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Abstract—Vital sign observations are typically carried out by
healthcare staff at regular intervals, known as ward rounds,
to monitor the overall health status of individual patients.
Patients who present symptoms of deterioration, or are deemed
‘at risk’ by clinical staff, will have their vital signs observed
more frequently (e.g., hourly instead of on a 12 hour interval),
decided by the nature of their condition. The frequency and
documentation accuracy of vital signs observations has been well
studied, but less consideration has been given to how clinical staff
manage specific observation intervals amongst those that have
been routinely scheduled. The primary aims of this study are to
assess the current adherence to prescribed observation intervals
and identify any primary factors that affect timeliness. This
study uses empirical survival estimation methods to determine
the empirical likelihood that, for a patient with a specified obser-
vation interval, the subsequent observation would be recorded
within the planned interval. We discuss the management of
various patient observation intervals across 20 study wards in
south Wales and how these formulate routine ward rounds,
or coexist with them. A semi-parametric proportional hazards
model is then used to determine the extent that individual patient
covariates, such as Early Warning Score (EWS), time of day, and
sepsis, mediate a significant change to the baseline of vital sign
observation timeliness. At the ward level, our findings suggest
regular batching of vital sign observations irrespective of the
planned schedules and a moderately positive linear relationship
between observation interval length and the likelihood of timely
recording. On an individual patient basis, elevated EWS was the
strongest indicator that a patient’s subsequent observation would
be taken earlier than baseline, however, it is clear that baseline
vital sign observation management is largely governed by existing
ward round policies.

Index Terms—Vital Sign Observations, Electronic Health
Record, Secondary Data Study, Survival Analysis, Proportional
Hazards

I. INTRODUCTION

Healthcare staff use routinely collected vital signs obser-
vations (such as blood pressure, heart rate, respiratory rate,
temperature, level of consciousness, and oxygen saturation as

part of the NEWS-2 standard [36], [37]) to track the health
of the individual patient in hospital wards. Patients should be
observed at regular intervals (routine observations), such as
every 4 to 12 hours, depending on the requirements of the
wards and the hospital policy. The observation interval (I)
(that is, the target gap between vital sign measurements) can
also be shortened for an individual patient as a cautionary
response (individual observations) when vital signs exceed
thresholds [22]. In most cases these become hourly obser-
vations, but the I can be as short as 15 minutes depending
on the underlying condition. The introduction of handheld
electronic patient vital signs observation recording systems
(also known as e-observations) have become essential for
offering clinical staff access to real-time data for general
frequency and documentation quality measures. However, the
specifics of how clinical staff manage a range of observation
intervals among routine operations have yet to be established
and could provide new-wave insights for hospital stakeholders
looking to find ways to improve staff resource allocation.

The combination of individual patient and routine observa-
tion intervals means the daily pattern of vital signs observa-
tions within a ward is non-uniform, reflecting ward and patient
requirements. In practice, it has been shown that clinical staff
typically consolidate most routine patient observations into
‘ward rounds’ [1] that take place 2 to 4 times a day [16],
[24], [33]. When patients require individual plans, there is an
opportunity for observations to be either ‘pulled forward’ or
‘pushed back’ into staff dealing with a larger group of beds.
These patterns naturally reflect operational management at the
ward level, how staff may implement policies, and other latent
heuristics that support the delivery of care. In this work we
assess the probability that a patient with a specified I will have
their vital signs observed ‘on time’, and if not, what covariates
are significant mediators.

Re-purposing of data from routine ward activities surround-
ing patient care, such as vital sign observations, can provide



TABLE I
CHARACTERISTICS OF THE 20 STUDY WARDS.

Ward Year Ward type Nobs Unique
staff IDs

Unique pa-
tient IDs

Unique
bed IDs

W1 2022 Surgical 25,629 177 453 32
W2 2022 Medical 28,642 139 422 30
W3 2022 Cardiology 25,476 167 406 32
W4 2022 Rehabilitation 12,073 101 178 18
W5 2022 Cardiology 28,466 54 233 34
W6 2022 Trauma & Orthopaedics 9,335 40 118 12
W7 2022 Trauma & Orthopaedics 25,137 157 543 30
W8 2022 Medical 25,998 82 1,766 36
W9 2022 Gastroenterology 35,359 150 1,353 24
W10 2022 Respiratory 37,875 155 309 30
W11 2022 Medical 30,659 221 1,268 28
W12 2022 Rehabilitation 39,366 120 651 30
W13 2022 Care of the elderly 31,461 132 224 25
W14 2019 Rehabilitation 44,768 188 904 32
W15 2019 Rehabilitation 47,671 132 1,397 30
W16 2019 Medical 45107 257 1,336 32
W17 2019 Rehabilitation 42,605 237 1576 32
W18 2022 Medical 54,449 172 1,405 31
W19 2022 Medical 22,249 92 735 17
W20 2022 Surgical 45,716 194 1,608 31

