
i

Interoperability between Heterogeneous and Distributed

Biodiversity Data Sources in Structured Data Networks

by

Rathinasabapathy Sundaravadivelu

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computer Science & Informatics

Cardiff University

August 2010

ii

DECLARATION

This work has not previously been accepted in substance for any degree

and is not concurrently submitted in candidature for any degree.

Signed.......................................(candidate) Date....31-May-2010.........

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements

for the degree of PhD.

Signed.......................................(candidate) Date..... 31-May-2010.......

STATEMENT 2

This thesis is the result of my own independent work/investigation,

except where otherwise stated. Other sources are acknowledged by

explicit references.

Signed.......................................(candidate) Date...... 31-May-2010.....

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for

photocopying and for inter-library loan, and for the title and summary

to be made available to outside organisations.

Signed.......................................(candidate) Date........ 31-May-2010.....

iii

To my loving wife,
Neela

iv

ACKNOWLEDGEMENTS

First and Foremost, I would like to express my sincere gratitude to my supervisors,

Dr. Richard J. White, Dr. Andrew C. Jones, and Prof. W. Alex Gray for their kind

support, expert guidance and encouragement through out my time in this research

work. I am also grateful for their careful reading and constructive comments on this

thesis and our joint papers. Without their guidance I could not have achieved this.

My immense thanks to the supervisors for giving me the funding for the study and an

opportunity to work as research developer in the European Network of Biodiversity

Information (ENBI) project to develop an Interoperable system. It is my privilege to

gain both the research and development experience from my supervisors, in software

engineering and biodiversity informatics.

I would like to thank the paper referees whose valuable comments on my published

papers have added to the success of this project.

Special thanks are due to the late Prof. N. J. Fiddian and the members of the school

for their help, especially Mrs. Margaret Evans who has helped me with travel related

issues, Dr. P. A. Munn for her help in arranging appointments with my supervisors

and Mrs. Helen Williams for her help in administrative issues.

I would like to thank Mr R. Evans and Dr. J. R. Davies for their technical assistance in

setting up computer systems and email accounts that are vital for my research work. I

would also like to thank Miss H.R. Phillips, Mrs P.K. Ryder and Mrs E.A. Slater for

giving me jobs such as tutorial, lab supervision and marking of the papers.

I would also like to express my thanks to my friends and fellow research students in

the School of Computer Science & Informatics at Cardiff University for their useful

discussions on the research topics and help.

I am indebted to my wife for her endurance and unconditional support which provided

vital encouragement during the period of my PhD study. Without her love and

devotion, this research would have been impossible.

v

Abstract

The extensive capturing of biodiversity data and storing them in

heterogeneous information systems that are accessible on the internet across

the globe has created many interoperability problems. One is that the data

providers are independent of others and they can run systems which were

developed on different platforms at different times using different software

products to respond to different needs of information. A second arises from

the data modelling used to convert the real world data into a computerised

data structure which is not conditioned by a universal standard. Most

importantly the need for interoperation between these disparate data sources is

to get accurate and useful information for further analysis and decision

making.

The software representation of a universal or a single data definition structure

for depicting a biodiversity entity is ideal. But this is not necessarily possible

when integrating data from independently developed systems. The different

perspectives of the real-world entity when being modelled by independent

teams will result in the use of different terminologies, definition and

representation of attributes and operations for the same real-world entity.

The research in this thesis is concerned with designing and developing an

interoperable flexible framework that allows data integration between various

distributed and heterogeneous biodiversity data sources that adopt XML

standards for data communication. In particular the problems of scope and

representational heterogeneity among the various XML data schemas are

addressed.

To demonstrate this research a prototype system called BUFFIE (Biodiversity

Users‘ Flexible Framework for Interoperability Experiments) was designed

using a hybrid of Object-oriented and Functional design principles. This

system accepts the query information from the user in a web form, and

designs an XML query. This request query is enriched and is made more

specific to data providers using the data provider information stored in a

repository. These requests are sent to the different heterogeneous data

resources across the internet using HTTP protocol. The responses received are

in varied XML formats which are integrated using knowledge mapping rules

defined in XSLT & XML. The XML mappings are derived from a

biodiversity domain knowledgebase defined for schema mappings of different

data exchange protocols. The integrated results are presented to users or client

programs to do further analysis.

The main results of this thesis are: (1) A framework model that allows

interoperation between the heterogeneous data source systems. (2) Enriched

querying improves the accuracy of responses by finding the correct

information existing among autonomous, distributed and heterogeneous data

resources. (3) A methodology that provides a foundation for extensibility as

any new network data standards in XML can be added to the existing

protocols. The presented approach shows that (1) semi automated mapping

and integration of datasets from the heterogeneous and autonomous data

providers is feasible. (2) Query enriching and integrating the data allows the

querying and harvesting of useful data from various data providers for helpful

analysis.

vi

 Contents

Abstract .. v

CHAPTER 1 ... 1

Introduction .. 1

1.1 Introduction to the Research.. 1

1.2 Motivation for Interoperable Solutions ... 4

1.3 Statement of the Problem .. 5

1.4 Hypothesis and Aims .. 7

1.5 Objectives of the Research .. 7

1.6 Contribution of the Research ... 8

1.7 Organisation of the Thesis ... 9

CHAPTER 2 ... 12

Background .. 12

2.1 Introduction ... 12

2.2 Interoperability .. 13

2.2.1 Technical Interoperability .. 13

2.2.2 Syntax and Structural Interoperability ... 13

2.2.3 Semantic Interoperability ... 15

2.2.4 Causes of Interoperability Issues ... 15

2.3 Approaches to Interoperability .. 16

Contents

vii

2.4 Biodiversity Data Domain ... 20

2.5 Evolution of Data Communication Standards in Biodiversity 22

2.5.1 Dublin Core .. 23

2.5.2 Earlier Standards and Protocols of Biodiversity Data 24

2.5.3 Darwin Core V2 ... 25

2.5.4 ABCD Standard ... 26

2.5.5 Taxonomic Concept Transfer Schema ... 27

2.5.6 TAPIR .. 27

2.5.7 SPICE Common Data Model ... 28

2.5.8 Ontologies in Biodiversity ... 28

2.6 Biodiversity Information Community Networks .. 29

2.6.1 Global Biodiversity Information Facility ... 30

2.6.2 European Network for Biodiversity Information 30

2.6.3 Taxonomic Database Working Group ... 31

2.6.4 LIFEWATCH .. 31

2.7 Summary of Background Study .. 32

CHAPTER 3 ... 33

Relevant Technologies and Interoperability Projects in Biodiversity Data 33

3.1 XML Standards ... 34

3.1.1 XML Schema ... 35

3.2 API for XML Processing ... 36

3.3 XSLT ... 38

3.3.1 XPath .. 39

3.4 Web Services ... 39

3.5 Ontology and OWL tools .. 40

3.5.1 Protégé ... 42

3.6 Object Oriented Design in Programming .. 43

3.6.1 Microsoft .NET Framework ... 44

3.6.2 Java Framework ... 45

3.7 Functional Programming Model ... 46

3.7.1 Language Integrated Query (LINQ) .. 48

3.7.2 LINQ to XML .. 48

3.7.3 LINQ to Entities ... 49

3.8 Database Management Systems .. 49

3.9 Related Works of Interoperability in Biodiversity .. 50

3.9.1 BUFFIE – v1.0 ... 54

3.9.2 GBIF - Infrastructure ... 54

Contents

viii

3.9.3 Global Earth Observation System of Systems 55

3.9.4 Distributed Dynamic Diversity Databases for Life................................ 56

3.9.5 Life Science Identifiers .. 56

3.10 Summary Analysis of Relevant Technologies and Projects 57

CHAPTER 4 ... 60

The System Design and Framework Model ... 60

4.1 Introduction ... 61

4.2 An overview of our approach .. 63

4.2.1 Abstraction of Problem Domain .. 66

4.3 System Design of Prototype .. 67

4.3.1 Requirements of the Prototype System .. 69

4.4 Heterogeneity Issues in the BUFFIE System .. 70

4.5 Use-Case of Interoperability in the BUFFIE Application 72

CHAPTER 5 ... 77

BUFFIE Architecture and Operation .. 77

5.1 Introduction ... 77

5.2 System Architecture for Interoperability in Biodiversity Networks 78

5.3 Generating the Queries for Heterogeneous Providers 83

5.4 Enriching the User Query .. 85

5.5 Architecture for User Query Enrichment .. 88

5.5.1 Example of Query Enrichment in BUFFIE.. 89

CHAPTER 6 ... 92

The Query Response Retrieval and Transformation Process 92

6.1 Introduction ... 92

6.2 Response Data Integration Strategy from Heterogeneous Providers 93

6.3 Schema Matching Model .. 95

6.4 Biodiversity Data Transformation Architecture .. 97

6.5 Functional Approach for Schema Integration ... 98

6.5.1 XSLT Library for Schema Mapping .. 99

6.5.2 Transformation Functions in DKB .. 105

6.6 Example of Data Transformation in BUFFIE ... 106

CHAPTER 7 ... 109

The BUFFIE Implementation ... 109

7.1 Introduction ... 109

7.2 Implementation Principles in BUFFIE System ... 112

7.3 Query Processing in the Business Logic Layer ... 112

7.3.1 Buffie Core ... 113

Contents

ix

7.3.2 Buffie Services and Utils ... 114

7.4 The Data Access Layer of the Prototype ... 118

7.5 The Presentation Layer Prototype ... 120

7.6 BUFFIE System Tested with Data Providers .. 121

7.7 BUFFIE System‘s Interoperation with Linnaeus II 126

CHAPTER 8 ... 131

Evaluation & Discussion .. 131

8.1 Introduction ... 131

8.2 Evaluation .. 132

8.2.1 Functionality of the BUFFIE Framework .. 133

8.2.2 Extensibility of the Framework Model .. 135

8.2.3 Architecture of BUFFIE Framework ... 136

8.2.4 Domain Knowledge Base (DKB) .. 137

8.2.5 Applications of the BUFFIE Common Access System 138

8.2.6 Implementation and Verification of the BUFFIE System 139

8.3 Discussion ... 140

8.3.1 Verifications of Goals Achieved .. 142

8.4 Applicability and Limitations .. 143

CHAPTER 9 ... 145

Summary, Conclusion and Future Work .. 145

9.1 Thesis Summary .. 145

9.1.1 Publications from Thesis .. 147

9.2 Conclusions ... 148

9.3 Future work ... 149

Bibliography ... 151

Appendix A ... 167

Mapping between Darwin Core (DWCV2) and ABCD (BioCASE) Concepts ... 167

Appendix B ... 174

C # code for BUFFIE Framework’s Core Components and Services 174

Appendix C ... 196

SQL code for BUFFIE Database and Entity Data Model Services 196

Appendix D ... 226

XSLT Templates from Domain Knowledge Base ... 226

x

 List of Figures

Figure 1.1: Spectrum of Biodiversity Databases and target population of this research.

 .. 6

Figure 3.1: Structure of an XML document. .. 35

Figure 3.2: XML Schema Definition. .. 36

Figure 3.3: Data Communication in Web services .. 39

Figure 3.4: Microsoft .NET framework Architecture. ... 45

Figure 3.5: Java Framework Architecture.. 46

Figure 4.1: DiGIR Architecture. .. 62

Figure 4.2: Schematic representation of Interoperability in BUFFIE. 64

Figure 4.3: Conceptual Design of the BUFFIE Common Access System. 68

Figure 4.4: Differing Scope of Biodiversity Data in Communication Standards. 71

Figure 4.5: Differing Views of representation of Data. ... 72

Figure 4.6: Request message structure for Darwin Core standard Provider. 73

Figure 4.7: Request message for ABCD standard Provider. 74

List of Figures and Tables

xi

Figure 4.8: Response for Species named “Acicula lineata” from Darwin Core

Provider. ... 75

Figure 4.9: Response for ―Acicula lineata‖ from ABCD Provider ZOBODAT. 76

Figure 5.1: Multi Layered, Web based Service oriented architecture. 79

Figure 5.2: Architecture of XML data mapping process. .. 82

Figure 5.3: Conceptual view of Query Generation in BUFFIE. 84

Figure 5.4: Sample XML request message for data provider. 85

Figure 5.5: Enrich a concept by the generalization of its values. 87

Figure 5.6: Architecture for Query Enrichment. .. 88

Figure 5.7: AJAX web page with species scientific name and data. 89

Figure 5.8: XML result from the synonym web service for species name. 90

Figure 5.9: results of synonym web service call in the application. 91

Figure 6.1: Conceptual view of heterogeneous response integration in BUFFIE. 94

Figure 6.2: Schema Mapping Assertion Model. .. 96

Figure 6.3: Biodiversity Data Transformation using Schema matching. 97

Figure 6.4: Sample Response from a Darwin Core Provider. 103

Figure 6.5: Example of a source response message from Darwin core provider....... 107

Figure 6.6: Example of the transformed xml message in ABCD format. 108

Figure 7.1: Layered Implementation of BUFFIE Architecture. 111

Figure 7.2: BuffieCore classes from framework Business domain. 113

Figure 7.3: BuffieServices classes. ... 114

Figure 7.4: Buffie Utils Classes. .. 115

Figure 7.5: Sample Request XML schema created by BuffieServices. 116

Figure 7.6: DomainKnowledgeBase Implemented as XSLT files in config folders. 118

Figure 7.7; Entity Data Model for BuffieDatabase. ... 119

Figure 7.8: Query Design Page. ... 120

file:///C:/sundarPhdCorrections/Stopped%20reading/SundarPhDThesisV3.docx%23_Toc310491934
file:///C:/sundarPhdCorrections/Stopped%20reading/SundarPhDThesisV3.docx%23_Toc310491937
file:///C:/sundarPhdCorrections/Stopped%20reading/SundarPhDThesisV3.docx%23_Toc310491942
file:///C:/sundarPhdCorrections/Stopped%20reading/SundarPhDThesisV3.docx%23_Toc310491944
file:///C:/sundarPhdCorrections/Stopped%20reading/SundarPhDThesisV3.docx%23_Toc310491945

List of Figures and Tables

xii

Figure 7.9: Query Results Page. .. 121

Figure 7.10: Common Name: ―Fruit-Fig‖ .. 122

Figure 7.11: UserQuery stored in the Buffie database. 123

Figure 7.12: Heterogeneous data-providers information. 123

Figure 7.13: XML Request and Response messages in Buffie system. 124

Figure 7.14: AustrianZobo data provider. (returns 3 records in a BioCASE data

format) .. 124

Figure 7.15: New York Botanical Garden from USA, Herbarium data provider. 125

Figure 7.16: RealJardin Botanico data provider from Spain. 125

Figure 7.17: Merged results stored in Buffie system. .. 126

Figure 7.18: BUFFIE used by Linnaeus II to connect to providers databases........... 127

Figure 7.19: BUFFIE demonstration with species data. .. 128

Figure 7.20: BUFFIE demonstration with Linnaues II. ... 129

Figure 7.21: Heterogeneous data merged using BUFFIE system used by client

application. ... 130

 List of Tables

Table5.1: Synonym service Providers information ... 90

Table 6.1: Sample atomic-level match. .. 100

Table 6.2: Full and Partial structural match ... 101

Table 6.3: Transformation Match Cardinalities ... 102

Table 6.4: Full and Partial structural match ... 104

xiii

 Acronyms

ABCD Access for Biodiversity Collection Data

API Application Programming Interface

ASP Active Server Pages

BUFFIE Biodiversity Users‘ Flexible Framework for Interoperability

 Experiments.

CDM Common Data Model

CODATA Committee on Data for Science and Technology

COM Component Object Model

DBMS Database Management System

DOM Document Object Model

DwC Darwin Core

DTD Document Type Definition

EDM Entity Data Model

ENBI European Network for Biodiversity Information

FDBS Federated Database System

Acronyms

xiv

GBIF Global Biodiversity Information Facility

GUI Graphical User Interface

HTML Hyper Text Markup Language

JDBC Java Database Connectivity

JDOM Java Document Object Model

JSP Java Server Pages

JXC Java XML Connectivity

KB Domain Knowledgebase

LITCHI Logic-based Integration of Taxonomic Conflicts in Heterogeneous

 Information Systems

LINQ Language-Integrated Query

MDBS Multi-database System

OLE Object Linking and Embedding

SAX Simple API for XML

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SGML Standard Generalized Markup Language

SQL Structured Query Language

StAX Streaming API for XML

TAPIR TDWG Access Protocol for Information Retrieval

TDWG Taxonomic Databases Working Group

UDDI Universal Description, Discovery and Integration

URL Uniform Resource Locater

W3C World Wide Web Consortium

WSDL Web Service Description Language

XML eXtensible Markup Language

XSD XML Schema Definition

XSLT eXtensible Stylesheet Language Transformation

1

1 CHAPTER 1

 Introduction

1.1 Introduction to the Research

The research described in this thesis is concerned with achieving interoperability of

distributed and heterogeneous biodiversity databases by creating a novel and flexible

framework that uses the synergies of the web-based service-oriented architecture,

extensible processing logic and knowledge of the data domain stored in XML and an

XSLT repository. This approach helps in preserving the local autonomy of the data

providers and still enables the users to have interoperable common access to the data

from varied networks of data resources. Interoperability issues of heterogeneous and

distributed databases are highly challenging, as they have to be resolved to the level of

the initial requirements of interoperability, restrictions of technology and the dynamic

Chapter 1. Introduction

2

nature of the biodiversity data involved in this research. Real world biodiversity data

are being increasingly digitised and stored in digital formats [1] and applying

computer science technologies on these data would reveal useful information from the

data. This includes efficient organising of the data in a structured format, querying

these data simultaneously from heterogeneous and distributed sources and combined

analysing to derive useful knowledge and present the information from data for

decision making.

Expressing real world data using computer data types is challenging and the majority

of the data that are digitized are stored in relational databases. If more data are made

available for analysis by the system then this would improve the statistical

significance of the information derived from them, which can be more reliable and

useful. Interoperation is required to access and integrate the data from multiple

resources but when autonomous data resources are delivering their data in different

formats, it only compounds the problem.

Standards have been introduced to represent the data that are provided on the

communication network of biodiversity data providers [2], so that it could be

understood by another system that is aware of the standard. The eXtensible Markup

Language (XML) is often used to describe the data; though not the best data structure

for every possible data domain, it proves to be the most generally adequate one for the

text based data communication over computer networks e.g. internet applications. The

main advantages of using XML are in providing the metadata of the data in the

structure used to contain the data and the universal standardisation of XML by the

World Wide Web Consortium [3]. The standards defined using XML schemas allow

the data sources and consumers to communicate with each other in the data provider

networks thereby resolving the interoperability issue considerably. Many research

projects such as Species 2000, MaNIS, BioCASE, etc. have made the first step in

interoperability process by providing common access to a set of data providers by

adapting to one of the many XML Schemas to represent different kinds of data for

communication [4], [5], [6].

Chapter 1. Introduction

3

The issues of interoperating between data-provider networks that follow different data

communication standards are at another level which are researched in this thesis. This

research aims at achieving both structural and semantic interoperability between these

different XML interchange formats (schemas) using a new framework model formed

by combining suitable service oriented architecture, extensible processing logic and

knowledge of the data domain captured in ontology.

A service-oriented architecture is essentially a collection of services whose goal is to

achieve loose coupling among interacting software agents. The communication can

either involve data exchange or to coordinate some activity [7]. Extensible processing

design means the system should be able to adapt to acceptable and predictable future

changes in data interoperation such as extension to communication protocol standards

with relative ease.

An Ontology is an explicit specification of a conceptualization and it can be

understood as an intentional semantic structure which encodes the implicit rules

constraining the structure of a piece of reality [8]. A Knowledge base is a repository

of related information about a particular domain and can be a machine-readable

resource for the dissemination of information. The knowledge base and ontology are

built for a specific purpose and represent specific knowledge of a problem domain

about concepts and their interrelations [9]. Both Ontologies and Knowledge bases are

used to create some kind of integration schema by deriving the domain knowledge

and this process is called knowledge fusion [10].

Our approach assumes the existence of appropriate domain knowledge for

biodiversity data concepts, but to demonstrate the framework model we will use a

purpose built prototype domain knowledge base. This thesis explains the

interoperability issues of the XML schemas used in the biodiversity domain and

shows how they can be addressed by applying the proposed framework which is

implemented using the extensibility of object oriented languages (Java, .NET) and

eXtensible Stylesheet Language Transformation (XSLT).

Chapter 1. Introduction

4

Biodiversity means the diversity or variety of plants and animals and other living

things in a particular area or region [11], [12]. Heterogeneity in biodiversity data is

not only a result of non-standardized data capture but also due to the wide variety of

data sets in biodiversity and new sources of information such as genetic sequences in

bioinformatics studies. The representation of biodiversity data is evolving and the

species to which the data refer are named using the principles of taxonomy.

Taxonomy is based on a classification procedure used for hierarchically describing the

organisms into groups on the basis of perceived shared characteristics, reflecting

postulated evolutionary relationships between these groups [13]. Taxonomic

classifications represent an evolving hypothesis rather than static descriptions of

organisms and can reflect the views of the person assessing the information at a given

time. Hence taxonomic identification and the unambiguous labelling of these groups

is becoming a significant problem for the integration and comparison of the diverse

datasets for analysis across all fields of biology [14]. When these taxonomic values

are expressed in XML schemas for communication across the networks, different

XML standards have evolved that are followed by groups of data providers forming

biodiversity networks. Please refer to chapter 3 for a detailed discussion of

biodiversity data and XML standards related to it. This research focuses upon the

interoperability issues that exist between these biodiversity networks and provides a

framework model that can be extensible to accommodate the changes that may

happen in the near future.

1.2 Motivation for Interoperable Solutions

The differences in data capturing, storing, software execution platforms and interfaces

used by autonomous and distributed data sources have created heterogeneity in data

communication. Interoperating between these systems is essential to generate

information from these data. The concept of intelligent integration of data rests on the

premise that a suitable framework model with knowledge of the data domain is

needed to integrate the factual observed data into useful information [15]. Biological

data is complex but computer science can provide a solution to analyse these data that

can be useful to scientists, environmentalists, natural resource managers and policy-

makers of government and other organisations and academic researchers. The need

Chapter 1. Introduction

5

for interoperability and common access to biodiversity information that is stored on a

large number of biodiversity databases distributed around the globe is highlighted

now that more emphasis is given to protect the environment of the planet [16], [17].

All living organisms are interdependent for their existence, and form relationships and

ecosystems which constitute the web of life on the planet Earth. A country‘s

prosperity is directly related to its natural resources and moreover for mankind to exist

into the future it is very vital to understand and conserve the wide diversity of all

organisms. In the context of the climate change problem caused by human activities

on the planet the need to monitor the factors affecting biodiversity loss in order to

mitigate them becomes important. Common access to biodiversity data held in

distributed heterogeneous databases is thus important to researchers, academics,

industries, and conservationists. The objective of interoperation here is to access data

from different data resources and increase the value of information accessible, in

terms of quality and quantity while the common access should provide a secure access

by authenticating the users who are accessing the information. Bringing together the

large volume of biodiversity data available in heterogeneous and distributed databases

is impossible without appropriate supporting technology. This research focuses on

achieving the interoperability of the XML data structures in a novel way by designing

an extensible framework architecture.

1.3 Statement of the Problem

Interoperability is the ability of two or more systems or software components to

exchange information and to use the information that has been exchanged.

Interoperability in general is concerned with the capability of differing information

systems to communicate [18]. Several different levels of interoperability are to be

addressed among the group of biodiversity data resources. Broadly they can be

classified as technical interoperability, syntactic & structural interoperability of data

and semantic interoperability of data which are explained further in section 2.2. The

technical interoperability is concerned with the hardware and software platforms of

computers for communication e.g. internet. The structural and semantic issues

concerning biodiversity data are very complex due to the nature of the data. This data

is digitally represented in different forms that allow communication among

Chapter 1. Introduction

6

computers. XML standards are used predominantly by organisations such as the

Global Biodiversity Information Facility (GBIF) which indexes a huge amount of

data, currently more than 200 million collection records from hundreds of databases.

This is about 20% [19; 20] of the digitised data existing in biodiversity data resources.

The spectrum of data providers that form the target population of this research is

illustrated in the Figure 1.1.

The available interoperable systems in biodiversity only allow interoperation within a

particular network of data resources and also this would limit extensibility such as the

ability to include new types of data as they become available. Chapters 2 and 3

include a survey of relevant biodiversity information systems in interoperability.

Developing a universal and continually updated schema that can accommodate the

new and evolving data structure schemas in biodiversity is one way of approaching

the problem, but this would heavily influence the autonomy of the data providers who

will have to continuously update their systems for these changes. This limitation is

researched in this work and an extensible solution is proposed.

Figure 1.1: Spectrum of Biodiversity Databases and target population of this research.

Chapter 1. Introduction

7

1.4 Hypothesis and Aims

This research focuses on achieving interoperability in heterogeneous and distributed

biodiversity databases which are already able to communicate using XML standards

for data over HTTP connections. The hypothesis is:-

 ―Interoperability among distributed, autonomous and heterogeneous

biodiversity databases can be achieved by developing a new framework that exploits

the synergies of combining multi-layered service oriented system architecture, domain

knowledge expressed in a knowledgebase designed using XML and XSLT, and object-

oriented functional design of components.”

In particular, our approach uses the query enrichment process and heterogeneous

responses integration using the information from a knowledgebase about the domain,

to enhance the visibility and interoperability of the available information in

heterogeneous biodiversity databases. This thesis presents a new framework that can

provide structural/syntactical and semantic interoperability among biodiversity

networks. Please refer to chapters 4 through to 9 which demonstrate this hypothesis.

1.5 Objectives of the Research

The objectives of this research are to design and develop a suitable framework model

for achieving structural and semantic interoperability between heterogeneous and

distributed data providers and demonstrate it using a prototype system. This will be

designed after analysing the available approaches towards interoperability in the

biodiversity domain. A new system design and architecture is devised, which would

help in achieving the following objectives.

1. To design, develop and implement a suitable framework (BUFFIE -

Biodiversity Users‘ Flexible Framework For Interoperability Experiments)

2. To design the components and integrate the services required for BUFFIE to

perform the interoperation process, e.g. building the query enriching modules

and data schema integration using XSLT templates that carry out the data

transformation and knowledgebase of taxonomical concepts used for data

exchange expressed in XML format.

Chapter 1. Introduction

8

3. Web based prototype application development using Java and .NET

technologies to verify the claim made in the hypothesis (section 1.4) using the

test datasets.

These objectives explained here are later revisited in the evaluation and discussion of

chapter 8 to demonstrate that they have been accomplished. Please refer to chapter 8

for the scope and limitations, while achieving the above stated objectives.

1.6 Contribution of the Research

The importance of this research lies in presenting a suitable framework and

demonstrating that the system achieves interoperability of text based, mainly XML

structured data delivered by distributed heterogeneous data providers. This would

verify the claim made in the hypothesis. Unlike the current approaches this research

provides a flexible and pragmatic approach to achieve the interoperability between the

existing structured data networks in the biodiversity domain by applying the software

engineering and functional programming techniques in the distributed query process.

In our approach the extensibility is built into the middleware system that does the

interoperation without affecting the existing data providers and also allowing new

data providers to join into this network seamlessly. The primary contributions of our

work include:

 Presenting a suitable framework (BUFFIE v2.0) for Biodiversity Users that

allows interoperability through a common access system for data querying

from heterogeneous data resources using XML based communication

protocols.

 We introduce a query enriching process aiming to maximize the success in

finding information for a query, using synonym web services. Also the

responses from the data providers are integrated using both structural and

semantic matching of the data before presenting to the user.

Chapter 1. Introduction

9

 A combination of both object-oriented and functional approaches in design of

the architecture used for the BUFFIE core and the domain knowledge base

respectively. This allows the extensibility in the framework to add or remove a

new data schema in the system or to use the core system with a different data

domain by plugging in a new domain knowledgebase.

 A web based software application (prototype) system is developed to

demonstrate the ideas explored in the thesis. A production version of the

application (BUFFIE v1.0) has been hosted, live on the ―Veenai‖ server at

Cardiff, which was used by the client programs like Linnaeus II from ETI,

Amsterdam, Holland and BioGis-Israel information System [21] from

Jerusalem for accessing and harvesting species based information from

participating heterogeneous and distributed data providers.

The interoperability issues in the biodiversity data domain spread over a vast expanse.

In our research, we would like to define the scope and the boundaries to the level of

interoperability that we aim to achieve. For example only those data providers who

were communicating using XML based standards were considered in the design of the

framework. Another example is that the level of semantic interoperability is semi-

automatic and is proportional to the knowledge rules defined by the XSLT templates

of the knowledge base. A limitation of this approach is that the developer of the

knowledge base modules needs to be aware of the relevant biodiversity data concepts

and will have to continuously update their systems to accommodate new and evolving

data structure schemas as biodiversity studies progress. This process of developing

the domain knowledge and the limitations and the possible extensions for future work

are explained in sections 8.4 and 9.3.

1.7 Organisation of the Thesis

This section shows an overview of the thesis organisation. The first chapter has

presented an introduction to the research undertaken, motivation for the research, the

hypothesis to be tested and highlights the aims and objectives of the research and its

original contributions.

Chapter 1. Introduction

10

Chapter 2: Background

This chapter explains about interoperability and its various types that relates to this

research and states the general causes of interoperability from various viewpoints. It

then moves on to describe the different approaches to resolve interoperability. An

overview of the biodiversity data domain and various data communication standards

used to achieve interoperability are discussed.

Chapter 3: Relevant Technologies and Interoperability Projects in Biodiversity Data.

This chapter presents an overview of related software engineering technologies and

XML communication standards used for common access systems and the existing

levels of interoperability in biodiversity data communication. It gives an overview of

the research projects in heterogeneous and distributed biodiversity data sources, and

analyses of their relation to this research project.

Chapter 4: The System Design and Framework Model

This chapter introduces the conversion of ideas in the thesis to a prototype system; it

describes the approach and the overview of the design of the prototype system and

justifies why it is more relevant than other possible approaches. An example of the

issues of data heterogeneity and an interoperability test from the BUFFIE system are

described.

Chapter 5: BUFFIE Architecture and Operation

This chapter details the multi-layered, Web-based service-oriented architecture of the

BUFFIE System along with its components including BuffieCore, BuffieServices,

BuffieUtils and DomainKnowledgeBase and their responsibilities. The conceptual and

logical architecture of the subsystems, such as query enrichment and query generation

are described. The processing logic (algorithm) for query enrichment and

heterogeneous multiple query generation are explained by running through an

example.

Chapter 1. Introduction

11

Chapter 6: The Query Retrieval and Translation Process

In this chapter, we detail the query response retrieval and response data

transformation process in the BUFFIE framework. We introduce the query retrieval

process by asynchronous multithreading over the HTTP protocol and then the

conceptual view of heterogeneous response integration in BUFFIE and the logic used

for integration. The response integration strategy and the Schema matching model are

described. We then present a functional approach for schema integration using XSLT

technology and this process will be shown using an example of data transformation in

the BUFFIE system.

Chapter 7: The BUFFIE Implementation

This chapter covers the implementation of the BUFFIE system. We will present a

brief description of BUFFIE v1.0 that was implemented and tested and currently used

in the biodiversity domain. More emphasis is given to the current version of BUFFIE

v2.0 that is implemented on Microsoft .NET 3.5 framework using the Visual Studio

2008/2010 integrated development tool. Different details on the implementation of the

components in the three layers namely, the middleware business logic layer, data

access layer and the presentation layer will be shown.

Chapter 8: Evaluation & Discussion

This chapter focuses on the evaluation of the two versions of the BUFFIE prototype

system and assesses the functionality and flexibility of the framework‘s architecture.

Here, we discuss the verifications of the contributions achieved by the BUFFIE

system deployed on live servers. We will state the various application areas of the

system and also its limitations.

Chapter 9: Summary, Conclusion and Future work

This chapter concludes the thesis with the summary of our accomplishments in this

research and the related issues that can be considered in the future work.

12

2 CHAPTER 2

 Background

2.1 Introduction

In this chapter the background of the concepts like different interoperability

classifications, approaches and architectures that are related to heterogeneous and

distributed databases in general are discussed. The various causes of interoperability

issues from different viewpoint such as software communication and control

mechanisms, data modelling in computer systems and the type of processing

components used are presented. Then the chapter focuses on elucidating the most

relevant and related researches that were carried out in the biodiversity informatics

domain. The different approaches for solving the general interoperability issues of

distributed and heterogeneous data resources were analysed with respect to the

heterogeneity of data. Then all the related projects in the biodiversity domain were

reviewed with specific emphasis to the first outcome of this research (BUFFIE v1.0)

and how this work will harmonise into the research of other related works.

Chapter 2. Background

13

2.2 Interoperability

Interoperability is one of the most critical and much researched issues of any

information domain, as there is often the need to use information stored on

autonomously managed multiple heterogeneous systems. Interoperability is the ability

of two or more systems or components to exchange information and to use the

information that has been exchanged. Interoperability in general is concerned with the

capability of differing information systems to communicate [22]. This communication

may take various forms such as the transfer, exchange, transformation, mediation,

migration or integration of information. From an implementation point of view

interoperability is the ability of two or more software components to cooperate despite

differences in programming language, data exchange interface, data model

representation and execution platform. A user from a system should be able to access

any data in a distributed database without having to know where or how the data

object is physically stored [23]. These explanations of interoperability are more

relevant to the context of the issues researched in this thesis, such as interoperability

through a common access system that provides integrated information from

distributed heterogeneous data resources that follow different data exchange

standards. Several different levels of interoperability are to be addressed to achieve a

working system. Broadly they can be classified as follows.

2.2.1 Technical Interoperability

This is concerned with integrating different computer networks operating on different

platforms. An example is the Internet where many disparate networks communicate

meaningfully using the TCP/IP protocols. This kind of interoperability can be

achieved largely by selecting the appropriate hardware and software systems for the

proposed application.

2.2.2 Syntax and Structural Interoperability

The data is represented in different forms or models across different systems. In the

biodiversity domain, different schemas are used to represent data and for information

Chapter 2. Background

14

exchange between the data provider networks. These differences in schema/ metadata

are characterized in structural differences, leading to structural interoperability issues.

Examples are naming conflicts, entity-identifier conflicts, schema-isomorphism

conflicts, generalization conflicts, aggregation conflicts and schematic inconsistencies

[24].

In biodiversity data, naming conflicts occur when scientific names for a same species

are assigned by different biologists not known to each other from different parts of the

world, and also they might disagree about the taxonomy of a species. Entity-identifier

conflicts are often caused by assigning different identifiers to the same concept in

different data models. Schema-isomorphism conflicts occur when the same biological

concept is described by different attributes. Generalisation conflicts result from

different design choices for modelling related entity classes. For example a data

model such as Access to Biological Collection Data (ABCD) [25] can have separate

representations for Bacterial/Genus, Botanical/Genus, Viral/Genus and

Zoological/Genus whereas another data model such as Darwin Core 2 [26] may have

one ―Genus‖ entity to collectively represent the different but related entities.

Aggregation conflicts arise when an aggregation is used in one data model to identify

a collection of entities in another data model. For example the entity with element

name as ―GatheringDateTime/ISODateTimeBegin‖ in ABCD is formed by

concatenating Year, Month and Day collected entities of the Darwin Core model.

Schematic inconsistencies occur when the logical structure of elements in one data

model are organized to form a different structure in another data model. This

interoperability issue is at the application level that can be solved in some systems by

enforcing data standards or by writing wrapper programs, which convert the data

format into a format understandable by the system [27]. Schema mappings for

disparate data models may result in achieving this interoperability. E.g. Microsoft

BizTalk and the Altova XMLSpy suite are commercial tools used to create schema

matching and data mappings using XML transformation between disparate systems

[28], [29]. BUFFIE resolves structural interoperability among different

communication protocols, as discussed in chapters 4 to 8.

Chapter 2. Background

15

2.2.3 Semantic Interoperability

This is one of the most daunting issues in interoperability. Semantic interoperability is

the knowledge-level ability of information systems to exchange information on the

basis of shared, pre-established and negotiated meanings of terms and expressions

[18]. Even though the data are available from different systems where each system

uses a standardized data model, these data can be more useful and can be integrated

only when the integrating system is aware of (has knowledge to process) the

information contained in the participating data models. BUFFIE v1.0 demonstrates

the possibility of semantic interoperation as a proof of concept by using built-in

ontology-like concepts using programming logic. More scalable domain specific

knowledgebase are used in the current version of BUFFIE which is version 2.0.

Another viewpoint of interoperability issues in biodiversity domain are the data

interoperability and the systems interoperability.

2.2.4 Causes of Interoperability Issues

Interoperability issues are identified when complex software systems are integrated to

access heterogeneous and distributed data using disparate components. Application

Software systems have been developed by autonomous communities or individuals

who use their own semantics to achieve their specified requirements in familiar and

closed environments. Similarly the data collection and the definition of the collected

data in a particular domain were carried out by disconnected set of individuals.

Though more organisation and communication are being introduced in every domain

to universally standardize the data collection process, differences in the data structure

and semantics prevail. Applications cannot dictate the structure of data or the

semantics of the data held in autonomous data resources. The main causes of

interoperability can be traced down to the fundamental characteristics of the

interacting systems design, architecture and the data structure and semantics. The

main causes for interoperability issues from a software engineering analytical point of

view include the following.

Chapter 2. Background

16

 Control Mechanisms:- The control interaction between the different

components of the system lead to interoperability problems [30] and this can be

influenced by the coupling between the components of the system. This is mainly the

communication methods between the components of a system and between

independent but coordinating systems and hence relates mostly to the technical

interoperability issues described in the previous section 2.2.1.

 Data Topology: - This is about the data model that represents the concepts or

entities of the data and also it defines the structure for the data that are used internally

within the components of the system and for external communication between

different systems. The interoperability problems caused by this are most prevalent in

every data domain due to the dissimilar data representation formats provided by each

data provider [31]. This relates to the structural or semantic interoperability types.

 Process Synchronisation: - both synchronous and asynchronous style of

communication can affect the data and control of the components which could create

technical, structural and semantic interoperability problems [32].

In the biodiversity domain the research groups that collect data use different

vocabularies, assumptions, methodologies and goals, and work under varying

geographical locations and time periods. These factors result in multiple

representation formats for the same real world data. The interoperability problems

caused by the heterogeneity in biodiversity data representation and computer science

technologies are discussed in the chapters 3 and 4.

2.3 Approaches to Interoperability

Achieving interoperability is a complex task comprising a balanced mixture of

communication, cooperation and competition among the communities and the

software systems in a particular data domain. Community networks were formed that

includes the experts of a particular domain to share ideas, research issues and develop

interoperable software systems and data communication standards that can allow the

data interoperability. Some examples of such networks in biodiversity domain are

ENBI (European Network for Biodiversity Information). NBN (The National

Chapter 2. Background

17

Biodiversity Network) and GBIF (Global Biodiversity Information Facility). More

details on these networks and biodiversity projects are discussed in the next section

2.4. This section describes about the common approaches and the related technologies

used to resolve the interoperability issue.

Federated Database system – is an integrated collection of completely functional

and independent databases controlled by local administrators but cooperating with the

federation by supporting global operations [33]. This federation can be either tightly

coupled or loosely coupled. A tightly coupled federated system presents a predefined

static view to the end-user. This is usually based on a global schema that

accommodates the entire component schema and maintained by system administrator

who makes all schematic and semantic integration decisions in advance. In a loosely

coupled system the integration is dynamic. The user is responsible for the integration

of data or the system has to provide a mechanism for performing the integration of

data.

Client server architecture - provides the ability of two or more components to

cooperate despite differences in interface, execution language and platform. Client

server applications achieve systems interoperability, using interface standardisation by

mapping client and server interfaces to a common representation and interface

bridging which uses two-way maps between client and server [18]. The Common

Object Request Broker Architecture [34], OMG‘s open, vendor-independent

architecture and Microsoft‘s Component Object Model COM/OLE [35] realize

interoperability using interface standardisation. The client server architecture restricts

the autonomy and heterogeneity of distributed data sources as they all have to

conform to either a client or a server component which also imposes a maintenance

problem once when the system is scaled up.

Mediator systems - provide a remedy to client/server architecture as they recognize

the autonomy and diversity of the data systems [36], [37]. A Mediator acts as an

interchange component which translates data between two systems with different data

schemas to information by applying knowledge about resources, semantic information

of data and user requirements. The mediator handles an information exchange by

Chapter 2. Background

18

converting the user query into a source compatible query and executes the query. This

result is converted back into user recognizable format. In short it acts as a semantic

gateway between the systems allowing the user to view all the sources without

concern for the differences in names and representations of data.

Multiple View Definition System (MVDS) - focuses on the architecture of software

to achieve interoperability in heterogeneous multidatabases [38]. Providing a tool

(typically automated) for user to define the integration views to infer information

from multidatabases is a way of supporting interoperation among heterogeneous and

autonomous databases. [39], [40] Ontologies with all participating schema

components are not a complete solution as they will not provide complete information

to the users to make a query to the heterogeneous databases. A canonical data model

and an architecture using knowledge base as a mediator that stores the static and

dynamic knowledge about the participating databases has proved to be one answer to

the issue of interoperation. A variety of other approaches in developing mediator

systems involve the use of:

 Wrappers – Wrapping is a method of permitting existing legacy software

systems to communicate with the current systems. A wrapper program can be

described in two parts, an adapter that provides extra functionality to an

application and an encapsulation mechanism that binds the adapter to the

application [41]. It provides the communication interface between application

programs by converting the data as required. The interoperation ability

depends on the levels of abstraction in design, extensibility and maintainability

of the wrappers.

 Data Warehouses [42] – A data warehouse is a centralized repository of

information extracted from multiple data sources. It can serve as an index or as

a cleaned data gathered from different heterogeneous systems. The

disadvantage of this approach is the difficulty of updating the data and to keep

them in synchronization with the local databases as the participating database

numbers are growing.

Chapter 2. Background

19

 Metadata Repository systems - In this system the queries are formulated

dynamically with the use of an on-line global metadata dictionary [43]. The

metadata information can be stored using schema maps, data type with

description logics and ontologies to solve queries over multiple web-based

information sources.

 Shared Ontologies - A common ontology approach is used to resolve the

semantic heterogeneity in a particular domain by using the knowledge

ontologies [44], [45], which contain deep domain knowledge and form a

conceptual standard.

 The different approaches described in this section are the main technologies

and tools that are used by the software information systems to create an integrated

querying infrastructure to access multiple, distributed and heterogeneous data

resources. Each approach has made progress in achieving interoperability but still

possesses some limitations. For example the limitations of Federated systems require

a common data model that has to be understood by all the participating databases, or

if the data model is varied then another layer of mediation between the data structures

is required to achieve interoperability. Client-server architecture requires the bulk of

the processing to be performed at the server side and also the clients are to be

continuously maintained for any new changes on the server side. With the advent of

web-based data communication, client-server architecture is less preferred in

designing distributed systems due to the requirement of centralized maintenance of

the system. Tools such as wrappers, metadata repository and ontologies are used to

either convert or translate the data formats. The choice and the ability of these tools to

interpret the data format affect the design and implementation of the multiple

querying systems. Our research evolves from analysing these technologies and tools

with consideration of the nature of the biodiversity data domain and real data sets of

biodiversity data providers.

The technical details of the interoperability approach adopted are discussed further in

section 4.2. With reference to the types of interoperability described in the section 2.2

of this chapter, this research deals with the structural and semantic interoperability

Chapter 2. Background

20

issues prevailing among the established data providers communities in the

biodiversity data domain. To overcome the technical interoperability the system

design and architecture of the framework use standard internet communication

protocols. Syntactic and structural interoperability are addressed by the use of XML

transformations. Most of the semantics of the biodiversity data concepts are captured

using a knowledgebase that is part of the architecture, as an alternative to capturing

the semantics of data using a data model technique such as RDF. The limitation of

this approach is that the developer of the knowledgebase needs to be aware of

biodiversity data concepts, which are discussed in the remainder of this chapter, and

to maintain the knowledgebase as the relevant standards evolve.

