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Abstract 

There are a number of different techniques used to diagnose vascular insufficiency 

ranging from expensive hospital based equipment to less expensive devices used in 

primary care centres. Currently, some of these devices are unsuitable for use on 

patients with diabetes or DVI and have poor sensitivity for detecting moderate PAD 

patients. Additionally, some of the tests, particularly for DVI, require tourniquets or 

the patient to perform postural changes which some may find difficult. This may 

extend testing time. The study investigated 2 groups of patients, one with PAD and 

the other with DVI. The arterial group consisted of 46 controls and 57 patients. PPG 

probes were placed on the index finger and great toe. The venous group consisted of 

24 controls and 25 patients and PPG probes were placed behind the knee and 10 cm 

above the medial malleolus. Duplex ultrasound was used as the gold standard to 

assess the arteries and veins in the lower limbs. The aim was to investigate whether 

signals acquired from patients at rest using Photoplethysmography (PPG) could be 

used as a screening tool. Pulse wave transit time (PWTT) and shape analysis 

techniques were used on the pulses from the patients with PAD, while time base and 

spectral analysis techniques were used on the waveforms of patients with DVI. PWTT 

and shape analysis techniques achieved sensitivities and specificities of 82% and 84% 

respectively. Accuracy dropped to 70% for detecting patients with moderate PAD. 

Spectral analysis techniques gave the best results for detecting patients with DVI 

achieving sensitivities and specificities of 69% and 80% respectively. In conclusion, 

reducing the signal acquisition time on patients with PAD did not significantly reduce 

the sensitivity and specificity. Without any patient movement it was difficult to 

separate patients with DVI from healthy normals.  
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1 Introduction and Background: 

Peripheral vascular disease does not have a precise meaning, but in general refers to 

diseases that affect the arterial, venous and lymphatic systems of the lower limbs 

(Fowkes, 2004).  

 

Vascular disease can be a very debilitating condition. With peripheral arterial disease 

(Meissner et al.) as arteries narrow, the blood supply to the lower limbs becomes 

compromised and patients can experience pain on walking, called intermittent 

claudication (IC) (Meissner et al., 2007). Progression of the disease can lead to critical 

limb ischaemia and possible amputation (Ouriel, 2001). Chronic venous insufficiency 

(CVI) affects the superficial venous system (SVS), the deep venous system (DVS) or 

both. CVI can be caused by primary abnormalities of the vein walls and valves or 

secondary changes due to a previous venous thrombosis. This can obstruct venous 

outflow from the lower limbs or damage the valves leading to reflux and subsequent 

failure to correctly return blood back to the heart. Over time, this may result in a 

variety of symptoms such as tired legs, oedema and in more advanced cases leg ulcers 

that are uncomfortable or distressing for the patient (Nicolaides, 2000). 

 

Intermittent claudication affects 5% of those between 55 to 75 years, with the 

incidence of critical limb ischaemia estimated at 500-1000 per million population per 

year (Fowkes, 2004). Peripheral vascular disease is a considerable burden on the 

health care system with significant cost implications. The population most at risk 

from this disease are people of advanced age (>50yrs), smokers and diabetics. Other 
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risk factors for PAD include hypertension, hyperlipidemia, male sex, prior myocardial 

infarction and history of stroke (Ouriel, 2001). Claudicants have a two to three fold 

increase in mortality compared with non-claudicants, mainly due to associated 

coronary heart disease. Fifty percent of amputee patients from PAD die within 5 years 

(Fowkes, 2004).  

 

Venous disease also has a high economic impact with spending of between 1% and 

2% of the European health budget. In the United States of America between 1.9 and 

2.5 billion dollars per year are devoted to venous disease (Callejas and Manasanch, 

2004).  

 

An early diagnosis of PAD and CVI would be advantageous as the earlier they are 

diagnosed the quicker treatment can begin, also there is a strong link of PAD and 

future cardiovascular events such as myocardial infarction or stroke (Dachun et al., 

2010). 

 

Current hospital based techniques used to assess patients for PAD and CVI include 

angiography and colour duplex imaging (CDI). However these imaging methods are 

relatively expensive and require a skilled operator to perform and interpret the 

images. Other less expensive technologies used to assess patients with PAD and CVI 

such as plethysmography and laser Doppler, provide the clinician with less 

information as to the nature and extent of the disease, compared to CDI, but they 

require less user training and are a fraction of the cost. 
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Primary care uses less expensive hand held Doppler technology to assess patients for 

PAD, but this is unsuitable for diabetics and has poor sensitivity when identifying 

patients with moderate lower limb disease (Stein et al., 2006). Plethysmographic 

techniques used to assess patients with CVI require pneumatic cuffs or tourniquets 

fitted to the lower limbs which can be time consuming, ill fitting and an infection 

control risk. Other methods require patients to perform certain manoeuvres which 

some may find difficult to execute due to their physical condition or age. Therefore 

these methods are only used in specialist vascular laboratories and not in primary care 

setting.  

 

A General Practitioner, (GP) at present will take a family history and perform a 

clinical examination as the first step of diagnosing a patient’s condition. If the clinical 

signs and symptoms are clearly vascular in nature, then the primary care clinician can 

send the patient to hospital or a specialist vascular clinic for further investigation as to 

the nature, extent and severity of the disease,. However, if the clinical signs and 

symptoms are ambiguous, then the clinician may use a non-invasive technique, such 

as a hand-held Doppler device to supplement the clinical examination and thereby 

provide additional evidence as to the nature and cause of the patient’s condition. 

However at present, these non-invasive techniques can be cumbersome and time 

consuming.  

 

If these existing non-invasive technologies could be used to assess for vascular 

disease without the need for cuffs or patient movement and give a simple yes or no 

diagnosis for the presence of vascular disease, then this would be an advantage over 
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current screening methods. This might potentially reduce the number of patients sent 

for further investigation for suspected vascular insufficiency  

 

The aims of this thesis are to:  

• Identify a technology that could be used to screen for vascular disease in 

primary care that requires minimal user training and is relatively cheap. 

 

• Investigate a technique using that technology that requires minimal time 

minimal patient intervention and minimal patient effort.  
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2 Anatomy and Physiology of the Circulatory 

System: 

 

2.1 Arteries 

The heart is the organ responsible for pumping blood to the major parts of the body, 

such as the head, arms and lower limbs. Blood transports oxygen to the tissues of the 

body, it leaves the left ventricle of the heart and enters the aorta, the largest artery in 

the body. The aorta has two principal branches, namely the ascending and descending 

aorta, and it the latter that provides the lower part of the body with blood. Branches of 

the aorta progressively become smaller as they travel distally, becoming arterioles and 

eventually capillaries, where the transfer of oxygen into the tissue takes place. Arterial 

anatomy is described in more detail below 

 

2.1.1 Anatomy 

In more detail, the aorta is split into four main sections: ascending aorta, aortic arch, 

thoracic aorta and the abdominal aorta. The abdominal aorta continues to the 4th 

lumbar vertebra where the vessel bifurcates into the common iliac arteries (Bernardi 

et al.). These two vessels feed the lower limbs and split further into the internal iliac 

artery (IIA) and external iliac artery (EIA). The internal iliac supplies the bladder, 

rectum and reproductive organs, while the external supplies the lower pelvis and leg. 

At groin level the external iliac becomes the common femoral artery (CFA), which 

then bifurcates into the superficial femoral artery (SFA) and the profunda femoris 

artery (PFA). The PFA feeds the thigh, while the SFA continues distally, gradually 
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becoming deeper until it reaches the distal adductor region, just above the knee. The 

SFA then joins the popliteal artery at knee level. The popliteal artery trifurcates into 

three principal tibial arteries: Anterior tibial artery (ATA), which feeds the front of the 

lower leg, Posterior tibial artery (PTA), which feeds the back of the lower leg and the 

peroneal artery, which feeds the medial lower leg. As the ATA travels onto the trough 

it becomes the dorsalis pedis artery (DP) (Scanlon, 1997). 

 

2.1.2 Structure and Function: 

 
Investigations have revealed that arteries are not simple passive conduits that only 

transport blood to different parts of the body, but are intricate adaptive vessels that 

can change their diameter in response to acute internal or external stresses. They are 

also affected in the long term by chronic conditions such as hypertension, obesity and 

cigarette smoking. Arteries age by becoming dilated and stiffer, due to the cyclical 

change in diameter from the 2 billion heart beats on average in a person’s lifetime. 

Arteries have several layers to be able to withstand these different states, and these are 

described in more detail below (Rutherford, 1995).  

 

When we see an artery in cross section it has three distinct layers: tunica intima, 

tunica media and the tunica externa (adventitia). The tunica intima is the inner most 

layer, which extends from the luminal surface to the internal elastic lamina. It consists 

of endothelial cells that are extremely smooth, which helps to prevent blood clotting. 

The middle layer, the tunica media is composed of smooth muscle and elastic 

connective tissue. Both of these help in the maintenance of normal blood pressure, 

particularly diastolic blood pressure when the heart is relaxed. The outermost layer, 
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the tunica externa consists of fibrous connective tissue. This needs to be strong to 

prevent the artery rupturing at high pressures during the systolic phase of the heart 

beat (Scanlon, 1997). Arterioles have a smaller lumen diameter and practically no 

outer coating of elastic fibres. They consist mostly of endothelial cells and smooth 

muscle fibres, which allows them to produce more active tension by dilation or 

contraction. This has the affect of changing the lumen diameter of the vessel and so 

controlling the amount if blood entering the vascular bed (Burton, 1965). 

 

Depending on their function within the body, arteries can be subdivided into two main 

groups: elastic or muscular. The large central arteries in the body such as the aorta and 

its immediate proximal branches are called elastic arteries because there is a greater 

extent of thick and closely packed elastic fibres than smooth muscle cells within the 

tunica media. This allows for greater compliance and recoil of the vessel wall during 

pulse propagation after a cardiac beat. Distal to the large elastic central arteries are the 

muscular arteries (Femoral, brachial and radial) so called because they contain 

relatively less collagen and elastin and more smooth muscle cells, therefore enabling 

them to change their diameters quickly by constricting or dilating. This allows them to 

adapt to any acute haemodynamic changes occurring within the body (Rutherford, 

1995).   

 

2.1.3 Disease 

Arterial disease can be split into two main categories: that which narrow the lumen of 

the vessel and therefore obstruct the blood flow, and secondly, that which weaken the 

walls of the vessel and cause it to dilate. The intracranial, abdominal aorta and 

popliteal arteries are the common places where dilation of the blood vessels can 



  8 

occur. Localised dilation of a main artery such as the abdominal aorta, termed an 

abdominal aortic aneurysm (AAA), can be life threatening if not operated on quickly, 

after reaching a certain diameter. However, obstructive disease can affect many 

arteries in the body including the carotid, coronary and many of the lower extremity 

arteries. There is an increased risk of Cardiovascular and cerebrovascular events, 

including death by myocardial infarction and stroke with this type of arterial disease. 

Peripheral arterial disease is a term used to describe obstructive arterial disease 

external to the coronary and intracranial vessels and technically includes the 

extracranial carotid circulation, upper limb arteries and the mesenteric and renal 

circulation. However this thesis will only focus on obstructive disease in the 

abdominal aorta, the iliac vessels and the arteries of the lower limbs (Ouriel, 2001). 
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2.2 Veins 

The venous anatomy of the lower limbs in some respects is more complicated and 

varied than its arterial counterpart. However, to aid our understanding the venous 

system has been divided into a number of different subsystems: Deep, superficial, 

communicating and perforator veins. 

 

2.2.1 Anatomy of the lower Extremity Veins 

The veins in the lower extremities can be categorised according to the compartment in 

which they travel. Two compartments are created by a thin layer of tissue, called the 

fascia that travels the entire length of the leg. The superficial compartment consists of 

the tissue between the skin and the fascia, and the deep compartment includes all 

tissue between the fascia and the bone (Figure 1). 

 

 

Figure 1 Relationship between fascia and veins in the lower extremity (Bergan, 2006). 
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A third major category consists of veins which connect the superficial and the deep 

veins. These veins pierce the fascia which separates the two compartments and are 

therefore called perforating veins. Communicating veins connect veins within the 

same venous subsystems. 

2.2.1.1 Superficial and Perforator Veins 

The Subpapillary and Reticular venous plexus are drained by small superficial veins, 

which form bigger tributaries that eventually all connect into the saphenous veins. 

From the ankle the Long Saphenous Vein (LSV) travels medially to the knee (Figure 

2).  Proximal to the knee the LSV ascends on the medial side of the thigh and enters 

the fossa ovalis, where it ends at the confluence of the superficial inguinal veins 

(saphenofemoral junction) joining the Common femoral vein (CFV).  

               

 
Figure 2 Superficial and perforating veins of the leg. Adapted from (Bergan, 2006). 
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The Short Saphenous vein (SSV) lies lateral to the Achilles tendon in the distal calf. It 

ascends posterior, firstly running in the subcutaneous fat and then piercing the fascia 

and eventually joining the deep popliteal vein approximately 5cm proximal to the 

knee crease. Perforating veins act as a conduit between the deep and superficial 

venous systems by crossing the muscular saphenous facia that separates them 

(Meissner et al., 2007). There can be greater than 100 perforating veins (PVs) in the 

lower extremities, however only a small number of these are clinically relevant. Of 

particular importance are the medial calf perforators and these have two groups: 

posterior tibial and paratibial PVs. The posterior tibial PVs can be further divided into 

Cockett I-III which connects the posterior accessory LSV to the PTVs. The paratibial 

perforators drain the LSV into the posterior tibial veins.  

 

Superficial veins usually have their valves located at the termination of major 

tributaries. Some valves are robust, while others are more delicate in their structure. In 

the LSV there are approximately 6 valves, with more located below than above the 

knee. Common to most people, the LSV has a valve 2-3cm distal to its confluence 

with the SFV. Valves in the SSV are closer together than in the LSV. Valves in 

communicating branches between the SSV and the LSV are orientated to direct blood 

from the SSV to the LSV. 

 

2.2.1.2 Deep Veins 

On the dorsum of the trough the pedal vein drains the deep dorsal digital veins 

through the dorsal metatarsal veins. The pedal vein continues in the anterior tibial 

veins. 
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There are three pairs of deep veins in the calf, with their associated arteries: the 

peroneal, posterior and anterior tibial veins. These join at just below knee level to 

form the popliteal vein, which meets the short saphenous vein (SSV), a superficial 

vein. The gastrocnemius and soleal veins drain venous sinuses in the calf muscle and 

also join the popliteal vein. Venous sinuses are closely related to deep veins and can 

hold large amounts of blood which is pumped proximally, with the contraction of the 

calf muscles, by the action of walking. As the popliteal vein continues it passes into 

the adductor canal where it becomes the superficial femoral vein (SFV, superficial 

only in name, it is still classified as a deep vein). The popliteal and SFV are frequently 

duplicated. The SFV travels proximally and joins the deep femoral also know as the 

profunda vein and long saphenous veins (PFV and LSV respectively) in the groin, 

where it now becomes the common femoral vein (CFV). After passing under the 

inguinal ligament it becomes the external iliac vein (EIV), which then joins with the 

internal iliac vein (IIV) to become the common iliac vein (CIV), which joins with the 

contralateral CIV in the inferior vena cava. Frequently the femora-popliteal segment 

communicates with the profunda vein through a large collateral, providing an 

important alternative for venous drainage in case of a femoral vein occlusion. 

 

Similar to superficial veins, deep veins have more valves in the calf than in the thigh. 

The tibial veins are densely packed with valves in contrast to the poplieal vein where 

there are only one or two valves. There are three to five valves in the SFV, with one 

located just distal to the junction of the profunda vein. There is usually one valve in 

the CFV. There are one to three valves all located below the level of the fascia and 

these ensure that venous blood is directed toward the deep veins. Small PVs are 

usually valveless (Bergan, 2006). 
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2.2.2 Circulation 

The purpose of the heart is to pump arterial blood to different parts of the body, 

ensuring that the organs and tissues receive the oxygen and nutrients they require in 

exchange for carbon dioxide and waste products that need to be removed from the 

tissue. Deoxygenated blood that leaves the capillaries and enters the venous system is 

‘pumped’ back to the heart, by two mechanisms:  

 

The calf muscle pump effectively pushes blood up from the lower extremities by 

compression of the muscles in the calf, which are activated when walking. This action 

decreases the pressure in the deep veins and allows higher pressure venous blood in 

the superficial system to flow into the deep venous system via perforating veins; 

whose valves are arranged to prevent blood flowing back into the superficial system. 

While walking this cycle continues, reducing high pressure which builds up in the calf 

while at rest; which can reach pressures as much as 100mmHg when standing.  

 

Respiration, and the subsequent action of the diaphragm, causes the pressure within 

the abdomen to increase and decrease which controls the flow of venous blood back 

to the heart. During inspiration the ribcage expands causing the diaphragm to descend 

into the abdominal cavity. This action decreases the pressure within the thorax, 

increases the pressure within the abdomen and subsequently there is an increase in 

pressure gradient along the Inferior Vena Cava (IVC) (Figure 3). Therefore any 

venous blood in the abdominal IVC is encouraged back to the heart. At this time there 

is minimal venous return from the lower limbs. During expiration, minimal pressure 

gradient along the IVC results in minimal flow here. However, the recoil of the 

diaphragm reduces the pressure in the abdomen and therefore the abdominal IVC 
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refills with venous blood from the lower limbs (Figure 4). Therefore venous return to 

the heart from the lower limbs exhibits a phasicity that is maximum during expiration 

and minimum during inspiration (Oates, 2001).  

 

                        

Figure 3 The respiration pump during inspiration (Oates, 2001). 
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Figure 4 Respiration pump during expiration (Oates, 2001). 
 
 

2.2.3 Venous Disease 

Venous anatomy and physiology must be thoroughly understood by the clinician if an 

accurate diagnosis is to be made, therefore ensuring that the subsequent treatment and 

therapy is appropriate and timely. Venous anatomy consists of two main networks, a 

superficial and a deep venous network and these are interconnected at certain points 

by a system of perforating veins. Any one or a combination of these networks can fail, 

termed venous insufficiency (VI), either primarily from vein wall weakening and 

valve dysfunction, or from secondary pathologies caused by a venous thrombosis, 

which can lead to reflux, obstruction or both. When either the superficial or the deep 

venous system fails, leading to sustained venous hypertension, the resulting clinical 

condition, known as chronic venous insufficiency, (CVI), can have mild or more 
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severe symptoms. These venous systems are described below with particular attention 

being paid to CVI caused by a previous DVT and the associated clinical signs and 

symptoms known as the post-thrombotic syndrome (PTS). 

 

Primary varicose veins alone, which are the result of vein wall weakness and valvular 

dysfunction without significant skin changes, are not sufficient for a diagnosis of CVI. 

Primary varicose veins are more often the result of incompetent valves at the 

junctions where the superficial veins join the deep veins, typically examples being the 

sapheno-femoral junction (SFJ/I) or the sapheno-popliteal junction (SPJ/I). They are 

generally visible and are more of a cosmetic problem that can often be corrected by 

surgery. A hand-held continuous wave Doppler unit can be used in a GP surgery to 

confirm the site of reflux, however, further ultrasound investigation is required if a 

complete and thorough diagnosis is needed, as many other sites of potential reflux can 

not be established with a hand-held device because the veins are too deep. 

 

Chronic venous insufficiency is a broader term that involves structural and functional 

abnormalities of the superficial venous system (SVS) or the deep venous system 

(DVS) or both (Nguyen, 2005). The signs and symptoms of CVI are the result of 

ambulatory venous hypertension. This is defined as the failure to reduce venous 

pressure with exercise. Normally a combination of calf muscle pump and vein valves 

help to reduce the venous pressure in the lower extremity veins, which can reach 

venous pressures of 90 to 100mmHg when standing (Burton, 1965). When the valves 

are functioning correctly, venous blood travels distal to proximal and from superficial 

to deep veins. If the calf muscle pump fails either due to outflow obstruction from 

chronic thrombus, or valve failure, the venous pressure remains abnormally high. If 
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the valves in the deep veins are incompetent, the blood in the lower limbs pool and 

there is no reduction in pressure. Prolonged abnormally high venous pressure in the 

lower extremities is termed chronic venous hypertension and can result in a range of 

pathological effects of the skin and subcutaneous tissue. Sustained venous 

hypertension can lead to the signs and symptoms of CVI.  However in some cases the 

perforator veins can act as conduits for the high pressure deep venous blood to escape 

into the lower pressure superficial veins. In this case venous blood travels from the 

deep to superficial veins, which is the reverse direction of normal lower limb venous 

blood flow. The superficial veins then act as collaterals for the deep venous blood in 

an attempt to lower the abnormal high venous pressure, but in-doing so the superficial 

veins become a higher pressure venous system. Since the superficial veins do not have 

a muscular support, unlike the deep veins, they become varicosed. When superficial 

veins act as collaterals the progress of CVI can be delayed (Nicolaides, 2000).  

 

Symptoms of CVI include, aching, heaviness, leg tiredness, cramps, itching, sensation 

of burning and swelling. Signs include telangiectasia and reticular veins (spider 

veins), varicose veins, oedema. Additionally, the skin can change in appearance, also 

known as trophic changes, such as eczema, (erythematous dermatitis or reddening of 

the skin), hyper-pigmentation, ( a brownish darkening of the skin), 

lipodermatasclerosis, (localised chronic inflammation and fibrosis of the skin), and 

ulceration. The significance of trophic changes is a sign of more severe CVI. 

 

Of particular importance to this study is the development of CVI due to a previous 

acute DVT, known as the post-thrombotic syndrome (PTS). Approximately one third 

of patients with a previous acute DVT will develop PTS within 5 years (Bernardi and 
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Prandoni, 2000). However the precise incidence of PTS varies among published 

studies between 20 and 100%; although in recent studies the incidence has reduced to 

approximately 30 to 60%, probably due to increased diagnostic accuracy (Bergan, 

2006). The post-thrombotic syndrome can progress from mild signs and symptoms of 

pain, slight swelling and cramp to severe cases of lipodermatosclerosis, hyper-

pigmentation and in certain cases of recurrent DVT, ulceration. The incidence of 

patients going on to develop ulcers is approximately 3 to 8%. This severe form can 

occur in one quarter to one third of patients with PTS and it is therefore costly to 

society and is a cause of substantial patient morbidity (Kahn and Ginsberg, 2004). A 

recent study however revealed that a quarter of limbs they tested with trophic changes 

to the skin did not have functional venous disease. In the same study 26% of limbs 

with oedema were normal functionally, with no varicose veins or trophic changes 

(Criqui et al., 2003). In most cases CVI is clinically apparent particularly with 

associated varicose veins, however a number of other diseases have similar clinical 

features such as cellulitis, periarteritis nodosa, ruptured Baker’s cyst, rheumatoid 

arthritis, gout, arterio-venous malformation of the calf muscles, limb pain and 

swelling from adverse drug reactions and numerous other dermatological conditions. 

Mixed arterial and venous pathologies, particularly in the elderly, can mask some 

venous symptoms. Since approximately 30% of DVTs are silent or asymptomatic, 

further development of the PTS will not have any obvious underlying source. In 

addition, a DVT following trauma or surgery can be hidden under the symptoms of 

post-operative pain. 

   

CVI and its associated signs and symptoms are a considerable and costly burden on 

society, in western countries in particular due to its high prevalence, cost of 
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investigations and loss of working days. Varicose veins are present in 25% to 33% of 

females and 10% to 20% in male adults. The prognosis of venous leg ulcers is poor, 

only 50% heal in 4 months, 20% remain open at 2 years and 8% remain open at 5 

years. In the United Kingdom the annual cost of venous ulcers has been estimated to 

be £400 to £600 million and greater than 1 billion dollars for the United States 

(Nicolaides, 2000).  

 

A history and clinical examination will often not give the full nature and extent of the 

abnormality, therefore a number of diagnostic techniques have been developed to help 

the clinician make a more informed diagnoses of CVI. 

 

2.3 Microcirculation 

The large and muscular arteries serve as vessels solely for the distribution of 

oxygenated blood to the tissues. The major veins serve to take deoxygenated blood 

back to the heart. Between these are the arterioles, capillaries and venules which make 

up the microcirculation. Here and particularly in the capillaries, oxygen and nutrients 

are exchanged for carbon dioxide and other waste products from the tissue. The 

follow section describes the microcirculation in more detail, explaining the anatomy 

and then how it is controlled. 

 

2.3.1 Anatomy of the Microcirculation 

The diameter of arterioles range from 5-100µm and they have three distinct layers; a 

thick smooth muscle layer, a thin adventitial layer and an endothelial lining. 

Arterioles feed directly into capillaries that have diameters in the range of 5-10µm 
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and are the smallest blood vessels in the body. In some tissue metarterioles of 

diameter 10-20µm feed capillaries directly or they bypass the capillary bed 

completely, known as arterio-venous shunts (AV shunts) and directly feed the 

venules. Because of their smooth muscle wall, arterioles, also known as resistance 

vessels, are able to alter their diameter thereby controlling the amount of blood 

entering the capillaries. The amount of capillaries in tissue depends on its metabolic 

activity. Cardiac and skeletal muscles have numerous capillaries but less active tissue, 

such as subcutaneous tissue has fewer. Blood flow through capillaries may be random 

or have a rhythmic flow caused by the contraction and relaxation of the smooth 

muscles of the precapillary vessels. A difference in the intravascular pressure and the 

extravascular pressure, known as the transmural pressure can also cause the 

precapillary vessels to alter their diameters and therefore control capillary blood flow. 

Capillaries can alter their shape in response to certain chemical stimuli, but this is a 

passive response to changes in precapillary or postcapillary changes in resistance and 

is not an active change that controls blood flow. On leaving the capillaries the blood 

drains into the venules. These are generally larger than the arterioles but they have 

weaker vessel walls. These venules merge to form larger and larger veins and in doing 

so conduct the deoxygenated blood back to the heart (Scanlon, 1997). 

 

2.3.2 Control of the Microcirculation. 

Control of blood flow through the microcirculation can be split broadly into two main 

control mechanisms; local control from conditions in the immediate area of the blood 

vessels and central control via the nervous system. These will be explained in more 

detail below. 
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2.3.2.1 Local Control 

Changes in perfusion pressure or metabolic activity of the surrounding tissue elicit 

autoregulatory mechanisms that maintain blood flow by altering the tone of the 

smooth vascular muscle and which in-turn controls total peripheral resistance. These 

mechanisms are: 

 

1. Myogenic control of the diameter of the arterioles in response to an increase in 

perfusion pressure. An initial passive increase in vessel diameter and therefore 

increased blood flow is followed by a contraction of the vessel and a return to 

previous blood flow levels. 

2. Endothelial control is prompted from the rapid blood flow through the vessel 

which produces vasoactive factors that regulate the vessel diameter. 

Vasodilation is caused by nitric oxide which is released from the endothelial 

cells. 

3. Increased metabolic activity or a reduction of oxygen in the surrounding tissue 

produces vasodilatory substances that increase blood flow. Conversely, a 

decrease in metabolic activity reduces the amount of vasodilatory substances 

and increases peripheral resistance and thereby reduces blood flow. It is 

unclear from current literature which substance is primarily involved. 

 

2.3.2.2 Extrinsic or Central Control  

Alteration of tissue blood flow can be controlled by local mechanisms as mentioned 

above or globally from nervous regulation by the brain. Nervous regulation is 

controlled by the autonomic nervous system and the part of this that controls the 

micro-circulation is called the sympathetic nervous system. The parasympathetic 
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nervous system regulates heart function but has little effect on the micro-circulation. 

Nervous control of the micro-circulation is described below. 

 

Several regions in the brain, when activated, influence cardiovascular activity. One of 

these regions, called the vasomotor centre, controls vasoconstriction. Fibres connected 

to this region travel down the spinal cord eventually joining with the peripheral 

sympathetic nerve fibres which innervate the arterioles and venules and veins. The 

micro-vessels that are not sympathetically controlled are the capillaries, metarterioles 

and the pre-capillary sphincters. During rest, the tone of the micro-vessels is altered 

by stimulating or inhibiting the vasoconstrictor area of the brain. Stimulation causes 

the vessels to constrict and therefore impede blood flow, while inhibition causes 

vasodilation. Sympathetic activity is altered rhythmically by altering the frequency of 

impulses passing along the sympathetic nerves that join with the micro-circulation. 

These rhythmic changes are evident as oscillations in pulse pressure at respiration 

frequencies called Traube-Hering waves (0.15 to 0.4Hz) and also occur at even lower 

frequencies called Meyer waves (Levy, 2005).   

 

Under normal stimulating conditions the micro-vessels are in a state of mild 

contraction, which is called vasomotor tone (Hall, 2005).  

 

When there is a need for rapid adjustment of blood pressure, there are a number of 

vascular reflexes that feedback impulses concerning the physiological activity of the 

body to the vasomotor centre of the brain. These impulses travel along neural fibres 

from baroreceptors, chemoreceptors, hypothalamus, cerebral cortex and the skin 

(Levy, 2005).  
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Baroreceptors also know as stretch receptors can be found at specific points in the 

walls of a number of major systemic vessels, for example at the carotid sinus and the 

aortic arch,. The receptors respond to increases in blood pressure, which stretch the 

walls of the vessel and this has the affect of inhibiting the vasomotor centre. This 

results in peripheral vasodilation and therefore a lowering of blood pressure. When 

arterial pressure falls, the inhibitory effect of the baroreceptors is lost and blood 

pressure rises. Because baroreceptors respond rapidly to changes in blood pressure 

they have limited effect controlling it over prolonged periods of time. Baroreceptor 

impulse frequency is set to a new basal rate if the mean arterial pressure drifts higher 

or lower than previous levels. 

 

Chemoreceptors are located at the carotid sinus and in the region of the aortic arch. 

They are specialised cells that respond to changes in arterial blood tension (PaO2), 

CO2 tension (PaCO2) and hydrogen ion excess (Pasternak et al., 2004). A reduction in 

PaO2 or an increase in PaCO2 stimulates the cells. The carotid and aortic bodies 

respond by increasing the frequency of the nerve impulses to the vasomotor centre in 

the brain. The result is an increase in tone of the resistance and capacitance vessels 

and a subsequent increase in blood pressure. Chemoreceptors have a strong influence 

over the vasomotor centre only when arterial blood pressure falls below 80mmHg. In 

addition they play a far greater role in respiratory control than in pressure control. 