a basis for summarising how activities on wards are under-
taken without the practical challenges and costs of bespoke
equipment or third-party observers. A retrospective review
of ward activity may be requested by hospital managers,
policymakers, or other stakeholders for which the results of
this study will provide a baseline of typical ward vital sign
observation management, allowing for deviations thereof to
be identified. This statistical representation may also provide
utility in supporting changes to the structure of patient obser-
vation interval escalation or staff resource allocation.

This paper presents three main contributions: (1) Insight
into real vital sign observations management across a range
of ward sizes, specialisms, and operating characteristics, in-
cluding a consideration of conformance to timeliness targets,
(2) an evaluation of the statistical effect that individual patient
characteristics have on how their subsequent observation will
be managed, and (3), a selection of policy/ software adjustment
suggestions that could improve the data quality and patient
handling.

II. RELATED WORKS

In this section, we briefly summarise the current imple-
mentation and obstacles identified with respect to the practice
of vital sign observations and discuss the significance of
improving the manual collection of vital signs despite the
introduction of continuous monitoring methods. Following
this, we discuss how survival analysis methods have been used
in other areas of healthcare, and how the current literature
includes the effects of patient Early Warning Scores (EWS)1

1In a busy ward environment it is slow for healthcare staff to concisely
describe the severity of a patient case using multiple individual parame-
ters (e.g., blood pressure, heart rate, respiratory rate, temperature, level of
consciousness, and oxygen saturation). So, staff combine multiple vital sign
measurements and clinical judgement into a convenient single-digit number
using a standardised scoring system, called an Early Warning Score [10], [29].

or vital sign documentation conformance.

A. Vital sign observations timeliness

The recent shift towards e-observations of vital signs pro-
vides practical and affordable clinical improvements [12] and
also facilitates new analysis of inter-ward patient management
[8], [13] with metrics such as timeliness and conformance [43].
However, many obstacles have been identified to completing
patient observations to a target frequency and documentation
standard [11], [12], [21], [22], [26], [41], partially attributed
to staff interaction with e-observation systems [30], [43] and
the impact of staffing levels or shift lengths on conformance
and timeliness [3], [7], [9], [13], [38], [39].

Continuous automated monitoring of vital signs could be
the solution to these shortcomings [42], however, the asso-
ciated costs from installation, implementation, operation, and
maintenance costs continue to be a barrier to the widespread
adoption. Furthermore, hospitals must also consider whether
patients feel confident in the level of care they receive from
virtual monitoring [17], and clinical staff will always need
to check more subjective patient factors, like ruminative self-
focus, emotional monitoring, or social rhythms in person
as well. In the status-quo, the hourly volume of vital sign
observations changes throughout the day [16], [28]. It is
accepted that these patterns are reflective of typical ‘ward
round’ practice, where staff consolidate routine observations
into short periods.

Stratifying vital signs observations by their timeliness (that
is, the difference between the planned observation schedule
and the actual time the observation is taken) has highlighted
that shorter observation intervals and ‘high’ EWS patients
(e.g., > 5 total points, or > 3 points in any single parameter
for the NEWS-2 system used in the UK [36], [37]) have
been shown to have the most vital sign observation omissions



[24], [34], [38]. However, the specific causes behind late
observations have not been widely studied, and these works
have little mention to observations that are pulled forward
unnecessarily.

