotWaveletCoefficients(ORF_200); 

plotWaveletCoefficients(ORF_250); 

plotWaveletCoefficients(ORF_300); 

Scores (Import 2xeach heath condition then compute the average) 

%im here I need to modify  

wavelet_type = {'amor'}; 

%inner 

  wse_IRF_50 = calculateWaveletSingularEntropy(IRF_50, wavelet_type) 

  wse_IRF_100 = calculateWaveletSingularEntropy(IRF_100, wavelet_type) 

  wse_IRF_150 = calculateWaveletSingularEntropy(IRF_150, wavelet_type) 

  wse_IRF_200 = calculateWaveletSingularEntropy(IRF_200, wavelet_type) 
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  wse_IRF_250 = calculateWaveletSingularEntropy(IRF_250, wavelet_type) 

  wse_IRF_300 = calculateWaveletSingularEntropy(IRF_300, wavelet_type) 

 %outer 

 wse_ORF_50 = calculateWaveletSingularEntropy(IRF_50, wavelet_type) 

  wse_ORF_100 = calculateWaveletSingularEntropy(ORF_100, wavelet_type) 

  wse_ORF_150 = calculateWaveletSingularEntropy(ORF_150, wavelet_type) 

  wse_ORF_200 = calculateWaveletSingularEntropy(ORF_200, wavelet_type) 

  wse_ORF_250 = calculateWaveletSingularEntropy(ORF_250, wavelet_type) 

  wse_ORF_300 = calculateWaveletSingularEntropy(ORF_300, wavelet_type) 

 

 %healthy 

 wse_data_normal_270 = calculateWaveletSingularEntropy(data_normal, wavelet_type) 

Average WSE scores  

% Calculate the average WSE score Inner 

avgScore_IRF_50 = calculateWaveletSingularEntropy(IRF_50, 'amor'); 

avgScore_IRF_100 = calculateWaveletSingularEntropy(IRF_100, 'amor'); 

avgScore_IRF_150 = calculateWaveletSingularEntropy(IRF_150, 'amor'); 

avgScore_IRF_200 = calculateWaveletSingularEntropy(IRF_200, 'amor'); 

avgScore_IRF_250 = calculateWaveletSingularEntropy(IRF_250, 'amor'); 

avgScore_IRF_300 = calculateWaveletSingularEntropy(IRF_300, 'amor'); 

%mean 

avgScore_IRF_50 = mean(abs(avgScore_IRF_50)); 

avgScore_IRF_100 = mean(abs(avgScore_IRF_100)); 

avgScore_IRF_150 = mean(abs(avgScore_IRF_150)); 

avgScore_IRF_200 = mean(abs(avgScore_IRF_200)); 

avgScore_IRF_250 = mean(abs(avgScore_IRF_250)); 

avgScore_IRF_300 = mean(abs(avgScore_IRF_300)); 

% Display the average score with the variable name 

disp(['Average score for IRF_50: ' num2str(avgScore_IRF_50)]); 

disp(['Average score for IRF_100: ' num2str(avgScore_IRF_100)]); 

disp(['Average score for IRF_150: ' num2str(avgScore_IRF_150)]); 

disp(['Average score for IRF_200: ' num2str(avgScore_IRF_200)]); 

disp(['Average score for IRF_250: ' num2str(avgScore_IRF_250)]); 

disp(['Average score for IRF_300: ' num2str(avgScore_IRF_300)]); 
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diagnosticFeatureDesigner 

% Create a table of the scores 

scores_table = array2table(scores, 'VariableNames', dataset_names, 'RowNames', 

wavelet_types); 

disp(scores_table); 

wavelet_types = {'bump', 'morse', 'amor'}; 

health_datasets = {'data_normal', 'data_normal2', 'data_inner', 'data_inner2', 'data_outer', 

'data_outer2'}; 

mean_wse_values = zeros(length(wavelet_types), length(health_datasets)); 

for i = 1:length(wavelet_types) 

  wavelet_type = wavelet_types{i}; 

  fprintf('Wavelet Type: %s\n', wavelet_type); 

   

  for j = 1:length(health_datasets) 

    dataset_name = health_datasets{j}; 

    dataset = eval(dataset_name); % Evaluate the dataset variable using its name 

     

    wse = calculateWaveletSingularEntropy(dataset, wavelet_type); 

    mean_wse = mean(abs(wse)); % Calculate mean of absolute WSE values 

     

    mean_wse_values(i, j) = mean_wse; 

  end 

end 

% Plot the mean absolute WSE values 

figure 

bar(mean_wse_values) 

xticks(1:length(wavelet_types)) 

xticklabels(wavelet_types) 

legend(health_datasets) 

title('Mean Absolute WSE Values') 

xlabel('Wavelet Type') 

ylabel('Mean Absolute WSE') 

 

set(gca,"XGrid","off","YGrid","on") 
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convertSignalToScalogram_spliiting(ensemble) 

Helper Functions 

function plotBearingSignalAndScalogram(data) 

% Convert 1-D bearing signals to scalograms through wavelet transform 

fs = data.bearing.sr; 

t_total = 0.1; % seconds 

n = round(t_total*fs); 

bearing = data.bearing.gs(1:n); 

[cfs,frq] = cwt(bearing,'amor', fs); 

% Plot the original signal and its scalogram 

figure 

subplot(2,1,1) 

plot(0:1/fs:(n-1)/fs,bearing) 

xlim([0,0.1]) 

title(['Vibration Signal - ' inputname(1)]) 

xlabel('Time (s)') 

ylabel('Amplitude') 

subplot(2,1,2) 

surface(0:1/fs:(n-1)/fs,frq,abs(cfs)) 

shading flat 

xlim([0,0.1]) 

ylim([0,max(frq)]) 

title(['Scalogram - ' inputname(1)]) 

xlabel('Time (s)') 

ylabel('Frequency (Hz)') 

end 

function convertSignalToScalogram(ensemble,folderName) 

% Convert 1-D signals to scalograms and save scalograms as images 

data = read(ensemble); 

fs = data.sr; 

x = data.gs{:}; 

label = char(data.Label); 

fname = char(data.FileName); 
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ratio = 5000/97656; 

interval = ratio*fs; % i want part of the data not all and morese uses fs as the space equal space 

but based on the frequency to capture the knowledge 

N = floor(numel(x)/interval); 

% Create folder to save images 

path = fullfile('.',folderName,label); 

if ~exist(path,'dir') 

 mkdir(path); 

end 

path_numerical = fullfile('.',folderName,label, 'sub_sample_split1'); 

if ~exist(path_numerical,'dir') 

 mkdir(path_numerical); 

end 

for idx = 1:N 

 sig = envelope(x(interval*(idx-1)+1:interval*idx)); 

 file_path = fullfile('.',path_numerical,[fname '-' num2str(idx) '.csv']);%(new added) 

 writematrix(sig,file_path); %new 

 %like we are creating subfolders based on the interval equal data ineach 

 %file not using envelop transform  

 cfs = cwt(sig,'amor', seconds(1/fs)); 

 cfs = abs(cfs); 

 img = ind2rgb(round(rescale(flip(cfs),0,255)),jet(320)); 

 outfname = fullfile('.',path,[fname '-' num2str(idx) '.jpg']); 

 imwrite(imresize(img,[224,224]),outfname); 

end 

end 

%new 

function plotBearingSignalAndWaveletCoefficient(data) 

  % Convert 1-D bearing signals to wavelet coefficients through wavelet transform 

  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 

  bearing = data.bearing.gs(1:n); 
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  % Choose wavelet types 

  wavelet_types = {'bump', 'morse', 'amor'}; 

   

  % Plot the original signal and its wavelet coefficients for each wavelet type 

  figure 

  for i = 1:length(wavelet_types) 

    wavelet_type = wavelet_types{i}; 

    [cfs, ~] = cwt(bearing, wavelet_type, fs); 

     

    subplot(length(wavelet_types), 1, i) 

    plot(0:1/fs:(n-1)/fs, bearing) 

    hold on 

    plot(0:1/fs:(n-1)/fs, abs(cfs)) 

    hold off 

    xlim([0, 0.1]) 

    title(sprintf('Wavelet Coefficient (%s)', upper(wavelet_type))) 

    xlabel('Time (s)') 

    ylabel('Magnitude') 

    legend('Vibration Signal', 'Wavelet Coefficient') 

  end 

end 

function wse = calculateWaveletSingularEntropy(data, wavelet_type) 

  % Convert 1-D bearing signals to scalograms through wavelet transform 

  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 

  bearing = data.bearing.gs(1:n); 

   

  % Perform wavelet transform 

  [cfs, ~] = cwt(bearing, wavelet_type, fs); 

  % Calculate the WSE 

  wse = sum(abs(cfs).^2 .* log(abs(cfs).^2), 1);  

  % Normalize the WSE values between 0 and 1 

  wse = wse / max(wse); 
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end 

function plotWaveletCoefficients(data) 

  % Convert 1-D bearing signals to scalograms through wavelet transform 

  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 

  bearing = data.bearing.gs(1:n); 

  % Choose wavelet types 

  wavelet_types = {'amor'}; 

  % Plot the time-frequency diagrams for each wavelet type 

  figure 

  for i = 1:length(wavelet_types) 

    wavelet_type = wavelet_types{i}; 

    [cfs, frq] = cwt(bearing, wavelet_type, fs); 

   subplot(length(wavelet_types), 1, i) 

    plot(0:1/fs:(n-1)/fs, bearing, 'b') 

    hold on 

    surface(0:1/fs:(n-1)/fs, frq, abs(cfs), 'FaceColor', 'texturemap', 'EdgeColor', 'none') 

    colormap(jet) 

    view(2) 

    xlim([0, 0.1]) 

    ylim([0, max(frq)]) 

    title([upper(wavelet_type), ' Wavelet Coefficients - ', inputname(1)]) 

    xlabel('Time (s)') 

    ylabel('Frequency (Hz)') 

    colorbar 

  end 

  sgtitle('Scalograms with Wavelet Coefficients') 

end 

function plotScalogramsWithWavelets(data) 

  % Convert 1-D bearing signals to scalograms through wavelet transform 

  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 
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  bearing = data.bearing.gs(1:n); 

  

  % Choose wavelet types 

  wavelet_types = {'bump', 'morse', 'amor'}; 

  

  % Plot the time-frequency diagrams for each wavelet type 

  for i = 1:length(wavelet_types) 

    wavelet_type = wavelet_types{i}; 

    [cfs, frq] = cwt(bearing, wavelet_type, fs); 

    

    figure 

    imagesc(1/fs:(n-1)/fs, frq, abs(cfs)) 

    set(gca, 'YDir', 'normal') 

    colormap(jet) 

    colorbar 

    title(sprintf('2D Time-Frequency Diagram (%s)', upper(wavelet_type))) 

    xlabel('Time (s)') 

    ylabel('Frequency (Hz)') 

  end 

end 

 

 

%Splitting 

function convertSignalToScalogram_spliiting(ensemble, FileName) 

  % Convert 1-D signals to scalograms and save scalograms as images 

  data = read(ensemble); 

  fs = data.sr; 

  x = data.gs{:}; 

  label = char(data.Label); 

  fname = char(data.FileName); 

  ratio = 5000/97656; 

  interval = ratio * fs; % Interval based on the specified ratio 

  % Calculate the number of splits 

  N = floor(numel(x) / interval); 
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  % Create folder to save images 

  path = fullfile('.', folderName, label); 

  if ~exist(path, 'dir') 

    mkdir(path); 

  end 

  for idx = 1:N 

    % Split the signal into subsets based on the interval 

    subset_start = round(interval * (idx - 1)) + 1; 

    subset_end = round(interval * idx); 

    sig = x(subset_start:subset_end); 

    % Perform wavelet transform 

    cfs = cwt(sig, 'amor', seconds(1/fs)); 

    cfs = abs(cfs); 

    img = ind2rgb(round(rescale(flip(cfs), 0, 255)), jet(320)); 

 

    % Save the image 

    outfname = fullfile(path, [fname '-' num2str(idx) '.jpg']); 

    imwrite(imresize(img, [224, 224]), outfname); 

  end 

end 

 

function stats = summary_stats(x) 

  stats.MeanEnergy = mean(x); 

  stats.MedianEnergy = median(x); 

  stats.MinEnergy = min(x); 

  stats.MaxEnergy = max(x); 

end 

 

2.3 Chapter 5: Phase 1: Step2: Data Segmentation and Load-Dependent Subfile 

Creation 

These folders were arranged manually after they were extractted from 

LoadSplitandScholograms_P4 

Now we want to upload these split to diagnosis feature designer 
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Load DataSets (split files & add the sevierity we created before  

Normal Dataset 

% Import normal bearing data 

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data', 'baseline_1.mat')); 

signal = data_normal.bearing.gs; 

signal_length = length(signal) 

window = hamming(signal_length) 

windowed_signal = signal .* window 

Inner load comparison 

IRF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_2.mat')); 

IRF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_3.mat')); 

IRF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_4.mat')); 

IRF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_5.mat')); 

IRF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_6.mat')); 

IRF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_inner_load', 'InnerRaceFault_vload_7.mat')); 

Outer Load Comparison 

 

ORF_50 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_2.mat')); 
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ORF_100 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_3.mat')); 

ORF_150 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_4.mat')); 

ORF_200 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_5.mat')); 

ORF_250 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_6.mat')); 

ORF_300 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data_outer_load', 'OuterRaceFault_vload_7.mat')); 

 

inner_fault_datasets = {ORF_50, ORF_100, ORF_150, ORF_200, ORF_250, ORF_300}; 

 

for i = 1:length(inner_fault_datasets) 

  ensemble_inner = inner_fault_datasets{i}; 

  ensemble_inner.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"]; 

  ensemble_inner.ConditionVariables = ["Label", "FileName"]; 

  ensemble_inner.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", 

"BSF", "Label", "FileName"]; 

end 

outer_fault_datasets = {ORF_50, ORF_100, ORF_150, ORF_200, ORF_250, ORF_300}; 

for i = 1:length(outer_fault_datasets) 

  ensemble_outer = outer_fault_datasets{i}; 

  ensemble_outer.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", "BSF"]; 

  ensemble_outer.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", 

"BSF", "Label", "FileName"]; 

end 

Normal_dataset = {data_normal} 

for i = 1:length(Normal_dataset) 
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  ensemble_normal = Normal_dataset{i}; 

  ensemble_normal.DataVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", 

"BSF"]; 

  ensemble_normal.SelectedVariables = ["gs", "sr", "rate", "load", "BPFO", "BPFI", "FTF", 

"BSF", "Label", "FileName"]; 

end 

% Process inner fault datasets 

for i = 1:numel(inner_fault_datasets) 

  ensemble = inner_fault_datasets{i}; 

  data = ensemble.bearing; 

  fs = data.sr; 

  x = data.gs; 

  ensemble_name = sprintf('IRF_%d', i*50); % Generate ensemble name based on index 

  ratio = 5000/97656; 

  interval = ratio * fs; % Interval based on the specified ratio 

  % Calculate the number of splits 

  N = floor(numel(x) / interval); 

  % Create a folder to save the tables for the current ensemble 

  folder_path = fullfile('.', 'tables', ensemble_name); 

  if ~exist(folder_path, 'dir') 

    mkdir(folder_path); 

  end 

  for idx = 1:N 

    % Split the signal into subsets based on the interval 

    subset_start = round(interval * (idx - 1)) + 1; 

    subset_end = round(interval * idx); 

    sig = x(subset_start:subset_end); 

    % Create a table for the current subset 

    time = (subset_start:subset_end)' / fs; 

    load_type = repmat(ensemble_name, numel(time), 1); 

    subset_table = table(time, sig, load_type, 'VariableNames', {'Time', 'Signal', 'LoadType'}); 

    % Save the table as a MAT file under the ensemble folder 

    filename = sprintf('subset_%d.mat', idx); 

    save(fullfile(folder_path, filename), 'subset_table'); 
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  end 

end 

 

% Process outer fault datasets 

for i = 1:numel(outer_fault_datasets) 

  ensemble = outer_fault_datasets{i}; 

  data = ensemble.bearing; 

  fs = data.sr; 

  x = data.gs; 

  ensemble_name = sprintf('ORF_%d', i*50); % Generate ensemble name based on index 

  ratio = 5000/48828; 

  interval = ratio * fs; % Interval based on the specified ratio 

  % Calculate the number of splits 

  N = floor(numel(x) / interval); 

  % Create a folder to save the tables for the current ensemble 

  folder_path = fullfile('.', 'tables', ensemble_name); 

  if ~exist(folder_path, 'dir') 

    mkdir(folder_path); 

  end 

  for idx = 1:N 

    % Split the signal into subsets based on the interval 

    subset_start = round(interval * (idx - 1)) + 1; 

    subset_end = round(interval * idx); 

    sig = x(subset_start:subset_end); 

    % Create a table for the current subset 

    time = (subset_start:subset_end)' / fs; 

    load_type = repmat(ensemble_name, numel(time), 1); 

    subset_table = table(time, sig, load_type, 'VariableNames', {'Time', 'Signal', 'LoadType'}); 

    % Save the table as a MAT file under the ensemble folder 

    filename = sprintf('subset_%d.mat', idx); 

    save(fullfile(folder_path, filename), 'subset_table'); 

  end 

end 

% Process normal dataset 
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ensemble = Normal_dataset{1}; % Assuming there is only one ensemble in the normal dataset 

data = ensemble.bearing; 

fs = data.sr; 

x = data.gs; 

ensemble_name = 'Normal'; % Ensemble name for the normal dataset 

ratio = 5000/97656; 

interval = ratio * fs; % Interval based on the specified ratio 

% Calculate the number of splits 

N = floor(numel(x) / interval); 

% Create a folder to save the tables for the normal dataset 

folder_path = fullfile('.', 'tables', ensemble_name); 

if ~exist(folder_path, 'dir') 

  mkdir(folder_path); 

end 

for idx = 1:N 

  % Split the signal into subsets based on the interval 

  subset_start = round(interval * (idx - 1)) + 1; 

  subset_end = round(interval * idx); 

  sig = x(subset_start:subset_end); 

 

  % Create a table for the current subset 

  time = (subset_start:subset_end)' / fs; 

  load_type = repmat(ensemble_name, numel(time), 1); 

  subset_table = table(time, sig, load_type, 'VariableNames', {'Time', 'Signal', 'LoadType'}); 

 

  % Save the table as a MAT file under the ensemble folder 

  filename = sprintf('subset_%d.mat', idx); 

  save(fullfile(folder_path, filename), 'subset_table'); 

end 

Create splits and save as ensemble for all loads  

% Create an empty cell array to store the ensemble tables 

ensemble_tables = cell(0, 2); 

 

% Process inner fault datasets 
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for i = 1:numel(inner_fault_datasets) 

  ensemble = inner_fault_datasets{i}; 

  data = ensemble.bearing; 

  fs = data.sr; 

  x = data.gs; 

  ensemble_name = sprintf('IRF_%d', i*50); % Generate ensemble name based on index 

  ratio = 5000/97656; 

  interval = ratio * fs; % Interval based on the specified ratio 

  % Calculate the number of splits 

  N = floor(numel(x) / interval); 

  for idx = 1:N 

    % Split the signal into subsets based on the interval 

    subset_start = round(interval * (idx - 1)) + 1; 

    subset_end = round(interval * idx); 

    sig = x(subset_start:subset_end); 

    % Create a table for the subset with vibration signal 

    subset_table = table(sig, 'VariableNames', {'Signal'}); 

    % Append the subset table and ensemble name to the ensemble tables 

    ensemble_tables = [ensemble_tables; {subset_table, ensemble_name}]; 

  end 

end 

% Process outer fault datasets 

for i = 1:numel(outer_fault_datasets) 

  ensemble = outer_fault_datasets{i}; 

  data = ensemble.bearing; 

  fs = data.sr; 

  x = data.gs; 

  ensemble_name = sprintf('ORF_%d', i*50); % Generate ensemble name based on index 

  ratio = 5000/97656; 

  interval = ratio * fs; % Interval based on the specified ratio 

  % Calculate the number of splits 

  N = floor(numel(x) / interval); 

  for idx = 1:N 

    % Split the signal into subsets based on the interval 
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    subset_start = round(interval * (idx - 1)) + 1; 

    subset_end = round(interval * idx); 

    sig = x(subset_start:subset_end); 

    % Create a table for the subset with vibration signal 

    subset_table = table(sig, 'VariableNames', {'Signal'}); 

    % Append the subset table and ensemble name to the ensemble tables 

    ensemble_tables = [ensemble_tables; {subset_table, ensemble_name}]; 

  end 

end 

% Process normal dataset 

ensemble_name = 'Normal'; 

data = data_normal.bearing; 

fs = data.sr; 

x = data.gs; 

ratio = 5000/97656; 

interval = ratio * fs; % Interval based on the specified ratio 

% Calculate the number of splits 

N = floor(numel(x) / interval); 

for idx = 1:N 

  % Split the signal into subsets based on the interval 

  subset_start = round(interval * (idx - 1)) + 1; 

  subset_end = round(interval * idx); 

  sig = x(subset_start:subset_end); 

  % Create a table for the subset with vibration signal 

  subset_table = table(sig, 'VariableNames', {'Signal'}); 

  % Append the subset table and ensemble name to the ensemble tables 

  ensemble_tables = [ensemble_tables; {subset_table, ensemble_name}]; 

end 

% Create the ensemble table with headers 

ensemble = table(ensemble_tables(:,1), ensemble_tables(:,2), 'VariableNames', {'Timetable', 

'LoadFactor'}); 

% Display the resulting ensemble table (here it is a table) 

disp(ensemble); 

% Create the ensemble table with headers 
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ensemble = table(ensemble_tables(:,1), ensemble_tables(:,2), 'VariableNames', {'Timetable', 

'LoadFactor'}); 

 

% Calculate the row counts for each load factor 

row_counts = grpstats(ensemble, 'LoadFactor', 'numel'); 

% Display the row counts 

disp(row_counts); 

% Assuming you have a table called "ensemble" with 813 rows and 2 columns 

for i = 1:size(ensemble, 1) 

  % Get the table from the cell in the first column 

  cellData = ensemble{i, 1}; 

  % Access the table within the cell 

  tableData = cellData{1}; 

  % Get the signal data from the table 

  signalData = tableData.Signal; 

  % Get the load factor from the second column of the ensemble 

  loadFactor = ensemble{i, 2}; 

  % Set the time step based on the load factor 

  if strcmp(loadFactor, 'Normal') 

