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Early diagnosis of keratoconus using corneal =

biomechanics and OCT derived technologies
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Abstract

Background Early detection of keratoconus is essential for maximizing the potential of cross-linking treatments
designed to halt keratoconus progression, minimizing the risks of iatrogenic ectasia as well as reducing the need

for corneal transplantation. This review focuses on the progress that has been made in the early detection of kerato-
conus using biomechanical and topographical properties derived from three different technologies, namely the ocu-
lar response analyser (ORA), corneal visualization Scheimpflug tonometer (Corvis ST) and optical coherence tomogra-
phy (OCT).

Method A PubMed search was performed using the keywords of ‘early keratoconus, ‘subclinical keratoconus, forme
fruste keratoconus, ‘very asymmetric ectasia with normal topography/tomography’and ‘ocular response analyser’
and/or ‘Corvis ST'/'corneal visualized Scheimpflug tomographer/tomography’and/or ‘optical coherence tomography/
tomographer’.

Results The integration of biomechanical parameters and corneal morphological data from the topography/tomog-
raphy or OCT, or the assessment of bilateral asymmetry, has demonstrated improvement in the accuracy of diagnos-
ing early-stage keratoconus.

Conclusions As measurement principles differ depending on the technique used for keratoconus assessment,
comprehensive metrics may be needed to reflect subtle anterior or posterior corneal changes and help identify

eyes with very early ectasia. Although clinical experts have always, and will most likely, continue to play a pivotal role
in decision-making for early keratoconus diagnosis, future developments in technology and Al may lead to enhanced
early detection in the future.
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Background

Keratoconus is a bilateral condition [1], characterized
by corneal elevation, reduced corneal thickness, corneal
biomechanical weakening, irregular astigmatism and
progressive vision loss [2]. The associated risk factors
include eye rubbing, a family history of keratoconus,
allergy, asthma, and eczema [3]. The early detection of
keratoconus can result in a better long-term prognosis,
and it is crucial that keratoconus is excluded prior to
refractive surgery [4]. Performing laser ablation surgery
on these candidates could result in severe progressive
iatrogenic ectasia [5, 6]. The advent of corneal topography
and tomography has improved the early diagnostic ability
of clinicians in identifying corneal ectasia, which may
correspond to the higher keratoconus prevalence rates
reported in recent years; up to 1.38 per 1000 population
[3].

Nevertheless, it is still a challenge to differentiate
borderline cases of keratoconus from normal corneas
using tomography and topography, especially in small
corneas where the 8 mm diameter best-fit sphere
is incompatible with the size of the cornea and can
produce a falsely elevated posterior surface [7]. This
is especially poignant when considering different
ethnic groups, as corneal diameter has been shown
to be 0.2-0.5 mm narrower in Asians versus whites
[7]. A further complication is that some patients with
keratoconus may present typical clinical symptoms
in one eye only, with the fellow eye showing no sign of
abnormalities in corneal topography/tomography or slit-
lamp examinations; this is referred to as forme fruste
keratoconus (FFKC). In such cases, biomechanical
abnormalities may be observed despite the appearance
of normal tomography and topography [8]. According
to the Global Consensus on Keratoconus and Ectatic
Corneal Diseases [1], diagnosing early or subclinical
keratoconus involves observing posterior corneal
elevation abnormalities. This is supported by a number
of studies that have highlighted the prime importance
of posterior corneal changes [9], and the limited ability
of detecting early keratoconus with simple Placido disc
topography and keratometry which does not incorporate
posterior corneal changes [10]. However, studies focusing
on higher-order aberrations suggest that the primary
contribution comes from the anterior corneal surface for
detecting subclinical keratoconus [9, 11-13], and changes
in the densitometry in the anterior central zone could be
useful in detecting early-stage keratoconus as well [14,
15]. Therefore, whether the initial signs of keratoconus
in the early stages can be identified at the anterior or the
posterior corneal surface remains controversial.

Terminology has been problematic in this area.
For example, the term ‘early-stage keratoconus’ may
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encompass FFKC or very asymmetric ectasia (VAE)
[where one eye has clinical keratoconus and the fellow
eye appears topographically normal (VAE-NT)],
subclinical keratoconus (SKC), keratoconus suspect,
pre-keratoconus, or mild keratoconus. In this review,
we have used the most common definitions of SKC and
FFKC. SKC is defined as ‘an eye with topographic signs
of keratoconus and/or suspicious topographic findings
under normal slit-lamp examination and keratoconus
in the fellow eye, whilst FFKC is defined as ‘an eye with
normal topography, normal slit-lamp examination, and
keratoconus in the fellow eye’ [16, 17]. This definition
would suggest that FFKC is less progressed than SKC
towards KC. However, in a survey of 33 studies on SKC
and 22 studies on FFKC, it was not possible to identify
any specific examination that clearly differentiated SKC
from FFKC [16]. For instance, keratoconus percentage
(KISA%) values between 60% and 100% accounted for
approximately 9% in both SKC and FFKC. On the other
hand, all studies reported high incidences of keratoconus
in the fellow eye, i.e., 72.72% in SKC and 77.27% in FFKC
as a diagnostic criterion, indicating that a bilateral early
diagnosis of the disease without clinical expression is
a challenge [16]. In recent years, the term VAE-NT has
been used synonymously with FFKC to describe patients
with defined clinical ectasia in one eye and normal
topography/tomography in the fellow eye [18].

This review focuses on the progress that has been
made in the early detection of keratoconus (FFKC,
VAE-NT, SKC) using biomechanical and topographical
properties derived from three different technologies,
namely the ocular response analyser (ORA), corneal
visualization Scheimpflug tonometer (Corvis ST) and
optical coherence tomography (OCT). A comprehensive
search was performed in PubMed using the keywords
of ‘early keratoconus, ‘subclinical keratoconus, ‘forme
fruste keratoconus; ‘very asymmetric ectasia with normal
topography/tomography’ and ‘ocular response analyser’
and/or ‘Corvis ST’/'corneal visualized Scheimpflug
tomographer/tomography’ and/or ‘optical coherence
tomography/tomographer. Only those papers which
clearly defined and characterised their populations
of early keratoconus with slit-lamp findings, corneal
topography and/or corneal tomography properties were
included in the review.