B. Survival analysis

Survival analysis is a widely used statistical method to
evaluate how long it will take for an event to happen, which
in this study is the subsequent observation for a given patient.
To the best of our knowledge, vital sign observation timeliness
has not yet been modelled as time-to-event data, however, the
method is prevalent in other aspects of healthcare and has
been used to evaluate some other features from observations
data sets. For example, Kaplan-Meier [23] survivor functions
have been used to predict acute mortality in stroke patients
based on their EWS score, whilst considering how individual
patient observation scheduling changes in relation to EWS to
reduce risk [27], and evaluate how EWS can predict in-hospital
mortality when stratifying patients by risk (and therefore
observation schedule) [25]. Neither work takes into account
how conformance to the expected observations schedule may
be a factor of individual patient risk. Likewise, previous
work has utilised the Cox proportional hazards model [6] to
evaluate different EWS methods for predicting patient outcome
(Rapid Emergency Medicine Score, Worthing Physiological
Scoring system, Charlson score, admission Barthel Index,
and altered mental status at presentation) [14], [19], but do
not consider that the predictive capacity of these measures
could be mediated by individual ward levels of observation
frequency or documentation conformance.

III. DATA OVERVIEW

This study works with a large, anonymised vital signs
observations dataset (Nobs = 770,720) spanning 20 hospital
wards from 7 sites and 8 specialisms (Medical, Surgical,
Rehabilitation, Care Of The Elderly, Orthopaedic, Cardiology,
and Acute Stroke) run by Aneurin Bevan University Health
Board (ABUHB) in South Wales, UK. The selected wards
have a well established implementation of e-observations. The
time period was chosen such as that e-observations were
consistently recorded for a full year (4 wards for 2019 and
16 for 2022, for which the continued effects of Covid-19
are considered to not have significant impact on vital sign
observations management [24]). As part of this study, a ‘vital
signs observation’ is defined as an 9-dimensional vector that
includes: Observation ID, time of observation, ward ID, bed
ID, patient NEWS2, patient observation interval, sepsis la-
belling3, ‘is concerned’ (a checkbox, optionally selected at the
bedside, indicating either ‘yes’ or the default ‘no’) labelling,
and staff role. The vital signs observation dataset was compiled

2The NEWS-2 system is used in this study [36], [37].
3Sepsis occurs when the body’s response to infection damages its own

tissues and organs, where the chemicals released into the bloodstream to fight
an infection trigger damaging inflammatory responses throughout the body. It
is a medical emergency that requires immediate intervention, but early onset
symptoms can be spotted (e.g., fever, elevated heart rate, and rapid breathing)
and treatment administered from timely vital signs monitoring [32].

TABLE II
TIMELINESS BANDS TO DESCRIBE THE RATIO OF THE TTNO TO THE

PLANNED OBSERVATION INTERVAL (E.G., IF TTNO=72 MINUTES AND
I=60 MINUTES, TTNO:I=1.2, AND THE SUBSEQUENT OBSERVATION WILL

BE CATEGORISED AS ‘LATE A’).

Category Lower band Upper band

Early 0.2
On time 0.2 1
Late A 1 1.33
Late B 1.33 1.67
Miss 1.67

within CareFlow eObservations software installed on handheld
mobile devices on wards which, among other features, allow
vitals sign data to be entered at the bedside with automatic
NEWS and I calculations [40].

IV. METHODS

Vital sign observations datasets can be appropriately trans-
formed to a time-to-event dataset by calculating the Time-
To-Next-Observation (TTNO): the actual time differential be
two subsequent observations on the same patient [16]. Some
works have used TTNO synonymously with the planned
schedule [33], to describe the planned schedule indirectly (e.g.,
“expected TTNO” [24]), or inconsistently for both [4]. We
would like to, at least for this study, establish the TTNO of
observation v as when the subsequent observation for the same
patient is taken, rather than when it should be taken (which is
the observation interval, denoted as I). In cases where there is
not a subsequent observation, or the TTNO exceeds 24 hours
(e.g., patients between visits [4]), the outcome is considered
‘right-censored’ in line with convention [23]. Right-censoring
data when using electronic health record datasets can lead to
structural incompleteness [2], but for vital sign observations
this can be mitigated by setting the TTNO as 24 hours (the
end of the relevant follow-up period).

A definition for stratifying vital observations by the ratio of
TTNO to the observation interval was formalised in November
2018 [13] with subsequent literature (albeit with some slight
variation) maintaining the definition [18], [24], [33]. For this
study, since we are simply evaluating conformance not the
design of the observation interval itself, we follow convention
of these standard timeliness definitions, shown in Table II.

1) Empirical TTNO analysis: We estimate the hazard distri-
bution (i.e., the likelihood of the TTNO occurring at time t) as
the derivative of the non-parametric Nelson-Aalen cumulative
hazard function estimator4 [31]. The data is stratified by
ward and planned observation interval, where we include
intervals that have been been used consistently by clinical staff
(threshold set at Nobs > 1000). Each hazard curve describes the
likelihood that an observation with a specified I will have a
TTNO of time t.