 

Core-body temperature is controlled within a narrow range by the hypothalamus, the 

thermostat of the body, which is located at the base of the brain. The temperature of 

the blood perfusing through the pre-optic region of the brain is considered the body’s 
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ultimate core temperature and monitoring of this region by the hypothalamus is 

performed to regulate core body temperature. However, receptors in other parts of the 

body also help regulate body temperature. The hypothalamus also receives 

temperature sensory information from receptors in the skin. Part of the hypothalamus 

is responsible for skin-temperature regulation of the body via sympathetic nerve 

pathways that innervate the micro-vessels of the skin. These receptors detect 

peripheral temperature fluctuations, but because there are more cold receptors than 

warm receptors the skin is more sensitive to a decrease in temperature. When the skin 

detects these changes a number of reflexes take place that increase body temperature, 

one of those being peripheral vasoconstriction. However, when the body becomes too 

hot, vasodilation of the peripheral vessels takes place to reduce body temperature. 

 

Intrinsic and extrinsic control of peripheral vessels do not occur in isolation but they 

act together to form a comprehensive system of vascular regulation. Together they 

supply blood to areas of the body that need it and divert blood away from areas that 

do not. However different types of tissue will need different proportions of each 

control type. For the brain and heart to function at optimal performance, they need a 

constant blood supply and so this is largely intrinsically controlled; in the skin 

however, extrinsic control is dominant as sympathetic and hypothalamic activity 

controls vasoconstriction of the cutaneous vessels. Nevertheless, central control of the 

resistance and capacitance vessels can be over-ridden by intrinsic mechanisms due to 

local changes in skin temperature. In resting skeletal muscle sympathetic control is 

dominant, but with the onset of exercise, local regulatory mechanisms take over as the 

demand for nutritive blood supply increases. Vasodilation occurs in vessels feeding 

active muscles, while vasoconstriction occurs in vessels supplying inactive muscle 
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tissue. Initially, sympathetic constrictor impulses will be sent to the active muscle 

tissue in an attempt to bring blood flow within normal limits, but this will be 

overridden by local metabolic control which will dilate the vessels (Scanlon, 1997).  
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3 Vascular Diagnostic Methods 

Before any invasive or non-invasive vascular investigation is undertaken, the clinician 

will carry out a clinical evaluation which will entail a patient history and a physical 

examination.  

 

The most common clinical presentation for peripheral arterial disease is intermittent 

claudication. This is pain experienced in the calf when walking and which is relieved 

when the patient rests. If this is left untreated the condition may progress to a point 

where the patient experiences pain even when stationary, called rest pain. This 

condition can progress to ulceration and gangrene. The physical examination 

encompasses palpation of the lower extremity pulses, generally at the ankle, knee or 

groin level. The pulses can be graded as normal, bounding, weak or absent. Hair loss, 

skin colour and trophic skin changes may also be noted as potential signs of arterial 

disease. 

 

As with arterial insufficiency, a venous clinical evaluation starts with a patient history 

and physical examination. A visual inspection will reveal any skin changes such as 

atrophy, healed ulcers, oedema and pigmentation changes. Any visible vessels should 

be categorised as telangiectasias, reticular, phlebectasias or varicose veins. Their 

distribution should also be noted (Nguyen, 2005). This clinical assessment can form 

part of a more comprehensive venous classification system called CEAP. This system 

organises information into clinical, etiologic, anatomic and pathophysiologic (CEAP) 

categories. The venous assessment above, forms part of the clinical assessment in the 
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CEAP classification; the anatomic and pathophysiological categories would be 

assessed using duplex ultrasound at a specialist vascular clinical. More details of the 

CEAP classification system can be found in appendix B. 

 

To help the clinician diagnose arterial or venous insufficiency, a number of different 

technological methods have been developed. Most are hospital or specialist vascular 

clinic based and can be separated broadly into a number of different categories:  

 

X-ray Techniques: 

• Angiography 

• Phlebography 

 

Optical and Other Techniques: 

• Duplex Ultrasound (DU) 

• Photoplethysmography (PPG) 

• Impedance plethysmography (IPPG) 

• Strain-gauge plethysmography (SGPPG) 

• Air plethysmography (APPG) 

• Laser Doppler (LD) 

• Tissue Oxygen Saturation (SPO2) 

• Transcutaneous pressure O2/CO2 Tension (tc-PO2/CO2) 

• Ankle Brachial Pressure Index (ABPI) 

• Ambulatory Venous Pressure (AVP) 

• Segmental Pressures 

 



  28 

In general the invasive procedures give the clinician anatomical information, while 

the non-invasive procedures give hemodynamic information. As the name suggests 

invasive procedures can be very uncomfortable for the patient, often relying on the 

use of a needle or catheter inserted into an artery or vein. A contrast medium is then 

injected into the body which can be tracked as it passes through the vascular system 

of the body high-lighting the arteries and veins of interest to the clinician. The 

expense and discomfort of these procedures limits their application to patients with 

the most severe conditions or where the results of non-invasive procedures are 

equivocal.  In contrast non-invasive procedures are relatively pain-free, normally 

relying on cuffs to measure arterial blood pressure at certain sites, such as the ABPI 

procedure, or tourniquets to occlude lower limb veins to distinguish between 

superficial or deep venous incompetence. Other non-invasive procedures use light to 

penetrate the tissue and estimate superficial blood volume beneath the probe from 

measuring the amount of back scattered light, as in PPG. Tc-pO2/CO2 and SpO2 

measurement technique can locally assess the body’s ability to deliver oxygen to the 

tissue and remove carbon dioxide from it (Baumbach, 1986). The above techniques 

are described in more detail below. 

 

3.1 X-ray Techniques 

These techniques are hospital based and can be uncomfortable or stressful for the 

patient. They are utilised if the results of non-invasive techniques are equivocal.  
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3.1.1 Angiography: 

Angiography and certain types of non-invasive imaging modalities, such as duplex 

ultrasonography, computed tomography and magnetic resonance angiography (MRA) 

have gained wide acceptance in recent years due to their diagnostic accuracy. 

However it is angiography that is still considered to be the gold standard by which all 

other vascular imaging modalities are judged (Nicolaides, 2000). In its basic form 

angiography consists of radiographic exposure of a sheet of x-ray film. An anatomic 

region of interest is positioned between an x-ray source and the film while a relatively 

radio-opaque agent is passed through the vessel of interest. In modern angiography a 

catheter is passed to the area of interest, in particular the arteries of the lower limbs, a 

radio-opaque agent flows through the catheter and into the arteries. X-ray images are 

taken and displayed on a monitor, which acts as a guide for the surgeon. Certain 

procedures can now be performed such as dissolving a clot with certain drugs or 

opening a partially blocked artery with a balloon (Rutherford, 2005).  

 

3.1.2 Phlebography 

Phlebography relies on injecting a contrast medium into an appropriate vein in the 

body and subsequently tracking its path by fluoroscope. The method is used to 

demonstrate patency of the veins and to detect reflux in the superficial or deep venous 

systems. The patient is placed during the procedure on a tilting table in the semi-erect 

or standing position. The disadvantages of phlebography are that it is invasive, costly 

and has potential complications due to possible patient reactions to the contrast 

medium. With the advent of non-invasive technologies such as duplex scanning, the 

demands for phlebograms have reduced (Nicolaides, 2000).   
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3.2 Optical and Other Techniques 

These techniques are non-invasive and so are generally less painful or stressful for the 

patient. Most of the techniques as they are currently used involve cuffs, tourniquets or 

require the patient to perform manoeuvres that they may find difficult to perform 

considering their condition. Additionally, techniques such as duplex ultrasound 

require extensive user training. Also any physiological data gathered from a procedure 

that requires the patient to perform repeated movements may be inconsistent.      

3.2.1 Ultrasound 

As the name suggests ultrasound is above the range of human hearing. The consensus 

of opinion regarding the lower frequency limit for ultrasound is 20 kHz. Ultrasound is 

a form of energy which consists of mechanical vibrations that travel through a 

medium in the form of a longitudinal pressure wave. This wave disturbs the particles 

of the medium in a backwards and forwards manner, which has the effect of 

transmitting the energy in the wave in a direction parallel to that of the oscillation of 

the particles.   

 

Common to most applications is brightness or B-mode imaging, also known as gray-

scale sonography, however other disciplines such as echocardiography use motion 

mode also, while ophthalmology can use amplitude or A-mode. The following section 

will concentrate on B-mode imaging, which is the basic imaging technique use in 

ultrasound, and then go on to describe the various Doppler techniques. 
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Echo amplitude is represented by the brightness or grey scale on a visual display. A 

single line of the B-mode scan yields information about the position of the echo, 

given by 

2ctd =  Equation 1  

 
 where d is the distance from the transducer to the target; t is the time it takes for the 

pulse from the transducer to the target and back; and c is the sound velocity in tissue, 

which is assumed to be constant at 1540ms-1. The single lines of the B-mode scan are 

electronically combined to generate an ultrasound B-mode image of approximately 30 

frames per second for modern scanners (Shung, 2006). This enables real time imaging 

of structures within the body. Distances can be measured and viewed on screen using 

the calliper tool. This is calculated by using the timing information stored within the 

memory matrix to measure anatomical structures such as the size of Abdominal 

Aortic Aneurysms (AAA), the diameters of arteries or veins. 

 

When an ultrasound beam is fired at a moving target, such as blood, the reflected 

beam is shifted in frequency by an amount proportional to the velocity of blood. This 

effect is common throughout nature, where a source of sound energy moves in 

relation to an observer, and is called the Doppler Effect. For a target moving towards 

the transducer, the frequency of returning echoes, fr, will be higher than ft, or the 

transmitted frequency, and for a target moving away from the transducer, fr will be 

lower than ft. When measuring the velocity of blood however, the direction of blood 

flow will not generally be directly towards the transducer, but at some angle to it, 

called the Doppler Angle, and therefore the frequency relationship between the 

transmitted and received signals is  

c

vf
f t

d

θcos2
=  Equation 2 
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where fd is the Doppler shift in frequency between the transmitted and reflected wave, 

c, is the speed of sound in the blood, which is 1570ms-1 and θ is the angle subtended 

between the ultrasound beam and the direction of blood flow (angle of insonation) 

(Oates, 2001). 

 

A convenient and informative way of displaying the Doppler signal over time is by a 

Doppler spectral display, or simply Doppler spectrum. This gives a complete visual 

description of changes in flow velocities occurring within the sample volume of the 

ultrasound beam. The range of velocities over time is shown on the x and y axes, and 

the brightness of the grey scale trace showing the level of the backscattered power at 

that frequency. It is important to note that the absolute velocity on the spectral display 

can only be calculated provided the angle of insonation is known. Without this the 

display shows just changes in Doppler frequency over time.  

 

Pulsed wave Doppler uses a spatially well defined sample volume, which is able to 

detect local flow velocity phenomena, and can be narrowly adjusted and precisely 

focussed. Haemodynamical effects of any vessel narrowing can be assessed from the 

Doppler frequency spectrum as it changes its shape and amplitude. The degree of 

arterial narrowing or stenosis can be quantified by using the change in amplitude, and 

whether there is proximal or distal disease by changes in waveform shape (Hennerici, 

1998). 

 

Continuous wave Doppler uses a continuous beam of ultrasound, with overlapping 

ultrasound fields, from a transducer containing two piezoelectric elements, the 

transmitter and receiver. Due to this arrangement, no exact information about depth 
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can be obtained, and since the sample volume of the ultrasound beam is fixed, 

movement within any overlapping vessels is heard together making isolation of the 

vessel of interest more difficult.  

 

Scanners are able to combine B-mode real-time imaging with Doppler so that 

anatomical information as well as blood flow data can be displayed at the same time; 

this is called duplex imaging. In this mode of operation, the display is normally split 

into two parts; the B-mode image and the Doppler spectrum image, with a cursor line 

superimposed onto the B-mode image to indicate the direction of the Doppler beam.  

 

An alternative mode of operation is called colour flow imaging (CFI). A colour 

display is superimposed onto the B-Mode image to show areas within the image 

which are Doppler shifted. Conventionally, the colour red is used to indicate blood 

flow toward the transducer, and blue for blood flow away from the transducer. 

Different hues of colour will indicate different velocities of blood flow. Changes in 

velocity can occur for example due to normal changes in vessel calibre, due to a 

narrowing of the vessel lumen because of a stenosis or, changes in vessel angle with 

respect to the transducer. CFI will give the operator qualitative information about the 

degree of a stenosis, however, quantitative information can be obtained by using a 

third mode of operation called triplex or colour flow duplex (CFD). Here, qualitative 

information regarding haemodynamic flow is displayed on one part of the screen with 

CFI, while quantitative information regarding blood flow velocities is displayed 

separately. Both the CFI and the Doppler Spectral waveform are used together to 

obtain a complete picture of the area of interest, with regard to anatomical and 

haemodynamical information (Oates, 2001; Shung, 2006). 
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The Doppler arterial waveform can be separated into two distinct cardiac phases: the 

systolic and diastolic phase. The systolic phase occurs when the ventricles of the heart 

contract causing blood to be pushed out into the circulation. The diastolic phase 

occurs when the aortic valve closes and the ventricles are refilling. The diastolic phase 

can be divided further into two phases which are described below. A typical Doppler 

waveform of a healthy person taken from the lower limbs will look like that shown in 

Figure 5. 

 

 

Figure 5 Triplex image showing Doppler signal (lower image) of blood flow from sampled 
arterial flow (top image). Triplex flow in the Doppler signal referring to three phases of flow: 
forward; reverse and finally forward flow. 
 

This type of waveform is called triphasic, as there are three distinct phases during the 

cardiac cycle. Phase one is the forward flow during systole where there is a steep 

systolic ascent, a narrow peak, and a quick descent. In the second phase there is a 

short period of reverse flow caused by the primary pulse wave being reflected from 

the peripheral arterial tree. In the third phase, the reflected wave continues proximally 

through the arterial system and is reflected again at the aortic valve, where it then 

proceeds peripherally and causes the second forward peak. Phases two and three are 
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part of the diastolic phase. Therefore the shape of the Doppler waveform from a 

healthy individual is in most part due to the primary systolic wave being reflected 

from some distal arterial site. This site of reflection is the part of the arterial tree 

where there are high impedance terminal vessels, namely the arterioles (Oates, 2001; 

Nichols and O'Rourke, 2005). The peak systolic velocity in healthy individuals 

measured using duplex sonography from the muscular arteries of the lower can range 

from approximately 50cms-1 to 120cms-1 (Hennerici, 1998).  

 

3.2.2 Doppler waveform Measurements 

The full spectral waveform contains much information, but can be simplified by 

taking the maximum velocity at each point in time along the Doppler waveform; this 

is known as the peak velocity envelope. If the Doppler waveform is presented in this 

way it can more clearly show the changes in shape from different locations around the 

body and changes in shape from the presence of disease. However, where the Doppler 

angle is unknown, several quantitative indices have been formulated that enable the 

angle in the Doppler equation to be eliminated. 

 

Pulsatility index (PI) is a measure of how pulsatile a waveform is and is particularly 

appropriate for waveforms that are pulsatile in nature, for example waveforms from 

the lower limbs, and for Doppler waveform measurements it is the difference between 

the peak systolic and minimum diastolic velocities divided by the mean value of the 

peak velocity envelope over the cardiac cycle. The more pulsatile the waveform the 

higher the PI value will be, Equation 3, therefore damped waveforms will have a low 

PI (Oates, 2001).  
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PI =    peak to peak value 

  Mean value of peak velocity envelope 

Equation 3 Pulsatility index 
 

The resistance index (RI) is defined as shown in Equation 4. This equation is also 

independent of the Doppler angle. Since this index is dependent on the changing 

relationship between the end-diastolic velocity (EDV) and the peak systolic velocity 

(PSV), then changes in peripheral resistance to flow will affect RI. An increased 

peripheral resistance lowers EDV and therefore produces a higher RI. This index is 

more appropriate for waveforms that normally have a continuous forward flow 

throughout diastole, for example the carotid arteries. 

 

RI =        PSV– EDV 

                        PSV 

Equation 4 Resistance index 
 

Duplex ultrasound scanning has been used in a clinical setting to diagnose arterial or 

venous insufficiency for the past 30 years. The technology has advance considerably 

in that time and at present it can provide anatomical information as well as 

visualisation of blood flow as well as its direction. The B-mode image can be used to 

subjectively assess the echogenicity of thrombus within arteries or veins and pulsed 

Doppler can be used to objectively grade the degree of arterial narrowing with a 

overall diagnostic accuracy of 90% (Baxter and Polak, 1992).  
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3.2.3 Laser Doppler Flowmetry 

Over the last 15 years laser Doppler Flowmetry (LDF) has developed from a scientific 

research tool into a promising clinical diagnostic instrument giving comparable results 

to other non-invasive devices. LDF can be used to assess blood flow in either large 

vessels or to assess skin perfusion. These two methods use different technologies but 

only the instrumentation used to assess the micro-circulation will be considered in this 

section. Many instruments use laser light that is produced from helium-neon gas or 

gallium-aluminium arsenide elements. This produces a weak beam of laser light that 

penetrates the skin to an approximate depth of 1-2mm and has minimal metabolic 

disturbance on the tissue. At this depth blood constitutes only a small proportion of 

the tissue volume and most of the back scattering of the beam will be from small 

particles and stationary tissue. Light scattered from moving particles (blood cells) 

within the sample volume will experience a Doppler shift in the light frequency. To 

distinguish the Doppler shifted signal due to blood cells from interference from other 

sources such as electronic noise, complex electronic processing and filtering are 

performed on the photo-detected signal. The signal now represents a meaningful 

quantity that varies linearly with the blood flow in the sample volume. However as 

there are still some calibration issues, clinical investigations tend to look at relative 

changes from before and after interventions, such as measurements pre and post 

hyperaemia when investigating vascular diseases (Serup, Jermec and Grove, 2006).  

 

LDF technology can measure blood flow in the skin at depths of only 0.1 to 0.05mm 

where the capillary beds and the blood flow within them are the site of nutritional 

exchange with the tissue; it can also penetrate further into the sub-papillary layer, 0.05 

to 2mm, where thermoregulation takes place. However as approximately 90 to 95% of 
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blood flow in the microcirculation occurs at this depth and only 5 to 10% in the more 

superficial skin layer, the LDF signal is composed mainly of the thermoregulatory 

component and only a small component of nutritional flow. The high frequency 

response of the system permits recordings of the pulsatile nature of the microvascular 

signal (Bernstein, 1985).  

 

LDF technology has developed over the years from just an experimental lab-based 

research tool to a potentially useful and practical clinical diagnostic instrument. 

However there are still a number of issues which the technology needs to overcome if 

it is to become a useful tool in the primary care setting. There are standardisation and 

calibration issues as well as the transducers not being as robust as some other non-

invasive transducers. The average cost of a LDF system is higher than a PPG system.  

 

3.2.4 Transcutaneous Oxygen Monitoring (tcPO2) 

Monitoring of transcutaneous partial pressure of oxygen (tcPO2) provides the clinician 

with trend information regarding the body’s ability to deliver oxygen to the tissue. 

Because tcPO2 is measured through the skin, the value obtained is a measure of the 

oxygen tension in the capillary beds. The reason for measuring tcPO2 is to obtain 

information regarding the patient’s arterial oxygen level (PaO2) and to indicate the 

level of peripheral perfusion. This is achieved by elevating the skin temperature in 

order to dilate the peripheral capillaries, increase superficial blood flow and therefore 

oxygen diffusion to the skin. TcPO2 and PaO2 values differ from each other because 

some oxygen is absorbed by the dermal layer during its passage to the skin’s surface. 

Therefore if the patient is haemodynamically stable tcPO2 correlates well with PaO2.  
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TcPO2 transducers consist of an anode a cathode and an electrolyte solution as they 

operate on a polargraphic cell principle. A membrane, which is permeable to oxygen, 

fits over the transducer surface and encloses the electrolyte solution. This transducer 

technology requires periodic maintenance to ensure that: the electrolyte solution does 

not dry out over time; there is minimal drifting of sensitivity due to electrochemical 

deposits on the transducer surface and as the membrane is only a few micrometers 

thick that routine use has not damaged the permeable membrane.   

 

As the skin temperature is elevated within 42 to 45οC, there is a danger of burning the 

patient’s skin surface, particularly if the transducer remains in one place too long 

(Baumbach, 1986).  

 

3.2.5 Tissue Oxygen Saturation (Pulse Oximetry) 

Pulse oximetry uses the difference in the absorbance spectra for reduced haemoglobin 

(Hb) and oxyhaemoglobin (O2Hb) within red and infrared wavelengths to calculate 

oxygen saturation levels. These wavelengths are used because they readily penetrate 

tissue and light emitting diodes (LEDs) are widely available at these frequencies. The 

pulse oximeter can be found in many hospital departments where there is a need to 

monitor desaturation or hypoxia. It has also been used to assess patients for lower 

limb arterial or venous insufficiency. However there are a number of limitations of 

pulse oximetry: calibration assumptions, optical interference and signal artefact. 

Additionally, this technique displays a single number to represent the tissue oxygen 

saturation of the patient only. Other information such as blood volume flow to the 

tissue is not displayed, therefore missing important diagnostic information (Tremper, 

1989; Sinex, 1999). 
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3.2.6 Ankle Brachial Pressure Index 

Ankle brachial pressure index (ABPI) is the ratio of the ankle to brachial systolic 

blood pressure. A value of <0.9 indicates the presence of flow limiting arterial disease 

affecting the limb. A value between 0.9 and 1.2 is considered normal, any greater 

indicates hardening of the tibial artery walls or medial sclerosis. This type of disease 

is more common in patients with diabetes and can cause the ABPI to give high and 

therefore misleading readings. The ABPI is non-invasive and can be performed in a 

vascular laboratory or a GP surgery. For a cut-off point of 0.9 the sensitivity is 

reported to be between 75 to 100%, and the specificity between 80 to 100%. 

Sensitivities and specificities of 90% and 98% respectively have been reported for the 

detection of leg artery stenosis >50% (Doobay and Anand, 2005). In order to calculate 

ABPI, firstly the patient is placed supine and an appropriately sized cuff is placed 

around the ankle of the patient just above the medial malleolus. Locate the dorsalis 

pedis artery with a hand-held Doppler unit. Inflate the cuff until the signal can no 

longer be heard, then slowly deflate the pressure in the cuff and record the pressure at 

which the signal returns. This is the systolic pressure in the posterior tibial artery. 

Repeat this procedure for the posterior tibial artery. The next step is to measure the 

brachial systolic pressure and this is done in the same way as for the ankle pressures. 

Repeat this for the other arm and use the higher of the two brachial pressures with the 

highest of the ankle pressures to calculate the ABPI for that leg. Repeat the procedure 

to measure the ankle pressures for the contra-lateral leg. 

 

The ability of ABPI to detect significant arterial peripheral disease is well 

documented with high sensitivities and specificities reported (Yao, Hobbs and Irvine, 
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1969; Ouriel et al., 1982). However the lack of a standardized methodology and the 

inherent limitations in the ABPI technique make interpretation and comparison of 

studies difficult. In particular, studies use different ABPI threshold values to 

distinguish normal from patients with PAD; normal threshold values have been used 

ranging from 0.8 to 1.3 depending on the required sensitivity. Further studies employ 

subjective measures, such as the patient’s clinical history, to determine the extent and 

severity of PAD and so group patients according to the presence or absence of lower 

limb symptoms. Criqui et al (1985) reported that relying on a clinical history in this 

way would underestimate the prevalence of PAD by a factor of two to five. Similarly 

palpating pedal pulses also underestimates the prevalence of disease. Marinelli et al 

(1979), Allen et al (1996) concluded that ABPI is biased towards detecting more 

severe disease and reported a reduction in sensitivity when identifying moderate PAD 

against duplex ultrasound. Stein et al (2006) also concluded that resting ABPI 

technique was poor at detecting low grade stenotic disease and that nearly half of all 

patients with symptoms of PAD had a normal resting ABPI.  

 

A number of studies evaluated the use of stress testing using a treadmill to investigate 

if the increased blood during the exercise would detect early or low grade disease in 

patients. Ouriel et al (1982) studied patients with early disease, selecting those 

patients with asymptomatic limbs with contra-lateral symptomatic disease. They 

concluded that stress testing did not significantly increase the sensitivity of resting 

ABPI to detect low grade disease. As with any treadmill exercise the ability of the test 

to uncover moderate PAD in the asymptomatic limb will depend on the distance the 

patient can walk and this will be decided by the worse limb or symptomatic limb. 

Also many patients will be unable to perform the treadmill exercise due to co-



  42 

morbidity such as cardiac or respiratory disease or disability and the availability of 

space required for a treadmill, particularly in a primary care setting. 

 

3.2.7 Segmental Pressures 

This type of technique helps to determine the degree of arterial occlusive disease. 

Pressure cuffs are placed on the arms, thighs below the knees and above the ankles. 

Arterial pulses are then obtained distal to the cuff using continuous wave Doppler. 

The cuff is then inflated to a pressure that occludes the relevant artery and therefore 

the Doppler signal disappears. Generally the top thigh pressure is approximately 

30mmHg above the brachial pressure. Adjacent pressure levels in the lower limb 

should differ by less than 20mmHg; a difference greater than this suggests some 

degree of arterial narrowing between the cuffs. Brachial pressures should be recorded 

from each arm using continuous wave Doppler, and the difference between these 

pressures should be less than 20mmHg. The higher of the two pressures will be used 

for calculating all relevant indices. 

 

Ankle brachial pressure indices (ABPI) are calculated for each segmental level in both 

lower extremities. The ABPI calculated at each segment will indicate the ongoing 

arterial disease process. An ABPI of between 0.9 and 1.2 is considered normal; <0.9-

0.5 indicates moderate narrowing disease; and <0.5 indicates possible critical limb 

ischaemia and potential trough of limb loss. An ABPI greater than 1.2 may indicate 

that the walls of the arterial vessels are non-compressible. This is consistent with wall 

calcification. This type of disease is more common in people with diabetes (Kerstein 

and Reis, 2001).  
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3.2.8 Ambulatory Venous Pressure 

Ambulatory venous pressure (AVP) measurements provide haemodynamical 

information that can supplement the anatomical information provided by 

Phlebography. Venous pressure in the trough decreases during walking and gradually 

returns to normal when the subject rests. These observations were first recorded in the 

1940s and soon the technique was widely adopted by different institutions so that by 

the 1970s and 1980s AVP measurements had become the haemodynamic gold 

standard.  

 

The method uses a needle that is inserted into a vein in the dorsum of the trough and 

which is then connected to a pressure transducer, amplifier and recorder. The patient 

then performs 10 tip-toe movements or knee bends at the rate of one per second, 

which is the standard exercise. On completion of the exercise the patient then rests 

while the pressure returns to the pre-exercise baseline level, which is recorded in 

seconds. Performing the 10 tip-toe or knee bend activates the calf muscle pump which 

squeezes the venous blood out of the lower leg. Healthy people’s refilling takes place 

from the arterial side and can take approximately 18 to 40 seconds to return to 

baseline levels, however in patients with valvular incompetence the damaged or non-

functioning valves can not prevent venous blood, which was ejected from the lower 

limb, from travelling back down into the lower leg. Venous filling in this way occurs 

more quickly, approximately 5 to 18 seconds.  If reflux is suspected, due to a quick 

refill time, the exercise is repeated with a 2.5cm wide cuff placed at the ankle to 

occlude the superficial veins. If the refill time is not affected by the cuff and remains 

abnormally short then deep venous reflux is suspected. If however the reflux time 

returns to normal then just superficial venous reflux is suspected. 
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The measurements which are regarded as the most useful are the pressure at rest 

(Baxter and Polak, 1992),  the mean steady state pressure (P10) at the end of the 10 

tip-toe movements, the calculated pressure difference (Po-P10) and the refill time 

(RT). AVP is the best method for assessing venous hypertension and the parameter 

P10 is considered to measure its severity irrespective of its pathophysiology. However 

because AVP is invasive it can not be used a screening tool. Other disadvantages with 

using this technique are not all patients would be physically able to carry out 10 tip-

toe movements or knee bends over 10 seconds and also it has been suggested that 

erroneous errors may occur if there is a competent valve in the trough. Also, on 

standing, muscle artefact can become a problem, particularly in the rest phase of the 

procedure, and so the patient uses an orthopaedic frame to support themselves with 

their weight supported on one leg. The use of cuffs also introduces further sources of 

potential errors as the cuff width is critical; too wide and it will tend to compress deep 

as well as superficial veins (Nicolaides, 2000). 

  

Because of these short comings non-invasive methods have been developed which 

address some of the problems mentioned above.  

3.2.9 Plethysmography 

Plethysmographs are devices that measure volume change. A number of these devices 

have been used clinically over the past 50 years that employ completely different 

principles. These are described below. 
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3.2.9.1 Strain Gauge Plethysmography (SGP) 

This device measures circumference of a selected limb segment. Circumference is 

related to segment cross-sectional area and cross-sectional area multiplied by length is 

volume. In using SGP the following assumptions are made. Blood volume is the only 

significant variable with time; also, arterial blood volume change is small compared 

to venous blood volume changes. The device is made by utilising a small hollow 

elastic tube filled with mercury and an electrical circuit that can measure voltage 

across the length of the tube. The length of the elastic tube changes for alterations in 

limb circumference due to venous blood volume changes. The voltage is measured 

and displayed by the circuit. By measuring circumference as a function of time, 

venous blood volume as a function of time may be measured. 

 
This method can be used to detect acute deep vein thrombosis as well as venous 

valvular incompetence. SGP has some advantages over other methods: it is far less 

cumbersome than water-filled plethysmography, and it is more sensitive than air-

filled plethysmography (Bernstein, 1985). The test basically consists of  

 

1. measurement of calf volume expansion in response to a standard venous 

congestion pressure 

2. Measurement of the rate at which blood flows out of the leg after the 

congestion pressure has been released 

3. Measurement of rate and volume of venous reflux flow in response to sudden 

inflation of a thigh cuff 

4. Measurement of the rate of calf volume expansion after the venous blood has 

been displaced by exercise. 
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The first two tests are used to detect deep venous thrombosis (acute or chronic) and 

the second two are designed to evaluate venous valvular incompetence. Considering 

the first two tests: 

 

3.2.9.1.1 Venous Outflow Obstruction 

With the patient in the supine position the leg is elevated to empty the deep venous 

system. The transducer is then placed on the widest part of the calf and the system is 

then balanced and calibrated electronically. A pneumatic cuff is placed around the 

thigh and inflated to a pressure of approximately 30 to 50mmHg, which will occlude 

the venous return; the calf now begins to expand. After approximately 2 minutes the 

calf expansion slows considerably, but not completely due to an increase in capillary 

pressure and the subsequent loss of fluid into the interstitial spaces, and a new 

equilibrium is reached where the venous outflow equals arterial inflow. At this point 

the venous pressure distal to the cuff equals the pressure in the cuff. After stabilisation 

the pneumatic cuff pressure is released quickly and the rate of change of calf 

circumference is recorded. This change in circumference or volume is related to the 

total venous outflow, which can also be related to the inflow during the initial phase 

of the test with venous occlusion. The venous outflow maybe expressed in millilitres 

per minute per 100ml of calf tissue. Patients suffering with chronic venous 

insufficiency, who may have much of their venous outflow from the lower limb 

occurring via the superficial veins, will have the test repeated with the application of a 

tourniquet to ensure venous blood returns via the deep venous system. 

