
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/1813/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Martin, Ralph Robert, Bowyer, A., Li, X. and Wang, W. 2003. Using Low-Discrepancy Sequences and the
Crofton Formula to Compute Surface Areas of Geometric Models. Computer-Aided Design 35 (9) , pp. 771-

782. 10.1016/S0010-4485(02)00100-8

Publishers page:

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Using low-discrepancy sequences and the

Crofton formula to compute surface areas of

geometric models

Xueqing Li

Shandong University
Jinan, Shandong, China

E-mail:liyou@jn-public.sd.cninfo.net

Wenping Wang
University of Hong Kong

Pokfulam Road, Hong Kong
E-mail: wenping@cs.hku.hk

Ralph R. Martin
Cardiff University, UK

E-mail: ralph@cs.cf.ac.uk

Adrian Bowyer
University of Bath, UK

E-mail: A.Bowyer@bath.ac.uk

April 29, 2002

Abstract

The surface area of a geometric model, like its volume, is an im-

portant integral property that needs to be evaluated frequently and

accurately in practice. In this paper we present a new quasi-Monte

1

Carlo method using low-discrepancy sequences for computing the sur-

face area of a 3D object. We show that the new method is more

efficient than a Monte Carlo method using pseudo-random numbers.

This method is based on the Cauchy-Crofton formula from integral

geometry, and it computes the surface area of a 3D body B by count-

ing the number of intersection points between the bounding surface

of B and a set of straight lines in E
3. Low discrepancy sequences are

used to generate the set of lines in E
3 to reduce the estimation er-

rors that would be caused by using statistically uniformly distributed

lines. We study and compare two different methods for generating

3D random lines, and demonstrate their validity theoretically and ex-

perimentally. Experiments suggest that the new quasi-Monte Carlo

method is also more efficient than the conventional approach based

on surface tessellation.

1 Introduction

Length, area, volume, and moments are important integral properties of
geometric objects that need to be computed frequently in solid modeling ap-
plications. There are various methods in the literature for computing the
area, volume, and other measures, of geometric objects in different represen-
tations [3, 4, 7, 9, 10, 17, 19]. One approach to computing volume properties
reduces them to computation of appropriate surface integrals by means of
the divergence theorem [19]. Thus, computing integrals over the surface of
the object is both important in its own right, and as a means of computing
other mass properties of interest. We consider here the particular problem
of computing the surface area of an object in CSG representation.

There are various approaches currently in use to performing this compu-
tation. A direct approach, used in GMSolid, is described by Sarraga [17].
The surface of each primitive is divided into small elements, whose sizes are
chosen to meet a user-defined density. These elements are topologically rect-
angular and are bounded by parameter lines u = u1, u = u2 and v = v1,
v = v2 (except e.g. at the poles of a sphere). Each element is then classified
as lying inside, outside or on the model by means of point-membership clas-
sification, using a random test point belonging to the element. (A randomly
chosen point is used to avoid aliasing effects.) The area of each element clas-
sified as on the surface of the solid is computed analytically using the usual

2

formula from differential geometry:

A =
∫ v2

v1

∫ u2

u1

√

(ru.ru)(rv.rv)− (ru.rv)2du dv.

These areas are then summed to give an estimate for the surface area of the
whole object.

Another class of approach is based on ray casting [11]. The area of a
face can be approximated as the sum of the areas of rectangular strips that
approximately cover the face. Each face is covered by a bounding rectangle,
which is divided into strips; a face is assumed to be planar here for simplicity
of description, but the algorithm can be generalised. Within each strip, a
ray is fired across the rectangle, recording where the ray enters and leaves
the face. Summing the lengths of the segments inside the face multiplied
by the widths of each strip gives an approximation for the area of the face.
A second approach also based on ray casting is to fire a regular grid of rays
through the object, recording entry and exit points. Adjacent piercing points
are connected to form triangles, and the sum of the areas of these triangles
approximates the surface area of the object [14]. Clearly, this is not accurate
where the rays are almost tangential to the object.

A third type of approach converts the CSG representation to a boundary
representation. From this it is possible to produce a polygonal tessellation of
the surface of the model, for example using the marching cubes algorithm [12].
An approximation of the surface area can then be computed by summing
the areas of all polygons in the tessellation. More sophisticated variants of
this approach have also been described [20, 22]; sampling rays are cast to
accurately locate geometric intersections on the tessellated surface which is
computed adaptively. Alternatively, the area can be computed directly from
the boundary representation model using exact integral methods [9, 10] or
numerical quadrature; it is also possible to convert surface integrals into line
integrals using Green’s theorem [19] as an alternative means of evaluation.

We present a new approach to computing the surface area of a CSG solid.
Like the second class of previous approaches, our method is based on ray-
casting, but it uses an entirely different principle for computing the area, and
uses random rays. Furthermore, to obtain better performance than a naive
application of the method, we use low-discrepancy sequences to obtain good
statistical properties.

The method we present is most suited for use with CSG models, as it is
based on ray casting and ray classification. However, the ideas have more

3

general applicability, and the method could also be applied to boundary
representation or even surface models, too, if desired.

Our method is based on the Cauchy-Crofton formula (also known as
Maurer-Cartan formula) from integral geometry [16], which relates the sur-
face area of a 3D body B to the number of intersection points between the
surface of B and a set of random straight lines in E3. There are three main
ideas that are used in this paper: 1) the Cauchy-Crofton formula; 2) two 4D
space models which parameterize uniformly distributed lines in E3; 3) low
discrepancy sequences that produce a set of more evenly distributed lines
than pseudo-random number generators do, thus improving the efficiency
(or accuracy, for the same amount of time) of area computation.