4The cumulative sum of estimates is more stable than point-wise estimates,
but the rate of change of this curve, i.e., the hazard function (h(t)), is more
interpretable.



First, we consider whether observations across stratifications
are managed similarly. To answer this, we use the survival
distribution (S(t), which represents the probability that the
subsequent observation will not have occurred by time t) [23]
in place of the hazard distribution for this null hypothesis to
align with appropriate methods for this question. Although
the gold standard for this task is the Log-rank test [35], there
is a key statistical consideration; it is most powerful under
proportional hazards and loses power under non-proportional
hazards. Theoretically, the survival curves we derive from this
data should proportional to the planned observation interval,
but this may not the case in practice, especially if comparing
curves between wards. Instead, we measure the difference in
Restricted Mean Survival Time (RMST) [15] for 24 hours
following the observation5. The RMST aggregates all survival
information in the follow-up time to provide a heuristic, clin-
ically meaningful interpretation for the interval management,
however, as a single-number summary it may mask important
temporal features. Pairwise differences in RMST (dRMST)
(the average gain or loss in survival time) for the following
24 hours between each stratification will broadly indicate
which intervals in which wards are similarly managed. This
information can then be summarised as an edge-weighted
network diagram and compared against visual representations
of the hazard functions.

The cumulative density of each S(t) will also be used to
determine if the observation interval length correlates to the
likelihood that the observation will be taken within its specified
interval (i.e., on time, when considering the timeliness limits
defined in Table II).

Although in this study we will not establish whether the em-
pirical hazard distributions can be appropriately parametrised,
survival times are often assumed to follow a specific distri-
bution, and we consider what a hazard distribution for a ‘so
far as is reasonably practicable’ (Hs f airp) treatment of a given
observation interval may look like. What Hs f airp should look
like is not currently known, however, we suggest it could be
Weibull distribution with shape (k) and scale (λ ) parameters
aligned with I (Equation 1);

k = I (hours), λ = k− k
k+ exp

( 1−k
2

) (1)

This leaves room for some vital sign observations be com-
pleted early or late for intentional reasons, or for reasons out-
side of staff control (such as overseeing a student observation,
or a patient away from their bed). Hs f airp is only intended to
be a useful baseline comparison to current ward management,
not a target for hospital ward stakeholders. We simulate Hs f airp
as a scale of I and with respect to different I values in Figures
1 and 2, respectively.

2) Semi-parametric TTNO analysis: As the reasons why
routine and non-routine observations may be taken in advance
of, or after, the specified observation interval (known as ‘pulled

5Measured as the area under the survival curve.
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Fig. 1. An illustration of the nominal best-case hazard distribution curves
(h(t)) for a vital sign observation with a planned interval, hs f airp(t).
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forward’ and ‘pushed back’, respectively) are not known, we
employ a standard Cox proportional hazards model to deter-
mine the effect of the 5 covariants listed in Table III. These
were selected for two reasons; their ease of identification by
clinical staff at the time of observation, and their routine
usage in the data for which similar studies may benefit. The
categorical limits for NEWS and NEWS increase covariates
have been selected to conform with existing guidance [4],
[36], [37]. The hazard function for the TTNO is given by
Equation 2.

h(t; T T NO) = h0(t)(βewsXews+ ... +βspsXsps) (2)

The null model is fitted to predict the observation TTNO



TABLE III
COVARIATE DESCRIPTIONS FOR THE HAZARD FUNCTION DESCRIBED IN EQUATION 2.

Name Notation Values

Patient NEWS Xews ews ∈ {0,1,2}, for stable (0-3); at risk (4-6); critical
(7+)

NEWS increase Xews inc ews inc ∈ {0,1}, for no low increase in NEWS;
increase in NEWS of 2 or more

Observation time XToD ToD ∈ {0,1,2,4}, for overnight (0–5); morning
(6–11); afternoon (12-17); evening (18–24)

Sepsis label Xsps sps ∈ {0,1}
‘is concerned‘ label Xic ic ∈ {0,1}
Oxygen state Xoxy oxy ∈ {0,1}; not on oxygen (0); on oxygen (1)

over the follow-up period. We assume that the TTNO between
distinct individuals in the sample are independent. We are con-
scious that our dataset could be perceived to contain correlated
subjects, as subjects appear more than once in the dataset (i.e.,
patients have multiple observations taken during their stay),
which would break the independent-and-identically-distributed
assumption, but sampling process should account for this
and avoid bias towards admissions that had more vital sign
observations or covariate instances. With this, we assume a
sample of vital sign observations that are taken independently
and as a factor of the patient condition and/or other covariates,
not the identity of the patient. We also check the proportional-
hazards assumption: that there is a multiplicative relationship
between the predictors and the hazard and that there is a
constant hazard ratio over time.