2.4 Biodiversity Data Domain

Biodiversity data refers to the different life forms such as different plants, animals and

micro organisms, the genes they contain and the ecosystem they form. These data

reflect hundreds of millions of years of evolutionary history and hence their volume is

huge and their nature is dynamic. Biodiversity is generally considered at three

different levels namely genetic diversity, species diversity and ecosystem diversity

[46]. Genetic diversity refers to the variation of the genes within species. Species

diversity refers to the variety of species. Ecosystem diversity refers to variety of

habitats, biotic communities, and ecological processes, as well as the tremendous

diversity present within ecosystems in terms of habitat differences and the variety of

ecological processes. By the 1750s Carl Linnaeus, a Swedish naturalist devised a

structure to represent living organisms known as Linnaean taxonomy which uses a

ranking scale (shown below with sample data of human beings):

Kingdom: Animalia

 Phylum: Chordata

 Class: Mammalia

 Order: Primates

 Family: Hominidae

 Genus: Homo

 Species: sapiens

Then ―taxon‖ is a unit in a taxonomic system, such as species, genus, etc. And

―species‖ is the basic lower unit of classification, consisting of a population or series

Chapter 2. Background

21

of populations of closely related and similar organisms [47], [48]. This classification

based on differences in characteristics or genetics formed the basis for a more

structured biodiversity data representation. Taxonomy is the science of identification

and classification of organisms. It has strict rules, which all taxonomists follow while

identifying, naming, and describing the species. With the expansion of knowledge in

the domain many hierarchical levels are added to the taxonomic structure. The

taxonomic data are classified into two groups such as ―collection and observation

data‖ and ―nomenclature and taxonomic data‖, as described below. There are different

kinds of databases containing information about species, or more generally about taxa.

Some of these databases contain information about classification and nomenclature,

while some others contain information about characteristics, usages, conservation, and

geographical distribution of organisms. The scope of biodiversity data has been

expanding beyond classical or ―biological‖ data. The ratification of the Convention on

Biological Diversity (CBD) and the United Nations Environment Programme (UNEP)

outlines the following eight characteristics of biodiversity data [49], [50].

 Biological: Information on ecosystem, species, and genetic resources.

 Physical: Information on physical factors such as climate, topography and

hydrology that allows biological data to be placed within a physical context.

 Socio-economic: Information on socio-economic attributes such as population,

population distribution and transport routes.

 Cost and Benefits: A value of biodiversity that takes into account the cost and

benefits of management options.

 Pressure and Threats: Information on both potential and actual threats to

biological diversity.

 Sustainable management: Information on current and past management

activities particularly the use of biological resources.

 Sources and Contacts: Information models, standards and technologies, and

appropriate agencies or experts who can be contacted.

 Interrelationships: Information on the interrelationship between and among

species and ecosystems so as to forecast the effects of proposed actions.

The biodiversity data is represented in various formats such as physical samples,

description of observations and is usually represented using documents with text and

Chapter 2. Background

22

images. The digitization of biodiversity data, performed using multiple medias such as

text, images, videos and sound, is used to capture all the attributes of the biological

data. The primary types of biodiversity data with respect to storing formats are

explained in the following sections.

Collection and Observation Data:

Collection data, which are usually found in natural history museums, botanical

gardens, and institutions holding microbial culture collections, contain information

about biological organisms [51]. Observation data contain information on observation

of an organism ideally at a specific geo-temporal location. The databases that hold

these data are known as collection databases. The main information in these databases

is about specimens, including the information specific to the specimen itself (e.g.

taxonomic identification, sex, etc.), and the information about the collection event

(date/time of collection, method of collection, etc.).

Nomenclature and Taxonomic Data:

Nomenclature data focuses on the list of names of a species and contain data relevant

to a specific taxon. A comprehensive information model for designers of biological

information systems [52] to record taxonomic and observation data from literature,

field collecting and other sources has been proposed from research which will usually

evolve into data standards. These databases are called taxonomic databases which

may have variations in the representation of a real-world entity on different systems.

This research attempts to resolve the interoperability issues prevailing in these

taxonomic databases that can exchange the data in a specified XML format. The

interoperability of these databases is concerned with heterogeneity of scope that refers

to the fact that differing amounts and types of data are stored in the various databases;

heterogeneity of representation refers to the terminology used, format, accuracy, range

of values allowed and structural representation.

2.5 Evolution of Data Communication Standards in Biodiversity

A standard is a document approved by a recognized body that provides for common

and repeated use, rules and guidelines for products or related processes and

Chapter 2. Background

23

production methods [53]. Non-governmental organisations such as ISO (International

Organisation for Standardisation) act as a bridge that enables a consensus to be

reached on standards and satisfies the reciprocal requirements of commercial and non-

commercial needs of the community in general [54]. The ability of these organisations

to accommodate larger participants and to provide universal service increases the

scope and success of the interoperable standards. For example the ISO network is the

world‘s largest developer and publisher of International Standards that has 162

member countries with a central secretariat for coordination. In the biodiversity

domain organisations such as Governmental, Commercial, Natural history museums,

Universities and other institutions are working together to form communities that

develop standards, for exchanging data among them. Standards are a rule or

requirement that is determined by a consensus opinion of the biodiversity data

provider networks, experts in the data such as biologists and end-users. A standard

provides a framework that is to be used consistently as a rule, guideline, or definition.

Data communication standards are created to ensure that two or more independent

data sources can collaborate in order to achieve compatibility. These standards

support distributed querying and combining the distributed responses for a query. The

success of a standard is based on the features such as simplicity in creation, easy

maintenance, commonly understood semantics, international scope and extensibility.

The use of standards will enable interoperability between different systems and can

provide richer information for biodiversity research and analysis. The most commonly

known data exchange standards in biodiversity domain are discussed in this section.

2.5.1 Dublin Core

Dublin Core is a metadata standard that defines an effective element set for describing

a wide range of networked resources. The Dublin Core standard includes two levels:

Simple and Qualified. Simple Dublin Core consists of fifteen elements such as Title,

Author, Description, etc. Qualified Dublin Core includes three additional elements

like Audience, Provenance and Rights Holder, as well as a group of element

refinements also called as qualifiers that refine the semantics of the elements used for

resource discovery [55]. Dublin Core is primarily used to describe digital resources.

The semantics of the Dublin Core standard have been established by the Dublin Core

Chapter 2. Background

24

Metadata Initiative (DCMI) which is an open organisation comprising international,

cross-disciplinary group of professionals from librarianship, computer science, text

encoding, the museum community, and other related fields of scholarship and

practice. The main principles of the Dublin Core standard are:

1. The One-to-One Principle. The metadata should describe one instance or

version of a resource, rather than assuming that manifestations stand in for one

another. For example if a original is reproduced as a copy instance then the

relationship between the metadata for the original and the reproduction is part

of the metadata description. It should assist the user in determining whether

the original is needed or the reproduced instance will meet the user's

requirement.

2. The Dumb-down Principle. According to this rule, a client should be able to

ignore any qualifier and use the element value for discovery. Qualification is

should be used only to refine but not to extend the semantic scope of a

property.

3. Appropriate values. Context of application decides the best practice for a

particular element or qualifier. In general an implementer of metadata cannot

predict the type of interpreter but the design of metadata should be useful for

discovery.

2.5.2 Earlier Standards and Protocols of Biodiversity Data

In some of the earlier biodiversity information systems the generic metadata element

set of the cross-domain standards like Dublin Core or Z39.50 were used for data

representation and exchange. In the biodiversity domain many standards and formats

for representing data for exchange between software systems were developed. The

Botanic Garden Conservation International (BGCI) organized international workshops

and consulted with the experts in the biodiversity domain to develop a standard named

as ITF2 (International Transfer Format for Botanic Garden Plant Records) [56]. This

standard was mainly used for data transfer between botanic gardens. The ‗Herbarium

Chapter 2. Background

25

Information Standards and Protocols for Interchange of Data‘ (HISPID) developed by

a committee of representatives from all major Australian herbaria was first published

in 1989 as a standard format for the interchange of electronic herbarium specimen

information [57]. In 1989 Robert Allkin and Richard White in U.K [58] developed

one of the earliest standard formats named XDF (―eXchange Data Format‖) that can

be used for the definition and exchange of biological data sets. XDF is a text based,

high-level language for describing biological data, with its own syntax and command

vocabulary and it is very flexible for representing both taxon-based and specimen-

based data. It was used for data representation and exchange in the implementation of

the ILDIS (World Database of Legumes) project [59]. The organisation Biodiversity

Information Standards (TDWG) is hosting a collection of most biodiversity standards

in a repository and tracking the progress and development of these standards for the

benefit of the users in biodiversity informatics.

2.5.3 Darwin Core V2

The Darwin Core (DwC) is a metadata standard specification of data concepts and

structure intended to support the discovery, retrieval, and integration of information

about organisms, their spatiotemporal occurrence, and the supporting evidence stored

in collections either in physical or digital medium [60]. The primary goal of the

Darwin Core is to provide a stable reference to standard terms about biodiversity,

which can be used in a variety of contexts. The Darwin Core derives its vocabulary

from community-based experience in data discovery, sharing, and integration, while

its form is derived from the practices developed by the Dublin Core Metadata

Initiative except where otherwise noted in the standard. Structures, data-typing, and

constraints on the values of terms are meant to be implemented using representation-

specific application profiles such as XML schemas. The standard consists of

properties, elements, fields, concepts, the policy governing the maintenance of these

terms, decisions resulting in changes to terms, the complete history of terms including

detailed attributes, a generic application schema for use in the construction of new

application schemas based on Darwin Core, a simple (flat) application schema for the

use of these terms and a metafile schema to allow for the description of Darwin Core

fielded text files. Most data resources include only the core data elements that are

Chapter 2. Background

26

likely to be available for the vast majority of specimen and observation records. This

standard is utilized within both the Species Analyst and REMIB networks, among

others. DwC is also a Global Biodiversity Information Facility (GBIF) approved data

standard, and GBIF uses Darwin Core for harvesting data of specimen collections and

observations data from organisations around the world to develop a catalogue of

names of known organisms [61]. Darwin Core is the main biodiversity data standard

used by many databases about natural history collections, living collections (i.e.,

zoological and botanical gardens), germplasm and genetic resource collections, and

data sets produced from biodiversity survey and monitoring programs. Darwin Core

supports the search and retrieval of descriptive information from these resources. The

previous versions of DwC were integrated with the DiGIR communication protocol,

but the recent version does not contain any references to the retrieval protocol making

it appropriate to biodiversity data irrespective of the data exchange protocols such as

HTTP, web service, etc...

2.5.4 ABCD Standard

The Access to Biological Collections Data (ABCD) Schema is an evolving

comprehensive standard for the access to and exchange of data about specimens and

observations in biodiversity [62]. The objective of ABCD Schema is to be

comprehensive and highly structured in defining biodiversity concepts and to be

compatible with other existing data standards. ABCD is the product of a joint TDWG

and Committee on Data for Science and Technology (CODATA) initiative to develop

a standard for distributed data retrieval from specimen collection databases. ABCD

version 2.06 has been recommended by the TDWG meeting in November 2005 at St.

Petersburg as the actual standard, and has since then been ratified by TDWG

members. The schema supports data exchange for all kingdoms and for both specimen

and observation records. The ABDC Schema is a GBIF approved data standard that

incorporates DwC elements and it attempts to be comprehensive and highly

structured, supporting data from a wide variety of databases [63]. Parallel structures

exist so that either (or both) atomized data and free-text can be accommodated.

Versions 1.2 and 2.06 are currently in use with the GBIF (Global Biodiversity

Chapter 2. Background

27

Information Facility) and BioCASE (Biological Collection Access Service for

Europe) networks. ABCD is a step towards ontology for biological collections.

2.5.5 Taxonomic Concept Transfer Schema

The development of this standard was intended to solve problems that are inherent in

the use of names to represent taxonomic concepts as required by the Rules of

Nomenclature. These can be resolved by means of a richer representation, based on a

name plus a reference to the definition of the concept. The taxonomic data providers,

biologists, computer scientists and users identified the need for a common mechanism

that would allow information interchange among them and with the users of varying

expertise at TDWG Lisbon 2003. The aim of this standard is to adequately represent

the data model of the data owners whilst facilitating the integration with different data

models of taxonomy [(94)]. This was the main motivation towards the development of

the Taxon Concept Schema (TCS) and later known as Taxonomic Concept Transfer

Schema. The TCS schema was designed as an XML document that allows the

representation of taxonomic concepts as defined in published taxonomic

classifications, revisions and databases. This standard specifies the structure for valid

XML documents to be used for the transfer of defined taxonomic taxon concepts,

transfer GUIDs referring to defined taxon concepts or a mixture of the two. TCS

documents are for transferring the definitions of taxon concepts, not for detailing

observations of the defined concepts.

2.5.6 TAPIR

TDWG Access Protocol for Information Retrieval (TAPIR) specifies a standardized,

stateless, HTTP transmittable, XML-based request and response protocol for

accessing structured data that may be stored on any number of distributed databases of

varied physical and logical structure [64] . TAPIR aims to integrate by extending

features of the BioCASE and DiGIR protocols to create a new and more generic

means of communication between client applications and data providers using the

Internet. TAPIR was designed as a generic tool but was developed primarily for use

with biodiversity and natural science collection data. The TAPIR task group is

entrusted with liaising with other subgroups of TDWG and related biodiversity

Chapter 2. Background

28

standards group to ensure the applicability and effectiveness of the protocol for

interoperability with other protocols. The TAPIR protocol is implemented using XML

schemas [65].

2.5.7 SPICE Common Data Model

The SPICE Common Data Model (CDM) is a biodiversity communication protocol

developed for the Species 2000 project. Species 2000 is a federation of database

organisations working closely with users, taxonomists and sponsoring agencies [4].

The primary goal of this project is to create a validated checklist of all the world‘s

species plants, animals, fungi and microbes. The SPICE project has developed a

distributed computing engine that runs the Dynamic Checklist. A wrapper layer

allows a number of species databases to be queried simultaneously to return a uniform

list of results based on CDM. The conceptual basis of the SPICE distributed system is

built around the SPICE Common Data Model (CDM) described in various documents

(CDM v1.20, CDM v1.21). This specifies the SPICE Protocol by which the Common

Access System (CAS) queries the list of connected databases, and the responses

envisaged from these databases. The Spice CDM is implemented using XML schema

and the current version of Spice is 5.0 [66]. The CDM XML schema provides six type

of request with each type having a specific XML schema for a request and response

message. Please refer to section 3.9 for more details on the Species 2000 project and

its approach towards achieving interoperability.

2.5.8 Ontologies in Biodiversity

Complementing the development of data standards, Ontologies have been developed

by some research projects to facilitate data interoperability through semantic

mediation between different data formats, as described further in section 3.5. An

ontology is a formal specification of a set of concepts and their interrelationships in

some application domain, such as biodiversity. It is the knowledge or concept map

useful in reasoning about the relationships among concepts and among data that

pertains to those concepts. The TDWG Ontology working group and the SEEK

ontology project have been the main research works in this area for biodiversity

knowledge:

Chapter 2. Background

29

 The TDWG Ontology group develops the Biodiversity Informatics Core

Ontology that comprises classes mainly derived from the 4 TDWG XML

schemas namely ABCD, Darwin Core, SDD and TCS [67]. These schemas

were analyzed to determine the high level concepts that should act as a core

for a larger TDWG ontology to be developed by the biodiversity community.

 The Science Environment for Ecological Knowledge (SEEK) [68] is a system

developed for storing, integrating, transforming and analysing ecological and

biodiversity data. One of the primary goals of the SEEK project aims to build

an internet based architecture for data storage, sharing, access and analysis and

to achieve interoperability of data through semantic mediation in which

automatic transformation of data can occur according to the information

system. The Knowledge Representation Working Group of SEEK project

develops a framework of foundational ontologies for biodiversity and

ecological applications.

2.6 Biodiversity Information Community Networks

The biodiversity data community is the collection of people that are concerned with

the development of standards for storing and for exchanging information in

biodiversity data. This community is composed of biologists, taxonomists, librarians,

zoologists, entomologists, ecologists, librarians, geneticists, information analysts,

software engineers, developers and users of the data. Developing such community

networks for the biodiversity domain fosters the activities of conducting workshops,

meetings and publications on biodiversity data. Community of Interest group provides

a platform to produce a consensus definition for the data exchanged between

participants and also promotes interoperability between the information systems.

Communities create data panels with a lead person coordinating the activity and they

extract the shared knowledge necessary for the data interoperability from the larger

community and propose the standards. Various community groups produce and

maintain common data representations that are organized into ontologies, abstract

schemas, and definitive XML schema standards such as Darwin Core and ABCD.

Section 2.5 describes the different standards for biodiversity data representation

Chapter 2. Background

30

produced by these communities of special interest in biodiversity data. This section is

introduced because of its relevance to our research work and it describes the

importance of these network communities in achieving data and systems

interoperability in biodiversity domain. In biodiversity informatics domain the

organisations discussed in the following sections were important in promoting

interoperability of biodiversity data at the global and European regional levels.

2.6.1 Global Biodiversity Information Facility

The Global Biodiversity Information Facility (GBIF) is a multi-lateral initiative

established by inter-governmental agreement between countries and based on a non-

binding Memorandum of Understanding. GBIF‘s objective is to provide global

biodiversity data, freely and universally available on the Internet. GBIF encourages

the network of data providers to adhere established biodiversity standards thereby

promoting interoperability. It also aims to provide the essential informatics

infrastructure for biodiversity research and applications. The Informatics activities of

the GBIF focus on developing a complete range of information technology

infrastructure, architecture, services and tools to serve a fully functional network of

users. GBIF‘s projects are based on existing and emerging standards and applications

and take an active part in their development, in close collaboration with Biodiversity

Information Standards (TDWG). Please refer to section for the GBIF Informatics

initiative project in section 3.9.2.

2.6.2 European Network for Biodiversity Information

ENBI was a thematic network supported by the European Commission under the Fifth

Framework Programme and contributing to the ―Energy, environment and sustainable

development‖ programme [69]. ENBI operated as a European contribution to the

GBIF. ENBI follows the objective of GBIF by concentrating on databases at the

European scale and on activities that need co-operation at a European level. The

ENBI network is coordinated by the Zoological Museum of the University of

Amsterdam, Cardiff University, ETI Bioinformatics Amsterdam, Hebrew University

of Jerusalem, Biologiezentrum of Austria and many other institutions in Europe.

ENBI investigates the potential of developing applications to use with biodiversity

Chapter 2. Background

31

data. Most of the participants in the ENBI network are the coordinating institutes of

past and current EU biodiversity projects and the national GBIF-nodes. The

interoperable application BUFFIE version 1 was demonstrated for the ENBI network

in Stockholm, Sweden. The activities of ENBI are coordinated with those of the

European Community Clearing-House Mechanism and the European Environmental

Agency.

2.6.3 Taxonomic Database Working Group

The organisation known as Biodiversity Information Standards (TDWG) was earlier

known as the Taxonomic Database Working Group. TDWG is a not for profit

scientific and educational association that is affiliated with the International Union of

Biological Sciences. TDWG community was formed to establish international

collaboration among biological database projects and focuses on the development of

standards for the exchange of biological/biodiversity data [70]. TDWG promotes

global dissemination of information about the World's heritage of biological

organisms and acts as a forum discussion through holding meetings and through

publications. TDWG is maintaining an information lookup database on other

biodiversity network communities and biodiversity projects known as ‗Biodiversity

Information Projects of the World‘ and ‗Biodiversity Information Networks Database‘

respectively [71].

2.6.4 LIFEWATCH

LifeWatch is a network that aims to develop an ―e-infrastructure‖ to support all

aspects of research on the protection management and sustainable use of biodiversity

by providing services for scientists and policy makers using biodiversity data [72].

This project supports the research needed to meet the European Union policy

objectives on biodiversity and is a major part of the European contribution to the

Global Earth Observation System of Systems (GEOSS).The initial phase builds this

community by gathering the interested EU member and associated departments with

the objective of preparing a cooperation agreement on the construction and

maintenance of the LifeWatch research infrastructure. The participants of this

community include Universiteit van Amsterdam, Netherlands Institute of Ecology,

Chapter 2. Background

32

Norwegian Institute for Nature Research, The Natural History Museum in London,

Finnish Environment Institute, Swedish Research Council, Cardiff University and

other institutions.

2.7 Summary of Background Study

 The types of interoperability relevant to this research are Technical, structural,

and semantic.

 Data standards are the first step towards achieving interoperability for

querying multiple data providers in biodiversity information systems.

 Communities of interest groups in biodiversity achieve systems

interoperability by defining rules and adhering to a particular standard.

Only when the relevant people come together and interact to achieve a common goal,

then the systems they develop can be designed to interoperate. The analysis of these

standards, tools and biodiversity networks reveal that they vital and the first and

primary step towards achieving interoperability between heterogeneous and

distributed data providers. Our research work involves participation with these

standards and the communities of networks in the domain of biodiversity.

33

3 CHAPTER 3

 Relevant Technologies and Interoperability

Projects in Biodiversity Data

The World Wide Web Consortium (W3C) coordinates in developing

interoperable technologies, specifications, guidelines, software, and tools to lead data

communication across the internet in the best possible way. In the biodiversity domain

organisations such as Global Biodiversity Information Facility (GBIF) coordinate

with the various government organisations and biodiversity networks such as TDWG,

ENBI and national nodes to provide a common platform for the systems in

biodiversity. In this chapter we present an overview of the different technologies

related to this research, starting with an introduction of the XML standards and the

technologies such as XSLT, web services, ontology and software design principles

and frameworks. Then finally an overview of biodiversity data and the various XML

communication protocols available in the biodiversity domain are described.

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

34

3.1 XML Standards

The data/information exchanges between different information systems in a computer

network have been accomplished using a specified data model that is represented

using text or binary formats. There was a keen and a universal effort to develop a data

structure that could hold rich information about metadata, which is easy for storage

and communication. Standard Generalized Markup Language (SGML) is an

international standard for the definition of device and system independent methods for

representing texts in an electronic form [73]. SGML was issued as an international

standard (ISO 8879) in 1986. SGML provided some flexibility and was intended for

semantic markup that would define the data it contains. It was, however, very

complex and expensive for use in data exchange over the web [74]. Hyper Text

Markup Language (HTML) which was fundamental for the World Wide Web

(WWW) evolved from SGML. HTML is the publishing language of the WWW and it

consists of markup tags that tell the web browser how to display the document/data

[75]. Though HTML was good for data presentation it was not adequate for defining

the data. Extensible Markup Language (XML) is a simple, very flexible text format

derived from SGML and it facilitates to overcome the problem of universal data

interchange between dissimilar systems [76], [77].

The richly structured documents created using XML can be transportable from one

hardware and software environment to another without loss of information. XML is

not itself a markup language, but a specification for defining markup languages which

is very useful to create documents that can represent structural, presentational, and

semantic information alongside content. Just because the data is defined in XML

specification does not mean that it can be interoperable, It might make it easier for

different client applications to create an import adapter or filter, but the real benefit

will come if and when the network of providers or partners have agreed an XML

standard for the data domain for e.g. Biodiversity species data documents. Standards

are very important to achieve successful communication and data interoperability in

domain networks. XML standards document structure can be defined by Document

Type Definition (DTD) or XML schemas. The research reported in the present thesis

aims at designing architecture and developing programs which take advantage of the

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

35

knowledge encapsulated in the XML document structure information, and can behave

in a more intelligent fashion to present the answer for a users query.

Figure 3.1: Structure of an XML document.

3.1.1 XML Schema

Though XML document structures were better equipped for representing data than

ordinary text files with delimiters, it could make more sense in data communication

only if there is a way to define a set of rules for these structures. These rules could

help in automatic validation of the data that is contained in the XML structure.

Document Type Definition (DTD) and XML Schema provide a means for defining

the structure, content and semantics of XML document. Unlike DTD, XML Schema is

more powerful and written in XML specification and hence it is widely used. XML

Schema defines the names of elements, data types, attributes, namespaces that can

appear in a XML document. It also defines the relationship between the elements, the

order and number of child element and values for elements and attributes [78], [79].

XML schema increases the security and consistency of the XML data communication.

For example, when the client program and a data provider have particular

expectations about the format of the XML message's content, then the XML schema

helps to validate that standard. XML schema validates an XML document using a

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

36

parser. A validated XML document is said to confirm to the rules defined in the

schema. XML Schema became W3C Recommendation 02, May 2001. The XML

schema shown in figure 3.2 describes (or validates) the XML document shown in the

figure 3.1.

Figure 3.2: XML Schema Definition.

3.2 API for XML Processing

A special purpose program known as a parser can be used to process an XML

document of a particular type and check that all the required elements for that

document type are present and ordered as specified. More significantly, different

documents of the same type can be processed in a uniform way. The XML structured

data needs to be processed for using them in applications. These application

programming interfaces (API) provide methods for reading, manipulating and storing

the XML data. The two major types of XML API parsers are:

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

37

 Object model parsers which read the entire XML document, as Document

Object Model (DOM) and construct an in-memory representation of the XML

document [80].

 The Push and Pull parsers that simply read an XML document and return the

data and structure of the document as Simple API for XML (SAX) [81].

The DOM API is designed to create a standard object oriented representation of XML

documents. It is a platform- and language-neutral interface that will allow programs

and scripts to dynamically access and update the content, structure and style of

documents. The W3C DOM Working Group coordinates the direction and

development concerning the evolution of the Document Object Model [82]. In DOM

an in-memory representation of the complete XML document is created in a tree like

structure for parsing. The programs and scripts can dynamically access and update the

content, structure and style of XML documents using these API methods. The DOM

API allows random access and navigation to the nodes in any direction that enables

arbitrary modifications to the elements and its relationships in the tree structure. The

downside of DOM API is that it uses more memory, but it is powerful and has many

implementations. The limitation of DOM API is resolved in new approaches as in

Apache‘s AXis Object Model (AXIOM) [83], which uses a StAX pull-parser for

reading XML and only builds the tree representation of a document until the last node

that was requested. Therefore, it does not need to read the complete document. JDOM

(JSR-102) is an open source library and a Java API for processing XML document

[84], [85]. It is similar to the DOM but specifically developed for the Java language. It

uses the JAXP parser for handling XML and can integrate with DOM and SAX API

implementations.

SAX (Simple API for XML) and StAX (Streaming API for XML) are event driven

and serial I/O stream mechanisms for accessing XML documents. These APIs are the

fastest and least memory consuming mechanisms for dealing with XML documents.

SAX is a push parser that returns the data of the whole document in one stream and

cannot be stopped. SAX is useful in applications that involve state independent

processing where the processing of an element does not depend on the elements that

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

38

came before or after in the same document. The document is accessed sequentially

and navigating to an earlier position or jumping ahead to a different position is not

possible. StAX (Streaming API for XML) is a pull-parser specification built on the

proposal of Java Community Process Program as defined in JSR 173 [86], which

returns data only when requested to read the next node in a document. This is most

useful in situations where the data is read and then processed by the application.

3.3 XSLT

Extensible Stylesheet Language (XSL) is developed by World Wide Consortium

(W3C) as an XML- based style sheet language used for formatting or styling the

XML document [87]. Interoperation of XML data is only possible, if there is a way to

transform the XML documents from one structure into a different structure of XML

document as required. This need drives the development of a sub-language called

XSLT (XSL Transformations). XSLT is the most important part of XSL and it is

used to transform a source XML document into another result XML document or

another type of document such as HTML and XHTML. XSLT gives the ability to

add/remove the attributes and elements from an XML document and can rearrange,

sort and perform tests and make decisions about elements and attributes. XSLT uses

the Xpath to find information and to navigate through the elements and attributes in

XML document. The power of XSLT is to handle the data contained in XML in a

programmatic way. Hence XML is now widely accepted as data representation syntax

for communication over the internet, many research projects are using XSLT based

infrastructure for transforming XML documents.

In this research approach we propose to use XSLT templates as one of the building

blocks of the domain knowledge base. The functional programming methods and

declarative style of XSLT, benefits our approach in deriving the metadata information

from the XML structure and use that information for applying correct transformation

function [88]. The modularity provided by the nature of XSLT programming [89]

helps to create the separate knowledge base modules from the core framework of the

information systems.

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

39

3.3.1 XPath

Xpath is a language that is defined mainly for discovering the information from an

XML document. Xpath is a W3C standard which is used to navigate through the

elements and attributes of an XML document [90]. Both XPath 1.0 and the most

recent XPath 2.0 are expression language that process values that conform to the data

model defined in XQuery/XPath Data Model (XDM). This data model provides a tree

representation of XML documents and the atomic values such as integers, strings and

booleans and sequences which contains the references to nodes and atomic values in

an XML document. XPath uses path expressions to select nodes or node-sets from an

XML document. XPath has built-in standard functions for string values, numeric

values date and time comparison, node and QName manipulation, sequence

manipulation, boolean values and other data types. Xpath is a major part of XSLT

standard. XQuery also known as XML Query was designed to query XML data.

XQuery is built on XPath expressions. XQuery 1.0 and XPath 2.0 share the same data

model and support the same functions and operators.

3.4 Web Services

Web services are application components that provide interoperability between

different software applications, running on a variety of platforms with various

frameworks and are also called as utility computing [91], [92]. The W3C Web

Services Activity group is designing the infrastructure, defining the architecture and

creating the core technologies for Web services. The basic of web services platform is

XML and HTTP. It uses XML to code and decode the data and Simple Object Access

Protocol (SOAP) to transport it between the client and web service. SOAP is a

platform independent XML based communication protocol between applications for

sending messages via internet [93].

Figure 3.3: Data Communication in Web services

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

40

Independent programs that are providing simple services can be converted into web-

applications using web service and they can interoperate with each other to deliver

significantly improved value service. The Web Services approach provides an

interoperable homogeneous runtime environment for the different applications by

focusing on the design of well defined service interfaces [94]. Web services are

developed as self-contained and self-describing components that are published by the

owner and can be found by the clients across the internet using Universal Description,

Discovery and Integration (UDDI) for use through the web. UDDI is a platform-

independent framework for describing web service interfaces using Web Service

Description Language (WSDL), discovering businesses, and integrating business

services by using the Internet [95]. WSDL is a document written in XML which

describes a web service. It specifies the location of the service and the operations (or

methods) exposed by the service [96]. Other consortium such as OASIS (Organisation

for the Advancement of Structured Information Standards) drives the development of

more Web services standards for security, e-business, and standardisation efforts in

the public sector and for domain/application-specific markets [97]. Global

Biodiversity Information Facility (GBIF) provides a UDDI registry for the

biodiversity data providers across the globe. GBIF UDDI registry service is available

for all the GBIF national nodes where they can publish the web services [98].

3.5 Ontology and OWL tools

The abundance of inexpensive storage media, variety of data warehousing software

and especially the popularity of the internet has made vast amounts of data available

on digital format. This expansion in volume has made it difficult to analyze the data

and to combine them properly to get the right information. Ontologies have been

proposed as a solution for semantic data integration. These ontologies are constructed

by capturing, representing and structuring the general relationships and semantic

relations of the concepts in the domain [99]. An ontology is ―an explicit specification

of a conceptualization‖ [100]. A conceptualisation is an abstract, simplified view of

the world that we wish to represent for some purpose. An ontology defines a common

vocabulary for researchers to share information in a domain including machine

interpretable definitions of basic concepts and relations among them. Another more

technical definition of ontology in practical terms is that, ontology is a formal explicit

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

41

description of concepts in a domain of discourse where concepts are implemented as

classes, roles are expressed as properties of each concept describing various features

and attributes of the concept and role restrictions [101], [102]. Interoperability and

data integration research projects aim to deliver computational ontologies that consist

of logical axioms that relate terms of interest with specific purpose and scope in well-

understood domains. However the limitation of Computational Ontology is that they

cannot capture all real world semantics, but can express only the logical relations

between terms in the domain [103]. The reasons why ontologies are much

emphasized for data integration are that they allow sharing common understanding of

the structure of information, enable reuse of domain knowledge, make domain

assumptions explicit, separate domain knowledge from implementation knowledge

and analyze domain knowledge. The five stages of ontology development are [104]:

 Specification of the purpose, scope and stakeholders of the ontology are

identified.

 Conceptualization in which the organisation of acquired knowledge takes

place. A conceptual model of the knowledge is represented in both tabular

and graphical form.

 Formalization, which transforms these models of the conceptualization phase

in to semi-formal models, this is the intermediate stage, where the information

can still be easily understood by domain experts.

 Implementation, based on the models produced in the formalization phases,

the ontology is implemented in the desired knowledge representation

language.

 Maintenance, the final phase where corrections are made to the ontology, if

needed.

The most prominent knowledge representation language used for building ontologies

are Resource Description Framework (RDF) and Web Ontology Language (OWL)

[105]. OWL provides additional vocabulary along with a formal semantics to

represent data. OWL has three increasingly-expressive sublanguages: OWL Lite,

OWL DL, and OWL Full.

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

42

3.5.1 Protégé

Protégé was developed by the Stanford Center for Biomedical Informatics Research at

the Stanford University School of Medicine. Protégé is a free, open-source platform

that provides a growing user community with a suite of tools to construct domain

models and knowledge-based applications with ontologies [106]. Protégé helps users

to construct domain ontologies, customise data entry forms, and enter data. The main

components of Protégé implement a rich set of knowledge-modelling structures and

actions that support the creation, visualization, and manipulation of ontologies in

various representation formats. Protégé can be tailored to provide domain-friendly

support for creating knowledge models and entering the data. Further, Protégé can be

extended by way of a plug-in architecture and a Java-based Application Programming

Interface (API) for building knowledge-based tools and applications.

The Protégé tool supports two main ways of modelling ontologies [107]:

 The Protégé-Frames editor builds and populates ontologies in accordance

with the Open Knowledge Base Connectivity protocol (OKBC). In this

model, an ontology is comprised of a set of classes organized in a

subsumption hierarchy to represent a domain's main concepts, a set of slots

associated to classes to describe their properties and relationships, and a

set of instances of those classes.

 The Protégé-OWL editor builds ontologies for the Semantic Web,

according to W3C's Web Ontology Language (OWL). "An OWL ontology

may include more vocabulary about classes, properties and their instances.

The OWL formal semantics specifies how to derive its logical

consequences, from these ontologies. Other tools for ontology

development include OilEd Apollo, OntoLingua, OntoEdit, RDFedt,

WebODE,WebOnto, KAON and many more. Comparative studies on

these tools are published in the survey paper by Dennis McLeod and

Seongwook youn [108].

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

43

3.6 Object Oriented Design in Programming

By the early 1990 s Object-oriented design (OOD) evolved as a mainstream software

application development. Object-oriented programming (OOP) is a programming

paradigm that envisages a program as a set of interacting objects, each of which holds

its own data and behaviour [109]. Object oriented modelling has been proposed as a

solution to resolve differences in heterogeneous systems, as object orientation‘s

principles can be used to present a unified interface [110], [111]. The core principles

object oriented design involve finding pertinent objects, factoring them into classes at

the right granularity, defining class interfaces and inheritance hierarchies, and

establishing key relationships among them. The design should be specific to the

problem at hand but also general enough to address future problems and requirements

[112].

OOD favours low coupling of components in the system which means the

components should be developed to the interface and not to an implementation.

Another fundamental aspect of OOP is code reusability. This can be achieved using

two routes namely white-box and black-box reusability. In white-box method the

derived class inherits the code, context and some visibility of the parent class. Black-

box method is based on object composition which is creating a new type that holds an

instance of the base type through internal reference. This behaves as a wrapper class

that delegates the call internally to the held instance of the class it enhances. The three

more advanced design principles of object-oriented design are:

 The Open/Closed principle (OCP) which allows a module to be open for

extension but closed for modification.

 Liskov‘s Substitution Principle (LSP) where subclasses should be substitutable

for their base classes. This feature is polymorphism.

 The Dependency Inversion Principle (DIP) states high-level modules should

not depend upon low level modules. Both should depend upon abstractions.

Abstractions should not depend upon details. Details should depend upon

abstractions.

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

44

OOD principles when used properly will deliver the benefits of the features such as

encapsulation, modularity, polymorphism, inheritance and make the application code

easier to read, test, extend and maintain. In the next section we discuss two of the

most important software development frameworks for creating applications.

3.6.1 Microsoft .NET Framework

The .NET Framework is a software framework and an integral component of

Microsoft Windows operating systems. It supports building and running the next

generation of applications and XML Web services. The .NET Framework is designed

to fulfil the following objectives [113]:

 Provides a consistent object-oriented programming environment irrespective

of the object code location and its execution.

 Provides a code-execution environment that helps in effective software

application deployment and avoids versioning conflicts.

 Provides a code-execution environment that promotes secure code execution.

 Provides a code-execution environment that eliminates the performance

problems of scripted or interpreted environments.

 Consistent developer experience for both Windows-based applications and

Web-based applications.

 Provides communication standards for codes based on the .NET Framework

that can integrate with other applications.

The two main components of .NET framework are the common language runtime

(CLR) and the .NET framework class library [114]. The CLR is the foundation of the

.NET framework which is a runtime component that manages code at execution time,

providing core services such as memory management, thread management, and

remoting. CLR enforces strict type safety and other forms of code accuracy that

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

45

promote security and robustness. The class library, the other main component of the

.NET Framework, is a comprehensive, object-oriented collection of reusable types

that can be used to develop applications ranging from traditional command-line or

graphical user interface (GUI) applications to web applications based on ASP.NET

such as Web Forms and XML Web services.

Figure 3.4: Microsoft .NET framework Architecture.

 (source of Information from Microsoft website)

3.6.2 Java Framework

The Java framework is predominantly an open source platform of the hardware or

software environment in which a Java language program runs [115]. The two main

components of the Java platform are:

 The Java Virtual Machine (JVM), Java programs are executed within JVM

that converts the program into a byte code and which is then processed by the

native operating system like Microsoft Windows, Linux, Solaris OS, and Mac

OS. This helps the Java programs to be portable and interoperable as well.

 The Java Application Programming Interface (API), Java APIs are libraries of

compiled code that is useful to create ready-made and customizable

functionality to the programs and saves coding time. These are grouped into

libraries of related classes and interfaces known as packages.

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

46

The Java framework incorporates a number of different APIs each providing a

specific set of services to the application as shown in the figure 3.3. Java Platform

Standard Edition (Java SE) development kit helps to write programs in three basic

flavours: applets, applications, and servlets/ Java Server Pages technology (JSP)

pages. Applets run in the JVM built into a web browser; applications run in the JVM

installed on a computer system; and servlets/JSP run in the JVM installed on a web

server such as Apache Tomcat.

Figure 3.5: Java Framework Architecture.

(Source of Information from sun Java website)

3.7 Functional Programming Model

Functional programming is a fundamental style of computer programming to solve

software engineering problems that treats computation logic as the evaluation of

mathematical functions. Functional programming has its roots in the lambda calculus

developed to investigate function definition, function application and recursion [116].

Functional programming approach is used for transforming the data structures like

XML using XSLT functions. In functional transformation, a set of functions, define

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

47

how to transform a set of structured data from its original form into another form. The

functions are:

 Self-contained, meaning functions can be freely ordered and rearranged

without any interdependencies to the rest of the program. Pure transformations

have no knowledge of or effect upon their environment. That is, the functions

used in the transformation.

 Stateless, meaning that for the same input parameters the function or a set of

functions will always result in the same output. These transformations do not

store the result of previous execution.

The following are new language features of .NET C# 3.0 that are used to create

functional programming that are more expressive, and easier to code, debug and

maintain the applications [117]:

 Lambda expressions are a concise, functional syntax for writing anonymous

methods. They are very useful for writing LINQ (please refer section 3.7.1)

query expressions as they provide a very compact and type-safe approach that

support higher-order functions that can be passed as arguments for subsequent

evaluation.

 Anonymous types & implicit typing: Anonymous types are a feature of C#,

which enable an unnamed class type to be declared and an object of that type

to be instantiated at the same time without having to explicitly define a formal

class declaration of the type. Implicit typing is the ability to determine the

type of a variable in the absence of an explicit type declaration.

 Deferred execution and lazy evaluation: Deferred execution means that the

evaluation of an expression is delayed until its resolved value is actually

required. This can greatly improve performance when large data collections

are manipulated, especially in programs that contain a series of chained

queries or manipulations.

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

48

3.7.1 Language Integrated Query (LINQ)

Language-Integrated Query (LINQ) is a set of features in the .Net 3.5 framework that

offers a powerful and consistent model for working with data across various kinds of

data sources and formats [118], [119]. The C# 3.0 language can be used to write

LINQ queries that introduce standard, easily-learned patterns for querying and

updating data. The integrated development environment Visual Studio 2008/2010

includes LINQ provider assemblies, use the same basic coding patterns to query and

transform data in .NET collections, SQL Server databases, ADO.NET Datasets, and

XML documents. LINQ queries can be used on objects with IEnumerable or

IEnumerable<(Of <(T>)>) collection directly without the use of an intermediate

LINQ provider or API. LINQ queries offer three main advantages over traditional

foreach loops:

 They are more concise and readable, especially when filtering multiple

conditions.

 They provide powerful filtering, ordering, and grouping capabilities with a

minimum of application code.

 They can be ported to other data sources with little or no modification.

The more the complexity of the operations performed on the data, the more benefit

will be realized by using LINQ instead of traditional iteration techniques. The LINQ

technologies of .NET 3.5 framework provides a consistent query experience for

objects (LINQ to Objects), relational databases (LINQ to SQL and LINQ to

ENTITIES), and XML (LINQ to XML).

3.7.2 LINQ to XML

XML is one of the prominent ways of data formatting in many scenarios. XML is

used on the web, configuration files, applications and databases. LINQ to XML is an

in-memory XML facility to provide XPath/XQuery functionality and a redesigned

approach to programming with XML. It provides a programming interface using the

in-memory document modification capabilities of the Document Object Model

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

49

(DOM), and supports LINQ query expressions [120], [121]. LINQ to XML provides a

powerful approach to creating XML elements which is referred to as functional

construction. This approach creates all or part of XML tree in a single instruction.

LINQ to XML provides a full set of methods for manipulating XML like insert,

delete, copy, and update XML content.

3.7.3 LINQ to Entities

Many web based applications are currently using relational databases for data

persistence. These applications interact with database in a relational form that is

specific to a particular type. The Entity Data Model (EDM) is a conceptual data model

that can be used to model database schemas into objects of .NET classes, so that the

applications can interact with the data as entities or objects. Language-Integrated

Query (LINQ) provides support for the object layer exposed as entities by the

ADO.NET through a provider. LINQ to Entities enables developers to write queries

against the database from the same language used to build the business logic [122].

3.8 Database Management Systems

A database is an organized collection of data that is stored in a computer system. The

database model structure is classified as hierarchical, network, relational and object

models. Database management system (DBMS) is a computer software that is

designed to assist in defining, maintaining and utilizing large collections of data

stored in the database [123] . The first general-purpose DBMS was designed by

Charles Bachman at General Electric in the early 1960s and was called the Integrated

Data Store. By late 1960s IBM developed the Information Management System (IMS)

DBMS based on hierarchical data model. In 1960 Edgar Codd at IBM's San Jose

Research Laboratory designed the relational data model which is the most prominent

basis for DBMS used at present. The Structured query language (SQL) for relational

databases was initially developed by IBM and later became ANSI and ISO accredited

standard. SQL is used for programming for managing the database.

DBMS provides many advantages [124]:

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

50

 Data Independence DBMS provides an abstract view of the data which hides

the details of data representation and storage.

 Efficient Data Access - DBMS uses a variety of sophisticated techniques to

store, update and retrieve data efficiently.

 Data Integrity and Security: - DBMS can enforce integrity constraints and also

can enforce access controls that govern what data is visible to different classes

of users.

 Data Administration - shared data among several users, can be managed easily

by centralizing the administration

 Concurrent Access and Crash Recovery: A DBMS schedules concurrent

accesses to the data for the users and protects them from the effects of system

failures.

 Reduced Application Development Time: DBMS supports important functions

common to many applications that are accessing the data which could save

time in application development and testing.

 Due to various advantages of DBMS systems they are used to resolve the

interoperability issues of the data. The approach in which many databases systems

provides a solution for shared access to heterogeneous files created by multiple

autonomous applications in a centralized environment is called Multidatabase or

federated systems [125], [126].