    % Normal load with time step 97656 Hz 

    timeStep = seconds(1 / 97656); 

  else 

    % Inner or outer load with time step 48828 Hz 

    timeStep = seconds(1 / 48828); 

  end 

  % Create a time vector for the signal 

  time = (0:length(signalData)-1) * timeStep; 

   

  % Convert the signal to a time series 

  timeSeriesData = timetable(time', signalData); 

  % Replace the cell in the first column with the time series 

  ensemble{i, 1} = {timeSeriesData}; 

end 

diagnosticFeatureDesigner 
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Load Index Severity (4 classes)  

Create a severity array corresponding to the load types: (6 load types per fault) 

inner_faults = {'IRF_50', 'IRF_100', 'IRF_150', 'IRF_200', 'IRF_250', 'IRF_300'}; 

outer_faults = {'ORF_50', 'ORF_100', 'ORF_150', 'ORF_200', 'ORF_250', 'ORF_300'}; 

normal_load = {'Normal'}; 

inner_severity = ["Mild", "Mild", "Mild", "Moderate", "Moderate", "Moderate"]; 

outer_severity = ["Mild", "Mild", "Mild", "Mild", "Mild", "Severe", "Mild"]; 

normal_severity = ["Helthy"]; 

 

2. Iterate over the ensemble and add the severity column based on the load type: 

% Initialize an empty array to store the severity values 

severity = strings(size(ensemble, 1), 1); 

for i = 1:size(ensemble, 1) 

  % Get the type of fault and load from the ensemble 

  fault_load = ensemble{i, 2}; 

  % Check if it belongs to inner faults 

  if ismember(fault_load, inner_faults) 

    severity(i) = inner_severity(ismember(inner_faults, fault_load)); 

  % Check if it belongs to outer faults 

  elseif ismember(fault_load, outer_faults) 

    severity(i) = outer_severity(ismember(outer_faults, fault_load)); 

  % Otherwise, it belongs to normal 

  else 

    severity(i) = normal_severity; 

  end 

end 

 

% Add the severity column to the ensemble 

ensemble.Severity = severity; 

disp(ensemble) 

Normal Fault classification 3 classes  

inner_faults = {'IRF_50', 'IRF_100', 'IRF_150', 'IRF_200', 'IRF_250', 'IRF_300'}; 

outer_faults = {'ORF_50', 'ORF_100', 'ORF_150', 'ORF_200', 'ORF_250', 'ORF_300'}; 

normal_load = {'Normal'}; 
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inner = ["Inner", "Inner", "Inner", "Inner", "Inner", "Inner"]; 

outer = ["Outer", "Outer", "Outer", "Outer", "Outer", "Outer", "Outer"]; 

normal_severity = ["Helthy"]; 

for i = 1:size(ensemble, 1) 

  % Get the type of fault and load from the ensemble 

  fault_load = ensemble{i, 2}; 

  % Check if it belongs to inner faults 

  if ismember(fault_load, inner_faults) 

    severity(i) = inner_severity(ismember(inner_faults, fault_load)); 

  % Check if it belongs to outer faults 

  elseif ismember(fault_load, outer_faults) 

    severity(i) = outer_severity(ismember(outer_faults, fault_load)); 

  % Otherwise, it belongs to normal 

  else 

    severity(i) = normal_severity; 

  end 

end 

 

% Add the severity column to the ensemble 

ensemble.Severity = severity; 

disp(ensemble) 

 

2.4 Chapter5 : Phase2: Step1: CWT Signal Encoding and Optimal Technique 

Selection and  Phase 2: Step 2: CWT Energy Assessment for Each Load Factor 

Scalogram of Bearing Data 

The two dimensions in a scalogram image represent time and frequency. To visualise the 

relationship between a scalogram and its original vibration signal, plot the vibration signal with 

an IRF against its scalogram. 

% Import data with IRF 

data_inner = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data', 'InnerRaceFault_vload_1.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(data_inner) 
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% for WSE 

data_inner2 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data', 'InnerRaceFault_vload_2.mat')); 

% Plot bearing signal and scalogram 

plotBearingSignalAndScalogram(data_inner2) 

During the 0.1 seconds shown in the plot, the vibration signal contains 12 impulses because the 

tested bearing's BPFI is 118.875 Hz. Accordingly, the scalogram shows 12 distinct peaks that 

align with the impulses in the vibration signal. Next, visualise scalograms for the ORF. 

% Import data with ORF 

data_outer = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'test_data', 'OuterRaceFault_3.mat')); 

% Plot original signal and its scalogram 

plotBearingSignalAndScalogram(data_outer) 

The scalogram of the ORF fault shows 8 distinct peaks during the first 0.1 seconds, which is 

consistent with the ballpass frequencies. Because the impulses in the time-domain signal is not 

as dominant as in the IRF case, the distinct peaks in the scalogram show less contrast with the 

background. The scalogram of the normal condition does not show dominant distinct peaks.  

% Import normal bearing data 

data_normal = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data', 'baseline_1.mat')); 

% Plot original signal and its scalogram 

plotBearingSignalAndScalogram(data_normal) 

% Import normal bearing data 

data_normal2 = load(fullfile(MATLABroot, 'toolbox', 'predmaint', ... 

  'predmaintdemos', 'bearingFaultDiagnosis', ... 

  'train_data', 'baseline_2.mat')); 

% Plot original signal and its scalogram 

plotBearingSignalAndScalogram(data_normal2) 

The number of distinct peaks is a good feature to differentiate between IRFs, ORFs, and normal 

conditions. Therefore, a scalogram can be a good candidate for classifying bearing faults. In 
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this example, all bearing signal measurements come from tests using the same shaft speed. To 

apply this example to bearing signals under different shaft speeds, the data needs to be 

normalized by shaft speed. Otherwise, the number of "pillars" in the scalogram will be wrong. 

CWT Signal Encoding and Optimal Technique Selection 

plotWaveletCoefficients(data_inner); 

plotWaveletCoefficients(data_normal); 

plotWaveletCoefficients(data_outer); 

% Plot for IRF condition 

plotBearingSignalAndWaveletCoefficient(data_normal); 

 

WSE Analysis for Appropriate CWT Selection 

%im here I need to modify  

wavelet_types = {'bump', 'morse', 'amor'}; 

for i = 1:length(wavelet_types) 

  wavelet_type = wavelet_types{i}; 

  wse_inner = calculateWaveletSingularEntropy(data_inner, wavelet_type) 

  wse_inner2 = calculateWaveletSingularEntropy(data_inner2, wavelet_type) 

  wse_outer = calculateWaveletSingularEntropy(data_outer, wavelet_type) 

  wse_outer2 = calculateWaveletSingularEntropy(data_outer2, wavelet_type) 

  wse_normal = calculateWaveletSingularEntropy(data_normal, wavelet_type) 

  wse_normal2 = calculateWaveletSingularEntropy(data_normal2, wavelet_type) 

    % Do further analysis or visualization with the WSE values 

  % ... 

end 

wavelet_types = {'bump', 'morse', 'amor'}; 

for i = 1:length(wavelet_types) 

  wavelet_type = wavelet_types{i}; 

  wse_inner = calculateWaveletSingularEntropy(data_inner, wavelet_type); 

  wse_inner_mean = mean(abs(wse_inner)); % Calculate mean of absolute WSE values for 

data_inner 

  wse_inner2 = calculateWaveletSingularEntropy(data_inner2, wavelet_type); 

  wse_inner2_mean = mean(abs(wse_inner2)); % Calculate mean of absolute WSE values for 

data_inner2 
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  wse_outer = calculateWaveletSingularEntropy(data_outer, wavelet_type); 

  wse_outer_mean = mean(abs(wse_outer)); % Calculate mean of absolute WSE values for 

data_outer 

   

  wse_outer2 = calculateWaveletSingularEntropy(data_outer2, wavelet_type); 

  wse_outer2_mean = mean(abs(wse_outer2)); % Calculate mean of absolute WSE values for 

data_outer2 

   

  wse_normal = calculateWaveletSingularEntropy(data_normal2, wavelet_type); 

  wse_normal_mean = mean(abs(wse_normal)); % Calculate mean of absolute WSE values for 

data_normal 

   

  wse_normal2 = calculateWaveletSingularEntropy(data_normal2, wavelet_type); 

  wse_normal2_mean = mean(abs(wse_normal2)); % Calculate mean of absolute WSE values 

for data_normal2 

   

end 

Scores 

wavelet_types = {'bump', 'morse', 'amor'}; 

for i = 1:length(wavelet_types) 

  wavelet_type = wavelet_types{i}; 

  fprintf('Wavelet Type: %s\n', wavelet_type); 

  wse_inner = calculateWaveletSingularEntropy(data_inner, wavelet_type); 

  wse_inner_mean = mean(abs(wse_inner)) % Calculate mean of absolute WSE values for 

data_inner 

  wse_inner2 = calculateWaveletSingularEntropy(data_inner2, wavelet_type); 

  wse_inner2_mean = mean(abs(wse_inner2)) % Calculate mean of absolute WSE values for 

data_inner2 

  wse_outer = calculateWaveletSingularEntropy(data_outer, wavelet_type); 

  wse_outer_mean = mean(abs(wse_outer)) % Calculate mean of absolute WSE values for 

data_outer 

   

  wse_outer2 = calculateWaveletSingularEntropy(data_outer2, wavelet_type); 
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  wse_outer2_mean = mean(abs(wse_outer2)) % Calculate mean of absolute WSE values for 

data_outer2 

  wse_normal = calculateWaveletSingularEntropy(data_normal, wavelet_type); 

  wse_normal_mean = mean(abs(wse_normal)) % Calculate mean of absolute WSE values for 

data_normal 

  wse_normal2 = calculateWaveletSingularEntropy(data_normal2, wavelet_type); 

  wse_normal2_mean = mean(abs(wse_normal2)) % Calculate mean of absolute WSE values 

for data_normal2 

  % Do further analysis or visualization with the mean absolute WSE values 

  % ... 

end 

% Create a table of the scores 

scores_table = array2table(scores, 'VariableNames', dataset_names, 'RowNames', 

wavelet_types); 

disp(scores_table); 

wavelet_types = {'bump', 'morse', 'amor'}; 

health_datasets = {'data_normal', 'data_normal2', 'data_inner', 'data_inner2', 'data_outer', 

'data_outer2'}; 

mean_wse_values = zeros(length(wavelet_types), length(health_datasets)); 

for i = 1:length(wavelet_types) 

  wavelet_type = wavelet_types{i}; 

  fprintf('Wavelet Type: %s\n', wavelet_type); 

   

  for j = 1:length(health_datasets) 

    dataset_name = health_datasets{j}; 

    dataset = eval(dataset_name); % Evaluate the dataset variable using its name 

     

    wse = calculateWaveletSingularEntropy(dataset, wavelet_type); 

    mean_wse = mean(abs(wse)); % Calculate mean of absolute WSE values 

     

    mean_wse_values(i, j) = mean_wse; 

  end 

end 

% Plot the mean absolute WSE values 
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figure 

bar(mean_wse_values) 

xticks(1:length(wavelet_types)) 

xticklabels(wavelet_types) 

legend(health_datasets) 

title('Mean Absolute WSE Values') 

xlabel('Wavelet Type') 

ylabel('Mean Absolute WSE') 

set(gca,"XGrid","off","YGrid","on") 

Helper Functions 

function plotBearingSignalAndScalogram(data) 

% Convert 1-D bearing signals to scalograms through wavelet transform 

fs = data.bearing.sr; 

t_total = 0.1; % seconds 

n = round(t_total*fs); 

bearing = data.bearing.gs(1:n); 

[cfs,frq] = cwt(bearing,'amor', fs); 

% Plot the original signal and its scalogram 

figure 

subplot(2,1,1) 

plot(0:1/fs:(n-1)/fs,bearing) 

xlim([0,0.1]) 

title('Vibration Signal') 

xlabel('Time (s)') 

ylabel('Amplitude') 

subplot(2,1,2) 

surface(0:1/fs:(n-1)/fs,frq,abs(cfs)) 

shading flat 

xlim([0,0.1]) 

ylim([0,max(frq)]) 

title('Scalogram') 

xlabel('Time (s)') 

ylabel('Frequency (Hz)') 

end 
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function convertSignalToScalogram(ensemble,folderName) 

% Convert 1-D signals to scalograms and save scalograms as images 

data = read(ensemble); 

fs = data.sr; 

x = data.gs{:}; 

label = char(data.Label); 

fname = char(data.FileName); 

ratio = 5000/97656; 

interval = ratio*fs;  

N = floor(numel(x)/interval); 

% Create folder to save images 

path = fullfile('.',folderName,label); 

if ~exist(path,'dir') 

 mkdir(path); 

end 

path_numerical = fullfile('.',folderName,label, 'sub_sample_split1'); 

if ~exist(path_numerical,'dir') 

 mkdir(path_numerical); 

end 

for idx = 1:N 

 sig = envelope(x(interval*(idx-1)+1:interval*idx)); 

 file_path = fullfile('.',path_numerical,[fname '-' num2str(idx) '.csv']);%(new added) 

 writematrix(sig,file_path); %new 

 %like we are creating subfolders based on the interval equal data ineach 

 %file not using envelop transform  

 cfs = cwt(sig,'amor', seconds(1/fs)); 

 cfs = abs(cfs); 

 img = ind2rgb(round(rescale(flip(cfs),0,255)),jet(320)); 

 outfname = fullfile('.',path,[fname '-' num2str(idx) '.jpg']); 

 imwrite(imresize(img,[224,224]),outfname); 

end 

end 

%new 

function plotBearingSignalAndWaveletCoefficient(data) 
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  % Convert 1-D bearing signals to wavelet coefficients through wavelet transform 

  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 

  bearing = data.bearing.gs(1:n); 

  % Choose wavelet types 

  wavelet_types = {'bump', 'morse', 'amor'}; 

  % Plot the original signal and its wavelet coefficients for each wavelet type 

  figure 

  for i = 1:length(wavelet_types) 

    wavelet_type = wavelet_types{i}; 

    [cfs, ~] = cwt(bearing, wavelet_type, fs); 

     

    subplot(length(wavelet_types), 1, i) 

    plot(0:1/fs:(n-1)/fs, bearing) 

    hold on 

    plot(0:1/fs:(n-1)/fs, abs(cfs)) 

    hold off 

    xlim([0, 0.1]) 

    title(sprintf('Wavelet Coefficient (%s)', upper(wavelet_type))) 

    xlabel('Time (s)') 

    ylabel('Magnitude') 

    legend('Vibration Signal', 'Wavelet Coefficient') 

  end 

end 

function wse = calculateWaveletSingularEntropy(data, wavelet_type) 

  % Convert 1-D bearing signals to scalograms through wavelet transform 

  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 

  bearing = data.bearing.gs(1:n); 

   % Perform wavelet transform 

  [cfs, ~] = cwt(bearing, wavelet_type, fs); 

  % Calculate the WSE 
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  wse = sum(abs(cfs).^2 .* log(abs(cfs).^2), 1); % Updated to calculate along columns 

  % Normalize the WSE values between 0 and 1 

  wse = wse / max(wse); 

end 

function plotWaveletCoefficients(data) 

  % Convert 1-D bearing signals to scalograms through wavelet transform 

  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 

  bearing = data.bearing.gs(1:n); 

    % Choose wavelet types 

  wavelet_types = {'bump', 'morse', 'amor'}; 

  % Plot the time-frequency diagrams for each wavelet type 

  figure 

  for i = 1:length(wavelet_types) 

    wavelet_type = wavelet_types{i}; 

    [cfs, frq] = cwt(bearing, wavelet_type, fs); 

    subplot(length(wavelet_types), 1, i) 

    plot(0:1/fs:(n-1)/fs, bearing, 'b') 

    hold on 

    surface(0:1/fs:(n-1)/fs, frq, abs(cfs), 'FaceColor', 'texturemap', 'EdgeColor', 'none') 

    colormap(jet) 

    view(2) 

    xlim([0, 0.1]) 

    ylim([0, max(frq)]) 

    title(upper(wavelet_type)) 

    xlabel('Time (s)') 

    ylabel('Frequency (Hz)') 

    colorbar 

  end 

  sgtitle('Scalograms with Wavelet Coefficients') 

end 

function plotScalogramsWithWavelets(data) 

  % Convert 1-D bearing signals to scalograms through wavelet transform 
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  fs = data.bearing.sr; 

  t_total = 0.1; % seconds 

  n = round(t_total * fs); 

  bearing = data.bearing.gs(1:n); 

   

  % Choose wavelet types 

  wavelet_types = {'bump', 'morse', 'amor'}; 

    % Plot the time-frequency diagrams for each wavelet type 

  for i = 1:length(wavelet_types) 

    wavelet_type = wavelet_types{i}; 

    [cfs, frq] = cwt(bearing, wavelet_type, fs); 

     

    figure 

    imagesc(1/fs:(n-1)/fs, frq, abs(cfs)) 

    set(gca, 'YDir', 'normal') 

    colormap(jet) 

    colorbar 

    title(sprintf('2D Time-Frequency Diagram (%s)', upper(wavelet_type))) 

    xlabel('Time (s)') 

    ylabel('Frequency (Hz)') 

  end 

end 

2.5 Chapter 6: Full Code 

1. Same dataset used previously for training the ALexNet (CWT) 

rng(15); % Set the random seed (you change every time you repeat the experiment ) use 

(1,3,6,9,12,15,21,24,27,30) for reproducibility 

% Specify the path to your images folder 

ImagesPath_CWTFLI = 

'C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearingF

aultDiagnosisExample\CWT_LoadIndexSplit_1'; 

% Load and preprocess your dataset with resized images (according to the 

% CNN size) 

inputSize = [227, 227, 3]; 

generatedImages = imageDatastore(ImagesPath_CWTFLI, ... 
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  'IncludeSubfolders', true, ... 

  'LabelSource', 'foldernames', ... 

  'ReadFcn', @(filename) imresize(imread(filename), inputSize(1:2))); 

% Split the dataset into training, validation, and testing datastores 

rng(30); % Set the random seed for reproducibility 

[trainImages_CWTLI, valImages_CWTLI, testImages_CWTLI] = 

splitEachLabel(generatedImages, 0.6, 0.2, 0.2, 'randomized'); 

% Display the number of images in each split 

numTrainImagesCWTLI = numel(trainImages_CWTLI.Files); 

numValImagesCWTLI = numel(valImages_CWTLI.Files); 

numTestImagesCWTLI = numel(testImages_CWTLI.Files); 

disp(['Number of training images: ', num2str(numTrainImagesCWTLI)]); 

disp(['Number of validation images: ', num2str(numValImagesCWTLI)]); 

disp(['Number of testing images: ', num2str(numTestImagesCWTLI)]); 

trainingLabels_CWTLI = countEachLabel(trainImages_CWTLI) 

validationLabels_CWTLI= countEachLabel(valImages_CWTLI) 

testLabels_CWTLI= countEachLabel(testImages_CWTLI) 

% Specify the path to your images folder 

ImagesPath_GADFLI = 

'C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearingF

aultDiagnosisExample\GADF_LoadIndexSplit_1'; 

% Load and preprocess your dataset with resized images (according to the 

% CNN size) 

inputSize = [227, 227, 3]; 

generatedImages_GADF = imageDatastore(ImagesPath_GADFLI, ... 

  'IncludeSubfolders', true, ... 

  'LabelSource', 'foldernames', ... 

  'ReadFcn', @(filename) imresize(imread(filename), inputSize(1:2))); 

 

% Split the dataset into training, validation, and testing datastores 

% (images label stats with healthy, mild, moderate then severe) 

rng(30); % Set the random seed for reproducibility 

[trainImages_GADFLI, valImages_GADFLI, testImages_GADFLI] = 

splitEachLabel(generatedImages_GADF, 0.6, 0.2, 0.2, 'randomized'); 
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% Display the number of images in each split 

numTrainImagesGADFLI = numel(trainImages_GADFLI.Files); 

numValImagesGADFLI = numel(valImages_GADFLI.Files); 

numTestImagesGADFLI = numel(testImages_GADFLI.Files); 

disp(['Number of training images: ', num2str(numTrainImagesGADFLI)]); 

disp(['Number of validation images: ', num2str(numValImagesGADFLI)]); 

disp(['Number of testing images: ', num2str(numTestImagesGADFLI)]); 

trainingLabels_GADFLI = countEachLabel(trainImages_GADFLI) 

validationLabels_GADFLI= countEachLabel(valImages_GADFLI) 

testLabels_GADFLI= countEachLabel(testImages_GADFLI) 

2. Load(ensemble _MFPT_subfiles_SeverityAdded)just click will show ensemble 

% Assuming your ensemble is stored in a table or a timetable called ' ensemble ' 

%add an index column  

ensemble.Index = (1:size(ensemble, 1))'; 

%change this because I have spilling mistake 

% Assuming your ensemble is stored in a table or a timetable called 'ensemble' 

% Correct the spelling mistake in the 'Severity' column 

ensemble.Severity = strrep(ensemble.Severity, 'Helthy', 'Healthy'); 

%sort the ensemble by severity (open the ensemble variable and sort it 

%manually ascending order) this is because the FeatureTable1_2 was but 

%based on the original order but we will convert it this way to march CWT 

%and GADF order 

%in the following section we will add the image path column similar to the 

%datastore  

Load (LI_20Features_table_p4.mat)just click will show FeatureTable1_2  

fix spelling mistake in healthy  

FeatureTable1_2.Severity = strrep(ensemble.Severity, 'Helthy', 'Healthy'); 

3. upload the ensemble with LI severity and add images path  

% Specify the path to your images folder 

CWTImagesPath = 

'C:\Users\Shahd\Documents\MATLAB\Examples\R2023a\predmaint\RollingElementBearingF

aultDiagnosisExample\CWT_Images'; 

% Assuming 'ensemble' contains the ensemble with the added LoadFactor column 

num_samples = height(ensemble); 
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imagePaths = cell(num_samples, 1); 

% Create the image paths and add them to the ensemble table 

folder_indices = containers.Map(); % To keep track of the current index for each folder 

for i = 1:num_samples 

  load_factor = ensemble.LoadFactor{i}; 

  if ~isKey(folder_indices, load_factor) 

    folder_indices(load_factor) = 1; 

  end 

  current_index = folder_indices(load_factor); 

    img_folder = fullfile(CWTImagesPath, load_factor); 

  img_name = [load_factor, '-', num2str(current_index), '.jpg']; 

  img_path = fullfile(img_folder, img_name); 

  imagePaths{i} = img_path; 

    % Update the index for the current folder 

  folder_indices(load_factor) = current_index + 1; 

end 

% Add the 'ImagePath' column to the ensemble table (on the enesemble) 

ensemble.ImagePath = imagePaths; 

4. Splitting Consistensy  

% because we splitting from the datastore arranges as (healthy, mild, 

% moderate and severe) now we are taking the exact paths  

trainImagePaths_CWTLI = trainImages_CWTLI.Files; 

valImagePaths_CWTLI = valImages_CWTLI.Files; 

testImagePaths_CWTLI = testImages_CWTLI.Files; 

• Adding the 'ImagePath' column from the ensemble table to FeatureTable1_2 and then using 

it for splitting will ensure that you're matching the images consistently between your CWT 

dataset and the feature dataset. 