V. RESULTS

Our findings unfold in two parts; Part A, where we eval-
uate empirical vital sign observation hazard distributions for
common schedules in all wards. Figure 3 serves as a visual
scale in this section to the various vital sign observation
management heuristics discussed and to give context to the
statistical methods used. Part B then discusses the assumptions
of the model (using Table IV and Figure 7) and the strengths
of the individual patient covariate coefficients (Table V).

A. Empirical Kaplan-Meier curve evaluation

Figure 3 introduces the analytical framework by illustrating
hazard functions for commonly used vital sign observation
schedules. Right inset axes illustrate the proportion of obser-
vations taken each hour, where it is agreed that the activity
peaks in these plots likely represent routine ‘ward round’
procedures [16], [24], [33]. Left inset axis show the proportion
of each observation interval used. The number of daily activity
peaks correlate to operational differences between wards,
namely, that wards scheduling 2 daily rounds appear to employ
fewer varieties of observation intervals. We follow convention
in discussions and group the study wards by daily observation
interval distributions [24], [33], where wards W1-W8 are
‘group 1’ and W9-W20 are ‘group 2’.

Comparing Figure 3 to the reference Figure 2 highlights
differences between theoretical observations management and
what occurs in practice. There are distinct peaks that appear in

all wards, but not necessarily aligned to individual observation
intervals, rather more closely aligned to the daily activity
peaks. For example, in W1, although there is a small peak
that aligns to 1-2 hours for the short intervals in use, there is a
much larger peak that aligns to 12 hours - likely the subsequent
ward round when viewing the inset axis. The influence of ward
rounds is reiterated across the rest of the study wards where
peaks in the hazard distribution are created in alignment to
the gaps between ward rounds. For example, in W2, like W1
there are only 2 peaks in the daily observation volumes, but
there are also 2 peaks in the hazard distributions because of
how the daily activity volume peaks are staggered (9 and 15
hours apart).

In most wards there is high consolidation of different obser-
vation intervals, especially between medium length and longer
intervals. The similarity of observation interval management
can be summarised by a network representation of pairwise
dRMST between all common schedules in all wards, which
we illustrate in Figure 4 (where there is an edge threshold for
maximum dRMST of 1). For when 6 and 8 hour intervals are
present (mostly in group 2 wards), they appear to be closely
related, supporting the notion that clinical staff batch patient
observations on similar intervals. As expected, most 1 hour
intervals for ward group 2 ward and 12 hour intervals for
ward group 1 are managed in groups, but unexpectedly, 1 hour
intervals in group 1 and 12 hour intervals in group 2 wards
appear to be managed similarly.

Figure 5 shows longer observations have a much higher
likelihood of being on time, but also the largest variation
in conformance between wards. Overall, there is a moderate
positive linear relationship between observation interval length
and the probability the observation will be taken within the
interval (coef=0.735, p< 0.005, standard error=0.000084). We
test if the distribution of probabilities for 12 hour intervals for
wards with 2 daily ward rounds and for those with over 2
daily ward rounds are similar using a Kolmogorov-Smirnov
test (variance ratio is 15.165:1). We find the separation of
distributions is statistically significant (p < 0.005) and may
occur because wards operating with over 2 daily rounds also
use a wider variety of intervals (e.g., 4 hour, 6 hour, and 8
hour), and 12 hour intervals are simply consolidated with these
during ward rounds (also see Figure 3).
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Fig. 3. Time to next observation ‘hazard’ distribution curves for vital sign observations stratified observation interval and by ward. Left inset axis show the
proportion of each observation interval used and right inset axis show the proportion of observations taken each hour.
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B. Covariant effects

A Cox proportional hazards model was fitted with primary
strata for the ward (Xward), and observation interval (XI).
Preliminary fitting showed the time of day for which an
observation is taken (e.g., morning, afternoon, evening, or
overnight) (XToD) to also be a notably non-proportional hazard.
Reconsidering Figure 3, the influence of ward rounds create
‘shoulders’ in the hazard distributions. Stratifying hazard
curves by time of day appears effective in separating these
multimodal hazards into component distributions. Figure 6
presents four example observation schedules in different wards

when stratified by the time of day. W1 and W3 are very similar
wards when considering the metrics shown in Figure 3, but it
is clear that the timing of ward rounds largely influences the
TTNO hazard. Group 2 wards, such as W9, also show how
different interval lengths appear to be treated very similarly.
This covariate is best adjusted through stratification, as the
categorical order for XToD is different between wards and ward
round structures.