Main text

Ocular response analyser (ORA)

The first in vivo measurements of corneal biomechani-
cal response came with the introduction of the ORA
(Reichert Ophthalmic Instruments, Buffalo, NY, USA)
in 2005 [19]. The system was designed to improve the
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Fig. 1 lllustration of peaks measured with the ocular response analyser in a myopic eye. CRF, corneal resistance factor; CH, corneal hysteresis;
plarea, upper 75% area of first peak; H1, height of first peak; H2, height of second peak; W1, width of peak 1 at point of the 25% of the base region

W2, width of peak 2 at point of 25% of the base region

accuracy of intraocular pressure measurements by tak-
ing into account central corneal thickness (CCT) and
the biomechanical properties of the tissue [19, 20]. The
ORA is a noncontact tonometer which uses a collimated
rapid air puff to indent the central 3—-6 mm of the cor-
nea and an advanced electro-optical system to monitor
the bi-directional movement of the cornea in response to
the air puff (Fig. 1). Using a reflected infrared signal, the
system records the pressure as the cornea reaches its first
applanation point during indentation, and then again,
as it reaches its second applanation point whilst return-
ing to its original shape [19, 21]. The difference between
these two applanation pressures is thought to be caused
by the viscoelasticity of the cornea and provides an esti-
mated measure of corneal hysteresis (CH), which is an
assessment of the cornea’s ability to absorb and dissipate
energy or force. The ORA software also records a corneal
resistance factor (CRF). Whilst CH principally relates to
the viscous properties of the cornea, CRF is thought to be
dominated by the elastic properties of the tissue [22].
Schweitzer et al. demonstrated that the ORA could
provide additional information to assist with the
screening of FFKC. Compared with normal eyes,
FFKC eyes showed significantly lower values of CH
(9.1£1.8 vs. 10.3+1.9 mmHg) and CRF (9.2+1.8 vs.
11.1+2.0 mmHg). Further, the force and time needed
to reach applanation was significantly lower in eyes

with FFKC [23]. Whilst Ayar et al. reported similar
results, showing differences between FFKC eyes and
normal eyes in both CH (8.3+1.6 vs. 9.8+1.6 mmHg)
and CRF (7.8+£1.2 vs. 9.9+ 1.5 mmHg) [24], others have
reported differences in the mean CRF between FFKC
and normal eyes (7.8 1.4 vs. 10.2+ 1.7 mmHg) without
any statistical difference in the mean CH [25, 26]. The
reason for the difference between studies is most likely
due to differences in the classification of the groups, as
summarized in Table 1.

Receiver operating characteristic (ROC) curves can
be used to determine the predictive accuracy of the test
parameters, as described by the area under the curve,
and to calculate the sensitivity and specificity of these
parameters. Using ROC analysis, Ayar et al. showed that
area under the ROC curve (AUROC) values for CH and
CRF needed to distinguish FFKC from normal eyes were
0.768 and 0.866, respectively [24]. However, Kirgiz et al.
reported slightly higher AUROC values of CH (0.85) and
CRF (0.90) to distinguish between the two groups [27].
In a study by Luz et al. investigating the use of differ-
ent ORA exported signals, waveform parameters, and
Pentacam HR metrics to distinguish FFKC from nor-
mal corneas, it was found that the Pentacam HR Belin/
Ambrésio enhanced ectasia display (BAD), derived from
corneal pachymetry, showed the highest predictive value
(AUROC, 0.910+0.057), followed by the ORA waveform
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measurement of the upper 50% area of the first peak
(plareal) (AUROC, 0.717+0.065). However, further
analysis revealed that FFKC screening could be signifi-
cantly enhanced using a combined biomechanical and
tomography approach (AUROC, 0.953+0.024), rather
than comparing individual parameters [28].

In a study of 61 patients with confirmed definite
keratoconus in one eye and asymmetric contralateral
corneal ectasia with normal topography (ACE-NT) in
the other, it was shown that CRF (0.866) had a higher
detection ability (cut-off<9.6) than CH (0.826) (cut-
off<9.9) for differential diagnosis of normal from
ACE-NT eyes [29]. Although most studies have found
differences in CH and CRF between early keratoconus
and normal eyes, a few studies have found no differences
[30]. In VAE-NT eyes, the tomographically normal
partner eye showed a significantly more pathological
CH (8.5+1.5 mmHg) and CRF (8.3+1.5 mmHg) than
the normal control group [31]. Atalay et al. showed that
a combined biomechanical and tomographic approach
using ORA CH and Pentacam Belin/Ambrésio enhanced
ectasia display total deviation (BAD-D) index was
optimal for detecting SKC, with the resulting AUROC,
sensitivity and specificity (0.948, 87.1%, and 91.4%
respectively) being higher than any other individual ORA
or Pentacam parameter [32]. The multivariate analysis
of ORA signals did not surpass simpler models in early
keratoconus detection, and there was considerable
overlap between normal and ectatic eyes, irrespective of
the analysis model [30, 33].

As outlined above, multiple retrospective and
prospective studies [31, 32, 34, 35] have shown that
developing a combined biomechanical and tomographic
model with multiple variables, may further improve
detection of early keratoconus. With increasing
complexity of diagnostic technologies, artificial
intelligence (AI) has emerged as a promising tool to
enhance keratoconus detection and improve accuracy,
efficiency, and scalability [36, 37]. However, the
development of AI models requires large and diverse
data sets, meticulous planning of data inclusion criteria
to avoid bias, and detailed database searching, data
preprocessing, algorithm selection, testing and validation.
A recent review of Al algorithms demonstrated the high
degree of accuracy that Al can provide for the detection
of manifest keratoconus (~98%) [38]. However, the
accuracy for detecting subclinical keratoconus was found
to be slightly lower (~90%), presenting a greater risk of
missed diagnosis in patients without clinical signs. As Al
systems continue to develop and improve in accuracy for
the detection of early keratoconus, it was envisaged that
they will become increasingly incorporated into clinical
practice.
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Corneal visualization Scheimpflug tonometer
(Corvis ST)

The Corvis ST (Oculus, Wetzlar, Germany) is a
noncontact tonometer that uses an ultra-high-speed
Scheimpflug camera to capture over 4,300 frames per
second, allowing the monitoring of corneal response to
a metered, collimated air pulse with symmetrical fixed
profile and a fixed maximal internal pump pressure of
25 kPa. The Scheimpflug camera has a blue light LED
(475 nm, UV free) source and horizontally covers 8.5 mm
of a single slit. Recording measurement time is 30 ms
[42]. This also allows a more detailed description of the
dynamic deformation process in comparison with the
ORA system [43].