 

Venous outflow obstruction assessed by SGP is useful for three main reasons; firstly 

it quantifies the severity of chronic venous outflow obstruction, secondly longitudinal   
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follow up studies can show the degree of resolution of venous obstruction, and 

thirdly, objective documentation of increased venous outflow obstruction in the late 

post-thrombotic period may be an indirect clue to the development of recurrent active 

venous thrombosis (Nicolaides, 2000). Considering the second two tests: 

3.2.9.1.2 Venous Valvular Incompetence 

This test may be carried out with the patient in the supine position or with the patient 

standing and performing 10 tip-toe movements. With the patient in the supine position 

calf volumetric changes, due to proximal pneumatic cuff compressions, are 

monitored. A tourniquet placed proximal to the cuff prevents venous blood reaching 

the lower leg via the superficial venous system. If the valves in the deep venous 

system are competent then these will prevent the proximal blood from reaching the 

lower limb. However if the valves are incompetent then the transducer in the calf will 

register volume changes, which will be proportional to the incompetence of the deep 

venous valves, due to the proximal blood reaching distal parts of the leg. 

 

3.2.9.1.3 Ambulatory Strain Gauge Plethysmography (ASGP) 

Calf volume changes during exercise can be monitored and related to the extent and 

severity of chronic venous insufficiency. The patient performs 10 tip-toe movements, 

knee bends (20 at 60º flexion) or treadmill exercise. Normally the calf volume 

initially decreases and then increases during exercise. After cessation of exercise the 

calf volume returns to normal within a short period of time. In patients with deep 

venous insufficiency the calf volume increases rapidly after cessation of exercise. 

This method of recording calf volume changes allows calculation of venous refill time 

(RT), and expelled volume (EV) (Meissner et al., 2007). By application of a below 
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knee compression cuff inflated to approximately 70mmHg, isolated superficial venous 

reflux can be determined as this compression will normalise the venous return time. 

The positive predictive value for the presence of CVI was 100% for both RT and EV, 

and the negative predictive value for the absence of CVI was 94% for RT and 75% for 

EV. When compared to the gold standard AVP, the coefficient of correlation for 

ASGP was 0.91 (P<0.001) for RT and 0.41 for EV (P<0.05). ASGP may be able to 

differentiate between superficial from deep venous insufficiency, but it can not 

precisely localise the site and extent of the reflux or obstruction in either system 

(Nicolaides, 2000). 

 

3.2.9.2 Air Plethysmography 

This instrument consists of three major components: the first is a transducer, which is 

a closed air bladder used to surround the limb of interest; the second is a pressure 

sensor that measures the pressure in the cuff as a function of time; and thirdly, an 

electrical circuit that controls the pressure and displays the measured results. 

 
Venous hypertension is the result of impaired venous return due to reflux, venous 

obstruction or poor calf muscle pump function. Air plethysmography is able to 

measure all three of these venous disorders by having the patient perform certain 

exercises. Firstly a 35-cm-long air chamber is fitted to the lower limb and pressurised 

to approximately 6mmHg. This ensures an adequate fit without unduly compressing 

any of the underlying venous vessels. A syringe is connected to the air circuit and is 

used for calibration purposes. Therefore, with this set-up volume changes in the lower 

limb, from venous empting or filling, affect the pressure in the air-chamber, and so 
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these changes in pressure can be read-off as volume changes of the lower limb in 

millilitres according to the calibration. 

 

Figure 6 Plethysmographic curves with corresponding exercises (Nicolaides, 2000). 
 

3.2.9.2.1 Venous Reflux 

To be able to measure the extent of venous reflux the patient first has to lay supine 

with the leg elevated 45º, with the knee slightly flexed to empty the veins. When this 

has been accomplished the patient stands with their weight on the opposite leg and the 

examined leg flexed. The increase in leg volume is due to venous filling, and the 

functional venous volume (VV) in normal patients is approximately 80 to 150ml but 

up to 400ml in patients with CVI. Because it is difficult to find exactly when a plateau 

is reached on the recorded signal while the patient is standing, the venous filling index 

has been defined. This is the ratio of 90% of VV (90% VV) by the time taken for 90% 

filling (VFT90), VFI = 90%VV/VFT90%. This is a measure of the average filling rate 

expressed in ml s-1 (Figure 6). In normal limbs the VFI is < 2ml s-1 with the veins 

filling slowly from the arterial side. In patients with severe reflux this increases up to 

30ml s-1. A VFI of > 7ml s-1 has 73% sensitivity, 100% specificity and a 100% 

positive predictive value of identifying limbs with venous ulceration (Nicolaides, 
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2000). A further study by Harada, Katz and Comerota (1995) was conducted to 

evaluate the sensitivity and predictive value of VFI as a predictor of 

phlebographically demonstrated critical venous reflux. This study found that VFI 

greater than 7 showed 73% sensitivity and 100% positive predictive value of 

identifying critical venous reflux. 

3.2.9.2.2 Ejection Capacity of the Calf Muscle Pump 

To carry out this part of the test the patient is asked to perform one tip-toe movement 

with weight on both troughs and to return to the initial rest position. From this we can 

define the ejection fraction EF = (EV/VV*100), where EV represents the expelled 

volume as a result of the tip-toe movement. EF is > 60% in limbs without venous 

disease, 30% to 70% in patients with primary varicose veins and possibly as low as 

10% in limbs with deep venous disease. EF is an important parameter to measure in 

the assessment of CVI because a EF > 60% is associated with low prevalence of 

ulceration despite marked reflux, and an EF < 40% was found in limbs with minimal 

reflux but ulceration in the limbs. In combination EF and VFI measurements have 

good correlation with the incidence of ulceration. 

 

The overall performance of the calf muscle pump, which is assessed from measuring 

the combined contribution of reflux, obstruction and ejection capacity, can be 

calculated from the residual volume fraction (RVF). This is measured through the 

patient performing 10 tip-toe movements and recoding the residual volume of venous 

blood immediately after the final movement. The residual volume fraction is then 

calculated as follows: RVF = (RV/VV)*100. For normal patients RVF is in the range 

of 5% to35% and 20% to 70% in limbs with primary varicose veins and up to 100% 

in patients with deep venous disease (Browse et al., 1999). 
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3.2.9.2.3 Evaluation of Venous Outflow 

With this technique the patient is placed in the supine position and a thigh cuff is 

fitted proximally and inflated to 80mmHg. This will occlude the venous system 

underneath the cuff and the leg will start to increase in volume. The pressure in the 

cuff transducer will reflect this changing volume which is being recorded. When the 

volume reaches a plateau the proximal thigh cuff is suddenly deflated and the venous 

outflow (VO) curve is recorded. From this outflow curve the outflow fraction at 1 

second (OF1) can be calculated. This is the VO in terms of the percentage of the total 

venous volume. The procedure is then repeated after occlusion of the long saphenous 

vein. When used in a clinical setting an OF1 of > 38% is considered to be indicative of 

the absence of any functional obstruction; in the range of 30% to 38% indicates 

moderate obstruction, and an OF1 <28% indicates severe obstruction. 

3.2.9.2.4 Venous Resistance Measurements  

The venous outflow curves can also be used with simultaneous pressure 

measurements to calculate the resistance to venous outflow. Pressure is measured by 

inserting a 21 gauge butterfly needle into a vein in the trough, and volume by inflating 

a thigh cuff to 80mmHg for 2 minutes and then deflating it suddenly. By calculating 

the tangent at a number of different points on the venous outflow curve, venous flow 

can be estimated at different times. The resistance to venous outflow can then be 

calculated by using the measured pressure at those same times. By plotting the 

calculated resistance against pressure it is possible to produce curves which show 

their relationship. By performing this over a large number of patients without and 

with varying degrees of obstruction, a range of pressure-resistance curves can be 

produced that can be used by a clinician to help with grading of obstructive disease. 
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Air-plethysmography provides information derived from the entire leg, as opposed to 

continuous Doppler which gives information concerning individual vessels. Because 

the measuring cuff encompasses the entire calf and therefore includes all the muscles 

from the calf to the knee, it avoids errors due to muscle movement during exercise, 

which otherwise would interfere with other methods such as segmental devices. 

Because air plethysmography can measure all three disorders (reflux, obstruction and 

calf muscle pump dysfunction), it has the potential to give a complete quantitative 

haemodynamical analysis of a patient, and therefore isolate the particular CVI 

disorder from which the patient is suffering (Nicolaides, 2000).  

3.2.9.3 Photoplethysmography(PPG) 

Photoplethysmographs are not true plethysmographs as the measure they provide is 

qualitative and can not be used to determine volume. Due to the depth of penetration 

of the transmitted signal, the measurement area is limited to the microcirculation.  

 
A simple PPG sensor consists of an infrared light emitting diode (LED) and a photo 

detector, placed in a small plastic housing. Figure 7 shows the approximate depth of 

penetration of infra-red light into the tissue. There are two types of PPG probe 

construction; both the light source and photo-detector are on the same side of the 

tissue, this is called reflection PPG; and transmission PPG where light source and 

photo-detector are on opposite sides of the tissue. Figure 7 shows the reflection type 

probe. 
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Figure 7 Depth of penetration of typical PPG probe (Blazek and Schultz-Ehrenburg, 1996). 
 

The disadvantage of the transmission type probe is that it can only be used on parts of 

the body where light can penetrate all the way through the tissue to the photo-

detector. It can therefore only be used on sites such as the ear-lobe or the digits. 

Alternatively, due to the construction of the probe, reflection mode PPG can be placed 

on most parts of the body, such as the sole of the trough or on the ankle. In this thesis 

only reflection PPG will be considered. The sensor is placed on the skin, preferably 

where there is a concentration of subcutaneous blood vessels. And as the volume of 

blood within the skin layer underneath the sensor increases and decreases with 

differing physiological mechanisms (heart rate, respiration etc) so the amount of 

reflected light measured by the photo detector will change. More subcutaneous blood, 

the less infrared light gets reflected (Blazek and Schultz-Ehrenburg, 1996). 
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Figure 8 Optical properties of the skin (Blazek and Schultz-Ehrenburg, 1996).  (A)- percentage 
absorption; (R)- percentage reflection.  To the left of the vertical line at 800nm the diagram 
shows the visible spectrum of light; to the right the infra-red portion of the spectrum (IR-A). 
 
 
The detected PPG signal is composed of reflections from the bloodless epidermis and 

from the layer of tissue containing blood vessels. Figure 8 shows the light reflection 

(R) and the absorption (A) properties of the blood layer and the bloodless human skin. 

The large reflected signal from the bloodless skin can easily be filtered from the 

signal in the post-processing stage. Therefore most of the IR signal is absorbed by the 

blood layer, as can be seen from Figure 8, where the blood layer has only a small 

reflected component. Between approximately 800 to 900nm there is a narrow 

measurement band where the IR light penetrates the epidermis with little attenuation 

and there is also a relatively large separation between reflective properties of the 

bloodless skin and the vessels filled with blood  

 

Changes in oxygen concentration in the blood can influence PPG signal. It is therefore 

important to know how the absorption spectrum of oxygenated and de-oxygenated 

blood varies with the wavelength of light used; otherwise changes in oxygen 

concentration in the blood could be mistaken for blood volume changes. 
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Figure 9 Absorption spectra of haemoglobin (Challoner and Ramsay, 1973). The intersection of 
the two curves, i.e. the isobestic point, 805nm, is where the absorption difference between 
oxyhaemoglobin and reduced haemoglobin is minimal. This point is utilised in the PPG technique  
   

Figure 9 shows the absorption spectra of haemoglobin. As can be seen there is a point 

on the graph where the absorption co-efficient of oxygenated haemoglobin and 

deoxygenated haemoglobin are the same. This is known as the isobestic point for 

haemoglobin and occurs at a wavelength of 805nm. Using this wavelength overcomes 

the difficulties mentioned above (Challoner and Ramsay, 1973). 

 

Since 90% of the reflected PPG signal comes from the tissue, 10% from the venous 

blood and 0.1% from the arterial blood volume, separation of the reflected PPG signal 

into its component parts, i.e. the venous and arterial signal can be accomplished. The 

signal is then comprised of a large signal offset, from tissue, a slowly changing 

venous portion (quasi d.c.) and a pulsating arterial signal (a.c. signal). 
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A major disadvantage of the PPG system is the affect that skin colour and thickness 

have on the reflected signal. The same blood volume change can produce different 

PPG amplitudes under different skin conditions.  The advances of the electronics 

industry into the digital age have enabled PPG systems to perform automatic self-

calibration, which is microprocessor controlled. This involves adjusting the intensity 

of the emitted light until the amount of reflected light reaches a defined level, Ro. The 

maximum reflected signal, Rmax, is also stored. Therefore defining Ro allows a 

constant starting value which is valid and reproducible for every skin type and is 

performed before each measurement. One of the advantages of this self-calibrating 

technique is that a quantified PPG signal amplitude in PPG % can be used, defined by  

 

)100)max((% ×−= RoRoRPPG  Equation 5 

 
 
Additionally, inter-individual comparison of PPG signals is possible. 
 
 

3.2.9.3.1 Evaluation of Venous Reflux and Calf Muscle Pump Test. 

The probe for this test is placed approximately 8cm proximal to the medial malleolus 

or on the dorsum of the trough. After baseline and zero have been achieved, emptying 

of the calf venous blood is produced by repeated dorsiflexion and plantar flexion of 

the trough (Figure 10).   
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Figure 10 Calf exercises during calf muscle pump test  
 

This can be performed in a chair or with the patient standing and performing 10 tip-

toe exercises. However, if the patient is standing, it is essential that they hold on to an 

orthopaedic frame or a table so that artefacts from the leg muscles are minimised 

during the refilling period. Better separation was found for patients in the standing 

rather than sitting position (Nicolaides and Miles, 1987). As the patient carries out 

this exercise the venous blood gets squeezed upwards and out of the lower limb. This 

reduces the amount of blood beneath the sensor causing the PPG signal to rise. 
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Figure 11 Typical graph of volume flow signal using a PPG probe. The first 15 seconds show the 
dorsa-flexion phase of the test, where the venous blood ‘empties’ from the calf. The time to 
complete the remaining rest phase, (VRT), venous filling, indicates whether the patient has an 
abnormal or normal venous refill time.  The vertical axis is PPG% and the horizontal axis is time 
in seconds 
 

In healthy patients the competent valves do not allow the blood to travel back down 

the leg, but the leg refills gradually from arterial inflow. This makes the PPG signal 

fall back towards its initial value. However, patients with valvular incompetence can 

not stop the ejected blood falling back down the leg due to gravity and filling the 

subcutaneous vessels. This reduces the Venous Refill Time (VRT).   From this test a 

graph of volume flow over time is produced (Figure 11). Two important parameters 

can be calculated from this graph, namely, VRT and Venous Pump Power (Vo), 

which is the peak height the signal reaches during the exercise period, from the steady 

state value at the beginning of the of the test and is measured in %PPG. If VRT is 

abnormally short (<20 to 25 seconds in the sitting position or 18 in the standing 

position) then the test is repeated, but this time with a tourniquet around the ankle or 

knee to occlude the superficial veins. If this does not affect the VRT and return it to 

within normal range then this suggests deep venous insufficiency or perforator 
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incompetence. Normalisation of the VRT suggests insufficiency is confined to the 

superficial venous system and that the deep veins are competent. 

 

Three degrees of insufficiency are used internationally to evaluate the muscle pump 

function: 

• Normal VRT greater than 25 s 

• Stage 1 VRT 20s to 24s 

• Stage 2 VRT 10s to 19s 

• Stage 3 VRT less than 10s 

 

Although not yet decided internationally, venous pump power, Vo, has been separated 

as below: 

• Normal Vo greater than 4 PPG % 

• Equivocal Vo from 3 to 4 PPG % 

• Abnormal Vo lower than 3 PPG % 

 

The muscle pump test can be used for the diagnosis of the following venous disorders: 

 

• Varicose veins of any type with or without junctional saphenous incompetence 

• Varicose veins of any type with or without incompetent perforator veins 

• Post thrombotic syndrome or other forms of deep venous insufficiency 

• The differential diagnosis of venous leg ulcers 

• Deep venous thrombosis 
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3.2.9.3.2 PPG Vein Occlusion Test: Evaluation of Venous outflow (VOT). 

Evaluating venous outflow utilising PPG technology is carried out in much the same 

way as measuring it using strain gauge or air plethysmography mentioned previously. 

The patient lies supine, with the leg under investigation raised, and a pneumatic cuff 

is placed around the thigh. The PPG probe is placed on the inner or outer aspect of the 

lower leg and the cuff is inflated to approximately 80mmHg for 2 minutes. The PPG 

signal recorded will reflect the blood volume changes occurring in the superficial 

layer of the skin. On release of the cuff pressure blood will be forced out of the lower 

leg, due to the pressure build up, and this outflow will be recorded for approximately 

30 seconds. Among other parameters which are calculated from this outflow curve 

are: venous capacity in PPG% and VO in PPG%/min. VO is defined over the 1 to 2 

seconds after the release of the occlusion cuff. In healthy subjects this change is > 

30%/min. The VOT is a test for venous obstruction rather than specifically for venous 

thrombus. Therefore the test can not differentiate between 

 

1. Acute thrombus 

2. Post thrombotic occlusions 

3. External compressions 
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3.2.9.3.3 PPG Vein Pressure Test 

For healthy people in the supine position venous resting pressure (Pv) is 

approximately 10mmHg. However this can be altered by additional components as 

shown below: 

 

Pvp = Pv + Phydro + Pocc + Patrium  Equation 6 
 

where: 

Pv  = venous resting pressure 

Phydro  = additional hydrostatic pressure 

Pocc  = pressure through outflow obstruction 

Patrium  = central vein pressure 

 

The vein pressure test is measured with the patient supine. A small pneumatic cuff is 

placed around the base of the great toe and a PPG sensor is placed on the tip of the 

great toe. The pressure in the cuff, Po, is electro-pneumatically increased at a constant 

rate (4mmHg s-1). The PPG signal will rise as soon as the pressure in the cuff reaches 

the venous resting pressure, Pv. After approximately 20 to 30 seconds the cuff is 

suddenly deflated.  
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Figure 12 Relationship between cuff pressure and PPG curve (Blazek and Schultz-Ehrenburg, 
1996). 

 

With this examination method a number of parameters can be calculated by using the 

air pressure and PPG volume curves produced.  Figure 12 shows the relationship 

between the cuff pressure and the PPG curve. Figure 13 shows the results of an 

experiment carried out on patients with a simulated DVT by way of a pneumatic cuff 

used to occlude the veins in the lower limb. 

 

 

 

Figure 13 Mean values of peripheral venous pressure for patients with and without occlusion 
(Blazek and Schultz-Ehrenburg, 1996). 
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As can be seen from Figure 13 the mean value of Pv is 43.4mmHg with a cuff 

simulating an occlusion and just 18.9mmHg without a cuff. Both conditions could be 

discriminated with High significance (p < 0.001) (Blazek and Schultz-Ehrenburg, 

1996). 

 

The technologies described previously for assessing patients with vascular disease are 

predominantly used in a hospital or specialist vascular clinic. However, as some 

require extensive user training or are relatively expensive, others require more patient 

intervention or effort, and so are unsuitable as a screening tool in a primary care 

setting. Therefore the technology and method used should meet the time and cost 

constraints of a GP practice. Because of these reasons, researchers have investigated a 

number of alternative techniques of assessing patients with vascular disease.  

 

Optical techniques such as Photoplethysmography and Laser Doppler are relatively 

cheap to purchase when compared to duplex ultrasound. They record local skin blood 

flow changes, which is composed of an arterial and venous component. Appropriate 

signal conditioning can isolate these components and so can be analysed separately. 

The arterial component, due to its dynamic nature, has been characterised and 

analysed to assess patients with PAD and the venous signal has been used to assess 

patients with venous insufficiency.  

 

The following section will considered how the PPG signal is generated, its shape and 

how it is altered by physiological and pathophysiological mechanisms. 
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3.3 Peripheral Pulse Wave characteristics 

The peripheral pulse wave is generated when blood is ejected from the heart during 

opening of the aortic valve. As the pulse propagates towards the periphery, along 

individual arteries, it changes in shape and temporal characteristics. These changes 

are the result of the complex relationship between left ventricular output and the 

capacitance of the vascular tree (Murray and Foster, 1996). The peripheral pulse has 

been recorded and analysed extensively as a pressure wave using tonometry. To 

measure the peripheral pulse, tonometry can be used on the wrist to measure the radial 

pulse or on the neck to measure the carotid pulse. Applanation tonometry requires the 

artery to be applanated (flattened) underneath the sensor. The pressure is then 

transmitted from the vessel to the sensor and recorded (O'Rourke, Pauca and Jiang, 

2001). If measured at the wrist the vessel needs to be supported by the radial bone. 

Blood volume changes in the microvascular bed have also been recorded and analysed 

by PPG. The PPG blood volume pulse has similarities with the blood pressure pulse. 

However, the tonometry technique is relatively expensive compared to PPG and 

requires a skilled operator to obtain accurate pulse recordings, therefore the peripheral 

pulse will be described from research using PPG technology.  

 

A typical PPG signal obtained from the finger or toe is shown in Figure 14. The signal 

is produced by shining infrared light into the skin and recording the amount of 

reflected light coming back to a receiver. The amount of reflected light will ultimately 

depend on the amount of blood directly under the transducer     
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Figure 14 Example of a normal PPG waveform (Murray and Foster, 1996).  
 

Following each heart beat, a bolus of blood travels along the arterial tree eventually 

entering the arterioles. This bolus causes distension of tissue which is seen as a rising 

deflection of the PPG trace associated with the systolic phase of the heart beat also 

known as the anacrotic phase. During the resting or diastolic period of the heart beat 

also known as the catacrotic phase the trace returns to baseline level.  During this 

catacrotic phase a dicrotic notch is usually seen in patients with healthy compliant 

arteries. This notch has been associated with pulse wave reflections from the 

periphery. The position of this notch or incisura on the descending slope of the PPG 

waveform can change, rising towards the systolic peak during vasoconstriction or 

towards the baseline during vasodilation. Figure 14 shows the pulsatile component of 

the PPG waveform also known as the ‘AC’ component. Figure 15 shows this AC 



  66 

component sitting on a large quasi-DC component that relates to the tissue and the 

average blood volume.  

 

Figure 15 The effect of respiration on the PPG signal (Murray and Foster, 1996).  
 
 

This DC component is affected by respiration, vasomotion, Traube Hering Mayer 

(THM) waves (see 2.3.2.2) and thermoregulation. Allen and Murray (2000b) also 

showed that these pulse wave characteristics are also body site dependent. 

 

Certain features of the PPG waveform, such as pulse wave transit time (PWTT), 

amplitude and pulse shape, have been investigated as a potential technique for 

assessing vascular disease or clinical physiological monitoring. PWTT refers to the 

time taken for a pulse wave to travel between any two arterial points. In non-invasive 

studies the reference point used to measure PWTT to different parts of the body has 

been the ECG R-wave. PWTT to different parts of the body, such as the ears, fingers 

and toes has been measured using this method and a normal range of values for each 
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site recorded (Allen and Murray, 2000a). The measurement points used in these 

studies are shown Figure 16. 

 

 

Figure 16 An example of how PWTT can be measured (Smith et al., 1999). The upper figure 
shows the ECG waveform and the lower figure a typical PPG signal taken from a peripheral site, 
such as the finger or toe.  
 

This method of measuring PWTT although convenient, and the R wave being easily 

identified with ECG leads, has one disadvantage; there is a delay between the ECG R 

wave and opening of the aortic valve. Therefore the measurement of PWTT using this 

method overestimates the true value, which is the time taken for the pulse to travel 

from the aortic valve to the periphery (Smith et al., 1999).  

 

PWTT is proportional to blood pressure. As the vascular tone increases from acute 

rises in blood pressure the artery walls become stiffer and this increases PWTT, 

conversely, when the artery walls relax as vascular tone decreases, PWTT decreases. 

The normal aging process also has the affect of stiffening artery walls which therefore 
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affects PWTT and to a lesser extent PWTT is also affected by patient height and heart 

rate (Allen and Murray, 2002).  

 

PWTT is also affected by the presence of atherosclerotic disease. This disease is more 

prevalent as we age especially in the fourth and fifth decades in life. It impedes blood 

flow by narrowing vessel lumen and a subsequent drop in pressure distal to the 

stenosis. This narrowing in the lumen of the vessel has the tendency to increase the 

transit time of the pulse (Erts et al., 2005). When the PWTT to the great toe was 

measured in two separate groups, a healthy and a patient group with low and high 

grade disease, from the ECG R wave to pulse peak sensitivity and specificity of 64% 

and 91% respectively were achieved (Allen et al., 2005). A comparison between 

healthy controls and patients with lower limb unilateral stenosis was conducted by 

Erts et al (2005); they found that the PWTT recorded at the periphery of the stenotic 

leg when compared to those of the healthy leg were delayed. The average PWTT 

delay reported was 23ms, with full specificity at 32ms. 

 

The pulse shape and how it is affected by certain physiological mechanisms has also 

been widely studied. Age related changes in shape of the peripheral pulse at various 

body sites have been studied by Allen and Murray (2003). By normalising the pulse in 

amplitude and time they were able to show subtle, gradual and significant changes in 

pulse shape at all sites between the different age groups, with elongation of the 

systolic rising edge and damping of the dicrotic notch. The frequency content of the 

signal has also been analysed by Sherebrin and Sherebrin (1990) and they found a 

decrease in power of harmonic frequencies of the peripheral pulse wave at the finger 

with age. 



  69 

 

As reported previously, respiration and sympathetic nervous system activity affect the 

amplitude of the peripheral pulse, but this has little effect on the overall pulse shape or 

contour. Local thermal stimulation or infusion of vasodilator drugs increases local 

blood flow and amplitude of the PPG signal, but has little impact on its shape 

(Millasseau et al., 2006). This suggests that the contour of the peripheral volume pulse 

is primarily influenced by characteristics of the systemic circulation.  

 

PPG pulse shape has also been investigated as an assessment tool for lower limb 

stenotic disease. As well as a delay in transit time to the periphery the volume pulse 

also becomes more damped as the disease becomes more severe (Figure 17). 

  

Figure 17  Examples of PPG toe pulses from a healthy patient (left) and a patient with significant 
lower limb arterial occlusive disease. Both patients of similar age. 
 

Various aspects of the pulse have been measured to distinguish healthy from patients 

with different levels of arterial disease, from moderate, significant, to occlusive 

stenotic disease. The systolic rise time was investigated by (Allen et al (2005), and 

they found that it had 91% specificity and 64% sensitivity for detecting unilateral low 

grade and high grade disease when using ABPI as the gold standard. However in the 

same study, Allen et al (2005) used a shape index to assess the same group of patients 
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and found this to have a better diagnostic performance than the systolic rise times 

with specificities and sensitivities of 90% and 88% respectively.  

 

In 2000 Allen and Murray (2000a) studied the blood volume pulse from 40 subjects 

with no known vascular disease. PPG probes were placed at the ears fingers and toes 

and the aim of the study was to determine the similarity in the right to left pulse 

characteristics with pulses obtained simultaneously from the 6 peripheral sites. By 

studying the pulses obtained, important information about the peripheral circulation 

can be extracted, such as pulse wave transit time (PWTT), the strength and shape and 

their variation over time. Also, a normative range of pulse data can be collected with 

which specific vascular patient groups can be compared. Data were gathered over a 

5minute period while the patient rested on a measurement couch.  

 

Similarities in the pulse waveform shape at the three segmental levels were found 

using two types of analysis: Root Mean Square Error (RMSE) provides a measure of 

differences and the cross correlation analysis provides a measure of the degree of 

similarity. The study showed that pulses from the left and right sides of the body from 

normal subjects are highly correlated at each segmental level.  

 

Allen and Murray (2002) investigated the age related changes in the peripheral pulse 

timing at the three segmental levels, i.e. the ears, fingers and toes using PPG. The aim 

of the study was to determine how the PWTT changed between 116 normal healthy 

volunteers whose age ranged between 13 to 72 years.  These were divided into 5 

decade age groups. Additional effects such as differences in subject height, systolic 

blood pressure and heart rate were also investigated. It is generally accepted that older 
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subjects PWTT to the extremities decreases due to increasing arterial stiffness. 

However it is less clear in younger subjects. PWTT was determined with reference to 

the electrocardiogram R-wave.  

 

It was found that age was the strongest contribution to PWTT at the 3 sites and the 

greatest effect could be seen at the toes. Right to left sides showed to be highly 

similar. Systolic blood pressure was also an important contributor to PWTT at all 

sites. Height was significantly and independently related to PWTT at the fingers and 

toes. Allen and Murray (2002) concluded that age effects decrease linearly with age 

from the second to the seventh decades, showing the effect of changes in the arterial 

stiffness can be detected from an early age. 

 

Using the same normal healthy subjects and the 3 segmental levels Allen and Murray 

(2003) investigated the age related changes in the characteristics of the 

photoplethysmographic pulse shape. Arterial stiffness in older subjects changes the 

propagation of the blood volume pulse to the periphery, which therefore changes the 

pulse shape and timing. However it is less clear in young subjects and for different 

peripheral sites. Subjects were divided into 4 decades: <30yrs, 30-39, 40-49, >50yrs. 