With the aforementioned stratifications the model was fitted
for the remaining five covariants; Xews, Xews inc, Xic, Xoxy, Xsps,
for a sample size of Nobs = 100,000 (where 611 observations
were right-censored). To determine if the chosen sample
size is appropriate, we calculate statistical power for each
individual covariate with a significance level of α = 0.05.
The expected probability is based on the frequency in which
each covariate appears in the data and the minimum detectable
effect to the hazard ratio that we want to determine. For this
study, we suggest a 10% change to the hazard ratio, that is,
Xcovariate = 1± 0.1, to be a ‘clinically significant’ effect. We
selected a sample size to support 80% statistical power for the
least frequent covariate, Xic, which is only seen in about 2% of
observations, but acknowledge this may lead to Type-I errors
when testing for proportionality in more frequent covariates.
As mentioned in Section IV, if the sample is too large, we
may resample from the same patient too frequently and create
biases. The power for each covariate based on each individual
frequency is described in Table V.

Each covariant was checked individually against the pro-
portional hazard assumption under a threshold set at p < 0.05,
shown in Table IV All covariates appear to be non-proportional
when using a Kaplan-Meier time transform (denoted as ‘km’
in Table IV), but only Xoxy failed under rank transformed
time. Even under the null hypothesis of no violations, some
covariates may appear non-proportional by chance, either
because there are many covariates, or when there are lots of
observations (where small deviances can be flagged, producing
a type I error). We retain non-proportional hazard covariant
results as a convenient summary of their effect, as in many
cases, these may still be interpreted as a weighted average of
the true hazard ratios over the entire follow-up period.

Martingale residuals are typically used against continuous
covariates to detect nonlinearity, and although the covariates in
this study are categorical, any patterns in Figure 7 can suggest
where the model is not properly fit. A graphical inspection
highlights clear time-dependent patterns and the presence of
large negative values (corresponding to observations taken
later than the model expects). The residual bands seemingly
align to ward round scheduling, reaffirming their influence,
suggesting that individual patient covariates lose power in
dictating the TTNO during ward rounds.

The model is summarised in Table V. For every additional
point attributed to a covariate (Xcovariate), the ‘hazard’ is scaled
by βcovariate. Where exp(βcovariate) is greater than 1, there is an
increased likelihood that observation will be taken earlier than
baseline. Xews appears to be the most influential, particularly
because its covariate value could increase by two points. In
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TABLE IV
INDIVIDUAL COVARIATE TESTS FOR PROPORTIONALITY.

Covariate time transform test statistic p −log2(p)

Xews km 51.54 < 0.005 40.38
rank 0.39 0.53 0.91

Xews inc km 58.41 < 0.005 45.41
rank 0.69 0.41 1.3

Xic km 18.98 < 0.005 16.21
rank 0.41 0.52 0.94

Xoxy km 995.04 < 0.005 723.08
rank 73.95 < 0.005 56.8

Xsps km 25.96 < 0.005 21.45
rank 0.9 0.34 1.54

this data, elevated NEWS should only be present in short
intervals, as a patient with NEWS over 6 is deemed ‘critical’
and should be reviewed within 30 minutes. Conversely, Xews inc
does not seem to have as large an impact on observations
management, despite also being an indicator of critical pa-

tient condition [4]. The response to observation labels was
mixed; Xic demonstrated a low effect, measuring close to the
chosen determinable limit under our sample. Xoxy, although
not proportional across either transformed time, measured a
large effect. Lastly, Xsps, rather oddly, appears to encourage
the pushing back subsequent observation. Sepsis labelling does
only occur for 1 hour intervals, so this may instead reflect
procedure for follow-up measures rather than severity.