Corneal biomechanical properties using the Corvis
ST can be presented as dynamic corneal response
parameters associated with biomechanically adjusted
intraocular pressure (bIOP), including applanation length
(A1L and A2L), applanation velocity (A1V and A2V) and
applanation time (A1T and A2T) at the first and second
applanation, the distance between the two peaks, and
axial displacement of the apex of the cornea [deformation
amplitude (DA) and central radius of the cornea at
the highest concavity phase, stiffness parameter at the
first applanation (SP-Al), integrated radius (IR), the
Ambrésio relational thickness (ART), and deformation
amplitude ratio (DA ratio 2=DA at the apex/average
of DA at 2 mm around the center in the horizontal
directions]. In addition, the combined biomechanical
parameters include the corneal biomechanical index
(CBI), tomographic and biomechanical index (TBI), and
most recently, the stress-strain index (SSI).

ART is the division between corneal thickness at the
thinnest point and the Pachymetric Progression Index.
A lower value indicates a thinner cornea and/or a faster
thickness increase toward the periphery [44]. SP-A1 uses
the displacement between the undeformed apex and
the position of first applanation. SP-A1 is defined as the
resultant pressure (Pr) divided by deflection amplitude
at Al. Resultant pressure (Pr) is defined as the adjusted
pressure at Al (adj AP1) minus a biomechanically
adjusted IOP value (bIOP), resulting in the following
equation: SP-Al=(adjusted AP1-bIOP)/Al deflection
amplitude. The spatial and temporal profiles of the Corvis
ST air pulse are measured using hot wire anemometry
[44, 45]. CBI is a logistic regression algorithm that
combines different biomechanical parameters to
optimize the separation keratoconus eyes and normal
eyes. It includes several dynamic corneal response
parameters: deformation amplitude ratio (DA ratio)
at 1 and 2 mm, applanation 1 velocity, the standard
deviation of deformation amplitude at highest concavity,
Ambrésio relational thickness to the horizontal profile
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(ARTh), SP-A1, and IR. With a cutoff value of 0.5 using
CBI, 98.2% of the cases were correctly classified with
100.0% specificity and 94.1% sensitivity in differentiating
definite keratoconic patients from the normal population
[44]. TBI is calculated using an Al approach to optimize
ectasia detection. By combining tomographic data
from the Pentacam HR with biomechanical data from
the Corvis ST, one can further improve sensitivity and
specificity in the detection of patients with a significant
risk for developing ectasia after refractive surgery [35].
The SSI was generated based on predictions of corneal
behaviour using numerical finite element modelling,
which simulates the effects of IOP and the Corvis ST
air puff to estimate the stiffness of the material [46]. The
newly developed SSI II (SSI map) provides an estimation
of the regional variation of biomechanical stiffness
across the corneal surface and it is anticipated that these
maps could be particularly useful in understanding
keratoconus development and progression [47].

Corvis ST in FFKC

Although some clinicians may misuse the term of
‘topography’ and ‘tomography, the most widely used
pre-surgery screening technique of detecting corneal
topographic/tomographic information is relying on
both the anterior and posterior surface, by Scheimpflug
based and Placido-disk based instruments. Hence,
in FFKC, using these modalities, the topographic/
tomographic indices look the same as normal eyes,
and the only distinctive parameter between them is the
abnormal ectatic contralateral eye [29]. Therefore, the
biomechanical parameters might be helpful in such cases.

Hwang et al. [48] reported that the maximum ART
(ARTmax) yielded an AUROC of 0.739 (sensitivity of
56.7% and specificity of 88.3%), to distinguish the less
affected eye of VAE (the same definition as VAE-NT)
from normal eyes. Awad et al. [49] also found that ART
(AUROC:0.88) was a highly sensitive objective parameter
in FFKC cases. However, Shajari et al. [50] demonstrated
ARTmax (AUROC:0.613) performed less well in
differentiating populations at early stages of keratoconus.
They proposed that using index of height decentration
and index of vertical asymmetry were better markers in
the early stages of keratoconus, and when the disease
progresses, the BAD-D index is better suited to diagnose
ectasia [50].

Some researchers have found that corneal
biomechanical properties are highly sensitive for the
detection of early keratoconus even in the absence of
topographic abnormalities. After controlling for CCT
and bIOP, the values of corneal deflection amplitude
during the first applanation, A1L, corneal deflection
amplitude during the second applanation, and maximum
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deformation amplitude increased in the FFKC compared
with the normally thin cornea [51]. Tian et al. also
found that A1T was faster, and the SP-Al and CBI
were significantly softer in FFKC cases compared to
the corneal thickness and IOP in age-matched healthy
corneas [52]. Among the top five indices of the AUROCs
for detecting early keratoconus (similarly to FFKC), the
corneal biomechanical-related index accounted for 80%,
including the Al dArc length (AUROC: 0.901), highest
concavity radius (AUROC: 0.879), A2T (AUROC:
0.877), and TBI (AUROC: 0.874) [53]. The BAD-D also
provided a high predictive value (AUROC: 0.91 +0.057)
[28]. Another study in a Chinese population confirmed
the discriminatory values of TBI (AUROC: 0.928, cutoft:
0.38, Youden index: 0.753), and CBI (AUROC: 0.860,
cutoff: 0.27, Youden index: 0.642) for distinguishing
FEKC from normal eyes [54]. Significant differences
were found for A2L, A1V, A2V, and TBI between
subclinical keratoconus (similarly to FFKC) and normal
eyes. TBI showed the highest AUROC (0.790; cutoft:
0.29; sensitivity: 67%; specificity: 86%) in distinguishing
subclinical keratoconus from normal eyes [55].