3.9 Related Works of Interoperability in Biodiversity

This section reviews the most relevant and related project works that were carried out

in the biodiversity informatics domain, which is aiming to resolve the interoperability

issues of the heterogeneous databases. Various research projects attempt to correlate

the inherently heterogeneous biodiversity data in the domain by proposing

methodologies for data collection and implementing standards for data modelling both

at the conceptual and at physical level. The organisations like GBIF, TDWG in

alliance with CODATA (Committee on Data for Science and Technology) and other

biodiversity communities establish an international collaboration among the

biological data providers and information system developers. They work in

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

51

collaboration and develop standards for communication and implement biodiversity

information systems to access data from multiple data providers using various

standards, architecture and technologies that would allow them to interoperate

between different systems or databases. Earlier researches in biodiversity data can be

classified into two areas based on data communication: file-based communication and

XML-protocol-based approach. Most of the projects have used biodiversity standards

to represent the data that could be understood with-in a network of data providers

accessed by the application. The facility to structure the biodiversity data in a flat file

using metadata has been found inadequate as it needs another layer of processing to

infer information. This limits the use of flat files for encapsulating data. For example

major Australian herbaria data providers network use a file based standard known as

HISPID4. Another example is the ILDIS project where XDF [127] is used which is a

file based representation with a formal definition language that can serve as a medium

for defining biological data transfer formats for use between databases with

incompatible formats. Dave Vieglais and others at University of Kansas Natural

History Museum and Biodiversity Research Center are, involved in the Species

Analyst research project aimed at developing standards and software tools that

facilitate the data communication between 120 or more natural history collections

databases, located all over the world. It uses the Z39.50 protocol and converts the

result set into XML format [128]. The Z39.50 protocol is a client-server based

protocol used for searching and retrieving information from remote databases, the

main limitation is that it is pre-Web technology and is being mainly promoted in the

library information domain [129]. In biodiversity domain groups of organisations are

working together to form networks and implement common access systems and

forming protocols more suitable for the data interoperability using XML based

communications. Following projects described in this section use XML schema

standards for data exchange.

The SPICE (Species 2000 Interoperability Co-ordination Environment) project main

aim is to develop a suitable architecture that could provide a catalogue system

consisting of all known species. The Species 2000 project provides a federation of

individual databases coordinated by taxonomists, universities and other organisations

[130]. The common access system aims eventually to provide a virtual checklist index

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

52

of all known species composed from segments held in the set of global species

databases (GSDs). This system uses the SPICE protocol for data communication

known as Common Data Model that consists of different type of requests. This

architecture could allow many different data providers to interoperate by providing

wrappers to translate from their own peculiar format into the common one. Thus this

approach uses the protocol, tightly coupled database federation and data provider side

wrappers to achieve greater interoperability. The Species 2000 project also provides

programmatic access to find synonyms for species names through two Catalogue of

Life web services namely Annual Checklist web service and Dynamic checklist

SOAP web service [131].

LITCHI – The project ―Logic-based Integration of Taxonomic Conflicts in

Heterogeneous Information Systems‖ is concerned with the integration and

maintenance of biodiversity databases. The constraints used to identify taxonomic

conflicts in individual species database and in merged database are from established

taxonomic practice. The LITCHI system can be used to resolve such conflicts

incrementally on the databases from distinct sources. This system helps to resolve the

taxonomic conflicts in individual and linked or merged species databases [132].

LITCHI has been implemented in two phases, Phase 1 was implemented as a

standalone system using data files in the XDF format and in Phase 2 it is used by

Species 2000 Europa project and adheres to the Species 2000 data standards. This

does the integration of data using a set of consistency rules developed by biologists

that produce XML cross-maps. This represents the relationships between the species

that have been detected by the rules. In effect the cross-map is a knowledge-base or

thesaurus.

The BioCASE Biodiversity Collection Access Service for Europe is to establish a

web-based information service providing researchers with unified access to biological

collection of Europe [133]. BioCASE use the ABCD XML schema which is a

comprehensive data specification in biodiversity intended for data integration and

communication. This approach uses database side wrappers that converts the database

output to the required ABCD data set and the request are made in XML format using

the HTTP protocol. This project uses the subset of ABCD protocol to define the

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

53

biodiversity data. TDWG Access Protocol for Information Retrieval (TAPIR) is based

on HTTP, XML-based request and response protocol for accessing structured data

that may be stored on multiple distributed databases with different physical and

logical structure [64]. TAPIR was designed to be the successor of the Darwin Core

and BioCASE Protocol. The aim here is to provide interoperable access to

biodiversity and natural science collection data from data providers.

The Biodiversity World project (BDW) at Cardiff created a flexible and extensible

web services-based Grid environment for biodiversity researchers to analyze the

biodiversity data [134]. The BDW aims to provide the richness analysis, bioclimatic

modelling and phylogenetic analysis on the heterogeneous biodiversity data. It uses

the Triana workflow management tool for building and executing the workflows. A

communication layer developed as Biodiversity Grid Interface (BGI) interfaces with

the Grid resources and data sources. BDW data type is used for data representation

and used by the components of the system. In this approach the heterogeneous data

resources are exposed as web services using resource wrappers that could be invoked

using HTTP requests. The data sets returned were in the format of XML documents.

The metadata repository (MDR) component provides the information of the available

data resources to the BDW system. The project realized a bioclimatic modelling

workflow and thereby demonstrating the architecture to access heterogeneous data

resources.

The Mammal Networked Information System (MANIS) is developed with the support

from the National Science Foundation (USA) and seventeen North American

institutions and their collaborators. The objectives of MANIS were to facilitate open

access to combine specimen data through internet [135], MaNIS network uses an

extension of Darwin Core standard for data communication between the participating

data providers and avoids external maintenance of the network and centralized data

management. The MaNIS network provides access to mammal specimen records from

multiple and distributed and autonomous databases using a web based portal

architecture and a universal data standard for all the participating data providers. The

portal application sends requests for data to the provider software installed on

computers at the participating institutions.

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

54

3.9.1 BUFFIE – v1.0

The BUFFIE v1.0 (Biodiversity Users Framework for Interoperability Experiments)

project is a first phase of this research work and is based on the software engineering

approach combining service oriented architecture, purpose-built-ontology (XML) and

extensible processing methods. This research approach attempts to resolve the

interoperability issue in the biodiversity area and the prototype system is developed

and demonstrated in the European Network for Biodiversity Information ENBI [136].

Existing systems only allow searching data within a network community. BUFFIE is

proposed as a solution to overcome this limitation by interoperating among various

network communities at the syntax and semantic levels and improving data responses

before presenting it to the user. BUFFIE v1.0 was designed, developed and tested

using real species data provided from resources in Israel, The Netherlands and

Austria. BUFFIE v1.0 was implemented on windows 2003 server and successfully

demonstrated the interoperation of heterogeneous databases in the ENBI meeting at

Stockholm in October 2005. The results of this research work has been published and

continued to develop the next version BUFFIE v2.0, which includes more

functionalities to achieve interoperability of biodiversity networks.

3.9.2 GBIF - Infrastructure

The Global Biodiversity Information Facility (GBIF) aims to provide free and open

access to biodiversity data for any users across the Internet. GBIF initiative on

informatics infrastructure for biodiversity research and applications is classified into

six major components:

 Publishing: GBIF developed the Integrated Publishing Toolkit (IPT) as a

software platform to publish biodiversity data on the Internet through the

GBIF community network. IPT is a Java based application that manages three

types of data: taxon primary occurrence data, taxonomic checklists and

resource metadata. IPT allows the data providers to upload data in comma-

separated and tab-delimited files to GBIF servers and also allows browsing

and searching published data by end-users [137].

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

55

 Discovery: The Global Biodiversity Resources Discovery System (GBRDS) is

an Internet-based registry that aims to create a single annotated index of

biodiversity data publishers, institutions and collections, a schema repository

and services. The GBRDS with its metadata catalogue and indexes, serves as a

unified global entry point for the discovery of biodiversity resources, and also

integrates the GBIF network with other systems [136].

 Harvesting: The Harvesting Index Toolkit (HIT) is an open-source, Java-based

web application that builds an index of all biodiversity records into a central

server at GBIF from a distributed network of data publishers.

 Integrating: GBIF provides a Data Portal as a proof of concept that a

worldwide distributed network of biodiversity data providers can be linked

together and made searchable from a single point of access. It allows searches

on any taxon, country, or on a combination of parameters.

 Retrieving and Analysis: The GBIF portal provides a range of web services

that can be used by other applications to directly access XML-formatted data.

They are Taxon and Occurrence data service, Dataset metadata service, Data

Provider metadata service and biodiversity community network metadata

service. The data thus retrieved can also used by other applications for analysis

and to find more useful information on biodiversity data.

3.9.3 Global Earth Observation System of Systems

The Global Earth Observation System of Systems (GEOSS) project is an

interoperability research trying to link the infrastructures of the climate change

research and biodiversity research. The aim of this project is to realize an

interoperable infrastructure based on service oriented architecture [138]. The GEOSS

strategy is to use the advantages of existing systems and services and promoting

interoperability through the adoption of a Service Oriented Architecture (SOA)

framework approach based on established standards from bodies such as the

International Organisation for Standardisation (ISO) and Open Geospatial Consortium

(OGC). GEOSS overall system architecture consists of the following main logical

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

56

components: biodiversity data provider, climatological data provider, Catalog

performing search operations on both biological and climatological datasets,

Ecological niche modeller and graphical user interface. This project is a long term

research started from 2005 and going on until 2015. The results of the pilot project

has validated the need for international standards to support interoperability and

developing mediation catalogue services using an open framework approach that

manages the complexity of multi-disciplinary federated systems.

3.9.4 Distributed Dynamic Diversity Databases for Life

 4D4Life (Distributed Dynamic Diversity Databases for Life) is a scientific data

infrastructures project started by the European Commission‘s e-infrastructure

programme [139]. The research activities of this project will establish the Catalogue

of Life as a state of the art e-science facility, using service-based distributed

architecture and by making it available for integration into analytical and synthetic

distributed networks in the area of conservation, climate change, invasive species,

molecular biodiversity and regulatory domains. It will create electronic taxonomic

services like synonymy server, taxon name-change and other services that help any

other systems in biodiversity domain to achieve better data interoperability.

3.9.5 Life Science Identifiers

The amount of biological data being created on computer databases is huge and

biologists or bioinformaticians provide common access systems that have different

ways to access the biodiversity information from multiple, distributed and

heterogeneous databases. Due to the nature of this biodiversity data being dynamic

and the data entity names or values can have synonyms, homonyms creates a problem

while finding this data using a search query. To resolve the issues of naming and

identifying data resources stored in multiple, distributed data stores, Life Science

Identifiers (LSIDs) are used to uniquely reference each unit of data from a provider.

LSIDs are persistent, location-independent, resource identifiers for uniquely naming

biologically significant resources including species names, concepts, occurrences,

genes or proteins, or data objects that encode information about them [140]. An LSID

resolver is a software system that implements an agreed-upon LSID resolution

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

57

protocol to allow higher-level software to locate and access the data uniquely named

by any LSID URN. The ―server‖ side of this resolver solution is called an LSID

authority. The client stacks and an example client, the LSID LaunchPad, are provided

by the LSID Resolution Protocol Project [141]. LSID consists of the following five

parts, each separated by a colon:

 Network Identifier (NID), i.e., the ―urn:lsid:‖ label;

 Authority Identification, usually the root DNS name of the issuing authority;

 Namespace Identification chosen by the issuing authority;

 Object Identification unique in that namespace; and

 An optional Revision Id to represent versioning information.

LSID adoption in biodiversity domain is being encouraged by organisations like

TDWG, GBIF, Species2000 and other data providers. This technique will contribute

to resolve the interoperability problems, when trying to integrate data from multiple

databases about making a decision on the uniqueness of the data retrieved.

3.10 Summary Analysis of Relevant Technologies and Projects

Organisations like GBIF and TDWG either participate or coordinate the majority of

biodiversity informatics projects across the globe by providing a networking and

communication platform. TDWG is mainly dealing with the biodiversity data

standards and GBIF on the other hand integrates the informatics infrastructure of the

different research projects and works with the biodiversity nodes of the different

countries in the world [20]. Interoperability in Biodiversity information systems is an

approach that involves multiple levels of research and problem solving like

technological, data representation and communities of networks. European Network

for Biodiversity Information (ENBI) contributes to the objectives of GBIF by

providing a platform for European biodiversity data, information coordination, and

exchange of information, priority setting and selected feasibility studies. The ENBI

network community serves as a good platform for this research in terms of knowledge

sharing and for implementing and testing the new prototype of framework in

coordination with the data providers, clients and users. Reviewing the available

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

58

biodiversity data standards and the network communities in sections 2.5, 2.6 and the

survey [142] of the related biodiversity informatics project in section 3.9 reveals the

direction of the research in biodiversity informatics.

 The majority of the biodiversity data providers are publishing the data by

participating into one or more network communities.

 Each biodiversity network community is aiming to achieve data

interoperability by adhering to a particular data standard like Darwin Core,

ABCD (BioCASE) or a Common Data Model like in SPICE 2000.

 Most of the biodiversity networks aim to achieve structural data

interoperability by implementing wrappers at the data providers and

converting the data representation to a common format used by that particular

network. For example DiGIR providers like MaNIS network uses wrappers to

convert the data to a Darwin Core standard, BioCASE network use wrappers

to convert data to ABCD standard and SPICE 2000 project uses

 The main biodiversity informatics projects implement web based architecture

using HTTP protocol and universal data representation in the network of data

providers for distributed querying over multiple and heterogeneous databases.

Earlier researches in biodiversity projects using network communities have all

implemented the first step in the interoperability process by adopting one of the

established standards of interchange formats, to which all their data providers convert

their data format. Reviewing the related projects have shown that one of the issue, is

that the data providers have to implement wrappers to join a particular XML protocol,

if they need to be included in a network of common access. Some of the researches

are working to develop a comprehensive universal schema that should contain the

available standards. For example TAPIR schema encloses both ABCD and Darwin

Core standards. The current common access systems can only query the multiple data

providers only if they are participating to the common standard of the network.

Further research is needed for structural and semantic interoperation between different

Chapter 3. Relevant Technologies and Interoperability Projects in Biodiversity Data

59

biodiversity networks through a common access system that can improve the accuracy

with which information can be retrieved and used for biodiversity research.

This research work approach aims at achieving structural and semantic

interoperability between the networks of biodiversity data domain. It provides a

framework which allows a new way of querying (enriched querying) to different

biodiversity data providers. We propose that the common access prototype system

should act like a middleware in the process of query and integration for XML-based

data through semi-automatic structural and semantic schema matching to achieve

interoperability between the data providers. The BUFFIE project particularly aims at

solving a real world problem existing in the biodiversity domain and is explained in

the following chapters.

60

4 CHAPTER 4

 The System Design and Framework Model

This chapter introduces the project BUFFIE (Biodiversity Users Flexible Framework

for Interoperability Experiments). Starting with a brief introduction to the motivation

for this research, and following the discussion on various software engineering

technologies and architectures from chapter 3 here we present relevant

communication protocols used in biodiversity projects that deals with interoperability

issues. Then we describe the overview of our approach and the heterogeneity issues in

the BUFFIE system and present an example of the species data unit which is used

throughout the thesis to evaluate, how the interoperability is accomplished.

Chapter 4. The System Design and Framework model

61

4.1 Introduction

Interoperability of autonomous and heterogeneous data resources in biodiversity has

been pioneered by organisations like GBIF, TDWG, ENBI etc... Data providers and

users of the data are increasingly coordinating together to adopt a particular standard

of data model representation and data communication protocols. In the context of this

research domain, we define data interoperability as the ability to correctly interpret the

data across biodiversity data providers across organisational boundaries. Independent

data providers might use different data model to represent the biodiversity data.

Unless a structural and semantic match is established between the concepts used in

various data model, data interoperability cannot be achieved. This semantic

knowledge is derived from the knowledge of expert biologist and developers of the

domain. Interoperable systems that provide a common access interface for the users,

apply the data integration technique to the various formatted data received from

heterogeneous databases. A Common Access System has to insulate the application‘s

end-users from the knowledge of the data structures and its different implementation

across the varied databases. The standard data integration process would use a

mediated schema and mapping rules which define the relationships of the concepts in

data sources to the mediated schema. The general approach to design and develop a

common access system follows two stages:

1. Based on the user query, the appropriate set of data resources are selected and

generate the queries for each data resource.

2. Receive the response from the multiple data resources and perform necessary

translation, filtering, merge the data and present the final answer to the user.

Typically, Common access systems for biodiversity information provide support for

queries against a set of databases that adheres to exchange data using a particular

protocol and data standard. The predominant biodiversity standards like Darwin Core

and ABCD are used as federated schemas for databases that store occurrence records

data. An occurrence record is data about observation of living beings that includes

data on a species using taxonomical classification, location where the species were

Chapter 4. The System Design and Framework model

62

observed or collected, by whom, when and how. Common access systems in

biodiversity database networks use these federated schema standards and, in some

cases, implement the DiGIR architecture for querying request and receiving

responses. DiGIR (Distributed Generic Information Retrieval) aims at developing and

testing a protocol for single point access to distributed data sources. DiGIR is an

XML-based protocol with configurable federated schemas to support distributed data

retrieval across one or more federation(s) of biological collection databases [143].

DiGIR was a project of the University of Kansas Natural History Museum and

Biodiversity Research Center, California Academy of Sciences, and Museum of

Vertebrate Zoology in Berkeley. DiGIR followed an open-source development using

open standards and protocols like HTTP, XML, and UDDI. DiGIR has been adopted

by several distributed networks, including GBIF, MaNIS, OBIS, and speciesLink, but

its original inability to work with a completely independent XML-federated schema

(e.g., ABCD) has led to a derivation of the protocol.

Figure 4.1: DiGIR Architecture.

(Source of Information sourceforge.net website and ENBI)

A survey of the biodiversity systems as discussed in chapters 2 and 3 would evidence

the technologies like knowledge base, common data standards, shared ontologies,

wrappers and web services as viable technologies or tools that can be used in unison

to achieve interoperability among heterogeneous distributed biodiversity data sources.

For example, common data standards using XML for data representation, tools like

Chapter 4. The System Design and Framework model

63

ontologies and knowledge base to capture knowledge or information about the

biodiversity data and configuration details of the system and architecture types like

web based services were incorporated to develop our interoperable framework which

is explained in the chapters 4, 5 and 6. Our specific objective is to test interoperability

between federated XML schemas (e.g. Darwin Core, ABCD) by developing a

prototype system using the BUFFIE framework and test some real data to prove that

the interoperability can be achieved among networks using different federated XML

schemas.

4.2 An overview of our approach

In general, developing common data access systems that should interoperate across

distributed heterogeneous database systems requires addressing several complex

issues of data matching and messaging processes involved. Currently in the

biodiversity domain there is no common access system that can automatically

interoperate with different types of network standards for e.g. DarwincoreV2, ABCD,

and speciesCDM etc.

The novelty in our approach is in providing a flexible framework using software

engineering techniques in contrast to building a universal global schema, thereby

allowing any data providers to interoperate through a common access system

irrespective of the data exchange standard they use. The synergies of web based

Service oriented architecture, Domain Knowledgebase implemented using XML and

XSLT and Object and Functional design of the Framework's Business rules are

applied in this framework. The BUFFIE Framework derives interoperability from the

heterogeneous and distributed data bases by using a web service oriented architecture,

Knowledge of the domain expressed in XML/ XSLT (K) and Business logic (P)

designed using J2EE and .NET which object and functional design. Figure4.2 shows a

schematic representation of Interoperability in our approach.

Chapter 4. The System Design and Framework model

64

Figure 4.2: Schematic representation of Interoperability in BUFFIE.

In this thesis, we concentrate on the following two goals:

1. Establishing a novel framework (BUFFIE) that is practically useful and

extensible for the biodiversity data providers and users to interoperate

irrespective of the data network standards they are using.

2. Enriching the user queries to suit the data resources and integrating the data

providers‘ responses using the XSLT templates.

Also we are restricting our scope of the implementation for this framework, to

interoperate between databases that store biodiversity occurrence records and

implement data communication using XML document structures. The common access

system will provide the user with an integrated view over heterogeneous, distributed

data sources that use XML documents for data exchange; such an integrated view will

be best represented by XML because of the advantages of XML as an exchange

model, such as rich expressiveness, clear notation and extensibility. The system will

enable users to query its data sources using a tailor-made request messages based on

the communication requirements of the provider. Due to the inherent nature of

Chapter 4. The System Design and Framework model

65

biodiversity data there is never going to be a fully automatic approach to the problem

of semantic data integration. We should be able to achieve a high degree of

automation, which requires the expression of shared knowledge with some human

intervention by using semantic mapping. Our approach recognises that there are

significant differences in the XML messaging standards in biodiversity domain due to

the semantics and syntax of data elements. We propose the application of ―integration

on Demand" [144] as a complement to "integration in advance" interoperable

methodology.

To achieve integration we use a mechanism that expresses the relationships of the

schema elements as a table of mappings (Appendix A). These mappings are produced

by the biodiversity domain experts which is an important tool that helps in integrating

the heterogeneous data from the providers. The data integration architecture followed

was based on the mediator architecture. The system prototype is called BUFFIE

(Biodiversity Users‘ Flexible Framework for Interoperability Experiments). It requires

the effort of a computer developer to generate two set of knowledge base for the

common access system. First is that BUFFIE should have knowledge about the data

providers and their communication protocols. For example HTTP protocol or web

services call for sending request and response to data sources. And second is that how

the data concepts in a data model (elements in a XML schema) of a particular data

provider compare with the data concepts of the other data models in the domain. This

is known as concept mapping knowledge about the domain data concepts which could

be produced from concept mapping tables published by biologists for the various

XML standards. The biodiversity domain Knowledge base in Buffie (DKB) is like a

XML metadata repository which needs to be maintained by continuous updating to

assist the BUFFIE in query generation and messaging of the requests. The following

steps describe a use case of how the BUFFIE system works for query processing and

response integration:

1. The User is logged into the JSP/ASP.NET web application using an

authentication system.

2. Users are presented with a query design page where they can select the search

concept and search value.

Chapter 4. The System Design and Framework model

66

3. User‘s query is enriched using AJAX to web services technology like finding

the synonyms or the accepted names for the given search value.

4. The BUFFIE system will then consult the knowledgebase and select the list of

providers suitable for this query, and the communication protocol format, data

access point and other information required for messaging.

5. Based on the user‘s selection and the provider‘s information from the

knowledgebase the system will create tailor made request messages to each

provider according to their communication protocol.

6. This query is sent over to the data providers, over asynchronous threads.

7. The responses received from the data provider are validated and merged using

the schema matching templates.

8. The integrated results are then transformed and presented to the users.

9. Alternatively the final integrated results are sent as a response to the web

service clients if the query was initiated as a web service call.

The data flow of the application involves two main stages that are, enriching and

generating multiple queries and response data integration and refining.

4.2.1 Abstraction of Problem Domain

This section lists the main abstract requirements of the data domains in, which this

approach can be implemented to achieve integration and data interoperability.

 The data providers are independent and autonomous but should be willing to

provide the data to the users through BUFFIE framework.

 Data providers should have web service interface for communication with

BUFFIE framework though XML messages.

 Data providers should be part of an existing community that adopts one of the

established XML data standard protocols of the data domain, otherwise they

have to provide their data standards mapping to the BUFFIE framework.

 This approach would very much suit the data domain where the numbers of

XML protocols are limited. If the number of the XML standards is larger then

this problem can be resolved by using a central schema for routing the

transformation.

Chapter 4. The System Design and Framework model

67

 This approach also requires the existence of knowledge base that has

information about the data providers, about their connection properties and the

XML standards and transformation rule-sets. When these are not available a

developer is required to capture the knowledge from the domain experts and

design the different modules to implement the BUFFIE framework.

4.3 System Design of Prototype

The BUFFIE prototype is a new interoperable common access system that is

developed to test the research idea of combining the software engineering

technologies, architecture and domain knowledge base as described in section 4.2 and

assumptions like the availability of biodiversity data providers‘ network that use XML

data standards for communication. The objective of the system design is to deliver a

system that is practical in querying multiple, heterogeneous and distributed data

providers in an efficient way. The system was designed, so that the resultant

application is extensible to accommodate future XML standards and interoperable

capabilities. This application system allows data providers with different network

standards to interoperate during a single querying process. For example a client

should be able to access data from a DWCV2 data provider and an ABCD data

provider and any other provider with a proprietary communication protocol

simultaneously through a common access system. This common access system needs

to have information about all the communication protocols that it deals with. The

prediction of interoperability problems among the interacting components and the

XML data standards are analyzed to make effective design decisions as well as which

architecture to consider for development. The BUFFIE system design is based on a

service oriented, web based n-tier architecture model, which includes presentation

layer, business logic layer and data provider layer. Figure4.3 shows the logical design

of various components in BUFFIE.

Chapter 4. The System Design and Framework model

68

Figure 4.3: Conceptual Design of the BUFFIE Common Access System.

The control topology of the BUFFIE system determines the arrangement of the

components according to the desired control interactions that can affect the

complexity of the interactions among them. We have designed the components to be

exposed as services, forming three logical layers that interact with XML messages.

Data topology is the arrangement of the components in BUFFIE according to their

required data interactions. The topology of the components can directly affect the

transformation of the data for interchange [145]. For closely coupled components the

data are encapsulated in objects and for other cases serialization of object data is used

for data interactions.

 The data service logical layer comprises of the local database of BUFFIE system

and remote data providers which are autonomous, heterogeneous and distributed.

Responses from the remote data providers are not controlled by BUFFIE system, due

to this nature of data providers an asynchronous style of communication is preferred

in the system design of BUFFIE. Two types of users are identified for the BUFFIE

system; the common users who search for biodiversity information and institution

users (researchers) who would like to harvest biodiversity information from

heterogeneous data providers. The system provides a Web form interface and Web

service interface for the users. The input for the system is either the form based data

through web form or XML messages sent across web service methods, and similarly

Chapter 4. The System Design and Framework model

69

the output of the system is also presented as html in a web page or XML messages to

the client application. The initial version of this application has been developed on a

java platform and released for the real-world users to test the data interoperation. The

final version is to be developed on a Microsoft windows based platform with visual

studio2008 and SQL server2008, both version will demonstrate the interoperation of

biodiversity XML standards. The application components are designed such that the

framework and its components could be used for different data domain with slight

modifications to the application configuration settings about communication

protocols, data sources information and with the inclusion of adequate knowledgebase

about the data domain. Security modules were not implemented in the prototype

though; it was included in the system design which might be useful for future live

deployment of application.

4.3.1 Requirements of the Prototype System

The requirement of the prototype system is to demonstrate how interoperability has

been achieved as a result of this application using a sample biodiversity species data

modelled in XML data structure. For the BUFFIE system the interoperability

requirement is to access data resources from multiple biodiversity networks like

DWCV2 and ABCD and to present this data according to the users‘ preferences. The

interoperability requirement for BUFFIE Framework involves the following:

 Deciding which XML data standards has to be incorporated to show the

interoperation. For example like choosing data providers that use Darwin

Core, ABCD (biocase) and SpeciesCDM data standards.

 Decide what would constitute interoperability; decide what level of

interoperability would have to be achieved. For example, from single user

query the system should generate multiple queries to heterogeneous providers

and integrate all the valid responses using schema matching templates and

produce the results.

Chapter 4. The System Design and Framework model

70

 Perform testing by making measurements for interoperability. Evaluation

metrics to decide whether we have achieved interoperability and the

confidence in the result. For example user acceptance and implementation of

BUFFIE system by the client programs, testing the results.

4.4 Heterogeneity Issues in the BUFFIE System

This research addresses two specific types of heterogeneity in the representation of

the real world biodiversity data that is modelled using XML data structure on different

databases of the data providers. The first type is concerned with the differences in the

information represented by each XML biodiversity data standard. This is termed as

―heterogeneity of scope”, which refers to the fact that differing amounts and types of

information are represented by various data standards to express the species

information. For example, in the BUFFIE system the data providers are autonomous

and may have different data models (XML schema) to represent biodiversity data.

Because independent development teams create these databases at the data providers‘

end, each provider might adhere to a different XML data standard to capture the

species information. Figure 4.4 show each provider uses different XML data

communication standards. For instance Provider A and C uses Darwin Core XML

standards, provider B uses ABCD data standard and provider D uses Species CDM

data standard. Though all these data standards capture the core information about the

species, ABCD standard allows a bigger scope to capture extra information about the

species when compared to the Darwin Core and its variations. When the users model

the data using one of the XML standards there could be differences in representing the

aspects of the species data. These differences in the state and behaviour of the entities

used in XML standards for species information can be thought as providing different

views of the same species information.

Chapter 4. The System Design and Framework model

71

Figure 4.4: Differing Scope of Biodiversity Data in Communication Standards.

Even if more than one system provides the same view of the species that is being

modelled using XML data standard, there may still be differences in the

representation of that information across different standards. This type of

―heterogeneity of representation” refers to the differences in the concept terminology

used, format, accuracy, range of values allowed and structural representation of the

included state and behavioural information. This difference in representation is

illustrated in Figure 4.5 by providers A and C. Even though these standards (Darwin

Core and ABCD) both represent the same real world biodiversity data, i.e. both

capture species information under various categories like provider, taxonomic,

locality, collecting, biological concepts; they each represent the information

comprising that view in a different manner. For e.g. Darwin Core represents the

collection time as separate elements in year, month, day, time whereas ABCD

standard collects the same information in one element as ―ISODateTime‖. Another

Chapter 4. The System Design and Framework model

72

example is for provider A and B collect the location information in latitudes and

longitude coordinates but the range of accuracy varies among them, but provider D

represents the same information in place names.

Figure 4.5: Differing Views of representation of Data.

4.5 Use-Case of Interoperability in the BUFFIE Application

To elucidate our interoperable approach for the XML data standards in biodiversity

networks, this example data is discussed here. In the BUFFIE common access system

most data providers either use Darwin Core or ABCD (BioCASE) data format for data

communication. Both these standards represent the biodiversity information based on

a species, but use different XML schemas to structure their data. For the same query

about a particular species, these two standards have two different structures of request

formats in XML message. For example let us discuss a query created from user to

search for taxon information of a species scientific name known as ―Acicula Lineata‖

(snail, Gastropod). This section will discuss the formats of two different request

Chapter 4. The System Design and Framework model

73

messages and the corresponding two different responses from the providers in

BUFFIE system.

Figure 4.6: Request message structure for Darwin Core standard Provider.

BUFFIE generates the search request for species ―Acicula Lineata‖ for Darwin Core

providers based on the schema model as shown in figure 4.6 and similarly for ABCD

providers as shown in Figure 4.7 These request messages are generated using the

XSLT templates derived from the domain knowledgebase in BUFFIE that provides

the knowledge about the data providers. The framework also provides a feature to

limit or enhance the number of providers selected for the querying process. All the

request messages generated by BUFFIE use following components:

 An attribute that qualifies the XML elements using a protocol specific XML

namespace.

 Header part with the source and destination information along with the

resource name (e.g. Malacology & ZOBODAT) and type of search.

Chapter 4. The System Design and Framework model

74

 A search part which has the species scientific name (Acicula Lineata) that is to

be searched.

Figure 4.7: Request message for ABCD standard Provider.

All the biodiversity concepts described in XML standards used by the providers in

BUFFIE system (like Darwin Core & ABCD) are integrated using XSLT templates.

The integration logic implemented in this research work, as explained in section 6.5.2

were created by us after gaining the knowledge on biodiversity concepts from

biologists and the concept mapping tables published by the domain experts as shown

in Appendix A. Our objective in designing the framework is to create the ability to

send asynchronous queries to the heterogeneous data providers and integrate the

responses using the knowledge described using XSLT templates. The response

message format from a Darwin Core provider for the species scientific name ―Acicula

Lineata‖ is shown in Figure 4.8, which has ―m‖ number of records. The complete set

of concepts in the Darwin Core XML structure is also included in appendix A. Figure

4.9 shows the responses from ABCD provider (ZOBODAT) that has ―n‖ number of

Chapter 4. The System Design and Framework model

75

records relating to species ―Acicula Lineata‖ and for a full set of the XML structure

please refer to images in section 7.6. These responses are received asynchronously

and BUFFIE uses XSLT templates with integration logic and produces ―m + n‖

number of records that are displayed to the end user of the system.

Figure 4.8: Response for Species named “Acicula lineata” from Darwin Core Provider.

The XSLT templates have the knowledge and logic to generate the resultant values

from each schema element of various responses. For e.g. the Darwin Core has an

element for the country name as:

 <darwin:Country>United Kingdom</darwin:Country>

Chapter 4. The System Design and Framework model

76

 Whereas the ABCD response has the same information as follows:

<Country><ISO3Letter>AUT</ISO3Letter></Country>

These two elements have different element structure and values but refer to the same

concept which is ―country‖, where the species is identified. Hence to integrate these

values, the XSLT template use ISO country code lookups built into XSLT templates.

Figure 4.9: Response for “Acicula lineata” from ABCD Provider ZOBODAT.

 Similarly the XSLT templates apply techniques like aggregation, atomizing,

concatenation and substitution functions on biodiversity concepts and values present

in the data structure to perform the data integration. A more detailed analysis of the

integration process and examples are discussed in the following chapters through to

the evaluation chapter.

77

5 CHAPTER 5

 BUFFIE Architecture and Operation

5.1 Introduction

 Software architecture is the description of the computational components of a

program or system, the connectors that establish the interactions between the

components and data, as well as principles and guidelines governing their design and

evolution over time in order to achieve a desired set of architectural properties [146].

The fundamental characteristics of the architectures of the interacting components and

connectors, data standards contribute to the architecture interoperability [147]. The

integration strategy of this research is formulated by analysing the conflicts of

components and biodiversity data characteristic values. This chapter describes the

functionalities and the processing of the query request generated for multiple

heterogeneous providers in the following steps:

Chapter 5. BUFFIE Architecture and Operation

78

 Architecture for interoperability.

 Query generation for multiple heterogeneous data providers

 Enriching the user query

 Heterogeneous issues resolved in this framework.

5.2 System Architecture for Interoperability in Biodiversity

Networks

Application architecture is the process of defining a structured solution that meets all

of the technical and operational requirements, while optimizing common quality

attributes such as performance, security, and manageability [148]. Interoperation

requires knowledge and intelligence as it distinguishes from the ordinary integration

of data (which is usually syntactic) and databases and hence the proposed system

architecture needs to accommodate these entities using a knowledge base. The novelty

in this research is that it provides a new framework that helps in achieving

interoperability among biodiversity data resources irrespective of the communication

protocol and XML data schemas used by the data resources. Moreover our approach

is designing an extensible framework rather than developing a universal schema for

interoperation. This facilitates in non-intrusive future plug-ins and extensions.

Previous works in this domain have resolved interoperation of heterogeneous and

distributed database that adheres to a specific protocol (data schema) among the

network. One of the objectives of this architecture is to maintain the data definition

autonomy of the data providers‘ databases at the logical level and physical level.

The advance in our approach is achieving the interoperation of heterogeneous data

resources by applying the Multi Layered, Web based Service oriented architecture and

designing the business logic using Java and .NET components that use the knowledge

of the data domain expressed in object oriented and functional programming

components. Based on this, we mainly concentrate on realizing the network

interoperability using the web service architecture and data interoperability using the

LINQ to XML and XSLT components of the business layer.

Chapter 5. BUFFIE Architecture and Operation

79

Figure 5.1: Multi Layered, Web based Service oriented architecture.

The architecture provides a complete insulation for the biodiversity data user from the

biodiversity data resources, for example the user need not know about the likes of the

data format and accessing methods of the data providers. The BUFFIE Common

Access System (BCAS) takes care of soliciting the user query and validating the data

entered through its user interface. This presentation layer is designed as a web

application accessed through internet browser. Complementing this layer, this

architecture provides another provision for the client programs to access the

BuffieServices directly through a web service interface. This feature of BUFFIE

enables biodiversity data harvesting [21] and query enriching. Figure 5.1 shows

the overall architecture for the BUFFIE 2.0 framework, relationships and data flow of

the various components needed to develop the common access application for the

biodiversity data interoperability problem. The business layer components consist of

BuffieCore Objects, BuffieServices, BuffieUtils and DomainKnowledgeBase. These

Chapter 5. BUFFIE Architecture and Operation

80

components are used in combination to perform multiple business operations. The

whole process of the system can be described in three main sub-divisions (based on

functionalities) as follows:

1. Common Access Framework: This deals with the orchestration of the set of

components and interfaces that are spread across object model, functional

model and Domain model. The object model is a software engineering

technique that follows the system design and architecture and is intended to

provide a structural view of the whole system, including a functional

description of the entities, their relationships, and their responsibilities. The

object model provides the advantages of data abstraction, encapsulation and

inheritance while developing the system. The Domain model is an object

model designed by looking at a particular problem's domain and tries to

abstract processes and data flows in terms of those entities and relationships.

Here the problem domain is the interoperability framework which is different

from the research domain, which is biodiversity informatics. Hence the

domain model refers to the classes that are needed to perform the

interoperability requirement. The functional model represents the methods of

the system from the perspective of data flow and transformation of data.

 BuffieCore Objects (BCO) is intended to provide a structural view of

the middleware system that is independent of the biodiversity data domain. It

describes the functional description of the entities, their relationships and their

responsibilities [149]. These are mainly interrelated classes that are abstracted

from the data domain and are used for the operation of the framework in

general for example to pass data between the components.

 BuffieServices and BuffieUtils are based on a functional model which

is designed to accomplish a specific task for a given set of arguments. The

functional objects exposed in these components do not rely on any external

state and emphasizes the application of functions on the objects. BuffieEngine

performs the orchestrated workflow of combining these functions and objects

to perform query processing.

Chapter 5. BUFFIE Architecture and Operation

81

 Domain Knowledge Base (DKB) consists of XML Repository and

XSLT templates which are based on a domain model. These components are

designed to meet a given set of requirements to address a particular problem‘s

domain. In our research, these are the domain entities like biodiversity

concepts captured in the configurable XSLT templates. The XML repository

stores the metadata for the data resources and the schemas for the

communication protocol. The configuration files fetches value for the

parameters that govern the business workflow of the BuffieServices.

2. Query Processing: When the user or the client program submits a query, The

BUFFIE application triggers the query generation process. The

communication between the presentation layer, analytical tools and data

providers with the BuffieServices is based on the HTTP and SOAP protocol

over the internet. The query process involves identifying the concept for which

the query is submitted and then uses AJAX and web services technology [150]

to communicate with synonymy servers for enriching the query. Sections 5.4

and 5.5 explain more about query enriching process. The Domain Knowledge

Base (DKB) provides the knowledge for the query generation as:

 how many queries are to be generated

 what format these queries are to be structured

 Destination of data providers (example Access points, connection details)

 Given the knowledge about the data providers and the user requests the

BUFFIE system generates the tailor made queries for each data provider and

sends them as request messages asynchronously across the internet. The

BuffieEngine object of BuffieServices component uses multithreaded event-

based asynchronous pattern [149] for sending the request to various data

provider. The responses from the providers are received and transformed as

per the requirement of the initial query by the BuffieServices. In BUFFIE

system design and architecture, the Business logic layer (BLL) and the data

resources are very loosely coupled and communicate using XML based data

structure through the Internet using HTTP protocol. The BLL has to send and

receive query request to the data resources at the same time. Hence

Multithreaded event based asynchronous pattern is used here. This improves

Chapter 5. BUFFIE Architecture and Operation

82

the performance and provides concurrent communication with the data

sources. For example, if one data resource is failing in communication it

should not affect the communication between BLL and other data sources.

3. Data Persistence and Mapping: The data providers of the BUFFIE system

are independent, autonomous and remotely distributed. The remote data

providers and the local Buffie database together comprise the data layer of the

architecture. The Buffie database uses Microsoft‘s Entity Data Model (EDM)

[151] for data transfer between the data layer and Business layer. EDM

provides a conceptual model that accurately reflects common business objects

from the physical structure of relational tables. This allows the developers to

define flexible mapping to relational data. This mapping helps to isolate

BUFFIE from changes in the underlying storage schema. The Entity

Framework also contains support for Language Integrated Query (LINQ) to

Entities, which provides LINQ support for business objects exposed through

the Entity Framework. The response sent by the providers of biodiversity data

are in a heterogeneous format and this architecture provides the feature to

persist the entire user query, request messages and providers responses in

BuffieDatabase using the EDM. Figure 5.2 shows the architecture of XML

document mapping process.

Figure 5.2: Architecture of XML data mapping process.

Chapter 5. BUFFIE Architecture and Operation

83

This deals with integrating the data schemas of the response from the

providers as required by the Client/User. This mapping strategy is formulated

by analysing the communication patterns and the data schemas of the

individual data providers of the system by Response Analyser. This performs a

meta-data analysis and validates the response XML messages and passes the

result to the BuffieServices. The LINQ components and BuffieUtils loop

through the response and perform the data transformation. The XSLT

templates library from the Domain Knowledge Base provides the correct

templates for each XML document to carry out the data transformation. The

result of all the transformations are gathered and stored in the BuffieDatabase.

This BUFFIE system architecture is very much optimised for the biodiversity data

domain.

5.3 Generating the Queries for Heterogeneous Providers

The conceptual system design and architecture of the query generation process in

BUFFIE is explained in this section. To answer the users‘ query effectively it is

important to identify the users requirement and also to find the source of information

to satisfy that user requirement. BUFFIE framework is built with the biodiversity

domain knowledge about the data resources to accomplish this task. The Query

Analyzer (QA) functions are analogous to a prism which produces multiple outputs

from a single input.

Chapter 5. BUFFIE Architecture and Operation

84

Figure 5.3: Conceptual view of Query Generation in BUFFIE.

It receives the query information through a web page or web-service Interface. This

query will be in a text format and contains information such as, type of

communication protocol, concept names and values to form the query and other

security parameters. BUFFIE validates the user‘s security parameters and when the

authentication is successful all user queries and schema definitions pass through to

Query Analyzer (QA) module for onward processing. The QA records the query

information in the local BuffieDatabase and invokes the Query enriching service and

also collects the information on Providers from the Domain Knowledge Base (DKB).

BUFFIE creates multiple XML request messages for the user query as follows:

 If DKB returns ―n‖ data providers, each having a specific XML schema for

data communication then:

 Q is the result of the following loop:

 For each provider (p) in providers (P [n])

 {

 q[p] is the result of transformation given by ui*s[p]

 }

 Where Q is the set of queries generated in Buffie,

Chapter 5. BUFFIE Architecture and Operation

85

 p is a specific provider,

 P[n] is a list of providers in DKB,

 s[p] is an XML schema for a provider p,

 ui is the user input in Buffie system,

 q[p] is the resultant XML request message produced by

 transformation for a given provider p.

The following figure 5.4 shows an example of request query generated in XML

message for a Darwin Core type data provider.

5.4 Enriching the User Query

All Common access system has to manage the problem of matching the query

parameters with the information in heterogeneous data resources. For example the

BUFFIE system has to retrieve the correct information for a query like, Find species

info which is commonly known as "Breadcrumb Sponge"? Usually this problem is

managed in the system architecture as follows [152]:

 At the data resources side, by indexing the data - known as index enrichment.

 At the moment of processing of the specific query - known as query

enrichment.

Figure 5.4: Sample XML request message for data provider.

Chapter 5. BUFFIE Architecture and Operation

86

Earlier researches in query enrichment have mainly focused on semantic query

optimization, which uses the semantics or conceptual basis in database queries to

reformulate a query more efficiently into a different but semantically equivalent form

that returns correct answers [153]. In our research, BUFFIE the query enrichment is

supported by looking at the concept values of the user query. In this context, we

define the query enrichment as that, the query concept value is augmented with its

extensions like synonyms thereby improving the quality of response from the

heterogeneous and distributed biodiversity data resources. One of the unavoidable

problems with taxonomy data is that different people will know the same species by

different names [154]. This may be due to valid changes in the taxonomy through re-

classification or simply that one biologist/database developer records a species by a

different name for example its common name as opposed to its scientific name. In

biodiversity domain species with multiple names like these are classified as accepted

name, common name and synonyms. A classic example for a multiple species name

for a same species is Halichondria panicea commonly known as the breadcrumb

sponge which has been given 56 names in the scientific literature since it was first

named in 1766, according to researchers compiling the census [155]. Among them:

 Alcyonium manusdiaboli (1794),

 Spongia compacta (1806),

 Halichondria albescens (1818) and

 Seriatula seriata (1826).