Pulse shapes were calculated at the three sites for the whole subject group and for the 

subjects within each age group. Differences in pulse shape relative to the oldest group 

were also calculated. In particular two distinct regions of interest were used from the 

peripheral pulse to use as indicators of disease; they were the systolic rising edge and 

the dicrotic notch. The study concluded that, minimal, moderate and significant 

changes in pulse shape were found at all sites, with elongation of the systolic rising 

edge and damping of the dicrotic notch. 
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Allen et al (2005) compared pulse timing, amplitude and shape characteristics of PPG 

signals taken simultaneously from the great toes of 63 healthy subjects and 44 patients 

with suspected lower limb arterial disease. Pulse wave analysis extracted pulse 

timings, amplitude and shape characteristics. Pulse timings and shape analysis were 

calculated as in previous studies respectively (Allen and Murray, 20022003). These 

were taken from both toes and for the right and left toe differences. Normative ranges 

were then calculated for healthy subject groups. The aim of the study was to calculate 

the relative diagnostic value of the different pulse features for detecting lower limb 

arterial disease, which were referenced to the ankle brachial pressure index (ABPI) 

measurement.  Signals were recorded for 2.5 minutes. The patient group was divided 

into 2 subgroups according to their ABPI  result: lower grade arterial disease were 

patients with an ABPI of between 0.9< ABPI ≥ 0.5 and higher grade disease with an 

ABPI < 0.5. All healthy subjects had an ABPI ≥ 0.9.  

 

When individual great toe measurements of pulse timings, amplitude and shape 

features were ranked in order of diagnostic performance, shape index (SI) performed 

the best with a >90% accuracy. PWTT produced a diagnostic accuracy of 78%, while 

amplitude had a diagnostic accuracy of 79%. Bilateral differences showed that PWTT 

had a diagnostic accuracy of 87% and shape index an accuracy of 82%. 

 

Nitzan, Khanokh and Slovik (2002) measured the PWTT to the toe and fingers of 44 

normotensive male subjects by PPG and ECG. This method is related to pulse wave 

velocity (PWV) which in turn is a measure of arterial distensibility. However PWV 

assessment, by measuring the appearance time of a pressure pulse in two sites along 
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an artery and the distance between the two sites, is complicated and inaccurate. The 

difficulties in measuring PWV can be overcome by measuring the delay in arrival of 

the cardiac induced volume pulse at two peripheral sites on the body, such as the 

finger and toe. 

 

In particular, two parameters which are related to PWV were tested: the time delay 

between the ECG R-wave and the arrival time of the pulse at the toe (E-T PWTT) and 

the difference in the transit time of the blood pressure pulse between the toe and the 

finger (T-F PWTT). The results showed that both E-T PWTT and T-F PWTT 

decreased as a function of age and systolic blood pressure (SBP), but they were not 

statistically significant with diastolic blood pressure (DBP). The study also concluded 

that the decrease of PWTT with age was attributed to the direct structural decrease of 

arterial compliance with age and not the functional effects associated with the 

increase of blood pressure with age. 

 

Erts et al (2005) studied the PWTT delay between the finger and toe of 20 healthy 

control subjects and 45 patients with diagnosed arterial stenosis in a leg. Both groups 

had parallel measurements of local blood pressures by means of the oscillatory 

method of both upper arms and on the upper and lower thighs and slightly above the 

ankles. Subsequent ABPIs were calculated and the healthy groups assigned ABPIs of 

1-1.1 which indicates that there is no significant narrowing or blockage of blood flow. 

In this study patients with an ABPI below 0.95 were assigned to the patient group. 

However the study did not indicate if these patients were further subdivided into 

moderate or significant disease. The study did however indicate that an ABPI of 0.25 

or below is related to severe limb-threatening peripheral vascular disease. 
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The study showed a correlation between bilateral differences in local blood pressure 

and in the corresponding PWTT delay, as well as between PWTT delay and ABPI. 

They also reported that the average PWTT value of leg stenosis diagnostic threshold 

was 23ms +/- 9ms. The range of patients PWTT were 20-80ms, while in the case of 

healthy subjects the leg PPG signals arrived without delays or with PWTT delays not 

exceeding 14ms. Patients were not included in this study if they had bilateral stenoses. 

 

A study which investigated the reaction of 5 flow motion frequency bands to post 

occlusive hyperaemia by laser Doppler technique was conducted by Rossi et al 

(2005). Baseline readings of the 5 flow motion frequency bands: 0.007-0.02Hz, 0.06-

0.2Hz, 0.2-0.6Hz and 0.6-1.8Hz were recorded in 20 healthy subjects and 20 patients 

with stage II peripheral arterial obstructive disease (PAOD). General wavelet 

Analysis (GWA) was used to calculate mean and peak powers in the different 

frequency bands. These were then recalculated after skin post occlusive hyperaemia 

(POH).  During POH the mean peak power of the flow motion wave increased 

significantly in healthy subjects with respect to baseline, with the exception of the 

frequency band 0.02-0.06Hz. In the PAOD patients compared to baseline, the 

amplitude of the flow motion waves did not significantly change during POH. Rossi 

et al (2005) concluded that patients with stage II PAOD, the leg skin perfusion is not 

impaired during baseline because of the compensatory mechanisms related to the 

increased endothelial, myogenic, and sympathetic activities. However, during reactive 

hyperaemia these mechanisms appear to be exhausted.  
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3.4 Clinical Pathway 

 
A clinical pathway for a patient is the possible treatment options available to the 

clinician when managing their care after suspecting a disease condition. Figure 18 

illustrates the possible route a patient would take suspected of having arterial or 

venous insufficiency, if they were to enter the healthcare process at primary care 

level. The techniques above the red line would be performed at the primary care level 

or the specialist vascular clinic; below the red line the techniques are hospital based.  

Initially, the GP takes a history and performs a clinical examination, which may 

include using a hand-held Doppler device to ‘listen’ to arterial blood flow at ankle 

level. If arterial insufficiency is suspected, an ABPI may be taken before referring the 

patient for a hospital based duplex ultrasound examination to confirm the diagnosis 

and also to identify the arterial segment or segments affected. If the ultrasound scan is 

equivocal then further investigations are available, however these may be more 

invasive, such as an MRA or CTA.  

 

If venous insufficiency is suspected, the GP can confirm the site of reflux by again 

using a hand-held Doppler instrument. If further information is required such as the 

functional impact of venous reflux the clinician has the option of sending the patient 

to a specialist vascular clinic to undergo a plethysmographic investigation, which has 

been described earlier in 3.2.9. Both of these techniques can be performed in primary 

care or a specialist vascular clinic. Alternatively, the GP could request a duplex 

ultrasound scan that will detect if the insufficiency is just superficial, deep or  
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Figure 18 Clinical Pathway 
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both and report the sites of reflux. Again this would be performed at the local hospital. 

 

The aims of the techniques available to the clinician are to ascertain the nature, position and 

extent of the arterial or venous insufficiency present in the lower limbs. The physician is then 

able to make an informed decision as to the appropriate level of patient care need.  

 

3.5 Disadvantages of Current Vascular Techniques  
 
The disadvantages of hospital based x-ray techniques to investigate vascular insufficiency are 

self evident as they are invasive and so can be painful or distressing for the patient and 

because of this were never intended to be used as a screening tool for vascular disease. 

However these techniques are generally only used if the results of the non-invasive 

procedures are equivocal. 

 

As mentioned previously the GP will decide whether a patient has arterial or venous 

insufficiency by taking a clinical history and performing an examination. This examination 

may be just visual if the clinical signs are obvious, such as varicose veins. If the aetiology of 

the patient signs or symptoms is not obvious the GP can utilise a handheld pocket Doppler or 

use plethysmographic techniques to distinguish different levels of arterial or venous disease. 

However only superficial venous insufficiency can be examined with a handheld pocket 

Doppler and also the device is inappropriate for use on diabetic patients with arterial disease. 

In addition the ABPI technique used for detecting lower arterial disease uses cuffs and so is 

relatively time consuming to perform and can be uncomfortable for the patient. 

Plethysmographic techniques used to investigate venous insufficiency are also relatively time 

consuming to perform and again require the use of cuffs or a tourniquet. The technique also 

requires the patient to perform certain lower limb manoeuvres which some patients may find 
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difficult to execute in their condition. Duplex ultrasound, although non-invasive and has the 

ability to identify patients with arterial or venous insufficiency, it is relatively expensive to 

purchase and currently not within the purchase costs of most GP surgeries. It also requires a 

specialist user to operate and interpret the images.  

 

The methods used in this thesis are intended to be used with an appropriate existing 

technology. Therefore a device that is cheap to purchase, requires minimal user training and 

that can be used to investigate arterial or venous insufficiency without the need of cuffs or 

tourniquet, or requires the patient to perform any manoeuvres would be advantageous to a 

primary care centre. The technique is intended to supplement the clinical examination and 

give the clinician more confidence in diagnosing vascular disease. The test is intended to be 

used at the clinical examination stage giving the clinician a simple yes if there is vascular 

insufficiency present or no if there is not. If there is vascular insufficiency present the 

clinician can then put the patient forward for further testing to investigate the extent and 

severity of the insufficiency, however if the signs and symptoms are not vascular in origin, 

then an alternative investigation can be performed thereby reducing the number of 

inappropriate vascular scans. 

 

Various methods and aspects of assessing arterial and venous insufficiency have been 

considered. Some methods of assessing vascular disease are not suitable as a screening tool 

because they are too expensive to purchase, use potentially harmful x-ray technology, or they 

require extensive user training. Other techniques are more appropriate as a screening device 

for the assessment of vascular disease. Certain optical techniques such as laser Doppler and 

Photoplethysmography are relatively cheap to purchase in comparison to for example, duplex 

ultrasound, and they require minimal user training. However as described in section 3.2, 
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optical techniques used at present, to assess arterial and venous insufficiency, are still 

cumbersome to perform for the patient and user. However optical technology appears to have 

the most potential to be used as a simple vascular screening device by a GP at the clinical 

evaluation stage as it meets most of the criteria set out in the background section of this 

thesis. The following literature search examines laser and photoplethysmography techniques 

and investigates if they can be used in this way to assess vascular disease 
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4 Literature Review 

This chapter comprises an historical review of the developments of laser Doppler and 

Photoplethysmography, which are the two main lab-based non-invasive optical methods used 

to assess arterial and venous blood flow, and a critical analysis of recent developments in the 

clinical and experimental use of Photoplethysmography.  

 

4.1 Laser Doppler- Historical review 

A laser Doppler instrument generates monochromatic light at one particular wavelength, 

typically 632.8nm, but other wavelengths have been used, 780nm, if slightly deeper 

penetration is required. At these wavelengths and the low powers used (1-15 mW) the 

emitted light penetrates the skin to a depth of about 1-2 mm. This reaches the 

thermoregulatory skin blood flow as well as flow in the capillaries. The laser Doppler signal 

is derived from the Doppler shift of reflected laser light which is caused by the moving blood 

corpuscles. This makes laser Doppler suitable for monitoring changes in skin perfusion. 

While laser Doppler and Doppler ultrasound utilise the Doppler shift to visualise blood flow, 

laser Doppler can only estimate micro-circulatory blood flow, where as Doppler ultrasound 

can penetrate further into the tissue and therefore measure blood flow in larger individual 

vessels. 

 
One of the earliest working lasers was developed by Maiman (1960) using the material ruby. 

Only a few years later Cummins and Yeh (1964); Yeh and Cummins (1964) measured 

localised fluid flow in flow tubes filled with small reflective targets using a laser 

spectrometer to examine the Doppler shifts in the Rayleigh scattered light.  
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Early experiments in the use of laser light to measure blood flow in the retinal arteries of 

rabbits were carried out by Riva, Ross and Benedek (1972). Initially the optical and 

electronic system was set-up by firing a Helium Neon laser at polystyrene spheres in distilled 

water inside a glass capillary tube. This was connected to a syringe pump which was set to 

different flow rates. The spectral distributions observed were in agreement with the set pump 

flow rates. Next, similar measurements were made with the glass capillary tube filled with 

rabbit’s blood. Similar spectral distributions were obtained, but the presence of multiple 

scattering by red blood cells affected the shape of the spectrum. However the narrow high 

frequency peaks in the spectrum did vary proportionately to the rate of flow of the syringe 

driver. Finally the flow of blood in the retinal artery of an albino rabbit was measured. The 

experiments showed that the spectral distribution of laser light backscattered from the retinal 

arteries of a rabbit permits reasonable estimates of the flow velocity. And since the spectrum 

was sensitive to deviations in the parabolic velocity profile, Riva et al (1972), suggested that 

information concerning the pathological state of vessels may be obtained.  

 

In 1974 Tanaka, Riva and Ben-Sira (1974) took this procedure a step further and measured 

the blood velocity profiles in human retinal vessels. These results were in agreement with in-

vitro experiments, showing that the technique could be easily adapted for monitoring retinal 

circulation in a clinical setting. However it was not until 1975 that laser Doppler blood 

perfusion measurements were performed to assess the microcirculation before and after 

external stimuli. A 15mW He-Ne laser was used by Stern (1975) to illuminate a small area of 

skin of a fingertip. He confirmed that the Doppler signal received from the finger is caused 

by blood flow. This was accomplished by placing a blood pressure cuff over the arm and 

comparing the change in the Doppler frequency before and after occlusion of the brachial 

artery. Secondly to demonstrate the pharmacological effects on the microvasculature a 
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vasodilator was administered over a 15 minute period. This showed discrete increases of flow 

in the superficial vessels. This work indicated that laser light could detect relatively rapid 

changes in blood flow in the microcirculation and in different micro-vascular compartments.  

 

Important work on the advancement of the instrumentation into a practical and portable 

system was conducted by Holloway and Watkins (1977); Watkins and Holloway (1978). 

Previous optical coupling systems used a single central transmitting fibre with a surrounding 

annulus of receiving fibres. Watkins and Holloway (1978) used a fibre-optic catheter 

construction which was composed of separate transmitting and receiving fibres. Separating 

the transmitting and receiving fibre in this way increased the signal to noise ratio of the 

system. Additionally, a photodiode instead of a photomultiplier was used in the sensing 

circuit, which eliminated the need for a high voltage source and decreasing the size of the 

instrument overall. However, they experienced problems caused by mode interference in the 

laser cavity when taking measurements in low blood flow areas. This work compared the 

laser optical technique to 133 xenon radioactive clearance technique in the forearms of normal 

volunteers subjected to UV induced erythema. A good linear relation was demonstrated 

between these two methods. Further positive comparisons of laser Doppler spectroscopy with 

133 xenon clearance method were performed by Stern et al (1977). This method provided 

continuous monitoring of blood flow fluctuations, including the pulsatile component. 

 

Problems encountered by Watkins and Holloway (1978) regarding mode interference in the 

laser cavity were addressed by Nilsson, Tenland and Oberg (1980b). Instead of using a single 

photo-detector, a differential detector technique was used. This reduced common mode noise 

to a negligible level, increased the signal to noise ratio and significantly improved the 

sensitivity of the instrument. This resulted in a highly stable system from which continuous 
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recordings of regional blood flow variations could be performed. Further problems 

encountered in the early development of the laser Doppler technique were revealed by 

Boggett, Blond and Rolfe (1985). Their investigations revealed that over the audio range of 

reflected Doppler signals produced, particularly up to a few hundred Hertz, much of the 

signal appears to be non-Doppler in origin. They reported that the source of this interference 

were low frequency signals being generated by optical fibre movement, particle number 

fluctuations in the scatter volume and changes in the intensity of the laser light. However they 

concluded that most of the processed signal is due to Doppler shifts derived from interactions 

with moving blood cells and careful selection of a low noise laser will keep low frequency 

interference problems to a minimum. 

 

The effects of oxygen pressure changes on the laser Doppler signal have been explored 

(Nilsson, Tenland and Oberg, 1980a). They found the level of blood oxygenation to have 

only a minor influence on the Doppler signal and proposed that other factors such as 

haemoglobin content and tissue pigmentation may play a larger role in effecting the signal. 

He suggested the use of an infrared laser may overcome these difficulties.  

 

Laser Doppler measurements have also been compared against a number of other blood flow 

techniques such as strain-gauge plethysmography and electromagnetic flowmeter. Laser 

Doppler closely correlates with these methods, although variations in the signal have been 

found between subjects. These studies suggested that laser Doppler flow provided a good 

estimate of tissue blood flow, however variability among subjects and uncertainties in the 

value at zero made calibrating and quantifying results difficult (Johnson et al., 1984; Smits, 

Roman and Lombard, 1986).  
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Most of the early research exploring the use of laser light to monitor changes in 

microvascular blood flow used a laser wavelength of 632.8nm (Stern, 1975; Holloway and 

Watkins, 1977; Nilsson et al., 1980b). Later research was conducted using laser diodes with a 

wavelength of 780nm. This had the advantage of deeper penetration and is also insensitive to 

changes in oxygen saturation of tissue. 

 

4.2 Photoplethysmography- Historical Review 

Photoplethysmography is a non-invasive method of detecting blood volume pulsations that 

travel to the periphery of the body. The method can be used to detect a number of different 

conditions, but this thesis will concentrate on the identification of arterial and venous 

insufficiency.  

 

Palpation of pulses to determine the presence of significant vascular disease has been used for 

centuries (O'Rourke et al., 2001), however, by the 1930s various plethysmographic 

techniques had begun to be used to provide more objective measures of the extent of disease. 

 

Hertzman (1938) was a pioneer in the development of PPG as a tool for measuring the 

superficial circulation. The device consisted of a pencil flashlight bulb that emitted light at a 

broad frequency and a photocell used to detect the returning signal. His work investigated the 

blood flow in the skin of healthy male individuals at various positions on the body at rest, 

such as the arm, leg, hand and trough. In these early experiments a filter was used in an 

attempt to quantify the PPG signal; variations in the blood content of the skin volume under 

observation are compared with the deflections of the PPG trace caused by the insertion of a 

filter into the light path. The amplitude of the PPG signal is then calculated in filter units. 

Hertzman (1938) validated his PPG measurements with previous studies that used 
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mechanically recorded plethysmograms. These recordings were in complete agreement at rest 

and during conditions of physiological stress such as cold, amyl nitrate, voluntary apnea and 

valsalva manoeuvres. He also explored the effects of reducing oxy-haemoglobin in the skin 

vessels and found the PPG recordings responded to these changes and therefore concluded 

that these alterations in blood oxygen levels could be a possible source of error that may 

invalidate the PPG signal. 

 

However he did discover sources of error, a number of which were due to his experimental 

set up. There were the difficulty in keeping the relative movement between the skin and the 

sensor/light source to a minimum, due to respiration, probe contact pressure with the skin 

caused a drift in the signal, and variations in the spectrum of the light source, which was an 

incandescent bulb, caused more significant problems than alterations in light intensity. Other 

unknowns were the size of the vascular area under observation. Most of the changes in the 

PPG signal he suggested were due to alterations in the skin blood volume directly beneath the 

light source; however, backscattered light from surrounding tissue outside the probe area 

could have an impact on the signal, but suggested that this would be minimal. 

 

By investigating the changes in the amplitude of the PPG waveform from different 

physiological tests and also on participants with Raynaud’s disease, Hertzman (1938) 

indicated the potential use of this technique for investigating arterial pathology.  

 

Burton (1939) examined the blood flow in human fingers using a mechanical 

plethysmographic method. However, it was this work into the range and fluctuations of blood 

flow in peripheral vessels, and the excellent correlation found between the amplitude of the 

mechanically recorded volume pulses and blood flow in the finger that led Hertzman and 
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Dillon (1940b) to investigate the possibility of separating the arterial from the venous flow. 

The method involved a combination of resistive and capacitive coupled amplifiers which 

could record changes in the blood volume and volume pulse amplitude. The capacitive 

coupling allowed a more accurate identification of the volume pulses. However, attempts at 

calibrating the volume pulse to filter units as before failed due to discharge characteristics of 

the capacitors. Separate recordings of finger volume and finger volume pulses showed 

excellent correlation when monitoring respiratory and vasomotor activity. They associated 

these changes in volume and volume pulse with the controlling arteries and therefore 

concluded that the recording of the volume pulse alone was all that was needed for 

information on the condition of the arteries.  

 

Distinction of the venous component in the plethysmogram proved to be more difficult and 

no definite conclusions were drawn regarding venous flow. 

 

Earlier research had identified movement artefact between the sensor and the skin as a major 

source of error in the PPG signal. So, elaborate positioning rigs were developed to keep this 

error to a minimum. Hertzman and Dillon (1940a) were one of the earliest teams to apply the 

photoelectric plethysmographic technique to peripheral vascular disease. They observed the 

spontaneous activity in the blood flow to the fingers of normal subjects and a patient with 

Raynaud’s syndrome and found there was a marked difference between the two participants 

and the affected fingers. In addition a male patient suffering with intermittent claudication of 

both legs was investigated over a number of months. Waveforms were recorded on various 

positions on the troughs on both legs at various times and on some occasions using a 

vasodilator. Overall they concluded that the PPG technique was capable of providing 

objective evidence regarding the superficial circulation in patients with vascular disease. 
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A qualitative and quantitative correlation between the cutaneous  blood flow and the 

mechanically recorded pulse in the finger measured by changes in skin temperature or venous 

occlusion technique had been demonstrated earlier by two independent studies (Burton, 1939; 

Goetz, 1945). Hertzman, Randall and Jochim (1945) attempted to show that this correlation 

existed between photoelectrically recorded cutaneous volume pulse and cutaneous blood 

flow. Arbitrary filter units were used as before to quantify the PPG signal and compare this 

with blood flow in different parts of the finger. Inequalities in these measurements 

invalidated the procedure, which were assigned to physical differences in the blood flow over 

the surface of the finger. Some correlation was found in any one subject if mechanically 

measured blood flow and the PPG signal are measured in the same area of skin. However, 

overall a single usable calibration factor was unobtainable.  

 

Hertzman and Randall (1948) explored further the regional differences in rates of cutaneous 

blood flow at various points over the entire body by PPG in two young adult males. 

Measurements were taken from various parts of the hand, trough, trunk and head, and further 

recordings from the arm leg and thigh. Individual blood flow rates were calculated for each 

body location and these were summed to obtain a total cutaneous blood flow. They found that 

the rates of cutaneous blood flow are considerably higher in the palm and the plantar surfaces 

and in the skin of the face and head than in the trunk, arms and legs. 

 

At this point a major step forward was taken towards a more compact and user friendly 

design that would greatly reduce one of the major problem with PPG signal acquisition i.e. 

movement between sensor and patient. Weinman and Manoach (1962) used a photocell as the 

detector instead of a photoemissive cell which were large and insensitive to changes in blood 
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flow, but were the best available up to this time. Special plaster of paris casts had to be made 

to attach the photoemmisive cell and light source to the patient. This made recordings 

susceptible to the slightest movement between tissue and device. The introduction of the 

photoconductive cell changed the construction greatly allowing a more compact design. The 

cells operate by converting changes in light energy into changes of electrical resistance. 

Therefore a simple, small and low cost circuit could be built to convert these changes in 

electrical resistance into fluctuating voltages to drive a recorder. The photoconductive cells 

were also more sensitive to changes in light levels than photoemissive cells and are simply 

attached to the area of the body under investigation by adhesive tape. The compact design 

allowed the photocell and light source to be constructed as one unit, which was not possible 

up to this point. They also highlighted the importance of matching the correct light source 

and photodetector. 

 

PPG signal changes were studied in individual minute vessels in animals with a special 

arrangement of microscope, light and recorder by D'Agrosa and Hertzman (1967). They 

found pulses in the arteries down to arteriolar size, but an absence in capillaries and veins. 

The origin of the photoelectric signal was also investigated. It was concluded that the pulse in 

arterial vessels does not appear to be volumetric in origin, but the factors contributing to the 

arterial pulse are related to the orientation of the erythrocytes during pulsations in flow. 

 

Challoner and Ramsay (1973) used a fibre optic light guide to transmit light to the skin 

surface in conjunction with infra red filters to overcome earlier problems of the light source 

heating the skin tissue and therefore affecting the PPG signal. To compensate for any local 

temperature changes a thermistor was fitted. Also to account for and reduce the influence that 

changes in oxygen content in the blood have on the recordings, a near infra-red filter was 
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placed between the photocell and the skin. By carefully selecting a photocell at a particular 

wavelength, the combined optical response of the photosensor can be predicted and made to 

operate at the isobestic wavelength. Thereby ensuring that the signal is largely unaffected by 

changes in blood oxygen saturation.  

 

An important advance in the interpretation and origin of the reflected photoelectric 

plethysmographic signal was made by Nijboer and Mahieu (1981). They investigated the 

phase and amplitude of the reflected PPG signal in-vitro and in-vivo and found that the 

variations in the reflected signal were in-phase with the volume pulsations produced by the 

specially constructed jig and pump.  However, in-vivo the reflected light is in anti-phase with 

the volume pulses. It was suggested that the difference between the two experiments could be 

explained by the reflecting and absorbing properties of the erythrocytes and how those 

properties could be affected by the optical properties of the surrounding tissue. They 

concluded that the reflected plethysmographic signal is in anti-phase to the volume pulsations 

because the absorbing property of the erythrocytes dominates the reflective property. Thereby 

an increase in blood volume produces a decrease in reflected light. 

 

With the recent developments in semi-conductor technology, such as light emitting diodes 

(LEDs), photodiodes and phototransducers, and their narrower operating frequency, the 

effects of altering light intensity and incident wavelength on the tissue and to the reflected 

signal have been investigated (Ugnell and Oberg, 1995; Murray and Marjanovic, 1997). 

Careful selection of light source operating wavelength will allow the user to penetrate 

different depths of the tissue for the same optical intensity. Blue light for example penetrates 

the skin four times less than red light which reaches between about 0.5mm to 1.5mm (Jones, 

1987). The correct selection of the wavelength of optical radiation is also important because 
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tissue is mainly composed of water, which absorbs light strongly in the ultraviolet and longer 

infra-red wavelengths. Melanin, a pigment which is found in the epidermis, also strongly 

absorbs light in the shorter wavelengths. There is however, a region in the absorption 

spectrum of water that allows red and infra-red light to penetrate the skin more easily. 

Therefore red and infra-red light are often chosen to follow changes in blood volume in the 

skin (Allen, 2007).  

 

4.3 Photoplethysmography- Current Use 

4.3.1 Assessment of Blood Flow 

Blood flow to the periphery has been assessed long before the advent of 

Photoplethysmography. Palpation of the pulse was carried out in ancient times to determine 

physical health. With the invention of the sphygmograph in1860, the palpation of the 

peripheral pulse by mechanical means could be performed. This instrument, by means of a 

pressure plate placed over the artery, traced out the contour of the peripheral arterial pressure 

pulse (Balthazar, 1866). This instrument was the fore-runner of modern electronic tonometry 

systems. The first investigations into the peripheral pulse using PPG were not performed until 

much later (Hertzman, 1938). Therefore much of our early knowledge of pulse wave 

characteristics and the effect of physiological and pathological mechanisms are based on 

work investigating the pressure pulse. Consequently, much work has been done comparing 

the PPG pulse to the pressure pulse.  

 

As the pressure wave moves towards the periphery it changes in shape and temporal 

characteristics, which are produced mainly from reflection of the pulse wave from the 

periphery. Differences in pulse wave reflection have been attributed to such physiological 
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phenomena as growth and development, aging, physical fitness, food, heart rate, exercise, 

body height and gender and to disease conditions such as hypertension, and heart failure. 

Vasodilator drugs also appear to effect waveform characteristics. However, in a number of 

studies, analysis of pulse wave reflections do not appear to be able to distinguish between 

populations with different levels of atherosclerosis or from sections of the population with 

diabetes mellitus (Megnien et al., 1998; O'Rourke et al., 2001).  

 

A number of studies have investigated the relationship between the pressure pulse and the 

PPG pulse (Millasseau et al., 2000); (Avolio, 2002); (Allen and Murray, 1999).  It is 

understood that the peripheral pressure pulse obtained from the finger or radial artery is 

affected by pulse wave reflections mainly from the lower body. If these reflections are 

reduced by using a vasodilator such as nitroglycerine, then marked changes to the contour of 

the pressure pulse are seen. The PPG signal also shows changes in temporal characteristics in 

response to nitroglycerine, however, it was not known whether the signals were influenced by 

similar mechanisms. Millasseau et al (2000) quantified the relationship between the digital 

volume pulse and the peripheral pressure pulse by investigating changes to these waveforms 

from different patient groups. They concluded that the peripheral pressure pulse can be 

predicted from the digital volume pulse and has a linear relationship across a wide range of 

normotensive and hypertensive subjects and over large changes in both pressure and volume. 

They also concluded that both the peripheral pressure and volume pulse are influenced by the 

same vasodilatory mechanism. However even though the PPG and peripheral pulse are 

related to one another by similar mechanisms, the wave contour is not the same. They also 

found that in the frequency domain the volume pulse does not contain some of the higher 

harmonic frequencies as does the pressure pulse and so its contour is relatively more damped. 

Allen and Murray (1999) employed artificial neural network analysis, as well as other 
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techniques, to model the linear and non linear relationships between peripheral pressure pulse 

and the blood volume pulse in normal healthy subjects. They found the ANN using the 

chosen identification techniques could simple describe their relationship.     

 

The PPG signal is produced from fluctuations in the intensity of the back-scattered light due 

to changes in blood volume flow in the micro-circulation. The signal can be basically 

separated into two main components: A quasi D.C component which reflects the total red cell 

volume below the skin, and superimposed onto this is an A.C component that is produced by 

the fluctuations in blood volume directly beneath the sensor. Therefore the A.C component 

reflects relatively fast temporal changes, while the D.C component traces relatively slow 

temporal changes in blood flow (Kamal et al., 1989). As early as 1937 Hertman and 

Spealman (1937) described the appearance of the A.C. component of the PPG signal as two 

phases: The rising edge of the pulse called the anacrotic phase and the falling edge known as 

the catacrotic phase. Physiologically, the first phase is produced by the systolic period of the 

cardiac cycle and the second phase produced during the diastolic or resting period of the 

cardiac cycle. The diastolic phase is particularly affected by wave reflections from the 

periphery and in patients with healthy compliant arteries; there is normally a dicrotic notch 

present on the falling or catacrotic phase.  

 

The D.C and A.C. components are affected by a number of different physiological 

mechanisms which have been attributed to low frequency activity of the sympathetic and 

parasympathetic nervous systems and thermoregulation. In particular the amplitude of the 

pulsatile component (A.C component) and the tissue blood volume below the skin (D.C. 

component) fluctuate in the low frequency region, due to vasomotor activity, while 

fluctuations in the period of the signal appear to be more intense in the high frequency region, 
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i.e. respiration (Nitzan et al., 1998); (Nitzan et al., 1995; Nitzan, Babchenko and Khanokh, 

1999); (Nitzan et al., 1995); (Hyndman, Kitney and Sayers, 1971).  