Although corneal biomechanical stability was found
to be significantly lower in FFKC eyes than in normal
eyes, with significantly decreased SP-Al and increased
TBI, the AUROCs of SP-Al and TBI for identifying
FFKC were lower than 0.7 [56]. Wang et al. found that
comparable AUROC and partial AUROC was observed
between the CBI (AUROC: 0.785; pAUROC: 0.079) and
BAD-D (AUROC: 0.757; pAUROC: 0.068) for detecting
FFKC with sensitivities of 63.2% and 52.6%, given a
common specificity of 80.3%, which is lower than in the
advanced keratoconus cases [57]. Tian et al. established
the keratoconus diagnosis model using backpropagation
neural network, and found that the predicted value
(AUROC: 0.877) was more sensitive in the detection
of FFKC than CBI (AUROC: 0.610) and TBI (AUROC:
0.659) [52]. Luz et al. [28] also found that the logistic
regression model yielded the highest accuracy (AUROC:
0.953, sensitivity: 85.71%, specificity: 98.68%). This model
incorporated variables such as BAD-D, ARTmax, and the
thinnest point-related elevation on both the anterior and
posterior corneal surfaces [28].

In a study involving 137 patients, SSI was found to
differ significantly between keratoconus, FFKC and
normal eyes, indicating an independent decrease in
corneal stiffness in eyes with keratoconus. However, the
AUROC and Youden index of the SSI were not as good as
TBI (AUROC: 0.928), BAD-D (AUROC: 0.926) and CBI
(AUROC: 0.860) in detecting FFKC [54]. After correcting
for CCT and bIOP, SSI II and ART were significantly
higher, and CBI was significantly lower in the normal
group than in the FFKC group, SKC group and clinical
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keratoconus groups. AUROC of SSI II was significantly
higher than all other Corvis parameters in distinguishing
normal eyes from FFKC, followed by ART and CBI [58].

In a secondary statistical analysis of 80 publications
utilizing Pentacam or Corvis ST parameters, it was found
that except for CBI, SPA1 was the only Corvis ST output
parameter sensitive to FFKC (AUROC: 0.87, sensitivity:
0.71, and specificity: 0.85). SP-A1 was not inferior to the
CBI and may be the earliest Corvis ST output to reflect
changes in corneal biomechanics during keratoconus
progression. Furthermore, it was found that most of
the 20 sensitive diagnostic parameters screened that
were related to the thinnest point of the cornea, such as
thickness progression parameters, height parameters
based on the thinnest point, and even thinnest point of
the cornea itself, were selected as the sensitive diagnostic
parameters of FFKC [59].

Covis ST in subclinical keratoconus

Although clinically, both SKC and FFKC are not evident
on slit-lamp examination, the biomechanical parameters
A1T, IR, and TBI are significantly varied between the
SKC and FFKC, suggesting that these parameters are
more powerful for detecting subtle changes in corneal
biomechanical properties than SP-Al. Overall, the
biomechanical properties of SKC are weaker than FFKC
[60].

In an age controlled normal vs. SKC study, Peris-
Martinez et al. evidenced the usefulness of the
biomechanical parameters provided by Corvis ST in
detecting subclinical keratoconus, showing statistically
significant  differences in maximum deformation
amplitude, highest concavity radius, A2L and A2V [61].
In addition, others found that A1L, A2L, radius of the
inward-bended cornea, and deflection length at the
highest concavity parameters demonstrated statistically
significant differences [62]. Table 2 provides a summary
of studies examining early keratoconus detection with
Corvis ST.

Random forest machine learning techniques could
advance the classification and prediction of SKC
through developing an algorithm for mining the metrics
generated by the Pentacam HR and Corvis ST. The
random forest approach is deemed a good model for
classifying SKC, demonstrating a specificity of 93% and
sensitivity of 86% [63]. SP-Al can become a critical
determinant in classifying and identifying SKC when
compared to maximum deformation amplitude radius
at 2 mm and 1 mm, IR, ARTh and CB], followed by A2T
[63]. In line with this, SP-A1 and CBI were significantly
different between normal control and SKC eyes, and the
parameter with the highest diagnostic efficiency was
SP-A1l (Youden index: 0.40, AUROC: 0.753), followed
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by CBI (Youden index: 0.38, AUROC: 0.703), and IR
(Youden index: 0.33, AUROC: 0.668) [64]. Heidari et al.
[65] reported close AUROCs for SP-Al (0.779), and
lower AUROCs for ART (0.718), CBI (0.758), and TBI
(0.828), which were all inferior to the Sirius symmetry
index of back (0.908) and Pentacam HR I-S value (0.862)
in differentiating SKC from normal eyes.

A significant difference was also found in the BAD-D
and TBI between normal and SKC eyes [66]. However,
whilst some found TBI to be optimal for the detection
of SKC (AUROC: 0.925 for TBI vs. 0.786 for BAD-D)
[66], others found that BAD-D provided a slightly better
diagnostic performance (AUROC: 0.944 for TBI vs. 0.965
for BAD-D) [67]. Interestingly, Al-driven approaches,
when integrated with advanced tools like the Scheimpflug
rotation camera-based elevation map, Placido-disk-based
keratometry, and extensive databases, show great promise
in identifying early-stage keratoconus. However, the role
of clinical experts remains irreplaceable, especially when
making critical decisions prior to refractive surgery. That
said, there may still be some concerns regarding the level
of experience among clinical specialists in leveraging
these technologies effectively [68].

Corvis ST in VAE-NT eyes

Objective criteria for considering normal topography
was rigorously applied for defining cases of VAE-NT,
and included objective front surface curvature metrics
derived from the Pentacam HR, such as a keratoconus
percentage index (KISA%) score lower than 60% and a
paracentral inferior-superior (I-S value) asymmetry value
at 6 mm (3-mm radii) less than 1.45 D [35, 39].