% Create a list of image file names for training, validation, and testing 

% datasets of CWT images 

%here you can see the images names used for train valid and test  

trainImageNames_CWTLI = cellfun(@(x) getFileNameFromPath(x), 

trainImages_CWTLI.Files, 'UniformOutput', false); 

valImageNames_CWTLI = cellfun(@(x) getFileNameFromPath(x), valImages_CWTLI.Files, 

'UniformOutput', false); 
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testImageNames_CWTLI = cellfun(@(x) getFileNameFromPath(x), testImages_CWTLI.Files, 

'UniformOutput', false); 

% Add the 'ImageName' column from ensemble to FeatureTable1_2 

FeatureTable1_2.ImageName = cellfun(@(x) getFileNameFromPath(x), ensemble.ImagePath, 

'UniformOutput', false); 

% Split FeatureTable1_2 into matching datasets based on image file names 

% 3 columns were added here (image full path, index and image name) 

matchingTrainData_FeatureTable1_2 = 

FeatureTable1_2(ismember(FeatureTable1_2.ImageName, trainImageNames_CWTLI), :); 

matchingValData_FeatureTable1_2 = 

FeatureTable1_2(ismember(FeatureTable1_2.ImageName, valImageNames_CWTLI), :); 

matchingTestData_FeatureTable1_2 = 

FeatureTable1_2(ismember(FeatureTable1_2.ImageName, testImageNames_CWTLI), :); 

 

%sort ascending (important) 

Now you have to make sure that the order in time and frequency domain features lables match 

the CWT and GADF image datastore as they are organised byfolder name which means (all 

healthy files first, all mild, all moderate, aalll severe) grouped by LI  

testing_withGADF = horzcat(testImages_GADFLI.Labels, 

categorical(matchingTestData_FeatureTable1_2.Severity)) 

testing_withCWT = horzcat(testImages_CWTLI.Labels, 

categorical(matchingTestData_FeatureTable1_2.Severity)) 

%for classification learner combine training and validation  

WNNTrainValData_FeatureTable1_2 = [matchingTrainData_FeatureTable1_2; 

matchingValData_FeatureTable1_2]; 

% i got these two functions CubicSVM_4.12 and WideNeuralNetwork_4.29 

5. Load pre trained models  

%seed 1 

%load functions from classification learner  

load('CubicSVM_4.12.mat') %function named CubicSVM_412 was traned on all 20 features  

load('WideNeuralNetwork_4.29.mat')%function named WNN_429 was traned on all 10 

features  

% Step 1: Load the pre-trained AlexNet network and the WNN model (if not already loaded) 

load('LI_ALEXNET_CWT.mat'); % will load trainedNetwork_3 
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%load GADF Alexnet (low accuracy do not load) 

load('LI_ALEXNET_GADF.mat'); % will load trainedNetwork_4 

%load GADF Alexnet (7/3/2024) will load trainedNetwork_AlexNEWGADF 

load('LI_trained_ALexNet_March24.mat') 

%load CWT AlexNet (12/2/2024)will load trainedNetwork_AlexNEWCWT 

load('LI_ALexNet_CWT_March24.mat') 

%seed 3 

load('WNN_seed3.mat') 

load('CubicSVM_seed3.mat') 

%Alexnet 

load('AlexNet_CWT_seed3.mat') % will load AlexNet_CWT_seed3 

load('AlexNet_GADF_seed3.mat') % will load AlexNet_GADF_seed3 

% seed 6 

load('WNN_seed6.mat') 

load('CubicSVM_seed6.mat') 

%Alexnet 

load('AlexNet_CWT_seed6.mat') % will load AlexNet_CWT_seed6 

load('AlexNet_GADF_seed6.mat') % will load AlexNet_GADF_seed6 

% seed 9 

load('WNN_seed9.mat') 

load('CubicSVM_seed9.mat') 

%I'm here training the CWT  

load('AlexNet_CWT_seed9.mat') % will load AlexNet_CWT_seed9 

load('AlexNet_GADF_seed9.mat') % will load AlexNet_GADF_seed9 

% seed 12 

load('WNN_seed12.mat') 

load('CubicSVM_seed12.mat') 

%I'm here training the CWT  

load('AlexNet_CWT_seed12.mat') % will load AlexNet_CWT_seed12 

load('AlexNet_GADF_seed12.mat') % will load AlexNet_GADF_seed12 

% seed 15 

load('WNN_seed15.mat') 

load('CubicSVM_seed15.mat') 

%I'm here training the CWT  
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load('AlexNet_CWT_seed15.mat') % will load AlexNet_CWT_seed15 

load('AlexNet_GADF_seed15.mat') % will load AlexNet_GADF_seed15 

%seed 18 (here)I dud cnn not good do not include 

load('WNN_seed18.mat') 

load('CubicSVM_seed18.mat') 

%I'm here training the CWT  

load('AlexNet_CWT_seed18.mat') % will load AlexNet_CWT_seed15 

load('AlexNet_GADF_seed18.mat') % will load AlexNet_GADF_seed15 

%seed 21 

load('WNN_seed21.mat') 

load('CubicSVM_seed21.mat') 

%I'm here training the CWT  

load('AlexNet_CWT_seed21.mat') % will load AlexNet_CWT_seed15 

load('AlexNet_GADF_seed21.mat') % will load AlexNet_GADF_seed15 

%seed 24 

load('WNN_seed24.mat') 

load('CubicSVM_seed24.mat') 

%I'm here training the CWT  

load('AlexNet_CWT_seed24.mat') % will load AlexNet_CWT_seed15 

load('AlexNet_GADF_seed24.mat') % will load AlexNet_GADF_seed15 

%seed 27 

load('WNN_seed27.mat') 

load('CubicSVM_seed27.mat') 

 

%I'm here training the CWT  

load('AlexNet_CWT_seed27.mat') % will load AlexNet_CWT_seed15 

load('AlexNet_GADF_seed27.mat') % will load AlexNet_GADF_seed15 

%seed 30 

load('WNN_seed30.mat') 

load('CubicSVM_seed30.mat') 

%I'm here training the CWT  

load('AlexNet_CWT_seed30.mat') % will load AlexNet_CWT_seed15 

load('AlexNet_GADF_seed30.mat') % will load AlexNet_GADF_seed15 

6. Predections (single chanel) 
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%CWT (AlexNet)(change function name per seed function) 

cwt_predictions_train = classify(AlexNet_CWT_seed30, trainImages_CWTLI); 

cwt_predictions_val = classify(AlexNet_CWT_seed30, valImages_CWTLI); 

cwt_predictions_test = classify(AlexNet_CWT_seed30, testImages_CWTLI); 

cwt_scores_train = predict(AlexNet_CWT_seed30, trainImages_CWTLI); 

cwt_scores_val = predict(AlexNet_CWT_seed30, valImages_CWTLI); 

cwt_scores_test = predict(AlexNet_CWT_seed30, testImages_CWTLI); 

%GADF (AlexNet) 

GADF_predictions_train = classify(AlexNet_GADF_seed30, trainImages_GADFLI); 

GADF_predictions_val = classify(AlexNet_GADF_seed30, valImages_GADFLI); 

GADF_predictions_test = classify(AlexNet_GADF_seed30, testImages_GADFLI); 

GADF_scores_train = predict(AlexNet_GADF_seed30,trainImages_GADFLI); 

GADF_scores_val = predict(AlexNet_GADF_seed30, valImages_GADFLI); 

GADF_scores_test = predict(AlexNet_GADF_seed30, testImages_GADFLI) 

%For time and frequency domain features (CubicSVM) (change function name per seed 

function): 

[yfit_CubicSVM_train, CubicSVM_scores_train] = 

CubicSVM_seed30.predictFcn(matchingTrainData_FeatureTable1_2(:, 1:end-1)); 

[yfit_CubicSVM_val, CubicSVM_scores_val] = 

CubicSVM_seed30.predictFcn(matchingValData_FeatureTable1_2(:, 1:end-1)); 

[yfit_CubicSVM_test, CubicSVM_scores_test] = 

CubicSVM_seed30.predictFcn(matchingTestData_FeatureTable1_2(:, 1:end-1)); 

%% For time and frequency domain features (WNN):(change function name per seed function): 

% because it should matches the classification learner input) 

%exclude the last added one columns for linking 

[yfit_WNN_train, WNN_scores_train] = 

WNN_seed30.predictFcn(matchingTrainData_FeatureTable1_2(:, 1:end-1)); 

[yfit_WNN_val, WNN_scores_val] = 

WNN_seed30.predictFcn(matchingValData_FeatureTable1_2(:, 1:end-1)); 

[yfit_WNN_test, WNN_scores_test] = 

WNN_seed30.predictFcn(matchingTestData_FeatureTable1_2(:, 1:end-1)); 

diagnosticFeatureDesigner 

7. Testing (single Channel) 

• CWT (AlexNet) single on testing dataset  
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YPred = cwt_predictions_test; 

YTest = testImages_CWTLI.Labels; 

% Calculate overall accuracy 

accuracy = sum(YPred == YTest) / numel(YTest) * 100; 

fprintf('Overall Accuracy: %.2f%%\n', accuracy); 

% Calculate accuracy per fault type 

faultTypes = unique(YTest); 

numFaultTypes = numel(faultTypes); 

accuracyPerFaultType = zeros(numFaultTypes, 1); 

 

for i = 1:numFaultTypes 

  currentFaultType = faultTypes(i); 

  indices = YTest == currentFaultType; 

  accuracyPerFaultType(i) = sum(YPred(indices) == currentFaultType) / sum(indices) * 100; 

   

  fprintf('Accuracy for Fault Type %s: %.2f%%\n', currentFaultType, 

accuracyPerFaultType(i)); 

end 

% Calculate precision, recall, and F1-score 

cm = confusionchart(YTest, YPred); 

cm.ColumnSummary = 'column-normalized'; 

cm.RowSummary = 'row-normalized'; 

cm.Title = 'Confusion Matrix CWT_AlexNet_seed30)'; 

• GADF (AlexNet) 

YPred = GADF_predictions_test; 

YTest = testImages_GADFLI.Labels; 

% Correct the spelling mistake in the predicted labels(essential) 

Ypred_CubicSVM_corrected = strrep(YPred, 'Helthy', 'Healthy'); 

% Calculate overall accuracy 

accuracy = sum(Ypred_CubicSVM_corrected == YTest) / numel(YTest) * 100; 

fprintf('Overall Accuracy: %.2f%%\n', accuracy); 

% Calculate accuracy per fault type 

faultTypes = unique(YTest); 

numFaultTypes = numel(faultTypes); 
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accuracyPerFaultType = zeros(numFaultTypes, 1); 

for i = 1:numFaultTypes 

  currentFaultType = faultTypes(i); 

  indices = YTest == currentFaultType; 

  accuracyPerFaultType(i) = sum(Ypred_CubicSVM_corrected(indices) == currentFaultType) / 

sum(indices) * 100; 

   

  fprintf('Accuracy for Fault Type %s: %.2f%%\n', currentFaultType, 

accuracyPerFaultType(i)); 

end 

 

% Calculate precision, recall, and F1-score 

cm = confusionchart(YTest, Ypred_CubicSVM_corrected); 

cm.ColumnSummary = 'column-normalized'; 

cm.RowSummary = 'row-normalized'; 

cm.Title = 'Confusion Matrix GADF_ AlexNet_seed30'; 

• WNN Features 

Ypred_WNN= yfit_WNN_test; 

% Correct the spelling mistake in the predicted labels(essential) 

Ypred_WNN_corrected = strrep(Ypred_WNN, 'Helthy', 'Healthy'); 

YTest_WNN = matchingTestData_FeatureTable1_2.Severity; %arranged with healthy first  

% Calculate overall accuracy 

accuracy = sum(Ypred_WNN_corrected == YTest_WNN) / numel(YTest_WNN) * 100; 

fprintf('Overall Accuracy WNN: %.2f%%\n', accuracy); 

% Calculate accuracy per fault type 

faultTypes = unique(YTest_WNN); 

numFaultTypes = numel(faultTypes); 

accuracyPerFaultType = zeros(numFaultTypes, 1); 

for i = 1:numFaultTypes 

  currentFaultType = faultTypes(i); 

  indices = YTest_WNN == currentFaultType; 

  accuracyPerFaultType(i) = sum(Ypred_WNN_corrected(indices) == currentFaultType) / 

sum(indices) * 100; 
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  fprintf('Accuracy for Fault Type WNN %s: %.2f%%\n', currentFaultType, 

accuracyPerFaultType(i)); 

end 

%here i want to make sure the testing label of the images from the datastore 

%and for WNN is the same  

testing = horzcat(YTest, categorical(YTest_WNN)) 

 

• CubicSVM Features 

Ypred_CubicSVM= yfit_CubicSVM_test; 

Ypred_WNN_corrected = strrep(Ypred_CubicSVM, 'Helthy', 'Healthy'); 

YTest_CubicSVM = matchingTestData_FeatureTable1_2.Severity; 

% Calculate overall accuracy 

accuracy = sum(Ypred_WNN_corrected == YTest_CubicSVM) / numel(YTest_CubicSVM) * 

100; 

fprintf('Overall Accuracy CubicSVM: %.2f%%\n', accuracy); 

% Calculate accuracy per fault type 

faultTypes = unique(YTest_CubicSVM); 

numFaultTypes = numel(faultTypes); 

accuracyPerFaultType = zeros(numFaultTypes, 1); 

for i = 1:numFaultTypes 

  currentFaultType = faultTypes(i); 

  indices = YTest_CubicSVM == currentFaultType; 

  accuracyPerFaultType(i) = sum(Ypred_WNN_corrected(indices) == currentFaultType) / 

sum(indices) * 100; 

   fprintf('Accuracy for Fault Type CubicSVM %s: %.2f%%\n', currentFaultType, 

accuracyPerFaultType(i)); 

end 

%testing (should match) 

testing = horzcat(YTest, categorical(YTest_CubicSVM)) 

8. Decsion Fusion Altenatives  

1. Alternative 1: CWT(AlexNet)-WNN4.29 (change this ) 

%1.1% Define the weight factors for each model's predictions(1.2) 

time_freq_weight_mild = 0.1; 

time_freq_weight_moderate = 0.9; % Adjust this weight as needed 
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time_freq_weight_severe = 0.1; % Adjust this weight as needed 

CWT_weight_mild = 0.9;  % Weight for CWT AlexNet's predictions for Mild Load Index 

CWT_weight_moderate = 0.1; % Adjust this weight as needed 

CWT_weight_severe = 0.9; % Weight for CWT AlexNet's predictions for Severe Load Index 

num_classes = 4; 

% Get the labels for the testing dataset 

test_labels = matchingTestData_FeatureTable1_2.Severity; 

% Initialize an array to store the fused scores 

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of 

classes 

% Iterate through each sample and apply fusion based on class 

for i = 1:length(test_labels) 

  % Get the Load Index label for the current sample 

  load_index_label = char(test_labels(i)); 

   

  % Assign weights based on the Load Index label 

  if strcmp(load_index_label, 'Mild') 

    time_freq_weight = time_freq_weight_mild; 

    CWT_weight = CWT_weight_mild; 

     

  elseif strcmp(load_index_label, 'Moderate') 

    time_freq_weight = time_freq_weight_moderate; 

    CWT_weight = CWT_weight_moderate; 

    

  elseif strcmp(load_index_label, 'Severe') 

    time_freq_weight = time_freq_weight_severe; 

    CWT_weight = CWT_weight_severe; 

     

  else % Healthy named in the enesemble helthy that is why it is zero 

    time_freq_weight = 1; 

    CWT_weight = 0; % No contribution from CWT for Healthy 

     

  end 
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  % Calculate the fused score using adjusted weights 

  fused_scores_test(i, :) = time_freq_weight * WNN_scores_test(i, :) ... 

               + CWT_weight * cwt_scores_test(i, :); 

                

end 

% Get the final predicted labels based on the highest score for each sample 

[~, final_predictions_test] = max(fused_scores_test, [], 2); 

%1.2% Define the weight factors for each model's predictions(1.2) 

time_freq_weight_mild = 0.5; 

time_freq_weight_moderate = 0.5; % Adjust this weight as needed 

time_freq_weight_severe = 0.5; % Adjust this weight as needed 

CWT_weight_mild = 0.5;  % Weight for CWT AlexNet's predictions for Mild Load Index 

CWT_weight_moderate = 0.5; % Adjust this weight as needed 

CWT_weight_severe = 0.5; % Weight for CWT AlexNet's predictions for Severe Load Index 

num_classes = 4; 

% Get the labels for the testing dataset 

test_labels = matchingTestData_FeatureTable1_2.Severity; 

% Initialize an array to store the fused scores 

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of 

classes 

% Iterate through each sample and apply fusion based on class 

for i = 1:length(test_labels) 

  % Get the Load Index label for the current sample 

  load_index_label = char(test_labels(i)); 

   

  % Assign weights based on the Load Index label 

  if strcmp(load_index_label, 'Mild') 

    time_freq_weight = time_freq_weight_mild; 

    CWT_weight = CWT_weight_mild; 

     

  elseif strcmp(load_index_label, 'Moderate') 

    time_freq_weight = time_freq_weight_moderate; 

    CWT_weight = CWT_weight_moderate; 
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  elseif strcmp(load_index_label, 'Severe') 

    time_freq_weight = time_freq_weight_severe; 

    CWT_weight = CWT_weight_severe; 

     

  else % Healthy named in the enesemble helthy that is why it is zero 

    time_freq_weight = 1; 

    WNN_weight = 0; % No contribution from CWT for Healthy 

     

  end 

  % Calculate the fused score using adjusted weights 

  fused_scores_test(i, :) = time_freq_weight * WNN_scores_test(i, :) ... 

               + CWT_weight * cwt_scores_test(i, :); 

               

end 

% Get the final predicted labels based on the highest score for each sample 

[~, final_predictions_test] = max(fused_scores_test, [], 2); 

2.Alternative 2: CWT(AlexNet)-CubicSVM4.29 (change this ) 

%2.1 Define the weight factors for each model's predictions 

time_freq_weight_mild = 0.1; 

time_freq_weight_moderate = 0.1; % Adjust this weight as needed 

time_freq_weight_severe = 0.9; % Adjust this weight as needed 

cwt_weight_mild = 0.9;  % Weight for CWT AlexNet's predictions for Mild Load Index 

cwt_weight_moderate = 0.9; % Adjust this weight as needed 

cwt_weight_severe = 0.1; % Weight for CWT AlexNet's predictions for Severe Load Index 

num_classes = 4; 

% Get the labels for the testing dataset 

test_labels = matchingTestData_FeatureTable1_2.Severity; 

% Initialize an array to store the fused scores 

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of 

classes 

% Iterate through each sample and apply fusion based on class 

for i = 1:length(test_labels) 

  % Get the Load Index label for the current sample 

  load_index_label = char(test_labels(i)); 
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  % Assign weights based on the Load Index label 

  if strcmp(load_index_label, 'Mild') 

    time_freq_weight = time_freq_weight_mild; 

    cwt_weight = cwt_weight_mild; 

     

  elseif strcmp(load_index_label, 'Moderate') 

    time_freq_weight = time_freq_weight_moderate; 

    cwt_weight = cwt_weight_moderate; 

    

  elseif strcmp(load_index_label, 'Severe') 

    time_freq_weight = time_freq_weight_severe; 

    cwt_weight = cwt_weight_severe; 

     

  else % Healthy named in the enesemble helthy that is why it is zero 

    time_freq_weight = 1; 

    cwt_weight = 0; % No contribution from CWT for Healthy 

     

  end 

    % Calculate the fused score using adjusted weights 

  fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ... 

               + cwt_weight * cwt_scores_test(i, :); 

                

end 

% Get the final predicted labels based on the highest score for each sample 

[~, final_predictions_test] = max(fused_scores_test, [], 2); 

% 2.2Define the weight factors for each model's predictions  

time_freq_weight_mild = 0.5; 

time_freq_weight_moderate = 0.5; % Adjust this weight as needed 

time_freq_weight_severe = 0.5; % Adjust this weight as needed 

cwt_weight_mild = 0.5;  % Weight for CWT AlexNet's predictions for Mild Load Index 

cwt_weight_moderate = 0.5; % Adjust this weight as needed 

cwt_weight_severe = 0.5; % Weight for CWT AlexNet's predictions for Severe Load Index 

num_classes = 4; 
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% Get the labels for the testing dataset 

test_labels = matchingTestData_FeatureTable1_2.Severity; 

% Initialize an array to store the fused scores 

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of 

classes 

% Iterate through each sample and apply fusion based on class 

for i = 1:length(test_labels) 

  % Get the Load Index label for the current sample 

  load_index_label = char(test_labels(i)); 

    % Assign weights based on the Load Index label 

  if strcmp(load_index_label, 'Mild') 

    time_freq_weight = time_freq_weight_mild; 

    cwt_weight = cwt_weight_mild; 

     

  elseif strcmp(load_index_label, 'Moderate') 

    time_freq_weight = time_freq_weight_moderate; 

    cwt_weight = cwt_weight_moderate; 

    

  elseif strcmp(load_index_label, 'Severe') 

    time_freq_weight = time_freq_weight_severe; 

    cwt_weight = cwt_weight_severe; 

     

  else % Healthy named in the enesemble helthy that is why it is zero 

    time_freq_weight = 1; 

    cwt_weight = 0; % No contribution from CWT for Healthy 

     

  end 

    % Calculate the fused score using adjusted weights 

  fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ... 