For example, if the Common access system is sending out a query request to find

species info on ―Halichondria panacea‖ and if the data providers have stored that

species information, indexed on one of its other names as shown above like ―Seriatula

seriata‖ then there will be no valid response for the request query. To overcome this

data invisibility problem BUFFIE framework is providing the query enrichment

feature in its architecture, by looking at the value of the concepts and using the

publicly accessible domain tools like SPICE checklists [156]. Figure 5.5 shows the

search concept is semantically enriched with a generalization of the information

provided in its value. The belief here is that the values associated with a concept

possess a knowledge source and using that, the querying power of the concept should

be augmented with its value‘s extensions [157].

Chapter 5. BUFFIE Architecture and Operation

87

Figure 5.5: Enrich a concept by the generalization of its values.

Query Enriching Logic:-

Let Q is the main query.

E is a set of query concepts. (E refers to all searchable concepts that can

 be used in a user query)

E(x) is concept x in E. (E(x) could refer to a particular search concept

 used in a user query namely ―ScientificName‖.

X[i] is the value of the concept x. (X[i] could refer to a particular value of the

 search concept for example ―Seriatula seriata‖)

{S} set of a name value collection of enrichment services. (Synonym services)

For Each Synonym Service in {S}

 {

 Process X[i] and return {Ev} the enriched values for this service

 (for example, get the synonym values for ―Seriatula seriata‖)

 }

Let {Ev} = [Ev1, Ev2, ……Evn] (enriched values from all enriching service)

Generate the main query Q to {Ev} => (QEv)
x
 = {QEv1 , QEv2, ….. ,QEvn}.

QEv is the set of queries that will be used by BUFFIE for sending request messages to

all the data resources in the system.

Chapter 5. BUFFIE Architecture and Operation

88

5.5 Architecture for User Query Enrichment

User query enrichment approach takes the initial user query submitted through the

web page interface and validates the search concept and its values as the input from

the presentation layer. The general architecture of the user query enrichment in

BUFFIE is depicted in figure 5.6. It uses the Microsoft AJAX framework known as

ASP.NET AJAX Extensions [150].

Figure 5.6: Architecture for Query Enrichment.

Using ASP.NET AJAX in this scenario is a best fit as it allows calls to different data

resources through web service from the client browser without affecting the

performance of the web page in the browser [158]. The server side code page (.aspx)

renders the Html page with the necessary JavaScript codes. This AJAX-enabled Web

page makes an initial request to the server's Web service communication layer

(WCL). These web services are in the form of ASP.NET Web services (.asmx

services) and running in the same domain as the BUFFIE application. The web

services in the WCL then makes subsequent asynchronous requests to other web

services for data. WCL acts like a bridging service between the AJAX pages and the

Chapter 5. BUFFIE Architecture and Operation

89

external web service used for query enrichment. To enable BUFFIE application to

call ASP.NET Web services by using client script, the server's WCL automatically

generates JavaScript proxy classes. A proxy class is generated for each web service

that is referenced by a ServiceReference element in the ScriptManager control in the

page. Data is exchanged asynchronously between client and server, typically in a text

based JavaScript Object Notation (JSON) format [159].

The configuration files from the XML repository provide the information about the

external web service interface methods and data format. Using this knowledge WCL

creates the request messages to the external synonym server web service for e.g.

SPECIES 2000 dynamic check list. The architecture also provides secure web service

communication using the Microsoft cryptography framework [160] using digital

certificates to authenticate the request and response messages.

5.5.1 Example of Query Enrichment in BUFFIE

This section explains the query enrichment process in BUFFIE web application. It

shows a real example of a biodiversity data with the query concept as Species

―scientific name‖ and its value as ―Seriatula seriata‖. The synonymy server used in

this example for testing is a publicly available dynamic check list from Species 2000.

The following figure 5.7 shows the AJAX form that submits the query details to the

Figure 5.7: AJAX web page with species scientific name and data. Figure 5.7: AJAX web page with species scientific name and data.

Chapter 5. BUFFIE Architecture and Operation

90

web service proxy of the server generated by Web service Communication Layer. The

XML config file in BUFFIE application provides the following information about the

synonym services to the WCL like; web service, destination URL and its accessing

parameters as follows:

Table5.1: Synonym service Providers information

webservice name: MsgDestn.Url.Species2000

web service location: http://webservice.catalogueoflife.org/annual-

checklist/2009/search.php

Web service Query

Parameter

?name=

Web service Request

Message

Xml Schema location to create the request

message for this service

AuthenticodeX.509

certificate

Certificate file location used for secure

communication.

Using the values as shown in the table the web service in the WCL creates a request

message and sends the requests asynchronously to the synonymy servers. The

―Authenticode‖ security feature is provided as an optional feature based on the

communication type of external service provider.

Figure 5.8: XML result from the synonym web service for species name.

Chapter 5. BUFFIE Architecture and Operation

91

The result for this query from the Species2000 dynamic check list service is an XML

document as shown figure 5.7. The WCL component uses LINQ to XML which is a

LINQ-enabled, in-memory XML programming interface to parse the result XML and

sends the synonym values as delimited string to the client page. The JavaScript

functions on the client page dynamically parses the result string and updates the

contents of the page as shown in figure 5.9

Figure 5.9: results of synonym web service call in the application.

Now the initial user query concept of scientific name with a query value ―Seriatula

seriata‖ is enriched with other values namely the accepted name ―Halichondria

Panicea‖. These query values are passed to the other components in Buffie Query

analyzer for onward processing that will generate request query for both these

scientific name values and send it to all the available providers of the system.

92

6 CHAPTER 6

The Query Response Retrieval and

Transformation Process

6.1 Introduction

In this chapter we deal with another important stage of the research

which is the query response retrieval and translation process. It is the

second stage of the BUFFIE framework‘s common access system. Here

we start with a discussion about the responses for the query sent to the

data providers and the process of integrating these heterogeneous

responses to the required format specified by the user. The previous

chapter described about how to enhance the chance of finding the right

and required information even if the data resource is in heterogeneous

formats. This chapter deals with how the information found on these

heterogeneous resources are integrated to make the results more

Chapter 6. The Query Response Retrieval and Transformation Process

93

meaningful for the user. Then the knowledgebase is described using

XSLT templates.

6.2 Response Data Integration Strategy from Heterogeneous
Providers

Apart from enriching the query to increase the visibility of the data sources, in order

to augment the level of interoperability achieved, the BUFFIE system also employs a

data integration strategy to address the heterogeneous responses to concur with the

requirement of the initial user query. This research limits its boundary to those

biodiversity data sources that can provide response for the query in XML structured

documents across the Internet (HTTP Protocol). We identify the following

requirements (or assumptions) for a meaningful data integration of different

responses.

 All the responses from data providers for a specific query must

describe the same species identified in the real-world.

 Methods to eliminate the differences in the name, structure and

representation of the data models used to describe the species.

 All the responses received for the query will be in XML formatted

messages with the same or different schemas as long as the schema is

identified in the Domain Knowledgebase of the BUFFIE system.

The schema elements or concepts described in XML serve as meta-data for the actual

biodiversity data it contains. Though the XML schemas define the structure, typing

and naming about data, there is still a great deal of semantic knowledge which cannot

be properly expressed within the schemas used for data exchange. For example a

certain specification like the dimension of the species is stored as feet in one schema

and as meters in another, and then the software component cannot integrate them

unless it has the knowledge about the imperial to metric conversion details. If only all

the biodiversity standard XML schemas can accurately describe the data structure and

if fully automatic schema translation and integration were possible then several

important interoperability problems could be resolved purely at a syntactical level. To

Chapter 6. The Query Response Retrieval and Transformation Process

94

tackle the semantic interoperability problem, use of ontology has been researched as a

solution, but the limitation of ontology is that it cannot capture real world semantics

and describes only the logical relationships between the concepts of a domain [[161],

[162]. Also ontologies in a domain have lots of limitations due to ambiguity and

incompleteness in describing the data and this only proves that human involvement

cannot be entirely eliminated and data integration requires devising logical

programming components in such a way that semantics is followed throughout the

entire data integration stack rather than at a particular instance [163]. Establishing a

semantic match for data describing concepts and managing the representational

differences is a knowledge management problem: How to arrange the right system to

have the right knowledge about what the data means? [164].

In our research we demonstrate the ―data integration on demand‖ [165] where the

BUFFIE prototype system acts as a middleware layer and performs dynamic

integration of data based on the user query as opposed to the data warehouse approach

or ―data integration in advance‖ Figure 6.1 shows the conceptual view of the

heterogeneous response integration in the BUFFIE system.

Figure 6.1: Conceptual view of heterogeneous response integration in BUFFIE.

Chapter 6. The Query Response Retrieval and Transformation Process

95

Response Integration:-

Let R is the resultant response

 X is the transformation functions

Then For Each Provider in the BUFFIE system

 {

 Receive the response for the query in XML format.

 Each response may consist of one or more data records

 and follows a specific XML schema standard.

 Ri = Si [r
1
 + r

2
 + r

3
 + ……. + r

n
]

 Where, Ri is the response from a particular data provider (i).

 Si is the data schema (e.g. Darwin Core) for the provider (i).

 r
1
 is record one (data unit) and r

2
is record two and so on.

 Validate the response records (r
1
 + r

2
 + r

3
 + ……. + r

n
) using the

 schema Si and save the response Ri from each provider in local

 database of Buffie.

 }

 Apply transformation functions for the response records based on

 provider schema and the required resultant format.

Merge the responses from all the providers:

The resultant response R = X [R1 + R2 + R3 + ……. + Rn]

When the variance in the syntax and semantics of the response schema to the required

schema is zero then the transformation function (X) just propagates the source format

to the resultant format otherwise various schema matching process are applied on the

responses received from data providers before merging them to the result (R).

6.3 Schema Matching Model

Building a metadata knowledge base layer for semantic and syntactic matching of the

heterogeneous data has been proposed as a solution to the problem of data integration,

when the data model is described as a structured XML [166]. Schema matching in

our research involves the design-time analysis of biodiversity data-communication

schemas like Darwin Core, ABCD and Spice CDM to produce mappings logic. The

Chapter 6. The Query Response Retrieval and Transformation Process

96

run-time scenario allows the user to specify the required output format along with the

query. The criteria used to match elements from different standards are based on

heuristics and published mapping tables (Appendix A) of the different elements by the

domain experts. Discussions with biologists and knowledge sharing with other experts

of the ENBI forum have augmented the development of mapping biodiversity

concepts in BUFFIE.

Figure 6.2: Schema Mapping Assertion Model.

The mapping relationships between concepts are not captured in a precise

mathematical way; instead we followed a more pragmatic approach in the goal of

producing a mapping that is consistent with heuristics (experience-based) that

approximate our understanding of what biodiversity data users would consider to be a

good match. Figure 6.2 shows a schematic representation of schema assertion model

for describing the mappings in a systematic way in BUFFIE.

A mapping assertion is a defined relationship between two schema elements which

are biodiversity concepts from a different schema. A mapping expression is attached

to a mapping assertion that specifies how the schema elements are related. The

mapping expressions are either:

Chapter 6. The Query Response Retrieval and Transformation Process

97

 Directional in which case an element from one schema refers to an element in

another schema e.g., similar reference.

 (or) non-directional that is a relation between the elements of different

schemas are defined using

o scalars (e.g. =, ≤, ≥)

o functions like addition or concatenation, customized functions

o relationship like is-part-of, is-a, contains

The mapping expression logic for all the schema elements are built into the Domain

knowledge Base (DKB) component of the BUFFIE.

6.4 Biodiversity Data Transformation Architecture

Building a metadata knowledge base layer for semantic and syntactic matching of

XML formatted data has been followed in this approach [167]. Figure 6.3 shows the

architecture for data matching and transformation process in BUFFIE framework.

Figure 6.3: Biodiversity Data Transformation using Schema matching.

Chapter 6. The Query Response Retrieval and Transformation Process

98

The response analyzer receives the heterogeneous responses from the providers and

validates the XML messages. All the response messages from the providers are stored

in local BUFFIE database that helps in debugging and future analysis. The BuffieUtils

and BuffieServices components process these XML messages by using the

information about the provider and the schema from the DKB. BuffieUtils

components employ the right XSLT library modules that contain the schema

transformation functionalities for a given input XML data to produce the resultant

output XML message. The XSLT library module contains the templates that are

designed to resolve the semantic and logical heterogeneities of the data in the schema

elements. Most XML schemas‘ elements in biodiversity domain have some semantics

that affect the matching criteria but are not formally expressed or documented. So we

followed a semi- automatic schema mapping approach between the elements of the

different schemas, i.e. the biologists/developers of the XSLT templates define the

mapping logic during design time and for some elements the program automatically

applies the mapping logic as suitable. More about the XSLT templates and about its

design are discussed in the next section. The output of all these transformations is

merged into one single result.xml that holds the result for the initial user query. This

result is stored in the local Buffie database and sent to the Buffie presentation layer

over HTTP protocol or to the client programs through the web-service messages.

Please refer to appendix D for the XSLT templates used in the DKB.

6.5 Functional Approach for Schema Integration

In the previous section, we described the biodiversity schema matching model and the

process of matching the data in the BUFFIE system. This section we discuss the

approach followed in our research and explain the techniques and operation process of

the schema integration. Schema matching, through transformation of XML documents

have to resolve the scalability and semantic relationship discovery problems [168].

These problems are increased with the richness of the XML data model of the

participating schemas. The scalability problem was addressed with the extensible

architecture of the BUFFIE system and the design of the Domain Knowledgebase

(DKB) component. Semantic relationship between the elements of the schema and

data is the interpretations by domain experts according to the knowledge of the real

Chapter 6. The Query Response Retrieval and Transformation Process

99

world. Explicit and formal meanings of the participating schema elements were

developed using lambda functions of C# and XSLT in a functional style components.

Each schema element (concept) is analyzed from the semantic viewpoint of the data

that it holds and its logical structure. The concept mapping algorithm is developed as

an integrated ―hybrid matcher‖ that identifies both the individual element to element

match and the use of multiple matching criteria like name and type of data held by the

element in the schema. The idea here is to derive transformation algorithms that

enable automated restructuring of the data elements of the provider‘s responses

without manual intervention at the run-time of BUFFIE system. This is possible

because the transformation algorithms are enabled using LINQ and XSLT that

implements the functional programming logic which facilitates the semi-automatic

approach. Please refer to the codes in appendix B for the component codes that

demonstrates this logic.

6.5.1 XSLT Library for Schema Mapping

Based on the BUFFIE framework, we identify the main causes of heterogeneity

between biodiversity communications protocols defined as XML schema entities are

at different levels. They are classified into two main categories namely semantic

heterogeneities and logical heterogeneities. The flexibility of XML schema languages

gives rise to a larger variety of possibilities to model the same biodiversity concepts

than text files. For example a species collection date may be represented as ―strings‖

in one schema or in another schema as instances of a primitive data type ―Date‖.

These conflicts are difficult to resolve and generally requires human intervention due

to the tacit knowledge needed from another domain for e.g. computer data types. In

this research the mapping process provides a predefined library of logical

transformation operations produced as XSLT templates generated based on the

mapping table and auxiliary information produced by the biodiversity domain experts.

We analyzed both published, standardized biodiversity schemas [70] like Darwin

Core, ABCD and the data instances received from the providers, who use these

standards for data exchange. The matching logic was created from individual schema

elements or attributes or for combinations of elements like complex structures from a

single schema to all the other schemas involved in the research.

Chapter 6. The Query Response Retrieval and Transformation Process

100

6.5.1.1 Matching on Schema Information

 The initial development of the concept mappings were based on the schema

information of the communications protocols such as name, description, data type,

relationship, constraints and schema structure. The unit of matching is defined at the

atomic-level or at a structure-level (multiple elements). For each element or attribute

of the first schema (e.g. Darwin Core), atomic-level matching determines the

matching elements or attributes from the other schemas (e.g. ABCD, MANIS, etc...)

Table 6.1 shows some sample atomic-level mappings used in the XSLT templates.

E.g. ―Darwin.InstitutionCode ≅ ABCD.SourceInstitutionCode‖

Table 6.1: Sample atomic-level match.

Schema 1(elements) Schema 2(elements)

Darwin Core

ABCD

GlobalUniqueIdentifier UnitGUID

InstitutionCode SourceInstitutionCode

Structure-level matching refers to matching combinations of elements that appear

together in a structure. This matching is decided by the factors like how complete and

how precise a match of the structures are required. It could be a fully compatible

match, where all the components of the structures in two are more schemas match

exactly or a partial structural match, where only some of the components in a structure

are required to match. The effectiveness of this structure matching can be increased

by using auxiliary information and known equivalence patterns from the biodiversity

domain. For example, two structures in an ―is-a‖ hierarchy is merged to a single

structure in the transformed output. For e.g. the sub element (child node or attribute)

of the first schema is represented as a Boolean attribute in the second schema.

Another pattern is that two different structures of the source schema with at referential

relationship are joined as a single structure in the output schema. Table 6.2 shows

some examples of a full and partial structure-level match.

Chapter 6. The Query Response Retrieval and Transformation Process

101

Table 6.2: Full and Partial structural match

Schema 1(elements) Schema 2(elements)

Darwin Core

ABCD

Longitude

Latitude

CoordinatePrecision

MinimumElevation

MaximumElevation

CoordinatesLatLong
LongitudeDecimal
LatitudeDecimal
CoordinateErrorDistanceInMeters
SpatialDatum

Full Structural

match

Country

StateProvince

County

Locality

GatheringSite
LocalityText
Country
NamedAreas

Partial structure

match

All the transformation result may relate to one or more elements of one schema, to

one or more elements of the other, this is described as transformation match

cardinality. An element from schema1 or schema2 can participate in zero, one or

many mapping elements of another schema. There are four types of relationship

identified from the schema mapping as shown in the table 6.3. The transformation

match cardinality of one-to-one element-level matching is typically restricted to

individual mapping elements of the participating schema. One-to-many, and many-to-

one match cardinality may have either individual mapping elements or structure-level

matching. Many-to-many mapping elements usually involves the structural

embedding of the schema elements requiring the structure-level matching. In the first

row of table 6.4 the match is one-to-one like the value of the ―UnitGUID‖ element

from ABCD schema is assigned to the element named ―GlobalUniqueIdentifier‖ of

the Darwin Core schema. When matching multiple elements from these schemas,

expressions or functions are used to specify how these elements are related. For

example row 2 explains a many-to-one element-level or structure-level matching, if

the element ABCD.NameAuthorYearString has a valid value, then it is assigned to

Darwincore.ScientificName otherwise the child elements (structure) of

ABCD.ScientificNameAtomized are concatenated using a function and assigned to

Darwincore.ScientificName.

Chapter 6. The Query Response Retrieval and Transformation Process

102

Table 6.3: Transformation Match Cardinalities

 Transformation

cardinalities

 Schema 1(elements) Schema

2(elements)

 Matching Expression

 ABCD Darwin Core

1. One-to-One

(element –level)

UnitGUID GlobalUniqueId

entifier
Equal to (=)

2. Many-to-One

(element-level)
NameAuthorYearString

ScientificNameAtomized
Zoological
Genus
SpeciesEpithet
AuthorTeamOriginal
AndYear

ScientificName Either
NameAuthorYear
string (or)
 Function child
nodes of
(ScientificName
Atomized)

3. One-to-Many

(element-level)
GatheringDateTime
ISODateTimeBegin

YearCollected

MonthCollected

DayCollected

JulianDay

TimeOfDay

Function StringSplit

4. Many-to One

(Structure-level)

Many-to-Many

(element-level)

LocalityText
Country
ISO3Letter

NamedAreas
NamedArea
NamedAreaClass
NamedAreaName

Country

StateProvince

County

Locality

Country,
stateprovince =
localityText,ISO3Letter

County, Locality =
Named Area,
NamedAreaName

In row 4 of the table 6.4 the values for the Darwin Core structure are derived from

two different structures of ABCD schema. This is an example for many-to-one at the

structure-level matching but at the element-level it is a many-to-many relation. In our

approach to schema matching in the BUFFIE, we had discovered that most of the

biodiversity protocols expressed as XML schemas primarily have hierarchical

structures of biodiversity concepts based on some form of containment relationship

with a parent and child nodes. Hence to perform a transformation match we used an

XPath Navigator cursor model [169] that allows forward and backwards movement of

the hierarchical structures.

Chapter 6. The Query Response Retrieval and Transformation Process

103

6.5.1.2 Matching on Data Instance

 In our research the data validation of the responses are carried out, only to the

extent of the data model (schemas) used for the communication. It is assumed that if

the data response sent by all the providers for a request query, conforms to a particular

schema, then the biodiversity data contained in the response is valid and then accepted

for data integration in the BUFFIE system.

Figure 6.4: Sample Response from a Darwin Core Provider.

 For example figure 6.4 shows a valid response message from a resource named

―snails‖, we could tell as long as all the elements in the XML message confirms to a

Darwin Core schema, then the data is valid, but there is no way of confirming the

integrity of the data contained within these XML elements as this requires knowledge

of multiple domains. For example the structural integrity with respect to a standard is

fully verified using schema validation technique, whereas the semantic integrity with

respect to the related concepts in the standard cannot be verified completely. Having

Chapter 6. The Query Response Retrieval and Transformation Process

104

stated that, to improve the overall interoperability, we analyzed the data contents of

the response messages (XML documents) from the providers for a range of queries.

This process of analysing, instance-level data information brings out some important

semantics with respect to the schema elements and which are applied for the data

matching. The transformation templates designed in the domain knowledge base takes

into consideration about the constraints such as data types, value ranges, relationship

types and cardinalities of the data instances received from the providers. The main

benefit of evaluating the data instances is to get a more accurate transformation of the

actual contents of the schema elements. For example a schema-level matching could

equate the following concept name country from the Darwin Core and ABCD schema

as shown in the first row of table 6.4. But then analysis of the data-instance shows, the

value for the concept ―country‖ is stored as ―Israel‖ in one and as ―ISR‖ in another.

To negotiate these types of differences in the data, the domain knowledge base

provides a special country code table from which the transformation functions derives

the equivalent value.

Table 6.4: Full and Partial structural match

 Schema 1(elements) Schema 2(elements)

 Darwin Core

ABCD

1. <darwin:Country>Israel

</darwin:Country>

<Country>

<ISO3Letter>ISR</ISO3Letter>

</Country>

2. <darwin:Longitude>35.204148

</darwin:Longitude>

<darwin:Latitude>31.757835

</darwin:Latitude>

<LongitudeDecimal>11.5

</LongitudeDecimal>

<LatitudeDecimal>47.25

</LatitudeDecimal>

Another application of data-instance matching is based on the constraints of the data

such as numerical value ranges and the precision as shown in row 2 of table 6.4.

Instance-level matching is also performed by using the auxiliary information provided

by the biologists like previous published mapping information. The transformation

component uses a hybrid approach of both schema-level and data-instance-level

match to increase the effectiveness of the matching between the participating

schemas.

Chapter 6. The Query Response Retrieval and Transformation Process

105

6.5.2 Transformation Functions in DKB

This section describes a set of primitive transformation operations or functions used

by the schema matching process of the XSLT templates in the Domain Knowledge

Base (DKB). These primitive operations are composed together to form larger

transformation functions that convert the heterogeneous responses to the required

format specified in the query. We explain operations based on two schemas i.e. the

responses from the data providers are known as source schema for the transformation

and the required schema by user is called as target schema. The operations are as

follows:

 Add: adds a schema element or an entity (biodiversity concept) to the target

XML message. Entities can be concepts and attributes that are based on the

source schema or it can be a new element introduced by the transformation

operation.

 Delete: Removing an entity from the target schema. This operation carries out

the opposite transformation of Add.

 Merge: Two distinct entities from the source schema are merged into one

entity in the target schema. This is carried out using functions like

aggregation and concatenation. For e.g. when transforming the concepts like

ScientificName the resultant values in the target schema (Darwin Core) is a

concatenation of values from the child nodes of ScientificNameAtomized

from the source schema (ABCD) concepts.

 Split: The value of the source schema is decomposed to form different

concepts in the target schema. This is the reverse operation of merge. For e.g.

the value of GatheringDateTime concept from ABCD schema is split to form

different schema elements like YearCollected, MonthCollected, DayCollected,

TimeOfDay in the darwincore schema

 Rename: This operation changes the concept and properties names on to the

target schema.

Chapter 6. The Query Response Retrieval and Transformation Process

106

 Connect: This just substitutes the source schema value as a one to one

mapping to the target schema without any transformation. For e.g. most of the

schema elements of the header part of the message from the source is directly

copied on to the target schema of the transformation.

Apart from these primitive operations, mathematical and logical functions were

implemented to effect the transformations. These functions perform the logical

operations that also use the extra information provided by the domain knowledgeable

users (like biologists). The framework of BUFFIE is designed such that the

configuration of the XML files and XSLT library within the domain knowledge base

can be easily modify or extended by the developer.

6.6 Example of Data Transformation in BUFFIE

In this section we introduce an example of a data transformation of the response from

an ABCD provider to a Darwin Core type request. We discussed in the previous

sections of this chapter about the architecture for data transformation and the

approaches for schema mapping using the XSLT libraries of the domain knowledge

base. To illustrate this process a response from a provider is investigated and it is

shown how it goes through the transformation process to form the resultant message.

All of these transformations are implemented as part of the middleware in the

BUFFIE system and hence there is no presentation layer representation for the data.

The example messages shown here are from the extract of the BUFFIE local database.

Consider the user query: Find the information for species with ―scientificname‖ as

―Buliminus labrosus‖. This query is made through the BUFFIE common access

system and one of the Darwin Core data source named as ―Snails‖ has sent a response

message in the XML format as shown in figure 6.5. The response message is

composed of three parts namely header, content and diagnostics. The header and

diagnostics part of the message contains the information about the data providers and

the schema format used for data communication from source to destination. These are

part of the meta-data that helps BUFFIE system to identify the type of the response

message. The Buffie engine components check, if the response message has got a

valid ―content‖ structure with records. These records are the elements that hold the

Chapter 6. The Query Response Retrieval and Transformation Process

107

data required by the query. In the example shown below there are 265 records

returned for the query from BUFFIE for a species named ―Buliminus labrosus‖. Now

suppose the user wants the data to be in the ABCD format then the BUFFIE system

uses its domain knowledge base to transform the Darwin Core format data into ABCD

format.

Figure 6.5: Example of a source response message from Darwin core provider.

Chapter 6. The Query Response Retrieval and Transformation Process

108

Figure 6.6: Example of the transformed xml message in ABCD format.

109

7 CHAPTER 7

The BUFFIE Implementation

7.1 Introduction

In this chapter, we present the implementation details of the BUFFIE v2.0 framework

from the designed architecture and the tools that were used to develop and deploy the

various components of the system. The architecture of this prototype system is shown

in figure 5.6. The prime objective of developing this prototype is to demonstrate, as to

how the BUFFIE framework improves the interoperability between the biodiversity

networks composed of heterogeneous and distributed data providers. The

implementation of the prototype also shows how the structural and semantic

interoperability of biodiversity data can be accomplished. Unlike the previous version

of BUFFIE v1.0, which was implemented on Java platform on Apache Tomcat web

server, this one is implemented using Microsoft.Net3.5 platform. The main tool used

for developing the prototype is Microsoft Visual Studio 2008 professional [170], an

Chapter 7. The BUFFIE Implementation

110

integrated development environment that helps the developers to code, debug, test and

deploys the system. Microsoft Internet Information Server 6.0 [171] is used as the

application Web server for hosting the BUFFIE web application and web services and

SQL 2008 server [172] is used for storing the local BUFFIE database. The choices of

using these latest tools were made, based on maintaining the objectives of the

BUFFIE architecture in the implementation process as well:

 Extensibility and Scalability – this allows adding or removing a

communication protocol and XSLT templates to the domain knowledge base

without affecting the application. This type of implementation allows

controlling the number of users or providers in the BUFFIE system.

 Code Compactness and Reuse: The coding of the system is followed based on

the Microsoft coding standards. The components and modules are designed

such that same implementation can be used for a different data domain by

developing and adding the corresponding domain knowledge base component

into the framework.

 Security and Performance: the system is organized into separate set of

assemblies under appropriate namespaces. Basic forms authentication and

provision for web service security were included in the design.

The BUFFIE architecture has four main components, Query designer user interface,

Query enrichment, Query processor and Domain knowledge Base (DKB). These

components are designed as modules in several layers as shown in Figure 7.1 that

shows the multi-layered implementation of the BUFFIE v2.0 system comprising of

six projects arranged in three layers namely the Presentation Layer, Business Logic

Layer and Data Access Layer. BUFFIE common access system is a middleware

system aimed for interoperation of XML messages and hence the user interface or the

presentation layer is very light and only used for query submission and for the display

of the response. The main part of the query processing lies in the business logic layer.

The programming approach followed here is a combination of both object-oriented-

design and functional programming. The classes and libraries used in the projects

were designed with high cohesion (grouping a set of responsibilities together that are

strongly related) and low coupling (less dependency between software modules) as

this favours easy maintenance and reusability [173].

Chapter 7. The BUFFIE Implementation

111

Figure 7.1: Layered Implementation of BUFFIE Architecture.

Chapter 7. The BUFFIE Implementation

112

7.2 Implementation Principles in BUFFIE System

Converting the multi-layered system architecture of the BUFFIE system as described

in chapter five into an implementation involves breaking the system into distinct and

possibly without any overlapping features. To achieve the objectives of the

architecture, we followed some established principles while developing the prototype

system. Using the ―Separation of Concerns‖ principle [174] we identified the

following concerns to be developed as separate modules:

 Query Generation

 Query Enrichment

 Query Sending to Provider

 Response Receiving

 Biodiversity data transformation

 Results presentation

These are the significant features of BUFFIE framework that are important for the

query processing and we used ―Gang of Four‖ Object-oriented-design principles [175]

to develop objects and factor them into classes at the right granularity for these

modules. These modules need the knowledge about users, query, providers and data

model used for communication which is obtained from the Domain Knowledge base

component (DKB). This DKB is implemented using the functional programming

principles in C# 3.0 language features like lambda functions, LINQ to XML and

XSLT. Due to the nature of complexity in BUFFIE the software of the system is

organized in layers and each layer represents a logical section of the framework.

7.3 Query Processing in the Business Logic Layer

This layer is the main nerve centre of BUFFIE framework, the modules developed in

this layer include all the business objects, functional algorithms and calculations that

makes the query processing to work and interact with the other layers. This section

deals with all the steps involved in query processing right from generating to the

response integration. This layer is implemented as three main assemblies namely

“BuffieCore”, “BuffieServices”, “BuffieUtils” and a repository of ―config-files‖. We

Chapter 7. The BUFFIE Implementation

113

had implemented this layer using Microsoft.Net3.5 framework, C# 3.0 language,

LINQ to XML, XSLT templates and XPath Functions.

7.3.1 Buffie Core

BuffieCore objects represent the generic and abstract entities of the framework

business rules. In our prototype system, we designed them to be purely from the

business domain that assists in the middleware operations. It is completely

independent of the data domain, for example these objects will have no dependency

with the biodiversity data models. We followed the design of the BUFFIE

architecture and implemented these components focusing on the required system

operations at a generic level, rather than taking a data-centric approach. Figure 7.2

shows the core classes of the framework that uses the ―information hiding‖ principle

there by the other components are programmed to the interface exposed by these

classes in properties and methods. The common features are defined in a base class

with all the plumbing and used as a base class for this domain model.

Figure 7.2: BuffieCore classes from framework Business domain.

Chapter 7. The BUFFIE Implementation

114

7.3.2 Buffie Services and Utils

The modules in the BuffieServices and BuffieUtils components use the BuffieCore

objects and orchestrate the whole query process of the common access system. Figure

7.3 shows the modules of the BuffieServices component that bridges the presentation

layer, web services and data access layer.

Figure 7.3: BuffieServices classes.

Figure 7.4 shows the main public scoped modules of the BuffieUtils component which

is based on the functional approach that facilitates the BuffieServices to perform the

functions. The workflow of the query process is explained with an example as

follows:

 The User Query is a search concept name on ―ScientificName” and search

concept value is “Asthenargus helveticus” these values are entered from the user

screen and clicking the get synonyms button (as shown in figure 7.xx) would invoke

the AJAX [176] codes of the Buffie system that communicates to the web service

layer and get the synonyms for the scientific name as ―aaaaaa‖, ―bbbbbb‖.

(A new example has to be introduced in this paragraph to demonstrate the service.)

Chapter 7. The BUFFIE Implementation

115

Figure 7.4: Buffie Utils Classes.

The BuffieEngine module receives the search concept name, concept value, synonyms

and the required format (e.g. Darwin Core, ABCD) of the response. The module now

knows what to search for and the next part is to find, where and how to search for

answers to these queries. DomainKnowledgeBase (DKB) components provides the

knowledge for where and how to search. Domain Knowledge Base is implemented as

a set of XML and XSLT files stored in a Config file repository. This repository is an

independent file structure which can be altered without affecting the Buffie common

access application. The BuffieProviderService module provides the information about

the provider like ―accessurl", "resource", "xslt template" using this

information Buffie engine uses the following algorithm to create request messeges.

Algorithm:

Step 1: Get the search concept name, concept value, synonyms

Step 2: Get a list of providers from the BuffieProvider Service

Step 3: For Each Provider

 {

 Loop Step 1: Get the Provider information accessurl, resourcename, xslt

template.

 Loop Step 2: Create Request XML message by using BuffieUtils components

 Loop Step 3: Create a BuffieMessage for the current provider

 Loop Step 4: Save the new message to database and add the same to the

 NewMessages collection

 } end loop

Step 4: Pass the NewMessages collection for asynchronous communication.

The NewMessages is a collection of BuffieMessage object and is stored in the local

buffie database, where the request and response properties are implemented as XML

Chapter 7. The BUFFIE Implementation

116

documents. Figure 7.5 shows a sample of the request XML created for the Darwin

Core provider.

Figure 7.5: Sample Request XML schema created by BuffieServices.

The BuffieEngine module implements the asynchronous communication with all the

providers using the .Net Framework 3.5 system delegate Func<(Of <(T, TResult>)>)

and assigning a lambda function (statements) to it. The lambda expressions use the

System.Net.WebResponse object to send the request to the destination URL. The

responses from the providers are updated in the corresponding BuffieMessage objects.

The following block of the code segment shows how it works.

//for each message submit the request string asyncronously to

provider

Func<BuffieMessage, BuffieMessage> f1 = uri =>

 {

 WebResponse response = WebRequest.Create(uri.RequestDestination

+

uri.RequestMessage).GetResponse();

 uri.ResponseMessage = new StreamReader

(response.GetResponseStream()).ReadToEnd().ToString();

 uri.ResponseReceived = DateTime.Now;

 var Res = BMS.UpdateMessage(uri);

 return uri;

 };

This module calls a method in the BuffieMessageService

(BMS.UpdateMessage(uri)) module and updates the local database with the

Chapter 7. The BUFFIE Implementation

117

response received from the provider. All the received responses are checked for

validity and the next process is to transform the response data and merge them into a

results.xml to be presented to the user. Each BuffieMessage object created in this

module has got the information about the transformation details and the response

XML messages and the procedure that invokes the transformation is shown as

follows:

 StringBuilder ResultsForQuery = new StringBuilder("<results>");

 NewMessages.ForEachParallel(f1, result => result.ForEach(val =>

 {

if(val.XSLTFileName != "None")

{

ResultsForQuery.Append(XSLTHelpers.XMLTransform

 (val.ResponseMessage, val.XSLTFileName,

null,null,null));

}else

{

 ResultsForQuery.Append("");

}

}));

ResultsForQuery.Append("</results>");

The C# 3.0 extension methods were created and attached to the NewMessages object

to perform recursive function calls. The XSLT transformation is performed on the

results using .Net framework‘s XslCompiledTransform class. The results XML is

loaded into an XpathDocument object [177] which provides a fast, read-only, in-

memory representation of an XML document using the XPath data model. The

Domain Knowledge Base (DKB) is implemented as XSLT templates and XML files

under the ―config‖ folder of the BUFFIE file system. Separate folders are used for

each specific communication protocols as shown in the figure 7.6. The DKB provides

the required XSLT template through the XmlReader class. When the Load method is

called in XslCompiledTransform, it reads the data-transformation template through

the XmlReader and creates an abstract syntax tree (AST) of the template including all

its imports and includes. Once the data-transformation template is fully loaded,

XslCompiledTransform can transform the input XML document.

Transformation of the input XML document to output involves the following steps:

1. Parsing the input document and building an in-memory XML tree

representation.

2. Transforming the input XML tree to the output tree.

Chapter 7. The BUFFIE Implementation

118

3. Serialisation of the output tree.

The transformation is applied to all the responses and appended to the results XML.

These final results are returned to the presentation layer and to the clients of the web-

service as the response to the initial query. The sample of the XSLT templates and the

result XML is shown in Appendix D.

Figure 7.6: DomainKnowledgeBase Implemented as XSLT files in config folders.

7.4 The Data Access Layer of the Prototype

The Data layer of the BUFFIE system is classified into two categories namely the

local BuffieDatabase and the independent heterogeneous and distributed data

providers. The role of the data providers in the BUFFIE system is to provide a

Chapter 7. The BUFFIE Implementation

119

response to the query in an XML format. They are located completely outside the

boundary of the BUFFIE common access system. The local BuffieDatabase forms the

main part of the data access layer and plays an important role in the functioning of the

BUFFIE framework. The local BuffieDatabase is accessed by the Business layer

using the Entity Data Model (EDM) framework. Figure 7.7 shows the Entity Data

model created for the BUFFIE framework. This EDM is a conceptual model defining

the entities and relationships used in the BUFFIE framework, and acts as a logical

model that represents the underlying relational model which is implemented in

Microsoft SQL server 2008. This provides a programmable interface using LINQ to

Entities [178]. The user entity deals with the secured authentication of the application

and for every new query a unique record is created with the query table and each

query can have multiple messages. Each message is created for a specific query and a

provider. The messages are stored as XML strings in the SQL database. All the data

communications are recorded in this data store for debugging and for future analysis.

The advantage of using this EDM gives the flexibility of changing the SQL storage

model without affecting the modules in the business layer.

Figure 7.7; Entity Data Model for BuffieDatabase.

Chapter 7. The BUFFIE Implementation

120

7.5 The Presentation Layer Prototype

BUFFIE framework is primarily a web based middleware system and hence there is

not much user intervention in the process of the dataflow apart from the initial user

query design and for the presentation of the results. Figure 7.8 shows the Query

design page of the Buffie web application.

Figure 7.8: Query Design Page.

The following figure 7.9 shows the results received from the various data providers

for the requested query. It displays the provider name and the data standard used for

the communication and the number of valid records returned for the query. The

display of the progress bar image in the column named ―Records Returned‖ shows the

outstanding status for response from the provider. The button ―download merged

data‖ presents the merged response from all the data providers.

Chapter 7. The BUFFIE Implementation

121

Figure 7.9: Query Results Page.

Please refer to the examples, shown in the following sections 7.6 and 7.7 in

conjunction with the outlook of the screenshots and description discussed in this

section, which illustrates the working of the BUFFIE system in achieving

interoperability of heterogeneous and distributed biodiversity data resources.

7.6 BUFFIE System Tested with Data Providers

This section describes the query process of the Buffie system with a real data example

that is shown as an interoperability demonstration of the BUFFIE system. It involves

the generation of a heterogeneous query based on the protocol and data standards used

by five different biodiversity data providers spread across Europe and USA. The

received responses from the heterogeneous data providers are integrated and

displayed to the user. This was a data demonstration performed to test the

interoperability of biodiversity data networks in the ENBI community, in a real-world

Chapter 7. The BUFFIE Implementation

122

scenario using our Cardiff server communicating with the data providers, and the

same server was being used by the clients‘ programs for harvesting the data from

multiple data providers. The following test used a species search on a specimen

commonly called as “Fig Fruit”.

Figure 7.10: Common Name: “Fruit-Fig”

ScientificName: “Guarea grandifolia DC.”

Source of Image: Smithsonian Tropical Research Institute (ESP)

When a user enters the search query in the Common Access web application, the

middleware layer of the BUFFIE system generates the query using the scientificname

for the Fruit fig as Guarea grandifolia DC. This source query from the

user is saved in the Buffie database – dbo.Query table with a QueryID

5, as shown in the next figure 7.11.

Chapter 7. The BUFFIE Implementation

123

Figure 7.11: UserQuery stored in the Buffie database.

In this demonstration five Data Providers from two different community networks are

used as shown in the following figure 7.12. This information about the data providers

consists of the biodiversity standards used by them and the access url for the

resources. Other parameters required to make successful web service communication

over the internet are also stored in the Buffie database in the dbo.providers table.

Figure 7.12: Heterogeneous data-providers information.

The Buffie system uses this knowledge about the data providers along with the

knowledge of the data derived form the query enriching process and generates the

Chapter 7. The BUFFIE Implementation

124

request XML queries. In this demonstration, for the query with QueryID as 5, five

data provider-specific request messages are created for the five different providers and

the responses received from them are also stored in the database in the dbo.Message

table as shown below.

Figure 7.13: XML Request and Response messages in Buffie system.

The expansion of the XML responses returned from the various data providers are

shown using the XML Spy tool in the following figures 7.14 to 7.17.

Figure 7.14: AustrianZobo data provider. (returns 3 records in a BioCASE data format)

Chapter 7. The BUFFIE Implementation

125

Figure 7.15: New York Botanical Garden from USA, Herbarium data provider.

(returns 10 records in a DWCV2 data format).

Figure 7.16: RealJardin Botanico data provider from Spain.

(returns 9 records in a DWCV2 data format).

Chapter 7. The BUFFIE Implementation

126

Of the five data providers used in testing of Buffie system four have responded with

suitable and successful response and one has timed out during the query request

process as shown in figure 7.13. The various XML responses were integrated using

XSLT templates and the integrated results are stored as a XML in the BUFFIE

database as shown in figure 7.17 below. This merged data is sent to the client web

application in the XML format requested by the user as a response to their initial

query.

Figure 7.17: Merged results stored in Buffie system.

7.7 BUFFIE System’s Interoperation with Linnaeus II

The previous section showed how BUFFIE can request and receive data

simultaneously from distributed heterogeneous data providers. This section describes

another demonstration of the use of BUFFIE to meet the objective of achieving

interoperability in the biodiversity domain among three types of distributed

components in three different countries: data providers, a data mediator and a data

user. As shown in figure 7.18, the demonstration, which was part of the ENBI Cluster

III project activities, involves a user using a web-based client program called

Linnaeus II hosted on a server at ETI in Amsterdam. The user's query originates from

the Linnaeus II program and is sent to the BUFFIE middleware framework‘s common

access system, which acts as a mediator, hosted on a Cardiff University server.

Chapter 7. The BUFFIE Implementation

127

The BUFFIE system has knowledge about the data protocols used by Linnaeus II and

by the participating data providers which can provide the answers to the user's query,

which concerns data from Israel. Hence the BUFFIE system requests the required

species information from the data providers, receives the responses and transforms

them to the required format. The transformed result is displayed in Linnaeus II along

with other information.

Figure 7.18: BUFFIE used by Linnaeus II to connect to providers databases.

This is further explained in the discussion section of Chapter 8 and in section 8.3.1.

All the images used in this section are sourced from the published documents of

Marbef [179] and other European projects presented in international seminars and

biodiversity meetings [180].

Chapter 7. The BUFFIE Implementation

128

Figure 7.19: BUFFIE demonstration with species data.

The above images show species data that was received from the BUFFIE middleware

as a response to the query, being displayed using Linnaeus II web pages and the same

species data are being displayed in an external website of ETI Bioinformatics, in

Amsterdam.