Generating random lines in 3D space is far more tricky than generating
random points in Euclidean space. In this paper we study in detail two
models for generating 3D lines that have appeared in the literature. We
demonstrate the theoretical validity of both models by verifying that the
measure of the 3D line distribution in each case satisfies an established cri-
terion in integral geometry, i.e., invariance under Euclidean transformations.
We also present the effective application of both models in the quasi-Monte
Carlo method through experiments, and demonstrate the superiority of the
quasi-Monte Carlo method to a tessellation-based method.

The remainder of this paper is organized as follows. In Section 2 we
introduce the Cauchy-Crofton formula from integral geometry and derive
from it the formula for surface area computation. In Section 3 we discuss
two models for uniformly distributed lines in E3. In Section 4 we review
the properties of low discrepancy sequences, and explain how to use them
to generate lines in 3D with good statistical properties. In Section 5, we
consider the problem of determining the number of intersections between a
line and the bounding surface of a CSG solid. In Section 6 experimental
results and comparions with two methods for computing surface area based
on surface tessellation are presented, and we give conclusions in Section 7.

2 Formula for surface area computation

Studying the measure of a set of geometric figures is the central topic in
integral geometry, a branch of geometry that is closely related to combinato-
rial geometry, convex geometry, and geometric probability. The result from
integral geometry that is of interest to us here is the measure, or density,

4

of a set of lines in E3. The reader may refer to [15, 16] for more detailed
derivation of the following results.

Consider a surface element S in E3. Let n be the unit normal vector of
S. For a line L intersecting S, let (x, y) be the intersection point of L and S,
and let ψ be the angle that L forms with normal vector n. It can be shown
[15] that the density of all lines intersecting S is given by

dL = cosψ|ds ∧ dσ|, (1)

where the exterior product ds = dx ∧ dy is the area element of S, and dσ
is the area element on the unit sphere S2, which is the domain of the unit
vector n. Here ∧ stands for the exterior product of two differential forms.
This density function is invariant under Euclidean transformations as are,
for example, area and volume in Euclidean space.

Let Σ be a piecewise smooth surface (i.e., a collection of regular surface
patches with G0 continuity) of area s. Integrating the right-hand side of (1)
over Σ and over directions of all the lines intersecting Σ at a point yields

∫

| cosψ|ds ∧ dσ = 2πs, (2)

because the integration of | cosψ|dσ over all directions gives 2π, which is the
area of the projection of S2 onto a planar section of S2 through its centre.
On the other hand, the integration on the left-hand side of (2) runs over all
the lines. Since each line is counted twice at each of its intersection points
with the surface Σ (due to the two hemispheres on the two sides of the
surface), overall the line is counted 2m times, where m is the total number
of intersection points of the line with Σ. Hence,

∫

mdL = πs. (3)

This is the Cauchy-Crofton formula that relates the area of a surface to the
number of intersections that the surface has with all lines in E3.

Next we show how to use the above formula to compute the surface area
of a given 3D body. Suppose that Σ is the bounding surface of a body B
whose area s needs to be computed. Suppose further that Σ1 is the bounding
surface of a reference object B1 which contains B. See Figure 1. We assume
that the area s1 of B1 is known. Consider a set L ofN lines that are randomly
sampled from the set of lines that intersect B1. Let n be the total number

5

B1

B

Figure 1: Body B is contained within the reference body B1.

of intersection points of Σ with the lines in L. Let n1 be the total number
of intersection points of Σ1 with the lines in L. According to equation (3),
by integration approximation, we get

n

N
≈ cπs and

n1

N
≈ cπs1,

where c is a constant of proportionality. It follows that

s ≈ n

n1

s1. (4)

To summarize, the surface area s of Σ can be computed by formula (4)
with the following algorithm.

1. Generate a set L of N random lines that sample the set L̄ of all the
lines intersecting the reference object B1.

2. Compute the number of intersections of the lines in L with the reference
surface Σ1 and the number of intersections of the lines in L with the
surface Σ. Let n1 and n denote these two numbers of intersections,
respectively.

3. Approximate the area s of Σ by s̃ = n
n1

s1, i.e., equation (4).

In order for the formula (4) to be valid, it is essential to assume that
the N lines of L form a well chosen sample of (for example, are uniformly
distributed in) the set L̄ of all the lines that intersect the reference object
B1. The approximation error of s̃ to the exact area s of Σ can be attributed
to the discrete sampling of the set L̄ by L, and this error is also dependent
on the evenness of the distribution of the lines of L.

6

3 Generating uniformly distributed lines

In this section we consider how to generate a set of uniformly distributed lines
in E3. The set of lines in E3 forms a 4D space and there are several different
representations or models for this space. The best known representation
for a line in E3 probably comprises the Plücker coordinates [6], which are
homogeneous coordinates (L1, L2, L3, L4, L5, L6) satisfying L1L4 + L2L5 +
L3L6 = 0. However, this representation does not provide a density measure
that allows a simple way to generate uniformly distributed random lines.

An alternative might be to consider the density function

dL = cosψ|ds ∧ dσ|

discussed in the last section. Since this density function is defined locally
relative to a fixed planar surface element, it is natural to apply this density
function over a finite planar patch, called a base; i.e., choose a point of the
planar patch as a point through which the line passes, and then determine
the direction of the line according to the density function. However, this
method cannot generate a set of lines covering a 3D region like a sphere or a
cube, since some of the lines required do not intersect the base, as illustrated
in Figure 2.

Base

B1

Figure 2: The dashed lines miss the base.