               + cwt_weight * cwt_scores_test(i, :); 

               

end 

% Get the final predicted labels based on the highest score for each sample 

[~, final_predictions_test] = max(fused_scores_test, [], 2); 
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%Extra to handel severe  

% Define the weight factors for each model's predictions 

time_freq_weight_mild = 0.1; 

time_freq_weight_moderate = 0.1; % Adjust this weight as needed 

time_freq_weight_severe = 0.5; % Adjust this weight as needed 

cwt_weight_mild = 0.9;  % Weight for CWT AlexNet's predictions for Mild Load Index 

cwt_weight_moderate = 0.9; % Adjust this weight as needed 

cwt_weight_severe = 0.5; % Weight for CWT AlexNet's predictions for Severe Load Index 

 

num_classes = 4; 

% Get the labels for the testing dataset 

test_labels = matchingTestData_FeatureTable1_2.Severity; 

% Initialize an array to store the fused scores 

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of 

classes 

% Iterate through each sample and apply fusion based on class 

for i = 1:length(test_labels) 

  % Get the Load Index label for the current sample 

  load_index_label = char(test_labels(i)); 

   

  % Assign weights based on the Load Index label 

  if strcmp(load_index_label, 'Mild') 

    time_freq_weight = time_freq_weight_mild; 

    cwt_weight = cwt_weight_mild; 

    gadf_weight = gadf_weight_mild; 

  elseif strcmp(load_index_label, 'Moderate') 

    time_freq_weight = time_freq_weight_moderate; 

    cwt_weight = cwt_weight_moderate; 

    gadf_weight = gadf_weight_moderate; 

  elseif strcmp(load_index_label, 'Severe') 

    time_freq_weight = time_freq_weight_severe; 

    cwt_weight = cwt_weight_severe; 

    gadf_weight = gadf_weight_severe; 

  else % Healthy named in the enesemble helthy that is why it is zero 
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    time_freq_weight = 1; 

    cwt_weight = 0; % No contribution from CWT for Healthy 

    gadf_weight = 0; % No contribution from GADF for Healthy 

  end 

    % Calculate the fused score using adjusted weights 

  fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ... 

               + cwt_weight * cwt_scores_test(i, :) ... 

              ; 

end 

% Get the final predicted labels based on the highest score for each sample 

[~, final_predictions_test] = max(fused_scores_test, [], 2); 

 

3. GADF, CWT and CubicSVM  

%3.1 

% Define the weight factors for each model's predictions 

time_freq_weight_mild = 0.1; 

time_freq_weight_moderate = 0.1; % Adjust this weight as needed 

time_freq_weight_severe = 0.8; % Adjust this weight as needed 

cwt_weight_mild = 0.8;  % Weight for CWT AlexNet's predictions for Mild Load Index 

cwt_weight_moderate = 0.1; % Adjust this weight as needed 

cwt_weight_severe = 0.1; % Weight for CWT AlexNet's predictions for Severe Load Index 

 

gadf_weight_mild = 0.1;  % Weight for GADF AlexNet's predictions for Mild Load Index 

gadf_weight_moderate =0.8; % Adjust this weight as needed 

gadf_weight_severe =0.1; % Weight for GADF AlexNet's predictions for Severe Load Index 

num_classes = 4; 

% Get the labels for the testing dataset 

test_labels = matchingTestData_FeatureTable1_2.Severity; 

% Initialize an array to store the fused scores 

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of 

classes 

% Iterate through each sample and apply fusion based on class 

for i = 1:length(test_labels) 

  % Get the Load Index label for the current sample 
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  load_index_label = char(test_labels(i)); 

    % Assign weights based on the Load Index label 

  if strcmp(load_index_label, 'Mild') 

    time_freq_weight = time_freq_weight_mild; 

    cwt_weight = cwt_weight_mild; 

    gadf_weight = gadf_weight_mild; 

  elseif strcmp(load_index_label, 'Moderate') 

    time_freq_weight = time_freq_weight_moderate; 

    cwt_weight = cwt_weight_moderate; 

    gadf_weight = gadf_weight_moderate; 

  elseif strcmp(load_index_label, 'Severe') 

    time_freq_weight = time_freq_weight_severe; 

    cwt_weight = cwt_weight_severe; 

    gadf_weight = gadf_weight_severe; 

  else % Healthy named in the enesemble helthy that is why it is zero 

    time_freq_weight = 1; 

    cwt_weight = 0; % No contribution from CWT for Healthy 

    gadf_weight = 0; % No contribution from GADF for Healthy 

  end 

    % Calculate the fused score using adjusted weights 

  fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ... 

               + cwt_weight * cwt_scores_test(i, :) ... 

               + gadf_weight * GADF_scores_test(i, :); 

end 

% Get the final predicted labels based on the highest score for each sample 

[~, final_predictions_test] = max(fused_scores_test, [], 2); 

%3.2 

% Define the weight factors for each model's predictions 

time_freq_weight_mild = 0.33; 

time_freq_weight_moderate = 0.33; % Adjust this weight as needed 

time_freq_weight_severe = 0.33; % Adjust this weight as needed 

cwt_weight_mild = 0.33;  % Weight for CWT AlexNet's predictions for Mild Load Index 

cwt_weight_moderate = 0.33; % Adjust this weight as needed 

cwt_weight_severe = 0.33; % Weight for CWT AlexNet's predictions for Severe Load Index 
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gadf_weight_mild = 0.33;  % Weight for GADF AlexNet's predictions for Mild Load Index 

gadf_weight_moderate =0.33; % Adjust this weight as needed 

gadf_weight_severe =0.33; % Weight for GADF AlexNet's predictions for Severe Load Index 

num_classes = 4; 

% Get the labels for the testing dataset 

test_labels = matchingTestData_FeatureTable1_2.Severity; 

% Initialize an array to store the fused scores 

fused_scores_test = zeros(length(test_labels), num_classes); % num_classes is the number of 

classes 

% Iterate through each sample and apply fusion based on class 

for i = 1:length(test_labels) 

  % Get the Load Index label for the current sample 

  load_index_label = char(test_labels(i)); 

   

  % Assign weights based on the Load Index label 

  if strcmp(load_index_label, 'Mild') 

    time_freq_weight = time_freq_weight_mild; 

    cwt_weight = cwt_weight_mild; 

    gadf_weight = gadf_weight_mild; 

  elseif strcmp(load_index_label, 'Moderate') 

    time_freq_weight = time_freq_weight_moderate; 

    cwt_weight = cwt_weight_moderate; 

    gadf_weight = gadf_weight_moderate; 

  elseif strcmp(load_index_label, 'Severe') 

    time_freq_weight = time_freq_weight_severe; 

    cwt_weight = cwt_weight_severe; 

    gadf_weight = gadf_weight_severe; 

  else % Healthy named in the enesemble helthy that is why it is zero 

    time_freq_weight = 1; 

    cwt_weight = 0; % No contribution from CWT for Healthy 

    gadf_weight = 0; % No contribution from GADF for Healthy 

  end 

   

  % Calculate the fused score using adjusted weights 



 

321 

 

  fused_scores_test(i, :) = time_freq_weight * CubicSVM_scores_test(i, :) ... 

               + cwt_weight * cwt_scores_test(i, :) ... 

               + gadf_weight * GADF_scores_test(i, :); 

end 

 

% Get the final predicted labels based on the highest score for each sample 

[~, final_predictions_test] = max(fused_scores_test, [], 2); 

YPred_fused = final_predictions_test; % Use the fused predictions here 

YTest = categorical(matchingTestData_FeatureTable1_2.Severity); % Convert YTest to 

categorical 

% Convert indices to categorical labels 

YPred_fused = categorical(faultTypes(YPred_fused), faultTypes); 

% Calculate overall accuracy 

accuracy_fused = sum(YPred_fused == YTest) / numel(YTest) * 100; 

fprintf('Overall Accuracy with Decision Fusion: %.2f%%\n', accuracy_fused); 

% Calculate accuracy per fault type 

faultTypes = unique(YTest); 

numFaultTypes = numel(faultTypes); 

accuracyPerFaultType_fused = zeros(numFaultTypes, 1); 

for i = 1:numFaultTypes 

  currentFaultType = faultTypes(i); 

  indices = YTest == currentFaultType; 

  accuracyPerFaultType_fused(i) = sum(YPred_fused(indices) == currentFaultType) / 

sum(indices) * 100; 

    fprintf('Accuracy for Fault Type %s with Decision Fusion: %.2f%%\n', currentFaultType, 

accuracyPerFaultType_fused(i)); 

end 

% Create a confusion chart 

cm = confusionchart(YTest, YPred_fused); 

cm.Normalization = 'row-normalized'; % Set the normalization to row-normalized 

cm.Title = 'Confusion Matrix with Decision Fusion 3.2'; 

Functions 

% Function to extract file name from full path (because in the enesemble 

% the full path not similar it is better to use image name) 
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function fileName = getFileNameFromPath(fullPath) 

  [~, fileName, ~] = fileparts(fullPath); 

end 
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Appendix 3: Google Colab Codes 
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3.1 Chapter 4: DCGAN 

from google.colab import drive 

drive.mount('/content/drive') 

Mounted at /content/drive 

#to know the used GPU 

import torch 

if torch.cuda.is_available(): 

  device = torch.cuda.get_device_name(0) 

  print(f'Using GPU: {device}') 

else: 

  print('GPU is not available. Using CPU instead.') 

Using GPU: Tesla T4 

##Import libraries + dataLoaders 

import tensorflow as tf 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.utils import to_categorical 

import numpy as np 

from tensorflow.keras.models import Sequential 

# Define the data generator for preprocessing and data augmentation 

data_generator = ImageDataGenerator( 

  rescale=1./255, # normalize pixel values between 0 and 1 

) 

# Load the images from the directory 

train_dir = 

'/content/drive/MyDrive/MyResearch/GAN_Trials_March23/MotorImage_train' 

train_generator = data_generator.flow_from_directory( 

  train_dir, 

  target_size=(224, 224), 

  batch_size=32, 

  classes=['inner'], 

  class_mode='binary', 
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) 

print(train_generator[0][0].shape) 

Found 288 images belonging to 1 classes. 

(32, 224, 224, 3) 

from keras.layers import Input, Dense, Reshape, Flatten, Dropout, 

BatchNormalization, Activation, ZeroPadding2D 

from keras.layers.convolutional import UpSampling2D, Conv2D 

from keras.models import Sequential, Model 

from keras.optimisers import Adam 

from keras.preprocessing.image import ImageDataGenerator 

import tensorflow as tf 

from keras.layers import LeakyReLU 

from keras import layers 

import numpy as np 

import os 

import matplotlib.pyplot as plt 

import argparse 

##Build Models 

# Define the Generator Model 

def build_generator(): 

  model = Sequential() 

  model.add(Dense(128 * 56 * 56, activation="relu", input_dim=100)) 

  model.add(Reshape((56, 56, 128))) 

  model.add(UpSampling2D()) 

  model.add(Conv2D(64, kernel_size=3, padding="same")) 

  model.add(BatchNormalization(momentum=0.8)) 

  model.add(Activation("relu")) 

  model.add(UpSampling2D()) 

  model.add(Conv2D(32, kernel_size=3, padding="same")) 

  model.add(BatchNormalization(momentum=0.8)) 

  model.add(Activation("relu")) 
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  model.add(Conv2D(3, kernel_size=3, padding="same")) 

  model.add(Activation("tanh")) 

  noise = Input(shape=(100,)) 

  img = model(noise) 

  return Model(noise, img) 

# Define the Discriminator Model 

def build_discriminator(): 

  model = Sequential() 

  model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=(224, 224, 3), 

padding="same")) 

  model.add(LeakyReLU(alpha=0.2)) 

  model.add(Dropout(0.25)) 

  model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) 

  model.add(ZeroPadding2D(padding=((0,1),(0,1)))) 

  model.add(BatchNormalization(momentum=0.8)) 

  model.add(LeakyReLU(alpha=0.2)) 

  model.add(Dropout(0.25)) 

  model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) 

  model.add(BatchNormalization(momentum=0.8)) 

  model.add(LeakyReLU(alpha=0.2)) 

  model.add(Dropout(0.25)) 

  model.add(Conv2D(256, kernel_size=3, strides=1, padding="same")) 

  model.add(BatchNormalization(momentum=0.8)) 

  model.add(LeakyReLU(alpha=0.2)) 

  model.add(Dropout(0.25)) 

  model.add(Flatten()) 

  model.add(Dense(1, activation='sigmoid')) 

  img = Input(shape=(224, 224, 3)) 

  validity = model(img) 

  return Model(img, validity) 
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# Define the Adversarial Model 

def build_adversarial(generator, discriminator): 

  optimiser = Adam(0.0001, 0.5) 

  discriminator.trainable = False 

  gan_input = Input(shape=(100,)) 

  fake_image = generator(gan_input) 

  validity = discriminator(fake_image) 

  gan = Model(gan_input, validity) 

  metrics = ['accuracy'] 

  gan.compile(loss='binary_crossentropy', optimiser=optimiser, metrics = metrics) 

  return gan 

# Set up the DCGAN 

generator = build_generator() 

discriminator = build_discriminator() 

adversarial = build_adversarial(generator, discriminator) 

discriminator.trainable = False 

#The first thing to do is set trainable to false on our discriminator. This will prevent it 

from updating its weights independently. This does not mean that the discriminator will 

not learn though. We are going to add the discriminator and generator to another 

network as components. Our discriminator will be able to update its weights in the 

context of the GAN network, while the generator will be updated independently. This 

will allow us to use the generator outside the context of the GAN to actually produce 

synthetic samples. 

generator.compile(loss='binary_crossentropy', 

optimiser=tf.keras.optimisers.Adam(0.0001, 0.5)) 

# Compile the model discr 

from keras.optimisers import Adam 

optimiser = Adam(learning_rate=0.0001, beta_1=0.5) 

loss_function = 'binary_crossentropy' 

discriminator.compile(optimiser=optimiser, loss=loss_function, metrics=['accuracy']) 
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#compile 

# Compile the model with the custom metric 

from tensorflow.keras.optimisers import Adam 

optimiser = Adam(learning_rate=0.0001, beta_1=0.5) 

metrics = ['accuracy'] 

adversarial.compile(loss='binary_crossentropy', optimiser= optimiser, metrics = 

metrics) 

#summary 

generator.summary() 

discriminator.summary() 

adversarial.summary() 

##Model training 

#where to save generated image s 

save_path = 

'/content/drive/MyDrive/MyResearch/GAN_Trials_March23/Inner_L0.0001' 

import os 

os.makedirs(save_path, exist_ok=True) 

import numpy as np 

import matplotlib.pyplot as plt 

epochs = 50 # (changable) 

batch_size = 32 #better to match the datagenerator batch_size 

num_training_images = 288 

save_interval = 9 #In this example, the generator model is saved and the generated 

images are displayed every 27 epochs. 

#288 // 32 = 9. So, a good choice for save_interval would be a multiple of 9, such as 9, 

18, 27, 36, etc. 

gen_loss = [] 

disc_loss = [] 

channels = 3 

for epoch in range(epochs): 
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  for i in range(int(num_training_images/batch_size)): 

    # Get batch of real images 

    real_images, _ = train_generator.next() 

    # Generate batch of fake images 

    fake_images = generator.predict(np.random.normal(0, 1, (batch_size, 100))) 

    # Train the discriminator 

    discriminator_loss_real = discriminator.train_on_batch(real_images, 

np.ones((batch_size, 1))) 

    discriminator_loss_fake = discriminator.train_on_batch(fake_images, 

np.zeros((batch_size, 1))) 

    discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake) 

    # Train the generator 

    gan_loss = adversarial.train_on_batch(np.random.normal(0, 1, (batch_size, 100)), 

np.ones((batch_size, 1))) 

  # Print the progress 

  print("Epoch %d/%d [D loss: %s] [G loss: %s]" % (epoch+1, epochs, 

discriminator_loss, gan_loss)) 

  # Append the losses to the corresponding lists 

  gen_loss.append(gan_loss) 

  disc_loss.append(discriminator_loss) 

   # Show and save generated images every "save_interval" epochs 

  if (epoch + 1) % save_interval == 0: 

   save = True 

  else: 

   save = False 

  show_images(generator, noise, epoch=epoch+1, save=save, save_path=save_path, 

channels=channels) 

# Save the generator model 

generator.save(os.path.join(save_path,'Exp1_generator_model.h5')) 

discriminator.save(os.path.join(save_path,'Exp1_discriminator_model.h5')) 
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3.2 Chapter 4: WGAN-GP and cWGAN-GP:  

In thesis supplementary material file. complex file with nested structure. 

3.3 Chapter 7: Full Code 

from google.colab import drive 

drive.mount('/content/drive') 

!pip install torch-geometric 

# Import necessary libraries 

from google.colab import drive 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from tensorflow.keras.utils import to_categorical 

from tensorflow.keras.models import Sequential, Model 

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten 

import numpy as np 

from scipy.spatial.distance import cdist 

import networkx as nx 

import torch 

from torch_geometric.utils.convert import from_networkx 

# Mount Google Drive 

drive.mount('/content/drive') 

# Load dataset 

dataset_path = '/content/drive/MyDrive/GNN Classification Task/FeatureTable1_2.xlsx' 

df = pd.read_excel(dataset_path) 

# Preprocess dataset 

df.fillna(0, inplace=True) 

label_encoder = LabelEncoder() 

encoded_labels = label_encoder.fit_transform(df.iloc[:, 0].values) 
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y = to_categorical(encoded_labels) 

X = df.iloc[:, 1:].values 

# balance the dataset classes per class without biase, then reassign variable 

(encoded_labels, y and X) 

from imblearn.over_sampling import SMOTE 

# Apply SMOTE to balance the dataset 

smote = SMOTE(random_state=42) 

X, encoded_labels = smote.fit_resample(X, encoded_labels) 

# Convert labels to categorical 

y = to_categorical(encoded_labels) 

print(pd.Series(encoded_labels).value_counts()) 

 

#Create a new DataFrame with the balanced data 

df = pd.DataFrame(data=X, columns=df.columns[1:]) 

df['Label'] = [np.argmax(row) for row in y] 

# Get the encoded labels from the balanced dataset 

encoded_labels = df['Label'].values 

print("New encoded labels after balancing:", encoded_labels) 

 

# 2. Set Random Seeds 

import random 

import numpy as np 

import torch 

# Set the random seed for reproducibility 

seed_value = 42 

random.seed(seed_value) 

np.random.seed(seed_value) 

torch.manual_seed(seed_value) 

if torch.cuda.is_available(): 
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  torch.cuda.manual_seed_all(seed_value) 

  torch.backends.cudnn.deterministic = True 

  torch.backends.cudnn.benchmark = False 

print(df.columns) 

!pip install --upgrade networkx 

Dataset Preperation for CNN 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

from torch.optim import Adam 

from sklearn.model_selection import train_test_split 

import numpy as np 

Dataset Splitting 

from sklearn.model_selection import train_test_split 

# Set random seeds for reproducibility 

seed = 42 

np.random.seed(seed) 

torch.manual_seed(seed) 

if torch.cuda.is_available(): 

  torch.cuda.manual_seed_all(seed) 

# Assuming 'encoded_labels' is your array of labels for the dataset (Same indeces will be 

used in GNN and CNN for train, valid and test) 

# Split indices to maintain stratification 

train_indices, temp_indices, y_train, y_temp = train_test_split( 

  range(len(encoded_labels)), encoded_labels, stratify=encoded_labels, test_size=0.4, 

random_state=seed) 

val_indices, test_indices, y_val, y_test = train_test_split( 

  temp_indices, y_temp, stratify=y_temp, test_size=0.5, random_state=seed) 

from collections import Counter 
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# Check the distribution of classes in each set 

print('Training set class distribution:', Counter(y_train)) 

print('Validation set class distribution:', Counter(y_val)) 

print('Test set class distribution:', Counter(y_test)) 

print(y_test) 

print(test_indices) 

import numpy as np 

# Assuming y_test is a numpy array of your test labels 

unique, counts = np.unique(y_test, return_counts=True) 

test_class_distribution = dict(zip(unique, counts)) 

print(test_class_distribution) 

Dataset Preparation for CNN 

#Step 1: Create Tensors for CNN 

#First, ensure your feature matrix X and encoded_labels are converted to tensors, just like 

you did previously. Then, use the indices to create tensors for training, validation, and 

testing sets: 

#here we add train dataset because we are not using graph and masks 

X_tensor = torch.tensor(X, dtype=torch.float) 

y_tensor = torch.tensor(encoded_labels, dtype=torch.long) 

X_train, y_train = X_tensor[train_indices], y_tensor[train_indices] 

X_val, y_val = X_tensor[val_indices], y_tensor[val_indices] 

X_test, y_test = X_tensor[test_indices], y_tensor[test_indices] 

#Step 2: Create DataLoaders for CNN 

X_tensor = torch.tensor(X, dtype=torch.float) 

y_tensor = torch.tensor(encoded_labels, dtype=torch.long) 

X_train, y_train = X_tensor[train_indices], y_tensor[train_indices] 

X_val, y_val = X_tensor[val_indices], y_tensor[val_indices] 

X_test, y_test = X_tensor[test_indices], y_tensor[test_indices] 

print(y_test) 
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# how testing dataset is arranged for the cnn? is it arranged by test_indices? 