 

An additional parameter used to assess blood flow and has been studied extensively is pulse 

wave transit time. With each heart beat, a pressure pulse radiates to the peripheries and the 

effect of this wave can be detected as changes in blood volume under the skin by PPG. The 

time it takes for the pulse to reach the peripheral sites, such as the ear lobes, fingers or toes, is 

significantly influenced by age, blood pressure, height and arterial disease. Some studies have 

used the ECG R wave as the timing reference point and then measured the time between this 

and the onset of the pulse trough or peak (Allen and Murray, 2000b2002; Jeong, Yu and Kim, 

2005). Other studies have used the delay in the arrival of the pulse between the finger and 

toe. This therefore does away with the need for ECG leads (Erts et al., 2005); (Nitzan et al., 

2002).    

 

The repeatability of unilateral and bilateral PWTT measurements made at the ears, fingers 

and toes within sessions and between sessions was studied by Jago and Murray (1988). They 

found that is was important to account for and control such factors as body position, 

temperature, and acclimatisation as these affected PWTT measurements. This study also 

highlighted that the arrival time of the pulse depends on site of measurement; the pulse 

arriving at the ears first and the toes last. The variability in taking bilateral PWTT and 

amplitude measurements was investigated by Allen and Murray (2000b). A significant 

difference between the right and left sides was found only for PWTT to the toes, which was 

accounted for in the asymmetry between the iliac arteries. Their study provided a normative 

set of amplitudes and PWTT measured at different peripheral sites and showed the bilateral 

symmetry in pulse characteristics. In the same year, Allen and Murray (2000a) investigated 
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the similarity in the pulse shape between the right and left sides of the body at the ears, 

fingers and toes. They found that the pulse shapes from the right and left sides are highly 

correlated at each segmental level. The disadvantages of PWTT measurement are blood 

pressure and age, which are major confounders when assessing PAOD.  

 

Autonomic control of blood flow in skin micro-vessels has also been investigated by spectral 

analysis techniques (Bernardi et al., 1996). They found a high coherence between fluctuations 

in blood pressure, PPG and the ECG signals. They concluded that skin vessels are under 

central as well as local control.  

 

Because PPG is a simple non-invasive low cost technique, it has been widely used as a means 

of monitoring changes in a number of physiological and cardiovascular parameters. It has 

been used to monitor changes during anaesthesia (Dorlas and Nijboer, 1985), and for 

observing continuous changes in blood pressure, respiration and heart rate (Jeong et al., 

2005); (Linberg, Ugnell and Oberg, 1992). PPG has also been used to monitor blood volume 

to control hydration during haemodialysis (McMahon et al., 1996).  

 

4.3.2 Assessment of disease 

The potential of photoplethysmography as a means of estimating the effects of various 

disease conditions on peripheral blood flow has been recognised for many years. Hertzman 

and Dillon (1940b) investigated the reduction in skin blood supply in patients with Raynaud’s 

disease and on a patient with intermittent claudication. Visual inspection of the pulsatile 

component and the quasi D.C component of the PPG signal showed a decrease in amplitude, 

which was explained as evidence of arterial constriction. However at that time they were 
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unable to apply any more objective or sophisticated analysis techniques to the signals, 

therefore the information was limited. 

4.3.2.1 Arterial Assessment 

Much work has been done more recently investigating the changes in shape of the PPG signal 

over different physiological conditions and pharmacological effects. As mentioned previously 

the PPG signal is affected by respiration, the sympathetic nervous system and other locally 

controlled influences such as vasomotion, however these largely produce changes to the 

amplitude of the PPG and leave the shape of the pulse mostly unchanged. Chowienczyk et al 

(1999) infused vasodilatory drugs into the forearm of minimal concentrations such that it 

produces no systemic reaction, but only local stimulation showed that the amplitude of the 

PPG increased but had little effect on the shape of the waveform. They concluded that this 

observation suggested that the contour of the PPG signal is influenced by characteristics of 

the systemic circulation. An important study by Lax, Feinberg and Blake (1955) classified the 

finger signal into five different groups according to the change in shape of the pulse, in 

particular the gradual disappearance of the dicrotic wave. The change in waveform shape, 

from a pronounced dicrotic notch in young individuals to no notch in older participants is 

interpreted as the early arrival of the pressure wave reflected from the peripheral circulation, 

due to increasing stiffness of the conduit arteries. Sherebrin and Sherebrin (1990) 

investigated how the pulse shape changed in the finger as a function of age using spectrum 

analysis. They found that there was a significant decrease in the power of the second 

harmonic frequency as a function of age. This results in a gradual disappearance of the 

dicrotic notch with age and a general rounding of the pulse. However, for these changes to be 

of clinical use more objective measures have to be developed. 
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The effects of aging on the contour of the peripheral pulse have been studied using indices 

made up of various parameters from the volume pulse. Millasseau et al (2002); Millasseau 

and Kelly (2003) proposed a Shape index (SI) and a reflection index (RI) as a measure of 

vascular aging and their response to vasoactive drugs. The indices used timings and 

amplitudes of different parts of the pulse contour as an estimate of large artery stiffness. Their 

results revealed that SI was strongly correlated with age and pulse wave velocity (PWV), but 

was not significantly affected by vasoactive drugs. Alternately, RI was weakly correlated 

with age, but showed dose dependent increase with vasoactive drugs. They concluded that SI 

was a more reliable index of vascular aging than RI.  

 

Factors which influence the dynamics of the peripheral pulse have been investigated using 

the second derivative of the PPG waveform. The second derivative or the acceleration 

waveform enables inflection points in the anacrotic or catacrotic phases of the signal to be 

visualised with greater confidence and consists of a number of peaks and troughs 

corresponding to these inflection points. Five points on the acceleration waveform have been 

used as indices of certain physiological mechanisms and pathological conditions. Particular 

indices have been shown to correlate with age and blood pressure in a hypertensive 

population (Hashimoto et al., 2002). However their success at detecting arterial compliance 

related to atherosclerosis is unclear (Takazawa et al., 1998; Bortolotto et al., 2000). 

 

Examining the change in shape and characteristics of the PPG signal for the diagnosis of 

lower limb peripheral vascular disease (PVD) has been investigated. Analysis and 

classification of the PPG pulse from the great toe in patients with atherosclerotic disease has 

been performed using artificial neural networks (Meissner et al., 2007). A single normalised 

toe pulse was used as the input to the ANN and the outputs represented the diagnostic 
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classification, i.e. normal, significant PVD or major PVD as trained by the ankle to brachial 

pressure indices (ABPI). The results showed a high diagnostic accuracy of 90% and showed 

that a ANN can be trained to distinguish between PPG pulses from normal and diseased 

lower limb arteries (Allen and Murray, 19931995).  

 

Age related changes of pulse shape characteristics and pulse transit times (PWTT) measured 

using PPG at ears, fingers and toes was examined by Allen and Murray (2002, 2003). They 

found that age was the strongest contributor to PTT measurements at all sites, referenced to 

the ECG R-wave. Systolic blood pressure also significantly contributed to PTT measurements 

and height contributed to just the finger and toe times. The change in shape to the peripheral 

PPG signal was determined by measuring changes to the systolic rising edge and damping of 

the dicrotic notch. They found subtle, gradual and significant changes to the systolic rising 

edge and to the damping of the dicrotic notch and concluded that age matched normal range 

must be considered when evaluating pulses from patients with vascular disease. 

 

With the normative sets of data gathered regarding PWTT and pulse shape Allen et al (2005) 

compared patient pulse data with these normative ranges with the intention of estimating the 

accuracy of pulse timings, amplitude and shape of the PPG signal at the toe for detecting 

lower limb arterial disease. A shape index (SI), different from the shape index produced by 

Millasseau et al (2002), was developed to quantify changes in contour of the great toe signal. 

Bilateral as well as unilateral differences in PWTT and SI from patients with low or high 

grade arterial disease were compared with healthy subjects using ABPI as the gold standard. 

PWTT, amplitude and SI were ranked according to their diagnostic value for detecting lower 

limb PVD. They found that for individual great toe measurements, SI performed the best at 

detecting peripheral arterial occlusive disease (PAOD) with a diagnostic accuracy of 90% and 
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pulse wave transit time to the great toe performed the worst with a diagnostic accuracy of 

78%. For bilateral differences in great toe pulses, pulse wave transit time performed the best 

with a diagnostic accuracy of 88% and SI had an accuracy of 82%. They concluded that 

PWTT and their derived SI could be used to detect PAOD with confidence.  

 

Bilateral PPG study of one-sided arterial stenotic leg disease was conducted by Erts et al 

(2005). In particular they measured the difference in the arrival of the blood volume pulse at 

the toes, between the right and left legs for patients with unilateral stenosis and compared 

these PWTT with healthy subjects. They found a significant increase in the time delay 

between bilateral measurements of PWTT on patients with PAD when compared to bilateral 

PWTT measurements on healthy subjects. In this study they also noted a significant change 

in shape of the PPG signal taken from the toe between bilateral measurements from patients 

with unilateral stenosis. There was no equivalent significant change in shape in healthy 

subjects.  

 

A number of PPG studies looking at the alteration of blood volume pulsations in the toes 

before, during and after changes in limb position have been conducted. These studies take 

advantage of locally mediated myogenic vasodilator responses or more centrally controlled 

responses from the autonomic nervous system. These regulatory controls respond to the 

pressure changes at the periphery induced by the leg elevation. Perfusion pressure at the 

trough is reduced if the trough is raised above the heart. This triggers local compensatory 

mechanisms mentioned above in an effort to maintain adequate blood flow to the tissues. In 

patients with PAD or diabetes mellitus it is suggested that these local regulatory actions will 

already be in effect. Therefore further demands for increases in blood flow to the tissue from 

changes in pressure due to alterations in leg position will be partially or completely 
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ineffective. This effect is manifested in the PPG signal and can be compared with equivalent 

signals from healthy controls as a means of screening for PAD (Alnaeb et al., 2007).  

 

The change in amplitude of PPG derived toe pulses and their correlation to toe systolic blood 

pressures has been investigated in the assessment of the severity of peripheral arterial disease 

and critical limb ischaemia (Carter and Tate, 1996). They found that the toe systolic blood 

pressures were lower in patients with PAD when compared to healthy controls and that the 

amplitude of the PPG pulses was also correspondingly low. They concluded that the addition 

of pulse wave recording by PPG and specifically low toe pulse amplitude was related 

significantly to increased risk of amputation and death in patients with PAD (Carter and Tate, 

1996, 2001). The change in shape of PPG toe measurements in a patient group consisting of 

lower limbs with varying degrees of arterial stenosis was analysed by Oliva and Roztocil 

(1983). They analysed the toe pulses by splitting the waveform into thirds and producing an 

index base on the width of the pulse one third down from the peak and the pulse length. 

When they compared the amplitude ratio of stenotic limbs to young healthy individuals the 

results showed 80.8% sensitivity, and rose to 100% when comparing legs with complete 

occlusions. However the sensitivity dropped to 69.8% when comparing healthy individuals 

with an average age of 50 years, but they still found 100% sensitivity for completely 

occlusive legs.  

 

4.3.2.2 Venous Assessment 

Since the first direct measurement of venous pressure in the lower limb by Barber and 

Shatara (1925) many investigations have been conducted analysing the venous 

haemodynamics of healthy subjects and patients with venous pathology. Venous pressure 

measurements have functioned as the gold standard as they can demonstrate the presence of 
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venous insufficiency, quantify its severity and determine the relative contributions from deep 

or superficial valvular dysfunction (Nicolaides and Zukowski, 1986). However since this is 

an invasive procedure, involving the insertion of a needle into a vein on the dorsum or medial 

aspect of the trough, it has not been widely accepted as a routine clinical test. Since 

plethysmography and in particular photoplethysmography, is a non-invasive procedure which 

can be used to investigate blood volume changes in the skin, numerous PPG investigations of 

venous haemodynamics and disorders have been conducted. Many of the early investigations 

examined the correlation of PPG derived signals with venous pressure measurements. Light 

reflected signals were recorded at medial malleolus level as studies had shown that this was 

the best position to achieve the best separation between healthy controls and patients with 

venous insufficiency (Rosfors, 1990; Rashid, 1996).  

 

Initial tests concentrated on measuring the venous refill time (VRT). This utilises the quasi-

D.C part of the PPG signal, which represents the slowly changing venous portion of the 

signal. A zero or baseline level is achieved with the subject at rest either sitting or standing. 

They then perform a predetermined number of dorsiflexions, approximately 10 within a 

certain specified time approximately 15 seconds. During this exercise, a pressure drop in the 

deep veins encourages blood in the venuoles and superficial veins to drain into the deep 

venous system. This emptying of the superficial veins causes the baseline of the PPG signal 

to increase in the positive direction. This continues until a maximum emptying of the 

superficial veins occurs, whereby the deflected signal begins to return to the baseline level 

after completion of the exercise programme. Slow refilling of the veins ordinarily occurs only 

as a result of arterial inflow. However, patients with valvular dysfunction experience venous 

reflux which refills the veins by gravity before they are filled by normal inflow from the 

arterial side, therefore reducing the venous refill phase. If there is an abnormally short venous 



  101 

refill time the procedure is repeated with a pneumatic cuff inflated to a pressure that occludes 

the superficial veins, but not the deep veins. If the refill time is now normal then the patient 

suffers from superficial venous incompetence, however if the refill time is still abnormally 

short then the patient has deep venous incompetence. This method however is severely 

limited by the ability of often elderly patients to perform the exercise adequately. However, a 

series of simple calf compression squeezes can overcome this problem.  

 

PPG venous refill times have been shown to correlate well with venous pressure recovery 

times (Abramowitz, Flinn and Bergan, 1979; Nicolaides and Miles, 1987; Williams, Barrie 

and Donnelly, 1994). Nicolaides and Miles (1987) though, found that PPG refill times could 

provide a good separation between normal subjects and patients with venous insufficiency 

when the test was performed in the standing position, but not the sitting position. They also 

concluded that the test is qualitative because of a lack of correlation between the short 

refilling times with deep venous insufficiency and ambulatory venous pressure. 

 

An investigation by Norris, Beyrau and Barnes (1983) explored a technique which used 

quantitative PPG. This was achieved by adjusting the gain of the recorder between the sitting 

and standing positions so that the recorder measures maximum deflection. This maximum 

deflection then corresponds to the measured distance between the right atrium and the 

position of the PPG transducer. The calibrated PPG signal was then validated against 

ambulatory venous pressures (AVP) measured at ankle level. Quantitative PPG correlated 

closely with AVP. 

 

A major advancement in the technological side of PPG measurements came in the 1990s with 

the development of an automatic optoelectronic signal calibration procedure. Blood volume 
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changes measured by PPG are influenced by a number of factors such as damping of the 

optical signal from skin thickness and pigmentation level, and the degree of skin perfusion 

affects the initial blood volume under observation. However the major problems that affected 

non-calibrated PPG systems were skin thickness and colour. Different skin conditions, such 

as those mentioned above, could produce differences in PPG signal amplitude for the same 

blood volume change. Quantitative plethysmographic systems adjust the intensity of the 

emitted light until the reflected signal reaches a defined level. Therefore every skin type has a 

constant starting value. This brings a number of advantages such as intra-individual 

comparison of PPG signals, quantified PPG signal amplitude in PPG% and different 

quantitative PPG units can be compared (Blazek and Schultz-Ehrenburg, 1996; Ulrich 

Schultz-Ehrenburg, 2001).  

 

With the advantages of quantitative PPG, a number of additional and more elaborate venous 

tests were developed with a number of active or passive tests that involved the patient 

standing, sitting or supine. The tests also involved the use of tourniquets or cuffs at a number 

of positions on the lower limbs to occlude venous outflow. The graph recorded is then 

examined and divided into an emptying and filling phase with various points on the graph 

corresponding to functional parameters that can be used to assess venous function. The three 

main venous tests used are: Muscle Pump Test; Vein Occlusion Test and the Vein Pressure 

Test. These tests used parameters such as venous filling times, venous outflow, venous 

capacity and venous pressure measures to quantify venous function (Fronek, Minn and Kim, 

2000; Ulrich Schultz-Ehrenburg, 2001).  
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The three basic tests have been used extensively to investigate and assess a number of venous 

disorders such as varicose veins, post thrombotic syndrome and deep vein thrombosis 

(Thomas et al., 1991; Abbott, Diggory and Harris, 1995; Sproule, 1997).  

 

 The tests described so far have in some way required the use of cuffs, tourniquets or some 

patient movement to assess the condition of the venous system. This limits the applicability, 

both in the range of patients and ease of use; however a number of studies have investigated 

vasomotion in patients with chronic venous insufficiency using laser Doppler technology 

(Cheatle et al., 1991; Chittenden et al., 1992; Hafner et al., 2009; Heising et al., 2009). In 

these studies no cuffs or tourniquets were used and the patients remained supine throughout 

the study. Some of them performed local skin heating to investigate the different effect this 

may have on healthy patients and patients with CVI. The results of the studies showed a 

statistically significant difference in the amplitude and frequency of vasomotive waves 

between the healthy and patient group. Cheatle et al (1991) were able to show a statistically 

significant difference between all three patient groups: lipodermatosclerotic, uncomplicated 

varicose veins and controls. Hafner et al (2009); Heising et al (2009) used more advanced 

wavelet analysis to investigate laser Doppler vasomotion in patients with CVI. In particular, 

Heising et al (2009) separated the laser Doppler derived skin blood flow signal into its 

dynamic frequency components: myogenic 0.06-0.16 Hz; respiration 0.16-0.6 Hz; and heart 

rate 0.6-1.6 Hz. They found that there was a significant difference between patients and 

healthy subjects in these frequency intervals and further more, the main energy peak height in 

these frequency intervals increased with the severity of venous disease.       
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5 Equipment and General Methods 

This chapter is an overview of the general methods employed and a description of the 

equipment used to conduct the research study. The data were collected using three different 

modalities: ultrasound imaging to assess the lower limb vessels for arterial and venous 

disease, pressure measurements at the ankle and upper forearm to assess for any pressure 

changes due to stenotic disease (arterial methods only) and photoplethysmography (PPG) to 

measure intensity of the reflected infra-red signal, which is proportional to blood volume 

flow. 

 

This study was given ethical approval by the South East Wales Research Ethics Committee – 

Panel D on 2 May 2006. (ref: 06/WSE04/25)  Informed consent was obtained from all 

volunteers.  

 

5.1 Study Design 

Subjects in the healthy, arterial and venous disease groups were taken from people visiting 

the Doppler Department at the University Hospital of Wales for an ultrasound investigation. 

These comprised of GP referrals and organised outpatient appointments. If after the 

ultrasound examination they were found not to have arterial or venous insufficiency, then 

they were placed in the healthy group. Firstly, visitors to the department had an ultrasound 

scan performed to learn whether they were suitable candidates for the study. If appropriate, 

potential candidates were asked if they would like to participate. Subjects were excluded 

from the arterial study if they had significant stenotic disease of the upper limbs, if they had 

Raynaud’s disease or if they had previous lower limb graft surgery. Subjects were excluded 

from the venous study if they were diagnosed as having an acute DVT, previous venous 
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stripping or limb tremor. Volunteers were then taken to a temperature controlled room where 

they were asked to expose their lower limbs. Subjects in the arterial study were asked to lie 

down, while subjects in the venous group were asked to sit in a chair. Additional information 

was then gathered while the patient rested for a period of 10 minutes. This was to ensure a 

level of cardiovascular stability. Following this, PPG signals were acquired and stored for 

later analysis. Once the PPG signals had been obtained, a further ABPI measurement was 

taken for the arterial group only. 

 

All five types of scans, arterial PPG, venous PPG, ABPI and lower limb arterial B-mode and 

lower limb venous B-mode were performed following the standard clinical protocols which 

are described in more detail in section 5.3. All subjects in the arterial group were over 40 

years of age. This age criterion was set so as to obtain a similar age range for the cases and 

for the healthy group. The age range in the venous study comprised the normal volunteer 

group: 8 under 40yrs and 16 over 40yrs; the patient group: all over 40yrs.    

 

Once the waveforms were obtained from the normal and patient groups, they were processed 

and conditioned using Matlab software so that they could be analysed later and relevant 

parameters taken from the waveforms. Once the effective parameters were found a program 

was written in Matlab which classified the waveforms into predetermined groups.  

5.2 Equipment 

All the subjects in the trial had ultrasound scans of the lower limbs and PPG signals recorded 

for comparison and later analysis. Subjects in the arterial study had a further ABPI test 

performed. Further details of each test are outlined:   
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5.2.1 Toshiba Xario System 

The Toshiba Xario system is routinely used for clinical measurement of vascular disease in 

the Doppler Ultrasound Department at UHW. It is a sophisticated colour flow duplex system, 

optimised for the assessment of peripheral vascular disease and has a range of transducers 

available for different vascular imaging applications. Patients with certain types of body 

composition and differing levels of adipose tissue can be difficult to scan. Because the 

structures of interest can be at different depths within the tissue, probes of different 

fundamental frequencies can be used to optimise the image. Harmonic imaging is an 

additional technique which uses the harmonic frequencies of the reflected ultrasound signal to 

enhance the contrast and grey scale image. For this study, the lower limb vessels were 

assessed using the PLT-604AT linear probe employing tissue harmonic imaging at 6.6MHz, 

which is the optimal frequency for imaging the vessels in the lower limbs, (the depth of the 

vessels range from approximately 2 cm to 6cm) and pulsed wave Doppler at 4 MHz 

fundamental frequency. For the arterial study iliac arteries were assessed using the PVT-

375BT curvilinear probe employing tissue harmonic imaging at 4MHz (the iliac vessels 

travel deeper in the abdomen than the vessels in the lower limbs, reaching 8-10cm in some 

cases) and pulsed wave Doppler at 1.8MHz fundamental frequency. 

5.2.2 Arterial Equipment 

All subjects in the arterial study had blood volume measurements taken using both a 

Huntleigh Assist and pocket Doppler. Further details are given below. 

 

5.2.2.1 Huntleigh Assist 

 
The Huntleigh Assist is a portable vascular assessment tool, (Figure 19), with the ability to 

measure and record dual arterial and dual venous PPG signals, a pulse volume recording and 
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Doppler colour spectrum waveform analysis. The unit has connectors for two probes and this 

allows it to be used in single or dual probe configuration. Each probe houses an infrared 

emitter (LED) that emits light at a wavelength of 940nm and a photodetector. The probes are 

attached to the skin by a transparent double-sided sticky pad. The signal detected by the 

probe is sent to the main unit where it is displayed and stored for later use. The data can also 

be transferred to an external memory device for further analysis.  

      

         

Figure 19 Huntleigh Assist 
 

5.2.2.2 Huntleigh Pocket Doppler 
 

The Huntleigh Pocket Doppler provides bidirectional blood flow information. Clinically it 

may be used to assess patients for sites of venous incompetence, or used to assess patients for 

arterial insufficiency of the lower limbs when taking ankle brachial pressure indices (ABPI). 

In this thesis it was used in the latter. There is a choice of 8 MHz or 5 MHz probes and 

pneumatic cuffs to fit limbs of different diameters.  
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5.2.3 Venous Equipment 

The Assist assesses venous insufficiency by performing the Muscle Pump Test, (section 

3.2.9.3.1). Therefore it is programmed so that the subject performs certain manoeuvres in a 

predetermined order specified by metronomic timing; these last for approximately 45 

seconds. For these reasons the Assist is unsuitable for the venous tests in this thesis.  

  

The venous unit used in this study is a four channel photo plethysmography (PPG) system. 

The unit was manufactured by ArjoHuntleigh UK but is not commercially available as a 

product at present. The system main components are: 

• Main unit including analogue opto-transmitter and receiver circuits, A/D convertor 

with USB interface and rechargeable batteries. 

• Four opto-transducers with integrated pre-amplifier 

• Laptop P-C & software  

• Mains battery charger 

The main unit electronics are contained within a standard multi-purpose aluminium 

instrument housing. The system includes four PPG opto-transducers. Each transducer 

incorporates an infra red LED of wavelength 890nm and a matching photodiode.  Also 

included is a miniature printed circuit board containing an infra red pre-amplifier circuit.  In 

order to transmit and receive light to and from the patient tissue, the LED and photodiode 

protrude a small way through the front of the plastic housing.  The opto-components and the 

amplifier circuit are enclosed in a circular plastic housing. The main unit contains two 12V 

NiMH re-chargeable battery packs.  The batteries are charged from a regulated 20V supply 

within the external charger. 
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One PMD-1608FS from Measurement Computing is provided in order to convert the 

analogue PPG signals to digital and transfer them via a single USB cable to the laptop 

personal computer.  The four analogue PPG signals are connected to analogue to digital 

converter input channels.  The converter is a 16-bit successive approximation type, and it 

derives its power from the USB port. The bandwidth of the unit is 0.06Hz to 50Hz maximum 

The PPG unit is interfaced to the PC via its USB output.  Continuous PPG data is transferred 

to the PC and is stored for analysis off-line.  

5.3 General Methods 

5.3.1 Lower Limb Arterial Ultrasound Scan  

When scanning the lower limb arteries, the patient lay supine on the scanning couch with the 

lower limbs exposed. The distal CFA was imaged and the Doppler waveform was assessed 

visually for any loss of triphasic flow or rounding of the waveform due to significant iliac 

disease. If the Doppler waveform showed indications of this then the iliac arteries were 

assessed for the presence of artherosclerotic disease using the curvilinear probe and the 

Abdominal Vascular setting. The scan continued distally from the CFA assessing the SFA 

and popliteal arteries in the longitudinal plane, using the linear probe and the lower limb 

arterial scan pre-set. The extent and severity of any arterial disease was assessed using triplex 

mode by measuring the peak systolic velocity (PSV) from the Doppler waveform just 

proximal to and through the stenosis. The severity of the disease could then be classified 

using the following standard criteria given in Table 1 . Once the lower limb arterial scan was 

complete, both upper limbs were scanned for evidence of any arterial stenotic disease 
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PSV Ratio % Stenosis 

<2 Not haemodynamically significant  

2 50% (moderate) 

>3 >70% (tight) 

No colour flow Complete occlusion 

Table 1 shows how the stenoses were graded according to PSV ratio of velocities 
 
 
A complete occlusion was confirmed by reducing the colour scale and/or using power 

Doppler. 

 

The data from the patient group were classified according to the level of artherosclerotic 

disease present by triplex imaging. Patients with at least one stenosis in the lower limbs of 

between 50-70% were classified as having moderate disease and placed into the moderate 

disease group; patients with at least one stenosis between 70-99% were classified as having 

significant disease and placed into the significant group and patients with an occlusion were 

placed in the occlusive group. 

 

A total of 46 normal subjects (27 males) and 57 patients (32 males) with lower limb 

peripheral arterial disease were included in the study, with age ranges of 40-83 and 40-86 

years, respectively. There were no lower limb amputees, giving toe pulse data from 66 legs in 

the normal group and a total of 66 legs in the patient group. Using the duplex classification of 

arterial disease shown in the table above the patient group had 20 legs in the moderate disease 

group; 25 legs in the significant disease group; 21 legs in the occlusive disease group. 
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5.3.2 Arterial PPG Method 

Arterial subjects lay with their lower limbs exposed and a blanket over the troughs to reduce 

heat loss for a period of 10 minutes before any signals were recorded. During this period, 

relevant patient details were obtained and recorded. Next the two Assist PPG probes were 

placed on the volunteer’s right hand side of the body, at the great toe and index finger, 

ensuring that both sites were clean and dry, (Figure 20 and Figure 21). Subsequently, blood 

volume recordings were taken for the pre-set recorded time of 10 seconds into the dual 

channel Assist. This procedure was repeated for the left side of the body. 

           

Figure 20 Probe placement and subject position for data acquisition 
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Figure 21 Both APPG probes used in the study. Great toe probe (left), finger probe 
 
 

5.3.3 Ankle Brachial Pressure Index (Arterial Subjects Only) 

With the patient lying supine, an appropriate sized pneumatic cuff was placed around the 

volunteer’s ankle. A Doppler probe was positioned over the dorsalis pedis artery and the cuff 

inflated to a supra-systolic pressure so that the arterial pulse could no longer be heard. Slowly 

the pressure in the cuff was decreased until the arterial pulse resumes, at this point the 

pressure was noted, and was identified as the peak systolic pressure. This procedure was 

repeated for the posterior tibial artery located posterior to the medial malleolis. The procedure 

was repeated for the other leg. Next a cuff is placed around the upper arm and a Doppler 

probe is placed over the brachial artery until the brachial pulse was audible. The cuff was 

inflated to a pressure that occluded the artery and then the pressure in the cuff was reduced 

until the audible pulse resumed. This was the brachial systolic pressure. This procedure was 

repeated for the other arm. To obtain the volunteer’s right ABPI, the higher peak systolic 

pressure at the right ankle is divided by the higher systolic pressure between the right and left 
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arms. Similarly the volunteer’s left ABPI, the higher systolic pressure at the left ankle is 

divided by the higher systolic pressure between the arms. 

 

5.3.4 Lower Limb Venous Ultrasound Scan 

Firstly, potential venous subjects were scanned to exclude the possibility of an acute DVT, as 

many of the patients referred to us from GPs have these signs and symptoms. This protocol is 

written below. Once a DVT has been excluded, a lower limb venous assessment is conducted 

to assess the deep, superficial and perforator veins for reflux greater than one second. This 

assessment is explained later. 

 

The assessment for above knee DVT was performed with the subject supine. The CFV was 

imaged so that volume flow changes due to respiration could be detected. If no changes were 

detected, this would indicate significant iliac venous disease and so the veins in the abdomen 

would be assessed for any obstruction. If however phasic flow was detected, scanning would 

continue distally observing any phasic flow in the SFV and popliteal vein. If spontaneous 

venous flow due to respiration changes was not seen then venous blood flow was augmented 

by manual compression of the subject’s leg with the operator’s free hand. Flow in the vein 

would be evident on the ultrasound scanner as colour filling and therefore indicate that 

portion of the vein was patent. A widely accepted method of excluding thrombus is vein 

compression with the ultrasound transducer. This method was used if manual compression by 

squeezing the subject’s leg did not initiate colour filling. Scanning would continue in this 

manner assessing the patency of the deep venous system. The assessment for below knee 

DVT was performed with the patient sitting and legs dependent. The deep tibial veins were 

assessed for patency.  
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The deep and superficial venous system was assessed for competency with the subject 

standing. Venous incompetence was classified as reflux greater than 1 second (Evans et al., 

1998) in the veins associated with each venous system in accordance with the CEAP 

classification system, (Appendix B). However the generally accepted value is 0.5 seconds. 