In the rest of this section we will study the application of two models
for generating lines in 3D that are reported in [18] and [2], called the chord
model and tangent model, respectively. The global nature of these models
makes them particularly suitable for generating 3D uniformly distributed
random lines. However, these models were originally proposed using only
intuitive arguments [3,12]. Thus, we first demonstrate that these models

7

can be rigorously established by showing that the distribution of the lines
generated by each of the two models has a density that is invariant under
Euclidean transformations, as required in integral geometry for the correct
application of Formula (4). Then procedures are presented for sampling the
spaces of these models using uniform random variables in the interval [0,1].

3.1 The chord model

The chord model can be described as follows. A random line is defined to
be a line passing through two independent uniformly distributed points on
a sphere SR of radius R in E3. All such lines are all the lines in E3 that
intersect the sphere SR. Since only uniformly distributed lines are acceptable
in the application of Formula (4), we need to ensure the property that the
random lines produced by the chord model have a uniform distribution. This
property was derived in [18] by linking the chord model to another intuitive
model using chord length distribution. In the following we provide a direct
proof of this property by showing that random lines produced by the chord
model have the density defined by Equation (2).

Consider the sphere SR of radius R centred at the origin O. Let L be a
line determined by two random points P0 and P1 on SR. Since P0 can be any
point on SR with equal probability, we define our coordinate system for this
calculation so that P0 = (0, 0,−R). Let S denote a surface element of sphere
SR at the point P0, i.e., S is tangential to SR. Let ds denote the area element
of S. Let S̄2 denote the unit sphere centred at P0. Let SR be parameterized
by

Q1(β, α) = (R sin β cosα,R sin β sinα,R cos β), (5)

and let S̄2 be parameterized by

Q2(φ, α) = (sin φ cosα, sinφ sinα, cosφ− R).

These two parameterizations are illustrated in Figure 3.
The area element at Q2(φ, α) on S̄2, which is sinφ dφ dα, is projected

under the projection centred at P0 to the surface area element of area

R2 sin(β) dβ dα = 2R2 sin(2φ) dφ dα

at Q1(2φ, α) on SR, since Q2(φ, α) is mapped to Q1(2φ, α), dφ to dβ = 2dφ,
and dα to Rdα. See Figure 4. Clearly, the unit direction vector of the line L,

8

which is (P1−P0)/|P1−P0| and has one end attached at P0, falls in a surface
element of area sinφ dφ dα at Q2(φ, α) on S̄2 if and only if point P1 falls in a
surface element of area 2R2 sin(2φ) dβ dα at Q1(2φ, α) on SR. Hence, since
P1 is uniformly distributed on SR, the density of the line that passes through
P0 and has direction vector Q2(φ, α)− P0 is

2R2 sin(2φ) dφ dα = 4R2 cosφ sinφ dφ dα = 4R2 cos φ dσ,

where dσ = sinφ dφ dα is the area element on S̄2 for the direction of L.
Dropping the proportionality constant 4R2, we obtain that the density of
random lines produced by the chord model which intersect the planar surface
element S at P0 is cos φ ds∧dσ, where ds is the differential area of the element
S. Since this density function is identical to (2), the random lines produced
by the chord model have a uniform distribution.

),(1 αβQ

Z

Y

R
β

X

α

),(2 αφQ

2S

φ

RS

Figure 3: The parameteriza-
tions for the two spheres.

Z

Y

Rs 2=

φ

φβ 2=

φ

d d

d

φ

Figure 4: The 2D sectional il-
lustration of the two spheres.

3.2 The tangent model

Beckers and Smeulder [2] derive a 4D model for lines in E3 and the associated
density of lines via intuitive invariance principles; we call this model the
tangent model.

9

Let Sr denote a sphere of radius r centred at the origin. A point x on
the sphere Sr is defined by three parameters r, θ, φ, where θ and φ are,
respectively, the latitude and longitude of point x in the spherical coordinate
system. Now consider the pencil of lines on the tangent plane of Sr at x with
the centre of the pencil at x. Let ψ be the angle for specifying a line L in this
pencil with respect to a reference direction aligned with the appropriate great
circle as shown in Figure 5. The domains of the parameters are r ∈ [0,∞),
θ ∈ [0, π], φ ∈ [0, 2π), and ψ ∈ [0, π). It is clear that a line in 3D is uniquely
determined by the four parameters r, θ, φ, and ψ. As a matter of fact, there
is a one-to-one correspondence between a line in 3D space and a parameter
point in the 4D space of (r, θ, φ, ψ) unless θ = 0 or π. Thus (r, θ, φ, ψ) can be
regarded as a representation of lines in 3D space. We refer to this model as
the tangent model because a line is represented as a tangent to some sphere
of radius r in this model.

O

Z

Y

θ
ψ

X

L

φ

rS
Χ

r

Figure 5: The four parameters (r, θ, φ, ψ) for a line in the tangent model.

It is shown in [2] that uniformly distributed lines which are defined in
terms of some intuitive invariance principles in E3 have density cr sin θ in
the tangent model, where c is a normalization constant. In the following
we validate the tangent model by showing that, with the density function
cr sin θ, it produces random lines with the same distribution as that of the
random lines produced by the chord model.