Chapter 7. The BUFFIE Implementation

129

Figure 7.20: BUFFIE demonstration with Linnaues II.

The images in figure 7.20 and 7.21 shows the species observation data collected using

the BUFFIE middleware framework which was hosted on a server at Cardiff

University. The BUFFIE system merged the heterogeneous data responses from the

species query and the co-ordinated information about the species is plotted against

maps of Israel to create a species distribution map of that country. The client program

displayed the distribution data using Linnaeus II web page and also using an external

website.

Chapter 7. The BUFFIE Implementation

130

Figure 7.21: Heterogeneous data merged using BUFFIE system used by client application.

The preceding images shown in this section (from Figure 7.18 through to 7.21) are

discussed here as evidences of real world client applications communicating to the

BUFFIE system to achieve interoperability across the heterogeneous biodiversity data

providers. The client systems such as Linnaeus II and other applications used the

BUFFIE system that was hosted on the Veenai server at Cardiff University

http://veenai.cs.cf.ac.uk:8080/BuffieService/services. The client applications

communicate with BUFFIE using a web service interface.

http://veenai.cs.cf.ac.uk:8080/BuffieService/services

131

8 CHAPTER 8

Evaluation & Discussion

8.1 Introduction

This chapter is used to assess the research project. We evaluate the functionality and

the extensibility of the BUFFIE system and then discuss the suitability of the

architecture and design of the framework for interoperation of biodiversity data

communication. The system was implemented with a three-tier architecture and some

flavours of web service orientation. The prototype components of BUFFIE v1.0 were

developed on the Java platform and the most recent version BUFFIE v2.0 was

developed on the Windows platform using the Microsoft .Net3.5 framework,

Chapter 8. Evaluation & Discussion

132

following a hybrid of object-oriented and functional design. The domain

knowledgebase was developed as XSLT templates and XML files in repositories. The

complex biodiversity data modelled using different XML data standards used by the

providers are required to interoperate in the BUFFIE system. Whenever disparate

systems are required to exchange information there will be a need for a test

programme to evaluate the extent of interoperability that can be achieved [22]. This

section is to analyse and discuss the research on various aspects and in particular

whether the set objectives of the research are met based on the evaluation criteria.

8.2 Evaluation

The end result of the system was measured to prove that the objective of the system

has been achieved. As stated, interoperability can only be achieved by designing and

building systems against a defined interoperability requirement, and then maintaining

that interoperability throughout the system changes and upgrades [22]. This

evaluation is performed against the hypothesis and objectives shown in chapter 1

which were to show that interoperability among heterogeneous biodiversity databases

can be achieved, by developing a new framework using a service oriented system

architecture with domain knowledge expressed in a knowledgebase, and could be

demonstrated by:

1. designing, developing and implementing a suitable framework,

2. designing the components and integrating the services required to perform the

interoperation process, and

3. developing a Web-based prototype application to verify the hypothesis using

test datasets.

The prototype system was deployed on a Windows platform and SQL server 2008

was used for the database. The efficiency of the BUFFIE system and the effectiveness

of the results from our research are measured in terms of following:

Chapter 8. Evaluation & Discussion

133

 Functionality of the BUFFIE framework with regard to its objective of

achieving the interoperability of biodiversity data and helping users to make

queries and receive the responses in the required format.

 Extensibility of the BUFFIE system with regard to its suitability to a dynamic

environment, where the data providers can be added or removed and the data

communication protocols are changed.

 The architecture of the BUFFIE system with regard to its design, performance,

maintainability and the role as query enrichment and response integration tool.

 Construction of the Domain Knowledgebase (DKB) with regard to its

structure and role as a repository which stores the schema mapping

information.

 Choice of XML as the data model used in our interoperable system, and the

protocols used to communicate with the data providers.

 Implementation of the BUFFIE system and demonstration of the BUFFIE

system being used to access real time biodiversity data by the users.

 Various applications of the BUFFIE system and the type of users who can use

it.

8.2.1 Functionality of the BUFFIE Framework

The BUFFIE system is a valuable common access tool for the users who want to

search biodiversity information based on the species name without having any

knowledge about the data providers and their communication protocol. It can also be

used as an Application Programming Interface to access or retrieve biodiversity data

from the distributed and heterogeneous data providers. The BUFFIE prototype system

provides a user interface for designing the initial query through a web application.

Another interface is provided for the client programs through a web-service. The main

functionalities of the BUFFIE system are:

Chapter 8. Evaluation & Discussion

134

 Query Enrichment

 Query Generation

 Query Messaging

 Response Schema Integration

 Presentation of the results

This query enrichment in the context of the search concept‘s data is very important to

find the correct answer for the queries from the data providers. The nature of

biodiversity data is that it may have multiple names for the same species across

different regions of the world. The user might search a scientific name and the data

provider might have indexed the required data against a synonym name. This

functionality enables a successful query result and it provides increased visibility of

the data in the data providers. Query generation function allows the user to submit one

query to the BUFFIE common access system and using that information it generates

multiple heterogeneous queries to the providers. Query generation consults the

Domain Knowledge Base to create the request messages. Query messaging

functionality provides the asynchronous sending and receiving of the request and

response messages respectively. This functionality uses the recursive functions and

multithreading which increases the performance of the communication between the

BUFFIE system and the data providers.

Response schema integration is responsible for making the semi-automatic structural

and semantic transformation of the heterogeneous XML responses received from the

data providers. This process is configurable through the application ―config‖ files and

the schema matching templates are produced at the design time using the auxiliary

knowledge provided by the domain experts. The transformed messages are merged

continuously in the run-time and presented to the user as an XML file in the required

schema. All these functionalities are performed as a middleware operation of the

query processing, so that the user need not have any knowledge about the

heterogeneous data providers and the method or data standards used for

communication.

Chapter 8. Evaluation & Discussion

135

8.2.2 Extensibility of the Framework Model

The BUFFIE system was created using the following design principles like:

 High cohesion: building the classes such that all the related functionalities like

query enrichment, query generation and schema matching templates are

grouped together.

 Low coupling: each module is encapsulated and the public interfaces are

clearly defined so that the dependency is minimised when any one component

needs to be updated.

 Separation of concerns and modularity: the components are separated into

modules that can be reused based on the functionality.

The design patterns followed in BUFFIE were a hybrid of object-oriented and

functional patterns. These principles and patterns allow BUFFIE to achieve the

requirements and make the system maintainable and extensible. The framework is

configurable by using the settings of the system variables in the XML files. It allows

the adding or removing of the data providers without affecting the query processing

functionality of the system. Due to the dynamic nature of the biodiversity data, the

corresponding XML representation in the standards could change. This problem is

resolved in BUFFIE system because of the extensible feature, because a new request

XML schema format and schema matching template can be introduced into the

―config‖ folders of the system replacing an old schema. The BUFFIE system does not

follow a universal data model approach for representing the data. Instead it uses the

XML data structure of the data providers and transforms them dynamically to the

required format of the user. The BUFFIE core system has the operational logic of the

framework and the domain knowledge is fetched from a separate knowledge base.

This makes the BUFFIE framework flexible and reusable to other data domains with

minimal changes and adding a new knowledgebase to the framework.

Chapter 8. Evaluation & Discussion

136

8.2.3 Architecture of BUFFIE Framework

Designing and developing a common access system to resolve the interoperability

problem in biodiversity data networks presents numerous entities to work with and

also involves complex business rules to be defined. A structured guidance is needed to

create the components using architectural patterns. The architecture of the BUFFIE

system describes the organisational structure of the system and it specifies the

responsibilities of all the components. The architectural design for the BUFFIE

system is shown on Figure 5.1 which is a ―Multi-layered Web based Service Oriented

Architecture‖. The BUFFIE architecture includes two main subsystems:

 Query Enriching: Figure 5.5 shows the architecture diagram for the user query

enrichment and section 5.5 describes its functionalities.

 XML Schema Matching: Figure 5.2 shows the architecture diagram for the

schema matching process for the responses from the data providers.

 Though the BUFFIE framework architecture shows all the components

involved in the framework, the Common Access System functions like a middleware

which does all of the query processing and is designed in the Business logic layer.

 The presentation layer is a very thin component which has two types of

interface to make a query and receive the responses: The web page for the end

users to access the Buffie Common Access System and a Web service for the

client programs such as analytical tools to communicate with BUFFIE.

 Buffie Core Components: includes the business rules and is responsible for the

main middleware framework which is independent of the data domain.

 Buffie Services: exposes the Buffie Core objects and orchestrates the

workflow of the query processing, right from query enriching, query

generation, response integration and results presentation. Buffie Utils provide

the helper functions to the services of the framework.

Chapter 8. Evaluation & Discussion

137

 Domain Knowledge Base: consists of XML repository and XSLT templates

which are based on a data domain model. These are functional modules that

take the input and transform them based on the rules and provide the output

result.

 Data Providers: the data providers of the BUFFIE system are independent,

heterogeneous and distributed. They provide response for the query in the

form of XML messages over the internet.

 Data layer and BUFFIE local database: Buffie database supports the operation

of the main framework and is used for data persistence. The data layer was

designed using the .NET3.5 Entity framework model

8.2.4 Domain Knowledge Base (DKB)

The Domain Knowledgebase (DKB) has been developed as a set of XML and XSLT

files and is included in the BUFFIE system with a specific folder structure under the

config folders. Biodiversity schema matching information of the participating

schemas are built into these XSLT templates as functions. This schema matching

logic is based on the mapping tables of the various biodiversity XML standards as

shown in appendix A and the auxiliary information provided by the domain experts.

The XSLT templates were built during design time but the transformation of data

during runtime is continuous as the DKB fetches the right transformation template

based on the providers‘ response format. The provider information from the DKB is

used by the query generation to produce multiple heterogeneous queries from the user

query. The user enters the detail for What to Query? DKB provides the knowledge of:

 How to send query

 Where to send the queries and

 How to transform and merge the responses

Domain Knowledge Base is extensible in design and functionality, for example if a

new provider with a proprietary XML data standard needs to be included in the

BUFFIE system, then the access details should be added to the providers list and a

Chapter 8. Evaluation & Discussion

138

new XSLT transformation template with the mappings logic for the schema should be

added to the config folders of the BUFFIE system. The common access system will

automatically pick up these details during query generation and the response

transformation. Similarly existing templates can be updated and replaced into the

DKB component without any knock-on effect on the other components of the

BUFFIE framework.

8.2.5 Applications of the BUFFIE Common Access System

Colossal amounts of biodiversity data are captured and stored in digital databases.

These databases are distributed, with different data representation and they use

different data standards for data exchange. End users may not have enough knowledge

to access these data or about the data format of the data providers. The use of existing

applications allows them to query the data from providers that are participating in a

homogenous data networks like set of Darwin Core providers or set of ABCD

providers. Our BUFFIE common access system provides the flexibility of allowing

the users to query various data providers who use heterogeneous data standards for

communication. It also allows them to specify the format of the response so that the

heterogeneous responses from the providers are transformed and integrated as

required. The system can be used in two different ways:

1. User search for species information: An end user after successful

authentication can log in to the Common Access system using the web

application forms. In this approach the user can design the query by fetching

search concept and search value and the required format of response. The user

can invoke the ―GetSynonyms‖ button to enable the query enriching process to

his query. Then the Business logic of the BUFFIE system performs all the

required process and returns the response in an XML format in the web

application.

2. Data Harvesting and Analysis by client tools: The second approach is a

programmatic interface, in which the BuffieServices component can be

accessed through a client program using the published web-services. The web

Chapter 8. Evaluation & Discussion

139

service methods receive the query in the format of name/value string type

parameters and return the result as XML string to the calling client programs.

8.2.6 Implementation and Verification of the BUFFIE System

The first version of the common access system prototype BUFFIE v1.0 system was

implemented in a java platform using the tool Borland Jbuilder enterprise 2005. The

main application components were created as Java classes and the web application

using JSP. The system does not persist the state of the query process and rather it acts

like a middleware system that presents all the responses to the user. The

transformation components were built using XSLT, Xpath and JDOM parser. This

web application and web service were deployed on the Apache Tomcat server on

windows 2003 server. The latest version of the common access system prototype

BUFFIE v2.0 is implemented in Microsoft .Net3.5 framework, and developed using

Visual studio 2008. The BUFFIE framework components are developed using C#3.0,

ASP.NET3.5 and the domain knowledge base is implemented using XSLT, XML and

XPath. The advancement in this version is that it provides a better system with much

newer functionalities like:

 Better design and architecture using hybrid patterns of object-oriented and

functional design.

 Data persistence using an Entity Data Model and LINQ to XML technologies

and local Buffie Database using SQL server2008.

 Flexible and pragmatic approach that use knowledge base to achieve

interoperability like

o Query enriching using the search concept value.

o Response schema matching with functions.

 Better extensibility of components, performance due to multithreaded

programming and lesser codes.

This system is deployed on a server using Internet Information Services (IIS7.0) and

SQL Server2008.

Chapter 8. Evaluation & Discussion

140

8.3 Discussion

Interoperability has been the most challenging and most important requirement when

it comes to querying information from heterogeneous and distributed data resources.

This problem is further magnified when the data resources are autonomous and the

volume of data is increased. Many research projects are following different

approaches to resolve this issue, such as a data warehouse approach, a data standards

approach, or building a universal schema for the data domain. But none of these

approaches has succeeded in solving the interoperability problem fully or sustaining

the level of success achieved, over a period of time. This is certainly due to the

dynamic nature of the data and the representation of it in the data providers.

Unlike many other research projects that typically apply one specific approach or

technique, BUFFIE applies a hybrid of software engineering technologies and a

comprehensive approach including enriching request queries and integration of

heterogeneous responses for achieving interoperability among biodiversity data

networks. In the context of heterogeneous data resources interoperability standards

are the main and primary step to accomplish data exchange. The downside of

standards is that they have a tendency to quickly evolve away from the initially

perfected norm, where the modifications are conditioned by participating systems

capabilities, workflows and changing business requirements of the data providers. As

the data providers are autonomous and independent, Buffie provides a middleware

approach to solve interoperability issue. Earlier interoperability projects in the

biodiversity domain were either a provider-centric approach or user-centric approach

in which all the participating data providers agree to use a particular common standard

that has given rise to community of networks.

The flexible architecture used in Buffie is a middleware approach where the main

advantage is the extreme independence for the data providers and the users. One

downside of using XSLT templates in the domain knowledge base is that the number

of templates required increases rapidly with an increase in the number of protocols

used in the Buffie system. In this research we aimed to resolve the interoperability

issues using our framework, between communities of data providers that already

Chapter 8. Evaluation & Discussion

141

adopted one of the established data standards of the domain. This network of

communities and their established data standards, determines the number of XSLT

templates (rule-sets) required for interoperation. If there are n input formats and r

output groups of standards, then the number of XSLT combinations required is

usually determined by the formula C(n, r) = n! / r! (n - r)!). In this case, where pairs

of formats require conversion templates, r= 2 and C(n) = n (n-1) / 2.

For example in the biodiversity domain there are about 4 or 5 data standards as

described in Section 2.5. Assuming 1 transformation template for each pair then there

needs to be C(5) = 5 * 4 / 2 = 10 XSLT templates. This assumes that a single

template can be designed to perform two-way transformations between the data

standards, but such reverse transformations may not be possible in all cases, so twice

this number of one-way conversion templates may be needed. Where possible the

transformations can be routed using a central schema and in other cases direct

transformation templates are to be created. Combining these two transformation

possibilities the requirement of the XSLT templates can be optimised. In our example

of 5 data standards this can vary from a minimum of 4 (if the central schema is one of

the providers‘ standards) to a maximum of 10 templates. The advantage of using a

central schema for transformation with in the Buffie architecture between the input

and output schemas helps to significantly reduce the number of translations required

for interoperability. BUFFIE exploits the most prominently used biodiversity data

communication schemas like Darwin Core and ABCD and the domain experts

published knowledge for creating the mapping relationships between the various

concepts.

ABCD is used as a default universal data standard or central schema for routing

transformations between protocols in the system. We conducted experiments with

data from the providers and compared the result, since this is a new framework and

we have no other similar approach available for comparison, we evaluated the overall

interoperability results using examples. Please refer to the examples shown in the

Chapter 7 sections 7.6 & 7.7 that demonstrates the interoperability of biodiversity

data.

Chapter 8. Evaluation & Discussion

142

8.3.1 Verifications of Goals Achieved

Based on the objectives of this research identified in chapter 1 (section1.5, 1.6) we

have achieved the following goals and verified them using tests:

 Designed and developed a Flexible Framework for Interoperability between

heterogeneous and distributed biodiversity data resources, which were using

various XML data standards for communication.

 Tested the BUFFIE common access system, Query Enriching part using the

SPICE Species 2000 web service. The Domain Knowledge base was

implemented using XML and XSLT templates and using LINQ technologies

the data schema matching were performed in the BUFFIE v2.0 system.

 Demonstrated the frameworks architecture and working of the application at

the international biodiversity seminars and meetings [136].

 The BUFFIE system was used to support a network of research teams in three

countries:

 Researchers using the Israel Biodiversity Information system (BioGIS)

used the BUFFIE system to harvest data from other data resources

irrespective of the standards of the data providers [181].

 Researchers using the Linnaeus II online system from ETI Bioinformatics

in Amsterdam, which used the BUFFIE system to access species data from

Darwin Core and ABCD data providers [180].

 The BUFFIE application was hosted on an Apache Tomcat web server

running on a Windows Server 2003 platform at the Cardiff University

URL: http://veenai.cs.cf.ac.uk:8080/BuffieService and was accessed by the

client programs described above [183]. The results are shown in Chapter 7

sections 7.7.

The data providers for these client programs through the BUFFIE common access

system were ―IsraelSnails‖ from Amsterdam server in a Darwin Core format and

―AustrianZobo‖ from Austria server in a ABCD format.

Chapter 8. Evaluation & Discussion

143

8.4 Applicability and Limitations

Although the BUFFIE system has successfully demonstrated the possibility of both

structural and semantic interoperability between heterogeneous and distributed

biodiversity data bases that use XML data standards for communication, it has some

limitations with its applicability. This approach would be best suited in domains

where variety of schemas exists and for which the solution of moving rapidly to a

common schema is unlikely. The limitations are primarily due to practical difficulties

and also due to the nature of the data in the biodiversity domain.

 The BUFFIE framework currently allows only those data providers who use

XML format for data communication in the biodiversity data domain. This

might exclude legacy systems that use flat file structures or objects for data

exchange. This can be mitigated by using wrappers at the data providers‘ end

that could convert their proprietary data structure into an XML data structure.

 The current implementation of the BUFFIE framework uses XSLT and LINQ

technologies in its flexible architecture to achieve structural and semantic

interoperability. The semantic interoperability can be enhanced by replacing

XSLT transformations rule-set by well defined and fit for purpose ontologies

that can mediate between the related concepts defined in the heterogeneous

data standards.

 The BUFFIE prototype system can only interoperate between the data

providers whose XML communication knowledge is provided to the

knowledgebase component of BUFFIE during the design time. It uses a core

schema as reference for example ABCD format to create new mapping rules

used by the domain knowledge base component of the system.

 The developer of the knowledgebase modules needs to be aware of the

relevant biodiversity data concepts and will have to update their systems to

accommodate new data structure schemas as biodiversity standards progress.

Chapter 8. Evaluation & Discussion

144

 Though data modelling using ontologies can be very useful for semantic data

integration, this was not included in the design of the BUFFIE architecture as

there were no established biodiversity domain-specific ontologies that will fit

our purpose for the interoperability. If any ontology model is to be used with

BUFFIE then it would need to be converted to RDF XML and XSLT using

tools like Protégé.

 The research aim is to develop a prototype as a ―proof-of-concept‖ for the

objectives of this research and hence will use the only ―species scientific

name‖ concept for query enrichment and query search. This can be extended

to other concepts in the biodiversity domain.

 This interoperable approach can be implemented in other data domains such as

health-care and, astronomical data where a variety of data standards exist but

the number of well established standards in practical use are limited. For

example in the health care domain the most used clinical data codes are

'Systematized Nomenclature of Medicine Clinical Terms' (SNOMED-CT) and

NHS-Read Codes [182]. The maintenance problem of this approach could

increase with the scale of the different XML standards available for

interoperation. However this can be leveraged by dynamically choosing one of

the best possible schemas from the available set of schemas as the core schema

for data transformation.

145

9 CHAPTER 9

Summary, Conclusion and Future Work

This chapter concludes the thesis by briefly summarizing the research

work, presenting the conclusions of the thesis and addressing the future

scope for further work and development.

9.1 Thesis Summary

We have presented a flexible framework (BUFFIE) to interoperate between the

distributed and heterogeneous biodiversity data resources that communicate using

XML data standards. A general overview of the interoperability problem was

discussed and how the various levels of interoperability like technical, structural and

semantic interoperability were described. This research is specifically concerned with

the interoperability problem in biodiversity XML standards. The solution proposed

was providing a flexible framework that would allow structural and semantic

interoperation of biodiversity protocols using software engineering technologies. The

causes of the interoperability and different approaches to solve them and the related

Chapter 9. Summary, Conclusion and Future Work

146

projects in the biodiversity domain were presented. After that we explained the

different technologies of software engineering that can be applied to resolve the

interoperability issues. This approach involves a new framework that is flexible and is

based on the multi-layered web based service oriented architecture. Based on the

architecture a prototype system called BUFFIE was developed that interoperates

between the XML data standards used by the data providers. This is achieved using

the following functionalities of BUFFIE:

 User query enriching based on the search concept value

 Multiple query generation for heterogeneous data providers

 Asynchronous messaging service between BUFFIE and data access

point

 Response schema integration.

Query enriching is performed using the AJAX technique calling the synonym web-

service. BuffieCore objects, BuffieServices and BuffieUtils orchestrate the complete

query processing and they use BuffieDatabase for data persistence during the different

stages of processing of BUFFIE system. BuffieCore objects represent the main

framework and define the business logic rules for query processing and are

independent of biodiversity data domain.

Query generation and the schema integration use the Domain Knowledge Base

(DKB). The DKB is specific to the biodiversity data domain and is created using

XML configuration files, XSLT mapping templates that were generated in the design

time of the system. The published mapping details for the data standards and the

auxiliary information provided by the experts were used by the developers to generate

the mapping logic. LINQ to XML and XPathdocument components from .Net

framework 3.5 were used for transforming and integrating the heterogeneous

responses from the providers. The first version of the prototype BUFFIE v1.0 was

developed on a Java platform and deployed on Apache Tomcat server. JDOM parser

was used for implementing XML and XSLT transformation. A more stable version of

this system is deployed on a production server at Cardiff University (Veenai) [183],

which was used by other client programs for accessing species data from different

Chapter 9. Summary, Conclusion and Future Work

147

data providers. BUFFIE v2.0 is an advanced version and is implemented using C#3.0,

LINQ to XML components and functional programming using extension methods,

lambda functions and asynchronous threading model. The results were tested and

found to have achieved the objectives of interoperation between the heterogeneous

and distributed biodiversity data resources that were using different XML data

structures for communication.

Thus this Buffie framework has served to demonstrate the hypothesis originally

formulated in section 1.4, namely that

 ―Interoperability among distributed, autonomous and heterogeneous

biodiversity databases can be achieved by developing a new framework that exploits

the synergies of multi-layered service-oriented system architecture, domain

knowledge expressed in a knowledgebase designed using XML, XSLT and object-

oriented functional design of components.‖

9.1.1 Publications from Thesis

During the course of this research work, communication with the computer science

and biodiversity communities was maintained through seminar meetings, conference

presentations and writing documentation and manuscripts. This has resulted in the

following peer reviewed publications:

 “The BUFFIE Architecture” was presented to the domain experts at the

Biodiversity conference meeting in Stockholm, Sweden in 2005. This

publication was made after an analysis of the related literature review,

interoperable technologies and has contributed to validate the proposed system

design and framework model to the experts of the community. Please refer to

[136] in bibliography that relates to the work reported in chapters 4, 5 and 6.

 “Web Based Middleware Framework for Interoperability between

Heterogeneous, Distributed Biodiversity Data Resources” was presented at

the International Software Engineering conference at Innsbruck, Austria in

2007. This presentation and publication of the paper relates to our prototype

Chapter 9. Summary, Conclusion and Future Work

148

implementation based on the proposed BUFFIE framework architecture. The

material contributes to validate the achievements of our research work towards

the objectives of our research in interoperability among the participating data

providers. Please refer to [181] in the bibliography that relates to the contents

of this thesis from chapters 2 to 8.

 “A Service Oriented Architecture with Domain Knowledge Base for

Interoperability of Heterogeneous Distributed Biodiversity Resources” was

presented at the International Software Engineering conference at Cambridge-

MIT, Massachusetts, USA in 2009. This presentation and publication of the

paper contributes to the overall research work. This material is used in the

thesis right from stating the objectives of the research, proposed architecture

of BUFFIE framework, querying process and integration of response data. The

outcome of this presentation was used in the discussion and verification

sections of this thesis work. Please refer to [149] in the bibliography; elements

of this paper are to be found in chapters 2 to 9 of this thesis.

9.2 Conclusions

The novelty of this research work is in that, interoperation in biodiversity databases

are achieved at three different levels using a new flexible framework. At the

biodiversity domain level this is the new framework for achieving interoperability

between heterogeneous data providers, using XML based communication protocol. At

the software engineering and implementation viewpoint the research shows the novel

uses of service oriented architecture with Functional programming that uses Lambda

functions, LINQ to XML and XSLT technologies to achieve interoperability. At the

data level using the expert knowledge of biologists and matching tables for XML

standards are used to produce the mappings logic that can be used for interoperation

by integration. The previous approaches either use a global universal schema to

accommodate all the available standards, or demand the data resources to accept

query and return responses in a specific standardized format.

Chapter 9. Summary, Conclusion and Future Work

149

In this approach there is no centralized global schema, instead the framework is made

flexible, that the conversion or transformation logic is updated with any required

changes. This feature is best suited with the dynamic nature of the biodiversity data

and also helps to preserve the autonomy of the data providers. The framework design

and architecture clearly separates the business logic rules of the query processing

system from the data domain knowledge base. This makes the system more generic

and gives the flexibility of plugging in a new knowledge base to work in a different

data domain. Another advantage of the framework is that the data units used in the

different components of the BUFFIE system are either objects with serialization

capability or plain XML document object. The BuffieDatabase persists the query

messages and the results of all the response transformations in XML data types.

9.3 Future work

The research work presented in this thesis can lead to a number of exciting

possibilities for future work in many ways. There are both biodiversity domain based

data interoperability issues and software engineering based framework

interoperability issues. These issues can be addressed to overcome the limitation

described in the section 8.5 and to increase the effectiveness of the framework to

achieve better structural and semantic interoperability between heterogeneous and

distributed biodiversity data resources that use XML standards. The biodiversity

research community is already working towards the open framework and conducting

workshops and special interest group discussions to work in the area of biodiversity

data interoperability using standards, protocols and open architectures. For example

the GIGAS project promotes the coherent and interoperable development [184],

[185]. We suggest the following lists for future work:

 The scope of query enriching can be expanded by including more third party

web services that can enhance the value of the search concepts. For example

the search concept can be enhanced by adding some value using the attributes

about the user to choose the data providers accordingly that suit his

requirement.

Chapter 9. Summary, Conclusion and Future Work

150

 Although we have exploited the fact that the data providers have implemented

specific mechanisms to query their data through wrappers, using SQL and

SPARQL to directly query the biodiversity data from the participating data

providers could be considered for future work.

 The semi-automatic process of schema matching can be improved so that the

mapping logic is formed based on the data by using multiple knowledge bases

spanning across many interrelated domains.

 The scope of the biodiversity XML data standards covered can be increased.

Biodiversity domain ontologies can be constructed and they can be used into

the BUFFIE architecture in place of the domain knowledge base. Using

biodiversity ontologies could improve the level of semantic interoperability

achieved by the BUFFIE system and reduce the number of transformation

templates required for interoperation.

 The Buffie v2.0 prototype can be improved by adding more data providers

who can fetch the data for the users query through BUFFIE system. This can

also be hosted by an appropriate organisation to provide a production service

with high availability of data to users.

151

Bibliography

[1]. James, L. E., Meredith, A.L. and Ebbe, S. N. Interoperability of biodiversity

databases: Biodiversity Information on Every desktop. Science Magazine. 2000, Vol.

289, pp. 2312-2314.

[2]. Conn, BJ. Information standards in botanical databases-the limits to data

interchange. Telopea. 2003, Vol. 10, 1, pp. 53-60.

http://www.rbgsyd.nsw.gov.au/__data/assets/pdf_file/0005/72707/Tel10Con053.pdf.

[3]. W3C. Extensible Markup Language (XML) 1.0 W3C. World Wide Web

Consortium. [Online] 26 November 2008. http://www.w3.org/TR/2008/REC-xml-

20081126/.

[4]. Jones, A. C., White, R.J., X, Xu., Pittas, N., Gray, W.A., Fiddian, N.J..

SPICE: A Flexible Architecture for Integrating Autonomous Databases to Comprise a

distributed catalogue of Life. s.l. : Springer-Verlag, 2000. pp. 981-992.

[5]. Wieczorek, John. The Mammal Networked Information System. MaNIS Portals.

[Online] University of California, Berkeley, CA 94720., 18 Mar 2009. [Cited: 10 Nov

2009.] http://manisnet.org/portals.html.

[6]. Holetschek, J. and Döring, M. Biological Collection Access Services. BioCASE

Portal. [Online] Botanischer Garten und Botanisches Museum, Berlin, Germany,
2005. [Cited: 10 Nov 2009.] http://www.biocase.org/.

[7]. He, Hao. What Is Service-Oriented Architecture. [Online] 30 September 2003.

[Cited: 11 02 2009.] http://www.xml.com/lpt/a/1292.

[8]. Gruber, T R. Toward principles for the design of ontologies used for knowledge

sharing. Formal Ontology in Conceptual Analysis and Knowledge Representation.

[ed.] Nicola Guarino and Roberto Poli. International Workshop on Formal Ontology,.

March 1993. http://www-ksl.stanford.edu/KSL_Abstracts/KSL-93-04.html.

[9]. Ram, Sudha and Park, Jinsoo. Semantic Conflict Resolution Ontology

(SCROL) An Ontology for Detecting and resolving Data and Schema-Level Semantic

Conflicts. IEEE Transactions on Knowledge and Data Engineering. 2004, Vol. 16, 2.

Bibliography

152

[10]. Preece, Alun., Gray, Alex., Bench-Capon, Trevor., Cui, Zhan. The KRAFT

Architecture for Knowledge Fusion and Transformation. Knowledge-Based Systems.

April 2000, Vol. 13, 2-3, pp. 113-120.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7912.

[11]. California Biodiversity Council. Scientific Definitions of Biodiversity.

California Biodiversity Council. [Online] California Biodiversity Council, 2008.

[Cited: 31 August 2009.] http://biodiversity.ca.gov/Biodiversity/biodiv_def2.html.

[12]. Heidorn, Bryan P. Biodiversity and Biocomplexity Informatics: Policy and

Implementation Science versus Citizen Science. 2nd ACM/IEEE-CS joint conference

on Digital libraries. 2002, pp. 362 - 364.

[13]. Paterson, T and Kennedy, J. Approaches to Storing and Querying Structural

Information in Botanical Specimen Descriptions. 21st Annual British National

Conference on Databases (BNCOD21). 2004, pp. 80-91.

[14]. J, Kennedy., Hyam, R., Kukla, R., Patterson, T. A Standarad Data Model

representation for Taxonomic Information. A Journal of Integrative Biology -OMICS.

June 2006, Vol. 10, 2, pp. 220-230.

[15]. Wiederhold, Gio. Intelligent integration of information. Proceedings of the

1993 ACM SIGMOD international conference on Management of data. ACM New

York, NY, USA, 1993, pp. 434 - 437.

[16]. Bisby, Frank A. The Quiet Revolution: Biodiversity Informatics on the Internet.

Science, 289. Science/AAAS - Cambridge, September 2000, Vol. 289, 5488, pp. 2309

- 2312.

[17]. European Topic Centre on Biological Diversity. Eionet. [Online] Eionet:

European Information and Observation Network, 26 08 2009. [Cited: 10 Nov 2009.]

http://biodiversity.eionet.europa.eu/.

[18]. Wegner, Peter. Interoperability. ACM Computing Surveys. Rhode Island, ACM

New York, NY, USA, March March 1996, Vol. 28, 1, pp. 285 - 287.

http://doi.acm.org/10.1145/234313.234424.

[19]. Saarenmaa, Hannu. Sharing and Accessing Biodiversity Data Globally. ESRI

User Conference. San Diego, March 2006.

http://www.esri.com/news/arcuser/0206/biodiversity1of2.html.

[20]. GBIF Secretariat. GBIF Portal. GBIF Portal. [Online] GBIF Secretariat,

Universitetsparken 15, DK-2100 Copenhagen, Denmark, 2009. [Cited: 31 August

2009.] http://www.gbif.org/.

[21]. Beller, Aaron. Local GIS Biodiversity Portals. ENBI - ENBI community.

[Online] ENBI, 15 September 2005. [Cited: 31 August 2009.]

http://circa.gbif.net/irc/DownLoad/kqerA1J_moGCXrhcFjRxPI1q6sjeQGdU/FkPuSj6

eLHj2p04_NH_UWx7uLXPq7T16/g24pYxtvF37u/GIS%20portals%20at%20ENBI_

Sp2Keu.pdf.

Bibliography

153

[22]. Pridmore, J. and Rumens, D.J. Interoperability-how do we know when we

have achieved it? Command, Control, Communications and Management Information

Systems, 1989. IEEE explore Digital Library, May 1989, pp. 192-205. Software

Sciences Ltd,.

[23]. Bassman, Mitchell J., Dahlke, Carl and Russell, Lucian. Development of an

interoperability tool for software engineering environments. Proceedings of the fifth

Washington Ada symposium on Ada. ACM New York, NY, USA, 1988, pp. 49 - 57.

[24]. Park, Jinsoo and Ram, Sudha. Information systems interoperability: What lies

beneath? ACM Transactions on Information Systems. ACM New York, NY, USA,

October 2004, Vol. 22, 4, pp. 595 - 632.

[25]. Berendsohn, Walter G. Access to Biological Collections Data. Biodiversity

Informations Standard TDWG. [Online] ABCD Task Group , 23 August 2007 .

[Cited: 10 Nov 2009.] http://www.tdwg.org/activities/abcd/.

[26]. Wieczorek, John. DarwinCore Group - DwC. Biodiversity Data Standards

TDWG . [Online] TDWG Task Group, 19 Feb 2007 . [Cited: 10 Nov 2009.]

http://www.tdwg.org/activities/darwincore/charter/.

[27]. Lakshmanan, Laks V. S. and al., et. Languages for multi-database

interoperability. Proceedings of the 1997 ACM SIGMOD international conference on

Management of data. ACM New York, NY, USA, 1997, pp. 536 - 538. ISBN:0-

89791-911-4.

[28]. Microsoft. Microsoft BizTalk Server . Microsoft . [Online] Microsoft , 2009.

[Cited: 10 Nov 2009.] http://www.microsoft.com/biztalk/en/us/overview.aspx.

[29]. Altova. Altova MissionKit – Suite of XML, Database & UML Tools. Altova

XML Editor. [Online] Altova, 2009. [Cited: 10 Nov 2009.] http://www.altova.com/.

[30]. Davis, Leigh A., Payton, Jamie and Gamble, Rose. How system architectures

impede interoperability. Proceedings of the 2nd international workshop on Software

and performance. Ottawa, Ontario, Canada: ACM New York, NY, USA, 2000, pp.

145 - 146. ISBN:1-58113-195-X.

[31]. Weber, Darcy Wiborg. Data Topology and Process Patterns for Distributed

Development. LNCS - Software Configuration Management. Springer Berlin /

Heidelberg, January 2003, Vol. 2649/2003, pp. 206-216,. 978-3-540-14036-8.

[32]. Kelkar, A and Gamble, R. F. Understanding the Architectural Characteristics

behind Middleware Choices. 1st International Conference in Information Reuse and

Integration. November 1999.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.2654.

[33]. Jakobovits, Rex. Integrating Autonomous Heterogeneous Information Sources.

Dept. of ComputerScience & Engineering, University of Washington. 1997.

ftp://ftp.cs.washington.edu/tr/1997/12/UW-CSE-97-1 .

Bibliography

154

[34]. Object Management Group. CORBA Architecture and Specification, July

Revision 2.0. s.l. : Object Management Group, 1995.

[35]. Brockschmidt, Kraig. Inside Ole (Microsoft Programming Series). s.l. :

Microsoft Press, May 1995. Vol. 2nd. ISBN-13: 978-1556158438.

[36]. Wiederhold, Gio. Interoperation, Mediation, and Ontologies. International

Symposium of Fifth Generation Computer Systems (FGCS94). Tokyo, Japan, 1994,

pp. 33-48.

[37]. Wiederhold, Gio. Mediation in Information Systems. ACM Computing Surveys.

ACM, NY, USA, June 1995, Vol. 27, 2.

[38]. Duwairi, R. M., Fiddian, N. J. and Gray, W. A. A Multiple View Definition

System for Supporting Interoperability among Heterogeneous and Autonomous

Databases. 10th ERCIM Database Research Group Workshop on Heterogeneous

Information Management. Prague, ERCIM, 1996.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.1309&rep=rep1&type=p

df.

[39]. Karunaratna, D.D, Gray, W.A. and Fiddian, N.J. Organising Knowledge of a

Federated Database System to Support Multiple View Generation. 5th KRDB

Workshop (Knowledge Representation meets Data Bases). Seattle, Citeseer, May

1998.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.5829&rep=rep1&type=u

rl&i=0.

[40]. Litwin, Witold, Mark, Leo and Roussopoulos, Nick. Interoperability of

Multiple Autonomous Databases. ACM Computing Surveys. ACM, NY, USA,

September 1990, Vol. 22, 3.

[41]. Research Collections. COMPONENT DATABASE SYSTEMS. [ed.] Klaus

Dittrich and Andreas Geppert. s.l. : MORGAN KAUFFMAN, 2000. p. 294.

http://www.elsevier.com/wps/find/bookdescription.cws_home/677928/description?na

vopenmenu=4. ISBN-13: 978-1-55860-642-5.

[42]. Bontempo, Charles and Zagelow, George. The IBM Data Warehouse

Architecture. Communications of the ACM. ACM, NY, USA, September 1998, Vol.

41, 9.

[43]. Terrasse, Marie-Noelle, et al. Do We need metamodels and Ontologies for

Engineering Platforms? Proceedings of the 2006 international workshop on Global

integrated model management. ACM New York, NY, USA, Shangai, 2006, pp. 21 -

28. ISBN:1-59593-410-3.

[44]. Malucelli, Andreia, Palzer, Daniel and Oliveira, Eugénio. Ontology-based

Services to help solving the heterogeneity problem in e-commerce negotiations.

Electronic Commerce Research and Applications. 4 November 2005, Vol. 5, 1, pp.

29-43 .

Bibliography

155

[45]. Su, Xiaomeng and Gulla, Jon Atle. An information retrieval approach to

ontology mapping. Data & Knolwedge engineering . 2006, pp. 47-69.

[46]. Australian Government, DEWHA. Biodiversity and its value. Biodiversity

Publications. [Online] Paper no. 1, 1993.

http://www.environment.gov.au/biodiversity/publications/series/paper1/what.html.

[47]. The Linnean Society of London. Carl Linnaeus - The father of modern plant

and animal classification . The Linnean Society of London. [Online] The Linnean

Society of London, 2009. [Cited: 31 August 2009.]

http://www.linnean.org/index.php?id=51.

[48]. Butz, Stephen D. Science of Earth Systems. 2. s.l. : Delmar Learning , 2007. p.

655. ISBN-13: 978-0766833913 .

[49]. Giri, Chandra Prasad., Shrestha, Surendra., Foresman, Timotthy W.,

Singh, Ashbindu. GLOBAL BIODIVERSITY DATA AND INFORMATION.

United Nations Economic and Social Council. [Online] 2009. [Cited: 10 Nov 2009.]

http://www.unescap.org/stat/envstat/stwes-26.pdf.

[50]. CBD Secretariat . Convention on Biological Diversity. Convention on

Biological Diversity. [Online] Secretariat of the Convention on Biological Diversity ,

16 Nov 2009. [Cited: 16 Nov 2009.] http://www.cbd.int/convention/.

[51]. Royal Botanic Garden Edinburgh . Biodiversity Collections Index.

biodiversitycollectionsindex.org. [Online] Royal Botanic Garden Edinburgh , 2008.

[Cited: 31 August 2009.]

http://www.biodiversitycollectionsindex.org/static/index.html.

[52]. Lindström, Jan. Database model for taxonomic and observation data.

Proceedings of the 2nd IASTED international conference on Advances in computer

science and technology. ACTA Press Anaheim, CA, USA, 2006, pp. 316 - 321. ISBN

~ ISSN:1482-7905 , 0-88986-545-0.

[53]. SABIF. Standard and Protocols . SouthAfricanBiodiversityInformationFacility.

[Online] Department of Science&Technology - , 2009. [Cited: 1 September 2009.]

http://www.sabif.ac.za/index.php?option=com_content&view=article&id=17&Itemid

=49&showall=1.

[54]. ISO Central Secretariat . About ISO . International Standards for Business,

Government and Society. [Online] ISO Central Secretariat , 2009. [Cited: 20 Nov

2009.] http://www.iso.org/iso/home.htm.

[55]. DCMI. Dublin Core Metadata Initiative. DublinCore. [Online] 1995.

http://www.dublincore.org/.

[56]. Botanic Garden Community. International Transfer Format for Botanic

Garden Plant Records . TDWG- Biodiversity Information Standards. [Online] Botanic

Garden Community, 01 Oct 1987. [Cited: 20 Nov 2009.]

http://www.tdwg.org/standards/102/.

Bibliography

156

[57]. Conn, Barry J and Croft, J.R. HISPID3. Biodiversity Information Standards

TDWG. [Online] 1989. [Cited: 20 Nov 2009.]

http://plantnet.rbgsyd.nsw.gov.au/HISCOM/HISPID/HISPID3/H3.html.

[58]. White, Richard J and Allkin, Robert. A Language for the definition and

exchange of biological data sets. Mathematical and Computer Modelling. Published

by Elsevier Ltd, June-July 1992, Vol. 16, 6-7, pp. 199–233. doi:10.1016/0895-

7177(92)90163-F.

[59]. School of Biological Sciences at the University of Reading, UK. ILDIS.

International Legume Database & Information Service. [Online] 2008. [Cited: 20

Nov 2009.] hosted by Cardiff School of Computer Science. . http://www.ildis.org/.

[60]. John, Wieczorek; Taxonomic Databases Working Group. TDWG Wiki -

DarwinCore. Biodiversity Information Standards TDWG. [Online] TDWG, June

2009. [Cited: 31 August 2009.]

http://wiki.tdwg.org/twiki/bin/view/DarwinCore/DesignAndPurpose.

[61]. USGS. Biological Informatics Program Standards for Data and Metadata. U.S.

Geological Survey. [Online] U.S. Department of the Interior, 30 November 2007.

[Cited: 1 September 2009.] http://biology.usgs.gov/bio/standards.html.

[62]. Berendsohn, Walter; ABCD Schema - Task Group . ABCD Objectives.

Access to Biological Collection Data. [Online] A joint CODATA and TDWG

initiative supported by GBIF, 06 March 2005 . [Cited: 1 September 2009.]

http://www.bgbm.org/TDWG/CODATA/default.htm.

[63]. TDWG and CODATA Task Group . ABCD - Access to Biological Collection

Data. Biodiversity Information Standards - TDWG . [Online] 10 July 2007 . [Cited: 1

September 2009.] http://wiki.tdwg.org/ABCD/.

[64]. TAPIR Task Group. TAPIR. TDWG Standards. [Online] TDWG, 20 February

2009. http://www.tdwg.org/activities/tapir/.

[65]. Renato De Giovanni et. al. TAPIR - TDWG Access Protocol for Information

Retrieval. TSWG Standards. [Online] 05 February 2009.

http://www.tdwg.org/dav/subgroups/tapir/1.0/docs/tdwg_tapir_specification_2009-

02-05.htm.