# Yes, the testing dataset for the CNN is arranged by the test_indices.  

# This ensures that the same data points are used for testing in both CNN and GNN models. 

# Here's how the test dataset is created: 

X_test, y_test = X_tensor[test_indices], y_tensor[test_indices] 

# X_test contains the features for the test dataset,  

# and y_test contains the corresponding labels. 

# The order of data points in X_test and y_test is determined by the test_indices. 

 

#GNN (K=3): 

Dataset preperation for GNN 

We need to create fraph and masks 

import matplotlib.pyplot as plt 

import networkx as nx 

from torch_geometric.utils import to_networkx 

from sklearn.neighbours import kneighbours_graph 

import torch 

from torch_geometric.data import Data 

# Necessary imports for converting sparse matrix 

from scipy.sparse import coo_matrix 

# Step 1: Graph Construction 

# Convert features X into a graph 

A = kneighbours_graph(X, n_neighbours=3, include_self=True) # Adjust n_neighbours 

based on your dataset 

# Convert the adjacency matrix to COO format 

A_coo = coo_matrix(A) 

# Now, use the row and col attributes from the COO matrix 

edge_index = torch.tensor([A_coo.row, A_coo.col], dtype=torch.long) 

# Create a PyTorch Geometric data object 
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data = Data(x=torch.tensor(X, dtype=torch.float), edge_index=edge_index, 

y=torch.tensor(encoded_labels, dtype=torch.long)) 

from torch_geometric.utils import to_networkx 

# Assuming 'data' is your PyTorch Geometric data object and it has 'y' for labels 

G = to_networkx(data, to_undirected=True) 

plt.figure(figsize=(15, 15)) # Increase figure size for better visibility 

pos = nx.spring_layout(G, seed=42) # Layout for better node distribution 

# Get unique classes and assign a distinct color to each class 

classes = np.unique(data.y.cpu().numpy()) 

colors = plt.cm.rainbow(np.linspace(0, 1, len(classes))) 

# Create a color map for nodes 

class_color_map = {cls: colors[i] for i, cls in enumerate(classes)} 

node_colors = [class_color_map[data.y[i].item()] for i in range(len(G))] 

# Draw nodes with class-based color 

nx.draw_networkx_nodes(G, pos, node_size=50, node_color=node_colors, alpha=0.8) 

# Draw edges 

nx.draw_networkx_edges(G, pos, alpha=0.1, edge_color="gray") 

# Optionally, draw node labels for a subset or specific nodes for clarity 

# For better clarity, consider labeling nodes of interest only 

# subset_labels = {i: str(i) for i in subset_nodes} 

# nx.draw_networkx_labels(G, pos, labels=subset_labels, font_size=8) 

plt.title("Graph Visualization with Class Colors (KNN =3)") 

plt.axis('off') # Turn off the axis 

plt.show() 

#Create Masks 

How Masks Work 

Masks are typically boolean arrays (or tensors) where each element corresponds to a node 

in your dataset: 
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True (1): If the element is True, the corresponding node is included in the operation (like 

training or evaluation). 

False (0): If the element is False, the corresponding node is excluded from the operation. 

For example, if you have a dataset with 100 nodes, and you want to train on the first 80 and 

test on the remaining 20, your training mask would be an array with the first 80 elements 

set to True and the rest set to False. The test mask would be the opposite. 

#Masks creation For GNN 

# Initialize all masks to False initially 

train_mask = torch.zeros(len(encoded_labels), dtype=torch.bool) 

val_mask = torch.zeros(len(encoded_labels), dtype=torch.bool) 

test_mask = torch.zeros(len(encoded_labels), dtype=torch.bool) 

# Set True for indices belonging to each split 

train_mask[train_indices] = True 

val_mask[val_indices] = True 

test_mask[test_indices] = True 

print(test_indices) 

# Attach masks to your data object 

data.train_mask = train_mask 

data.val_mask = val_mask 

data.test_mask = test_mask 

print(f"Training mask count: {train_mask.sum().item()}, Expected: {len(train_indices)}") 

print(f"Validation mask count: {val_mask.sum().item()}, Expected: {len(val_indices)}") 

print(f"Test mask count: {test_mask.sum().item()}, Expected: {len(test_indices)}") 

 

data.y[data.test_mask] 

print(data.y[data.test_mask]) 

# Assuming 'label_encoder' is your LabelEncoder instance 

original_class_labels = label_encoder.classes_ 

# Print the mapping of encoded labels to original class labels 
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for encoded_label, original_label in enumerate(original_class_labels): 

  print(f"Encoded label {encoded_label} stands for {original_label}") 

#Define the GNN Model 

import torch.nn.functional as F 

from torch_geometric.nn import GCNConv 

# Set a fixed random seed for reproducibility 

seed = 42 

np.random.seed(seed) 

torch.manual_seed(seed) 

if torch.cuda.is_available(): 

  torch.cuda.manual_seed_all(seed) 

class GCN(torch.nn.Module): 

  def __init__(self, num_features, num_classes): 

    super(GCN, self).__init__() 

    self.conv1 = GCNConv(num_features, 16) 

    self.conv2 = GCNConv(16, num_classes) 

  def forward(self, data): 

    x, edge_index = data.x, data.edge_index 

    x = F.relu(self.conv1(x, edge_index)) 

    x = F.dropout(x, training=self.training) 

    x = self.conv2(x, edge_index) 

    return F.log_softmax(x, dim=1) 

model = GCN(num_features=data.num_features, num_classes=4) 

# Assigning to a new variable name 

GNN_k3 = model 

#Train the Model 

Actual Trainig With 5 cross validation (200 epochs, LR = 0.001, Adam optimiser) 

import matplotlib.pyplot as plt 
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import torch 

from torch_geometric.data import Data 

from torch_geometric.nn import GCNConv 

import torch.nn.functional as F 

from torch.optim import Adam 

import numpy as np 

from sklearn.model_selection import train_test_split 

#same for both 

#Here Just check on the masks and ensure initial training results 

from torch.optim import Adam 

# Set a fixed random seed for reproducibility 

seed = 40 

np.random.seed(seed) 

torch.manual_seed(seed) 

if torch.cuda.is_available(): 

  torch.cuda.manual_seed_all(seed) 

 

optimiser = Adam(model.parameters(), lr=0.0009, weight_decay=5e-4) 

criterion = torch.nn.CrossEntropyLoss() 

##GNN Training (K=3) 

# Within the evaluate function, log the number of correct predictions and total number of 

predictions (Same for GNN k =3 and k =4) Before training each I will change its name and 

train it according to the K and save it again 

def evaluate(mask): 

  model.eval() 

  with torch.no_grad(): 

    logits = model(data) 

    preds = logits[mask].max(1)[1] 

    correct = preds.eq(data.y[mask]).sum().item() 
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    total = mask.sum().item() 

    acc = correct / total 

    print(f"Correct: {correct}, Total: {total}, Mask sum: {mask.sum().item()}") 

  return acc 

#Training  

from sklearn.model_selection import KFold 

import random 

def set_seed(seed_value): 

    random.seed(seed_value)  # Python's built-in random module 

    np.random.seed(seed_value)  # NumPy's random module 

    torch.manual_seed(seed_value)  # PyTorch's random number generator 

    if torch.cuda.is_available(): 

        torch.cuda.manual_seed(seed_value)  # CUDA's random number generator 

        torch.cuda.manual_seed_all(seed_value)  # If you are using multi-GPU 

        torch.backends.cudnn.deterministic = True  # To ensure that CUDA's convolution 

operations are deterministic 

        torch.backends.cudnn.benchmark = False  # If your input sizes do not vary, setting 

this to False can improve reproducibility 

# Set a seed for reproducibility 

set_seed(seed_value=39) 

# Define the number of folds for cross-validation 

num_folds = 5 

kf = KFold(n_splits=num_folds, shuffle=True, random_state=42) 

# Convert the dataset to a PyTorch tensor 

X_tensor = torch.tensor(X, dtype=torch.float) 

y_tensor = torch.tensor(encoded_labels, dtype=torch.long) 

# Lists to store performance metrics 

train_losses = [] 

train_accuracies = [] 
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val_accuracies = [] 

num_epochs = len(train_accuracies)  # The number of epochs training was run 

# Lists to store performance metrics for each fold 

fold_train_losses = [] 

fold_train_accuracies = [] 

fold_val_accuracies = [] 

for fold, (train_index, val_index) in enumerate(kf.split(X_tensor)): 

    # Split the data into training and validation sets for the current fold 

    X_train, X_val = X_tensor[train_index], X_tensor[val_index] 

    y_train, y_val = y_tensor[train_index], y_tensor[val_index] 

    # Create PyTorch Geometric data objects for training and validation 

    train_data = Data(x=X_train, y=y_train) 

    val_data = Data(x=X_val, y=y_val) 

    # Initialize your GNN model (Change here) 

    optimizer = Adam(GNN_k3.parameters(), lr=0.0009, weight_decay=5e-4) 

     # Train the model using the training data for the current fold 

    for epoch in range(400): 

        GNN_k3.train() 

        optimizer.zero_grad() 

        out = GNN_k3(data) 

        loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) 

        loss.backward() 

        optimizer.step() 

        # Evaluate the model using the validation data for the current fold 

        train_acc = evaluate(data.train_mask) 

        val_acc = evaluate(data.val_mask) 

        # Store the results 

        # Append training and validation accuracy to their respective lists 
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        train_accuracies.append(train_acc) 

        val_accuracies.append(val_acc) 

        fold_train_losses.append(loss.item()) 

        fold_train_accuracies.append(train_acc) 

        fold_val_accuracies.append(val_acc) 

        print(f'Fold: {fold}, Epoch: {epoch}, Loss: {loss.item():.4f}, Train Acc: 

{train_acc:.4f}, Val Acc: {val_acc:.4f}') 

    # Here you can add code to reset the model, if needed, for the next fold 

# Calculate and print the average performance across all folds 

average_train_loss = sum(fold_train_losses) / len(fold_train_losses) 

average_train_accuracy = sum(fold_train_accuracies) / len(fold_train_accuracies) 

average_val_accuracy = sum(fold_val_accuracies) / len(fold_val_accuracies) 

print(f'Average Train Loss: {average_train_loss:.4f}') 

print(f'Average Train Accuracy: {average_train_accuracy:.4f}') 

print(f'Average Validation Accuracy: {average_val_accuracy:.4f}') 

# Plotting training and validation accuracy 

plt.figure(figsize=(10, 6)) 

# Make sure to use the correct range based on the number of epochs trained 

plt.plot(range(1, len(train_accuracies) + 1), train_accuracies, label='Training Accuracy') 

plt.plot(range(1, len(val_accuracies) + 1), val_accuracies, label='Validation Accuracy') 

plt.title('Training and Validation Accuracy over Epochs ') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.show() 

test_acc = evaluate(data.test_mask) 

test_acc = evaluate(data.test_mask) 

print(f'Test Accuracy: {test_acc:.4f}') 

print(data.y[data.test_mask]) 
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from sklearn.metrics import confusion_matrix 

import seaborn as sns 

import matplotlib.pyplot as plt 

GNN_k3.eval() 

total_correct = 0 

total_samples = 0 

with torch.no_grad(): 

    logits = GNN_k3(data)  # Forward pass 

    predictions = logits[data.test_mask].max(1)[1]  # Get predicted classes 

    true_labels = data.y[data.test_mask]  # True labels 

    total_correct = (predictions == true_labels).sum().item() 

    total_samples = data.test_mask.sum().item() 

# Initialize a dictionary to store accuracy for each class 

accuracy_per_class = {} 

# Loop through each class 

for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]): 

    # Indices of true labels for the current class 

    true_class_indices = (true_labels == class_index) 

    # Total number of samples in the current class 

    total_class_samples = true_class_indices.sum().item() 

    if total_class_samples > 0: 

        # Correct predictions for the current class 

        correct_class_predictions = (predictions[true_class_indices] == 

true_labels[true_class_indices]).sum().item() 

        class_accuracy = correct_class_predictions / total_class_samples 

        accuracy_per_class[class_name] = class_accuracy 

    else: 

        accuracy_per_class[class_name] = None  # No samples for this class in the test set 
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# Calculate overall accuracy 

overall_accuracy = total_correct / total_samples 

# Print the accuracy for each class 

for class_name, class_accuracy in accuracy_per_class.items(): 

    if class_accuracy is not None: 

        print(f"Accuracy for {class_name}: {class_accuracy:.4f}") 

    else: 

        print(f"No samples for class {class_name} in the test set.") 

# Print overall accuracy 

print(f"Overall Accuracy: {overall_accuracy:.4f}") 

#Saving the Best perforning model after testing 

model_save_path = '/content/drive/MyDrive/GNN Classification Task/GNN_k3.pth' 

# Save the model state dictionary 

torch.save(GNN_k3.state_dict(), 'GNN_k3.pt') 

#verify it was saved 

# Load the state dictionary 

GNN_k3.load_state_dict(torch.load('/content/drive/MyDrive/GNN Classification 

Task/GNN_k3.pth')) 

#Same training for GNN (K=4 and K=5) 

 

# 1D-CNN: 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

from torch.optim import Adam 

from torch.utils.data import DataLoader, TensorDataset 

from sklearn.model_selection import KFold 

import numpy as np 

import matplotlib.pyplot as plt 
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import random 

from sklearn.model_selection import KFold 

from sklearn.model_selection import KFold 

# Define the number of folds and create the KFold instance 

num_folds = 5 

kf = KFold(n_splits=num_folds, shuffle=True, random_state=42) 

# Set random seeds for reproducibility 

seed = 42 

np.random.seed(seed) 

torch.manual_seed(seed) 

if torch.cuda.is_available(): 

  torch.cuda.manual_seed_all(seed) 

# Define the model 

class Simple1DCNN(nn.Module): 

  def __init__(self, num_features, num_classes): 

    super(Simple1DCNN, self).__init__() 

    self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, stride=1, 

padding=1) 

    self.pool = nn.MaxPool1d(kernel_size=2, stride=2) 

    self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1, 

padding=1) 

    self.flatten = nn.Flatten() 

    # Temporarily set a placeholder value for the number of input features to fc1 

    self.fc1 = nn.Linear(1, 120) # Placeholder, will be updated dynamically 

    self.fc2 = nn.Linear(120, num_classes) 

 

    # Dynamically calculate the correct input size for fc1 

    self._init_fc1(num_features) 

  def _init_fc1(self, num_features): 
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    dummy_input = torch.zeros((1, num_features), dtype=torch.float) 

    output = self.pool(F.relu(self.conv1(dummy_input.unsqueeze(1)))) 

    output = self.pool(F.relu(self.conv2(output))) 

    output_size = output.view(-1).size(0) 

    self.fc1 = nn.Linear(output_size, 120) 

  def forward(self, x): 

    x = x.unsqueeze(1) # Add a channel dimension 

    x = F.relu(self.conv1(x)) 

    x = self.pool(x) 

    x = F.relu(self.conv2(x)) 

    x = self.pool(x) 

    x = self.flatten(x) 

    x = F.relu(self.fc1(x)) 

    x = self.fc2(x) 

    return x 

# Function to reset model weights 

def reset_weights(m): 

  if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear): 

    m.reset_parameters() 

# Prepare for training 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

num_features = X_tensor.shape[1] 

num_classes = 4 

CNN_model = Simple1DCNN(num_features=num_features, num_classes=num_classes) 

CNN_model.to(device) 

 

# Load the saved model state dictionary 

model_state_dict = torch.load('/content/drive/MyDrive/GNN Classification 

Task/CNN_model.pth')# Load the state dictionary into the model 
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CNN_model.load_state_dict(model_state_dict) 

 

import torch 

import torch.nn as nn 

# Assuming CNN_model is your model instance 

CNN_model = Simple1DCNN(num_features=100, num_classes=4) # Adjust num_features 

accordingly 

def print_model_summary(CNN_model): 

  print("Model Summary:\n") 

  print("{:<25} {:<25} {:<15}".format("Layer Type", "Output Shape", "Param #")) 

  print("="*65) 

  total_params = 0 

  for layer in CNN_model.modules(): 

    # Skip the overall model container 

    if isinstance(layer, nn.Module) and not isinstance(layer, nn.Sequential) and not 

isinstance(layer, Simple1DCNN): 

      layer_str = str(layer) 

      layer_type = layer_str.split('(')[0] 

      param_count = sum([p.numel() for p in layer.parameters()]) 

      total_params += param_count 

      # For Conv1d and Linear layers, you can directly calculate the output shape 

      # For other types of layers, you may need to adjust this logic 

      if hasattr(layer, 'out_channels') and hasattr(layer, 'kernel_size'): 

        output_shape = f"{layer.out_channels}, L" # L needs to be calculated based on your 

model's architecture 

      elif isinstance(layer, nn.Linear): 

        output_shape = str(layer.out_features) 

      else: 

        output_shape = "Variable" 
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      print("{:<25} {:<25} {:<15}".format(layer_type, output_shape, param_count)) 

  print("="*65) 

  print(f"Total Params: {total_params}") 

print_model_summary(CNN_model) 

 

from sklearn.metrics import confusion_matrix 

import seaborn as sns 

import matplotlib.pyplot as plt 

# Ensure that your test data is a torch Tensor 

X_test = torch.tensor(X[test_indices], dtype=torch.float) 

y_test = torch.tensor(encoded_labels[test_indices], dtype=torch.long) 

# Now use X_test and y_test to create your test_dataset and test_loader 

# Convert your test set to a TensorDataset 

test_dataset = TensorDataset(X_test, y_test) 

# Create a DataLoader for your test set 

test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) 

print(y_test) 

 

import matplotlib.pyplot as plt 

import numpy as np 

# Initialize lists to hold the accuracies for all folds and epochs 

all_folds_train_accuracies = [] 

all_folds_val_accuracies = [] 

# Cross-validation loop 

for fold, (train_index, val_index) in enumerate(kf.split(X_tensor)): 

  print(f'Starting fold {fold+1}') 

  CNN_model.apply(reset_weights) # Reset model weights 
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  # Create separate datasets for training and validation 

  X_train_fold, X_val_fold = X_tensor[train_index], X_tensor[val_index] 

  y_train_fold, y_val_fold = y_tensor[train_index], y_tensor[val_index] 

  # DataLoader setup for training and validation 

  train_loader = DataLoader(TensorDataset(X_train_fold, y_train_fold), batch_size=64, 

shuffle=True) 

  val_loader = DataLoader(TensorDataset(X_val_fold, y_val_fold), batch_size=64) 

  # Prepare for training 

  device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

  num_features = X_tensor.shape[1] 

  num_classes = 4 

  CNN_model= Simple1DCNN(num_features=num_features, num_classes=num_classes) 

  CNN_model.to(device) 

 

import numpy as np 

import matplotlib.pyplot as plt 

from torch.optim import Adam 

import torch.nn as nn 

# Assuming CNN_model, train_loader, val_loader, and device are already defined 

# Optimiser and criterion 

optimiser = Adam(CNN_model.parameters(), lr=0.005) 

criterion = nn.CrossEntropyLoss() 

# Lists to store metrics for all folds 

all_folds_train_accuracies = [] 

all_folds_val_accuracies = [] 

# Assuming num_folds and fold are defined, and the training/validation loop is part of a 

larger cross-validation loop 

for fold in range(num_folds): 

  # Lists to store metrics for the current fold 
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  fold_train_accuracies = [] 

  fold_val_accuracies = [] 

 

  # Training loop for current fold 

  for epoch in range(300): # Adjusted to match the loop range with the defined number of 

epochs 

    # Training phase 

    CNN_model.train() 

    train_loss, train_correct, train_total = 0, 0, 0 

    for X_batch, y_batch in train_loader: 

      X_batch, y_batch = X_batch.to(device), y_batch.to(device) 

      optimiser.zero_grad() 

      outputs = CNN_model(X_batch) 

      loss = criterion(outputs, y_batch) 

      loss.backward() 

      optimiser.step() 

      _, predicted = torch.max(outputs.data, 1) 

      train_total += y_batch.size(0) 

      train_correct += (predicted == y_batch).sum().item() 

      train_loss += loss.item() 

    # Calculate training accuracy for the current epoch 

    train_accuracy = train_correct / train_total 

    fold_train_accuracies.append(train_accuracy) 

    # Validation phase 

    CNN_model.eval() 

    val_loss, val_correct, val_total = 0, 0, 0 

    with torch.no_grad(): 

      for X_batch, y_batch in val_loader: 

        X_batch, y_batch = X_batch.to(device), y_batch.to(device) 
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        outputs = CNN_model(X_batch) 

        _, predicted = torch.max(outputs, 1) 

        val_total += y_batch.size(0) 

        val_correct += (predicted == y_batch).sum().item() 

 

    # Calculate validation accuracy for the current epoch 

    val_accuracy = val_correct / val_total 

    fold_val_accuracies.append(val_accuracy) 

    # Output the results 

    print(f'Fold: {fold+1}, Epoch: {epoch+1}, Loss: {train_loss / len(train_loader):.4f}, 

Train Acc: {train_accuracy:.4f}, Val Acc: {val_accuracy:.4f}') 

  # Store the accuracies for the current fold 

  all_folds_train_accuracies.append(fold_train_accuracies) 

  all_folds_val_accuracies.append(fold_val_accuracies) 

# Convert lists of lists to a NumPy array for easier handling 

all_folds_train_accuracies = np.array(all_folds_train_accuracies) 

all_folds_val_accuracies = np.array(all_folds_val_accuracies) 

# Plot training and validation accuracies for each epoch and fold 

for fold in range(num_folds): 

  plt.figure(figsize=(10, 6)) 

  epochs_range = range(1, 301) # Corrected to match the actual range of epochs 

  plt.plot(epochs_range, all_folds_train_accuracies[fold], label='Training Accuracy - Fold 

{}'.format(fold+1)) 

  plt.plot(epochs_range, all_folds_val_accuracies[fold], label='Validation Accuracy - Fold 

{}'.format(fold+1)) 

  plt.title(f'Training and Validation Accuracy over Epochs - Fold {fold+1}') 

  plt.xlabel('Epoch') 

  plt.ylabel('Accuracy') 

  plt.legend() 
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  plt.show() 

 

 

# Convert lists of lists to a NumPy array for easier handling 

all_folds_train_accuracies = np.array(all_folds_train_accuracies) 

all_folds_val_accuracies = np.array(all_folds_val_accuracies) 

# Calculate the mean accuracies across folds for each epoch 

mean_train_accuracies = all_folds_train_accuracies.mean(axis=0) 

mean_val_accuracies = all_folds_val_accuracies.mean(axis=0) 

# Calculate the overall average validation accuracy 

overall_average_val_accuracy = mean_val_accuracies.mean() 

# Print the overall average validation accuracy 

print(f"Overall Average Validation Accuracy: {overall_average_val_accuracy:.4f}") 

 

import matplotlib.pyplot as plt 

import numpy as np 

# Assuming 'all_folds_train_accuracies' and 'all_folds_val_accuracies' are lists of lists, 

# where each sublist contains accuracies for one fold, and each fold has data for 300 

epochs. 