5.3.5 Venous PPG method 

Before the test commenced, subjects sat with lower limbs exposed and their details were 

taken while they rested for a period of 10 minutes. The PPG probes were placed 10cm above 

the medial malleolus and behind the knee on both right and left legs. The subject was told to 

breathe normally, and to sit in a chair as still as possible for the duration of the six minute 

test. Even though signals were recorded from both lower limbs simultaneously, only the 

signals from a single leg were taken forward for further analysis. After completion of the test, 

the trace was visually inspected on the PC screen and if there were any obvious major 

deviations in the amplitude of the signal from normal, then the test was repeated. 
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5.4 Statistical Tests 

In the remaining sections of this thesis a number of different statistical tests were performed 

to compare data groups or to evaluate a diagnostic test against a ‘gold standard’ test, which, 

in this case, is duplex ultrasound. An explanation of the meaning and reasoning behind these 

tests follows. 

 

5.4.1 Scatter Diagrams 

Scatter diagrams are used to show the relationship between two continuous variables. 

Additionally, data that are separated into groups can be compared, which is useful to check 

the assumptions of some analytical methods. See section 6.3. 

 

5.4.2 Box-plots 

Sometimes we want to summarise a frequency distribution in a few numbers for ease of 

reporting. A five figure summary can be used composed of the median, quartiles, maximum 

and minimum to describe the data. The median is the central value of the distribution. The 

quartiles divide the distribution into four equal parts and for example the second quartile is 

the median. The box shows the distance between the first and third quartiles, with the median 

marked as a line and the vertical bars show the extremes. An observation that is 1.5 times or 

more the length of the box may be called an outlier. See section 7.4.  

 

5.4.3 Q-Q Plots 

The purpose of the quantile-quantile plot is to determine whether the data collected is drawn 

from a specific distribution, in this case a Normal distribution. If the distribution of the data is 
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from a Normal distribution the plot will be close to linear. The reference line on the graph 

represents the corresponding quantiles of the theoretical Normal distribution. The plotted data 

points represent the quantiles of the sample data. If the data are not from a Normal 

distribution then the line will not be straight, but a curve. 

 

5.4.4 Sensitivity and Specificity 

Sensitivity and specificity are the most widely utilised statistics used to describe a diagnostic 

test. The diagnosis and the test results are considered to be either positive or negative. True 

negative (TN) results are those in which both the diagnostic test and the gold standard test are 

negative; true positive (TP) results are those in which both the diagnostic test and the gold 

standard test are positive. False negatives (FN) are those in which the diagnostic test is 

negative, but the gold standard test is positive indicating the presence of disease. False 

positive (FP) results are those in which the diagnostic test is positive, but the gold standard is 

negative, indicating the absence of disease. 

 

Sensitivity = 
FNTP

TP

+
 Equation 7 

 
 
   

    Specificity = 
FPTN

TN

+
 Equation 8 

 

Sensitivity is the ability if a test to recognise the presence of disease and this is calculated by 

dividing the number of true positive results by the total number of positive results obtained 

by the gold standard. Specificity is the ability to recognise the absence of disease and is 

calculated by dividing the number of true negative results by the total number of negative 

results obtained with the gold standard. 
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5.4.5 Receiver Operator Characteristics 

The results of diagnostic tests may not be as easily classified as positive or negative. For 

example the degree of arterial narrowing can range from none to total occlusion. 

Additionally, a threshold level or cut-off point must be selected to divide positive from 

negative results. Where this cut-off point is set will have an effect on the sensitivity and 

specificity of the test. ROC curves can be used to compare the accuracy of tests at various 

thresholds. They are constructed by plotting the sensitivity against (1-specificity) at various 

thresholds. 

5.4.6 Hypothesis Testing On Means     

Hypothesis testing involves deciding between two possible hypotheses: H0 or the Null 

Hypothesis where there is no difference between the means of the populations from which 

our samples were drawn and H1 the Alternative Hypothesis, the case where there is a true 

difference between the population means. To decide if H0 or H1 is true a probability or p-

value is calculated. The p-value is the probability the difference observed between the sample 

means is a chance finding due to sample variation. A large p-value indicates there is a high 

probability that an observed difference is due to sample variation; a small p-value indicates 

there is a low probability that an observed difference is due to chance. Therefore small p-

values indicate a real or significant difference between the means. It is common practice to 

reject H0, or the Null hypothesis when p<0.05 or not to reject H0 when p>0.05. The lower the 

p-value, the stronger is the conclusion that H0 should be rejected. 

 

To test the difference between the means a t-test is performed. The type of t-test performed 

will depend on whether the data are paired, i.e. repeated data on the same group e.g. before 

and after treatment, or whether the data are un-paired, i.e. independent groups e.g. males and 

females. The t-test however makes certain assumptions about the data: for paired data the 
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differences are normally distributed; for un-paired the variable of interest is normally 

distributed. Tests performed on data that follows a Normal distribution are called parametric 

tests. When we have small samples or non-normally distributed data alternative non-

parametric tests can be used. These do not make assumptions about the distribution of the 

data, but are less powerful. The non-parametric tests on paired data is the Wilcoxon Signed 

Rank Test; for un-paired data there is the Mann-Whitney U test.  



  119 

 

6 Arterial Research 

This chapter is divided into three main sections: the first explains the methods used to sort 

and process the signals before any analysis is performed; the second section explains the 

methods used in a preliminary study conducted on a subgroup of arterial subjects to 

investigate which measurement parameter to use for further analysis; and the final section 

reports the main arterial results. 

6.1 Arterial Patients and methods 

The patient group consisted of 57 subjects, 32 men and 25 women (mean age 67 years), with 

an age range of 40-86 years. This provided a total of 66 legs with stenotic disease between 

moderate and occlusive disease. The moderate group consisted of 20 legs; the significant 

group consisted of 25 legs and finally the occlusive group consisted of 21 legs. A group of 27 

men and 19 women (mean age 62 years,) were chosen as the control group, with an age range 

of 40-83 years. Both patient and control groups underwent a duplex ultrasound scan; the 

control group to rule out any stenotic arterial disease and the patient group to classify the 

location and severity of stenotic arterial disease present. The distribution and severity of 

arterial stenotic disease is shown in Table 2. As can been seen the majority of 

 
Table 2 shows the location and severity of stenotic lesions in lower limbs of patient group 
 

 Moderate Significant  Occlusive 

Iliac 2 12 2 

Femoral 16 12 18 

Popliteal 1 1 1 

Tibial 1   
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stenoses were confined to the femoral artery; however there were a number of significant 

iliac lesions. The legs were categorised according to location and severity of stenotic disease 

present. If more that one stenosis was present, then the leg would be categorised according to 

the more severe disease present. 

 

Once the data were transferred into Matlab, the data were organised into 4 separate groups 

based on degree of arterial disease present. These 4 groups were: Controls; moderate disease 

only, significant disease only; occlusive disease only. A further 2 groups were produced, 

combining different diseased groups namely:  significant and occlusive disease and finally 

moderate, significant and occlusive disease, (Table 3). 

 

No Separate Non Disease and Disease Groups 

1 Controls 

2 Moderate 

3 Significant 

4 Occlusive 

  

 Combined Disease groups 

5 Significant and Occlusive 

6 Moderate, significant and occlusive 

Table 3 Table showing individual and combined disease groups 
 

In general the data were analysed in three different ways. Firstly, PWTT were calculated for 

each healthy control and patient from the 10s strip of PPG data obtained. Secondly, total area 

under the normalised PPG pulse was calculated on the same subject groups using the same 
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10s strip of PPG data. Once these parameters were obtained sensitivities and specificities 

could then be calculated and the two methods compared. And thirdly, combining PWTT and 

total area calculated previously to consider if this could improve on individual results. 

 

The following section is a more detailed description of how these parameters were calculated, 

firstly looking at PWTT, then area and lastly a combination of the two.  

 

6.1.1 Preliminary Data Processing 

The D.C offset was removed from each toe and finger waveform. Following this, the 

breathing component was removed by using a Filt-Filt function in Matlab. This function 

operates by filtering the input signal twice, once in the forward direction and then reversing 

the output and passing it through the filter once more. The output from this stage is then 

reversed, giving the required filtered signal. This filtering procedure is carried out to 

eliminate any phase differences between the input and output filtered signal that would 

otherwise be introduced by a single pass filtering process. The Filt-Filt function operates on 

the co-efficients produced from a second order infinite impulse response high pass 

Butterworth filter whose 3dB cut-off was set to 0.6Hz. Any noise on the toe and finger 

signals was then removed using a 100 point unsymmetrical moving average filter. This 

operates by averaging a number of points of the input signals, in this case 100, to produce 

each point in the output signals. Unsymmetrical averaging uses only the data points to one 

side of the output point, as opposed to symmetrical averaging which uses the data points 

symmetrically either side of the output point. Unsymmetrical averaging was chosen because 

it meant for easier programming, however it does introduce a relative shift between the input 

and output signals. But as this relative shift occurs to both finger and toe waveforms, both 

signals are equally affected, therefore the time delay between the finger and toe waveforms 
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did not alter.  The moving average filter conditions the signals and therefore makes 

identification of the signal peaks and troughs easier. Figure 22 shows a block diagram of the 

signal conditioning process. 
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Figure 22 Signal conditioning process.
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6.1.2 PWTT Analysis 

Before pulse wave transit times could be calculated between the finger and toe waveforms, 

the pulse troughs and pulse peaks were identified. This was done by calculating the gradient 

between successive points on the anacrotic phase of each of the PPG pulses. The zero cross-

over positions of the subsequent gradient points were used to locate the pulse troughs and 

pulse peaks of the toe and finger waveforms. The correct identification of these points can be 

seen in Figure 23.  

 

The peaks and troughs of the finger and toe waveforms were identified by plotting the 

gradient of these pulses. The points where the graph of the gradient passes through the x-axis 

indicates where the gradient of the toe and finger pulses were zero. These points correspond 

to the troughs and peaks of each of the pulses that make-up the toe and finger waveforms. 

Since only the positive going part of the toe and finger pulses is required to identify the 

trough and peak only the positive part of the gradient plot was needed, therefore the negative 

half was discarded. Next, the maximum value of each peak in the gradient plot was stored in 

a rectangular matrix so that this could be used to identify the peak of each pulse in the toe and 

finger waveforms. Following this, the overall maximum peak pulse could be identified. To 

eliminate any incorrectly indentified pulse peaks which may be due to noise, a range of 

threshold-hold values were tested. Subsequently, any pulse peaks less than 45% of the 

maximum pulse amplitude were discarded. 

 

Once the main peaks from the gradient plot were identified, they were used to locate where 

the peaks of the toe and finger pulses occurred in time. With this time information, the 

program counted back from the peak in the gradient plot to the zero value to obtain the 
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location of the trough, then counted forward to the zero value to locate the peak of the toe or 

finger pulse.  

 

 

Figure 23 Location of troughs and peaks on finger and toe waveforms. 
 

Once identified the troughs and peaks of the finger waveforms need to be matched in time to 

the troughs and the peaks of the toe waveforms. This ensures that with each heart beat the 

corresponding pulses at the finger and toe are compared in time and not pulses from different 

heart strokes. This was achieved automatically as the program calculated the number of beats 

per minute in the signal. From this the frequency and hence the period of the waveform was 

computed and a time threshold of half this was used to match the finger and toe pulses in 

time. Therefore if the difference in time between the peaks of the toe and finger pulses was 

greater than half the period, the pulses were not matched in time. This was repeated for the 

troughs of the pulses. Once this was accomplished, the delays between corresponding finger 

and toe pulses could be calculated. This was achieved by summing individual pulse delays 

between the trough of each finger and toe waveform. However, as the delays varied between 
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successive beats of the heart an average delay was calculated that would represent the delay 

for that subject. Therefore successive delays were totalled for each individual and this was 

divided by the total number of delays. This gave the average delay for that individual (Figure 

24). 
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Figure 24 Block diagram showing procedure for the automated identification of the pulse peaks and troughs and subsequent calculation of PWTT
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6.1.3 Area Analysis 

Before we can compare the areas between controls and patients, the waveforms were scaled 

in amplitude and normalised in time. Each individual’s finger and toe waveform data were 

scaled in amplitude to the maximum peak detected out of the 10 second recording. Therefore 

the amplitude of each pulse and that of the average pulse will be a fraction of the maximum 

amplitude of the signal (Figure 25). The next step was to normalise the waveforms in time. 

This was achieved by determining the length of each pulse (trough to trough) in the pulse 

train. A new x-axis for each pulse was produced from 0 to 100 which was then divided by 

each pulse width. This produced a normalised x-axis which could then be interpolated. A 

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) was used to interpolate the pulse 

from 0 to 100 in steps of 0.01, giving the total number of points at 10,000, and thereby giving 

each pulse the same number of data points in order that the normalised pulses could be added 

together and then averaged. This was performed for each pulse in the toe and finger 

waveforms. 

 

 

Figure 25  Average normalised toe waveform 
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When this was completed an average normalised pulse was calculated from each individual 

volunteer. An example is shown in Figure 25.  This would be used as a representative toe or 

finger waveform for that individual volunteer. The next step was to identify the peak of the 

average normalised waveform and then identify the pulse trough. These would be used as 

markers to calculate the area under different parts of the waveform. Figure 26 shows the 

identified pulse peaks and troughs of the average normalised toe waveform. 

 

Figure 26  Average normalised toe waveform showing the pulse peak and pulse trough markers used to 
calculate areas under the waveform. 
 
 
Once the peak and troughs markers were identified different sections of the average 

normalised toe waveform could be determined. By identifying distinct segments within the 

waveform, a number of separate areas could be calculated. This was performed on the toe 

pulses from both the control and patient groups so that a comparison of areas could be made 

between normal and pathogenic waveforms. Figure 27 shows a block diagram of the 

automated toe pulse normalisation and area calculation procedure. 
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Figure 27 Process of normalising toe signal for calculation of pulse area.
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6.1.4 PWTT and Area Combined Analysis 

A Matlab code was written to investigate whether combining the tests of PWTT and area 

would increase the sensitivity and specificity scores as opposed to their individual scores. 

 

Sensitivity and specificity scores were calculated for each patient group, i.e. moderate only, 

significant only, significant and occlusive only and finally moderate, significant and 

occlusive. Threshold levels were set as for previous individual PWTT and individual area 

tests. Each patient scored a ‘1’ if they were test positive for individual PWTT measure and 

individual area measure, however, the patient scored a ‘0’ test negative. These scores were 

then stored in individual PWTT and area vectors. The same procedure was carried out for the 

control subjects. With these scores stored in vectors, sensitivities and specificities were 

calculated as follows:  

 

If by summing the individual PWTT and area vectors for each patient their score was ≥ ‘1’ 

then that patient was recorded as test positive; if the sum came to ‘0’, the patient was 

recorded as test negative. The proportions of test positives were then employed to calculate 

the sensitivities at each threshold level and for each patient group. This method was repeated 

for the control group to calculate specificities. From this data, ROC curves were produced for 

each disease group.  

 

6.2 Preliminary Research 

This next section presents the results of a preliminary study that investigated which sections 

of area of the normalised PPG toe pulse best reflected the difference between healthy and 

diseased groups. The section of area which showed the best result was taken forward and 
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used in further analysis. A total of 20 legs were chosen, 10 normal subjects and 10 patients, 5 

with significant disease and 5 with occlusive disease. The study group age ranges were 

normals: 48-76yrs (mean 62.4yrs), patients: 41-76 (mean 63.0yrs).  

 

Figure 28 shows a typical normalised toe waveform 
 
 
The areas considered are explained with reference to Figure 28. Points a - b represent the 

pulse trough to pulse peak area under the curve, while the points b - c represent the pulse 

peak to distal pulse trough area. An area index was also calculated by dividing area b - c by a 

- b. Finally the complete area under the curve from a - c is used. A number of different area 

thresholds were used for each of the 4 different areas of the normalised pulse to calculate the 

range of sensitivity and specificity values. A graph of these results is shown in the ROC 

curves of Figure 29. The area a-b and the complete area a-c under the normalised PPG toe 

pulse have similar ROC curves and have a better range of sensitivities and specificities 

overall than area b-c and the index of area (b-c/a-b). These curves deviate below the 90% 

sensitivity level. However, both area calculations have 90% sensitivity and specificity and 
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further more, have 100 % sensitivities and 70% specificities. However one of these 

techniques for calculating the area had to be taken forward. The anacrotic and catacrotic 

phases of the PPG pulse are affected by certain physiological conditions; the anacrotic phase 

can be used as an indicator of the force of ventricular contraction and the catacrotic phase is 

affected by the capacitance of the vascular tree (Murray and Foster, 1996). Therefore relying 

on just one of these phases of the PPG pulse to indicate lower limb stenotic disease may be 

unreliable. Therefore the whole area of the pulse, (a-c), was chosen as the area parameter for 

further analysis. Any change in one of the phases due to the physiological conditions 

mentioned above, may have less affect on the change in the whole area under the PPG pulse 

due to arterial stenotic disease.  

 

 

Figure 29 ROC curves for the four areas used in preliminary testing 
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6.3 Main Arterial Results 

 

This chapter presents the results of the main arterial work and has been separated into three 

subsections according to the analysis technique used: Pulse wave transit time (PWTT); area 

under the normalised toe pulse; combined PWTT and area under normalised pulse (AUNP). 

Statistical tests were performed on the arterial data and the results are reported in the text for 

each arterial group. Parametric t-tests on un-paired data were performed; see section 5.4.6 for 

further information. PWTT and area data for the control and patient groups can be found in 

appendix C. 

 

6.3.1 Pulse Wave Transit Time 

PWTTs for the three disease groups, moderate, significant and occlusive, were compared 

individually to the healthy control group, then significant and occlusive disease groups were 

combined and compared against the control group and finally all three diseased groups were 

compared against the control group. The results are shown in the following sections. 
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6.3.1.1 Moderate Disease 

 

Figure 30 Pulse wave transit time of Normal Group against Moderate disease group 
 

 
Figure 31 ROC curve for moderate disease group 
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Statistical analysis showed there to be a statistically significant difference between the mean 

PWTTs of the moderate disease and control groups at the 5% level. Referring to Figure 30, 

PWTT in the healthy group ranged from 27ms to 121ms where as PWTT ranged from 63ms 

to 172ms in the moderate disease group. Using threshold values from 62ms to 88ms produces 

the ROC curve as shown in Figure 31. The lower threshold value of 62ms produced a 

maximum sensitivity of 100% and a specificity of 34% where as the 88ms threshold value 

produced a sensitivity of 55% and a specificity of 76%. 

 

6.3.1.2 Significant Disease 

 

Figure 32 Pulse wave transit time of Normal group against significant disease group 
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Figure 33 ROC curve for significant group 
 
 
There was a statistically significant difference between the mean PWTTs of the significant 

disease and control groups at the 5% level. As indicated in Figure 32 the PWTT of the 

significant disease group ranged from 52ms to 209ms. Using a PWTT threshold value of 

66ms produced a sensitivity of 96% and a specificity of 36%. Using a PWTT threshold of 

125ms produced a sensitivity of 44% and a specificity of 99% and shown by the ROC curve 

in Figure 33. 
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6.3.1.3 Occlusive Disease 

 

Figure 34 Pulse wave transit time of Normal against occlusive disease group 
  
 

 

Figure 35 ROC curve for Occlusive Disease 
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Statistical analysis showed there was also a statistically significant difference between the 

mean PWTTs of the occlusive disease and control groups at the 5% level. Referring to Figure 

34, PWTT for the occlusive disease group ranged from 86ms to 331ms. Taking threshold 

values from 86ms to 130ms produces a sensitivity of 100% (83ms threshold) and a specificity 

of 74%  and sensitivity of 71% and a specificity of 96% (130ms threshold) as shown by the 

ROC curve in Figure 35. 

 

6.3.1.4 Significant and Occlusive Disease 

 

Figure 36 Pulse wave transit time of Normal against significant and occlusive disease group 
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Figure 37 ROC curve for significant and occlusive groups 
 
 
Combining the significant and occlusive disease groups gives the separation as shown in 

Figure 36. Statistical analysis showed there to be a statistically significant difference between 

the mean PWTTs of the significant and occlusive disease group and control group at the 5% 

level. The range of PWTT in this group is from 52ms to 331ms. As indicated by the ROC 

curve in Figure 37, using a PWTT threshold of 55ms gives a sensitivity of 98% and a 

specificity of 15% and using a PWTT threshold of 331ms gives a sensitivity of 54% and a 

specificity of 99%.   
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6.3.1.5 Moderate, Significant and Occlusive Disease 

 
Figure 38     Pulse wave transit time of Normal against moderate, significant and occlusive disease group 
 

 

Figure 39 ROC curve for moderate, significant and occlusive groups 
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A comparison all 4 groups; the three disease groups, moderate, significant and occlusive and 

the healthy control group can be seen in Figure 38. Statistical analysis showed there to be a 

statistically significant difference between the mean PWTTs of the moderate, significant, 

occlusive disease group and control group at the 5% level. PWTT threshold values ranging 

from 52ms to 120ms were used to produce the ROC curve shown in Figure 39. As the ROC 

curve shows, a maximum sensitivity of 100% gives a specificity of 10% and a maximum 

specificity gives a sensitivity of 50%. Figure 40 shows the general PWTT trend of all 4 

groups. 

 

 

Figure 40      Comparison of PWTT of all four groups: normal, moderate, significant and occlusive 
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6.3.2 Area Under the Normalised PPG Toe Pulse 

The comparison of groups is repeated using the complete area under the normalised PPG toe 

pulse  

6.3.2.1 Moderate Disease 

 

Figure 41 Area of Normal against moderate disease group 
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Figure 42 ROC curve for moderate disease group 
 
 
Statistical analysis showed there to be a statistically significant difference between the mean 

areas of the moderate disease and control groups at the 5% level. However there is a greater 

range of toe pulse area for the control group. With reference to Figure 41 the control group 

area range is 3920 – 6120 au (arbitrary units) and the moderate disease group area range is 

4169 – 5510 au. Using a range of area thresholds, sensitivities and specificities of 100% and 

12% at 4140 au and 45% and 85% at 5000au respectively were obtained. The intermediate 

values are shown in the ROC curve of Figure 42. 
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6.3.2.2 Significant Disease 

 

Figure 43  Area of normal against significant disease group 
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Figure 44       ROC curve for significant disease group 
 
 
The range of areas calculated for the significant disease group are between 4580 – 5920 a.u. 

as indicated in Figure 43 and again statistical analysis showed there to be a statistically 

significant difference between the mean areas of the significant disease and control groups at 

the 5% level. The ROC curve of Figure 44 shows 96% sensitivity and 66% specificity at an 

area threshold value of 4780 a.u. and 28% sensitivity and 96% specificity at an area threshold 

of 5500 a.u.  
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6.3.2.3 Occlusive Disease 

 
Figure 45 Area of normal against occlusive disease group 
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Figure 46 ROC curve for occlusive disease group 
 
 
The range of areas calculated for the occlusive group range from 4700 – 7050 a.u. as 

indicated in Figure 45. There was a statistically significant difference between the mean areas 

of the occlusive disease and control groups at the 5% level. The ROC curve in Figure 46 

shows sensitivity and specificity of 95% and 66% respectively for an area threshold of 4780 

a.u. and  sensitivity and specificity of 43% and 97% respectively for an area threshold of 

5600 a.u. 
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6.3.2.4 Significant and Occlusive Disease 

 

Figure 47 Area of normal against significant and occlusive disease group 
 

 

Figure 48 ROC curve for Significant and occlusive disease groups 
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Combining the significant and occlusive disease groups gives a range of normalised areas of 

4580 – 7050 a.u. as can be seen in Figure 47. Statistical analysis showed there to be a 

statistically significant difference between the mean areas of the significant and occlusive 

disease group and control group at the 5% level. Using a threshold value of 4600 a.u. the 

ROC curve of Figure 48 shows sensitivity of 99% and specificity of 49%, while using a 

threshold of 5500 a.u. the sensitivity and specificity are 37% and 97% respectively. 

 

6.3.2.5 Moderate, Significant and Occlusive Disease 

 

Figure 49 Area of normal against moderate, significant and occlusive disease group 
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Figure 50 ROC curve for moderate, significant and occlusive disease groups 
 
 
Statistical analysis showed there to be a statistically significant difference between the mean 

areas of the moderate, significant, occlusive disease group and control group at the 5% level 

Combining all three disease groups produces a normalised area range of 4160 – 7060 a.u. as 

shown in Figure 49. Using a threshold value of 4200 a.u. the ROC curve of Figure 50 shows 

sensitivity of 98% and specificity of 13% and with a threshold value of 5400 a.u. the 

sensitivity is 33% and specificity of 94%. 
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Figure 51 Comparison of all four groups: normal, moderate, significant and occlusive 
 
 
Figure 51 compares the range of normalised areas for all four groups, showing a trend of 

increasing area for increasing disease level. 

 

6.3.3 Comparison of Area, PWTT, Combined PWTT and Area for Each 

Disease Group. 

When combining PWTT and area as an analysis technique, a sequence of tests was performed 

for each disease group, (moderate; significant; occlusive; significant and occlusive; moderate, 

significant, and occlusive). A series of ROC curves were produced in order to investigate 

which of these to take forward when comparing all three analysis techniques. A number of 

different PWTT thresholds were selected and each one was kept constant while a number of 

different area thresholds were varied throughout the disease group. Each PWTT threshold 
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produced a single ROC curve which could be compared against the other PWTT thresholds to 

produce a family of curves. These were then examined and the best ROC curve was selected 

for that disease group. See appendix A. These chosen curves were then compared against the 

two other analysis techniques for each disease group. 

 

Combining the techniques of PWTT and area, the results for each group are presented below.   

6.3.3.1 Moderate Disease 

 

 

Figure 52     ROC curves of PWTT, Area and combined PWTT and Area for moderate disease group 
 
 
A comparison of all three measuring techniques for the moderate disease group shows that at 

maximum sensitivity PWTT has a higher specificity; although, as the sensitivity decreases, 

the overall sensitivity and specificity scores stay higher when the two measuring techniques 
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are combined. As indicated in Figure 52 at a sensitivity of 100% the PWTT has specificity of 

35%, while for PWTT and area combined the sensitivity and specificity are100% and 18% 

respectively. Conversely, at a sensitivity and specificity of 80% and 60% respectively, PWTT 

and area combined has the highest score compared to a sensitivity and specificity of 70% and 

60% respectively for PWTT only and 67% and 60% sensitivity and specificity respectively 

for area only.  

6.3.3.2 Significant Disease 

 

Figure 53      curves of PWTT, Area and combined PWTT and Area for significant disease group 
 
 
PWTT and area combined for the significant disease group only, shows the best separation 

for sensitivity and specificity. As indicated in Figure 53 from a sensitivity of 100% through to 

85% the specificity remains between 65% and 92%, while the comparable results for area 

only, the sensitivity ranges from 98% to 71% and the corresponding specificity ranges from 
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66% to 89%.  The sensitivity stays flat at 85% while the specificity ranges from 59% to 91% 

for PWTT only.  

 

6.3.3.3 Occlusive Disease 

 

 

Figure 54     ROC curves of PWTT, Area and combined PWTT and Area for occlusive disease group 
 
 
Combining the PWTT and area measurement techniques for the occlusive disease group 

appears overall to maximise the sensitivity and specificity scores when compared to PWTT 

and area. As indicated in Figure 54 the sensitivity scores for the combined method range 

between 100% and 90% and the specificity ranges between 66% and 96%. Alternately PWTT 

and area consistently score lower. 
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6.3.3.4 Significant and Occlusive Disease 

 
Figure 55     ROC curves of PWTT, Area and combined PWTT and Area for significant and occlusive         
disease group 
 

Figure 55 compares the three measurement parameters when the significant and occlusive 

disease groups are combined. Over the sensitivities and specificities calculated, PWTT and 

area combined is constantly higher than PWTT and area separately giving a maximum 

sensitivity and specificity of 90% and 90% respectively. 
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6.3.3.5 Moderate, Significant and Occlusive Disease 

 

Figure 56    ROC curves of PWTT, Area and combined PWTT and Area for moderate, significant and 
occlusive disease group. 
 
 
Combining all three diseased groups, Figure 56 shows that over the sensitivities and 

specificities calculated PWTT and area together is consistently best, giving 90% sensitivity 

and 70% specificity. PWTT and area show at an equivalent specificity, sensitivities of 80% 

and 83% respectively. 
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6.4 Arterial Threshold Levels 

The sensitivity and specificity of ABPI for detecting significant lower limb PAD range from 

90% to 100% (Fowkes, 1988; Doobay and Anand, 2005). However if moderate disease is 

included then the accuracy reduces to approximately 83% (0.6≤ ABPI ≤ 0.9) and 76% 

(normal ABPI ≥ 0.9) (Allen et al., 1996). Therefore, to determine whether the techniques 

employed in this thesis are as accurate as ABPI for detecting lower limb arterial 

insufficiency, sensitivity and specificity levels need to be approximately 80% or more. If the 

values of the technique used are lower, then the sensitivity and specificity closest to 80% are 

chosen. If both sensitivity and specificity are above 80%, and to ensure that comparisons are 

consistent between the groups, the sensitivity data point on the ROC curve nearest to 80% 

was selected and hence the equivalent specificity point was recorded. Table 4 summarises the 

sensitivity and specificity scores and lists the threshold levels used for the different disease 

groups and for the different techniques used. 
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PWTT 

 

Area 

 

PWTT and Area 

 

Disease 

level 

(Ultrasound) T.H        sens spec T.H sens spec T.H sens spec 

Moderate 82ms 65 70 4780au 65 65 88ms 

5000au 

70 70 

Significant 105ms 84 91 5000au 83 84 105ms 

6000au 

84 91 

Occlusive 110ms 81 92 5000au 90 84 130ms 

5300au 

90 96 

Significant 

and Occlusive 

95ms 85 86 5020au 85 85 110ms 

5500au 

85 91 

Moderate, 

significant 

and Occlusive 

88ms 79 76 5000au 74 84 100ms 

5200au 

82 84 

T.H threshold 

Table 4 sensitivities and specificities for the different disease groups, for PWTT only; Area only 
and combining the two diagnostic tests   
 

In the moderate disease group, combining both measurement techniques raised the sensitivity 

from 65% to 70% when compared to PWTT and area techniques individually. This level of 

sensitivity and specificity was achieved by setting PWTT and area thresholds of 88ms and 

5000au. Combining both measurement techniques for the significant disease group showed 

an increase in specificity of 7% from 84% achieved when using area only, however, there 

was no increase in sensitivity or specificity scores when using PWTT only at a threshold of 

105ms. There were also marginal increases in both sensitivity and specificity scores for the 

occlusive disease group when combining both tests using PWTT and area thresholds of 

130ms and 5300au respectively. There was an increase in specificity to 91% for the 

significant and occlusive disease group when PWTT and area parameters were combined, but 

no increase in sensitivity from individual measures. In the final group, which consisted of 
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patients with moderate, significant and occlusive disease, both sensitivity and specificity 

increased marginally when PWTT and area parameters were combined as compared from 

their individual measures. Considering the ABPI threshold levels discussed above, these 

results compare favourably with ABPI for both the moderate disease group and for the higher 

levels of disease i.e. the significant and occlusive group. The sensitivity and specificity levels 

achieved for the moderate disease group, at 70%, are lower than those achieved with ABPI. 