For the sake of simplicity, and without loss of generality, we assume SR

to be the unit sphere S2 centred at the origin when discussing intersections

10

of the tangent lines of Sr with SR; thus 0 ≤ r ≤ 1. The parameter domain
of (r, θ, φ, ψ) is [0, 1] × [0, π] × [0, 2π) × [0, π) for generating all the lines
intersecting S2. Clearly, the length ` of the chord that is on a tangent to Sr

(a sphere of radius r centred at the origin) and intersected within S2 satisfies

r =
√

1− (`/2)2, where 0 ≤ r ≤ 1. Let g(`) be the density of `, and f(r) the
density of r. Then

g(`) = f(r)

∣

∣

∣

∣

∣

dr

d`

∣

∣

∣

∣

∣

,

by a change of random variable. On the other hand,

f(r)|dr| =
∫

cr sin θ|dθ dφ dψ||dr| = 4cπ2r|dr|,

with the integration running over the domains of θ, φ, and ψ. Since

∣

∣

∣

∣

∣

dr

d`

∣

∣

∣

∣

∣

=
`

2
√

1− (`/2)2

=
`

2r
,

we get

g(`) = f(r)

∣

∣

∣

∣

∣

dr

d`

∣

∣

∣

∣

∣

= 4cπ2r · `
2r

= 2cπ2`.

Since the length ` of a chord within a unit sphere satisfies 0 ≤ ` ≤ 2, we have
∫

2

0
g(`) = 1. It follows that c = 1/(4π2), i.e., g(`) = `/2.
On the other hand, it is shown in [18] that the chord length of random lines

produced by the chord model also has the density distribution h(`) = `/2.
Because of the directional homogeneity of the two models, we conclude that
the tangent model, like the chord model, generates uniformly distributed
lines in 3D space.

The above 4D space of (r, θ, φ, ψ) serves as the starting point of our
method for generating uniformly distributed lines in 3D space intersecting
a sphere SR of radius R. Since the density of lines in E3 is proportional
to cr sin θ, if we can generate a random point in the 4D parameter space
(r, θ, φ, ψ) with probability density cr sin θ, then this random point will give
a uniformly distributed random line in E3. Hence we just need to generate
a random point in (r, θ, φ, ψ) with density proportional to cr sin θ.

First, we may easily generate φ ∈ [0, 2π) and ψ ∈ [0, π] with uniform
distribution. Next, we need to generate r ∈ [0, R] with density k0r and
θ ∈ [0, π] with density k1 sin θ for some constants k0 and k1; to make k0r and

11

k1 sin θ legitimate probability density functions, we must set k0 = 2/R2 and
k1 = 1/2. Then it is easy to see that the cumulative probability distribution
functions for r and θ are G(r) = r2/R2 and H(θ) = 1

2
(1−cos θ), respectively.

Now we consider generating a random variable with a pre-specified cumu-
lative distribution F (y). Suppose that β is a random variable with distribu-
tion function F (y), which is assumed to be a continuous and non-decreasing
function. Define F−1(y) = inf{x|F (x) = y}. Let α be a uniformly dis-
tributed random variable in [0, 1]. Then we claim that β = F−1(α) is a
random variable with distribution F (y), for P (β ≤ y) = P (F−1(α) ≤ y) =
P (α ≤ F (y)) = F (y), where P () stands for the probability of an event.
Hence, the desired random variable β with distribution F (y) can be gener-
ated by function β = F−1(α) of a uniform random variable α in [0, 1]. By
a straightforward application of this argument, r and θ can be generated by
r = R

√
α and θ = arccos(1− 2α), respectively, where α is a uniform random

variable in [0,1].
The above provides us with the means to generate a set of uniformly

distributed lines that samples all the lines intersecting a sphere centred at
the origin and of radius R. Hence, the reference body B1 defined in Section
2 should be set to a sphere of radius R centred at the origin. To recap,
there are two main steps: 1) Generate the four random parameter values
(r, θ, φ, ψ) with their respective densities as given above; 2) Construct the
unique line from the values of these four parameters. The detailed procedure
for computing a parametric equation of the line is then straightforward.

4 Low discrepancy sequences

The approach to computing the surface area based on Formula (4), as we
have pursued so far, is essentially a Monte Carlo method for numerical in-
tegration, with the domain of integration being the 4D parameter space
(r, θ, φ, ψ) of 3D lines in the case of the tangent model. It is known [13]
that uniformly distributed random points are not distributed as evenly as
so-called low discrepancy sequences of points for the purpose of accurate nu-
merical integration. Hence, we will use low-discrepancy sequences, instead
of pseudo-random number generators, for generating the set L of evenly dis-
tributed lines. for this reason our method is called a quasi-Monte Carlo
method. Such methods have already been used for volume computations in
CSG modelling [3].

12

Below we briefly introduce the concept of low discrepancy sequences,
following [13]. Given a set of numbers xi, i = 1, 2, . . . , N , and a set E
contained in an interval I, define

A(E;N) =
∑

fE(xi),

where fE(x) is the characteristic function of the set E, i.e., fE(x) = 1 if
x ∈ E and fE(x) = 0 otherwise. The discrepancy of the sequence xi over the
interval I is defined to be

DN = sup
J

∣

∣

∣

∣

∣

A(J ;N)

N
− |J |

∣

∣

∣

∣

∣

,

where J runs through all subintervals of I and |J | is the length of J . To-
gether with the regularity of the integrand, the discrepancy of a sequence of
points provides an error bound for numerical integration using the sequence.
For a function f(x) with bounded variation V (f) over I = [0, 1], it can be
shown [13] that

∣

∣

∣

∣

∣

1

N

∑

i=1

f(xi)−
∫

1

0

f(x)dx

∣

∣

∣

∣

∣

≤ V (f)D∗

N ,

where D∗

N has the same definition as DN but with the subinterval J having
the form [0, t], t ≤ 1. Clearly, D∗

N ≤ DN . Hence, the lower the discrepancy,
the better is the distribution of the sequence, and the more accurate is the
numerical integration.