In a recent study, in which 14 patients with VAE-NT
were enrolled (although the tomographically normal fel-
low eyes of keratoconus patients are rare), regular CBI
values (0—0.249) were found in 6/14 of the VAE-NT eyes
examined. The mean TBI was 0.47£0.22 (range: 0.22—
0.84) with regular TBI values (0-0.249) recorded in only
2/14 patients. The sensitivity of both, CBI (99.1%) and
TBI (99.6%) in detecting tomographic abnormal kera-
toconus can be considered very high [69]. Furthermore,
another study comparing the use of biomechanical indi-
ces generated by the ORA and Corvis ST (a dynamic
Scheimpflug analyser) to distinguish between normal
eyes and those with very asymmetric ectasia [defined as
unilateral keratoconus, where one eye has clinical kerato-
conus and the fellow eye appears topographically normal
(VAE-NT) or topographically and tomographically nor-
mal (VAE-NTT)], it was found that the Corvis biome-
chanical index had the highest AUROC (0.979), followed
by ORA CRF (0.865) and CH (0.824) [70]. The CBI (cut-
off 0.2) showed a sensitivity of 100.0% and 70.9%, respec-
tively, and a specificity of 93.1% for distinguishing normal
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eyes from VAE-NT and VAE-NTT, whereas the values
for ORA CRF and CH were much lower [70].

TBI combines Scheimpflug-based corneal tomography
and biomechanics for enhancing ectasia detection.
A retrospective analysis of Corvis HR data from the
eyes of 684 patients revealed the AUROCs for TBI,
BAD-D, and CBI to be 0.985, 0.839, and 0.822 in
discriminating VAE-NT eyes from normal controls [35].
This superior performance of TBI over CBI and BAD-D
in distinguishing VAE-NT from normal corneas is also
supported by several groups [71-73]. Although high
accuracy (>85%) has been reported in many studies, a
number of cutoff values exist ranging from 0.16 [66], 0.24
[29], 0.29 [35], 0.63 [71], 0.72 [34, 72], 0.295 [74], to 0.259
[75].

Fraenkel et al. examined ORA and Corvis ST
parameters in normal and VAE-NT eyes and provided
evidence of pathological CH (8.5+1.5 mm Hg) and
CRF (8.3+1.5 mm Hg) in the VAE-NT eyes. Although
the average TBI value for the VAE-NT eyes (0.19+0.25)
did not differ significantly from the normal eyes, 5/26
VAE-NT eyes (19.2%) had a TBI of more than 0.29 and
were considered pathological [31]. In larger study by
Sedaghat et al. it was shown that CRF (AUROC: 0.866)
had a higher detection ability than CH (AUROC: 0.826)
in distinguishing normal eyes from VAE-NT eyes, and
the discriminative analysis showed that the highest
accuracy of the Corvis ST was related to TBI (0.966) [29].

However, controversial results were observed for
differentiating normal and VAE-NT eyes. The AUROC
for the BAD-D, CBI, and TBI were 0.668, 0.660, and
0.751, respectively. The TBI cut-off of 0.259 provided
a sensitivity of 52.17% and a specificity of 88.57% [75].
Nine VAE-NT cases (39.1%) were found to exhibit
normal values for BAD-D, CBI, and TBI. Moreover,
40% of VAE-NT eyes were classified as normal through
the use of BAD-D, CBI, and TBI [75]. Although some
of these cases may truly represent unilateral ectasia,
further advances are needed to enhance ectasia
detection and characterize the susceptibility for ectasia
progression. In another observational study, of more
than 900 participants, 34 eyes with VAE-NT (7.4%) were
identified and included in the analysis. Biomechanical
analysis demonstrated a mean CBI of 0.28+0.26 and
a mean TBI of 0.34+0.30. Out of the 34 eyes, 16 (47%)
normal CBI values, 13 (38%) regular TBI and 7 (21%)
regular TBI and CBI were observed. The sensitivity of
CBI and TBI in detecting a tomographically normal
keratoconus fellow eye was 53% and 62%, respectively.
TBI showed slightly higher sensitivity than the CBI (62%
vs. 53%) for detecting keratoconus in a tomographically
unremarkable keratoconus partner eye. Further, 21% of
the keratoconus partner eyes could not be recognized
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as conspicuous, either by CBI or TBI [76]. Even though
the SSI value decreased with keratoconus progression,
no differences in SSI were observed between healthy
individuals and VAE-NT cases, which may be due to the
focal nature of keratoconus [77].

The index of height asymmetry and height
decentration differed significantly between FFKC
and mild keratoconus eyes and thin normal corneas.
The index of height decentration also had sufficient
strength (AUROC>0.80) to differentiate FFKC and
mild keratoconus from thin normal corneas eyes. The
deflection amplitude of the first applanation showed a
good potential to differentiate (AUROC>0.70) FFKC
and mild keratoconus from thin normal corneas [78].
Central astigmatism from the anterior corneal surface
had an AUROC of 0.862 for distinguishing FFKC from
normal eyes. This was associated with a cutoff point of
4.65, providing 73.5% sensitivity and 99.3% specificity.
Conversely, other combined parameters, including CBI,
TBI, and BAD-D, had low AUROCs to differentiating
FFKC from normal eyes [79].

Zhang et al. [80] applied a stepwise logistic regression
model to differentiate FFKC from normal eyes. The
model was derived from the parameter ‘elevation of front
surface in thinnest location’ from the Pentacam and
deflection amplitude of the highest concavity and SP-A1l
from the Corvis ST. The predictive accuracy of this model
presented an excellent AUROC (0.965) with 100.0%
sensitivity and 84.0% specificity, followed by TBI (0.885),
elevation of front surface in thinnest location (0.874)
and BAD-D (0.839) alone. However, the CRF and CH
output by ORA did not improve the combined diagnosis,
despite the corneal combination of morphological and
biomechanical properties that optimized the diagnosis of
FFKC [80].