# Convert lists of lists to a NumPy array for easier handling 

all_folds_train_accuracies = np.array(all_folds_train_accuracies) 

all_folds_val_accuracies = np.array(all_folds_val_accuracies) 

# Calculate the mean accuracies across folds for each epoch 

mean_train_accuracies = all_folds_train_accuracies.mean(axis=0) 

mean_val_accuracies = all_folds_val_accuracies.mean(axis=0) 

# Plot training and validation accuracies for each epoch 

plt.figure(figsize=(12, 6)) 

# Adjusting the range to 301 because Python ranges are exclusive at the upper bound, and 

we're counting from 1 
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plt.plot(range(1, 301), mean_train_accuracies, label='Average Training Accuracy') 

plt.plot(range(1, 301), mean_val_accuracies, label='Average Validation Accuracy') 

plt.title('Average Training and Validation Accuracy over Epochs for All Folds') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.show() 

 

# testing dataset accuracy arranged by test_indeces similar to GNN and accuracy per class# 

Assuming CNN_model, X_test, y_test, and test_loader are already defined# Evaluate the 

model on the test set 

CNN_model.eval() 

with torch.no_grad(): 

    test_loss = 0 

    test_correct = 0 

    test_total = 0 

    for X_batch, y_batch in test_loader: 

        X_batch, y_batch = X_batch.to(device), y_batch.to(device) 

        outputs = CNN_model(X_batch) 

        loss = criterion(outputs, y_batch) 

        test_loss += loss.item() 

        _, predicted = torch.max(outputs.data, 1) 

        test_total += y_batch.size(0) 

        test_correct += (predicted == y_batch).sum().item() 

 

    # Calculate test accuracy 

    test_accuracy = test_correct / test_total 

    print(f'Test Accuracy: {test_accuracy:.4f}') 
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    # Get predictions for the entire test set 

    outputs = CNN_model(X_test.to(device)) 

    _, predicted = torch.max(outputs.data, 1) 

 

    # Calculate confusion matrix 

    cm = confusion_matrix(y_test.cpu().numpy(), predicted.cpu().numpy()) 

    sns.heatmap(cm, annot=True, fmt='d') 

    plt.xlabel('Predicted') 

    plt.ylabel('True') 

    plt.title('Confusion Matrix') 

    plt.show() 

 

    # Calculate accuracy per class 

    accuracy_per_class = {} 

    for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]): 

        true_class_indices = (y_test == class_index) 

        total_class_samples = true_class_indices.sum().item() 

        if total_class_samples > 0: 

            correct_class_predictions = predicted[true_class_indices] == 

y_test[true_class_indices] 

            class_accuracy = correct_class_predictions.sum().item() / total_class_samples 

            accuracy_per_class[class_name] = class_accuracy 

        else: 

            accuracy_per_class[class_name] = None  # No samples for this class in the test set 

 

     

model_save_path_cnn = '/content/drive/MyDrive/GNN Classification 

Task/CNN_model.pth' 
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# Save the model state dictionary 

#torch.save(CNN_model.state_dict(), model_save_path_cnn) 

 

# Load the state dictionary to verify it was saved correctly 

#CNN_model.load_state_dict(torch.load(model_save_path_cnn)) 

#print("Model saved and loaded successfully.") 

#Hybrid CNN and GNN with optimal GNN Configuration using Taguchi 

# prompt: Now on testing dataset compare GCN output (the model name is model) and 

CNN (the model name is CNN_model) output 

 

# Assuming you have your GCN model and CNN model loaded and ready to use 

 

# Get predictions from the GCN model 

model.eval() 

with torch.no_grad(): 

  gcn_logits = model(data) 

  gcn_test_logits = gcn_logits[data.test_mask] 

  gcn_preds = gcn_test_logits.max(1)[1] 

 

 

# Get predictions from the CNN model 

CNN_model.eval() 

with torch.no_grad(): 

  cnn_outputs = CNN_model(X_test.to(device)) 

  _, cnn_predicted = torch.max(cnn_outputs.data, 1) 

 

# Compare the predictions 

print("GCN Predictions:", gcn_preds) 

print("CNN Predictions:", cnn_predicted) 
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# Calculate the number of matching predictions 

matching_predictions = (gcn_preds.cpu().numpy() == cnn_predicted.cpu().numpy()).sum() 

print("Number of matching predictions:", matching_predictions) 

 

# Calculate the number of differing predictions 

differing_predictions = (gcn_preds.cpu().numpy() != cnn_predicted.cpu().numpy()).sum() 

print("Number of differing predictions:", differing_predictions) 

print("True labels:", true_labels) 

# Assuming CNN_model, model, X_test, y_test, and test_loader are already defined 

 

# Evaluate the model on the test set 

CNN_model.eval() 

model.eval() 

with torch.no_grad(): 

    test_loss = 0 

    test_correct = 0 

    test_total = 0 

    for X_batch, y_batch in test_loader: 

        X_batch, y_batch = X_batch.to(device), y_batch.to(device) 

        outputs = CNN_model(X_batch) 

        loss = criterion(outputs, y_batch) 

        test_loss += loss.item() 

        _, predicted = torch.max(outputs.data, 1) 

        test_total += y_batch.size(0) 

        test_correct += (predicted == y_batch).sum().item() 
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    # Get predictions for the entire test set 

    cnn_outputs = CNN_model(X_test.to(device)) 

    _, cnn_predicted = torch.max(cnn_outputs.data, 1) 

 

    # Get predictions from the GCN model 

    gcn_logits = model(data) 

    gcn_test_logits = gcn_logits[data.test_mask] 

    gcn_preds = gcn_test_logits.max(1)[1] 

 

    # Calculate the weighted sum of predictions 

    # Define weights for each class in CNN and GCN models 

    gcn_weights_per_class = [0.5, 0.5, 0.5, 0.5]  # Example weights for each class in GCN 

    cnn_weights_per_class = [0.5, 0.5, 0.5, 0.5]  # Example weights for each class in CNN 

 

 

    # Apply weights to the logits 

    weighted_cnn_outputs = cnn_outputs * torch.tensor(cnn_weights_per_class).to(device) 

    weighted_gcn_test_logits = gcn_test_logits * 

torch.tensor(gcn_weights_per_class).to(device) 

 

    # Fuse the logits 

    fused_logits = weighted_cnn_outputs + weighted_gcn_test_logits 

 

    # Get the predicted classes from the fused logits 

    _, fused_predictions = torch.max(fused_logits.data, 1) 

 

    # Calculate the confusion matrix 

    cm = confusion_matrix(y_test.cpu().numpy(), fused_predictions.cpu().numpy()) 
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    sns.heatmap(cm, annot=True, fmt='d') 

    plt.xlabel('Predicted') 

    plt.ylabel('True') 

    plt.title('Confusion Matrix (Decision Fusion-Equal weights)') 

    plt.show() 

 

    # Calculate accuracy per class 

    accuracy_per_class = {} 

    for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]): 

        true_class_indices = (y_test == class_index) 

        total_class_samples = true_class_indices.sum().item() 

        if total_class_samples > 0: 

            correct_class_predictions = fused_predictions[true_class_indices] == 

y_test[true_class_indices] 

            class_accuracy = correct_class_predictions.sum().item() / total_class_samples 

            accuracy_per_class[class_name] = class_accuracy 

        else: 

            accuracy_per_class[class_name] = None  # No samples for this class in the test set 

 

    # Print the accuracy for each class 

    for class_name, class_accuracy in accuracy_per_class.items(): 

        if class_accuracy is not None: 

            print(f"Accuracy for {class_name}: {class_accuracy:.4f}") 

        else: 

            print(f"No samples for class {class_name} in the test set.") 

    # Calculate the average test accuracy 

total_accuracy = 0 

for class_name, class_accuracy in accuracy_per_class.items(): 

    if class_accuracy is not None: 
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        total_accuracy += class_accuracy 

average_test_accuracy = total_accuracy / len(accuracy_per_class) 

 

print(f"Average Test Accuracy: {average_test_accuracy:.4f}") 

# Evaluate the model on the test set 

CNN_model.eval() 

model.eval() 

with torch.no_grad(): 

    test_loss = 0 

    test_correct = 0 

    test_total = 0 

    for X_batch, y_batch in test_loader: 

        X_batch, y_batch = X_batch.to(device), y_batch.to(device) 

        outputs = CNN_model(X_batch) 

        loss = criterion(outputs, y_batch) 

        test_loss += loss.item() 

        _, predicted = torch.max(outputs.data, 1) 

        test_total += y_batch.size(0) 

        test_correct += (predicted == y_batch).sum().item() 

 

 

    # Get predictions for the entire test set 

    cnn_outputs = CNN_model(X_test.to(device)) 

    _, cnn_predicted = torch.max(cnn_outputs.data, 1) 

 

    # Get predictions from the GCN model 

    gcn_logits = model(data) 

    gcn_test_logits = gcn_logits[data.test_mask] 
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    gcn_preds = gcn_test_logits.max(1)[1] 

 

    # Calculate the weighted sum of predictions 

    # Define weights for each class in CNN and GCN models 

    gcn_weights_per_class = [0.3, 0.6, 0.5, 0.5]  # Example weights for each class in GCN 

    cnn_weights_per_class = [0.7, 0.4, 0.5, 0.5]  # Example weights for each class in CNN 

 

 

    # Apply weights to the logits 

    weighted_cnn_outputs = cnn_outputs * torch.tensor(cnn_weights_per_class).to(device) 

    weighted_gcn_test_logits = gcn_test_logits * 

torch.tensor(gcn_weights_per_class).to(device) 

 

    # Fuse the logits 

    fused_logits = weighted_cnn_outputs + weighted_gcn_test_logits 

 

    # Get the predicted classes from the fused logits 

    _, fused_predictions = torch.max(fused_logits.data, 1) 

 

    # Calculate the confusion matrix 

    cm = confusion_matrix(y_test.cpu().numpy(), fused_predictions.cpu().numpy()) 

    sns.heatmap(cm, annot=True, fmt='d') 

    plt.xlabel('Predicted') 

    plt.ylabel('True') 

    plt.title('Confusion Matrix (Decision Fusion)') 

    plt.show() 

 

    # Calculate accuracy per class 

    accuracy_per_class = {} 
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    for class_index, class_name in enumerate(["Healthy", "Mild", "Moderate", "Severe"]): 

        true_class_indices = (y_test == class_index) 

        total_class_samples = true_class_indices.sum().item() 

        if total_class_samples > 0: 

            correct_class_predictions = fused_predictions[true_class_indices] == 

y_test[true_class_indices] 

            class_accuracy = correct_class_predictions.sum().item() / total_class_samples 

            accuracy_per_class[class_name] = class_accuracy 

        else: 

            accuracy_per_class[class_name] = None  # No samples for this class in the test set 

 

    # Print the accuracy for each class 

    for class_name, class_accuracy in accuracy_per_class.items(): 

        if class_accuracy is not None: 

            print(f"Accuracy for {class_name}: {class_accuracy:.4f}") 

        else: 

            print(f"No samples for class {class_name} in the test set.") 

 

# Calculate the average test accuracy 

total_accuracy = 0 

for class_name, class_accuracy in accuracy_per_class.items(): 

    if class_accuracy is not None: 

        total_accuracy += class_accuracy 

average_test_accuracy = total_accuracy / len(accuracy_per_class) 

 

print(f"Average Test Accuracy: {average_test_accuracy:.4f}") 
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Appendix 4: Chapter 6 Extra Results 
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4.1 Chapter 6: Results of Decision Fusion Experiments Over the Five Runs.  

 

  Training Time       

Alternatives 
No. of 

Channels 

TFD  

a.CubicSVM 

b.WNN 

(S) 

CWT  

AlexNet 

(min) 

GADF 

AlexNet 

 (min) 

Healthy Mild Moderate Severe 
Overall 

Accuracy 

Total 

Training 

Time  

Run 1 Seed 1 

1.1 (TFDb -CWT) 2 48.63 7.2 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:08:01 

1.2 (TFDb-CWT) 2 48.63 7.2 0 100.00% 95.74% 100.00% 100.00% 98.94% 0:08:01 

2.1 (TFDa -CWT) 2 26.71 7.2 0 100.00% 95.74% 97.87% 100.00% 98.40% 0:07:39 

2.2 (TFDa -CWT) 2 26.71 7.2 0 100.00% 96.81% 97.87% 100.00% 98.67% 0:07:39 

3.1 ( TFDa -CWT-

GADF) 
3 26.71 7.2 7.53 100.00% 95.74% 98.94% 100.00% 98.67% 

0:15:11 

3.2 (TFDa -CWT-

GADF) 
3 26.71 7.2 7.53 100.00% 95.74% 97.87% 100.00% 98.40% 

0:15:11 

Run 2 Seed 3 

1.1 (TFDb -CWT) 2 18.74 10.32 0 100.00% 95.74% 100.00% 100.00% 98.94% 0:10:38 

1.2 (TFDb-CWT) 2 18.74 10.32 0 100.00% 90.43% 97.87% 100.00% 97.08% 0:10:38 

2.1 (TFDa -CWT) 2 12.87 10.32 0 100.00% 96.81% 97.87% 100.00% 98.67% 0:10:32 

2.2 (TFDa -CWT) 2 12.87 10.32 0 100.00% 96.81% 98.94% 100.00% 98.94% 0:10:32 

3.1 ( TFDa -CWT-

GADF) 
3 12.87 10.32 11.49 100.00% 95.74% 100.00% 100.00% 98.94% 

0:22:01 

3.2 (TFDa -CWT-

GADF) 
3 12.87 10.32 11.49 100.00% 95.74% 94.29% 100.00% 97.51% 

0:22:01 

Run 3 Seed 6 

1.1 (TFDb -CWT) 2 16.75 7.54 0 100.00% 95.74% 100.00% 100.00% 98.94% 0:07:49 

1.2 (TFDb-CWT) 2 16.75 7.54 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:07:49 

2.1 (TFDa -CWT) 2 11.56 7.54 0 100.00% 90.43% 95.74% 100.00% 96.54% 0:07:44 

2.2 (TFDa -CWT) 2 11.56 7.54 0 100.00% 92.55% 95.74% 100.00% 97.07% 0:07:44 

3.1 ( TFDa -CWT-

GADF) 
3 11.56 7.54 7.56 100.00% 98.94% 98.94% 100.00% 99.47% 

0:15:18 

3.2 (TFDa -CWT-

GADF) 
3 11.56 7.54 7.56 100.00% 96.81% 98.94% 100.00% 98.94% 

0:15:18 

Run 4 Seed 9 

1.1 (TFDb -CWT) 2 19.75 7.34 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:07:40 

1.2 (TFDb-CWT) 2 19.75 7.34 0 100.00% 94.68% 100.00% 100.00% 98.67% 0:07:40 

2.1 (TFDa -CWT) 2 10.85 7.34 0 100.00% 95.74% 98.94% 100.00% 98.67% 0:07:31 

2.2 (TFDa -CWT) 2 10.85 7.34 0 100.00% 95.74% 98.94% 100.00% 98.67% 0:07:31 

3.1 ( TFDa -CWT-

GADF) 
3 10.85 7.34 8.2 100.00% 95.74% 100.00% 100.00% 98.94% 

0:15:43 

3.2 (TFDa -CWT-

GADF) 
3 10.85 7.34 8.2 100.00% 95.74% 100.00% 100.00% 98.94% 

0:15:43 

Run 5 Seed 12 

1.1 (TFDb -CWT) 2 22.07 12.41 0 100.00% 96.81% 100.00% 100.00% 99.07% 0:12:47 

1.2 (TFDb-CWT) 2 22.07 12.41 0 100.00% 95.74% 100.00% 100.00% 98.67% 0:12:47 

2.1 (TFDa -CWT) 2 16.41 12.41 0 100.00% 93.62% 100.00% 100.00% 98.54% 0:12:41 

2.2 (TFDa -CWT) 2 16.41 12.41 0 100.00% 94.68% 100.00% 100.00% 98.94% 0:12:41 

3.1 ( TFDa -CWT-

GADF) 
3 16.41 12.41 11.59 100.00% 98.94% 97.87% 100.00% 99.20% 

0:24:16 

3.2 (TFDa -CWT-

GADF) 
3 16.41 12.41 11.59 100.00% 97.87% 98.94% 100.00% 99.20% 

0:24:16 
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4.2 Chapter 7: Feature Extraction and Selection for Data Points 
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P
eak

 F
req

1
 

P
eak

 F
req

3
 

Mild 22.99 8.66 16.1 19.29 
-

0.23 
17.24 1.99 -10.3 

-

10.27 
1.86 

-

0.02 
1.98 1.81 4E-04 3E-04 3E-04 1E-04 1E-05 1.E+04 4476.56 

Mild 27.36 10.84 19.75 27.36 
-

0.23 
18.94 1.75 

-

14.25 

-

14.14 
1.82 0.28 1.73 1.21 5E-04 3E-04 2E-04 2E-05 1E-05 4.E+03 9289.82 

Mild 28.49 10.72 20.45 29.5 
-

0.22 
19 1.77 -8.17 -8.17 1.91 0.35 1.76 1.37 8E-04 3E-04 1E-04 1E-05 

 

9.E+03 14127.26 

Mild 25.31 10.17 18.29 22.75 
-

0.22 
16.28 1.6 

-

13.02 

-

12.79 
1.8 0.36 1.59 1.18 3E-04 2E-04 1E-04 2E-05 9E-06 1.E+04 4509.91 

Mild 19.36 7.71 13.77 17.41 
-

0.22 
14.65 1.9 -8.77 -8.77 1.79 0.73 1.89 1.5 7E-04 3E-04 2E-04 1E-05 6E-06 4.E+03 13891.02 

Mild 23.14 9.95 17.19 23.94 
-

0.24 
15.53 1.56 

-

12.38 

-

12.34 
1.73 0.96 1.54 0.95 4E-04 1E-04 7E-05 9E-06 7E-06 4.E+03 9298.51 

Mild 25.72 9.88 18.47 29.52 
-

0.23 
17.18 1.74 

-

10.79 

-

10.79 
1.87 0.69 1.72 1.39 5E-04 3E-04 2E-04 1E-05 1E-05 9.E+03 4249 

Mild 18.07 7.81 13.33 16.37 
-

0.22 
11.81 1.51 -12.5 -12.5 1.71 

-

0.01 
1.5 1.04 3E-04 2E-04 1E-04 2E-05 1E-05 1.E+04 8894.99 

Mild 22.59 9.02 16.12 18.72 
-

0.25 
17.81 1.97 

-

11.54 
-11.5 1.79 0.57 1.96 1.49 8E-04 3E-04 1E-04 1E-05 1E-05 4.E+03 9355.02 

Mild 29.84 11.87 21.71 34.27 
-

0.22 
19.35 1.63 

-

12.36 

-

12.35 
1.83 1.93 1.62 1.17 4E-04 3E-04 2E-04 1E-05 9E-06 1.E+04 9509.94 

Mild 27.02 9.87 19.1 26.99 
-

0.23 
18.41 1.86 

-

11.74 

-

11.74 
1.93 0.18 1.85 1.65 7E-04 4E-04 8E-05 3E-05 7E-06 1.E+04 4654.49 

Mild 19.12 8.4 14.25 18.78 
-

0.22 
12.45 1.48 

-

12.46 

-

12.46 
1.7 0.38 1.47 0.95 6E-04 1E-04 1E-04 1E-05 8E-06 5.E+03 14070.07 

Mild 25.35 9.04 17.48 21.74 
-

0.22 
20.02 2.21 

-

11.29 

-

11.25 
1.93 0.59 2.2 2 7E-04 5E-04 2E-04 3E-05 

 

4.E+03 14024.68 

Mild 36.16 13.96 26.1 39.14 
-

0.23 
23.1 1.65 

-

10.25 

-

10.25 
1.87 

-

0.12 
1.64 1.27 4E-04 2E-04 1E-04 1E-05 9E-06 9.E+03 3990.37 

Mild 22.76 9.77 16.78 19.55 
-

0.22 
14.15 1.45 

-

10.22 

-

10.22 
1.72 0.48 1.43 0.93 2E-04 2E-04 8E-05 1E-05 8E-06 5.E+03 9666.18 
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Mild 23.94 10.29 17.62 22.18 
-

0.23 
15.91 1.55 

-

11.59 

-

11.49 
1.71 0.82 1.53 0.94 4E-04 1E-04 9E-05 1E-05 9E-06 4.E+03 9210.33 

Mild 24.63 9.19 17.28 23.15 
-

0.23 
18.39 2 

-

11.29 

-

11.22 
1.88 1.08 1.99 1.67 7E-04 4E-04 1E-04 1E-05 9E-06 1.E+04 9521.39 

Mild 29.71 10.84 20.85 31.2 
-

0.21 
21.19 1.95 

-

11.83 

-

11.83 
1.92 0.09 1.94 1.83 7E-04 2E-04 2E-04 1E-04 1E-05 1.E+04 4793.69 

Mild 18.52 8.25 13.8 17.17 
-

0.19 
12.25 1.48 

-

11.94 

-

11.94 
1.67 0.65 1.47 0.91 4E-04 2E-04 5E-05 1E-05 

 

4.E+03 9163.66 

Mild 29.54 10.17 20.27 28.5 -0.2 21.21 2.09 -8.06 -8.05 1.99 0.66 2.08 1.87 7E-04 5E-04 1E-04 2E-05 1E-05 4.E+03 13820.42 

Mild 23.29 9.07 16.58 23.34 
-

0.24 
16.74 1.85 

-

11.45 

-

11.45 
1.83 0.44 1.83 1.29 5E-04 2E-04 1E-04 2E-05 9E-06 1.E+04 4676.62 

Mild 24.77 9.78 17.9 25.46 
-

0.22 
15.84 1.62 -3.85 -3.78 1.83 0.1 1.6 1.16 5E-04 3E-04 1E-04 2E-05 

 

5.E+03 8703.19 

Mild 22.13 8.65 15.92 23.18 
-

0.23 
15.11 1.75 

-

12.53 

-

12.44 
1.84 0.33 1.73 1.25 4E-04 3E-04 2E-04 1E-05 

 

4.E+03 14050.28 

Mild 25.21 9.11 17.75 26.74 
-

0.23 
19.01 2.09 

-

10.06 

-

10.02 
1.95 0.19 2.07 1.91 5E-04 4E-04 3E-04 3E-05 2E-05 1.E+04 3879.38 

Mild 26.49 11.07 19.28 20.82 
-

0.22 
17.4 1.57 

-

13.28 

-

13.22 
1.74 

-

0.64 
1.56 1.12 2E-04 2E-04 2E-04 3E-05 2E-05 9.E+03 4603.16 

Mild 21.1 9.39 15.84 22.37 
-

0.21 
13.57 1.45 -5.13 -5.11 1.69 0.89 1.43 0.81 4E-04 2E-04 3E-05 8E-06 8E-06 4.E+03 9761.09 

Mild 26.03 9.61 18.29 24.74 
-

0.21 
17.85 1.86 

-

10.93 

-

10.91 
1.9 0.47 1.85 1.46 6E-04 3E-04 1E-04 2E-05 2E-05 4.E+03 8671.56 

Mild 36.16 12.74 24.93 31.5 
-

0.21 
27.5 2.16 

-

12.24 

-

12.06 
1.96 1.24 2.15 2.16 8E-04 3E-04 3E-04 1E-04 1E-05 1.E+04 9298 

Mild 19.52 8.77 14.72 19.67 
-

0.22 
11.79 1.34 

-

10.45 

-

10.44 
1.68 0.76 1.33 0.74 4E-04 2E-04 3E-05 1E-05 7E-06 4.E+03 9021.95 

Mild 23.88 9.63 17.59 30.59 
-

0.22 
15.24 1.58 -10.3 

-

10.27 
1.83 0.75 1.57 0.95 4E-04 2E-04 6E-05 1E-05 

 