However, as referred to in section 3.2.6 ABPI is possibly biased towards detecting more 

severe disease and resting ABPI technique was poor at detecting low grade stenotic disease. 

This would suggest that there is a disparity between a moderate disease group as defined by 

duplex ultrasound and one as define by ABPI. Indeed, this would indicate that moderate 

disease groups as identified by ABPI, contain subjects that would be classified as significant 

with duplex ultrasound and therefore would partly explain the higher sensitivity and 

specificity achieved with ABPI on a supposedly moderately disease group. Further more, 

studies have suggested that a proportion of subjects with moderate disease as identified by 

duplex ultrasound are misclassified with the ABPI technique, implying that ABPI sensitivity 

and specificity scores could be lower than 80% and therefore reducing the accuracy between 

PPG and ABPI for detecting lower grade disease (Stein et al., 2006). Therefore if just the 

significant and occlusive disease group is considered, which would be a better comparison to 

ABPI of disease level, all parameters i.e. PWTT, area and PWTT and area combined have 

sensitivities and specificities comparable with ABPI i.e. 80% or higher.  
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6.5 Results of test Group 

The test group consisted of 8 patients and 8 normal controls. In the patient group there were 3 

patients with occlusive disease, 3 patients with significant stenotic disease and 2 patients with 

moderate stenotic disease. The thresholds calculated from each test as shown in Table 4 were 

used on the test group. The sensitivity and specificity results are shown in the following 

tables: 

 

Table 5  Moderate disease group: 
 

 Threshold Sens(%) Spec(%) 

PWTT 82ms 50 87.5 

Area 4780(au) 50 50 

Combined 88ms, 5000(au) 50 75 

 

Table 6  Significant disease group: 
 

 Threshold Sens(%) Spec(%) 

PWTT 105ms 66 100 

Area 5000(au) 66 75 

Combined 105ms, 5000(au) 66 100 

 

Table 7 Occlusive disease group: 
 

 Threshold Sens(%) Spec(%) 

PWTT 110ms 100 100 

Area 5000(au) 100 66 

Combined 130ms, 5300(au) 100 100 
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Table 8  Significant and Occlusive disease group: 
 

 Threshold Sens(%) Spec(%) 

PWTT 95ms 100 100 

Area 5020(au) 83 75 

Combined 110ms, 5500(au) 83 100 

 

Table 9  Moderate Significant and Occlusive disease group: 
 

 Threshold Sens(%) Spec(%) 

PWTT 88ms 87.5 87.5 

Area 5000(au) 75 75 

Combined 100ms, 5200(au) 75 87.5 

 
 
 
The results of the test group show that PWTT and area combined performs marginally better 

than area only at detect lower limb arterial disease. However, it does not perform better than 

PWTT measured in any of the disease groups. The combined measure is equal to PWTT in 

the significant disease and occlusive disease groups, i.e. Table 6 and Table 7, but PWTT 

performs better in the remaining groups. The moderate, significant and occlusive disease 

group i.e. Table 9 shows a sensitivity and specificity of 75% and 87% respectively, although 

PWTT had a higher sensitivity. If the moderate disease group is removed, as in Table 8, both 

sensitivity and specificity increase to 83% and 100% respectively for PWTT and area 

combined, however PWTT achieved 100% for both sensitivity and specificity. With the 

moderate disease patients removed, the significant and occlusive disease group contains the 

more severe disease and so as discussed in 3.2.6 closely resembles a patient group classified 

according to the ABPI method. The sensitivity and specificities achieved in this group match 

those ABPI for detecting lower limb arterial disease. Since there were such a small number of 
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patients in each test group it is difficult to be statistically confident about the results. 

However the results of the test groups indicate that there may be some merit in combining 

PWTT and area. 

6.6 Comparison of ABPI Measurements 

Table 10 categorises subject’s legs according to duplex ultrasound disease level and 

compares this with the same legs categorised according to ABPI disease level. 

D- diabetic leg 
 

 

 

 

 

 

 

 

Table 10 Comparison of duplex disease categories against ABPI Disease categories for bilateral stenosis 
 
 
If the significant disease category by duplex ultrasound is considered, then of these 25 legs, 1 

was classified as normal, 19 were classified as moderate and 5 were classified as having a 

significant level of disease by the ABPI technique. Similarly for the occlusive disease group 

ABPI Disease Level Duplex Disease Level No of legs 

Norm 
0.9  

Mod 
0.5-<0.9 

Sig 
<0.5 

Total 

Normal  66 57 5 0 62 

Moderate  20 15(9D) 5(2D) 0 20 

Significant  25 1(1D) 19(5D) 5(2D) 25 

Occlusive  21 0 20(5D) 1 21 

Total 132 73 49 6 128 

 
Duplex Grading of Disease: 
 
Moderate Disease: PSV ratio = 2-3 (50%-70% narrowing in diameter) 
Significant Disease: PSV ratio > 3 (70%- 99% narrowing in diameter) 
Occlusive Disease: complete occlusion of lumen of vessel. 
 
ABPI Grading of Disease: 
 
Normal: >0.9-<1.3 
Moderate: <0.9->0.5 
Significant: <0.5 
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by ultrasound; none out of the 21 legs were classified as normal, but 20 were classified as 

moderate and 1 was classified as having significant disease by the ABPI technique. Diabetic 

patients were not excluded from this study and so classifying the legs of diabetic patients 

with PAOD into the appropriate ABPI disease categories will be difficult as described in 

3.2.6. However, as indicated in Table 10, many of the patients did not have diabetes but their 

duplex ultrasound and ABPI disease levels are not in agreement. Specifically, a number of 

legs classified by duplex ultrasound as having moderate disease were actually classified as 

normal by the ABPI technique. This suggests that duplex ultrasound is more sensitive than 

the ABPI technique, using the generally accepted threshold level of 0.9, for identifying more 

moderate arterial disease. Furthermore, it could be argued that a certain level of disease 

classified by the ABPI technique would contain patients with more severe disease than their 

equivalent level in duplex ultrasound, when categorising arterial disease according to Table 1. 

 

 

Figure 57 Scattergram of ABPI scores for normal group and disease group (ABPI: 0.4-1.6) 
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Figure 57 shows a scattergram of ABPI scores for the normal and disease group with 

sensitivity and specificity scores of 77% and 95% respectively, when using 0.9 as the 

threshold level for disease. The disease group shown in Figure 57 contains the moderate, 

significant and occlusive disease levels. The equivalent disease group in Table 4 i.e. the 

bottom row shows sensitivity and specificity scores of 82% and 84% respectively when 

PWTT and Area are combined. 

6.7 Arterial Summary and Discussion  

From the results it would seem that combining PWTT and area as a measure of arterial 

insufficiency could increase sensitivity and specificity scores, than if they were used 

individually. However the increase is only marginal. As expected it is more difficult to 

separate patients with more moderate arterial insufficiency from healthy normals than it is to 

separate patients with more severe disease. This is indicated in Table 4 by the decrease in 

sensitivity and specificity scores for decreasing disease levels. 

 

If the more severe disease group is considered, i.e. the significant and occlusive group, then 

combining PWTT and area achieves sensitivities and specificities of 85% and 91% 

respectively. This is marginally lower than the sensitivity and specificities achieved with 

ABPI, which are reported to be >90%. Considering the moderate disease group, combining 

PWTT and area achieved sensitivities and specificities of 70%, a marginal increase from 

PWTT or area only. This again is lower than the sensitivities and specificities reportedly 

achieved by ABPI i.e. >80%. However, the lower accuracy scores are compensated by the 

quicker testing time of 10seconds compared to 5 minutes it takes to obtain an ABPI. 

Additionally, ABPI uses cuffs, where this PPG method does not.  
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Similarly work by Erts et al (2005) investigated patients with unilateral stenosis of the lower 

limbs by comparing bilaterally recorded PPG pulses at the periphery. Their study recorded 

and examined the delay in the arrival of the PPG pulse at the toe between a healthy and 

stenotic leg and as a reference bilateral PPG signals detected at the fingertips. Erts et al 

(2005) also measured bilateral segmental pressures and ABPI. They found convincing 

correlations between pressure differences between healthy and stenotic legs and the PPG time 

delay. A similar correlation was found for ABPI results. This thesis records the delayed 

arrival between the PPG pulses at the index finger and concomitant great toe and so it is 

difficult to make a direct comparison between PWTT delays. However the study did not 

report sensitivity or specificity scores or if the patients were grouped according to disease 

levels. Additionally, the methods used for measuring the PWTT delay rely on the patient 

having a unilateral stenosis. The disadvantage of this is that a proportion of the population 

will have bilateral stenosis and so the delay between legs could in many cases be minimal, 

leading patients to be misdiagnosed as healthy normals. 

 

As previously discussed in section 4.3.2.1 a comparison of pulse timing, amplitude and shape 

characteristics was conducted by Allen et al (2005). The study compared three different pulse 

measurement techniques to assess and diagnose lower limb peripheral arterial disease. Pulse 

wave analysis extracted PPG pulse transit times measured at the toe; it also analysed pulse 

amplitude and shape characteristics. Normative ranges of these pulse characteristics were 

then calculated for healthy subjects and compared against patients with different grades of 

lower limb stenotic disease as referenced to the ankle brachial pressure index. The three 

different characteristics were then ranked in order of diagnostic performance, both for 

individual and bilateral great toe pulses.  
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This thesis does not measure the bilateral differences between pulse characteristics, but 

analyses individual pulse measurements. Therefore the results of the arterial study will be 

compared with the individual pulse measurements conducted by Allen et al (2005).  Their 

results showed that shape index diagnostically performed the best on patients with an ABPI 

of <0.9, i.e. patients with low grade and high grade disease. This group comprised all patients 

in the study and achieved sensitivity and specificity scores of 88.9% and 90.6% respectively. 

Pulse transit time diagnostically performed the worst with sensitivities of 31.5% and 

specificities of 93.8%. If we compare a similar group from this thesis, i.e. the moderate, 

significant and occlusive groups together, Table 4 shows that area achieved sensitivities and 

specificities of 74% and 84% respectively, while PWTT scored 79% and 76% respectively. 

When both tests were combined sensitivity and specificity scores become 82% and 84% 

respectively. When the tests were repeated on patients with high grade disease, i.e. ABPI 

<0.5 Allen et al (2005) reported an increase in sensitivities and specificities for both shape 

index and PWTT. Shape index rose to 100% and 90.6% respectively and PWTT marginally 

to 45.5% and 93.8% respectively. Comparing this with the significant and occlusive disease 

group, Table 4 shows area sensitivity and specificity scores of 85%, and PWTT scores of 85% 

and 86% respectively. Again if both tests are combined sensitivity and specificity scores 

become 85% and 91% respectively.  

 

The shape index used in the Allen et al (2005) study gave substantial agreement with ABPI, 

approximately 90% for all disease groups. The similar group in this thesis gave lower 

sensitivities and specificities scores of 82% and 84% respectively. Therefore in comparison, 

neither individual nor combined scores in this study match the accuracy as reported by Allen 

et al (2005). However, in their study, patients were assigned to the high or low level disease 

group according to their ABPI score. As discussed previously in section 3.2.6, evidence 
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suggests ABPI is biased towards more significant disease as compared to duplex ultrasound 

patient groups. Therefore it could be concluded that the moderate disease group in the Allen 

et al (2005) study contains patients with more advanced lower limb disease than the moderate 

group in this thesis. This could partly explain the higher sensitivity and specificity scores 

achieved in their study. 

 

Minimal user effort and minimal time to acquire the signals was also of prime importance in 

this thesis, particularly if the system is to be used as a screening tool in a primary care setting. 

In terms of user effort, Allen et al (2005) calculated pulse wave transit times with reference to 

the ECG signal and so their technique requires the application of ECG leads to the patient. 

This can be cumbersome and requires additional time and training. Furthermore, signal 

acquisition takes 2.5minutes. In comparison, the techniques investigated in this study do not 

require the use of ECG leads for PWTT calculations and signal acquisition takes 10 seconds 

which is a significant reduction in time. Additionally, as discussed in 6.4 there is only a 

marginal decrease in sensitivity and specificity levels.   
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7 Venous Research 

The following section describes the patients and methods used in the venous study, it 

explains the analysis techniques employed and presents the results.  

 

7.1 Venous Patients and Methods 

A total of 25 patients (14 men, 11 women, age range 44-89 yrs, mean age 63 years) with CVI 

were investigated. All the patients had deep venous insufficiency and a further number had 

additional superficial and or perforator incompetence.  Patients had a range of signs and 

symptoms and a detailed CEAP classification for each patient can be seen in appendix B. A 

brief description follows: 2 patients had no signs of venous disease; 10 patients had 

telangiectasias or reticular veins; 9 patients had varicose veins; 12 patients had oedema; 11 

patients had skin changes; 2 patients had healed ulcers and 2 patients had active ulcers. All 

patients had deep venous insufficiency; 16 patients had concurrent superficial and/or 

perforator insufficiency. All patients had reflux greater than 1 second and two of those had 

chronic obstruction. All patients had a duplex ultrasound scan to rule out significant arterial 

insufficiency.  

 

The control group comprised 13 men and 11 women, age range of 22yrs-73yrs with a mean 

age of 50 years. These also had a duplex scan to rule out arterial and venous insufficiency.  

 

Once the above knee and below knee data were transferred into Matlab, two separate groups 

were created. One group contained the healthy controls and the other the patients. The signals 

were first conditioned by removing the D.C offset from the raw PPG signal. It was 
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anticipated that the signals would be examined and analysed in both time and frequency 

domains. In doing so, this separated the analysis into two distinct sections; with the 

waveforms being treated and dealt with accordingly. The two sections will be explained in 

more detail below. A block diagram of the processing and analysis of the venous signals can 

be seen in Figure 58. 
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Figure 58 Processing and analysis of the venous signals 
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7.2 Time Base Analysis 

Time base analysis was performed on two components of the PPG signal: the myogenic and 

the respiratory components-see sections 2.2.2 and 2.3 for an explanation of their origins. To 

isolate these components a 7000 order finite impulse response filter (FIR) was used. This 

would ensure a linear phase response. This was conducted firstly over the frequency range 

0.06Hz to 0.12Hz (3.6cpm to 7.2cpm) to produce the myogenic coefficients, and then over 

the frequency range 0.15Hz to 0.4Hz (9cpm to 24cpm) to produce the respiratory 

coefficients. These coefficients were then used in the Filtfilt function to isolate the separate 

frequencies. The action of the filters described above removed the cardiac component that 

was present in the signal. 

 

Figure 59 Comparison of RAW and filtered PPG signal (respiration) 
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The Filtfilt function produces a filtered signal with minimal phase distortion as described 

previously in 6.1.1. The top waveform in Figure 59 shows a 100 second segment sample of 

an above knee RAW unfiltered signal from a healthy control. The bottom waveform shows 

the same signal after it has been filtered at respiration frequencies. Figure 60 shows the result 

of the Filtfilt function at myogenic frequencies. 

 

 

Figure 60 Comparison of RAW and filtered PPG signal (myogenic) 
 
 
The next step in the programming was to identify the peaks and troughs of the filtered signal. 

The differential in successive points along the signal vector was calculated. The peak position 

of the waveform was stored if the differential changed from positive to negative and the 

trough of the differential changed from negative to positive. This process was repeated for the 

knee and ankle signals and both for myogenic and respiratory frequencies. These markers 

were then used to help identify any features of the signal which would differentiate the 
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different groups. Figure 61 shows an example of the identification of the peaks and troughs of 

a myogenic filtered waveform from above the knee of a healthy patient.  

 

 

Figure 61 Identification of Peaks and troughs of the filtered waveform (Myogenic) 
 
 
Next, a noise level threshold value was chosen based on the median amplitude of the pulse 

peaks and troughs. For each patient, a median amplitude value of all the signal peaks and 

troughs was calculated. The absolute value of the difference between these two median 

values was used as the median pulse height. A threshold value was then calculated by 

dividing this median pulse height by 100. Therefore any pulses of height less than one-

hundredth would be excluded. This was done for each patient in each group, thereby only 

using pulses of adequate amplitude when investigating features of the signal. 
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Now that the different frequency components of the RAW signal could be isolated, and the 

peaks and troughs identified, different aspects of the filtered signals between the normal and 

patient groups could be analysed and compared. 

 

As indicated above, the features investigated were separated into two main groups: time base 

analysis and spectral analysis. The time base features investigated were: The gradient of the 

leading and lagging edges; the time delays between above and below knee peaks and this was 

repeated for the troughs; the phase changes of troughs between groups and this was repeated 

for the peaks; the difference in the number of peaks above and below knee. The two main 

spectral features investigated were repeated for both myogenic and respiration frequencies: 

the power densities between healthy and patient groups; the power density ratio (resp/myo) 

between healthy and patient groups. An explanation of how each feature was derived and 

calculated is written below. 

 

7.2.1 Gradient of the Leading and Trailing Edges in myogenic and 

respiration waveforms 

Now that the peaks and troughs of the filtered waveforms have been identified, the pulses that 

make up the 6 minute signal can be separated into the leading and trailing edges. The leading 

edge was defined from the trough of the pulse to its peak, while the trailing edge was defined 

from the peak of the pulse to the following trough. The program ran through the control and 

patient groups, analysing both myogenic and respiration waveforms separately. Maximum 

and median gradients of the leading and trailing edges were calculated for each pulse of the 6 

minute signal.  From the results an overall maximum and median gradient could be calculated 

from the individual pulse gradients that would be representative of that person. A mean of the 
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maximum gradients was also calculated. This was performed for both above knee and below 

knee signals so that intra and inter comparisons could be made. 

 

7.2.2 Delays between the above and below knee pulse peaks for myogenic 

and respiration signals   

 

Figure 62  shows the delay between above and below knee pulse troughs and pulse peaks for signals in the 
same frequency band ( i.e. myogenic or respiration band) and also the time threshold used. 
  

The analysis was performed on both myogenic and respiratory bands. Because of the spread 

of frequencies within each band, time thresholds needed to be used so that only peaks within 

this time frame would be utilised to calculate the delays between the above and below knee 

signals Figure 62. These thresholds were determined on an individual by individual basis. To 

calculate the threshold the number of pulses over the entire 6 minute signal were counted. 

Next, the total was divided by 6 to give the number of pulses per minute (ppm). By dividing 

the ppm by 60 gave the frequency of signal, and from this the period of the signal was 

derived. This was finally divided by 2 to give half the period of the waveform (T/2). This 
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represented the time threshold for that subject and was used to match above and below knee 

peaks and troughs in time. If the time difference between two pulses was greater than the 

time threshold, then the pulses were not matched and therefore the delay between the peaks 

could not be calculated and the two pulses were ignored. Only when the time difference 

between two peaks were within the time threshold calculated for that individual, were they 

matched. Because the above knee and below knee peaks changed sometimes from leading to 

lagging, a positive and negative time threshold value was used. This ensured that only the 

correctly matched peaks from the above and below knee signals were utilised in the delay 

calculations. 

 

The same process was carried out for calculating the delays between the above and below 

knee pulse trough. 

 

7.2.3 Matched delays in Myogenic and respiration signals between the 

above and below Knee Peaks and Troughs  

Now that the individual pulse peaks between the above and below knee signals had been 

matched and similarly the individual pulse trough between above and below knee, the next 

stage was to investigate if there was any correlation of these parameters between 

corresponding pulse trough and peak delays. To ensure that the delays in the pulse trough 

matched the delays in the pulse peaks, a second time threshold was set-up. This time 

threshold comprised a half time period plus a quarter time period calculated from the 

individual’s myogenic or respiratory rate. In this way, the program ensured that any single 

pulse trough was matched with its own pulse peak, and not that of a later peak from a 

different pulse. The above and below knee signals were both investigated in this way. When 

the program established pulse troughs and pulse peaks were within the predetermined time 
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threshold, the delays between pulse troughs and the delays between pulse peaks for above 

and below knee could be calculated. Once the delays have been calculated for all the matched 

pulses from one individual, the above and below knee troughs delays were subtracted from 

the above and below knee peak delays so that the mean and median values of the aligned 

delays could be calculated. These values would be representative of an individual and 

therefore the control groups could be compared to the patient group.  

 

7.2.4 Phase changes in myogenic and respiratory signals in above and 

below knee waveforms 

The number of phase changes which occurred between the above and similarly for the below 

knee pulse peaks and above and below knee pulse troughs were determined from the delays 

computed from the previous aligned delay analysis. Each delay calculated between the peaks 

for each separate pulse of the six minute signal was examined to determine if the delay was 

positive or negative. The delay was calculated by subtracting the below knee peak time from 

the above knee peak time. The number of positive and negative delays was counted 

separately for the entire signal. The number of positive and negative delays counted in each 

signal was divided by the total number of pulses captured for the entire signal. This 

accounted for the variation in pulse numbers captured between individual subjects. The 

proportion in number of negative delays identified was subtracted from the proportion of 

number of positive delays identified and this difference represented the number of phase 

changes that occurred over a 6 minute period. As mentioned above, this method was 

performed for both troughs and peak delays over myogenic and respiratory frequencies. 
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7.2.5 Comparison of myogenic and respiration rates between above and 

below knee signals 

The difference in the numbers of peaks between the above knee and below knee signals was 

calculated for both myogenic and respiratory waveforms and compared for control and 

patient groups. 

 

7.3 Frequency Based Analysis 

A signal describes how one parameter changes with another. A typical example would be a 

signal showing voltage varying with time at one particular frequency from an analogue 

electronic circuit. In biological signals, the parameter on the y-axis can be obtained from 

many sources such as a potential difference measured across ECG electrodes, pressure within 

a pneumatic cuff or the light intensity reflected from an infra-red signal incident on the tissue. 

The parameter which is mostly used for the x-axis is time. Signals that are recorded from the 

body are more complex in nature consisting of a number of different frequency components. 

These frequency components can be analysed using a mathematical technique developed 

some 300 years ago by Joseph Fourier. This technique is based on the principle that any 

continuous periodic signal can be represented by the sum of sinusoidal waves of different 

frequencies, called a Fourier series. In this way the signal is converted or transformed from 

the time to the frequency domain.  

 

Fourier analysis assumes the signals are infinite in length; however biological signals are 

recorded over a predetermined time and so are finite in length. Furthermore, the signals are 

sampled and stored onto a computer for analysis off-line, i.e. after signal acquisition is 

complete. To get around this problem the Discrete Fourier Transform (DFT) was developed 
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which makes an approximation by imagining the original signal as repeating itself an infinite 

number of times. Therefore the signal appears periodic and infinite in length with a 

wavelength equal to that of the original signal. The DFT is calculated using an extremely fast 

algorithm called the Fast Fourier Transform (FFT). The transformed signal is then displayed 

with frequency on the x-axis and power of the frequency component on the y-axis, also 

known as the power spectrum (Figure 63). 

 

Fourier analysis is best suited to signals whose frequency content does not change with time, 

also known as stationary signals. However, the frequency content of biological signals tends 

to vary with time due to the complex nature of human physiology. There are various 

techniques which can look at how the frequency components within the signal change with 

time such as complex demodulation (CDM) and Wavelet analysis and these will be touched 

upon later in this chapter. Nonetheless, the amplitude of the power spectrum can give us 

some insight into distribution of the frequency content over time. For example, any frequency 

that exists only for a short period of time will have a smaller power in the frequency domain 

compared to frequencies that last for a longer time. In this thesis, myogenic and respiratory 

frequency bands were analysed, but since the frequency bands are not of equal length 

(myogenic: 0.06-0.12 Hz; respiration: 0.15-0.4 Hz) then power densities were calculated so 

that the two frequency bands could be compared.  

 

 As mentioned above certain techniques can be employed to overcome to some degree this 

disadvantage. A technique known as windowing can be used that splits the signal up into 

smaller segments i.e. the windows, and an FFT calculated for each segment. By examining 

how the FFT changes from one window to the next, the variation in the frequency content of 

the signal can be examined. However there is a disadvantage with this method, which is 
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shorter signal acquisition times reduce the frequency resolution. Complex Demodulation is 

another technique which can overcome some of the difficulties with using Fourier analysis. 

Instead of analysing the whole spectra of frequencies, the technique focuses on a single 

frequency and how its amplitude and phase varies with time. There is still however a trade-

off between resolution in the time and frequency domain. Wavelet analysis is a mathematical 

tool which splits the signal data into different size windows or wavelets; larger wavelets will 

only capture gross features in the signal where as smaller wavelets identify smaller features in 

the signal which occur over a shorter time scale. Wavelet analysis shows how the different 

frequency components in the signal change with time and a particularly well suited to study 

situations where the signal contains discontinuities and sharp spikes.   

 

This part of the analysis used the windowing technique to split both the above and below 

knee 6 minute signals into 1 minute segments. Six minutes of data were acquired as this was 

the minimum length of time the venous unit recorded. As mentioned above this was 

performed so that any variation or change in the frequency content of the signal over the 6 

minute period (in one minute segments) could be captured and analysed. By splitting the 

signal in this way a median value was calculated that represented the 6 individual 1 minute 

segments. This is not the same as a median value calculated over the entire 6 minute signal. 

Therefore it is a simple method which can capture any change in the frequency content of the 

signal. Before an FFT could be taken of the signals, a Hanning window was applied to each 

segment. The data points from each 1 minute segment were multiplied by an N-point 

Hanning window. In the time domain this reduces the amplitude of the signal from a 

maximum value at the centre to zero at the edges. The result is improved frequency resolution 

in the power spectrum. An FFT performed on data without a window results in smearing or 

leakage in the frequency domain. Using an appropriate window reduces these effects. 
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 An FFT was then performed on each minute of the signal. Once this was completed for the 

above and below knee signals, the power density within the myogenic and respiratory bands 

could be calculated. This was achieved as follows: since the signal was sampled at a rate of 

100Hz, each 60 second segment of signal contained 6000 data points; this gave a spectral 

resolution of 0.016Hz sample-1 (100Hz/6000). In order to isolate part of the spectrum that 

represents the myogenic band, lower and upper sample points needed to be calculated. The 

lower and higher sampling points for the myogenic bands were calculated as follows: given 

the sampling resolution of 0.016Hz sample-1 and the lower bandwidth point of 0.06Hz for 

myogenic frequencies, the lower sampling point was 0.06Hz/0.016Hz sample-1. This gives a 

lower sampling point of 4. The upper sampling point is calculated in much the same way, but 

this time using the upper bandwidth point, 0.12Hz/0.016Hz sample-1. This gives an upper 

sampling point of 7. The process was repeated for the respiratory part of the spectrum and 

this gave a lower respiratory sample point 9 and an upper sample point 24. Using these 

calculated sample points, bandwidths could be identified and subsequently power densities 

were calculated for each 1 minute segment. This was carried out for both myogenic and 

respiratory bands for the complete 6 minute signal. Furthermore, a power density index was 

calculated by dividing the respiratory power density with the myogenic power density. The 

regions of interest can be seen from Figure 63 which shows an example of the spectrum of 

the PPG signal, split into one minute sections, of a healthy individual above the knee. The 

relevant bandwidths from the graph are from, 4 cycles min-1 to 7 cycles min-1 (myogenic 

band), and from 9 cycles min-1 to 24 cycles min-1 (respiratory band). 
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Figure 63 Spectral analysis of above knee PPG signal. The 6 minute signal has been separated into 1 
minute sections starting with the 1st minute top left to the 6th minute bottom right. 
 

7.4 Venous Results 

The following section reports the results of investigations undertaken of the venous signals 

taken from above and below the knee. The signals from both sites were analysed in both time 

and frequency domains, and are reported separately.  

7.4.1 Time Base Analysis 

Time base analysis investigated the gradients, delays, number of peaks and phase changes of 

the signals within and between groups. Each analysis is reported separately with a table 

summarising the results. For clarity, the Q-Q plots and box plots of some results can be seen 

in appendix B.
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7.4.1.1 Gradient of Leading and Trailing Edges  

 

Figure 64 Gradient of leading edge at myogenic frequencies 
 
   
 

 

Figure 65 Gradient of trailing edge at myogenic frequencies 
   
 
 
Figure 64 and Figure 65 show example box plots of the maximum gradients between the 

above and below knee signals for control and patient groups at myogenic frequencies. Similar 
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box-plots of gradient data at respiration frequencies can be seen in appendix B. The results 

for both myogenic and respiration frequencies are summarised in Table 11 

  Myogenic Respiration 

  p-value null p-value null 

Leading 0.80 0 0.58 0 Median of 

max grad Trailing 0.57 0 0.54 0 

 
Table 11  Time base analysis within group comparisons for healthy controls between above and below 
knee signals 
 

As can be seen from Table 11 there is no statistically significant difference in the median of 

the maximum gradients between the above and below knee leading or trailing edges at 

myogenic or respiration frequencies.  

 

  Myogenic Respiration 

  p-value null p-value null 

Leading  0.06 0 0.12 0 Median of 

max grad Trailing 0.04 1 0.11 0 

 
Table 12  Time base analysis within group comparisons for patients between above and below knee 
signals. 
 

The patient group shows statistically significant differences at the 5% and 10% levels 

between the above and below knee signals at myogenic frequencies. As indicated in  

Table 12, the most significant difference was seen for the trailing edge at myogenic 

frequencies, where there was a statistically significant difference in the median maximum 

gradients between the above and below knee signals at the 5% level. The least significant 

difference in gradients between above and below knee signals was the leading edge at 

respiration frequencies where there was a poor statistical difference. 
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  Myogenic Respiration 

  p-value 

above kn 

Null 

Above 

kn 

p-value 

below kn 

Null 

below kn 

p-value 

above kn 

Null 

Above 

kn 

p-value 

below kn 

Null 

below kn 

Leading 0.48 0 0.06 0 0.007 1 0.003 1 Median 

of max 

grad 

Trailing 0.41 0 0.04 1 0.008 1 0.004 1 

 
Table 13  Time base analysis for same-site comparisons between healthy controls and patients 
 

 
Table 13 shows the results of the time base analysis for same-site comparisons between 

healthy controls and patients. Respiration measures in particular, show a statistically 

significant difference when comparing control and patient groups above and below the knee. 