In summary, the diverse screening methods used
across various studies mean that participants in each
study may reflect different stages of ectatic disease. The
Corvis ST-derived parameters—whether basic, advanced,
or integrated—exhibited varying performance, leading to
a wide spectrum of cutoff values for each index.

Development based on the current Corvis ST indices

A notable limitation of the Corvis ST in the screening
of keratoconus is that it automatically images a single,
central 8.5 mm horizontal section of the cornea [55,
81]. Given that a common location of focal thinning in
keratoconus is the inferotemporal site, the Corvis ST
may therefore fail to capture the focal area of corneal
biomechanical compromise in keratoconus [82, 83].
Kenia et al. found that in a subclinical keratoconus
group, combining epithelial mapping with corneal
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biomechanical parameters could help improve the
efficacy in the diagnosis of SKC [84]. Furthermore,
a retrospective comparative study of 33 clinically
unaffected eyes characterised by normal corneal
topography and biomechanical properties, revealed
abnormal pachymetric patterns using Pentacam within
the central cornea, alongside subtle morphological
alterations evident in early-stage keratoconus with
preserved biomechanics [85]. These findings collectively
underscore the potential of morphological parameters,
specifically those related to epithelial characteristics
and pachymetric distribution, to furnish supplementary
diagnostic insights into the early stages of keratoconus.

Additionally, due to the distribution range of many
biomechanical parameters overlapping between normal
individuals and SKC patients, it was hypothesised that
introducing biomechanical interocular asymmetry
assessment may reduce the false-negative rate and
improve the sensitivity of diagnosing SKC [86]. Indeed,
this was demonstrated using the binocular assisted
biomechanical index, which produced an AUROC of
0.998 (sensitivity: 97.8%, specificity: 99.2%; cutoff: 0.401),
which was statistically higher than CBI (AUROC: 0.935,
sensitivity: 85.6%) [86].

Finally, significant differences in the values of SP-Al
and SSI and ART were noticed between the Caucasians
and the Chinese [87]. A relatively high false rate for
keratoconus suspects was also found in the Chinese
population [54]. The new CBI optimized for Chinese
patients (cCBI) was investigated and showed an AUROC
of 0.990. With a cutoff value of 0.5, it produced 93.7%
specificity and 95.9% sensitivity in the training dataset
for distinguishing healthy eyes from typical keratoconus
eyes. Conversely, the original CBI produced an AUROC
of 0.981 with 75.4% specificity and 97.9% sensitivity [88].
It is important to note that in this new cCBI study, they
excluded unilateral keratoconus, FFKC, and SKC from
the databases when creating and validating the cCBL
More studies are warranted to test the capability of cCBI
to separate healthy individuals from those with FFKC and
other early stages of keratoconus in Chinese patients.

Optical coherence tomography (OCT)

Anterior segment OCT is another noncontact high-
resolution imaging technique available for three-
dimensional anterior segment imaging in keratoconus
[90]. Since its introduction in the 1990, significant
advances have been made in OCT imaging of the
cornea. Time-domain OCT was initially developed for
capturing cross-sectional images of the eye’s anterior
segment [91]. Subsequently, 840 nm spectral-domain
OCT was introduced, with a faster image acquisition
and better resolution; however, this advancement led to
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more limited image depth ranges and horizontal scan
widths. Additionally, other variations of spectral-domain
OCT with improved axial resolutions, termed ultra-
high-resolution OCT have been developed. Currently,
a 1310 nm swept-source OCT based on the Fourier-
domain OCT type allows for more precise and quicker
reconstruction of three-dimensional anterior segment
images [90]. A summary of currently commercially
available OCT devices is shown in Table 3.

OCT in the early diagnosis with corneal morphology
analysis

At present, OCT excels in the identification and
digitalization of both corneal surfaces with good
repeatability and high reliability [94], providing curvature
and elevation maps of the anterior and posterior cornea
and corneal thickness (along with corneal pachymetry
maps) [95]. Additionally, the advantages of OCT lie in
providing clearer images of corneas with opacities using
longer wavelength scanning beams [96-98]. Further,
the Fourier analysis of corneal power with OCT can
quantitatively evaluate corneal irregular astigmatism
in the various stages of keratoconus, including
advanced keratoconus cases with corneal opacities [99].
Therefore, corneal analysis using OCT can quantify the
refractive component, corneal thickness, and irregular
astigmatism of the cornea across different stages (very
mild to advanced) and may also be used for longitudinal
observation.

Parameters for early detection in FFKC, have been
studied for both anterior and posterior corneal surfaces
with OCT. In previous studies, variables used to define
FFKC were reported as keratoconus in the fellow eye
in 77.27%, normal topography in 59.09%, and normal
slit-lamp examination in 40.90%. Among these studies,
90.90% used more than one parameter to define FFKC.
However, topographic signs and parameters used to
define FFKC differ between groups, making it difficult to
unify them, and will be noted in Table 4 [16].

For RTVue (a Fourier-domain system from Optovue
Inc., Fremont, CA, USA), other than epithelial thickness,
ectasia index, computed from pachymetry and poste-
rior surface mean curvature, has been studied by Pavla-
tos et al. in FFKC [100]. The results have shown that the
subtle early signs of keratoconus may vary between cases,
and combining corneal thickness and posterior curvature
information is more effective than relying on only one of
these measurements, especially in FFKC. Hwang et al.
[48] have reported a better resolution in combining ante-
rior curvature and asymmetry indices from Scheimpflug
imaging [Pentacam HR (Oculus, Wetzlar, Germany)]
with regional total thickness and epithelial thickness
variability metrics from OCT (RTVue-100) for FFKC.
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Type Instrument Company Approximate axial resolution Scanning speed (A
(m) scans per second)
Time-domain Stratus OCT Carl Zeiss Meditec 10 400
Visante OCT Carl Zeiss Meditec 18 2000
Slit-lamp OCT Heidelberg 25 200
Spectral-domain Spectralis OCT Heidelberg 7 40000
Cirrus HD-OCT Carl Zeiss Meditec 5 27000
OCT SLO Optos 6 27000
3D OCT-1 Maestro 2 Topcon 6 50000
3D OCT-2000 Topcon 6 27000
RTVue-100 Optovue 5 26000
RTVue XR Avanti Optovue 5 70000
iVue-100 and iFusion 80 Optovue 5 80000
RS-3000 Advance2 Nidek 7 85000
REVO Optopol 5 130000
Envisu C-2300 Leica 3 32000
MS-39 CsO 3.6 30000
Swept-source CASIA SS-1000 Tomey 10 30000
CASIA2 Tomey 30 50000
DRI'OCT Triton Topcon 8 100000
ANTERION Heidelberg 10 50000