Discrepancy can also be defined for a box [0, 1]s in a s-dimensional space.
It is known that the expected value of the discrepancy of a statistically uni-
formly distributed random variable is O(N−1/2). In contrast, the discrepancy
of Niederreiter’s sequence of points in the box [0, 1]s is O(N−1 logsN). This
means low discrepancy sequences, such as Niederreiter’s, yield asymptotically
smaller error bounds for numerical integration in our present setting.

When using low discrepancy sequences for multidimensional integration,
we can only guarantee an improvement for a box-like region of integration
in the variables concerned. In practice, we do get improvements for other
shaped regions too. Hence, in our quasi-Monte Carlo method we use Nieder-
reiter’s 4D low discrepancy sequences of points in either the chord model or
the tangent model. This is done in the 4D space (β, α, β ′, α′) for the chord
model, where (β, α) and (β ′, α′) are two independent pairs of parameters for

13

generating two independent points on the sphere SR through Q1(β, α) as
defined in Section 3.1, and in the (r, θ, φ, ψ) space for the tangent model as
defined in Section 3.2.

Figure 6 and Figure 7 illustrate the difference in distribution evenness of
two sets of 1000 points on a sphere; the points in Figure 6 are generated using
a pseudo-random number generator and the points in Figure 7 are generated
using Niederreiter’s 2D low discrepancy sequence, through the parameter-
ization of a sphere given by equation (5). The sampling of the surface is
clearly more even in the latter case. Note that we do not want a perfectly
even spacing when performing numerical integration, since that can lead to
unwanted aliasing artefacts.

Figure 6: Pseudo-random
points.

Figure 7: Niederreiter’s low
discrepancy sequence of points.

5 Intersecting a line with a CSG solid

Let Σ be the bounding surface of a CSG body B consisting of a number of
primitive surfaces. Suppose that a set of uniformly distributed lines, denoted
by L, has been generated. The next step of our method for computing the
surface area of Σ is to determine the number of intersection points between
each of the lines in L and the surface Σ. This can be done by computing the

14

intersection points of a line ` with all the primitive surfaces of B and then
merging the results according to the Boolean operations associated with B
to obtain the number of intersection points of the line ` with the bounding
surface of B. As the result of this merging step, intersection points not on
the bounding surface of B are removed and only those on the surface of B
are retained and counted. A detailed account of intersecting a line with a
CSG object, but for ray-tracing purposes, can be found in [5].

Although only the number of intersections of the line ` with the body B
matters eventually for computing the surface area of B, it is still necessary to
determine the locations of the intersection points of ` with all the primitive
surfaces in order to classify these intersections points with respect to the
various surfaces. The intersection of a primitive surface and a line ` can be
computed accurately if the primitive surface is an algebraic surface of degree
4 or less. Numerical root finding methods must be used if more general
surfaces are used in the CSG definition. Since CSG primitives encountered
in CAD/CAM applications are mainly planes, natural quadrics, and tori or
cyclide surfaces, which are of degree 4 or less, our method is applicable to
these most common cases without resorting to numerical solvers.

When one needs to compute the surface area of a part of just a single
algebraic surface f(x, y, z) = 0 (not necessarily of low degree), the number
of intersections (without their corresponding locations) between a line and
the part of the surface can be determined efficiently using well known real
root isolation techniques, such as Sturm sequences, without having to solve
numerically for the roots of a possibly high degree polynomial equation.

6 Implementation and experiments

In this section we first give experimental results demonstrating the conver-
gence of the estimated surface areas of some simple objects, i.e., a cube of
side-length 10, a sphere of radius 10, and a cylinder of radius 10 and height
20, followed by some examples involving more complicated objects. These
examples are computed using two different methods: one is the standard
Monte Carlo method using 3D lines generated with pseudo-random numbers
and the other is the quasi-Monte Carlo method using Niederreiter’s low dis-
crepancy sequences. Further, we compare the efficiency of the quasi-Monte
Carlo method with a conventional surface tessellation method based on the
marching cubes algorithm [12]. Finally, we compare our method with a re-

15

cursive tessellation method for surface area computation.
Pseudo-random numbers used in these tests were generated by the pseudo-

random number generator provided by the Visual C++ library. For generat-
ing Niederreiter’s sequences of points in the 4D space of (r, θ, φ, ψ), we used a
C++ implementation adapted from the FORTRAN code available from [1].
The test program was implemented in C++ and ran on a PC using a Pentium
II 233MHz CPU. For the simple objects (cube, sphere, and cylinder) used
in this section, the enclosing reference body B1 defined in Section 2 was a
sphere of radius R = 18.849, except that an enclosing sphere of radius 179.07
was used for the CSG object in Figure 12. These spheres were chosen to be
slightly larger than, and therefore contain, the tightest enclosing spheres of
the rectangular bounding boxes of given objects; the bounding spheres of the
simple objects have the same radius (R = 18.849) because these objects hap-
pen to have the same bounding boxes. Other types of bounding surfaces (i.e.,
reference surfaces), such a rectangular box or a cylinder, could also be used
with the method; in general, for better accuracy, one should use a bounding
surface which bounds a given object tightly and whose exact surface area is
easy to obtain. All errors measured and presented below are relative errors.

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

������� �	��
�	��������� � ����� �

� ��
� ��
� �
! "�
��
���
#

Random

Niederreiter's

-2/3

-1/2

Figure 8: Errors for the cube, with
the tangent model.

2 3 4 5 6

$

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

%�&�')(*	+	,-	.�/�&�0�% 1 *	.�2 3

4 56
7 89
4 :;
< =9
98
858
>

Random

Niederreiter's

-2/3

-1/2

Figure 9: Errors for the sphere,
with the tangent model.