[66]. Jones, AC, White, Richard J, et al. SPICE. Species 2000. [Online] Species

2000 Project, September 2000. [Cited: 1 September 2009.]

http://www.sp2000.org/index.php?option=com_content&task=view&id=38&Itemid=

49.

[67]. Kennedy, Jessie and Kukla, Robert. TDWGOntology. Biodiversity

Information Standarads TDWG. [Online] TDWG, 18 October 2006. [Cited: 20 Nov

2009.] http://wiki.tdwg.org/twiki/bin/view/TAG/TDWGOntology.

[68]. Partnership for Biodiversity Informatics. Science Environment for Ecological

Knowledge . SEEK. [Online] University of New Mexico, The Regents of the

Bibliography

157

University of California, and University of Kansas, 21 Jan 2005. [Cited: 20 Nov

2009.] http://seek.ecoinformatics.org/Wiki.jsp?page=SEEKComponents.

[69]. ENBI. Information Page. European Network for Biodiversity Information.

[Online] ENBI , 2003. [Cited: 31 August 2009.]

http://www.enbi.info/forums/enbi/index.php.

[70]. TDWG. Biodiversity Information Standards. TDWG. [Online] TDWG, 27 May

2009 . [Cited: 1 September 2009.] http://www.tdwg.org/standards/.

[71]. —. Biodiversity Information Projects of the World. Biodiversity Information

Standards TDWG. [Online] TDWG, 10 Nov 2009. [Cited: 20 Nov 2009.]

http://www.tdwg.org/biodiv-projects/.

[72]. LifeWatch. LifeWatch Supporting Project. [Online] February 2008. [Cited: 20

Nov 2009.] http://www.lifewatch.eu/.

[73]. Goldfarbr, Charles F. Current Text of ISO 8879 (SGML). SGMLSource.

[Online] ISO SGML committee , 6 December 1998. [Cited: 31 August 2009.]

http://www.sgmlsource.com/8879/index.htm.

[74]. Brown, Alex. XML in serial publishing: past, present and future. OCLC Systems

& Services. 2003, Vol. 19, 4, pp. 149-154,.

[75]. WorkingGroup, HTML. W3C HTML. W3C. [Online] 7 March 2007.

http://www.w3.org/html/wg/.

[76]. W3C-XML Core Working Group . Extensible Markup Language (XML).

W3C - XML Activity. [Online] W3C, 2003. [Cited: 31 August 2009.]

http://www.w3.org/XML/.

[77]. Walsh, Norman. A Technical Introduction to XML. O'Reilly XML.com.

[Online] 03 October 1998. http://xml.com/pub/a/98/10/guide0.html.

[78]. David C. Fallside (IBM). XML Schema Part 0: Primer. W3C Recommendation.

[Online] W3C, 2 May 2001 . [Cited: 31 August 2009.]

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

[79]. Jelliffe, Rick. The Current State of the Art of Schema Languages for XML.

XML Asia Pacific 2001 Conference. Sydney, Australia, 2001.

http://www.planetpublish.com/pdfs/RickJelliffe.pdf.

[80]. W3Schools. XML DOM Parser. W3chools.com. [Online] W3c Working Group -

specification, 2009. [Cited: 10 Nov 2009.]

http://www.w3schools.com/Dom/default.asp.

[81]. David Megginson -Open Source. About SAX. SAX. [Online] SourceForge

project , 27 April 2004. [Cited: 10 Nov 2009.] http://www.saxproject.org/.

Bibliography

158

[82]. W3C Web Applications Working Group . Document Object Model (DOM).

W3C Architecture Domain. [Online] W3C DOM IG. , 19 January 2005. [Cited: 31

August 2009.] http://www.w3.org/DOM/.

[83]. The Apache Software Foundation. AXis Object Model. ws.apache.org.

[Online] The Apache Software Foundation, 15 January 2009. [Cited: 10 Nov 2009.]

http://ws.apache.org/commons/axiom/.

[84]. Burke, Eric M. Java and XSLT. [ed.] Mike Loukides. Sabastapol : O'Reilly

Associates & Inc, 2001. ISBN: 0-596-00143-6.

[85]. Hunter, Jason and McLaughlin, Brett. JDOMTM Documentation .

JDOM.org. [Online] JDOM, 2002. [Cited: 31 August 2009.]

http://www.jdom.org/downloads/docs.html.

[86]. JavaCommunityProcess. JSR-000173 Streaming API for XML .

http://jcp.org/. [Online] [Cited: 10 Nov 2009.]

http://jcp.org/aboutJava/communityprocess/first/jsr173/.

[87]. Clark, James; W3C. XSL Transformations (XSLT) Version 1.0. W3C

Recommendation. [Online] W3C, 16 November 1999. [Cited: 31 August 2009.]

http://www.w3.org/TR/xslt.

[88]. Novatchev, Dimitre. The Functional Programming Language XSLT.

Sourceofrge.Net. [Online] Open Source, November 2001. [Cited: 10 Nov 2009.]

http://fxsl.sourceforge.net/articles/FuncProg/9.html#Summary.

[89]. Hughes, John. Why functional programming matters. [ed.] D. A. Turner. In

Research Topics in Functional Programming. 1990, pp. 17-42.

[90]. Clark, James and DeRose, Steve. XML Path Language (XPath) Version 1.0.

W3C Recommendation. [Online] W3C, 16 November 1999. [Cited: 31 August 2009.]

http://www.w3.org/TR/xpath.

[91]. W3C,. Web Services Activity. W3C.org. [Online] 2002.

http://www.w3.org/2002/ws/.

[92]. Liu, David., Peng, Jun., Law, Kincho H., Wiederhold, Gio Efficient

integration of web services with distributed data flow and active mediation.

Proceedings of the 6th international conference on Electronic commerce. Delft, The

Netherlands. ACM New York, NY, USA, 2004, pp. 11 - 20. ISBN:1-58113-930-6.

[93]. W3C. SOAP Version 1.2. W3C SOAP Recommendation. [Online] 27 April

2007. http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[94]. Feuerlicht, George and Meesathit, Sooksathit. Design framework for

interoperable service interfaces. 2nd international conference on Service oriented

computing. ACM New York, NY, USA, 2004, pp. 299 - 307. ISBN:1-58113-871-7.

Bibliography

159

[95]. IBM, Microsoft,Oracle,SAP,Intel. UDDI Spec Technical Committee

Specification. UDDI.org. [Online] 19 July 2002. http://www.uddi.org/pubs/uddi-

v3.00-published-20020719.htm.

[96]. W3C. Web Services Description Working Group. W3C. [Online] 2002.

http://www.w3.org/2002/ws/desc/.

[97]. OASIS. OASIS Standards. OASIS . [Online] April 2006. http://www.oasis-

open.org/specs/.

[98]. GBIF. Global Biodiversity Information Facility UDDI Registry . GBIF.

[Online] 2004. http://registry.gbif.net/uddi/web.

[99]. Wong, A.K.Y., Ray, P., Parameswaran, N., Strassner, J. Ontology mapping

for the interoperability problem in network management. IEEE Journal on Selected

Areas in Communications. IEEE, October 2005, Vol. 23, 10, pp. 2058- 2068. ISSN:

0733-8716, DOI: 10.1109/JSAC.2005.854130.

[100]. Gruber, Thomas R. In Formal Ontology in Conceptual Analysis and

Knowledge Representation. Stanford Knowledge Systems Laboratory. Kluwer

Academic Publishers, 1993.

[101]. McGuinness, Natalya F. Noy and Deborah L. Ontology Development 101: A

Guide to Creating Your First Ontology. Stanford : Stanford Knowledge Systems

Laboratory Technical Report KSL-01-05, 2001.

[102]. Zhang, Junte and Olango, Proscovia. Populating an Ontology . University of

Groningen. [Online] February 2005. [Cited: 31 August 2009.]

http://semweb.weblog.ub.rug.nl/sites/semweb.weblog.ub.rug.nl/files/report_Wiki_tax

onomy_Junte_Prossy.pdf.

[103]. Goguen, Joseph A. Ontology, Society, and Ontotheology. International

Conference on Formal Ontologies in Informatin Systems. Torino, Italy, 2004.

[104]. Perez, Gomez, Garcia, Corcho and Lopez, Fernandez. Ontological

Engineering:. Springer-Verlag New York, Inc. Nov 2003.

[105]. W3C. OWL Web Ontology Language Overview. W3C Recommendation .

[Online] 10 February 2004 . http://www.w3.org/TR/owl-features/.

[106]. Youn, Seongwook and McLeod, Dennis. Ontology Development Tools for

Ontology-Based Knowledge Management. Encyclopedia of E-Commerce, E-

Government and Mobile Commerce. Los Angles : Idea Group Inc, 2006 .

[107]. Protege Community. welcome to protégé. Stanford Center for Biomedical

Informatics Research at Stanford. [Online] January 2009. [Cited: 31 August 2009.]

http://protege.stanford.edu/.

Bibliography

160

[108]. Youn, Seongwook and McLeod, Dennis. Ontology Development Tools for

Ontology-Based Knowledge Management. Encyclopedia of E-Commerce, E-

Government and Mobile Commerce. s.l. : Idea Group Inc, 2006.

[109]. Esposito, Dino and Saltarello, Andrea. Microsoft .NET architecting

applicaitons for the enterprise. Redmond, Washington : Microsoft Press, 2009.

[110]. Young, Paul., Berzins, Valdis., Ge, Jun., Luqi. Using an object oriented

model for resolving representational differences between heterogeneous systems.

Proceedings of the 2002 ACM symposium on Applied computing. Madrid, Spain.

ACM New York, NY, USA, 2002, pp. 976 - 983. ISBN:1-58113-445-2.

[111]. Paepcke, Andreas, Cousins, Steve B., Using Distributed Objects for Digital

Library Interoperability. IEEE Computer archive. IEEE Computer Society Press, May

1996, Vol. 29, 5, pp. 61 - 68. ISSN:0018-9162.

[112]. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Reading: . s.l. : Addison-

Wesley, 1994.

[113]. Microsft. .NET Framework Developer's Guide. MSDN Framework

development center. [Online] Microsoft, 2009. [Cited: 31 August 2009.]

http://msdn.microsoft.com/en-us/library/w0x726c2.aspx.

[114]. Fisher, Marina., Lai, Ray., Sharma, Sonu., Moroney, L. Java EE and .Net

Interoperability: Integration Strategies, Patterns, and Best Practices. s.l. : Prentice

Hall, 2006.

[115]. Sun Microsystems, Inc. Java Technology Reference. Sun Developer Network.

[Online] Sun Microsystems, Inc, 2009. [Cited: 31 August 2009.]

http://java.sun.com/reference/index.jsp#documentation.

[116]. Hudak, Paul. Conception, evolution, and application of functional

programming languages. ACM Computing Surveys (CSUR) archive. ACM New York,

NY, USA, September 1989, Vol. 21, 3, pp. 359 - 411. ISSN:0360-0300.

[117]. Microsoft . Introduction to Pure Functional Transformations. MSDN

Developer Library. [Online] 2008. [Cited: 31 August 2009.]

http://msdn.microsoft.com/en-us/library/bb943915.aspx.

[118]. Marguerie, Fabrice, Eichert, Steve and Wooley, Jim. LINQ in Action. s.l. :

Manning Publications, 4 Feb 2008. ISBN-13: 978-1933988160.

[119]. Calvert, Charlie and Kulkarni, Dinesh. Essential LINQ. Boston, USA :

Addison-Wesley Professional; 1 edition, March 22, 2009. ISBN-13: 978-0321564160

.

[120]. Box, Don and Hejlsberg, Anders. LINQ: .NET Language-Integrated Query.

MSDN Developer Centre. [Online] February 2007. [Cited: 31 August 2009.]

http://msdn.microsoft.com/en-gb/library/bb308959.aspx#linqoverview_topic7.

Bibliography

161

[121]. Champion, Michael. .NET Language-Integrated Query for XML Data. MSDN

Developer Centre. [Online] February 2007. [Cited: 31 August 2009.]

http://msdn.microsoft.com/en-us/library/bb308960.aspx.

[122]. Microsoft Corporation. The ADO.NET Entity Framework Overview. Visual

Studio 2005 Technical Articles. [Online] Microsoft, June 2006. [Cited: 31 August

2009.] http://msdn.microsoft.com/en-us/library/aa697427(VS.80).aspx.

[123]. Connolly, Thomas M and Begg, Carolyn E. Database Systems: A Practical

Approach to Design, Implementation, and Management. Edition: 4, illustrated. s.l. :

Pearson Education, 2005. p. 1374.

[124]. Ramakrishnan, Raghu and Gehrke, Johannes. Database Management

Systems. s.l. : McGraw-Hill Professional, 2003.

[125]. Litwin, Witold, Leo, Mark and Roussopoulos, Nick. Interoperability of

multiple autonomous databases. ACM Computing Surveys. September 1990, Vol. 22,

3, pp. 267-293. DOI= http://doi.acm.org/10.1145/96602.96608.

[126]. Litwin, Witold and Abdellatif, Abdelaziz. Multidatabase Interoperability.

Computer archive. IEEE Computer Society Press Los Alamitos, CA, USA, 1986, Vol.

19, 12, pp. 10-18. ISSN:0018-9162.

[127]. White, Richard J and Allkin, R. A Language for the definition and exchange

of biological data sets. Mathematical and Computer Modelling. TDWG, 1992, Vol.

16, pp. 199–233.

[128]. Vieglais, Dave. The Species Analyst Project. University of Kansan Natural

History Museum. s.l. : OASIS, 2001. http://xml.coverpages.org/speciesAnalyst.html.

[129]. The Library of Congress - USA. Information Retrieval (Z39.50):. Z39.50

Resources. [Online] The Library of Congress - ANSI/NISO Z39.50-2003, 2003.

[Cited: 10 Nov 2009.] http://www.loc.gov/z3950/agency/Z39-50-2003.pdf. ISSN:

1041-5653.

[130]. Jones, Andrew C. Applying Computer Science Research to Biodiversity

Informatics: Some Experiences and Lessons. Transactions on Computational Systems

Biology IV. Springer Berlin / Heidelberg, March 2006, Vol. 3939/2006, pp. 44-57.

ISBN 978-3-540-33245-9.

[131]. Species 2000 Secretariat. Species 2000 Web Services. Species 2000. [Online]

Species 2000 Secretariat, 2009. [Cited: 31 August 2009.]

http://www.sp2000.org/index.php?option=com_content&task=view&id=40&Itemid=

49.

[132]. Jones, Andrew C., White, Richard J., Sutherland, Iain., Embury, Suzanne

M., Gray, Alex W., Robinson, John S., Bisby, Frank A., Brandt, Sue M.
Techniques for Effective Integration, Maintenance and Evolution of Species

Databases. 12th International Conference on Scientific and Statistical Database

Bibliography

162

Management. IEEE Computer Society Washington, DC, USA, 2000, p. 3. ISBN ~

ISSN:1099-3371 , 0-7695-0686-0.

[133]. BioCASE. The Biological Collection Access Service for Europe. [Online]

Botanischer Garten und Botanisches Museum Berlin-Dahlem (BGBM),, 2006. [Cited:

10 Dec 2009.] http://search.biocase.org/europe/.

[134]. Pahwa, Jaspreet S., Brewer, P; Sutton, T., Jones, Andrew C., White,

Richard J., Gray, Alex W., Fiddian, Nick J., Bisby, Frank A., Scoble, M.,

Bhagwat, S. Biodiversity World: A Problem-Solving Environment for Analysing

Biodiversity Patterns. Sixth IEEE International Symposium on Cluster Computing and

the Grid (CCGrid 2006). IEEE,xplore, May 2006, p. 8. DOI:

10.1109/CCGRID.2006.23.

[135]. Wieczorek, John. Mammal Networked Information System. manisnet.

[Online] University of California, Berkeley, 18 March 2009. [Cited: 1 September

2009.] http://manisnet.org/.

[136]. Sundaravadivelu, R. The BUFFIE Architecture. Biodiversity Conference

meeting, Stockholm - Sweeden. ENBI, 2005.

http://circa.gbif.net/irc/DownLoad/kheyA5JSmUGsG36eHl0pkTqSyIqd9RmC/YxhrU

iUxPDf3WMVcOagIe47UxVqIlDf3/WM4sNMitck6/BUFFIE%20ENBI_Sp2Keu.pdf

.

[137]. GBIF. GBIF Infrastructure. GBIF Integrated Publishing Toolkit. [Online]

GBIF, 2009. [Cited: 10 Dec 2009.]

http://www.gbif.org/informatics/infrastructure/publishing/.

[138]. Nativia, Stefano., Mazzettia, Paolo., Saarenmaab, Hannu., Kerrc, Jeremy.,

Tuamad, Éamonn Ó. Biodiversity and climate change use scenarios framework for

the GEOSS interoperability pilot process. Ecological Informatics. Elseiver, January

2009, Vol. 4, 1, pp. 23-33.

[139]. 4D4Life. Distributed Dynamic Diversity Databases for Life. [Online] Cardiff

University, Reading University and other partners, 2009. [Cited: 10 Dec 2009.]

http://www.4d4life.eu/index.php.

[140]. Salvatore Salamone. LSID: An Informatics Lifesaver . Bio-ITWorld.com.

[Online] Cambridge Healthtech Institute , 12 January 2002. [Cited: 10 Nov 2009.]

http://www.bio-itworld.com/archive/011204/lsid.html.

[141]. TDWG, GBIF, and SourceForge. Life Science Identifiers . Life Sciences

Identifiers -Resolution Project. [Online] Opensource. [Cited: 10 Nov 2009.]

http://lsids.sourceforge.net/.

[142]. Jones, Andrew C. Applying Computer Science Research to Biodiversity

Informatics: Some Experiences and Lessons . [book auth.] Lecture Notes in Computer

Science. Transactions on Computational Systems Biology IV. s.l. : Springer Berlin /

Heidelberg, 2006, Vol. 3939/2006, pp. 44-57.

Bibliography

163

[143]. Stan, Blum; Dave, Vieglais; P.J. Schwartz; et.al;. Distributed Generic

Information Retrieval . Sourceforge.net. [Online] open source, December 2005.

[Cited: 1 September 2009.] http://digir.sourceforge.net/.

[144]. Stonebraker, Michael. Too much middleware. ACM SIGMOD Record

archive. ACM New York, NY, USA, 2002, Vol. 31, 1, pp. 97 - 106. ISSN:0163-5808.

[145]. Shaw, M and Clements, P. A field guide to boxology: preliminary

classification ofarchitectural styles for software systems. Computer Software and

Applications Conference, 1997. COMPSAC '97. Proceedings, Washington, DC, USA.

IEEE Xplore, Aug 1997, pp. 6-13. ISBN: 0-8186-8105-5.

[146]. Fielding, Roy Thomas. Architectural Styles and the Design of Network-based

Software Architectures. Doctoral dissertation. Irvine : University of California, 2000.

[147]. Software interoperability: principles and practice. Wileden, Jack C. and

Kaplan, Alan. Los Angeles, California, United States : ACM New York, NY, USA ,

1999 . Proceedings of the 21st international conference on Software engineering . pp.

675 - 676. ISBN:1-58113-074-0.

[148]. Meier, J.D.; Homer, Alex; et al;. Application Architecture Guide 2.0 -

patterns & practices. Redmond, USA : Microsoft, 2008.

[149]. Sundaravadivelu, R., White, R.J., Jones, A.C. A Service-Oriented

Architecture with Domain Knowledge Base for Interoperability of Heterogeneous

Distributed Bioidversity Resources. Software Engineering and Applications (SEA

2009), Cambridge - MIT, Massachusetts, USA. ACTA Press, November 2009.

http://www.actapress.com/Abstract.aspx?paperId=36753.

[150]. Esposito, Dino. Cutting Edge: AJAX Application Architecture. MSDN

magazine. September 2007. http://msdn.microsoft.com/en-

us/magazine/cc163363.aspx.

[151]. Papa, John. Designing an Entity Data Model. MSDN Technical Articles.

[Online] February 2008. [Cited: 10 Dec 2009.] MSDN Magazine.

http://msdn.microsoft.com/en-us/magazine/cc163286.aspx#S1.

[152]. Gelbukh, Alexander F. Lazy Query Enrichment: A Method for Indexing

Large Specialized Document Bases with Morphology and Concept Hierarchy. Book

Series Lecture Notes in Computer Science. 01 January 2000, Vol. 1873/2000, pp. 526-

535.

[153]. Owei, Vesper and Navathe, Shamkant B. Enriching the conceptual basis for

query formulation through relationship semantics in databases. Publisher Elsevier

Science Ltd. Oxford, UK. September 2001, Vol. 26, 6, pp. 445 - 475. ISSN:0306-

4379.

[154]. Paterson, Trevor, et al. A Universal Character Model and Ontology of

Defined Terms for Taxonomic Description. [book auth.] Lecture Notes in Computer

Science. Book Data Integration in the Life Sciences . s.l. : Springer Berlin /

Heidelberg, 2004, Vol. 2994/2004 .

Bibliography

164

[155]. Schmid, Randolph E. Marine species entangled in extra names. msnbc -

Technology & science. [Online] 25 June 2008. [Cited: 1 September 2009.]

http://www.msnbc.msn.com/id/25369944/.

[156]. White, Richard ; Cardiff Biodiversity Informatics team . Spice software

home page. Species 2000. [Online] November 2007. [Cited: 1 September 2009.]

http://biodiversity.cs.cf.ac.uk/spice/.

[157]. Su, Xiaomeng, Hakkarainen, Sari and Brasethvik, Terje. Semantic

enrichment for improving systems interoperability. ACM Symposium on Applied

Computing. March 2004, pp. 14-17.

[158]. MacDonald, Matthew. Pro ASP.NET 3.5 in C# 2008. 2nd Edition. s.l. :

APRESS, 15 Nov 2007. p. 1498. ISBN-13: 978-1590598931.

[159]. Open source. Introducing JSON. JSON. [Online] Opensource. [Cited: 1

September 2009.] http://www.json.org/.

[160]. Microsoft Technet. Microsoft CryptoAPI and Cryptographic Service

Providers . Microsoft Technet Technet library. [Online] Microsoft Technet, 2009.

[Cited: 1 September 2009.] http://technet.microsoft.com/en-gb/library/cc962093.aspx.

[161]. Goguen, Joseph A. Data, Schema, Ontology and Logic Integration. Logic

Journal of the IGPL. Oxford University Press, June 2005, Vol. 13, 6, pp. 685-715.

[162]. Obrst, Leo. Ontologies for semantically interoperable systems. Proceedings of

the twelfth international conference on Information and knowledge management, New

Orleans, LA, USA. ACM New York, USA, 2003, pp. 366 - 369. ISBN:1-58113-723-0.

[163]. Goguen, Joseph. Ontology, society, and ontotheology. Formal Ontology in

Information Systems. Torino, Italy, IOS Press, 2004, pp. 95-103.

[164]. Renner, Scott A. A "Community of Interest" Approach to Data

Interoperability. San Deigo : The MITRE Corporation, 2001.

http://www.mitre.org/work/tech_papers/tech_papers_01/renner_community/index.htm

l.

[165]. Jovellanos, Chito. Semantic and syntactic interoperability: in transactional

systems. Proceedings of the 4th ACM conference on Electronic commerce, San

Diego, CA, USA. ACM New York, NY, USA, 2003, pp. 266 - 267. ISBN:1-58113-

679-X.

[166]. Al-Wasil, Fahad M, Gray, W.A. and Fiddian, N.J. Establishing an XML

Metadata Knowledge Base to Assist Integration of Structured and Semi-structured

Databases. Australasian Database Conference. Australasian Computer Society, 2006.

[167]. Hunter, Jane and Lagoze, Carl. Combining RDF and XML schemas to

enhance interoperability between metadata application profiles. Proceedings of the

10th international conference on World Wide Web. Hong Kong. ACM New York,

NY, USA, 2001, pp. 457 - 466. ISBN:1-58113-348-0.

Bibliography

165

[168]. Boukottaya, A, Vanoirbeek, C and et.al. Automating XML documents

Transformations: A Conceptual modelling based approach. Proceedings of the First

Asia-Pacific Conference on Conceptual Modelling. Dunedin, New Zealand, January

2004, pp. 81-90. ISBN 1-920682-13-9.

[169]. Microsoft. XPathNavigator in the .NET Framework. MSDN developer.

[Online] Microsoft, 2009. [Cited: 1 September 2009.] http://msdn.microsoft.com/en-

us/library/aa735770(VS.71).aspx.

[170]. Microsoft Corporation. Microsoft Visual Studio 2008. Microsoft Visual

Studio 2008. [Online] [Cited: 18 August 2009.]

http://www.microsoft.com/visualstudio/en-gb/default.mspx.

[171]. Microsoft. Internet Information Services. Internet Information Services.

[Online] 2003. [Cited: 18 August 2009.]

http://www.microsoft.com/windowsserver2003/iis/default.mspx.

[172]. Microsoft.. SQL Server 2008. SQL Server 2008. [Online] 2008. [Cited: 18

August 2009.] http://www.microsoft.com/sqlserver/2008/en/us/default.aspx.

[173]. McEwan, A.A.; Schneider, S; Ifill, W.; Welch, P.H. ;. Communicating

Process Architectures 2007: WoTUG-30. illustrated edition edition. s.l. : IOS

Press,US, 2007. p. 524 . ISBN-13: 978-1586037673 .

[174]. Dijkstra, Edsger W. On the role of scientific thought. Selected Writings on

Computing: A Personal Perspective. 1982 , pp. 60–66.

[175]. Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented

Software. s.l. : Addison-Wesley Professional, 1994. ISBN-13: 978-0201633610.

[176]. Esposito, Dino. Cutting Edge AJAX Application Architecture. MSDN

Magazine. September 2007. http://msdn.microsoft.com/en-

us/magazine/cc135414.aspx.

[177]. Microsoft. Process XML Data Using the XPath Data Model. .NET Framework

Developer's Guide. [Online] 2009. http://msdn.microsoft.com/en-

us/library/87274khy.aspx.

[178]. Microsoft . LINQ to Entities Overview. MSDN .Net Framework. [Online]

2009. [Cited: 25 August 2009.] http://msdn.microsoft.com/en-

us/library/bb386992.aspx.

[179]. Marine Biodiversity and Ecosystem Functioning. MarBEF site. [Online] 10 12

2010. http://www.marbef.org/.

[180]. Schalk, Peter H and Altenburg, Ruud. Technologies and facilities of ETI

BioInformatics electronic information sharing mechanism for MARBEF. Linnaeus II

software for taxonomic data management. [Online] 22 October 2005. [Cited: 31

August 2009.] www.medobis.org/prope/presentations/Altenburg.ppt.

Bibliography

166

[181]. Beller, Aaron, et al. Design document for mapping tools to work with common

access system. European Network of Biodiversity Information. Jerusalem - Israel,

Linz-Austria :ENBI,2005.

http://circa.gbif.net/irc/DownLoad/kte_AiJZmtGFH37I2VCZKTcR5R978bRs/pjTrA4

Rb1O0SpTfpQEdCbwKF/WP10_D10_2a%20TR.pdf.

[182]. CFH - UK. Data Standards across the NHS. NHS Connecting for Health.

[Online] Department of Health Informatics Directorate., 10 Dec 2010.

http://www.connectingforhealth.nhs.uk/systemsandservices/data/uktc/snomed.

[183]. Sundaravadivelu, R., White, R.J., Jones, A.C., Gray, W.A.. Web based

Middleware Framework for Interoperability between Heterogeneous, Distributed

Biodiversity Data Resources. Proceedings of the 25th conference on IASTED

International Multi-Conference, Innsbruck, Austria. ACTA Press, Anaheim, CA,

USA., 2007, pp. 142--147.

http://portal.acm.org/citation.cfm?id=1332068&CFID=82124900.

[184]. GIGAS Project Office. Interoperability between INSPIRE, GEOSS, GMES,

SEIS, SISE: opportunities for convergence and innovation. GIGAS project . [Online]

7th Framework Programme of the European Commission, 22 June 2010. [Cited: 4

August 2010.] http://www.thegigasforum.eu/project/project.html.

[185]. A standards set to share biodiversity data related to fisheries. Bardie, Julian,

Cauqil, Pascal and Cury, Philipe. Paris, France : IMDIS, March 2010. International

Conference on Marine Data and Information Systems.

http://wwz.ifremer.fr/imdis2010/content/download/69501/487582/version/1/file/IMD.

[186]. Kennedy, Jessie, Kukla, Robert and Paterson, Trevor. Taxonomic Concept

Transfer Schema. Taxonomic Concept Transfer Schema. [Online] 16 September 2005.

http://www.tdwg.org/standards/117/.

[187]. Jovanovic, Jelena and Gasevic, Dragan. Achieving Knowledge

interoperability: An XML/XSLT approach. Expert Systems with Applications -

Elsevier. 2005, pp. 535-553.

[188]. White, Richard J, Jones, Andrew C and Bisby, Frank A. Federating

Taxonomic Databases: Progress With the Catalogue of Life Dynamic Checklist.

Proceedings of TDWG, 2006. [Online] 2006.

http://www.tdwg.org/proceedings/article/view/85.

[189]. Java Community Process. Apache Tomcat. Apache Software Foundation.

[Online] 2008. http://tomcat.apache.org/.

[190]. Conn, B.J. HISPID3. Herbarium Information Standards and Protocols for

Interchange of Data.Version 3. Royal Botanic Gardens Sydney. Sydney : TDWG

standard, 1996. http://plantnet.rbgsyd.nsw.gov.au/HISCOM/default.htm.

[191]. Rahm, Erhard and Bernstein, Philip A. A survey of approaches to automatic

schema matching. The VLDB Journal. 2001, Vol. 10, pp. 334-350.

167

10 Appendix A

Mapping between Darwin Core (DWCV2) and

ABCD (BioCASE) Concepts

DwC 1.4

Record-level Element

ABCD 2.06b

X-Path DwC to ABCD ABCD to DwC

 Datasets/Dataset/Units/Unit

/...

GlobalUniqueIdentifier UnitGUID Fully compatible. Fully compatible.

DateLastModified DateLastEdited Fully compatible. Fully compatible.

BasisOfRecord RecordBasis Fully compatible

DwC gives only recommendations
for content. The examples given

are the same as the restriction for

ABCD, except that "StillImage" is

used instead of
"DrawingOrPhotograph", and that

"MovingImage" and

"SoundRecording" are listed,
which should be mapped to

"MultimediaObject" in ABCD

Fully compatible

ABCD is restricting
content to values

representing:

"PreservedSpecimen",

"LivingSpecimen",
"FossileSpecimen",

"OtherSpecimen",

"HumanObservation",
"MachineObservation",

"DrawingOrPhotograph",

"MultimediaObject" and

"AbsenceObservation".

InstitutionCode SourceInstitutionID Fully compatible Fully compatible

CollectionCode SourceID Fully compatible Fully compatible

CatalogNumber UnitID Fully compatible Fully compatible

InformationWithheld InformationWithheld Fully compatible Fully compatible

ABCD allows the
language to be stated.

Remarks Notes Fully compatible Fully compatible

Taxonomic Elements Datasets/Dataset/Units/Unit

/

Identifications/Identificatio

n/ TaxonIdentified/...

Appendix A. Mapping of DarwinCore (DWCV2) & ABCD (BioCase) Concepts

168

ScientificName ScientificName/FullScientif

icNameString

Fully compatible

(but ABCD able to support

multiple identifications and

identification history)

Fully compatible

preferred identification

must be used

HigherTaxon HigherTaxa/HigherTaxon/

HigherTaxonName

+/- compatible. Unbounded ABCD
element can be parsed from DwC

text string.

+/- compatible. List can
be compiled from

unbounded ABCD

element.

Kingdom HigherTaxa/HigherTaxon/

HigherTaxonName

with

HigherTaxa/HigherTaxon/

HigherTaxonRank =

regnum

Fully compatible.

"regnum" as constant

Fully compatible if
complete ABCD data

(incl. rank) are provided.

Phylum HigherTaxa/HigherTaxon/

HigherTaxonName

with

HigherTaxa/HigherTaxon/

HigherTaxonRank =

phylum

Fully compatible.

"phylum" as constant

Fully compatible if
complete ABCD data

(incl. rank) are provided.

Class HigherTaxa/HigherTaxon/

HigherTaxonName

with

HigherTaxa/HigherTaxon/

HigherTaxonRank = classis

Fully compatible.

"classis" as constant

Fully compatible if

complete ABCD data
(incl. rank) are provided.

Order HigherTaxa/HigherTaxon/

HigherTaxonName

with

HigherTaxa/HigherTaxon/

HigherTaxonRank = ordo

Fully compatible.

"ordo" as constant

Fully compatible if

complete ABCD data

(incl. rank) are provided.

Family HigherTaxa/HigherTaxon/

HigherTaxonName

with

HigherTaxa/HigherTaxon/

HigherTaxonRank =

familia

Fully compatible.

"familia" as constant

Fully compatible if

complete ABCD data
(incl. rank) are provided.

Genus ScientificName/NameAtomi

sed/Bacterial/

GenusOrMonomial

ScientificName/NameAtomi

sed/Botanical/

GenusOrMonomial

ScientificName/NameAtomi

sed/Viral/

GenusOrMonomial

ScientificName/NameAtomi

sed/Zoological/

GenusOrMonomial

Compatible if taxonomic context

(Code of Nomenclature) is known,

which may also be deduced from
value for Regnum in most cases.

Fully compatible for

Genus as part of name.

Appendix A. Mapping of DarwinCore (DWCV2) & ABCD (BioCase) Concepts

169

SpecificEpithet ScientificName/NameAtomi

sed/Bacterial/

SpeciesEpithet

ScientificName/NameAtomi

sed/Botanical/

FirstEpithet

ScientificName/NameAtomi

sed/Zoological/

SpeciesEpithet

Compatible if taxonomic context
(Code of Nomenclature) is known,

which may also be deduced from

value for Regnum in most cases.

Fully compatible for
zoological and

bacteriological names, in

Botany subdivisions of

genera may be included.
ABCD additionally

supports viral names.

InfraspecificRank ScientificName/NameAtomi

sed/Botanical/Rank

Compatible if taxonomic context
(Code of Nomenclature) is known,

which may also be deduced from

value for Regnum in most cases. It

defaults to subspecies in zoology
and bacteriology.

Fully compatible.

Subspecies as constant

for zoological and

bacterial names.

InfraspecificEpithet ScientificName/NameAtomi

sed/Bacterial/

SubspeciesEpithet

ScientificName/NameAtomi

sed/Botanical/

SecondEpithet

ScientificName/NameAtomi

sed/Zoological/

SubspeciesEpithet

Compatible if taxonomic context

(NomenclaturalCode) is known,
which may also be deduced from

value for Regnum in most cases.

Fully compatible

ABCD additionally
supports viral names,

breeds and named

individuals, and cultivar

groups, names, and trade
designations.

AuthorYearOfScientific

Name

ScientificName/NameAtomi

sed/Bacterial/

ParentheticalAuthorTeam

AndYear +

ScientificName/NameAtomi

sed/Bacterial/

AuthorTeamAndYear

ScientificName/NameAtomi

sed/Botanical/

AuthorTeamParenthesis +

ScientificName/

NameAtomised/Botanical/A

uthorTeam

ScientificName/NameAtomi

sed/Zoological/

AuthorTeamOriginalAndY

ear + [= or]

ScientificName/NameAtomi

sed/Zoological/

AuthorTeamParenthesisAn

dYear

Content compatible, but needs

parsing to classify parenthetical
author(s).

Compatible when

concatenated

NomenclaturalCode Code Fully compatible Fully compatible

Appendix A. Mapping of DarwinCore (DWCV2) & ABCD (BioCase) Concepts

170

IdentificationQualifier IdentificationQualifier Fully compatible Fully compatible

In addition ABCD

provides an attribute to

define the insertion point

in a string concatenated
from atomised data.

Locality Elements Datasets/Dataset/Units/Unit

/Gathering/

HigherGeography LocalityText

or

NamedAreas/NamedArea/

AreaName

DwC element is part of the ABCD

Element.

 May be parsed

Compatible for the

purpose stated for DwC
('like' queries)

Compatible. List can be

compiled from
unbounded ABCD

element.

ABCD allows the

language to be stated.

Continent NamedAreas/NamedArea/

AreaName

with

NamedAreas/NamedArea/

AreaClass

= Continent

Fully compatible

"continent" as constant

Fully compatible if

complete ABCD data are

provided.

ABCD allows the

language to be stated.

WaterBody NamedAreas/NamedArea/

AreaName

with

NamedAreas/NamedArea/

AreaClass

= Water body

Fully compatible

"Water body" as constant

Fully compatible if

complete ABCD data are

provided.

ABCD allows the
language to be stated.

IslandGroup NamedAreas/NamedArea/

AreaName

with

NamedAreas/NamedArea/

AreaClass

= IslandGroup

Fully compatible

"Island group" as constant

Fully compatible if
complete ABCD data are

provided.

ABCD allows the

language to be stated.

Island NamedAreas/NamedArea/

AreaName

with

NamedAreas/NamedArea/

AreaClass

= Island

Fully compatible

"island" as constant

Fully compatible if

complete ABCD data are
provided.

ABCD allows the

language to be stated.

Country Country/CountryName Fully compatible

Fully compatible

ABCD allows the

language to be stated.

Appendix A. Mapping of DarwinCore (DWCV2) & ABCD (BioCase) Concepts

171

StateProvince NamedAreas/NamedArea/

AreaName

with

NamedAreas/NamedArea/

AreaClass

= State or = Province (etc.)

+/- compatible

"State or Province" as constant

Fully compatible if
complete ABCD data are

provided.

ABCD allows the

language to be stated.

County NamedAreas/NamedArea/

AreaName

with

NamedAreas/NamedArea/

AreaClass

= County

+/- compatible

"county" as constant

+/- compatible if

complete ABCD data are
provided.

ABCD allows the

language to be stated.

Locality AreaDetail Fully compatible Fully compatible

ABCD allows the

language to be stated.

MinimumElevationIn

Meters

Altitude/MeasurementOrF

actAtomised/ LowerValue

Fully compatible.

"m" as constant

Fully compatible for

metric values, otherwise

conversion is necessary.

MaximumElevationIn

Meters

Altitude/MeasurementOrF

actAtomised/

UpperValue

Fully compatible

"m" as constant

Fully compatible for

metric values, otherwise
conversion is necessary.

MinimumDepthIn

Meters
Depth/MeasurementOrFact

Atomised/

LowerValue

Fully compatible

"m" as constant

Fully compatible for
metric values, otherwise

conversion is necessary.

MaximumDepthIn

Meters

Depth/MeasurementAtomis

ed/

UpperValue

Fully compatible

"m" as constant

Fully compatible for
metric values, otherwise

conversion is necessary.

Collecting Event

Elements
Datasets/Dataset/Units/Unit

/Gathering/

CollectingMethod Method Fully compatible Fully compatible

ValidDistributionFlag

(under discussion)
ValidDistributionFlag Fully compatible Fully compatible

EstablishmentMeans
(under discussion)

EstablishmentMeans Fully compatible Fully compatible

EarliestDateCollected DateTime/ISODateTimeBe

gin

Fully compatible

(Note that some versions of DwC

use three fields, namely

YearCollected, MonthCollected,
and DayCollected, which may be

concatenated to ISO date.)

Fully compatible

(The three fields used in

some DwC versions may

be extracted from the
ISO datetime in ABCD.)

Appendix A. Mapping of DarwinCore (DWCV2) & ABCD (BioCase) Concepts

172

LatestDateCollected DateTime/ISODateTimeEn

d

Fully compatible Fully compatible

(TimeCollected)

(deprecated element in

v.1.4, covered by
EarliestDateCollected)

DateTime/TimeOfDayBegi

n

Compatible Compatible

Time maintained as

separate element in
ABCD for cases where

no date is given.

ABCD provides end of

time period

DayOfYear

(JulianDay)
DateTime/DayNumberBegi

n

Fully compatible Compatible (should not

be given if ABCD's

DayNumberEnd is given,
because in DwC this does

not refer to time periods)

Collector GatheringAgentes/Gatheri

ngAgentsText

Fully compatible Fully compatible

ABCD provides also

atomised version.

Biological Elements Datasets/Dataset/Units/Unit

/

Sex Sex Fully compatible Fully compatible

LifeStage ZoologicalUnit/PhasesOrSt

ages/PhaseOrStage

or

MycologicalUnit/Mycologic

alLifeStages/

MycologicalLifeStage

or

MycologicalUnit/Mycologic

alSexualStage

May be compatible where

taxonomic domain is known

Partly compatible, but

left to community to
define

ABCD allows the

language to be stated.

Attributes MeasurementsOrFacts

(alternatively: Notes)

A well-formed string may be

parsed into character-character

state pairs that fit into an ABCD

MeasurementOrFact element.
Otherwise put into Notes.

MeasurementsOrFacts

can be concatenated and

accomodated in this

DwC element.

References Elements Datasets/Dataset/Units/Unit

/

Appendix A. Mapping of DarwinCore (DWCV2) & ABCD (BioCase) Concepts

173

ImageURL MultimediaObjects/Multim

ediaObject/FileURI

or

MultimediaObjects/Multim

ediaObject/ProductURI

+/- compatible (needs clearer
definition of DwC item)

Fully compatible but
unbound in ABCD

RelatedInformation Notes Fully compatible Fully compatible

Source of Information for the above mapping table is from TDWG and CoDATA

website the reference is:

http://www.bgbm.org/tdwg/codata/Schema/Mappings/DwCAndExtensions.htm

174

Appendix B

C # code for BUFFIE Framework’s Core

Components and Services

Buffie.Core.Message

using System;

using Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

namespace Buffie.Core

{

 /// <summary>

 /// Defines a Buffie Message From Query

 /// </summary>

 public class BuffieMessage: DomainObject

 {

 /// <summary>

 /// Default constructor

 /// </summary>

 public BuffieMessage()

 {

 //inititalize object if needed

 }

 /// <summary>

 /// Gets or sets the Id

 /// </summary>

 [NotNullValidator(MessageTemplate = "The MessageId cannot be

null")]

 public virtual int MessageId { get; set; }

 /// <summary>

 /// Gets or sets the QueryId

 /// </summary>

 [NotNullValidator(MessageTemplate = "The QueryID cannot be

null")]

 public virtual int QueryId { get; set; }

 /// <summary>

 /// Gets or sets the UserId

 /// </summary>

 [NotNullValidator(MessageTemplate = "The UserId cannot be

null")]

 public virtual int UserId { get; set; }

 /// <summary>

 /// Gets or sets the ProviderId

 /// </summary>

 [NotNullValidator(MessageTemplate = "The ProviderId cannot be

null")]

 public virtual int ProviderId { get; set; }

Appendix B. C# Code for BUFFIE Core Components and Services.

175

 /// <summary>

 /// Gets or sets the RequestDestination

 /// </summary>

 [NotNullValidator(MessageTemplate = "The RequestDestination

cannot be null")]

 public virtual string RequestDestination { get; set; }

 /// <summary>

 /// Gets or sets the RequestMessage

 /// </summary>

 [NotNullValidator(MessageTemplate = "The RequestMessage

cannot be null")]

 public virtual string RequestMessage { get; set; }

 /// <summary>

 /// Gets or sets the ResponseMessage

 /// </summary>

 [NotNullValidator(MessageTemplate = "The ResponseMessage

cannot be null")]

 public virtual string ResponseMessage { get; set; }

 /// <summary>

 /// Gets or sets the RequestSent

 /// </summary>

 [NotNullValidator(MessageTemplate = "The RequestSent cannot

be null")]

 public virtual DateTime? RequestSent { get; set; }

 /// <summary>

 /// Gets or sets the ResponseReceived

 /// </summary>

 [NotNullValidator(MessageTemplate = "The ResponseReceived

cannot be null")]

 public virtual DateTime? ResponseReceived { get; set; }

 /// <summary>

 /// Gets or sets the XSLTName

 /// </summary>

 public virtual string XSLTFileName { get; set; }

 }

}

Buffie.Message Services

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data.Objects;

using System.Data.Objects.DataClasses;

using Buffie.Core;

using Buffie.Entities;

using Microsoft.Practices.EnterpriseLibrary.Validation;

using Buffie.Utils;

using System.Diagnostics;

namespace Buffie.Services

Appendix B. C# Code for BUFFIE Core Components and Services.