Combining five Scheimpflug metrics provided bet-
ter results, while combining 11 OCT thickness metrics
yielded the best results from OCT. Moreover, combining
13 total Scheimpflug and OCT metrics gave the highest
results. The most impactful variables included epithe-
lial thickness variability and total focal corneal thickness
variability from OCT, along with anterior curvature and
topometric indices from Scheimpflug technology. Inter-
estingly, no posterior corneal indices were significant in
this model.

For the ANTERION (a swept-source system from
Heidelberg Engineering GmbH, Heidelberg, Germany),
curvature parameters of the anterior and posterior
corneal surface have been studied. Saad et al. examined
anterior and posterior curvature and thickness
parameters. They reported an anterior curvature—derived
parameter, the inferior-superior asymmetry value (I-S
value) [39], yielded the highest AUROC in discriminating
FFKC from normal eyes, followed by the magnitude of
inferior decentration of posterior steepest keratometry
[95].

For the CASIA SS-1000/CASIA2 (a swept-source
system from Tomey Corporation, Aichi, Japan), poste-
rior corneal elevation has also been studied in FFKC.
According to Fukuda et al., posterior corneal eleva-
tion was determined to demonstrate the most reliable
predictive accuracy in detecting FFKC [101]. Kitazawa
et al. and Itoi et al. calculated and demonstrated that

the ratio of the anterior corneal surface area to the
posterior corneal surface area, derived from elevation
maps obtained through OCT, was useful for discrimi-
nating FFKC cases from normal eyes, indicating that an
imbalance in the anterior and posterior corneal surface
areas may reflect early-stage keratoconus [102, 103].
Regarding quantitative Fourier harmonic analysis of
corneal power distribution, Maeno et al. have reported
that posterior irregular corneal astigmatism exhibits
the highest discrimination ability among anterior or
posterior components for FFKC [99]. Automated sin-
gle parameters and newly computed indices using the
CASIA have been combined to further improve this
accuracy [104]. Shiga et al. have studied Fourier param-
eters with the CASIA as well, indicating the combina-
tion of the posterior corneal asymmetric component
and central corneal thickness in FFKC discrimination
[105]. Moreover, when the posterior corneal asym-
metric component from anterior segment optical
coherence tomography (AS-OCT) and the parameter
SP-A1 from corneal biomechanical assessment (Corvis
ST, Oculus Optikgerite) were combined, it provided
higher AUROC, although no significant differences
in AUROC across diagnoses when comparing the use
of each individual device versus their combined uses
(integrated parameters versus AS-OCT, P=0.081; inte-
grated parameters versus Scheimpflug-based tonom-
eter, P=0.234).
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Diagnosing FFKC by integrating biomechanical prop-
erties with morphology analysis has shown superiority
compared to diagnosis based on a single device. Combin-
ing parameters obtained from multimodal imaging, such
as Scheimpflug and OCT epithelial thickness mapping
[48, 106], or tomographic and biomechanical assessments
[35, 80] result in better detection compared to individual
parameters. This indicates that corneal biomechanics
can be a complementary tool for FFKC identification in
addition to tomographic parameters. In fact, rather than
a single individual Fourier posterior asymmetry compo-
nent, enhanced subclinical ectasia detection capability by
combining posterior Fourier indices and biomechanical
properties might be possible.

With approval from the Institutional Review Board/
Ethics Committee of Osaka University Hospital (registra-
tion number: 09297-20), we re-examined our previously
published AS-OCT from 50 FFKC eyes of 50 patients and
44 controls [99] alongside Scheimpflug-based tomog-
raphy and biomechanical data obtained from the same
patients using Pentacam HR and Corvis ST, respectively
[99]. After determining BAD-D using Scheimpflug-based
tomography (Pentacam HR), CBI and TBI using corneal
biomechanical assessment (Corvis ST), and the poste-
rior asymmetry component from the Fourier analysis
with OCT (CASIA2), we compared the AUROC, sen-
sitivity, and specificity for these four indices and vari-
able combinations. Despite this, no individual parameter
from Scheimpflug, OCT, or biomechanical assessment
yielded an AUROC higher than 0.80 (Fig. 2). Fourier pos-
terior asymmetry with OCT gave the highest AUROC
(0.778) [99] (see Table 5). When parameters were com-
bined using multiple regression analysis, the combination
of posterior corneal asymmetry and CBI significantly
improved the discrimination accuracy for FFKC (Fig. 2)
(P=0.024 between ROCs for the Fourier posterior
asymmetry component and the combined metric). This
yielded the highest AUROC (0.863) almost equivalent to
other combined parameters by Shiga et al., and improved
sensitivity compared to single parameter detection
(Table 5). Further studies combining both devices may be
conducted, as differences in sample size could be contrib-
uting to the variation in these results.