VI. DISCUSSION

Modelling 770,720 vital sign observations as time-to-event
data has revealed new insights into the practical implementa-
tion of health policies for managing routine and non-routine
vital sign observations across a broad range of ward sizes and
specialities. The operational differences between wards that
schedule two daily observation rounds to those scheduling
three or four are substantial and clearly reflect higher-level
ward requirements (e.g., specialism, patient flow, size). The
curves in Figure 3 show how current clinical staff resources
can manage vital sign observations alongside their other duties,
such as drug administration, meal times, and staff handover.
They indicate that implementing fewer varieties of observation
intervals to align with ward round policy can result in short
intervals being pushed back to the next ward round. Plainly
offering more interval options would be an ineffective solution
without additional resources or change in practice; this can
be seen in many of the wards with more diverse scheduling,
where 6 and 12 hour intervals are often consolidated with 8
hour schedules because it simply aligns with the daily ward
round schedule.

In practice, there is a variety of potential reasons as to
why vital sign observations are taken earlier or later than
planned. Drops in vital sign observation timeliness and nurse
staffing levels have been previously linked [13], but it is
worth considering how regular ward round timings may also
play a part when not aligned with the available standard
available (or commonly used) observation intervals within
individual wards. Looking back at what trends exist with
respect to specified scheduling and the effects of individual
patient covariates will at least help lead hospital management
to understand the requirements for positive change in the
hospital ward environment. We are motivated to offer short



TABLE V
COVARIATE COEFFICIENTS.

Covariate (X) Power β exp(β ) exp(β ) lower 95% exp(β ) upper 95% z p −log2(p)

Xews 0.845 0.57 1.78 1.69 1.87 22.36 < 0.005 365.47
Xewsinc 0.880 0.12 1.12 1.07 1.18 4.79 < 0.005 19.2
Xsps 0.999 -0.19 0.83 0.79 0.86 -9.25 < 0.005 65.22
Xic 0.792 0.14 1.15 1.09 1.21 5.28 < 0.005 22.89
Xoxy 1.000 0.44 1.55 1.52 1.58 43.28 < 0.005 inf

recommendations for health management policies that may
improve the input quality and usefulness of the e-observations
data for understanding the behaviour of patient vital sign
management with respect to patient escalation structures in
hospital wards.

A. Clinical recommendations

Firstly, for most observation interval stratifications, it is
clear that clinical staff often rapidly repeat a patients’ vital
sign observations, demonstrated by the non-zero hazards at
t = 0 in Figure 3. This has also been corroborated when
considering individual staff sequences of observations [5], [20]
and has been speculated to occur for patients that are either
on the threshold of a ‘high’ NEWS score or for patients that
have appropriately been put onto hourly intervals but are seen
‘early’ because of an ‘initial review’ policy (this is expected
within 30 minutes for our study wards). Otherwise, it may
simply be a low stakes route alteration caused for instance
by a patient fall, a student observation, monitoring short-
term medication effects, or in cases where a complete set of
observations is required at the point of ward to ward transfers.
Although the software used in this dataset does have capacity
to set patients to 10, 15, and 30 minute observation intervals
for patients in the appropriate condition, these short intervals
are rarely utilised in this selection of study wards (less than
1000 cases seen in any ward, as mentioned in Section IV)
and are more likely seen in intensive care wards not included
in this study. Some of the aforementioned reasons for a rapid
repeating of vital sign observations may be foreseeable for the
next planned observation, and could therefore be scheduled
appropriately to 15 or 30 minutes with an accompanying
additional data field indicating the motivating reason why:

Recommendation 1. Enable, or encourage, schedul-
ing patients to short observation intervals (15 or 30
minutes). If possible, also using labels for contex-
tualising the reason (e.g., ‘initial review’, student
observations, short-term medication monitoring).

This would improve the data quality and add significant
context in retrospective reviews to the proportion of rapidly
repeated vital sign observations that are planned compared to
those taken in response to patient or ward stimulus, which
could lead to improvements in staff resource allocation.