176

{

 /// <summary>

 /// Defines the interface for Messages

 /// </summary>

 public class BuffieMessageService

 {

 BuffieEntities _dataContext = new BuffieEntities();

 /// <summary>

 /// default constructor

 /// </summary>

 public BuffieMessageService()

 {

 }

 public string CreateMessage(Buffie.Core.BuffieMessage

NewMessage, int CurQueryId)

 {

 try

 {

 //select the reference to Query that creates this

message.

 var _mQuery = (from query in _dataContext.Query

 where query.QueryId == CurQueryId

 select query).First();

 var _mProvider = (from prd in _dataContext.Provider

 where prd.ProviderId ==

NewMessage.ProviderId

 select prd).First();

 var data = new Buffie.Entities.Message {

Query=_mQuery,

 Provider =

_mProvider,

RequestMessage = NewMessage.RequestMessage,

 RequestSent

= NewMessage.RequestSent,

ResponseMessage = NewMessage.ResponseMessage,

ResponseReceived = NewMessage.ResponseReceived,

 Active =

true };

 _dataContext.AddToMessage(data);

 _dataContext.SaveChanges();

 //return the newquery object with new id value.

 NewMessage.MessageId = data.MessageID;

 return "Success";

 }

 catch (Exception ex)

 {

 return "Error";

 }

 }

 public Buffie.Core.BuffieMessage GetMessage(int MessageID)

 {

Appendix B. C# Code for BUFFIE Core Components and Services.

177

 try

 {

 var Message = _dataContext.Message.First(m =>

m.MessageID == MessageID);

 return new Buffie.Core.BuffieMessage

 {

 UserId = Message.Query.User.UserId,

 QueryId = Message.Query.QueryId,

 MessageId = Message.MessageID,

 ProviderId = Message.Provider.ProviderId,

 RequestSent = Message.RequestSent ,

 RequestMessage = Message.RequestMessage,

 ResponseMessage = Message.ResponseMessage,

 ResponseReceived = Message.ResponseReceived

 };

 }

 catch (Exception ex)

 {

 return null;

 }

 }

 public string UpdateMessage(Buffie.Core.BuffieMessage

curMessage)

 {

 try

 {

 var updMessage = (from Msg in _dataContext.Message

 where Msg.MessageID ==

curMessage.MessageId

 select Msg).First();

 updMessage.RequestMessage =

curMessage.RequestMessage;

 updMessage.RequestSent = curMessage.RequestSent;

 updMessage.ResponseMessage =

curMessage.ResponseMessage.ReplaceEx("UTF-8", "UTF-16", true);

 updMessage.ResponseMessage =

curMessage.ResponseMessage; ;

 updMessage.ResponseReceived =

curMessage.ResponseReceived;

 _dataContext.SaveChanges();

 return "Success";

 }

 catch (Exception ex)

 {

 Debug.Print(ex.Message + "************/n"+

ex.InnerException);

 return "Error";

 }

 }

 }

}

Appendix B. C# Code for BUFFIE Core Components and Services.

178

Buffie.Core.Query

using System.Collections.Generic;

using System.Text;

using Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

namespace Buffie.Core

{

 /// <summary>

 /// Defines a Buffie Query

 /// </summary>

 public class BuffieQuery: DomainObject

 {

 /// <summary>

 /// Default constructor of a BuffieQuery

 /// </summary>

 public BuffieQuery()

 {

 }

 /// <summary>

 /// Gets or sets the Id

 /// </summary>

 [NotNullValidator(MessageTemplate = "The User ID cannot be

null")]

 public virtual int UserId { get; set; }

 /// <summary>

 /// Gets or sets the Id

 /// </summary>

 [NotNullValidator(MessageTemplate = "The QueryID cannot be

null")]

 public virtual int QueryId { get; set; }

 /// <summary>

 /// Gets or sets the SearchConceptName

 /// </summary>

 [NotNullValidator(MessageTemplate = "The SearchConceptName

cannot be null")]

 public virtual string SearchConceptName { get; set; }

 /// <summary>

 /// Gets or sets the SearchConceptValue

 /// </summary>

 [NotNullValidator(MessageTemplate = "The SearchConceptValue

cannot be null")]

 public virtual string SearchConceptValue { get; set; }

 /// <summary>

 /// Gets or sets the ResultProtocolName

 /// </summary>

 [NotNullValidator(MessageTemplate = "The ProtocolName cannot

be null")]

 public virtual string ResultProtocolName { get; set; }

 /// <summary>

 /// Gets or sets the SearchNameSynonyms

Appendix B. C# Code for BUFFIE Core Components and Services.

179

 /// </summary>

 [NotNullValidator(MessageTemplate = "The SearchNameSynonyms

cannot be null")]

 public virtual IList<string> SearchNameSynonyms { get; set; }

 public string GetSynonymsAsString()

 {

 StringBuilder tmpS = new StringBuilder();

 foreach (string SNS in this.SearchNameSynonyms)

 {

 tmpS.Append(SNS + ";");

 }

 return tmpS.ToString();

 }

 }

}

Buffie.Query Service

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data.Objects;

using System.Data.Objects.DataClasses;

using Buffie.Core;

using Buffie.Entities;

using Microsoft.Practices.EnterpriseLibrary.Validation;

using Buffie.Utils;

namespace Buffie.Services

{

 /// <summary>

 /// class to provide the DT service for query

 /// </summary>

 public class BuffieQueryService

 {

 BuffieEntities _dataContext = new BuffieEntities();

 /// <summary>

 /// default constructor

 /// </summary>

 public BuffieQueryService()

 {

 }

 /// <summary>

 /// method to create a query record in the database and

 /// </summary>

 /// <param name="NewQuery"></param>

 /// <returns>The QueryID generated from the database if

success otherwise return 0</returns>

 public string CreateQuery(Buffie.Core.BuffieQuery NewQuery,

int CurUserId)

 {

 CurUserId = 1;

 try

 {

 if (NewQuery == null)

 {

Appendix B. C# Code for BUFFIE Core Components and Services.

180

 throw new ArgumentNullException("NewQuery", "The

specified NewQuery cannot be null");

 }

 else

 {

 ValidationResults results = NewQuery.Validate();

 if (!results.IsValid)

 {

 throw new ValidationException(results);

 }

 else

 {

 //select the reference to user who creates

this Query.

 var _muser = (from user in _dataContext.User

 where user.UserId == CurUserId

 select user).First();

 var data = new Buffie.Entities.Query {

User=_muser, SearchConceptName=NewQuery.SearchConceptName,

SearchConceptValue = NewQuery.SearchConceptValue,

ProtocolName = NewQuery.ResultProtocolName,

SearchNameSynonyms = NewQuery.GetSynonymsAsString(),

 Active

= true };

 _dataContext.AddToQuery(data);

 _dataContext.SaveChanges();

 //return the newquery object with new id

value.

 NewQuery.QueryId = data.QueryId;

 return "Success";

 }

 }

 }

 catch (Exception ex)

 {

 return "Error";

 }

 }

 /// <summary>

 /// this method returns buffiequery object for a given

queryid from the database.

 /// </summary>

 /// <param name="QID"></param>

 /// <returns></returns>

 public Buffie.Core.BuffieQuery GetQuery(int QID)

 {

 try

 {

 var Query = _dataContext.Query.First(q => q.QueryId

== QID);

 return new Buffie.Core.BuffieQuery { QueryId =

Query.QueryId, UserId= Query.User.UserId,

Appendix B. C# Code for BUFFIE Core Components and Services.

181

 ResultProtocolName = Query.ProtocolName,

SearchConceptName= Query.SearchConceptName,

 SearchConceptValue=Query.SearchConceptValue,

SearchNameSynonyms=Query.SearchNameSynonyms.StringToList(';') } ;

 }

 catch (Exception ex)

 {

 return null;

 }

 }

 }

}

Buffie.Core.Provider

using Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

namespace Buffie.Core

{

 /// <summary>

 /// class that defines the provider of data for Buffie system

 /// </summary>

 public class BuffieProvider

 {

 /// <summary>

 /// Default constructor

 /// </summary>

 public BuffieProvider()

 {

 }

 /// <summary>

 /// unique provider Id

 /// </summary>

 [NotNullValidator(MessageTemplate = "The MessageId cannot be

null")]

 public virtual int ProviderId { get; set; }

 /// <summary>

 /// Gets or sets the ProviderName

 /// </summary>

 [NotNullValidator(MessageTemplate = "The ProviderName cannot

be null")]

 public virtual string ProviderName { get; set; }

 /// <summary>

 /// Gets or sets the ProtocolName

 /// </summary>

 [NotNullValidator(MessageTemplate = "The ProtocolName cannot

be null")]

 public virtual string ProtocolName { get; set; }

Appendix B. C# Code for BUFFIE Core Components and Services.

182

 /// <summary>

 /// Gets or sets the Country

 /// </summary>

 [NotNullValidator(MessageTemplate = "The Country cannot be

null")]

 public virtual string Country { get; set; }

 /// <summary>

 /// Gets or sets the AccessUrl

 /// </summary>

 [NotNullValidator(MessageTemplate = "The AccessUrl cannot be

null")]

 public virtual string AccessUrl { get; set; }

 /// <summary>

 /// Gets or sets the QueryParameter

 /// </summary>

 [NotNullValidator(MessageTemplate = "The QueryParameter

cannot be null")]

 public virtual string QueryParameter { get; set; }

 /// <summary>

 /// Gets or sets the ConfigFilePath

 /// </summary>

 [NotNullValidator(MessageTemplate = "The ConfigFilePath

cannot be null")]

 public virtual string ConfigFilePath { get; set; }

 /// <summary>

 /// Gets or sets the Resources

 /// </summary>

 [NotNullValidator(MessageTemplate = "The Resources cannot be

null")]

 public virtual string Resources { get; set; }

 }

}

Buffie.Provider Services

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data.Objects;

using System.Data.Objects.DataClasses;

using Buffie.Core;

using Buffie.Entities;

using Microsoft.Practices.EnterpriseLibrary.Validation;

using Buffie.Utils;

namespace Buffie.Services

{

 /// <summary>

 /// defines the service interface for provider class.

 /// </summary>

 public class BuffieProviderService

 {

 BuffieEntities _dataContext = new BuffieEntities();

 /// <summary>

Appendix B. C# Code for BUFFIE Core Components and Services.

183

 /// Default Constructor

 /// </summary>

 public BuffieProviderService()

 {

 }

 public Buffie.Core.BuffieProvider GetProvider(int ProviderID)

 {

 try

 {

 var Provider = _dataContext.Provider.First(p =>

p.ProviderId == ProviderID);

 return new Buffie.Core.BuffieProvider

{

 ProviderId = Provider.ProviderId,

ProviderName=Provider.ProviderName, AccessUrl=Provider.AccessUrl,

 ProtocolName=Provider.ProtocolName, Country=

Provider.Country, ConfigFilePath=Provider.ConfigFilePath,

 QueryParameter=Provider.QueryParameter,

Resources=Provider.Resources

 };

 }

 catch (Exception ex)

 {

 return null;

 }

 }

 /// <summary>

 /// this method retuns all the active providers as list of

BuffieProvider object collection

 /// </summary>

 /// <returns></returns>

 public List<Buffie.Core.BuffieProvider> GetAllProviderList()

 {

 List<Buffie.Core.BuffieProvider> Results = new

List<Buffie.Core.BuffieProvider>();

 try

 {

 var ProviderQuery = _dataContext.Provider.ToList();

 foreach (var PQ in ProviderQuery)

 {

 if (PQ.Active)

 {

 Results.Add(new BuffieProvider { AccessUrl =

PQ.AccessUrl, ConfigFilePath = PQ.ConfigFilePath,

 Country = PQ.Country, ProtocolName =

PQ.ProtocolName, ProviderId = PQ.ProviderId,

 ProviderName = PQ.ProviderName,

QueryParameter = PQ.QueryParameter, Resources = PQ.Resources });

 }

 }

 return Results;

 }

 catch (Exception ex)

 {

 return null;

 }

 }

Appendix B. C# Code for BUFFIE Core Components and Services.

184

 }

}

Buffie.Utils Services

using System;

using System.Collections;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Microsoft.Practices.EnterpriseLibrary.Validation;

namespace Buffie.Utils

{

 /// <summary>

 /// Defines the extension methods used for Buffie framework.

 /// </summary>

 public static class CustomExtensions

 {

 /// <summary>

 /// method to split the input string based on the delimiter

and return the array of strings as "Ilist<string>" collection

 /// </summary>

 /// <param name="InputString"></param>

 /// <param name="Delimiter"></param>

 /// <returns></returns>

 public static IList<string> StringToList(this String

InputString, Char Delimiter)

 {

 IList<string> Result = null;

 try

 {

 foreach(var S in InputString.Split(Delimiter))

 {

 Result.Add(S);

 }

 return Result;

 }

 catch (Exception ex)

 {

 return Result;

 }

 }

 /// <summary>

 ///

 /// </summary>

 /// <param name="o"></param>

 /// <param name="c"></param>

 /// <returns></returns>

 public static bool In(this object o, IEnumerable c)

 {

 foreach (object i in c)

 {

 if (i.Equals(o)) return true;

 }

 return false;

 }

Appendix B. C# Code for BUFFIE Core Components and Services.

185

 public static void ForEach<T>(this IEnumerable<T> items,

Action<T> act)

 {

 foreach (T item in items)

 act(item);

 }

 /// <summary>

 ///

 /// </summary>

 /// <typeparam name="TInput"></typeparam>

 /// <typeparam name="TOutput"></typeparam>

 /// <param name="items"></param>

 /// <param name="f"></param>

 /// <param name="finalMethod"></param>

 public static void ForEachParallel<TInput, TOutput>(this

IEnumerable<TInput> items, Func<TInput, TOutput> f,

Action<IEnumerable<TOutput>> finalMethod)

 {

 Int32 count = items.Count();

 List<TOutput> results = new List<TOutput>(count);

 items.ForEach(x =>

 f.DoAsync(x, y =>

 {

 results.Add(y);

 if (results.Count == count)

 finalMethod(results);

 })

);

 }

 /// <summary>

 ///

 /// </summary>

 /// <typeparam name="TInput"></typeparam>

 /// <typeparam name="TResult"></typeparam>

 /// <param name="f"></param>

 /// <param name="arg"></param>

 /// <param name="callback"></param>

 public static void DoAsync<TInput, TResult>(this Func<TInput,

TResult> f, TInput arg, Action<TResult> callback)

 {

 f.BeginInvoke(arg, x => callback(f.EndInvoke(x)), null);

 }

 /// <summary>

 /// String replace function that support

 /// </summary>

 /// <param name="OrigString">Original input string</param>

 /// <param name="FindString">The string that is to be

replaced</param>

 /// <param name="ReplaceWith">The replacement string</param>

 /// <param name="Instance">Instance of the FindString that is

to be found. if Instance = -1 all are replaced</param>

 /// <param name="CaseInsensitive">Case insensitivity

flag</param>

Appendix B. C# Code for BUFFIE Core Components and Services.

186

 /// <returns>updated string or original string if no

matches</returns>

 public static string ReplaceEx(this string OrigString, string

FindString, string ReplaceWith, int Instance, bool CaseInsensitive)

 {

 int at1 = 0;

 for (int x = 0; x < Instance; x++)

 {

 if (CaseInsensitive)

 at1 = OrigString.IndexOf(FindString, at1,

OrigString.Length - at1,StringComparison.OrdinalIgnoreCase);

 else

 at1 = OrigString.IndexOf(FindString, at1);

 if (at1 == -1) return OrigString;

 if (x < Instance-1) at1 +=

FindString.Length;

 }

 return OrigString.Substring(0, at1) + ReplaceWith +

OrigString.Substring(at1 + FindString.Length);

 //StringBuilder sb = new StringBuilder(OrigString);

 //sb.Replace(FindString, ReplaceString, at1,

FindString.Length);

 //return sb.ToString();

 }

 /// <summary>

 /// Replaces a substring within a string with another

substring with optional case sensitivity turned off.

 /// </summary>

 /// <param name="OrigString">String to do replacements

on</param>

 /// <param name="FindString">The string to find</param>

 /// <param name="ReplaceString">The string to replace

found string wiht</param>

 /// <param name="CaseInsensitive">If true case

insensitive search is performed</param>

 /// <returns>updated string or original string if no

matches</returns>

 public static string ReplaceEx(this string OrigString, string

FindString, string ReplaceString, bool CaseInsensitive)

 {

 int at1 = 0;

 while(true)

 {

 if (CaseInsensitive)

 {

 at1 = OrigString.IndexOf(FindString, at1,

OrigString.Length - at1, StringComparison.OrdinalIgnoreCase);

 }

 else

 {

 //at1 = OrigString.IndexOf(FindString, at1);

 return OrigString.Replace(FindString,

ReplaceString);

 }

 if (at1 == -1)

 return OrigString;

Appendix B. C# Code for BUFFIE Core Components and Services.

187

 OrigString = OrigString.Substring(0, at1) +

ReplaceString + OrigString.Substring(at1 + FindString.Length);

 at1 += ReplaceString.Length;

 }

 }

 }

}

Buffie.XML Transform Services

using System;

using System.IO;

using System.Text;

using System.Collections.Generic;

using System.Linq;

using System.Xml;

using System.Xml.XPath;

using System.Xml.Xsl;

namespace Buffie.Utils

{

 public static class XSLTHelpers

 {

 /// <summary>

 /// this method provides the interface for xslt

transformation

 /// </summary>

 /// <param name="InputXML"></param>

 /// <param name="InputXSL"></param>

 /// <param name="settings"></param>

 /// <param name="resolver"></param>

 /// <param name="argList"></param>

 /// <returns></returns>

 public static string XMLTransform(string InputXML, string

InputXSL, XsltSettings settings,XmlUrlResolver resolver,

XsltArgumentList argList)

 {

 XmlReader xmlReader = null;

 XmlReader xslReader = null;

 StringBuilder Result = new StringBuilder();

 try

 {

 if (InputXML.EndsWith(".xml"))

 {

 xmlReader = XmlReader.Create(InputXML);

 }

 else

 {

 //xmlReader = XmlReader.Create(new

MemoryStream(Encoding.UTF8.GetBytes(InputXML)));

 xmlReader = XmlReader.Create(new

StringReader(InputXML));

 }

 if (InputXSL.EndsWith(".xslt"))

 {

 xslReader = XmlReader.Create(InputXSL);

 }

Appendix B. C# Code for BUFFIE Core Components and Services.

188

 else

 {

 xslReader = XmlReader.Create(new

MemoryStream(Encoding.UTF8.GetBytes(InputXSL)));

 }

 // Open input xml as an XPathDocument.

 XPathDocument doc = new XPathDocument(xmlReader);

 // Create an XmlWriter to write the output.

 XmlWriter writer = XmlWriter.Create(Result);

 // Create the XslCompiledTransform and load the style

sheet.

 XslCompiledTransform xslt = new

XslCompiledTransform();

 xslt.Load(xslReader, settings, resolver);

 // Execute the transformation.

 xslt.Transform(doc, argList, writer);

 return Result.ToString();

 }

 catch (Exception ex)

 {

 return "Error";

 }

 }

 }

}

Buffie.Engine Services

using System;

using System.IO;

using System.Text;

using System.Collections.Generic;

using System.Linq;

using System.Xml;

using System.Xml.XPath;

using System.Xml.Xsl;

using Buffie.Utils;

using Buffie.Core;

using System.Reflection;

using System.Net;

using System.Diagnostics;

namespace Buffie.Services

{

 public class BuffieEngine

 {

 //properties for this Buffie Engine class

 protected internal Buffie.Core.BuffieQuery NewQuery { get;

set; }

Appendix B. C# Code for BUFFIE Core Components and Services.

189

 protected internal List<Buffie.Core.BuffieMessage>

NewMessages { get; set; }

 protected internal List<Buffie.Core.BuffieProvider> Providers

{ get; set; }

 protected internal Buffie.Core.BuffieResult Result { get;

set; }

 protected internal string SearchConcept { get; set; }

 public BuffieEngine()

 {

 //default constructor

 }

 public BuffieEngine(string SearchString, IList<string>

SearchSynonyms, String ResponseFormat)

 {

 try

 {

 this.NewMessages = new List<BuffieMessage>();

 this.Providers = new List<BuffieProvider>();

 this.Result = new BuffieResult();

 IList<string> Syns = null;

 this.NewQuery = new BuffieQuery { SearchConceptName =

"ScientificName",

 SearchConceptValue = SearchString,

ResultProtocolName = ResponseFormat,

 SearchNameSynonyms = SearchSynonyms,

UserId = 0, QueryId = 0 };

 }

 catch (Exception ex)

 {

 }

 }

 /// <summary>

 ///

 /// </summary>

 /// <param name="SearchString"></param>

 /// <param name="ResponseFormat"></param>

 public bool RunSearch()

 {

 if (this.NewQuery.Equals(null)) return false;

 //start processing when a newquery is set

 try

 {

 int CurUserId = 1;

 //create Query and messages.

 var res = new

BuffieQueryService().CreateQuery(this.NewQuery, CurUserId);

 //if new query created succsses fuly then

 if (res.Equals("Success"))

 {

Appendix B. C# Code for BUFFIE Core Components and Services.

190

 //create collection of Provider Objs

 BuffieProviderService BPS = new

BuffieProviderService();

 BuffieMessageService BMS = new

BuffieMessageService();

 BuffieResultService BRS = new

BuffieResultService();

 var PLs = BPS.GetAllProviderList();

 foreach (var P in PLs)

 {

 // create a request object that returns the

requestxml string

 var argList = new

System.Xml.Xsl.XsltArgumentList();

 argList.AddParam("accessurl", "",

P.AccessUrl);

 argList.AddParam("source", "",

"192.168.1.105");

 argList.AddParam("resource", "",

P.Resources);

 argList.AddParam("conceptname", "",

this.NewQuery.SearchConceptName);

 argList.AddParam("conceptvalue", "",

this.NewQuery.SearchConceptValue);

 argList.AddParam("currenttime", "",

DateTime.Now.ToString());

 string InputXml = @"<?xml version=""1.0""

encoding=""UTF-8""?><request/>";

 string InputXsl = P.ConfigFilePath +

"detail_search_request.xslt" ;

 string path =

Path.GetDirectoryName(Assembly.GetAssembly(typeof(BuffieEngine)).Code

Base);

 string requestXML =

XSLTHelpers.XMLTransform(InputXml,

 InputXsl, new

System.Xml.Xsl.XsltSettings{EnableScript = true}, null, argList);

 //string requestXML = "test" ;

 Debug.Print(requestXML);

 string TransformFilepath = "None";

 if (P.ProtocolName !=

this.NewQuery.ResultProtocolName)

 TransformFilepath = P.ConfigFilePath +

P.ProtocolName + "_to_" + this.NewQuery.ResultProtocolName + ".xslt";

 if (this.NewQuery.SearchNameSynonyms.Count >

0)

 {

 // change request xml,

 }

 // create a new message for each provider.

 Buffie.Core.BuffieMessage NewMessage = new

Buffie.Core.BuffieMessage { ProviderId = P.ProviderId, QueryId =

NewQuery.QueryId,

Appendix B. C# Code for BUFFIE Core Components and Services.

191

RequestMessage = requestXML,

RequestDestination = P.AccessUrl + P.QueryParameter,

RequestSent = DateTime.Now, ResponseMessage = "",

ResponseReceived = null, UserId = NewQuery.UserId,

XSLTFileName = TransformFilepath };

 var Result = BMS.CreateMessage(NewMessage,

NewQuery.QueryId);

 if (Result.Equals("Success"))

 {

 NewMessages.Add(NewMessage);

 //run a loop for each synonyms

 // change request xml replace scientific

name with synonym name and create message

 }

 }

 Func<BuffieMessage, BuffieMessage> f1 = uri =>

 {

 try

 {

 WebRequest request =

WebRequest.Create(uri.RequestDestination + uri.RequestMessage);

 request.Timeout = 30000;

 request.Credentials =

CredentialCache.DefaultCredentials;

 WebResponse response =

(HttpWebResponse)request.GetResponse();

 uri.ResponseMessage = new

StreamReader(response.GetResponseStream()).ReadToEnd().ToString();

 uri.ResponseReceived = DateTime.Now;

 }

 catch (Exception ex)

 {

 uri.ResponseMessage = ex.Message;

 }

 finally

 {

 var Res = BMS.UpdateMessage(uri);

 }

 return uri;

 };

 StringBuilder ResultsForQuery = new

StringBuilder("<results>");

 NewMessages.ForEachParallel(f1, result =>

result.ForEach(val =>

 {

if(val.XSLTFileName != "None")

 {

ResultsForQuery.Append(XSLTHelpers.XMLTransform(val.ResponseMessage,

Appendix B. C# Code for BUFFIE Core Components and Services.

192

val.XSLTFileName, null,null,null));

 }else

 {

ResultsForQuery.Append("");

 }

 }));

 string QueryRes =

BRS.CreateResults(ResultsForQuery.ToString(), this.NewQuery.QueryId,

CurUserId);

 }

 return true;

 }

 catch (Exception ex)

 {

 return false;

 }

 }

 }

}

AJAX for Enriching Query in JavaScript:

var QueryEnrichingServiceProxy;

// Initializes global and proxy default variables.

function pageLoad() {

 // Instantiate the service proxy.

 QueryEnrichingServiceProxy = new QueryEnrichingService();

 // Set the default call back functions.

QueryEnrichingServiceProxy.set_defaultSucceededCallback(SucceededCall

back);

QueryEnrichingServiceProxy.set_defaultFailedCallback(FailedCallback);

}

function GetSynonyms(sn) {

 var x = document.getElementById(sn);

 var sname = x.getAttribute("value").toString();

 var val =

QueryEnrichingServiceProxy.GetSpeciesNameSynonyms('Species2000',

sname);

}

// Callback function that processes the service return value.

function SucceededCallback(result) {

Appendix B. C# Code for BUFFIE Core Components and Services.

193

 alert("I am in SucceededCallback" + result.toString());

 var str1 = result.toString().split(";", 5);

 var RsltElem = document.getElementById("Results");

 var relem = document.getElementById(hdnResult).value = result;

// var options = RsltElem.getElementsByTagName("option");

 if (str1 != null) {

 var elem = "<SELECT>";

 for (var x in str1) {

 if (str1[x].length > 0) {

 elem = elem + '<OPTION value=\"' + str1[x] + '\">' +

str1[x] + "</OPTION> ";

 }

 }

 RsltElem.innerHTML = "</SELECT>" + elem;

 }

}

function FailedCallback(error, userContext, methodName) {

 alert("I am in FailedCallback");

 if (error !== null) {

 var RsltElem = document.getElementById("Results");

 RsltElem.innerHTML = "An error occurred: " +

 error.get_message();

 }

}

if (typeof (Sys) !== "undefined")

Sys.Application.notifyScriptLoaded();

Enriching Query - WebService Call Layer:

using System;

using System.Collections.Specialized;

using System.Collections.Generic;

using System.Linq;

using System.Web.Services;

using System.Net;

using System.Text;

using System.Xml.Linq;

using System.Web.Configuration;

using System.IO;

/// <summary>

/// Summary description for QueryEnrichingService

/// </summary>

[WebService(Namespace = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

// To allow this Web Service to be called from script, using ASP.NET

AJAX, uncomment the following line.

[System.Web.Script.Services.ScriptService]

public class QueryEnrichingService : System.Web.Services.WebService

{

Appendix B. C# Code for BUFFIE Core Components and Services.

194

 public QueryEnrichingService()

 {

 //Uncomment the following line if using designed components

 //InitializeComponent();

 string targetUrl = Cfg["MsgDestn.Url."];

 }

 public static NameValueCollection Cfg { get { return

(NameValueCollection)WebConfigurationManager.GetSection("appSettings"

); } }

 [WebMethod]

 public string GetSpeciesNameSynonyms(string providerCode, string

data)

 {

 //call the species 2000 webservice are process the return

xml

 string MsgResponse = null;

 string RetVal = null;

 string targetUrl = Cfg["MsgDestn.Url." + providerCode];

 string contentType = Cfg["MsgDestn.ContentType." +

providerCode];

 try

 {

 string RequestUrl = targetUrl + data;

 WebRequest request =

(WebRequest)WebRequest.Create(RequestUrl);

 request.Method = "POST";

 if (contentType != null && contentType.Length >

0)

 request.ContentType = contentType;

 else

 request.ContentType = "application/x-www-

form-urlencoded";

 string certificateFile = Cfg["MsgDestn.CertFile."

+ providerCode];

 if (certificateFile != null)

 {

System.Security.Cryptography.X509Certificates.X509Certificate cert =

System.Security.Cryptography.X509Certificates.X509Certificate.CreateF

romCertFile(@certificateFile);

((HttpWebRequest)request).ClientCertificates.Add(cert);

 }

 //Stream requestStream =

request.GetRequestStream();

 //StreamWriter requestWriter = new

StreamWriter(requestStream);

 //string urlEncode = Cfg["MsgDestn.UrlEncode." +

providerCode];

 //string xmlPrefix = Cfg["MsgDestn.XmlPrefix." +

providerCode];

 //if (urlEncode != null && bool.Parse(urlEncode))

 // requestWriter.Write(xmlPrefix +

HttpUtility.UrlEncode(data));

 //else

 // requestWriter.Write(xmlPrefix + data);

Appendix B. C# Code for BUFFIE Core Components and Services.

195

 //requestWriter.Close();

 Stream responseStream =

request.GetResponse().GetResponseStream();

 StreamReader responseReader = new

StreamReader(responseStream, Encoding.GetEncoding("utf-8"));

 MsgResponse = responseReader.ReadToEnd();

 responseReader.Close();

 // parse the xml and return the synonyms

 XElement root = XElement.Parse(MsgResponse);

 IEnumerable<XElement> results = from el in

root.Elements("result")

 select el;

 RetVal = (from e2 in

results.Elements("accepted_name").Elements("name")

 select (string)e2).Aggregate(new

StringBuilder(),

 (sb, i)

=> sb.Append(i + ";"),

 sb =>

sb.ToString());

 }

 catch (Exception exp)

 {

 //log.Error("Error getting quote from " + targetUrl,

exp);

 return exp.Message;

 }

 return RetVal;

 }

}

196

Appendix C

SQL code for BUFFIE Database and Entity Data

Model Services

USE [Buffie]

GO

/****** Object: User [buffie] ******/

CREATE USER [buffie] WITHOUT LOGIN WITH DEFAULT_SCHEMA=[dbo]

GO

/****** Object: Table [dbo].[User] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[User](

 [UserId] [int] IDENTITY(1,1) NOT NULL,

 [UserName] [nvarchar](50) NOT NULL,

 [Password] [nvarchar](50) NOT NULL,

 [UserRole] [nvarchar](50) NULL,

 [EmailId] [nvarchar](150) NULL,

 [Institution] [nvarchar](50) NULL,

 [Active] [bit] NOT NULL,

 CONSTRAINT [PK_User] PRIMARY KEY CLUSTERED

(

 [UserId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

) ON [PRIMARY]

GO

EXEC sys.sp_addextendedproperty @name=N'MS_Description',

@value=N'Holds the user login information for BUFFIE.' ,

@level0type=N'SCHEMA',@level0name=N'dbo',

@level1type=N'TABLE',@level1name=N'User'

GO

/****** Object: Table [dbo].[Provider ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Provider](

 [ProviderId] [int] IDENTITY(1,1) NOT NULL,

 [ProviderName] [nvarchar](50) NOT NULL,

 [ProtocolName] [nvarchar](50) NOT NULL,

 [Country] [nvarchar](50) NULL,

 [AccessUrl] [nvarchar](500) NULL,

 [QueryParameter] [nvarchar](50) NULL,

 [ConfigFilePath] [nvarchar](150) NULL,

 [Resources] [nvarchar](50) NULL,

Appendix C. SQL Code and Entity Data Model for BUFFIE.

197

 [Active] [bit] NOT NULL,

 CONSTRAINT [PK_Provider] PRIMARY KEY CLUSTERED

(

 [ProviderId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[Query] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Query](

 [QueryId] [int] IDENTITY(1,1) NOT NULL,

 [UserId] [int] NOT NULL,

 [SearchConceptName] [nvarchar](200) NULL,

 [SearchConceptValue] [nvarchar](200) NULL,

 [ProtocolName] [nvarchar](50) NULL,

 [SearchNameSynonyms] [nvarchar](550) NULL,

 [Active] [bit] NOT NULL,

 CONSTRAINT [PK_Query] PRIMARY KEY CLUSTERED

(

 [QueryId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[Message] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Message](

 [MessageID] [int] IDENTITY(1,1) NOT NULL,

 [QueryId] [int] NOT NULL,

 [ProviderID] [int] NULL,

 [RequestMessage] [xml] NULL,

 [RequestSent] [datetime] NULL,

 [ResponseMessage] [nvarchar](max) NULL,

 [ResponseReceived] [datetime] NULL,

 [Active] [bit] NOT NULL,

 CONSTRAINT [PK_Message] PRIMARY KEY CLUSTERED

(

 [MessageID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

) ON [PRIMARY]

GO

EXEC sys.sp_addextendedproperty @name=N'MS_Description',

@value=N'This table holds the enriched request messages and responses

received for

Appendix C. SQL Code and Entity Data Model for BUFFIE.

198

each rquest message from the data provider' ,

@level0type=N'SCHEMA',@level0name=N'dbo',

@level1type=N'TABLE',@level1name=N'Message'

GO

/****** Object: Table [dbo].[Results] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Results](

 [ResultsId] [int] IDENTITY(1,1) NOT NULL,

 [UserId] [int] NOT NULL,

 [QueryId] [int] NOT NULL,

 [ResultsForQuery] [nvarchar](max) NOT NULL,

 CONSTRAINT [PK_Results] PRIMARY KEY CLUSTERED

(

 [ResultsId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: StoredProcedure [dbo].[GetQueryResults] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Author: <Author,,Name>

-- Create date: <Create Date,,>

-- Description: <Description,,>

-- ===

CREATE PROCEDURE [dbo].[GetQueryResults]

 -- Add the parameters for the stored procedure here

 @QId int

AS

BEGIN

 -- SET NOCOUNT ON added to prevent extra result sets from

 -- interfering with SELECT statements.

 SET NOCOUNT ON;

 -- Insert statements for procedure here

 SELECT Provider.ProviderName, Provider.ProtocolName,

[Message].ResponseMessage from Provider, [Message]

 WHERE [Message].ProviderID = Provider.ProviderId and

[Message].QueryId = @QId

END

GO

/****** Object: Default [DF_User_Active] ******/

ALTER TABLE [dbo].[User] ADD CONSTRAINT [DF_User_Active] DEFAULT

((1)) FOR [Active]

GO

/****** Object: Default [DF_Query_Active] ******/

ALTER TABLE [dbo].[Query] ADD CONSTRAINT [DF_Query_Active] DEFAULT

((1)) FOR [Active]

GO

/****** Object: ForeignKey [FK_Query_User] ******/

Appendix C. SQL Code and Entity Data Model for BUFFIE.

199

ALTER TABLE [dbo].[Query] WITH NOCHECK ADD CONSTRAINT

[FK_Query_User] FOREIGN KEY([UserId])

REFERENCES [dbo].[User] ([UserId])

GO

ALTER TABLE [dbo].[Query] CHECK CONSTRAINT [FK_Query_User]

GO

EXEC sys.sp_addextendedproperty @name=N'MS_Description',

@value=N'Each user can have many queires' ,

@level0type=N'SCHEMA',@level0name=N'dbo',

@level1type=N'TABLE',@level1name=N'Query',

@level2type=N'CONSTRAINT',@level2name=N'FK_Query_User'

GO

/****** Object: ForeignKey [FK_Message_Provider] ******/

ALTER TABLE [dbo].[Message] WITH NOCHECK ADD CONSTRAINT

[FK_Message_Provider] FOREIGN KEY([ProviderID])

REFERENCES [dbo].[Provider] ([ProviderId])

GO

ALTER TABLE [dbo].[Message] CHECK CONSTRAINT [FK_Message_Provider]

GO

/****** Object: ForeignKey [FK_Message_Query] ******/

ALTER TABLE [dbo].[Message] WITH NOCHECK ADD CONSTRAINT

[FK_Message_Query] FOREIGN KEY([QueryId])

REFERENCES [dbo].[Query] ([QueryId])

GO

ALTER TABLE [dbo].[Message] CHECK CONSTRAINT [FK_Message_Query]

GO

EXEC sys.sp_addextendedproperty @name=N'MS_Description',

@value=N'Each Query generates multiple messages. ' ,

@level0type=N'SCHEMA',@level0name=N'dbo',

@level1type=N'TABLE',@level1name=N'Message',

@level2type=N'CONSTRAINT',@level2name=N'FK_Message_Query'

GO

/****** Object: ForeignKey [FK_Results_Query] ******/

ALTER TABLE [dbo].[Results] WITH NOCHECK ADD CONSTRAINT

[FK_Results_Query] FOREIGN KEY([QueryId])

REFERENCES [dbo].[Query] ([QueryId])

NOT FOR REPLICATION

GO

ALTER TABLE [dbo].[Results] CHECK CONSTRAINT [FK_Results_Query]

GO

BUFFIE EntityDataModel

//---

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:2.0.50727.3074

//

// Changes to this file may cause incorrect behavior and will be

lost if

// the code is regenerated.

// </auto-generated>

//---

[assembly:

global::System.Data.Objects.DataClasses.EdmSchemaAttribute()]

Appendix C. SQL Code and Entity Data Model for BUFFIE.

200

[assembly:

global::System.Data.Objects.DataClasses.EdmRelationshipAttribute("Buf

fieModel", "FK_Message_Provider", "Provider",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.ZeroOrOne,

typeof(Buffie.Entities.Provider), "Message",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.Many,

typeof(Buffie.Entities.Message))]

[assembly:

global::System.Data.Objects.DataClasses.EdmRelationshipAttribute("Buf

fieModel", "FK_Message_Query", "Query",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.One,

typeof(Buffie.Entities.Query), "Message",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.Many,

typeof(Buffie.Entities.Message))]

[assembly:

global::System.Data.Objects.DataClasses.EdmRelationshipAttribute("Buf

fieModel", "FK_Query_User", "User",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.One,

typeof(Buffie.Entities.User), "Query",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.Many,

typeof(Buffie.Entities.Query))]

[assembly:

global::System.Data.Objects.DataClasses.EdmRelationshipAttribute("Buf

fieModel", "FK_Results_Query", "Query",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.One,

typeof(Buffie.Entities.Query), "Results",

global::System.Data.Metadata.Edm.RelationshipMultiplicity.Many,

typeof(Buffie.Entities.Results))]

// Original file name:

// Generation date: 27/05/2009 23:09:12

namespace Buffie.Entities

{

 /// <summary>

 /// There are no comments for BuffieEntities in the schema.

 /// </summary>

 public partial class BuffieEntities :

global::System.Data.Objects.ObjectContext

 {

 /// <summary>

 /// Initializes a new BuffieEntities object using the

connection string found in the 'BuffieEntities' section of the

application configuration file.

 /// </summary>

 public BuffieEntities() :

 base("name=BuffieEntities", "BuffieEntities")

 {

 this.OnContextCreated();

 }

 /// <summary>

 /// Initialize a new BuffieEntities object.

 /// </summary>

 public BuffieEntities(string connectionString) :

 base(connectionString, "BuffieEntities")

 {

 this.OnContextCreated();

 }

 /// <summary>

 /// Initialize a new BuffieEntities object.

 /// </summary>

Appendix C. SQL Code and Entity Data Model for BUFFIE.

201

 public

BuffieEntities(global::System.Data.EntityClient.EntityConnection

connection) :

 base(connection, "BuffieEntities")

 {

 this.OnContextCreated();

 }

 partial void OnContextCreated();

 /// <summary>

 /// There are no comments for Message in the schema.

 /// </summary>

 public global::System.Data.Objects.ObjectQuery<Message>

Message

 {

 get

 {

 if ((this._Message == null))

 {

 this._Message =

base.CreateQuery<Message>("[Message]");

 }

 return this._Message;

 }

 }

 private global::System.Data.Objects.ObjectQuery<Message>

_Message;

 /// <summary>

 /// There are no comments for Provider in the schema.

 /// </summary>

 public global::System.Data.Objects.ObjectQuery<Provider>

Provider

 {

 get

 {

 if ((this._Provider == null))

 {

 this._Provider =

base.CreateQuery<Provider>("[Provider]");

 }

 return this._Provider;

 }

 }

 private global::System.Data.Objects.ObjectQuery<Provider>

_Provider;

 /// <summary>

 /// There are no comments for Query in the schema.

 /// </summary>

 public global::System.Data.Objects.ObjectQuery<Query> Query

 {

 get

 {

 if ((this._Query == null))

 {

 this._Query = base.CreateQuery<Query>("[Query]");

 }

 return this._Query;

 }

 }

 private global::System.Data.Objects.ObjectQuery<Query>

_Query;

 /// <summary>

Appendix C. SQL Code and Entity Data Model for BUFFIE.

202

 /// There are no comments for Results in the schema.

 /// </summary>

 public global::System.Data.Objects.ObjectQuery<Results>

Results

 {

 get

 {

 if ((this._Results == null))

 {

 this._Results =

base.CreateQuery<Results>("[Results]");

 }

 return this._Results;

 }

 }

 private global::System.Data.Objects.ObjectQuery<Results>

_Results;

 /// <summary>

 /// There are no comments for User in the schema.

 /// </summary>

 public global::System.Data.Objects.ObjectQuery<User> User

 {

 get

 {

 if ((this._User == null))

 {

 this._User = base.CreateQuery<User>("[User]");

 }

 return this._User;

 }

 }

 private global::System.Data.Objects.ObjectQuery<User> _User;

 /// <summary>

 /// There are no comments for Message in the schema.

 /// </summary>

 public void AddToMessage(Message message)

 {

 base.AddObject("Message", message);

 }

 /// <summary>

 /// There are no comments for Provider in the schema.

 /// </summary>

 public void AddToProvider(Provider provider)

 {

 base.AddObject("Provider", provider);

 }

 /// <summary>

 /// There are no comments for Query in the schema.

 /// </summary>

 public void AddToQuery(Query query)

 {

 base.AddObject("Query", query);

 }

 /// <summary>

 /// There are no comments for Results in the schema.

 /// </summary>

 public void AddToResults(Results results)

 {

 base.AddObject("Results", results);

 }

 /// <summary>

Appendix C. SQL Code and Entity Data Model for BUFFIE.

203

 /// There are no comments for User in the schema.

 /// </summary>

 public void AddToUser(User user)

 {

 base.AddObject("User", user);

 }

 }

 /// <summary>

 /// There are no comments for BuffieModel.Message in the schema.

 /// </summary>

 /// <KeyProperties>

 /// MessageID

 /// </KeyProperties>

[global::System.Data.Objects.DataClasses.EdmEntityTypeAttribute(Names

paceName="BuffieModel", Name="Message")]

[global::System.Runtime.Serialization.DataContractAttribute(IsReferen

ce=true)]

 [global::System.Serializable()]

 public partial class Message :

global::System.Data.Objects.DataClasses.EntityObject

 {

 /// <summary>

 /// Create a new Message object.

 /// </summary>

 /// <param name="messageID">Initial value of

MessageID.</param>

 /// <param name="active">Initial value of Active.</param>

 public static Message CreateMessage(int messageID, bool

active)

 {

 Message message = new Message();

 message.MessageID = messageID;

 message.Active = active;

 return message;

 }

 /// <summary>

 /// There are no comments for Property MessageID in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(E

ntityKeyProperty=true, IsNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public int MessageID

 {

 get

 {

 return this._MessageID;

 }

 set

 {

 this.OnMessageIDChanging(value);

 this.ReportPropertyChanging("MessageID");

 this._MessageID =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("MessageID");

 this.OnMessageIDChanged();

 }

Appendix C. SQL Code and Entity Data Model for BUFFIE.