Figures 8–10 show the curves of relative approximation errors generated

16

by the standard Monte Carlo method using pseudo-random numbers and
the quasi-Monte Carlo method using Niederreiter’s sequences for the cube,
the sphere, and the cylinder, respectively, using the tangent model for lines
(see Section 3.2). The comparisons in Figures 8–10 suggest that using the
low discrepancy sequences leads to smaller approximation errors than using
pseudo-random numbers. The reference lines marked with − 1

2
and −2

3
in

the figures are the graphs of the functions n−1/2 and n−2/3, respectively, for
revealing the trend of the error curves; we expect the standard Monte Carlo
method to have error O(n−1/2), where n is the number of lines used.

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

������� �	�	
��	�������� � �	�� �

� ��
� ��
� ��
� �
��
���
!

Random

Niederreiter's

-2/3

-1/2

Figure 10: Errors for the cylinder,
with the tangent model.

2 3 4 5 6

$

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

% &�'�(*�+	, -�.�/�&�0�% 1 *	.�2 3

4 56
7 89
4 :;
< =9
98
858
>

Random

Niederreiter's

-2/3

-1/2

Figure 11: Errors for the object
L±cylinder in Figure 12, with the
tangent model.

Figure 11 shows the error curves generated by the standard Monte Carlo
method and by the quasi-Monte Carlo method, respectively, for the CSG
solid shown in Figure 12. The error curves in Figure 11 also show that the
error arising from using low discrepancy sequences is in general smaller than
the error arising from using pseudo-random numbers.

The surface area of an object can also be computed approximately by
using the marching cubes method to generate a triangulation of the object’s
surface and summing the areas of the triangles in the triangulation. Figure
13 shows the error curves generated by the quasi-Monte Carlo method and

17

Figure 12: A CSG object:
L±cylinder

2 3 4 5 6

 0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

log(number of lines/facets)
lo

g(
re

la
tiv

e
er

ro
r)

Niederreiter's

Marching

-2/3

-1/2

Figure 13: Comparison with surface
tessellation.

by the marching cubes method, respectively, for the CSG object in Figure 12,
which will be referred to as L±cylinder. We are careful to make comparable
the number of lines used in the quasi-Monte Carlo method and the number
of triangles generated by the marching cubes method; thus, for varying k,
the errors resulting from using 102k lines in the former are compared in
Figure 13 with the errors resulting from using 103k cubes in the latter, which
generates O(102k) triangles on the surface of the L±cylinder. According to
Figure 13, the error given by the marching cubes method, though decreasing
more steadily, is always larger than the error given by the quasi-Monte Carlo
method.

Figures 14–17 show the error curves for the same set of four objects,
i.e., cube, sphere, cylinder, and L±cylinder, using the quasi-Monte Carlo
method with the chord model for generating lines (see Section 3.1). These
figures again demonstrate that, with the chord model, the quasi-Monte Carlo
method using low discrepancy sequences produces better results than the
standard Monte Carlo method using pseudo-random numbers.

Figure 18 compares the errors for the object L±cylinder in Figure 12
given by the chord model and the tangent model, respectively, used in the
quasi-Monte Carlo method. The radius of the reference sphere used was

18

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

������� �
	
��
��������� � �
��� �

� ��
� ��
� ��
 !�
��
���
"

Random

Niederreiter's

-2/3

-1/2

Figure 14: Errors for the cube, with
the chord model.

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

� ���)� ���	
����������� � �	� � �

� ��
� ��
� �
! "�
��
���
#

Random

Niederreiter's

-2/3

-1/2

Figure 15: Errors for the sphere,
with the chord model.

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

������� �	��
�	��������� � ����� �

� ��
� ��
� �
! "�
��
��
�#

Random

Niederreiter's

-2/3

-1/2

Figure 16: Errors for the cylinder,
with the chord model.

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

������� �	�	
��	�������� � �	�� �

� ��
� ��
� ��
� �
��
���
!

Random

Niederreiter's

-2/3

-1/2

Figure 17: Errors for the
L±cylinder in Figure 12, with
the chord model.

19

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

������� ���	
����������� � ����� �

� ��
� ��
� �
! "�
��
���
#

Chord

Tangent

-2/3

-1/2

Figure 18: Comparison between the chord model and the tangent model for
the L±cylinder in Figure 12.

179.07. We may see that neither model appears to have a clear advantage
over the other in terms of accuracy; however, in our experience, the chord
model is easier to implement and has faster running time than the tangent
model.

Now we present two more examples of CSG objects of considerable com-
plexity to show the efficiency of the quasi-Monte Carlo method. The first
example is the CSG difference between a box of side-length 20 and a sphere
of radius 13, as shown in Figure 19; we call this object the ‘skeleton’. The
second object is the ‘gate’ shown in Figure 20.

Figures 21 and 22 show the curves of relative approximation errors gen-
erated by the Monte Carlo method using pseudo-random numbers and the
quasi-Monte Carlo method using Niederreiter’s sequences for the ‘skeleton’
and the ‘gate’, respectively; the tangent model was used.

Figures 23 and 24 show the same using the chord model.
Next we compare our method with two other methods that use surface

tessellation to compute surface areas: the marching cube method and the
adaptive subdivision method. Table 1 lists the timings of computing the area
of the L±cylinder in Figure 12 with three different methods: the standard
Monte Carlo method, the quasi-Monte Carlo method, and the marching cube

20

Figure 19: The ‘skeleton’.