4.E+03 9562.65 

Mild 30.78 11.34 21.49 28.31 
-

0.24 
22.02 1.94 

-

12.25 

-

12.17 
1.89 0.71 1.93 1.7 6E-04 4E-04 2E-04 2E-05 2E-05 1.E+04 4059.22 

Mild 22.79 8.52 15.95 21.87 
-

0.23 
17.17 2.02 

-

11.76 

-

11.76 
1.87 0.48 2 1.87 8E-04 5E-04 1E-04 2E-05 2E-05 1.E+04 9054.48 

Mild 23.24 9.55 17.03 26.79 
-

0.22 
14.76 1.54 

-

11.21 

-

11.17 
1.78 0.66 1.53 0.92 4E-04 3E-04 4E-05 1E-05 9E-06 4.E+03 9543.52 
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Mild 27.79 10.75 20.11 30.49 
-

0.23 
18.13 1.69 

-

11.96 

-

11.94 
1.87 1.03 1.67 1.18 4E-04 3E-04 3E-04 3E-05 2E-05 1.E+04 4207.65 

Mild 28.93 10.44 20.11 27.7 
-

0.22 
21.27 2.04 

-

11.56 

-

11.51 
1.93 

-

0.05 
2.03 1.94 3E-04 3E-04 3E-04 5E-05 1E-05 4.E+03 9925.67 

Mild 24.53 10.36 18.01 22.97 
-

0.24 
16.93 1.63 

-

10.22 

-

10.22 
1.74 0.84 1.62 1.11 3E-04 3E-04 9E-05 2E-05 2E-05 4.E+03 8659.79 

Mild 25.77 10.21 18.71 30.41 
-

0.24 
17.4 1.7 

-

10.19 
-10.1 1.83 0.82 1.69 1.16 6E-04 3E-04 1E-04 1E-05 1E-05 4.E+03 9417.1 

Mild 29.89 10.53 20.88 31.73 
-

0.23 
19.38 1.84 -9.05 -9 1.98 1.24 1.83 1.56 3E-04 3E-04 3E-04 1E-05 1E-05 1.E+04 4276.45 

Mild 23.55 8.58 16.32 21.36 
-

0.23 
16.62 1.94 

-

11.25 

-

11.25 
1.9 0.28 1.92 1.69 4E-04 4E-04 2E-04 1E-04 1E-05 1.E+04 9180.71 

Mild 24.85 9.56 17.89 27.82 
-

0.23 
17.04 1.78 -10.4 

-

10.36 
1.87 0.8 1.77 1.29 6E-04 2E-04 9E-05 2E-05 

 

4.E+03 9675.36 

Mild 27.15 9.62 19.19 32.83 
-

0.21 
17.83 1.85 

-

12.82 

-

12.76 
1.99 0.35 1.84 1.51 3E-04 3E-04 3E-04 5E-05 1E-05 1.E+04 9085.96 

Mild 27.79 11.29 20.21 27.15 
-

0.23 
18.18 1.61 

-

11.75 

-

11.75 
1.79 0 1.59 1.19 5E-04 1E-04 6E-05 2E-05 1E-05 1.E+04 9110.88 

Mild 24.49 9.81 17.65 23.45 
-

0.24 
18.11 1.85 

-

12.65 

-

12.64 
1.8 0.93 1.83 1.32 7E-04 3E-04 6E-05 2E-05 

 

4.E+03 9429.12 

Mild 29.01 11.49 21.17 33.4 
-

0.23 
19.62 1.71 -6.89 -6.89 1.84 1.5 1.69 1.19 4E-04 3E-04 3E-04 2E-05 1E-05 1.E+04 9453.65 

Mild 37.95 14.88 27.6 45.79 
-

0.22 
24.4 1.64 

-

10.89 

-

10.84 
1.86 2.16 1.63 1.21 3E-04 2E-04 2E-04 1E-05 6E-06 9.E+03 13476.58 

Mild 26.95 9.81 18.74 23.22 
-

0.23 
20.66 2.11 -9.21 -9.21 1.91 0.12 2.09 2.02 5E-04 4E-04 3E-04 4E-05 1E-05 1.E+04 9731.73 

Mild 27.48 11.5 20.25 26.42 
-

0.23 
20.91 1.82 

-

14.34 
-14.1 1.76 0.82 1.8 1.29 6E-04 3E-04 1E-04 2E-05 2E-05 4.E+03 9363.83 

Mild 36.17 13.34 25.95 45.8 
-

0.22 
22.71 1.7 

-

12.12 

-

12.12 
1.95 0.88 1.69 1.29 3E-04 3E-04 2E-04 2E-05 9E-06 9.E+03 13789.04 

Mild 31.65 11.87 22.43 28.38 -0.2 20.26 1.71 -9.42 -9.42 1.89 0.46 1.69 1.36 3E-04 3E-04 1E-04 1E-04 9E-06 9.E+03 18776.66 

Mild 22.84 8.67 15.99 18.75 
-

0.22 
16.86 1.94 -10.3 

-

10.26 
1.84 0.58 1.93 1.54 8E-04 2E-04 8E-05 2E-05 

 

4.E+03 9417.52 

Mild 27.52 10.03 19.52 32.67 
-

0.23 
18.89 1.88 

-

14.66 

-

14.57 
1.95 0.34 1.87 1.53 3E-04 3E-04 3E-04 4E-05 2E-05 9.E+03 4076.22 
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Mild 25.92 11 19.12 26.24 
-

0.21 
16.95 1.54 

-

15.82 

-

15.82 
1.74 0.19 1.53 1.08 2E-04 2E-04 8E-05 2E-05 1E-05 1.E+04 9087.04 

Mild 22.37 9.82 16.62 18.67 
-

0.23 
14.31 1.46 

-

11.22 

-

11.22 
1.69 0.33 1.44 0.95 3E-04 2E-04 5E-05 5E-05 1E-05 1.E+04 11383.15 

Mild 26.36 9.53 18.25 23.8 
-

0.22 
20.66 2.17 -10.2 

-

10.19 
1.92 1.17 2.16 1.89 9E-04 3E-04 2E-04 3E-05 

 

4.E+03 9255.58 

Mild 39.69 14.76 28.56 47.9 
-

0.22 
26.94 1.83 

-

12.16 

-

12.16 
1.94 1.98 1.81 1.55 4E-04 3E-04 2E-04 1E-05 9E-06 9.E+03 4080.93 

Mild 22.64 9.16 16.37 20.34 
-

0.22 
14.88 1.62 

-

11.88 

-

11.88 
1.79 

-

0.11 
1.61 1.23 5E-04 1E-04 1E-04 1E-04 2E-05 1.E+04 18973.78 

Mild 23.79 10.91 18.1 23.77 
-

0.22 
15.57 1.43 

-

13.13 

-

13.06 
1.66 0.92 1.41 0.83 3E-04 2E-04 6E-05 1E-05 1E-05 4.E+03 9376.53 

Mild 23.12 8.23 16 23.57 
-

0.21 
17.64 2.14 

-

12.92 

-

12.88 
1.94 0.78 2.13 1.89 9E-04 3E-04 2E-04 3E-05 2E-05 4.E+03 9403.18 

Mild 24.01 9.22 17.13 24.33 -0.2 19.83 2.15 
-

10.18 

-

10.11 
1.86 1.3 2.14 1.27 7E-04 9E-05 6E-05 9E-06 6E-06 4.E+03 13985.58 

Mild 25.53 10.33 18.82 30.6 
-

0.22 
17.37 1.68 -4.64 -4.58 1.82 0.09 1.67 1.08 4E-04 2E-04 4E-05 2E-05 

 

5.E+03 13615.64 

Mild 22.95 9.18 16.58 22.72 
-

0.22 
15.67 1.71 

-

13.21 
-13.2 1.81 0.3 1.69 1.34 4E-04 2E-04 1E-04 9E-05 

 

4.E+03 9683.75 

Mild 24.91 9.2 17.57 26.04 
-

0.19 
18.64 2.03 -4.65 -4.62 1.91 1.46 2.02 1.39 8E-04 1E-04 9E-05 1E-05 

 

4.E+03 9677.05 

Mild 23.21 10.3 17.49 23.04 
-

0.26 
18.61 1.81 -8.79 -8.69 1.7 0.47 1.79 0.87 4E-04 6E-05 3E-05 2E-05 1E-05 4.E+03 13046.08 

Mild 25.93 10.62 19.07 28.15 
-

0.22 
16.95 1.6 

-

10.88 

-

10.83 
1.79 0.66 1.58 1.12 4E-04 2E-04 7E-05 3E-05 

 

4.E+03 10034.1 

Mild 35.73 15.13 26.62 38.45 
-

0.24 
22.93 1.52 -8.8 -8.77 1.76 

-

1.16 
1.5 0.95 3E-04 1E-04 5E-05 2E-05 

 

4.E+03 9013.55 

Mild 22.71 8.4 15.99 23.87 
-

0.22 
18.11 2.16 -8.38 -8.33 1.9 1.24 2.15 1.31 7E-04 1E-04 4E-05 3E-05 2E-05 4.E+03 13777.56 

Mild 28.36 12.67 21.39 28.23 
-

0.22 
19.53 1.54 

-

12.11 

-

11.99 
1.69 1.32 1.53 0.94 3E-04 9E-05 5E-05 4E-05 

 

5.E+03 9731.03 

Mild 40.58 16 29.8 50.12 
-

0.21 
26.59 1.66 

-

11.07 

-

10.96 
1.86 

-

1.12 
1.65 1.25 4E-04 2E-04 1E-04 5E-05 

 

4.E+03 10114.97 
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Mild 28.25 11.22 20.69 34.61 
-

0.21 
19.75 1.76 

-

11.09 

-

11.07 
1.84 1.42 1.75 1.09 4E-04 1E-04 8E-05 1E-05 6E-06 4.E+03 14060.37 

Mild 23.49 8.45 16.22 22.11 
-

0.22 
18.88 2.23 -8.35 -8.33 1.92 0.78 2.22 1.63 8E-04 2E-04 7E-05 1E-05 

 

4.E+03 13836.48 

Mild 29.18 12.3 21.68 28.55 
-

0.22 
20.06 1.63 

-

12.02 

-

12.01 
1.76 

-

0.66 
1.62 1.2 4E-04 2E-04 1E-04 2E-05 

 

4.E+03 10072.31 

Mild 23.58 10.06 17.57 26.79 
-

0.24 
15.6 1.55 -6.98 -6.98 1.75 0.96 1.53 0.85 3E-04 7E-05 6E-05 1E-05 

 

4.E+03 13974.33 

Mild 27.18 10.72 19.66 29.77 
-

0.21 
19.75 1.84 -8.02 -7.94 1.83 1.42 1.83 1 4E-04 8E-05 4E-05 2E-05 7E-06 4.E+03 13745.25 

Mild 28.11 10.42 19.71 26.04 
-

0.21 
22.97 2.2 -8.29 -8.24 1.89 0.75 2.19 1.89 4E-04 3E-04 2E-04 1E-05 8E-06 4.E+03 9488.63 

Mild 36.51 15.22 27.16 40.13 
-

0.21 
24.29 1.6 

-

11.14 

-

11.11 
1.78 

-

0.86 
1.58 1.08 3E-04 2E-04 6E-05 1E-05 

 

4.E+03 9190.11 

Mild 29.21 11.26 21.22 36.86 
-

0.23 
19.07 1.69 -7.8 -7.77 1.88 1.62 1.68 0.83 5E-04 6E-05 2E-05 7E-06 7E-06 4.E+03 14143.46 

Mild 26.02 10.4 19.02 29.78 
-

0.22 
18.61 1.79 -11.2 

-

11.19 
1.83 1.42 1.78 1.1 4E-04 7E-05 5E-05 1E-05 

 

4.E+03 9806.64 

Mild 33.69 12.32 23.63 32.81 
-

0.21 
25.61 2.08 -9.97 -9.96 1.92 0.24 2.07 1.92 5E-04 3E-04 2E-04 4E-05 

 

4.E+03 10141.35 

Mild 27.77 10.46 20.04 36 
-

0.21 
18.36 1.75 -7.82 -7.66 1.92 1.5 1.74 1.09 5E-04 1E-04 1E-04 1E-05 

 

4.E+03 14030.82 

Mild 26.83 10.35 19.49 33.14 -0.2 17.74 1.71 -6.19 -6.09 1.88 0.76 1.7 0.78 4E-04 3E-05 3E-05 1E-05 1E-05 4.E+03 13781.5 

Mild 25.91 9.69 18.24 24.15 
-

0.22 
19.28 1.99 

-

11.53 

-

11.33 
1.88 0.43 1.98 1.68 7E-04 2E-04 2E-04 2E-05 

 

4.E+03 14242.86 

Mild 26.52 10.52 19.04 22.74 
-

0.22 
18.63 1.77 

-

10.17 

-

10.14 
1.81 1.14 1.76 1.19 4E-04 1E-04 9E-05 3E-05 

 

4.E+03 14053 

Mild 27.34 10.57 19.9 36.15 
-

0.23 
18.34 1.73 -1.33 -1.09 1.88 1.24 1.72 0.8 5E-04 4E-05 3E-05 1E-05 6E-06 4.E+03 10255.49 

Mild 23.8 9.83 17.53 27.23 
-

0.22 
16.89 1.72 -4.91 -4.83 1.78 1.14 1.7 1.01 5E-04 6E-05 5E-05 3E-05 1E-05 4.E+03 9942.34 

Mild 22.9 8.78 16.19 21.08 
-

0.21 
18.29 2.08 

-

10.85 

-

10.78 
1.84 0.09 2.07 1.85 4E-04 2E-04 2E-04 7E-05 

 

4.E+03 14232.88 

Mild 25.99 10.56 19.06 31.83 
-

0.24 
18.26 1.73 -14.5 -14.4 1.8 1.47 1.71 0.88 4E-04 6E-05 5E-05 9E-06 7E-06 4.E+03 14050.82 
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Mild 27.44 11.12 20.3 35.63 
-

0.23 
18.4 1.66 -2.93 -2.33 1.83 1.47 1.64 0.8 4E-04 6E-05 5E-05 3E-05 2E-05 4.E+03 9575.19 

Mild 32.95 12.06 23.2 30.6 
-

0.22 
24.79 2.06 -9.7 -9.68 1.92 0.59 2.04 1.9 6E-04 4E-04 8E-05 5E-05 

 

4.E+03 10244.51 

Mild 25.18 10.25 18.59 34.46 
-

0.21 
17.97 1.75 -7.12 -6.99 1.81 1.53 1.74 1.05 4E-04 9E-05 7E-05 9E-06 9E-06 4.E+03 13971.07 

Mild 26.48 10.28 19.45 37.69 
-

0.21 
17.28 1.68 

-

13.93 
-13.9 1.89 1.25 1.67 0.76 4E-04 5E-05 4E-05 1E-05 9E-06 4.E+03 9880.1 

Mild 24.67 10.3 18.25 25.81 
-

0.24 
16.43 1.6 -8.94 -8.93 1.77 0.87 1.58 1 4E-04 1E-04 4E-05 3E-05 

 

4.E+03 9752.1 

Mild 27.12 9.85 18.86 25.04 
-

0.22 
20.96 2.13 -7.67 -7.59 1.91 0.54 2.12 1.91 8E-04 3E-04 2E-04 3E-05 

 

4.E+03 9630.74 

Mild 23.63 9.59 17.39 29.02 
-

0.23 
18 1.88 -9.14 -8.9 1.81 0.9 1.86 0.95 5E-04 5E-05 4E-05 1E-05 7E-06 4.E+03 14126.93 

Mild 26.16 10.14 18.96 29.35 
-

0.22 
17.96 1.77 

-

10.77 

-

10.73 
1.87 0.83 1.76 1.18 5E-04 1E-04 7E-05 4E-05 

 

4.E+03 13786.4 

Mild 27.8 9.88 19.31 27.99 
-

0.23 
20.32 2.06 

-

13.58 

-

13.55 
1.95 0.73 2.04 1.99 5E-04 5E-04 2E-04 3E-05 

 

4.E+03 9968.38 

Mild 22.87 8.51 16.1 23.45 
-

0.23 
17.65 2.07 -8.43 -8.41 1.89 1.07 2.06 1.42 7E-04 1E-04 1E-04 1E-05 

 

4.E+03 9574.28 

Mild 26.35 11.12 19.71 31.38 -0.2 18.72 1.68 
-

10.94 

-

10.81 
1.77 1.36 1.67 0.83 4E-04 6E-05 3E-05 2E-05 1E-05 4.E+03 13796.14 

Mild 33.67 13.17 24.38 35.44 
-

0.24 
22.71 1.72 

-

13.34 
-13.3 1.85 0.92 1.71 1.29 3E-04 2E-04 8E-05 2E-05 

 

4.E+03 9659.96 

Mild 33.81 13.76 24.8 36.03 
-

0.23 
22.32 1.62 

-

10.47 

-

10.43 
1.8 

-

0.53 
1.61 1.17 3E-04 2E-04 8E-05 2E-05 

 

4.E+03 9407.36 

Mild 27.8 9.96 19.39 26.67 
-

0.22 
22.2 2.23 -9.4 -9.37 1.95 1.44 2.22 1.41 9E-04 1E-04 4E-05 1E-05 1E-05 4.E+03 13837.04 

Mild 29.66 12.73 22.19 32.49 
-

0.21 
20.1 1.58 -7.63 -7.62 1.74 1.68 1.57 0.98 3E-04 1E-04 5E-05 2E-05 

 

4.E+03 10315.4 

Mild 30.95 12.16 22.55 37.47 
-

0.23 
20.7 1.7 

-

11.72 

-

11.59 
1.85 

-

0.35 
1.69 1.32 5E-04 3E-04 1E-04 2E-05 

 

4.E+03 9797.73 

Mild 31.89 12.58 23.39 41.88 
-

0.21 
20.96 1.67 

-

11.06 

-

10.93 
1.86 1.48 1.65 1.04 4E-04 1E-04 7E-05 1E-05 7E-06 4.E+03 14103.82 
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Mild 21.45 7.96 15.09 23.27 
-

0.23 
17.97 2.26 -9.34 -9.28 1.9 1.2 2.25 1.44 8E-04 7E-05 3E-05 2E-05 1E-05 4.E+03 13657.55 

Mild 27.36 10.82 19.89 29.04 
-

0.24 
18.47 1.71 

-

11.77 

-

11.75 
1.84 0.05 1.69 1.31 3E-04 2E-04 1E-04 2E-05 

 

4.E+03 9714.83 

Mild 29.37 12.29 21.93 34.7 
-

0.22 
18.79 1.53 -10.3 

-

10.15 
1.78 0.78 1.51 0.93 4E-04 1E-04 7E-05 1E-05 7E-06 4.E+03 9667.49 

Mild 25.31 9.88 18.37 31.02 
-

0.23 
18.2 1.84 

-

11.58 
-11.5 1.86 1.2 1.83 1.01 5E-04 1E-04 5E-05 1E-05 1E-05 4.E+03 13217.09 

Mild 28.06 10.29 19.62 23.7 -0.2 22.3 2.17 -6.58 -6.57 1.91 0.86 2.16 1.72 6E-04 2E-04 1E-04 1E-05 

 

4.E+03 9702.59 

Mild 28.72 12.33 21.33 26.93 
-

0.22 
18.98 1.54 -9.81 -9.76 1.73 

-

0.26 
1.52 1.03 4E-04 2E-04 5E-05 2E-05 

 

4.E+03 9920.3 

Mild 26.75 10.4 19.54 35.48 
-

0.25 
17.68 1.7 -6.05 -5.95 1.88 1.48 1.68 0.88 4E-04 7E-05 6E-05 7E-06 6E-06 4.E+03 14390.74 

Mild 29.45 11.05 21.07 28.79 
-

0.19 
22.98 2.08 -4.35 -4.32 1.91 1.71 2.07 1.36 5E-04 2E-04 8E-05 1E-05 

 

4.E+03 9844.67 

Mild 32.72 13.65 24.18 32.68 
-

0.26 
23.66 1.73 -6.34 -6.33 1.77 

-

1.01 
1.71 1.27 5E-04 2E-04 8E-05 5E-05 

 

4.E+03 10055.4 

Mild 30.35 11.88 22.28 44.91 
-

0.25 
19.29 1.62 -7.37 -7.36 1.88 1.7 1.6 0.91 4E-04 7E-05 6E-05 8E-06 6E-06 4.E+03 13952.63 

Mild 24.92 9.42 17.9 28.34 
-

0.22 
18.48 1.96 -7.66 -7.58 1.9 1 1.95 1.18 5E-04 2E-04 5E-05 2E-05 2E-05 4.E+03 13502.67 

Mild 26.66 10 18.83 23.18 
-

0.23 
21.24 2.12 

-

11.61 

-

11.56 
1.88 0.85 2.11 1.88 7E-04 2E-04 2E-04 4E-05 

 

4.E+03 9893.51 

Mild 25.63 10.59 18.86 26.58 
-

0.21 
17.32 1.64 

-

10.86 

-

10.69 
1.78 0.68 1.62 1.04 4E-04 2E-04 6E-05 1E-05 

 

4.E+03 9195.72 

Mild 26.44 11.14 19.73 34.83 
-

0.21 
17.61 1.58 -6.94 -6.93 1.77 1.7 1.57 0.85 4E-04 3E-05 3E-05 2E-05 1E-05 4.E+03 7694.86 

Mild 27.65 11.93 20.71 27.08 
-

0.22 
17.49 1.47 

-

13.22 

-

13.22 
1.74 

-

0.67 
1.45 0.89 4E-04 9E-05 6E-05 1E-05 

 