Secondly, similarly to sub-1 hour intervals, not all wards
consistently utilise medium length intervals (2, 4, 6, and 8
hours), especially wards that only schedule 2 routine vital sign
observation rounds. In this dataset, medium length observation

intervals are dictated by the software as a function of patient
NEWS, but some wards may not have these intervals enabled
and/or clinical staff may simply set all non-routine patients
to hourly observation intervals manually. In practice, medium
intervals may simply occur in a potentially niche space, where
patients must present an elevated symptoms of deterioration
without causing ‘concern’, otherwise they would be set to
hourly observations. Figure 3 shows that many patients on
hourly observation schedules get pushed back to the subse-
quent ward round, and that simply allowing (or encouraging
when appropriate) staff to adjust patients on hourly scheduling
that are likely stable to be on medium length intervals at
a review point (which is 2 hours post initial escalation in
our study wards) could aid staff resource allocation. It may
be short-sighted to appease all 1 hour observations that are
deemed late, but these results point to the need for giving
staff more flexibility:

Recommendation 2. Implement medium length pa-
tient observation interval scheduling selection in all
wards at the point of outreach, medical team, or
nurse review.

Thirdly, revisiting Table V, it is clear that patients with
elevated NEWS or have additional labels (such as staff
concern) are likely to be attended to earlier than baseline
(e.g., a patient with NEWS of 10 will be seen before a
patient with NEWS score of 4 even if they’re both on 1
hour intervals). While this may seem intuitive, it suggests
that either these patients might benefit from being placed on
shorter observation intervals or that many patients on short
intervals may not need to be (discussed for Recommendation
2). Adjusting the patient condition thresholds for selecting
shorter intervals at an earlier stage could improve outcomes
and could be easily implemented through an adjustment to the
e-observations software in use:

Recommendation 3. Lower the threshold for
scheduling patients to shorter observation intervals
(15 or 30 minutes) for those that feature both high
NEWS and sepsis markers.

Overall, it is likely the recurring influence from routine ward
round periods incurs the largest effect on the treatment of
observations and largely overshadows any individual covariant
effects. Whilst the listed recommendations have scope to im-
prove vital sign observations management, their effectiveness
may ultimately be limited by existing ward round procedures.



B. Limitations and considerations

We are aware that data gaps may exist for some cases
of vital sign observations. This can occur when a patient
is escalated to a doctor and the patient is under constant
supervision [44] or when no charged and working devices
are available at the time of the observation [5]. We also note
that the difference in conformance between shorter (I = 1
hour) and longer (I = 12 hours) observation intervals could be
influenced by to how the bands for on time, late and missed
are considered. The definitions from the literature [13] have
so far been an effective descriptor for vital sign observation
timeliness [33], but, we note that it is somewhat easier for
clinical staff to ‘miss’ a shorter interval in the case of pushing
back and observation to the next scheduled ward round, which
could be over three hours later. However, we understand that
being late for a 1 hour observation interval may lead to worse
patient outcomes, so intervals should scale accordingly.

C. Future work

In this paper we make two main assumptions; (1) there is
a multiplicative relationship between the predictors and the
hazard and that there is a constant hazard ratio over time,
and (2) that patient care is individually managed with respect
to their condition. There is opportunity for further work to
determine whether the TTNO hazard distribution could be
appropriately parametrised, and whether individual hazards are
proportional to more specific stratifications, or if other methods
like time-varying-coefficients could be applied. Secondly, its
unclear how significant the underlying timeliness dependence
is between patients during routine ward operations. Suppose
two stable patients in neighbouring beds both have their vital
signs taken during a ward round, it is not a stretch to imagine
that both subsequent observations would occur in sequence
during the next routinely scheduled ward round. Measuring
what level of vital sign observation timeliness dependency
exists in wards with limited staffing resources will unveil
a novel and essential aspect of ward operations. Building
on this, in cases where wards are from the same sites, it
may be valuable to explore whether timeliness in one ward
affects timeliness in other wards, be it though shared staff or
concurrent crises.

VII. CONCLUSION

The management of vital sign observations in wards has
previously been explored with respect to routine observations
scheduling and timeliness. This study has expanded this by
considering timeliness for specific observation intervals, as
well as individual patient covariates such as NEWS, condition
labelling (sepsis, or staff concern), and the time of day for
which observation was taken. Using a dataset of 770,720
vital sign observations, this study has provided insight into:
the differences in typical ward behaviour that can occur in
vital sign observations management, the stratification of the
probability for a TTNO for different observation intervals and
wards, and the extent to which each of the observation intervals
is influenced by various individual patient covariates. There

is a path to smarter patient care by giving different hospital
stakeholders, from staff on wards, to managers on wards
and sites, to health boards and trusts, enhanced information
sources that can be used as a basis of care policies designed
for the individual needs of a ward. From this, we present
recommendations for future care policy and supporting soft-
ware to improve data quality and data analysis opportunities
surrounding vital sign observations management.
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