Figure 20: The ‘gate’.

method; 104 lines are used in the first two methods, and 106 cubes used in
the marching cube method.

Table 1 shows the superior timing efficiency of the quasi-Monte Carlo
method, and even that of the standard Monte Carlo method, over the surface
tessellation approach based on the marching cube method. As explained
before, we use 106 cubes in the marching cube algorithm in order that the
number of triangles generated is of the same order as the number of lines
used in the other two methods; the number of resulting triangles is 29212,

21

2 3 4 5 6

$

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

%�&�')(*	+	,-	.�/�&�0�% 1 *	.�2 3

4 56
7 89
4 :;
< =9
98
858
>

Random

Niederreiter's

-2/3

-1/2

Figure 21: Errors for the ‘skeleton’,
with the tangent model.

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

������� �
	���
��������� � ����� �

� ��
� ��
� �
! "�
��
���
#

Random

Niederreiter's

-2/3

-1/2

Figure 22: Errors for the ‘gate’,
with the tangent model.

2 3 4 5 6

�

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

�����$� ��	��%���������� � ����� �

� ��
� ��
� �
! "�
��
���
#

Random

Niederreiter's

-2/3

-1/2

Figure 23: Errors for the ‘skeleton’,
with the chord model.

2 3 4 5 6

&

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

'�(*)$+ ,�-
.%/�021�(�3�' 4 ,�0�5 6

7 89
: ;<
7 =>
? @<
<;
;8;
A

Random

Niederreiter's

-2/3

-1/2

Figure 24: Errors for the ‘gate’,
with the chord model.

but still produces much larger error than the quasi-Monte Carlo method does
with 10000 lines.

22

Method Timing No. of elements Relative error

Random 1.439 sec. 10000 lines 0.016615

Niederreiter 1.450 sec. 10000 lines 0.007674

Marching Cube 98.21 sec. 29212 triangles 0.025766

Table 1: Timing comparison with the marching cube method.

Since the marching cube method is not very efficient for surface tessel-
lation, a more efficient surface tessellation method based on recursive sub-
division implemented in svLis was compared with the method proposed in
this paper. SvLis is a geometric modeller authored by Adrian Bowyer at
the University of Bath. SvLis uses recursive spatial division combined with
faceting to compute areas. A CSG geometric model consisting of unions,
intersections, and complements of primitives represented by implicit func-
tions of the three space variables is initially surrounded by an axis-aligned
box large enough to contain the whole object being defined. This box is
recursively divided into a binary tree of smaller boxes by further axis-aligned
planes. As each new smaller child box is generated the set-theoretic expres-
sion defining the contents of its larger parent box is pruned to the child box –
that is it is simplified using the normal rules of logic such as the Absorption
Law and De Morgan’s Law, together with information about which parent
primitives lie wholly outside or wholly within the child box. This information
is obtained by treating the boxes as three affine intervals in the three space
variables, and substituting these intervals into the implicit functions defining
the primitives. For more details of this process, see [21] or the svLis website
[http://www.bath.ac.uk/˜ensab/G mod/Svlis/].

The terminating conditions for the recursive box division are two-fold:
recursion stops when there are three or fewer primitives in a box and when
each of those primitives has a range of grad vectors in the box smaller than
a pre-determined level. The first condition divides down to surfaces, edges
and corners, and the second divides curved surfaces until reasonably locally
flat parts of them are found. This second division criterion is also used to
decide which of the three possible division directions to use at each stage –
the direction is chosen that splits the surfaces to give the best distribution

23

of grad vectors. Thus cylinders, for example, get divided into long strips
parallel to their axes (though there is an aspect ratio constraint on this to
stop the division boxes getting too long and thin).

Once the model has been divided, svLis facets it by decomposing each
leaf box in the tree that contains model surface into a pattern of packed
tetrahedra. The points where the primitives cut the edges of these tetrahedra
are found by binary division, and triangles or quadrilaterals with vertices at
those points are used to approximate the primitives.

The quality of the faceting, and thus the accuracy of the area calculation,
therefore depends on the fineness of the grad vector criterion, and the effect
that this has on whether a surface is considered flat enough to facet. The
experiments for this paper were done by gradually refining this figure until
two areas for a shape were found, one less accurate that the required error,
and one more. The timing for the actual error being aimed at was found
by linearly interpolating between the times that gave rise to those two area
values.

Tables 2 and 3 show the comparison between the recursive subdivision
method and the quasi-Monte Carlo method. Table 2 gives the timings in
seconds required by the recursive subdivision method to achieve various rel-
ative errors for three solid models: a sphere of radius 20, the ‘skeleton’ shown
in Figure 19 and the object L±cylinder shown in Figure 12. Table 3 gives
the respective timing data for the new method. The true areas for the three
objects are 5026.55, 1752.83, and 1557.08, respectively. The data in Table 2
were generated on a PC with 1.2GHz Pentium CPU running Linux RedHat
7.2. The data in Table 3 were generated on a PC with 1.2GHz Pentium CPU
running MS Windows 2000.

It is noted that the new method is more efficient than the recursive sub-
division method for the sphere and the ‘skeleton’ but is slower than the
latter for the object L±cylinder. We speculate that the recursive subdivi-
sion method does not need to subdivide the surface of the object L±cylinder
to a very fine level in order to obtain a good approximation of the surface
by polygonal facets, since the major part of the surface of the L±cylinder
is planar, while the new method based on line-surface intersection does not
exploit the planarity of the object surface for a possible speedup; hence, the
recursive subdivision method is faster in this case. This comparison also sug-
gests that the new method tends to perform better for objects with mainly
curved boundary surfaces.