4.E+03 14324.11 

Mild 22.87 9.83 17.08 26.68 
-

0.26 
14.74 1.5 -10.1 

-

10.08 
1.74 

-

0.64 
1.48 0.74 2E-04 8E-05 6E-05 8E-06 6E-06 4.E+03 14276.16 

Mild 25.9 9.33 18.3 30.51 
-

0.19 
20.73 2.22 -5.42 -5.39 1.96 2.05 2.22 1.15 8E-04 4E-05 3E-05 2E-05 8E-06 4.E+03 10370.56 

Mild 21.16 9.13 15.74 20.84 
-

0.22 
14.16 1.55 

-

10.19 

-

10.19 
1.72 0.02 1.53 0.97 2E-04 1E-04 5E-05 5E-05 3E-05 4.E+03 13806.27 
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Mild 25.05 11.24 18.94 26.38 
-

0.21 
16.25 1.45 

-

14.69 

-

14.62 
1.69 0.82 1.43 0.83 2E-04 6E-05 5E-05 4E-05 

 

4.E+03 14351.87 

Mild 28.18 9.67 19.47 29.27 
-

0.24 
21.59 2.23 

-

11.53 

-

11.53 
2.01 1.81 2.22 1.35 0.001 6E-05 5E-05 2E-05 1E-05 4.E+03 13972.65 

Mild 20.1 9.28 15.2 19.07 
-

0.19 
14.22 1.53 

-

10.47 

-

10.11 
1.64 0.72 1.52 0.83 2E-04 6E-05 3E-05 1E-05 1E-05 4.E+03 10852.39 

Mild 26.99 11.82 20.14 24.12 
-

0.21 
17.05 1.44 -8.77 -8.72 1.7 

-

0.47 
1.43 0.87 3E-04 7E-05 4E-05 1E-05 

 

4.E+03 10554.66 

Mild 25.53 10.75 18.9 28.56 
-

0.22 
16.46 1.53 

-

11.16 

-

10.89 
1.76 0.62 1.51 0.69 2E-04 5E-05 5E-05 4E-05 1E-05 4.E+03 14293.73 

Mild 25.8 9.23 18.01 28.9 
-

0.24 
20.44 2.22 

-

12.84 

-

12.83 
1.95 1.73 2.2 1.44 0.001 7E-05 5E-05 2E-05 1E-05 4.E+03 13628.64 

Mild 22.18 9.44 16.43 21.91 
-

0.22 
15.2 1.61 -8.73 -8.72 1.74 -0.2 1.6 1.11 7E-04 7E-05 6E-05 2E-05 

 

4.E+03 10777.2 

Mild 25.53 11.71 19.49 26.53 
-

0.21 
16.33 1.39 -7.49 -7.47 1.66 0.09 1.38 0.61 2E-04 7E-05 6E-05 3E-05 1E-05 4.E+03 10556.12 

Mild 30.74 11.44 22.07 38.7 
-

0.21 
21.22 1.86 -3.87 -3.78 1.93 1.83 1.84 0.91 6E-04 3E-05 2E-05 2E-05 9E-06 4.E+03 13813.08 

Mild 27.33 10.38 19.26 25.14 
-

0.22 
20.15 1.94 

-

14.38 

-

14.37 
1.86 1.39 1.93 1.33 9E-04 6E-05 4E-05 2E-05 

 

4.E+03 10169.82 

Mild 26.35 11.69 19.98 31.77 
-

0.24 
18.17 1.55 

-

11.13 

-

11.11 
1.71 0.83 1.54 0.94 2E-04 1E-04 1E-04 9E-06 8E-06 4.E+03 14376.16 

Mild 33.07 12.49 24 41.94 
-

0.22 
21.43 1.72 -8.43 -8.33 1.92 1.85 1.7 0.78 6E-04 3E-05 2E-05 9E-06 6E-06 4.E+03 14220.81 

Mild 30.1 11.61 21.86 38.2 
-

0.21 
20.92 1.8 

-

13.54 

-

13.48 
1.88 1.98 1.79 1.05 5E-04 5E-05 3E-05 3E-05 1E-05 4.E+03 10918.77 

Mild 20.19 8.48 14.69 18.18 
-

0.23 
15.81 1.86 -8.41 -8.39 1.73 0.34 1.85 1.39 4E-04 2E-04 1E-04 3E-05 

 

4.E+03 13849.06 

Mild 29.95 12.15 22.14 33.9 
-

0.22 
19.07 1.57 -5.97 -5.7 1.82 0.95 1.56 0.69 3E-04 5E-05 5E-05 3E-05 1E-05 4.E+03 14220.85 

Mild 31.75 11.6 22.9 44.77 
-

0.22 
20.71 1.79 

-

10.04 
-9.85 1.98 2.26 1.77 0.92 7E-04 3E-05 3E-05 1E-05 7E-06 4.E+03 10149.67 

Mild 27.42 11.26 20.09 25.86 -0.2 20.25 1.8 
-

16.13 

-

16.13 
1.78 0.11 1.79 1.26 6E-04 1E-04 1E-04 4E-05 1E-05 4.E+03 10755.87 
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Mild 22.14 9.66 16.4 20.66 
-

0.22 
15.49 1.6 

-

10.25 

-

10.25 
1.7 0.17 1.59 0.82 3E-04 5E-05 5E-05 4E-05 1E-05 4.E+03 14239.18 

Mild 31.26 11.12 22.28 43.18 
-

0.22 
20.11 1.81 -3.35 -3.15 2 1.98 1.8 0.88 6E-04 5E-05 3E-05 1E-05 

 

4.E+03 10187.44 

Mild 26.42 10.69 19.42 36.13 
-

0.22 
16.97 1.59 -8.08 -8 1.82 1.88 1.57 0.83 4E-04 3E-05 3E-05 2E-05 1E-05 4.E+03 7591.86 

Mild 22.74 9.16 16.46 21.56 
-

0.21 
17.22 1.88 

-

13.46 
-13.4 1.8 0.54 1.87 1.39 6E-04 2E-04 1E-04 5E-05 

 

4.E+03 10314.21 

Mild 30.46 11.63 22.01 38.55 
-

0.21 
20.94 1.8 

-

13.09 

-

13.07 
1.89 1.89 1.79 0.91 5E-04 5E-05 3E-05 3E-05 1E-05 4.E+03 14126.95 

Mild 32.35 12.23 23.66 50.71 
-

0.21 
20.19 1.65 -1.07 -1.07 1.93 2.83 1.64 0.84 5E-04 3E-05 3E-05 1E-05 8E-06 4.E+03 10387.05 

Mild 17.97 7.62 13.14 16.54 
-

0.22 
13.18 1.73 

-

12.15 

-

12.14 
1.73 

-

0.19 
1.72 1.23 3E-04 1E-04 9E-05 7E-05 

 

4.E+03 11004.11 

Mild 25.31 10.11 18.36 26.47 
-

0.21 
19.66 1.94 

-

11.67 

-

11.67 
1.82 1.46 1.93 1.1 5E-04 5E-05 5E-05 4E-05 

 

4.E+03 14125.27 

Mild 29.63 11.13 21.46 40.31 
-

0.22 
20.14 1.81 

-

13.73 
-13.7 1.93 2.09 1.8 0.95 6E-04 4E-05 4E-05 8E-06 7E-06 4.E+03 10366.47 

Mild 22.72 10.2 17.17 25.31 
-

0.22 
14.5 1.42 -3.8 -3.34 1.68 1.35 1.4 0.67 2E-04 5E-05 3E-05 2E-05 2E-05 4.E+03 11086.8 

Mild 22.76 8.84 16.21 22.71 
-

0.23 
16.2 1.83 -8.69 -8.6 1.83 0.01 1.82 1.17 5E-04 1E-04 5E-05 2E-05 

 

4.E+03 10266.61 

Mild 27.43 10.92 20.03 34.74 
-

0.22 
21.26 1.95 -7.87 -7.83 1.83 2.04 1.93 1.07 5E-04 6E-05 4E-05 4E-05 1E-05 4.E+03 14011.75 

Mild 26.09 11.17 19.54 29.33 
-

0.21 
17.26 1.55 -9.33 -9.33 1.75 1.4 1.53 0.76 3E-04 4E-05 3E-05 2E-05 1E-05 4.E+03 7163.69 

Mild 29.06 12.13 21.58 32.1 
-

0.23 
18.94 1.56 

-

10.52 

-

10.52 
1.78 

-

0.73 
1.54 1.07 5E-04 1E-04 7E-05 2E-05 

 

4.E+03 14329.17 

Mild 26.84 9.67 18.77 29.79 
-

0.23 
20.17 2.09 -8.97 -8.93 1.94 1.53 2.07 1.21 8E-04 9E-05 3E-05 1E-05 1E-05 4.E+03 14229.56 

Mild 27.07 11.49 20.36 35.63 
-

0.23 
19.48 1.7 -8.08 -8.07 1.77 1.67 1.68 0.89 5E-04 4E-05 3E-05 3E-05 1E-05 4.E+03 10455.12 

Mild 22.39 9.77 16.77 23.39 
-

0.22 
14.4 1.47 

-

10.36 

-

10.34 
1.72 

-

0.22 
1.46 0.88 3E-04 1E-04 8E-05 3E-05 2E-05 4.E+03 11044.96 
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Mild 27.31 11.87 20.66 32.28 
-

0.23 
17.39 1.47 

-

12.47 

-

12.33 
1.74 1.05 1.45 0.8 2E-04 9E-05 6E-05 9E-06 7E-06 4.E+03 14193.32 

Mild 26.54 9.3 18.43 29.35 
-

0.21 
21.44 2.31 -8.34 -8.15 1.98 2 2.3 1.44 0.001 5E-05 3E-05 1E-05 1E-05 4.E+03 13864.18 

Mild 20.82 10.05 16.06 21.2 
-

0.23 
14.01 1.39 

-

11.25 

-

11.24 
1.6 1.14 1.38 0.65 2E-04 5E-05 3E-05 1E-05 9E-06 4.E+03 11591.56 

Mild 22.6 9.89 16.89 20.82 
-

0.21 
14.47 1.46 

-

13.93 

-

13.91 
1.71 

-

0.14 
1.45 0.88 2E-04 1E-04 8E-05 2E-05 

 

4.E+03 13778.8 

Mild 26.71 11.11 19.8 31.52 
-

0.23 
17.77 1.6 -8.84 -8.77 1.78 0.94 1.58 0.74 3E-04 6E-05 5E-05 3E-05 8E-06 4.E+03 14439.77 

Mild 25.93 9.54 18.26 26.32 
-

0.22 
21.32 2.23 

-

11.19 

-

11.13 
1.91 1.65 2.22 1.34 8E-04 6E-05 4E-05 2E-05 1E-05 4.E+03 10191.3 

Mild 31.44 13.65 23.4 32.68 
-

0.22 
20.63 1.51 -8.79 -8.77 1.71 

-

0.49 
1.5 0.98 5E-04 1E-04 7E-05 2E-05 

 

4.E+03 10957.99 

Mild 25.2 11.11 18.94 28.42 
-

0.22 
16.2 1.46 -9.22 -9.08 1.7 0.69 1.44 0.66 2E-04 8E-05 8E-05 8E-06 6E-06 4.E+03 14376.71 

Mild 32.34 12.05 23.29 41.86 
-

0.21 
22.76 1.89 -9.21 -9.16 1.93 2.13 1.88 1.02 6E-04 3E-05 3E-05 2E-05 1E-05 4.E+03 7679.91 

Mild 22.02 8.73 15.84 21.59 -0.2 16.87 1.93 -8.95 -8.85 1.81 0.87 1.92 1.26 8E-04 7E-05 5E-05 2E-05 

 

4.E+03 10507.6 

Mild 23.74 10.46 18.01 29.89 
-

0.23 
14.85 1.42 

-

13.33 

-

13.33 
1.72 0.26 1.4 0.73 2E-04 9E-05 8E-05 8E-06 7E-06 4.E+03 14488.55 

Mild 32.92 11.99 23.68 45.95 
-

0.21 
20.48 1.71 -8.34 -8.31 1.97 2.38 1.7 0.77 6E-04 3E-05 2E-05 8E-06 5E-06 4.E+03 14060.55 

Mild 29.91 11.44 21.59 33.99 
-

0.21 
21.57 1.88 -8.92 -8.91 1.89 1.57 1.87 1.08 7E-04 4E-05 4E-05 3E-05 2E-05 4.E+03 10578.78 

Mild 21.27 9.17 15.72 19.45 
-

0.21 
15.62 1.7 -7.72 -7.67 1.71 0.32 1.69 1.1 4E-04 6E-05 4E-05 2E-05 

 

4.E+03 14030.92 

Mild 32.56 12.59 23.77 42.25 
-

0.21 
21.03 1.67 -7.01 -6.72 1.89 1.95 1.66 0.83 5E-04 7E-05 3E-05 3E-05 1E-05 4.E+03 14152.76 

Mild 32.94 11.89 23.44 39.66 
-

0.22 
23.06 1.94 -8.77 -8.66 1.97 2.15 1.93 1.06 7E-04 5E-05 3E-05 1E-05 7E-06 4.E+03 13854.27 

Mild 23.33 9.66 16.95 21.12 
-

0.21 
17.59 1.82 

-

14.93 

-

14.89 
1.75 0.2 1.81 1.26 3E-04 1E-04 1E-04 1E-05 

 

4.E+03 10191.87 

Mild 27.4 11.54 20.22 26.92 
-

0.22 
19.18 1.66 

-

11.63 

-

11.63 
1.75 0.85 1.65 0.85 4E-04 7E-05 5E-05 4E-05 1E-05 4.E+03 14482.37 
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Mild 34.13 12 24.33 44.91 
-

0.21 
23 1.92 -2.19 -2.01 2.03 2.33 1.9 0.99 8E-04 4E-05 3E-05 1E-05 7E-06 4.E+03 9875.45 

Moderate 26.27 10.89 19.72 34.67 -0.2 16.86 1.55 
-

11.84 

-

11.82 
1.81 1.85 1.54 0.73 4E-04 3E-05 3E-05 2E-05 

 

4.E+03 13961.3 

Moderate 26.6 11.9 20.11 26.48 
-

0.22 
16.48 1.39 

-

13.63 

-

13.57 
1.69 

-

0.24 
1.37 0.77 1E-04 9E-05 4E-05 1E-05 

 

4.E+03 14581.48 

Moderate 26.57 8.08 17.28 24.42 
-

0.21 
22.71 2.81 -7.2 -7.18 2.14 0.81 2.8 2.14 5E-04 4E-04 2E-04 8E-05 4E-05 4.E+03 6955.8 

Moderate 30.3 12.14 22.2 32.4 
-

0.23 
22.88 1.88 

-

10.78 

-

10.72 
1.83 1.35 1.87 1.06 4E-04 5E-05 3E-05 2E-05 

 

4.E+03 13565.91 

Moderate 18.85 8.49 14.21 21.15 
-

0.22 
11.94 1.41 

-

11.65 

-

11.64 
1.67 0.22 1.39 0.76 3E-04 1E-04 5E-05 3E-05 2E-05 4.E+03 11019.3 

Moderate 29.29 11.84 21.52 32.54 
-

0.22 
19.84 1.68 -9.79 -9.62 1.82 1 1.66 0.98 2E-04 1E-04 1E-04 6E-05 2E-05 3.E+03 10552.02 

Moderate 25.93 8.15 17.05 24.64 
-

0.22 
23.38 2.87 -10.9 

-

10.86 
2.09 0.7 2.86 2.1 6E-04 2E-04 2E-04 1E-04 4E-05 4.E+03 10383.41 

Moderate 22.21 10.3 16.93 23.92 -0.2 14.75 1.43 
-

10.78 

-

10.77 
1.64 1.38 1.42 0.71 3E-04 4E-05 2E-05 2E-05 

 

4.E+03 10208.15 

Moderate 29.86 12.35 21.96 30.63 -0.2 19.64 1.59 
-

13.44 
-13.3 1.78 1.09 1.58 1 2E-04 1E-04 7E-05 4E-05 2E-05 4.E+03 6999.45 

Moderate 33.37 10.53 22.79 40.93 
-

0.23 
23.73 2.25 -8.42 -8.4 2.16 0.49 2.24 1.34 2E-04 2E-04 2E-04 6E-05 4E-05 4.E+03 10457.26 

Moderate 26.01 8.84 17.7 26.48 
-

0.21 
22 2.49 

-

13.79 
-13.7 2 1.38 2.48 1.67 7E-04 9E-05 9E-05 5E-05 2E-05 4.E+03 6883.98 

Moderate 22.65 10.14 17.13 26.29 -0.2 14.78 1.46 
-

11.15 

-

11.15 
1.69 0.99 1.44 0.85 3E-04 8E-05 4E-05 2E-05 

 

4.E+03 14410.52 

Moderate 30.47 10.49 21.62 44.47 
-

0.22 
20.94 2 -2.61 -2.43 2.06 0.87 1.98 1.14 2E-04 2E-04 1E-04 4E-05 2E-05 3.E+03 6812.82 

Moderate 29.47 9.69 20.13 33.59 
-

0.21 
21.87 2.26 

-

12.99 

-

12.89 
2.08 1.17 2.25 1.3 4E-04 9E-05 3E-05 2E-05 

 

4.E+03 13857.25 

Moderate 24.87 9.81 17.94 24.34 
-

0.19 
18.51 1.89 

-

13.24 
-13.2 1.83 1.08 1.88 1.18 4E-04 1E-04 1E-04 4E-05 3E-05 4.E+03 11281.35 

Moderate 31.75 11.81 23 39.2 
-

0.19 
20.99 1.78 -6.49 -6.43 1.95 0.97 1.77 1 2E-04 1E-04 1E-04 5E-05 2E-05 4.E+03 6856.87 

Moderate 39.27 11.96 26.52 43.05 -0.2 27.38 2.29 -2.92 -2.76 2.22 1.16 2.28 1.44 3E-04 2E-04 9E-05 6E-05 5E-05 4.E+03 6584.92 
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Moderate 30.38 11.12 21.48 33.47 
-

0.19 
22.15 1.99 

-

10.83 

-

10.79 
1.93 1.37 1.98 1.26 5E-04 9E-05 8E-05 6E-05 2E-05 4.E+03 14235.88 

Moderate 27.85 11.24 20.16 25.96 
-

0.22 
20.51 1.83 

-

11.87 

-

11.85 
1.79 1 1.81 1.14 2E-04 1E-04 1E-04 4E-05 3E-05 4.E+03 10851.47 

Moderate 32.7 10.04 22.08 40.97 
-

0.21 
23 2.29 -1.08 -0.85 2.2 0.94 2.28 1.35 3E-04 2E-04 1E-04 8E-05 4E-05 4.E+03 6632.07 

Moderate 31.91 10.85 22.43 41.08 
-

0.22 
22.1 2.04 -9.3 -9.24 2.07 1.57 2.02 1.14 4E-04 7E-05 6E-05 3E-05 3E-05 4.E+03 6880.93 

Moderate 29.7 11.93 21.44 24.9 
-

0.21 
23.23 1.95 

-

10.24 

-

10.24 
1.8 0.84 1.94 1.45 3E-04 1E-04 6E-05 4E-05 

 

4.E+03 14356.77 

Moderate 31.61 10.81 22.11 37.87 
-

0.22 
23.77 2.2 

-

15.15 

-

15.15 
2.05 0.85 2.19 1.28 3E-04 2E-04 1E-04 6E-05 4E-05 4.E+03 10525.23 

Moderate 33.73 10.96 23.29 40.18 
-

0.22 
22.96 2.1 -0.85 -0.59 2.13 1.37 2.08 1.11 4E-04 9E-05 5E-05 4E-05 2E-05 4.E+03 10479.41 

Moderate 27.88 11.37 20.43 30.79 
-

0.19 
18.61 1.64 -9.65 -9.52 1.8 1.48 1.63 0.91 3E-04 5E-05 4E-05 2E-05 
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... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 
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... 

Healthy 5.89 4.01 5.01 2.98 
-

0.14 
3.54 0.88 

-

15.16 

-

15.16 
1.25 

-

0.06 
0.87 0.28 3E-05 2E-05 

   

6.E+03 

 

Healthy 5.48 3.7 4.65 3.08 
-

0.13 
3.36 0.91 -13.8 

-

13.75 
1.26 0.08 0.9 0.28 3E-05 3E-05 

   

1.E+04 

 

Healthy 5.5 3.76 4.69 2.94 
-

0.13 
3.34 0.89 

-

14.75 

-

14.73 
1.25 

-

0.02 
0.88 0.27 3E-05 3E-05 

   

5.E+03 

 

Healthy 5.81 3.91 4.91 3.05 
-

0.14 
3.52 0.9 

-

13.96 

-

13.96 
1.26 0.04 0.89 0.28 3E-05 3E-05 5E-06 

  

6.E+03 22953 

Healthy 5.46 3.69 4.62 2.92 
-

0.13 
3.21 0.87 -14.5 

-

14.47 
1.25 0.04 0.86 0.26 3E-05 2E-05 

   

6.E+03 

 

Healthy 5.17 3.48 4.37 2.92 
-

0.15 
3.15 0.91 

-

11.66 

-

11.65 
1.26 

-

0.02 
0.89 0.29 3E-05 3E-05 

   

6.E+03 

 

Healthy 5.65 3.85 4.8 3 
-

0.13 
3.41 0.89 

-

14.26 

-

14.26 
1.25 0 0.88 0.28 4E-05 3E-05 5E-06 

  

1.E+04 21997.51 

Healthy 6.29 4.24 5.32 3 
-

0.13 
3.86 0.91 -15.8 -15.8 1.26 

-

0.04 
0.9 0.29 3E-05 3E-05 

   

1.E+04 

 

Healthy 7.03 4.71 5.93 3.11 
-

0.12 
4.19 0.89 

-

14.23 

-

14.18 
1.26 

-

0.08 
0.88 0.28 3E-05 3E-05 

   

6.E+03 
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Healthy 5.47 3.72 4.65 2.98 
-

0.13 
3.44 0.93 

-

14.02 

-

13.99 
1.25 0 0.92 0.3 3E-05 3E-05 

   

5.E+03 

 

Healthy 5.94 4.02 5.03 2.99 
-

0.14 
3.64 0.9 

-

15.24 

-

15.22 
1.25 

-

0.02 
0.89 0.29 3E-05 3E-05 

   

5.E+03 

 

Healthy 5.84 3.96 4.95 2.95 
-

0.13 
3.53 0.89 

-

10.86 

-

10.85 
1.25 0.02 0.88 0.28 3E-05 2E-05 

   

5.E+03 

 

Healthy 5.96 4.02 5.03 3 
-

0.15 
3.63 0.9 

-

13.75 

-

13.75 
1.25 0.02 0.89 0.28 3E-05 3E-05 

   

1.E+04 

 

 

 

 

 

 