OCT in the early diagnosis with corneal epithelial thickness
mapping

Changes in total corneal thickness associated with kera-
toconus arise from alterations in both stromal and epi-
thelial layers [107, 108]. In keratoconus, the epithelium
exhibits thinning in the area overlying the cone, and
this phenomenon has been confirmed through corneal
epithelial mapping with OCT [109, 110]. This epithelial
remodelling occurs in response to underlying stromal
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Fig. 2 Receiver operating characteristic (ROC) curves of single

and combined parameters for forme fruste keratoconus (FFKC)
discriminating ability. The discriminating ability accuracies

of the Fourier indices were assessed between FFKC and control. ROC
curves for each Fourier index for the central 6 mm of the cornea,
the asymmetry component of the anterior and the posterior
cornea, CBI, TBI, BAD-D, and combined posterior asymmetry and CBI
(combined metric) are shown. FFKC eyes had the highest area
under the ROC curve (AUROC) values for the combined metric. CBI
corneal biomechanical index; TBI, tomographic and biomechanical
index; BAD-D, Belin/Ambrdésio enhanced ectasia display total
deviation

Table 5 Optimum cut-off values with the highest sensitivity and

specificity

Parameters FFKC vs. Normal
AUROC Sensitivity Specificity Cutoff

Posterior asymmetry (D) 0.778 0.58 0.88 0.08
P<0.001

CBI 0.762 0.54 0.93 046
P<0.001

BAD-D 0.774 0.64 0.86 143
P<0.001

TBI 0.759 0.64 0.86 0.25
P<0.001

Posterior asymmetry+CBI  0.863 0.74 0.91 N/A
P<0.001

FFKC = forme fruste keratoconus; AUROC = area under the receiver operating
characteristic curve; CBI = Corvis biomechanical index; BAD-D = Belin/Ambrésio
enhanced ectasia display total deviation; TBI = tomographic and biomechanical
index

irregularities, with progressive stromal thinning contrib-
uting to the advancement of the disease. Recent progress
have enabled thickness mapping of both epithelial and
stromal thickness profiles [111-113].

Using RT Vue, epithelial thickness mapping reportedly
detect the initiating event of keratoconus that cannot be
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identified using topographic and tomographic analyses
[109, 111, 114, 115]. Furthermore, more devices such as
CASIA2 have recently been shown to effectively measure
corneal layer thickness, providing valuable insights
for detecting keratoconus [116]. Instruments such as
ANTERION, MS-39, and Avanti also enable epithelial
thickness measurements in eyes affected by keratoconus
[110, 117].

Distinguishing FFKC from normal corneas warrants
further study as a single corneal epithelial thickness
parameter has proven inadequate for detecting the
very early stages of keratoconus. To enhance diagnostic
precision, efforts have been made to incorporate
parameters from posterior cornea, corneal biomechanics
or the standard deviation of corneal epithelial pattern
[106, 114, 118]. Researchers have emphasized that
combining multiple diagnostic modalities is critical for
improving early detection. Additionally, custom-designed
polarization-sensitive OCT based on swept-source
OCT technology, has shown potential in visualizing the
pathological changes in keratoconus including changes in
the Bowman layer [119], and could be a valuable tool for
identifying FFKC.

Conclusions

As highlighted in this review, the criteria for FFKC, SKC
and VAE-NT often differ between studies and there is
a lack of consistency regarding the terminology of early
keratoconus detection. As measurement principles
differ depending on the technique used for keratoconus
assessment, comprehensive metrics may be needed to
reflect subtle anterior or posterior corneal changes and
help identify eyes with very early ectasia.

In this review, we primarily utilized AUROC values as
a standard measure of diagnostic accuracy to demon-
strate the efficacy of various diagnostic tools. However,
it should be noted that incorporating additional statis-
tical measures, such as positive predictive value and
negative predictive value, may provide a more compre-
hensive evaluation of the clinical utility of these diag-
nostic tools.

In the foreseeable future, techniques such as OCT,
Scheimpflug, non-contact tonometry (Corvis ST) and
genetic analysis will undoubtedly continue to play a key
role in the early detection of keratoconus. The advance-
ment of these technologies and the further develop-
ment of other less well investigated techniques such as
Brillouin light-scattering microscopy, ultra-high-reso-
lution ultrasound, optical coherence elastography and
atomic force microscopy may lead to the earlier detec-
tion of keratoconus. Although it is crucial to acknowl-
edge that clinical experts have always, and will most
likely, continue to play a pivotal role in decision-making
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for early keratoconus diagnosis, it is envisaged that data
interpretation will likely be enhanced by AL

Abbreviations

ATL Length at the first applanation

A2L Length at the second applanation

ATT Time to reach the first applanation

A2T Time to reach the second applanation

AV Velocity at the first applanation

A2V Velocity at the second applanation

ACE-NT Asymmetric contralateral corneal ectasia with normal topography

Al Artificial intelligence

AKC Asymmetric keratoconus

ART Ambrosio relational thickness

ARTh Ambrosio relational thickness to the horizontal profile

ARTmax Maximum Ambroésio relational thickness

AUROC Area under the receiver operating characteristic curve

BAD Belin/Ambroésio enhanced ectasia display

BAD-D Belin/Ambroésio enhanced ectasia display total deviation

blOP Biomechanically adjusted intraocular pressure

CBI Corneal biomechanical index

cCBI CBI optimized for Chinese patients

CccT Central corneal thickness

CDVA Corrected distance visual acuity

CH Corneal hysteresis

Corvis ST Corneal visualization Scheimpflug tonometer

CRF Corneal resistance factor

DA ratio Deformation amplitude ratio

DA Deformation amplitude

FFKC Forme fruste keratoconus

H1 Height from lowest to highest point in peak 1

H2 Height from lowest to highest point in peak 2

IOP Intraocular pressure

IR Integrated radius

I-Svalue  Inferior-superior asymmetry value

KC Keratoconus

KISA% Keratoconus percentage

Kmax Maximum keratometry

KSS Keratoconus Severity Score

ocT Optical coherence tomography

ORA Ocular response analyser

plarea Upper 75% area of peak 1

Pr Resultant pressure

ROC Receiver operating characteristic curve

SKC Subclinical keratoconus

SP-A1 Stiffness parameter at the first applanation

SSl Stress-strain index

TBI Tomographic and biomechanical index

VAE Very asymmetric ectasia

VAE-NT Very asymmetric ectasia where one eye has clinical keratoconus
and the fellow eye appears topographically normal

VAE-NTT  Very asymmetric ectasia where one eye has clinical keratoconus

and the fellow eye appears topographically and tomographically
normal
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