Note also that Tables 2 and 3 lead us to believe that the quasi-Monte

24

Carlo method will scale better if even results of higher accuracy are required.

Relative Error Sphere Box-sphere L±cylinder

8% 0.0686281 0.0897207 0.0852837

4% 0.0985547 0.408693 0.0942379

2% 0.517069 0.859189 0.0969864

1% 0.539595 1.11492 0.0989368

0.5% 1.91135 2.21722 0.099912

0.25% 2.05938 3.55824 0.180743

Table 2: Timings (seconds) for the recursive subdivision method.

7 Conclusion

We have presented a quasi-Monte Carlo method for computing the surface
area of a CSG object. This method is based on a classical result in in-
tegral geometry, the Cauchy-Crofton formula. To devise a practical and
efficient method, we have investigated the problem of generating a set of
evenly distributed lines in 3D space using Niederreiter’s low discrepancy se-
quences. Our experiments show that the quasi-Monte Carlo method delivers,
in general, more accurate results and better timing performance for geometric
models with largely curved boundary surfaces than the conventional surface
tessellation approach or the standard Monte Carlo method using random
lines with pseudo-random uniform distribution.

8 Acknowledgment

The authors would like to thank Y.T. Lee for useful discussions that helped
improve an earlier version of this paper. Thanks also go to the two anony-
mous referees who gave valuable comments on this work.

25

Relative Error Sphere Box-sphere L±cylinder

8% 0.010600 0.029900 0.029000

4% 0.042400 0.080800 0.094800

2% 0.074650 0.130150 0.161900

1% 0.106600 0.181550 0.228300

0.5% 0.138700 0.234000 0.293900

0.25% 0.169700 0.334700 0.359600

Table 3: Timings (seconds) for the quasi-Monte Carlo method.

References

[1] P. Bratley, B.L. Fox, H. Niederreiter, Algorithm 738: Programs to gen-
erate Niederreiter’s low-discrepancy sequences, ACM Transactions on
Mathematical Software, vol. 20, no. 4, pp. 494–495, 1994.

[2] A.L.D. Beckers, A.W.M. Smeulders, The probability of a random
straight line in two and three dimensions, Pattern Recognition Letters
vol. 11, pp. 233–240, April 1990.

[3] T. J. G. Davies, R. R. Martin, A. Bowyer, Computing volume properties
using low-discrepancy sequences, Computing [Suppl], vol. 14, pp. 55–72,
2001.

[4] I.D. Faux, M.J. Pratt, Computational Geometry for Design and Manu-
facture, Ellis Horwood Publishers, 1985.

[5] J. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics:
Principles and Practice, Addison-Wesley, 1990.

[6] H. Pottmann, J. Wallner, Computational Line Geometry, Springer,
2001.

26

[7] C. Gonzales-Ochoa, S. McCamnon, J. Peters, Computing moments of
objects enclosed by piecewise polynomial surfaces, ACM Transactions
on Graphics, vol. 17, no. 3, pp. 143–157, 1998.

[8] C.V. Howard, M.G. Reed, Unbiased Stereology: Three-Dimensional
Measurement in Microscopy, Bios Scientific Publishers Limited, 1998.

[9] Y.T. Lee, A.A.G. Requicha, Algorithms for computing the volume and
other integral properties of solids, Part I, Communications of The ACM,
vol. 25, no. 9, pp. 635–641, 1982.

[10] Y.T. Lee, A.A.G. Requicha, Algorithms for computing the volume and
other integral properties of solids, Part II, Communications of The
ACM, vol. 25, no. 9, pp. 642–650, 1982.

[11] Y.T. Lee, Personal Communication, 2001.

[12] W. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface
construction algorithm, Computer Graphics, vol. 21, no. 4, pp. 163–169,
1987.

[13] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random num-
bers, Bulletin of the American Mathematical Society, vol. 84, no. 6, pp.
957–1041, 1978.

[14] Prisant, M.G. Applications of the ray representation to problems of
protein structure and function, Proceedings of CSG 96, Information Ge-
ometers, Winchester, pp. 33–47, 1996.

[15] L.A. Santaló, Introduction to Integral Geometry, Hermann, Paris, 1953.

[16] L.A. Santaló, Integral geometry, Studies in Global Geometry and Anal-
ysis, The Press of The Mathematical Association of America, pp. 147–
167, 1967.

[17] R. Sarraga, Computation of surface areas in GMSolid, IEEE Computer
Graphics and its Applications, vol. 2, no. 7, pp. 65–70, 1982.

[18] H. Solomon, Geometric Probability, SIAM, Philadelphia, 1978.

[19] H. G. Timmer, J. M. Stern, Computation of global properties of solid
objects, Computer-Aided Design, vol. 12, no. 6, pp. 301–304, 1980.

27

[20] R. F. Tobler, T. M. Galla, W. Purgathofer, ACSGM – an adaptive
CSG meshing algorithm, Proceedings of CSG 96, Information Geome-
ters, Winchester, pp. 17–31, 1996.

[21] I. Voiculescu, J. Berchtold, A. Bowyer, R. R. Martin, Q. Zhang, Interval
and affine arithmetic for surface location of power- and Bernstein-form
polynomials, in The Mathematics of Surfaces IX, R. Cipolla and R.
Martin, eds., pp. 410–423, Springer, 2000.

[22] A. Wilkie, R. F. Tobler, W. Purgathofer, Photon radiosity lightmaps for
CSG solids, Proceedings of CSG 98, Information Geometers, Winchester,
pp. 155–167, 1998.

[23] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes in C, Cambridge University Press, pp. 274–316, 1992.

28