204

 }

 private int _MessageID;

 partial void OnMessageIDChanging(int value);

 partial void OnMessageIDChanged();

 /// <summary>

 /// There are no comments for Property RequestMessage in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string RequestMessage

 {

 get

 {

 return this._RequestMessage;

 }

 set

 {

 this.OnRequestMessageChanging(value);

 this.ReportPropertyChanging("RequestMessage");

 this._RequestMessage =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("RequestMessage");

 this.OnRequestMessageChanged();

 }

 }

 private string _RequestMessage;

 partial void OnRequestMessageChanging(string value);

 partial void OnRequestMessageChanged();

 /// <summary>

 /// There are no comments for Property RequestSent in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public global::System.Nullable<global::System.DateTime>

RequestSent

 {

 get

 {

 return this._RequestSent;

 }

 set

 {

 this.OnRequestSentChanging(value);

 this.ReportPropertyChanging("RequestSent");

 this._RequestSent =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("RequestSent");

 this.OnRequestSentChanged();

 }

 }

 private global::System.Nullable<global::System.DateTime>

_RequestSent;

Appendix C. SQL Code and Entity Data Model for BUFFIE.

205

 partial void

OnRequestSentChanging(global::System.Nullable<global::System.DateTime

> value);

 partial void OnRequestSentChanged();

 /// <summary>

 /// There are no comments for Property ResponseMessage in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string ResponseMessage

 {

 get

 {

 return this._ResponseMessage;

 }

 set

 {

 this.OnResponseMessageChanging(value);

 this.ReportPropertyChanging("ResponseMessage");

 this._ResponseMessage =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("ResponseMessage");

 this.OnResponseMessageChanged();

 }

 }

 private string _ResponseMessage;

 partial void OnResponseMessageChanging(string value);

 partial void OnResponseMessageChanged();

 /// <summary>

 /// There are no comments for Property ResponseReceived in

the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public global::System.Nullable<global::System.DateTime>

ResponseReceived

 {

 get

 {

 return this._ResponseReceived;

 }

 set

 {

 this.OnResponseReceivedChanging(value);

 this.ReportPropertyChanging("ResponseReceived");

 this._ResponseReceived =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("ResponseReceived");

 this.OnResponseReceivedChanged();

 }

 }

 private global::System.Nullable<global::System.DateTime>

_ResponseReceived;

Appendix C. SQL Code and Entity Data Model for BUFFIE.

206

 partial void

OnResponseReceivedChanging(global::System.Nullable<global::System.Dat

eTime> value);

 partial void OnResponseReceivedChanged();

 /// <summary>

 /// There are no comments for Property Active in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public bool Active

 {

 get

 {

 return this._Active;

 }

 set

 {

 this.OnActiveChanging(value);

 this.ReportPropertyChanging("Active");

 this._Active =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("Active");

 this.OnActiveChanged();

 }

 }

 private bool _Active;

 partial void OnActiveChanging(bool value);

 partial void OnActiveChanged();

 /// <summary>

 /// There are no comments for Provider in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Message_Provider", "Provider")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public Provider Provider

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Provider>("BuffieModel.

FK_Message_Provider", "Provider").Value;

 }

 set

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Provider>("BuffieModel.

FK_Message_Provider", "Provider").Value = value;

 }

 }

 /// <summary>

 /// There are no comments for Provider in the schema.

 /// </summary>

 [global::System.ComponentModel.BrowsableAttribute(false)]

Appendix C. SQL Code and Entity Data Model for BUFFIE.

207

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityReference<Provider>

ProviderReference

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Provider>("BuffieModel.

FK_Message_Provider", "Provider");

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.InitializeRelatedReference<Provider>("Buffi

eModel.FK_Message_Provider", "Provider", value);

 }

 }

 }

 /// <summary>

 /// There are no comments for Query in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Message_Query", "Query")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public Query Query

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Query>("BuffieModel.FK_

Message_Query", "Query").Value;

 }

 set

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Query>("BuffieModel.FK_

Message_Query", "Query").Value = value;

 }

 }

 /// <summary>

 /// There are no comments for Query in the schema.

 /// </summary>

 [global::System.ComponentModel.BrowsableAttribute(false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityReference<Query>

QueryReference

 {

 get

 {

Appendix C. SQL Code and Entity Data Model for BUFFIE.

208

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Query>("BuffieModel.FK_

Message_Query", "Query");

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.InitializeRelatedReference<Query>("BuffieMo

del.FK_Message_Query", "Query", value);

 }

 }

 }

 }

 /// <summary>

 /// There are no comments for BuffieModel.Provider in the schema.

 /// </summary>

 /// <KeyProperties>

 /// ProviderId

 /// </KeyProperties>

[global::System.Data.Objects.DataClasses.EdmEntityTypeAttribute(Names

paceName="BuffieModel", Name="Provider")]

[global::System.Runtime.Serialization.DataContractAttribute(IsReferen

ce=true)]

 [global::System.Serializable()]

 public partial class Provider :

global::System.Data.Objects.DataClasses.EntityObject

 {

 /// <summary>

 /// Create a new Provider object.

 /// </summary>

 /// <param name="providerId">Initial value of

ProviderId.</param>

 /// <param name="providerName">Initial value of

ProviderName.</param>

 /// <param name="protocolName">Initial value of

ProtocolName.</param>

 /// <param name="active">Initial value of Active.</param>

 public static Provider CreateProvider(int providerId, string

providerName, string protocolName, bool active)

 {

 Provider provider = new Provider();

 provider.ProviderId = providerId;

 provider.ProviderName = providerName;

 provider.ProtocolName = protocolName;

 provider.Active = active;

 return provider;

 }

 /// <summary>

 /// There are no comments for Property ProviderId in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(E

ntityKeyProperty=true, IsNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

Appendix C. SQL Code and Entity Data Model for BUFFIE.

209

 public int ProviderId

 {

 get

 {

 return this._ProviderId;

 }

 set

 {

 this.OnProviderIdChanging(value);

 this.ReportPropertyChanging("ProviderId");

 this._ProviderId =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("ProviderId");

 this.OnProviderIdChanged();

 }

 }

 private int _ProviderId;

 partial void OnProviderIdChanging(int value);

 partial void OnProviderIdChanged();

 /// <summary>

 /// There are no comments for Property ProviderName in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string ProviderName

 {

 get

 {

 return this._ProviderName;

 }

 set

 {

 this.OnProviderNameChanging(value);

 this.ReportPropertyChanging("ProviderName");

 this._ProviderName =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, false);

 this.ReportPropertyChanged("ProviderName");

 this.OnProviderNameChanged();

 }

 }

 private string _ProviderName;

 partial void OnProviderNameChanging(string value);

 partial void OnProviderNameChanged();

 /// <summary>

 /// There are no comments for Property ProtocolName in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string ProtocolName

 {

 get

 {

 return this._ProtocolName;

Appendix C. SQL Code and Entity Data Model for BUFFIE.

210

 }

 set

 {

 this.OnProtocolNameChanging(value);

 this.ReportPropertyChanging("ProtocolName");

 this._ProtocolName =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, false);

 this.ReportPropertyChanged("ProtocolName");

 this.OnProtocolNameChanged();

 }

 }

 private string _ProtocolName;

 partial void OnProtocolNameChanging(string value);

 partial void OnProtocolNameChanged();

 /// <summary>

 /// There are no comments for Property Country in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string Country

 {

 get

 {

 return this._Country;

 }

 set

 {

 this.OnCountryChanging(value);

 this.ReportPropertyChanging("Country");

 this._Country =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("Country");

 this.OnCountryChanged();

 }

 }

 private string _Country;

 partial void OnCountryChanging(string value);

 partial void OnCountryChanged();

 /// <summary>

 /// There are no comments for Property AccessUrl in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string AccessUrl

 {

 get

 {

 return this._AccessUrl;

 }

 set

 {

 this.OnAccessUrlChanging(value);

 this.ReportPropertyChanging("AccessUrl");

Appendix C. SQL Code and Entity Data Model for BUFFIE.

211

 this._AccessUrl =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("AccessUrl");

 this.OnAccessUrlChanged();

 }

 }

 private string _AccessUrl;

 partial void OnAccessUrlChanging(string value);

 partial void OnAccessUrlChanged();

 /// <summary>

 /// There are no comments for Property QueryParameter in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string QueryParameter

 {

 get

 {

 return this._QueryParameter;

 }

 set

 {

 this.OnQueryParameterChanging(value);

 this.ReportPropertyChanging("QueryParameter");

 this._QueryParameter =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("QueryParameter");

 this.OnQueryParameterChanged();

 }

 }

 private string _QueryParameter;

 partial void OnQueryParameterChanging(string value);

 partial void OnQueryParameterChanged();

 /// <summary>

 /// There are no comments for Property ConfigFilePath in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string ConfigFilePath

 {

 get

 {

 return this._ConfigFilePath;

 }

 set

 {

 this.OnConfigFilePathChanging(value);

 this.ReportPropertyChanging("ConfigFilePath");

 this._ConfigFilePath =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("ConfigFilePath");

 this.OnConfigFilePathChanged();

Appendix C. SQL Code and Entity Data Model for BUFFIE.

212

 }

 }

 private string _ConfigFilePath;

 partial void OnConfigFilePathChanging(string value);

 partial void OnConfigFilePathChanged();

 /// <summary>

 /// There are no comments for Property Resources in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string Resources

 {

 get

 {

 return this._Resources;

 }

 set

 {

 this.OnResourcesChanging(value);

 this.ReportPropertyChanging("Resources");

 this._Resources =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("Resources");

 this.OnResourcesChanged();

 }

 }

 private string _Resources;

 partial void OnResourcesChanging(string value);

 partial void OnResourcesChanged();

 /// <summary>

 /// There are no comments for Property Active in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public bool Active

 {

 get

 {

 return this._Active;

 }

 set

 {

 this.OnActiveChanging(value);

 this.ReportPropertyChanging("Active");

 this._Active =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("Active");

 this.OnActiveChanged();

 }

 }

 private bool _Active;

 partial void OnActiveChanging(bool value);

 partial void OnActiveChanged();

 /// <summary>

Appendix C. SQL Code and Entity Data Model for BUFFIE.

213

 /// There are no comments for Message in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Message_Provider", "Message")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityCollection<Message>

Message

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedCollection<Message>("BuffieModel.

FK_Message_Provider", "Message");

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.InitializeRelatedCollection<Message>("Buffi

eModel.FK_Message_Provider", "Message", value);

 }

 }

 }

 }

 /// <summary>

 /// There are no comments for BuffieModel.Query in the schema.

 /// </summary>

 /// <KeyProperties>

 /// QueryId

 /// </KeyProperties>

[global::System.Data.Objects.DataClasses.EdmEntityTypeAttribute(Names

paceName="BuffieModel", Name="Query")]

[global::System.Runtime.Serialization.DataContractAttribute(IsReferen

ce=true)]

 [global::System.Serializable()]

 public partial class Query :

global::System.Data.Objects.DataClasses.EntityObject

 {

 /// <summary>

 /// Create a new Query object.

 /// </summary>

 /// <param name="queryId">Initial value of QueryId.</param>

 /// <param name="active">Initial value of Active.</param>

 public static Query CreateQuery(int queryId, bool active)

 {

 Query query = new Query();

 query.QueryId = queryId;

 query.Active = active;

 return query;

 }

 /// <summary>

 /// There are no comments for Property QueryId in the schema.

Appendix C. SQL Code and Entity Data Model for BUFFIE.

214

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(E

ntityKeyProperty=true, IsNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public int QueryId

 {

 get

 {

 return this._QueryId;

 }

 set

 {

 this.OnQueryIdChanging(value);

 this.ReportPropertyChanging("QueryId");

 this._QueryId =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("QueryId");

 this.OnQueryIdChanged();

 }

 }

 private int _QueryId;

 partial void OnQueryIdChanging(int value);

 partial void OnQueryIdChanged();

 /// <summary>

 /// There are no comments for Property SearchConceptName in

the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string SearchConceptName

 {

 get

 {

 return this._SearchConceptName;

 }

 set

 {

 this.OnSearchConceptNameChanging(value);

 this.ReportPropertyChanging("SearchConceptName");

 this._SearchConceptName =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("SearchConceptName");

 this.OnSearchConceptNameChanged();

 }

 }

 private string _SearchConceptName;

 partial void OnSearchConceptNameChanging(string value);

 partial void OnSearchConceptNameChanged();

 /// <summary>

 /// There are no comments for Property SearchConceptValue in

the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

Appendix C. SQL Code and Entity Data Model for BUFFIE.

215

 public string SearchConceptValue

 {

 get

 {

 return this._SearchConceptValue;

 }

 set

 {

 this.OnSearchConceptValueChanging(value);

 this.ReportPropertyChanging("SearchConceptValue");

 this._SearchConceptValue =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("SearchConceptValue");

 this.OnSearchConceptValueChanged();

 }

 }

 private string _SearchConceptValue;

 partial void OnSearchConceptValueChanging(string value);

 partial void OnSearchConceptValueChanged();

 /// <summary>

 /// There are no comments for Property ProtocolName in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string ProtocolName

 {

 get

 {

 return this._ProtocolName;

 }

 set

 {

 this.OnProtocolNameChanging(value);

 this.ReportPropertyChanging("ProtocolName");

 this._ProtocolName =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("ProtocolName");

 this.OnProtocolNameChanged();

 }

 }

 private string _ProtocolName;

 partial void OnProtocolNameChanging(string value);

 partial void OnProtocolNameChanged();

 /// <summary>

 /// There are no comments for Property SearchNameSynonyms in

the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string SearchNameSynonyms

 {

 get

 {

 return this._SearchNameSynonyms;

Appendix C. SQL Code and Entity Data Model for BUFFIE.

216

 }

 set

 {

 this.OnSearchNameSynonymsChanging(value);

 this.ReportPropertyChanging("SearchNameSynonyms");

 this._SearchNameSynonyms =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("SearchNameSynonyms");

 this.OnSearchNameSynonymsChanged();

 }

 }

 private string _SearchNameSynonyms;

 partial void OnSearchNameSynonymsChanging(string value);

 partial void OnSearchNameSynonymsChanged();

 /// <summary>

 /// There are no comments for Property Active in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public bool Active

 {

 get

 {

 return this._Active;

 }

 set

 {

 this.OnActiveChanging(value);

 this.ReportPropertyChanging("Active");

 this._Active =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("Active");

 this.OnActiveChanged();

 }

 }

 private bool _Active;

 partial void OnActiveChanging(bool value);

 partial void OnActiveChanged();

 /// <summary>

 /// There are no comments for Message in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Message_Query", "Message")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityCollection<Message>

Message

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedCollection<Message>("BuffieModel.

FK_Message_Query", "Message");

Appendix C. SQL Code and Entity Data Model for BUFFIE.

217

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.InitializeRelatedCollection<Message>("Buffi

eModel.FK_Message_Query", "Message", value);

 }

 }

 }

 /// <summary>

 /// There are no comments for User in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Query_User", "User")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public User User

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<User>("BuffieModel.FK_Q

uery_User", "User").Value;

 }

 set

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<User>("BuffieModel.FK_Q

uery_User", "User").Value = value;

 }

 }

 /// <summary>

 /// There are no comments for User in the schema.

 /// </summary>

 [global::System.ComponentModel.BrowsableAttribute(false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityReference<User>

UserReference

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<User>("BuffieModel.FK_Q

uery_User", "User");

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

Appendix C. SQL Code and Entity Data Model for BUFFIE.

218

his)).RelationshipManager.InitializeRelatedReference<User>("BuffieMod

el.FK_Query_User", "User", value);

 }

 }

 }

 /// <summary>

 /// There are no comments for Results in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Results_Query", "Results")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityCollection<Results>

Results

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedCollection<Results>("BuffieModel.

FK_Results_Query", "Results");

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.InitializeRelatedCollection<Results>("Buffi

eModel.FK_Results_Query", "Results", value);

 }

 }

 }

 }

 /// <summary>

 /// There are no comments for BuffieModel.Results in the schema.

 /// </summary>

 /// <KeyProperties>

 /// ResultsId

 /// </KeyProperties>

[global::System.Data.Objects.DataClasses.EdmEntityTypeAttribute(Names

paceName="BuffieModel", Name="Results")]

[global::System.Runtime.Serialization.DataContractAttribute(IsReferen

ce=true)]

 [global::System.Serializable()]

 public partial class Results :

global::System.Data.Objects.DataClasses.EntityObject

 {

 /// <summary>

 /// Create a new Results object.

 /// </summary>

 /// <param name="resultsId">Initial value of

ResultsId.</param>

 /// <param name="userId">Initial value of UserId.</param>

 /// <param name="resultsForQuery">Initial value of

ResultsForQuery.</param>

Appendix C. SQL Code and Entity Data Model for BUFFIE.

219

 public static Results CreateResults(int resultsId, int

userId, string resultsForQuery)

 {

 Results results = new Results();

 results.ResultsId = resultsId;

 results.UserId = userId;

 results.ResultsForQuery = resultsForQuery;

 return results;

 }

 /// <summary>

 /// There are no comments for Property ResultsId in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(E

ntityKeyProperty=true, IsNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public int ResultsId

 {

 get

 {

 return this._ResultsId;

 }

 set

 {

 this.OnResultsIdChanging(value);

 this.ReportPropertyChanging("ResultsId");

 this._ResultsId =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("ResultsId");

 this.OnResultsIdChanged();

 }

 }

 private int _ResultsId;

 partial void OnResultsIdChanging(int value);

 partial void OnResultsIdChanged();

 /// <summary>

 /// There are no comments for Property UserId in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public int UserId

 {

 get

 {

 return this._UserId;

 }

 set

 {

 this.OnUserIdChanging(value);

 this.ReportPropertyChanging("UserId");

 this._UserId =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("UserId");

 this.OnUserIdChanged();

 }

 }

Appendix C. SQL Code and Entity Data Model for BUFFIE.

220

 private int _UserId;

 partial void OnUserIdChanging(int value);

 partial void OnUserIdChanged();

 /// <summary>

 /// There are no comments for Property ResultsForQuery in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string ResultsForQuery

 {

 get

 {

 return this._ResultsForQuery;

 }

 set

 {

 this.OnResultsForQueryChanging(value);

 this.ReportPropertyChanging("ResultsForQuery");

 this._ResultsForQuery =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, false);

 this.ReportPropertyChanged("ResultsForQuery");

 this.OnResultsForQueryChanged();

 }

 }

 private string _ResultsForQuery;

 partial void OnResultsForQueryChanging(string value);

 partial void OnResultsForQueryChanged();

 /// <summary>

 /// There are no comments for Query in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Results_Query", "Query")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public Query Query

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Query>("BuffieModel.FK_

Results_Query", "Query").Value;

 }

 set

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Query>("BuffieModel.FK_

Results_Query", "Query").Value = value;

 }

 }

 /// <summary>

 /// There are no comments for Query in the schema.

 /// </summary>

 [global::System.ComponentModel.BrowsableAttribute(false)]

Appendix C. SQL Code and Entity Data Model for BUFFIE.

221

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityReference<Query>

QueryReference

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedReference<Query>("BuffieModel.FK_

Results_Query", "Query");

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.InitializeRelatedReference<Query>("BuffieMo

del.FK_Results_Query", "Query", value);

 }

 }

 }

 }

 /// <summary>

 /// There are no comments for BuffieModel.User in the schema.

 /// </summary>

 /// <KeyProperties>

 /// UserId

 /// </KeyProperties>

[global::System.Data.Objects.DataClasses.EdmEntityTypeAttribute(Names

paceName="BuffieModel", Name="User")]

[global::System.Runtime.Serialization.DataContractAttribute(IsReferen

ce=true)]

 [global::System.Serializable()]

 public partial class User :

global::System.Data.Objects.DataClasses.EntityObject

 {

 /// <summary>

 /// Create a new User object.

 /// </summary>

 /// <param name="userId">Initial value of UserId.</param>

 /// <param name="userName">Initial value of UserName.</param>

 /// <param name="password">Initial value of Password.</param>

 /// <param name="active">Initial value of Active.</param>

 public static User CreateUser(int userId, string userName,

string password, bool active)

 {

 User user = new User();

 user.UserId = userId;

 user.UserName = userName;

 user.Password = password;

 user.Active = active;

 return user;

 }

 /// <summary>

 /// There are no comments for Property UserId in the schema.

 /// </summary>

Appendix C. SQL Code and Entity Data Model for BUFFIE.

222

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(E

ntityKeyProperty=true, IsNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public int UserId

 {

 get

 {

 return this._UserId;

 }

 set

 {

 this.OnUserIdChanging(value);

 this.ReportPropertyChanging("UserId");

 this._UserId =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

 this.ReportPropertyChanged("UserId");

 this.OnUserIdChanged();

 }

 }

 private int _UserId;

 partial void OnUserIdChanging(int value);

 partial void OnUserIdChanged();

 /// <summary>

 /// There are no comments for Property UserName in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string UserName

 {

 get

 {

 return this._UserName;

 }

 set

 {

 this.OnUserNameChanging(value);

 this.ReportPropertyChanging("UserName");

 this._UserName =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, false);

 this.ReportPropertyChanged("UserName");

 this.OnUserNameChanged();

 }

 }

 private string _UserName;

 partial void OnUserNameChanging(string value);

 partial void OnUserNameChanged();

 /// <summary>

 /// There are no comments for Property Password in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string Password

Appendix C. SQL Code and Entity Data Model for BUFFIE.

223

 {

 get

 {

 return this._Password;

 }

 set

 {

 this.OnPasswordChanging(value);

 this.ReportPropertyChanging("Password");

 this._Password =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, false);

 this.ReportPropertyChanged("Password");

 this.OnPasswordChanged();

 }

 }

 private string _Password;

 partial void OnPasswordChanging(string value);

 partial void OnPasswordChanged();

 /// <summary>

 /// There are no comments for Property UserRole in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string UserRole

 {

 get

 {

 return this._UserRole;

 }

 set

 {

 this.OnUserRoleChanging(value);

 this.ReportPropertyChanging("UserRole");

 this._UserRole =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("UserRole");

 this.OnUserRoleChanged();

 }

 }

 private string _UserRole;

 partial void OnUserRoleChanging(string value);

 partial void OnUserRoleChanged();

 /// <summary>

 /// There are no comments for Property EmailId in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string EmailId

 {

 get

 {

 return this._EmailId;

 }

 set

Appendix C. SQL Code and Entity Data Model for BUFFIE.

224

 {

 this.OnEmailIdChanging(value);

 this.ReportPropertyChanging("EmailId");

 this._EmailId =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("EmailId");

 this.OnEmailIdChanged();

 }

 }

 private string _EmailId;

 partial void OnEmailIdChanging(string value);

 partial void OnEmailIdChanged();

 /// <summary>

 /// There are no comments for Property Institution in the

schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute()

]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public string Institution

 {

 get

 {

 return this._Institution;

 }

 set

 {

 this.OnInstitutionChanging(value);

 this.ReportPropertyChanging("Institution");

 this._Institution =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value, true);

 this.ReportPropertyChanged("Institution");

 this.OnInstitutionChanged();

 }

 }

 private string _Institution;

 partial void OnInstitutionChanging(string value);

 partial void OnInstitutionChanged();

 /// <summary>

 /// There are no comments for Property Active in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmScalarPropertyAttribute(I

sNullable=false)]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public bool Active

 {

 get

 {

 return this._Active;

 }

 set

 {

 this.OnActiveChanging(value);

 this.ReportPropertyChanging("Active");

 this._Active =

global::System.Data.Objects.DataClasses.StructuralObject.SetValidValu

e(value);

Appendix C. SQL Code and Entity Data Model for BUFFIE.

225

 this.ReportPropertyChanged("Active");

 this.OnActiveChanged();

 }

 }

 private bool _Active;

 partial void OnActiveChanging(bool value);

 partial void OnActiveChanged();

 /// <summary>

 /// There are no comments for Query in the schema.

 /// </summary>

[global::System.Data.Objects.DataClasses.EdmRelationshipNavigationPro

pertyAttribute("BuffieModel", "FK_Query_User", "Query")]

 [global::System.Xml.Serialization.XmlIgnoreAttribute()]

 [global::System.Xml.Serialization.SoapIgnoreAttribute()]

 [global::System.Runtime.Serialization.DataMemberAttribute()]

 public

global::System.Data.Objects.DataClasses.EntityCollection<Query> Query

 {

 get

 {

 return

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.GetRelatedCollection<Query>("BuffieModel.FK

_Query_User", "Query");

 }

 set

 {

 if ((value != null))

 {

((global::System.Data.Objects.DataClasses.IEntityWithRelationships)(t

his)).RelationshipManager.InitializeRelatedCollection<Query>("BuffieM

odel.FK_Query_User", "Query", value);

 }

 }

 }

 }

}

226

Appendix D

XSLT Templates from Domain Knowledge Base

DetailSearchRequest.xslt (biocase)

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" version="1.0" encoding="UTF-8"

indent="yes"/>

 <xsl:param name="accessurl" select="'default'"/>

 <xsl:param name="source" select="'buffiecas'"/>

 <xsl:param name="currenttime" select="'20051010T090000+0100'"/>

 <xsl:param name="resource" select="'default'"/>

 <xsl:param name="conceptname" select="'ScientificName'"/>

 <xsl:param name="conceptvalue" select="'default'"/>

 <xsl:param name="Parameter1" select="'default'"/>

 <xsl:template match="/">

 <request xmlns="http://digir.net/schema/protocol/2003/1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:digir="http://digir.net/schema/protocol/2003/1.0"

xmlns:dwc="http://digir.net/schema/conceptual/darwin/2003/1.0"

xmlns:darwin="http://digir.net/schema/conceptual/darwin/2003/1.0"

xsi:schemaLocation="http://digir.net/schema/protocol/2003/1.0

http://digir.sourceforge.net/schema/protocol/2003/1.0/digir.xsd

http://digir.net/schema/conceptual/darwin/2003/1.0

http://digir.sourceforge.net/schema/conceptual/darwin/2003/1.0/darwin

2.xsd">

 <header>

 <version>1.0.0</version>

 <sendTime>

 <xsl:value-of select="$currenttime"/>

 </sendTime>

 <source>

 <xsl:value-of select="$source"/>

 </source>

 <destination>

 <xsl:attribute name="resource">

 <xsl:value-of select="$resource"/>

 </xsl:attribute>

 <xsl:value-of select="$accessurl"/>

 </destination>

 <type>search</type>

 </header>

 <search>

 <filter>

 <equals>

 <xsl:choose>

 <xsl:when test="$conceptname= 'Country'">

 <xsl:element name="darwin:Country">

 <xsl:value-of select="$conceptvalue"/>

 </xsl:element>

 </xsl:when>

Appendix D. XSLT templates in Domain Knowledge Base.

227

 <xsl:when test="$conceptname= 'InstitutionCode'">

 <xsl:element name="darwin:InstitutionCode">

 <xsl:value-of select="$conceptvalue"/>

 </xsl:element>

 </xsl:when>

 <xsl:otherwise>

 <xsl:element name="darwin:ScientificName">

 <xsl:value-of select="$conceptvalue"/>

 </xsl:element>

 </xsl:otherwise>

 </xsl:choose>

 </equals>

 </filter>

 <records limit="10" start="0">

 <structure

schemaLocation="http://digir.sourceforge.net/schema/conceptual/darwin

/full/2003/1.0/darwin2full.xsd"/>

 </records>

 <count>true</count>

 </search>

 </request>

 </xsl:template>

</xsl:stylesheet>

Detail Search Request.xslt (DWCV2)

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" version="1.0" encoding="UTF-8"

indent="yes"/>

 <xsl:param name="accessurl" select="'default'"/>

 <xsl:param name="source" select="'buffiecas'"/>

 <xsl:param name="currenttime" select="'20091010T090000+0100'"/>

 <xsl:param name="resource" select="'default'"/>

 <xsl:param name="conceptname" select="'ScientificName'"/>

 <xsl:param name="conceptvalue" select="'default'"/>

 <xsl:param name="Parameter1" select="'default'"/>

 <xsl:template match="/">

 <request xmlns="http://digir.net/schema/protocol/2003/1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:digir="http://digir.net/schema/protocol/2003/1.0"

xmlns:dwc="http://digir.net/schema/conceptual/darwin/2003/1.0"

xmlns:darwin="http://digir.net/schema/conceptual/darwin/2003/1.0"

xsi:schemaLocation="http://digir.net/schema/protocol/2003/1.0

http://digir.sourceforge.net/schema/protocol/2003/1.0/digir.xsd

 http://digir.net/schema/conceptual/darwin/2003/1.0

http://digir.sourceforge.net/schema/conceptual/darwin/2003/1.0/darwin

2.xsd">

 <header>

 <version>1.0.0</version>

 <sendTime>

 <xsl:value-of select="$currenttime"/>

 </sendTime>

 <source>

 <xsl:value-of select="$source"/>

 </source>

Appendix D. XSLT templates in Domain Knowledge Base.

228

 <destination>

 <xsl:attribute name="resource">

 <xsl:value-of select="$resource"/>

 </xsl:attribute>

 <xsl:value-of select="$accessurl"/>

 </destination>

 <type>search</type>

 </header>

 <search>

 <filter>

 <equals>

 <xsl:choose>

 <xsl:when test="$conceptname= 'Country'">

 <xsl:element name="darwin:Country">

 <xsl:value-of select="$conceptvalue"/>

 </xsl:element>

 </xsl:when>

 <xsl:when test="$conceptname= 'InstitutionCode'">

 <xsl:element name="darwin:InstitutionCode">

 <xsl:value-of select="$conceptvalue"/>

 </xsl:element>

 </xsl:when>

 <xsl:otherwise>

 <xsl:element name="darwin:ScientificName">

 <xsl:value-of select="$conceptvalue"/>

 </xsl:element>

 </xsl:otherwise>

 </xsl:choose>

 </equals>

 </filter>

 <records limit="10" start="0">

 <structure

schemaLocation="http://digir.sourceforge.net/schema/conceptual/darwin

/full/2003/1.0/darwin2full.xsd"/>

 </records>

 <count>true</count>

 </search>

 </request>

 </xsl:template>

</xsl:stylesheet>

Biocase to DarwinCoreV2 Format

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2005 sp2 (http://www.altova.com) by R

Sundar-->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:darwin="http://digir.net/schema/conceptual/darwin/2003/1.0"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">

 <xsl:output method="xml" version="1.0" encoding="UTF-8"

indent="yes"/>

 <xsl:variable

name="lcletters">abcdefghijklmnopqrstuvwxyz</xsl:variable>

 <xsl:variable

name="ucletters">ABCDEFGHIJKLMNOPQRSTUVWXYZ</xsl:variable>

 <xsl:template match="/">

 <xsl:variable name="SrcInsCode"

select="response/content/DataSets/DataSet/OriginalSource/SourceInstit

utionCode"> </xsl:variable>

Appendix D. XSLT templates in Domain Knowledge Base.

229

 <response>

 <!--template to call header information -->

 <xsl:apply-templates select="response/header"/>

 <content>

 <xsl:for-each

select="response/content/DataSets/DataSet/Units/Unit">

 <record>

 <darwin:GlobalUniqueIdentifier>

 <xsl:value-of select="UnitGUID"/>

 </darwin:GlobalUniqueIdentifier>

 <darwin:DateLastModified>

 <xsl:value-of

select="./Gathering/GatheringDateTime/ISODateTimeBegin"/>

 </darwin:DateLastModified>

 <darwin:BasisOfRecord>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 <xsl:value-of select="RecordBasis"/>

 </darwin:BasisOfRecord>

 <darwin:InstitutionCode>

 <xsl:value-of select="$SrcInsCode"/>

 </darwin:InstitutionCode>

 <darwin:CollectionCode>

 <xsl:value-of select="SourceID"/>

 </darwin:CollectionCode>

 <darwin:CatalogNumber>

 <xsl:value-of select="UnitID"/>

 </darwin:CatalogNumber>

 <!--template to call taxonomic information -->

 <xsl:apply-templates

select="Identifications/Identification"/>

 <darwin:IdentifiedBy>

 <xsl:value-of select="''"/>

 </darwin:IdentifiedBy>

 <!--template to call Collecting Event information -->

 <xsl:apply-templates select="Gathering"/>

 <!--template to call Locality information -->

 <xsl:apply-templates select="Gathering/GatheringSite"/>

 <!--template to call Geospatial information -->

 <darwin:Longitude>

 <xsl:value-of

select="Gathering/GatheringSite/SiteCoordinateSets/SiteCoordinates/Co

ordinatesLatLong/LongitudeDecimal"/>

 </darwin:Longitude>

 <darwin:Latitude>

 <xsl:value-of

select="Gathering/GatheringSite/SiteCoordinateSets/SiteCoordinates/Co

ordinatesLatLong/LatitudeDecimal"/>

 </darwin:Latitude>

 <darwin:CoordinatePrecision>

 <xsl:value-of

select="Gathering/GatheringSite/SiteCoordinateSets/SiteCoordinates/Co

ordinatesLatLong/LatitudeDecimal/CoordinateErrorDistanceInMeters"/>

 </darwin:CoordinatePrecision>

 <!--template to call Biological information -->

 <darwin:Sex>

 <xsl:choose>

 <xsl:when test="//ZoologySex !='' ">

 <xsl:value-of select="'//ZoologySex'"/>

 </xsl:when>

Appendix D. XSLT templates in Domain Knowledge Base.

230

 <xsl:when test="//MycologicalSexualStage !='' ">

 <xsl:value-of select="'//MycologicalSexualStage'"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:Sex>

 <darwin:LifeStage>

 <xsl:choose>

 <xsl:when test="//ZoologyPhase !='' ">

 <xsl:value-of select="'//ZoologyPhase'"/>

 </xsl:when>

 <xsl:when test="//MycologicalLiveStage !='' ">

 <xsl:value-of select="'//MycologicalLiveStage'"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:LifeStage>

 <!--template to call reference information -->

 <darwin:ImageURL>

 <xsl:value-of

select="UnitDigitalImages/UnitDigitalImage/ImageURI"/>

 </darwin:ImageURL>

 <darwin:PreparationType>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:PreparationType>

 <darwin:IndividualCount>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:IndividualCount>

 <darwin:PreviousCatalogNumber>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:PreviousCatalogNumber>

 <darwin:RelationshipType>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:RelationshipType>

 <darwin:RelatedCatalogItem>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:RelatedCatalogItem>

 <darwin:Notes>

 <xsl:value-of select="UnitNotes"/>

 </darwin:Notes>

 </record>

 </xsl:for-each>

 </content>

Appendix D. XSLT templates in Domain Knowledge Base.

231

 </response>

 </xsl:template>

 <!-- template match for header information -->

 <!-- template match for header information -->

 <!-- template match for header information -->

 <xsl:template match="header">

 <header>

 <version>

 <xsl:value-of select="'DWCV2-to-ABCD-BioCASE-V1.0'"/>

 </version>

 <sendTime>

 <xsl:value-of select="sendTime"/>

 </sendTime>

 <source>

 <xsl:attribute name="resource">

 <xsl:value-of select="source"/>

 </xsl:attribute>

 </source>

 <destination>

 <xsl:value-of select="destination"/>

 </destination>

 <type>

 <xsl:value-of select="type"/>

 </type>

 </header>

 </xsl:template>

 <!-- template match for taxonomic information -->

 <!-- template match for taxonomic information -->

 <!-- template match for taxonomic information -->

 <xsl:template match="Identifications/Identification">

 <darwin:ScientificName>

 <xsl:choose>

 <xsl:when test="//TaxonIdentified/NameAuthorYearString !=''

">

 <xsl:value-of

select="//TaxonIdentified/NameAuthorYearString"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:for-each

select="//TaxonIdentified/ScientificNameAtomized/child::node()">

 <xsl:value-of select="."/>

 <xsl:text> </xsl:text>

 </xsl:for-each>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:ScientificName>

 <xsl:call-template name="highertaxon">

 </xsl:call-template>

 <darwin:Genus>

 <xsl:choose>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Bacterial/Genus !=''

">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Bacterial/Genus"/>

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Botanical/Genus !=''

">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Botanical/Genus"/>

Appendix D. XSLT templates in Domain Knowledge Base.

232

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Viral/Genus !='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Viral/Genus"/>

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Zoological/Genus !=''

">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Zoological/Genus"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of

select="//TaxonIdentified/NameAuthorYearString"/>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:Genus>

 <darwin:Species>

 <xsl:choose>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Bacterial/SpeciesEpith

et !='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Bacterial/SpeciesEpi

thet"/>

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Botanical/FirstEpithet

!='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Botanical/FirstEpith

et"/>

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Zoological/SpeciesEpit

het !='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Zoological/SpeciesEp

ithet"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="''"/>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:Species>

 <darwin:Subspecies>

 <xsl:choose>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Bacterial/SubspeciesEp

ithet !='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Bacterial/Subspecies

Epithet"/>

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Botanical/SecondEpithe

t !='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Botanical/SecondEpit

het"/>

Appendix D. XSLT templates in Domain Knowledge Base.

233

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Zoological/SubspeciesE

pithet !='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Zoological/Subspecie

sEpithet"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="''"/>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:Subspecies>

 <darwin:ScientificNameAuthor>

 <xsl:choose>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Botanical/AuthorTeam

!='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Botanical/AuthorTeam

"/>

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Bacterial/AuthorTeam

!='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Bacterial/AuthorTeam

"/>

 </xsl:when>

 <xsl:when

test="//TaxonIdentified/ScientificNameAtomized/Zoological/AuthorTeam

!='' ">

 <xsl:value-of

select="//TaxonIdentified/ScientificNameAtomized/Zoological/AuthorTea

m"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="''"/>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:ScientificNameAuthor>

 </xsl:template>

 <!-- template match for Gathering information -->

 <!-- template match for Gathering information -->

 <!-- template match for Gathering information -->

 <xsl:template match="Gathering">

 <xsl:variable name="ISODate" select="normalize-

space(GatheringDateTime/ISODateTimeBegin)"/>

 <darwin:YearIdentified>

 <xsl:value-of select="substring-before($ISODate, '-') "/>

 </darwin:YearIdentified>

 <darwin:MonthIdentified>

 <xsl:value-of select=" substring-before(substring-

after($ISODate, '-'), '-')"/>

 </darwin:MonthIdentified>

 <darwin:DayIdentified>

 <xsl:value-of select="substring-after(substring-

after($ISODate, '-'), '-')"/>

 </darwin:DayIdentified>

 <darwin:TypeStatus>

 <xsl:attribute name="xsi:nil">

Appendix D. XSLT templates in Domain Knowledge Base.

234

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:TypeStatus>

 <darwin:CollectorNumber>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:CollectorNumber>

 <darwin:FieldNumber>

 <xsl:attribute name="xsi:nil">

 <xsl:value-of select="'true'"/>

 </xsl:attribute>

 </darwin:FieldNumber>

 <darwin:Collector>

 <xsl:value-of select="GatheringAgent/GatheringAgentsText"/>

 </darwin:Collector>

 <darwin:YearCollected>

 <!-- <xsl:value-of

select="GatheringDateTime/ISODateTimeBegin"/>-->

 <xsl:value-of select="substring-before($ISODate, '-') "/>

 </darwin:YearCollected>

 <darwin:MonthCollected>

 <xsl:value-of select=" substring-before(substring-

after($ISODate, '-'), '-')"/>

 </darwin:MonthCollected>

 <darwin:DayCollected>

 <xsl:value-of select="substring-after(substring-

after($ISODate, '-'), '-')"/>

 </darwin:DayCollected>

 <darwin:JulianDay>

 <xsl:value-of select="//DayNumberBegin"/>

 </darwin:JulianDay>

 <darwin:TimeOfDay>

 <xsl:value-of select="//TimeOfDayBegin"/>

 </darwin:TimeOfDay>

 </xsl:template>

 <xsl:template match="Gathering/GatheringSite">

 <xsl:call-template name="areaname"/>

 <darwin:Country>

 <xsl:choose>

 <xsl:when test="Country/CountryName !='' ">

 <xsl:value-of select="Country/CountryName"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:for-each select="Country/child::node()">

 <xsl:value-of select="."/>

 <xsl:text> </xsl:text>

 </xsl:for-each>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:Country>

 <darwin:Locality>

 <xsl:choose>

 <xsl:when test="LocalityText != ''">

 <xsl:value-of select="LocalityText"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="AreaDetail"/>

 </xsl:otherwise>

 </xsl:choose>

 </darwin:Locality>

Appendix D. XSLT templates in Domain Knowledge Base.

235

 <darwin:MinimumElevation>

 <xsl:value-of

select="Altitude/MeasurementAtomized/MeasurementLowerValue"/>

 </darwin:MinimumElevation>

 <darwin:MaximumElevation>

 <xsl:value-of

select="Altitude/MeasurementAtomized/MeasurementUpperValue"/>

 </darwin:MaximumElevation>

 <darwin:MinimumDepth>

 <xsl:value-of

select="Depth/MeasurementAtomized/MeasurementLowerValue"/>

 </darwin:MinimumDepth>

 <darwin:MaximumDepth>

 <xsl:value-of

select="Depth/MeasurementAtomized/MeasurementUpperValue"/>

 </darwin:MaximumDepth>

 </xsl:template>

 <!-- Named templates for Taxonomic details -->

 <xsl:template name="highertaxon">

 <xsl:choose>

 <xsl:when test="*/HigherTaxa/HigherTaxon !='' ">

 <xsl:for-each select="*/HigherTaxa/HigherTaxon">

 <xsl:variable name="taxonrank" select="@TaxonRank"/>

 <xsl:choose>

 <xsl:when

test="translate($taxonrank,$ucletters,$lcletters)='kingdom'">

 <darwin:Kingdom>

 <xsl:value-of select="HigherTaxonName"/>

 </darwin:Kingdom>

 </xsl:when>

 <xsl:when

test="translate($taxonrank,$ucletters,$lcletters)='phylum'">

 <darwin:Phylum>

 <xsl:value-of select="HigherTaxonName"/>

 </darwin:Phylum>

 </xsl:when>

 <xsl:when

test="translate($taxonrank,$ucletters,$lcletters)='class'">

 <darwin:Class>

 <xsl:value-of select="HigherTaxonName"/>

 </darwin:Class>

 </xsl:when>

 <xsl:when

test="translate($taxonrank,$ucletters,$lcletters) = 'order'">

 <darwin:Order>

 <xsl:value-of select="HigherTaxonName"/>

 </darwin:Order>

 </xsl:when>

 <xsl:when

test="translate($taxonrank,$ucletters,$lcletters) = 'family'">

 <darwin:Family>

 <xsl:value-of select="HigherTaxonName"/>

 </darwin:Family>

 </xsl:when>

 <xsl:otherwise/>

 </xsl:choose>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <darwin:Kingdom/>

 <darwin:Phylum/>

Appendix D. XSLT templates in Domain Knowledge Base.

236

 <darwin:Class/>

 <darwin:Order/>

 <darwin:Family/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!-- Named templates for Location details -->

 <xsl:template name="areaname">

 <xsl:choose>

 <xsl:when test="*/NamedAreas/NamedArea !=''">

 <xsl:for-each select="*/NamedAreas/NamedArea">

 <xsl:variable name="area" select="@NamedAreaClass"/>

 <xsl:choose>

 <xsl:when test="translate($area,$ucletters,$lcletters) =

'continent'">

 <darwin:ContinentOcean>

 <xsl:value-of select="NamedAreaName"/>

 </darwin:ContinentOcean>

 </xsl:when>

 <xsl:when test="translate($area,$ucletters,$lcletters) =

('state' or 'province')">

 <darwin:StateProvince>

 <xsl:value-of select="NamedAreaName"/>

 </darwin:StateProvince>

 </xsl:when>

 <xsl:when test="translate($area,$ucletters,$lcletters) =

'county'">

 <darwin:County>

 <xsl:value-of select="NamedAreaName"/>

 </darwin:County>

 </xsl:when>

 <xsl:otherwise/>

 </xsl:choose>

 </xsl:for-each>

 </xsl:when>

 <xsl:otherwise>

 <darwin:ContinentOcean/>

 <darwin:StateProvince/>

 <darwin:County/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