As indicated the above knee and below knee median maximum gradient of the leading and 

trailing edges show a statistically significant difference at the 5% level. In contrast, the above 

knee measures show poor significance at myogenic frequencies, however, the median of the 

maximum gradients of the trailing edge below the knee shows a statistically significance at 

the 5% level and the leading edge above the knee at the 10% level. Boxplots representing the 

respiration frequency data can be found in appendix B.  
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7.4.1.2 Delays Between Above and Below Knee Signal Peaks and Troughs 

 
 

 

Figure 66 Delays in the above and below knee peaks at myogenic frequencies 
   
 
 

 
Figure 67 Delays in the above and below knee peaks at respiration frequencies 
 
 
 
Figure 66 and Figure 67 show the delay in the peaks between the above and below knee 

signals for myogenic and respiration frequencies, for both the control and patient groups 

respectively. The corresponding delays for the pulse trough between the above and below 

knee signals can be found in appendix B.  
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7.4.1.3 Delays between the Matched above and below knee Signals Using Signal 

Peaks and Signal Troughs 

 

 

Figure 68 Delays between the matched signals at myogenic frequencies 
   
 
 
 

 

Figure 69 Delays between the matched signals at respiration frequencies 
 
 
Figure 68 and Figure 69 show the delays between the matched signal peaks and signal 

troughs for the above and below knee signals at both myogenic and respiration frequencies 
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respectively. Control and patient groups are shown. A summary of the results for both the 

delay between above and below knee signals and the matched delays can be seen in Table 14  

 

Myogenic Respiration Median Delays 

p-value Null p-value null 

Peaks 0.07 0 0.09 0 

Troughs 0.13 0 0.05 0 

Matched peaks and 

troughs 

0.23 0 0.49 0 

 

Table 14 Delays in the peaks and troughs between healthy controls and patients 

 

The median delays in the peaks and troughs at both myogenic and respiration frequencies 

show a level of statistical significance. With reference to Table 14, there was one test which 

showed significance at the 5% level, and this was seen between the delays in the troughs at 

respiration frequencies. Median delays between the peaks at myogenic and  respiration 

frequencies showed statistically significant difference at the 10% level. 
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7.4.1.4 Number of Peaks Above and below knee  

 

 

Figure 70 Number of peaks above and below knee at myogenic frequencies for control and patient 
groups 
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Figure 71 Difference in number of peaks between above and below knee at myogenic frequencies between      
healthy controls and patient groups 
 

Figure 70 shows bar graphs of the number of peaks above and below the knee for the control 

and patient groups at myogenic frequencies. A box plot of the difference between the above 

and below knee signals for the control and patient group is shown in Figure 71. This is 

repeated for respiration frequencies and the results are shown in Figure 72 and Figure 73. 

Table 15 summarises the results and shows the statistical significance levels for the 

difference in above and below knee peak numbers over the six minute period, between 

control and patient groups at myogenic and respiration frequencies.   
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Figure 72 Number of peaks above and below knee at respiration frequencies between healthy control and 
patient groups 
 



  193 

 

 

Figure 73 Difference in the number of peaks between above and below knee at respiration frequencies 
between healthy controls and patients 
 

 

 Myogenic Frequencies Respiration Frequencies 

p-value Null  p-value null Difference in 

peaks 0.77 0 0.83 0 

 

Table 15   Shows results of the statistical test on the difference in peaks between control and patient 
groups for myogenic and respiration frequencies 
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7.4.1.5 Difference in the Proportion of Phase Changes between Above and Below 

Knee Signals 

 

 
Figure 74 Difference in the proportion of total phase changes of pulse troughs between the above and 
below knee signals at myogenic frequencies 
 
 
 
 

 

Figure 75 Difference in the proportion of total phase changes of pulse troughs between the above and 
below knee signals at respiration frequencies  
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Figure 76 Difference in the proportion of total phase changes of pulse peaks between the above and below 
knee signals at myogenic frequencies 
 
 

 

Figure 77 Difference in the proportion of total phase changes of pulse peaks between the above and below 
knee signals at respiration frequencies  
 
 
Figure 74 and Figure 75 show box plots of the difference in the proportion of phase changes 

of the troughs between the above and below knee signals at myogenic and respiration 

frequencies respectively. Figure 76 and Figure 77 show the phase changes between the peaks 

for myogenic and respiration frequencies. Table 16 summaries these results. There is a 

statistically significant difference, at the 5% level, in the median of the phase changes of the 

pulse peaks and pulse trough between the control and patient groups at myogenic frequencies.  
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 Myogenic respiration 

 p-value Null p-value null 

Peak phase change 0.03 1 0.23 0 

Troughs phase 

change 

0.02 1 0.18 0 

 

Table 16  Phase changes of peaks and troughs between healthy controls and patients 

 

QQ plots of the data for Table 16 can be seen in section appendix B
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7.4.2 Frequency Analysis 

First, frequency analysis calculates the above and below knee power density within the 

myogenic and respiration frequencies and compares the results between the control and 

patient groups. Second, the power density ratio is calculated (respiration density/myogenic 

density) from above and below knee signals and then compared between the control and 

patient groups. The results are presented below.  
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7.4.2.1 Power Density 

 

Figure 78 Above knee power density at myogenic frequencies 
 

 

Figure 79 Above knee power density at respiration frequencies 
 
 
Figure 78 and Figure 79 show scattergrams of the above knee power densities at myogenic 

and respiratory frequencies and Figure 80 and Figure 81 show the below knee power 
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densities at myogenic and respiration frequencies. The results of the statistical analysis 

performed on the two groups are reported in Table 17 

 

 

Figure 80 below knee power densities at myogenic frequencies 
 
 

 
 
Figure 81 below knee power densities at respiration frequencies 
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7.4.2.2 Power Ratios 

 

Figure 82 Above knee power ratios between control and patient groups 
 

 

Figure 83 Below knee power ratios between control and patient groups 
 
 
Figure 82 and Figure 83 show the scattergrams of the above and below knee power ratios for 

the control and patient groups respectively. The results of the statistical analysis for power 

density and power ratio analysis can also be seen in Table 17. 
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 myogenic respiration Resp/myo 

 p-value Null p-value Null p-value null 

Above knee 0.09 0 0.04 1 0.001 1 

Below knee 0.1 0 0.002 1 0.16 0 

 
Table 17  Frequency analysis of myogenic and respiration waveforms using power density results between 
healthy control group and patient group. 
 

 

There are statistically significant differences between median power density values between 

control and patient groups at myogenic and respiration frequencies. As can be seen 

respiration p-values are significant at the 5% level above and below knee. Myogenic p-values 

are significant at the 10% level. The above knee power density ratio (resp/myo) is statistically 

significant at the 5% level above knee only.  
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A summary of the results of the statistical tests can be seen in Table 18 for each venous test 

parameter chosen. The table shows a yes or no whether the particular test was statistically 

significant at the 5% level. 

 

Test Group Myogenic Respiration Resp/myo 

Control no no n/a 

Patient yes no n/a 

 

Gradient 

C and P yes yes n/a 

Delays C and P no no n/a 

Num of peaks C and P no no n/a 

Phase changes C and P yes no n/a 

Power Density C and P no yes n/a 

Power ratio  C and P n/a n/a yes 

C and P- controls and patients; 
 yes = statistically significant at the 5% level. 
 

Table 18  Summary of the statistical significant results for the different venous parameters chosen 
 

Time base and frequency analysis test results showed some statistically significant 

differences between the chosen test parameters within and between groups.  

 

Time-base analysis of the signal gradients showed a 5% significant difference of the trailing 

edge at myogenic frequencies within patients. A significant difference was also demonstrated 

for the leading and trailing edge gradients between controls and patients, but this was only at 

respiration frequencies. Only the trailing edge gradient at myogenic frequencies was 

statistically significant at the 5% level. 
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The proportion of phase changes between the above and below knee signals at myogenic 

frequencies demonstrated a statistically significant difference at the 5% level, but not at 

respiration frequencies. 

 

The results in the frequency domain analysis showed both above and below knee power 

densities at respiration frequencies to be statistically significant at the 5% level between 

controls and patient, but not at myogenic frequencies. Also power density ratio showed a 

strong statistical difference above the knee, but not below. 

 

No significant difference at the 5% level either at myogenic or respiration frequencies was 

found for the delays in the above and below knee peaks and troughs. Similarly the difference 

in the number of peaks between above and below knee signals was not significant at 

myogenic or respiration frequencies.  

 

In the next section the four statistically significant tests will be explored further for diagnostic 

accuracy. The results with their sensitivity and specificity scores are shown in Table 19. 

 

7.4.3 Venous Diagnostic Accuracy 

Since these methods of assessing vascular disease are intending to be used in a primary care 

setting, sensitivity and specificity scores are more relevant at evaluating the accuracy of the 

diagnostic test. Therefore, 4 of the tests from Table 18 i.e. gradient, phase changes, power 

density and power ratio that achieved a statistically significant difference of 5% between 

normal and patients had scatter plots and associated ROC curves calculated. Therefore 

sensitivity and specificity scores may be calculated. The scattergrams and ROC curves are 

shown below and then the sensitivity and specificity scores are shown in Table 19. 
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7.4.3.1 Gradient 

   

Figure 84   Scattergram of trailing edge gradient below knee at myogenic frequencies 
 

 

Figure 85  ROC curve of trailing edge gradient below knee at myogenic frequencies 
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Figure 86 Scattergram of above knee leading edge gradient at respiration frequencies 
 
 

 

 Figure 87   ROC curve of above knee leading edge gradient at respiration frequencies 
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Figure 88 Scattergram of below knee leading edge gradient at respiration frequencies 
 
 

 

Figure 89   ROC curve of below knee leading edge gradient at respiration frequencies 
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Figure 90 Scattergram of trailing edge above knee gradient at respiration frequencies 
 
 

 

Figure 91  ROC curve of trailing edge above knee gradient at respiration frequencies 
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Figure 92   Scattergram below knee trailing edge gradient at respiration frequencies 
 

 

Figure 93  ROC curve below knee trailing edge gradient at respiration frequencies 
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7.4.3.2 Phase Changes 

 

Figure 94   Scattergram of peak phase changes at myogenic frequencies 
 

 

Figure 95   ROC curve of peak phase changes at myogenic frequencies 
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Figure 96   Scattergram of troughs phase changes at myogenic frequencies 
 

 

 
Figure 97  ROC curve of troughs phase changes at myogenic frequencies 
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7.4.3.3 Power Density 

 

Figure 98 Scattergram of power density above knee at respiration frequencies 
 
 

 

Figure 99   ROC curve of power density above knee at respiration frequencies 
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Figure 100 Scattergram of power density below knee at respiration frequencies 
 
 

 

Figure 101   ROC curve of power density below knee at respiration frequencies 
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7.4.3.4 Power ratio 

 

Figure 102 Scattergram of above knee power ratio 
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Figure 103   ROC curve of above knee power ratio 
 

 

A summary of the sensitivity and specificity results for each of the statistically significant 

tests is shown in Table 19.  

 

Test Sens(%) spec(%) Parameter freq 

51 80 TE BK  myogenic 

60 80 LE AK respiration 

60 80 LE BK respiration 

64 80 TE AK respiration 

 

 

Gradient 

56 80 TE BK respiration 

32 80 Peak myogenic  

Phase Changes 22 80 Trough myogenic 

44 80 AK respiration  

Power Density 69 80 BK respiration 

Power ratio 60 80 AK Resp/myo 

TE-trailing edge, LE-leading edge, AK- above knee, BK-below knee 

 

Table 19 Sensitivity and specificity scores of the 4 venous tests 
 
 
Ideally a screening tool would have an accuracy of 100%, but in reality vascular screening 

tools, such as ABPI have sensitivities within 80% to 100%. One of the aims of the venous 

insufficiency test is to reduce the number of false positive scans being referred from primary 

care centres. Consequently a screening test with a high specificity is required. Therefore to 

ensure a fair comparison was made between the four different venous tests, a specificity of 

80% was selected from the ROC curves and the equivalent sensitivity was then recorded as 

shown in Table 19.  The table shows a range of sensitivities between 22%, when the phase of 

the pulse trough between above and below knee signals is used as a test at myogenic 
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frequencies and 69% when the power density of the below knee signal is used at respiration 

frequencies.  

 

7.5 Venous Summary and Discussion 
 
Five parameters of the venous PPG signal were investigated: the gradient of the leading and 

trailing edges of the signal, the delays between the above and below knee signal, the 

difference in the number of peaks above and below knee, the phase changes between the 

above and below knee signals and the power in the signal. Since these five parameters were 

analysed at myogenic and respiration frequencies and from behind the knee and also at ankle 

level, this produced 28 separate tests. Statistical tests were performed on all 28 tests and 

statistically significant differences were found between the control and patient groups for 10 

of the 28 tests investigated. 

 

These 10 tests were investigated further as a potential screening test for CVI. To test their 

accuracy, sensitivity and specificity scores were calculated. From this, the worst performing 

parameter was phase changes between the above and below knee signals which had a 

sensitivity and specificity scores of 22% and 80% respectively. The best performing 

parameter was the power density in the signal at ankle level at respiratory frequencies, with 

sensitivity and specificity scores of 69% and 80% respectively. 

 

Other studies that investigated the effect of vasomotion in patients with CVI were Cheatle et 

al (1991); Chittenden et al (1992); Hafner et al (2009) Heising et al (2009).  The two former 

studies both investigated laser Doppler flux (LDF) changes in amplitude and frequency at 

ankle level while patients were supine. They found that LDF was significantly higher in CVI 

patients than compared to normal healthy volunteers. As in this study patients remained 
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motionless throughout the experiment. However Chittenden et al (1992) used an 

electrophoresis technique to investigate the effect of increased temperature on vasomotive 

frequencies in normal skin and Cheatle et al (1991) raised the local skin temperature to 43 

degrees centigrade and found that vasomotion frequency increased in controls but not in CVI 

patients. 

 

Hafner et al (2009); Heising et al (2009) investigated differences in vasomotor activity 

between healthy and patients with CVI by analysing the LDF activity in myogenic, 

respiratory and cardiac bands. They found statistically significant differences in peak energy 

at all three frequency bands. This thesis also investigated myogenic and respiratory frequency 

bands in patients with CVI and found power density levels to be significantly different from 

healthy controls only at respiratory frequencies at both ankle and knee level. The author is 

unaware of any other studies that have investigated simultaneous measurement of vasomotive 

activity in patients with CVI at knee and ankle level. Additionally, investigating the shape of 

the venous signal also appears to be an innovative idea, particularly analysing the potentially 

difference in pulse shape parameters between the ankle and knee level venous signals at 

myogenic and respiratory frequencies. 

  



  217 

8 Summary and Discussion 

The final chapter of this thesis restates the research objectives and the remaining sections 

summarise the results and discuss their implications. 

 

The initial objective was to identify optical and other methods of evaluating arterial and 

venous insufficiency. The methods kept four main key points in mind: 

 

1) minimal operator effort 

2) minimal patient effort 

3) minimal cost 

4) Minimal testing time 

 

Optical and other techniques were investigated to determine the best method, in accordance 

with the key points above, for assessing peripheral vascular insufficiency. This was achieved 

by undertaking a literature search, and the results suggested that the best technical method for 

investigating arterial and venous insufficiency was optical technology. This addressed the 

cost objective, as simple optical devices are such as PPG are relatively cheap to purchase for 

a primary care centre. Currently however, the methods used to investigate vascular 

insufficiency, in particular venous insufficiency using optical technology, rely on patient 

movement or the use of cuffs and tourniquets to separate patients with vascular insufficiency 

from healthy controls. From the literature search, spectral and pulse shape analysis techniques 

were identified as potential methods of investigating vascular disease and reducing patient 

and operator effort, which were of primary concern.  
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These analysis techniques were then investigated further by comparing duplex ultrasound, 

used as the gold standard for identifying arterial and venous insufficiency with PPG 

measurements taken from various sites on the lower limbs. It was anticipated that the 

waveforms detected from these measurements would be altered in the presence of peripheral 

vascular disease 

 

The drawback with current arterial and venous insufficiency testing methods such as duplex 

ultrasonography, ankle brachial pressure index (ABPI), arterial photoplethysmography 

(APPG), and venous plethysmography (VPPG) as screening tools is they all too some extent 

or other require: significant patient or operator effort, a relatively long testing time, or the 

purchase cost of the equipment is relatively expensive. The development of a screening tool 

that reduces these drawbacks, and informs the primary care clinician simply whether vascular 

disease is present or not would be of great benefit to the primary care centre.  

 

Existing vascular tests aim to inform the clinician of the location, extent and severity of 

vascular disease present. This is the main diagnostic goal if a comprehensive picture of the 

patient’s vascular condition is needed, but it is not necessarily required at the initial stages of 

the GP’s clinical evaluation. The primary goal of a screening tool at this stage would be to 

indicate if the patient’s signs and symptoms are vascular in nature. Further investigation of 

location, extent and severity of vascular disease can be performed more accurately in a 

specialist vascular clinic or by duplex ultrasound in hospital. Therefore the goal of this thesis 

is to supplement the GP’s clinical assessment of a patient with potential vascular 

insufficiency and thereby giving the clinician more confidence in sending the patient for 

further appropriate clinical investigations.  
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Extensive research has been conducted into new techniques at analysing patient blood flow 

data and into new methods of screening patients for arterial and venous insufficiency, but as 

yet no one technique has become routine, or replaced the current testing methods in the 

primary care setting. If any screening technique is to replace or be comparable with an 

existing method, then either its accuracy should be as good as, if not better than the current 

system, or, if the decrease in accuracy of the new technique is acceptable, then it should be 

quicker and easier to use.  

 

The methods used in this thesis for detecting arterial insufficiency do not rely on the 

application of ECG leads or on the use of cuffs. This study also included patients with 

diabetes which other studies have excluded, but make up a significant proportion of the 

vascular insufficiency population. Additionally, the use of duplex ultrasound in this study as 

a gold standard for the detection of arterial insufficiency, has allowed a more moderate group 

of patients to be analysed with PPG than has been accomplished previously, therefore 

potentially allowing for earlier identification of arterial disease. This technique also 

significantly reduces the signal acquisition time; previous methods have signal acquisition 

times of 2.5 minutes. In this study signals were acquired in 10 seconds with minimal 

reduction in sensitivity and specificity.   

 

The objectives of the venous methodology primarily followed those of the arterial methods 

i.e. the use of a technology and methods that reduced: purchase cost, patient and operator 

effort and testing time. Spectral and time base analysis techniques were identified from the 

literature search as potential techniques for investigating CVI. The analysis determined 10 

statistically significant test results. Subsequently sensitivity and specificity scores were 
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calculated for the 10 test identified and below knee power density at respiration frequencies 

had the highest score.  

 

In its present form the arterial testing procedure takes 10 seconds to complete, with the 

patient supine and two probes placed on the index finger and toe, while the venous test 

requires 6 minutes to complete with the patient sitting and two probes placed behind the knee 

and at ankle level. This is not ideal for a single screening test as repositioning the sensors and 

patient between tests is not only inconvenient for patient and operator, but moving the patient 

between tests will affect vasomotive and sympathetic frequencies and require a further delay 

between tests. Therefore a test where the patient and probes remain in the same position 

between tests would be ideal. In addition, it would be advantages if the venous testing time 

could be reduced. A reduction in testing time of 1 minute could be feasible, as even at the 

lowest end of the bandwidth of respiration frequencies of 0.15Hz, there would still be 

approximately 9 respiration pulses to analyse. Further more the detection of acute deep vein 

thrombosis has intentionally not been included in this study. Additional work could include 

acute as well as chronic venous insufficiency, making these methods more comprehensive in 

their detection of vascular disease. 

 

This thesis has identified a technology that is cost effective for a primary care centre to 

purchase as a screening tool for patients with vascular insufficiency. It has also identified 

techniques that can be used with this technology that requires minimal operator and patient 

effort. In doing so it has significantly reduced the testing time to identify patients with arterial 

insufficiency, with diagnostic accuracies only marginally lower than current testing methods. 

The test also has other advantages such as it does not require the application of ECG leads or 

pneumatic cuffs and could potentially aid the clinician in diagnosing patients with arterial 
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insufficiency at an earlier stage than other testing methods. A venous test has also been 

produced that can identify patients with CVI, with sensitivities and specificities of 69% and 

80% respectively, that also does not require tourniquets or pneumatic cuffs or requires the 

patient to perform any physical task. Although not a comprehensive diagnostic tool, the 

optical technology used and the methods applied using this technology described in this 

thesis are a step forward to a usable clinical diagnostic vascular tool for use in a primary care 

setting. 
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Patient Disease List 

Disease Severity 
score 

Patient No 

R L 

Description of Disease 

3=moderate, 4=significant, 5=occlusive 

 

3 3 4 Diffuse SFA disease bilaterally  

4  3 Diffuse mid to distal popliteal  

13 5 4 R-occluded SFA reconstitutes proximal popliteal 
L -SFA to popliteal diffusely narrowed 

 

18 4 4 Bilateral distal aorta stenosis  

25 3 4 Bilateral stenosis at bifurcation of CFA and SFA  

26 3  Distal SFA and adductor regions are moderately narrowed  

27 4 5 R- EIA origin stenosis 
L -The SFA-adductor occlusion. There is also a mid/distal popliteal stenosis 

 

28 3 4 Bilateral distal aorta and proximal CIA stenoses  

32 3  Stenosis at trifurcation level  

33 4  CIA origin stenosis. Small AAA  

34 3 3 Bilateral distal SFA to proximal adductor stenoses  

37 3 4 Bilateral mid SFA to proximal adductor stenoses  
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39 3  Mid SFA stenosis  

43 5 5 Bilateral mid SFA to mid adductor occlusions  

45 4  Proximal EIA stenosis  

50 3 3 Bilateral mid SFA to proximal adductor  

63  5 7cm occlusion from SFA origin  

64  4 Distal SFA/proximal adductor stenosis and mid popliteal stenosis  

70  4 SFA/PFA bifurcation stenosis  

78 3  Distal SFA stenosis  

83 3  Distal SFA stenosis  

85 3 4 Bilateral EIA origin stenosis  

86 4  Proximal popliteal stenosis  

87 4 5 R-proximal SFA moderately narrowed, with a significant adductor stenosis 
L -SFA occludes 10cm from origin, reconstitutes adductor region 

 

88 5 4 R-SFA stenosis that occludes in distal SFA, reconstitutes adductor region 
L-Significant distal SFA stenosis.  

 

89 5 5 Bilateral SFA origin to distal SFA occlusions  

90 4 4 Bilateral distal aorta stenoses  

91 4 4 Bilateral distal SFA stenoses  
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93  5 SFA origin to adductor occlusion  

94 3  SFA and PFA origin stenosis and a tight PTA stenosis  

95 4 5 R- moderate mid SFA and a significant distal SFA stenosis. 
L -3-4cm mid SFA occlusion. Also the ATA is occluded, reconstitutes ankle  

 

96 5  6cm AAA. SFA occluded from origin, reconstitutes in proximal popliteal  

97 5  PFA origin stenosis. SFA occluded with proximal popliteal reconstitution.  

98 4 5 R-SFA moderately narrowed with significant proximal and mid SFA stenosis 
L -SFA occludes from origin with adductor reconstitution 

 

99  3 Distal SFA stenosis  

100 4  CIA origin stenosis  

101  3 Distal SFA stenosis  

102 4  CIA origin stenosis  

103 5 5 R-Significant PFA origin stenosis. SFA to proximal adductor occlusion. 
L-CIA occluded. Significant mid SFA stenosis  

 

104 5  Below knee popliteal occlusion  

105  4 Proximal EIA stenosis  

106 5 5 R-Significant PFA SFA origin stenosis. SFA occludes 10cm from origin. 
Distal SFA reconstitution, but vessel reoccludes in adductor with above knee 
popliteal reconstitution 
L - SFA occluded throughout. Above knee popliteal reconstitution 
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107  5 SFA origin to above knee popliteal reconstitution  

108  5 EIA and CFA occluded  

113 3  Distal SFA stenosis  

115  3 Mid SFA stenosis  
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ROC Analysis to Choose Best Curve for PWTT and Area combined 

Moderate Disease 

 

Significant Disease 
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Occlusive Disease 

 

Significant and Occlusive Disease 
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Moderate Significant and Occlusive Disease 
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Venous Appendix B 
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Patient information and CEAP score 

 

Pt no 
  

Age 
Legs 
R,L,B clinical etiologic anatomical pathophysiological Sex 

36(90) 76 R 3,s s d,p r,13,14,15,18 M 
2(34) 65 R 0,s s d r:15(peroneal only) F 
13(47) 72 R 3,s s d r14,15 M 
14(48) 53 L 1,4,s s d r11,13,14,15 M 
15(49) 67 L 1,2,4 s s,d r2,3,15 F 
16(51) 64 L 4,s s s,d r3,4,14,15 M 
17(52) 48 L s s d r14,15 F 
18(53) 59 L 1,3,s s d r14,15 F 
19(54) 51 L s s d r13,14,15 M 
20(56) 65 R 1 s p,d r1,14,15,18 M 

21(57) 63 R 2,3,s s p,d 
r,o,1(ankle),2,3(occluded),14,15,18(cockett 
II) F 

22(59) 48 L s s s,d r,o,4(phlebitis),13,14 F 
23(60) 76 L 1,2,3,4a,6 s s,d r,5,14,15 M 
24(65) 76 L 1,2,3,s n s,d r,1,3,14,15,18 F 
25(67) 44 L 2,4b,s s s,d r,3,14,15,18 M 
26(68) 49 L 1,3,4a, s d r,14,15 M 
27(70) 70 L 1,2(trough),3,4b,5,s) s p,d r,1,13,14,15,18 F 
28(72) 78 L 1,2,3,4,5,s s d,p,s r,14,15,18 F 
29(74) 72 L 3 p d r,14,15 M 
30(75) 55 L 1,3,s s d r,15 M 
31(76) 49 R 3,4,s s s,d,p r,3,13,14,15,18 M 
32(81) 89 R 3,4,6,s ? d,p  r,15,18 F 
33(85) 74 R 2,4a s? s,p,d r,2,3,14,15,18 M 
34(89) 78 L 1,2,s s s,p,d r,4,14,15,18 F 
35(91) 46 R 2,3,s s s,p,d r,14,15,18 M 
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CEAP Classification 

The CEAP classification was created because of the need for a consistent approach to the 

evaluation of venous disease. It was produced by an international committee of clinical 

experts and is a comprehensive tool that organises the information into categories to provide 

a descriptive classification system. CEAP stands for Clinical, Etiological, Anatomical and 

Pathophysiological and forms a classification system that deals with all forms of chronic 

venous disorders. The full CEAP classification is shown below: 

 

Clinical Classification 

C0: No visible of palpable signs of venous disease 
C1: Telangiectasia or reticular veins 
C2: Varicose veins 
C3: Oedema 
C4a: Pigmentation and/or eczema 
C4b: Lipodermatosclerosis and/or atrophie blanche 
C5: Healed ulcer 
C6: Active venous ulcer 
S: Symptoms including ache, pain, tightness, skin irritation, heaviness, muscle cramps as well as other 
complaints attributable to venous dysfunction. 
A: Asymptomatic 
 
Etiologic Classification 
 
Ec: Congenital 
Ep: Primary 
Es: Secondary (postthrombotic) 
En: No venous etiology identified 
 
Anatomic Classification 
 
As: Superficial veins 
Ap: perforator veins 
Ad: Deep veins 
An: No venous location identified 
 
Pathophysiologic Classification 
 
Basic CEAP: 
Pr: Reflux 
Po: Obstruction 
Pr,o: Reflux and obstruction 
Pn: No venous pathophysiology identified 
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Advanced CEAP 
 
Same as basic, with the addition that any of the 18 named venous segments can be utilised as locators 
for venous pathology: 
 
Superficial veins: 
 

1. Telangiectasias/reticular veins 
2. Long saphenous veins (LSV) above knee 
3. LSV blow knee 
4. Short saphenous vein (SSV) 
5. Nonsaphenous veins 

 
Deep veins: 
 

6. Inferior vena cava 
7. Common iliac vein 
8. Internal iliac vein 
9. External iliac vein 
10. Pelvic: Gonadal, broad ligament veins, other 
11. Common femoral vein 
12. Deep femoral vein (profunda vein) 
13. Superficial femoral vein 
14. Popliteal vein 
15. crural: anterior tibial, posterior tibial, peroneal veins (all paired) 
16. Muscular: gastrocnemial, soleal veins, other 

 
 
Perforator veins: 
 

17. Thigh 
18. Calf 
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 Frequency Response of FIR Filter 

Myogenic ( 0.06Hz to 0.12Hz) Filter Response 

 

Figure 104 Magnitude and phase response of myogenic FIR filter 
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Respiration ( 0.15Hz to 0.4Hz) Filter Response 

 

Figure 105 Magnitude and phase response of respiration FIR filter 

 



  250 

 

Example QQ plots of Maximum Gradients for Above and Below 

knee Controls and Patients for Myogenic and Respiration 

Frequencies 

Myogenic Frequencies 
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Respiration Frequencies 
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Q-Q Plots of Difference in Proportion of Total Number of Phase 

Changes in Troughs Between Above and Below knee 

 

Myogenic Frequencies 

 

Respiration frequencies 
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Q-Q Plots of Difference in Proportion of Total Number of Phase 

Changes in Peaks Between Above and Below knee 

Myogenic Frequencies 

 

 

Respiration Frequencies 
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Box-plots of gradient data at respiration frequencies 

 

 

 
Gradient of leading edge at respiration frequencies 

 

 

 Gradient of trailing edge at respiration frequencies 
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Boxplot of delay data for signal troughs 

 

 

Delays between the above and below knee troughs at myogenic frequencies 

 

Delays between the above and below knee troughs at respiration frequencies 
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 Appendix C 

The following tables in appendix C show examples of some of the measurements from the 

arterial and venous groups.  
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List of PWTT and area measurements for arterial control group 

  
Controls PWTT (ms) Normalised Area 

(a.u) 
Pt0 120 5581 

Pt0 106 5497 
Pt2  103 4770 
Pt5  82 4903 
Pt6 56 3915 
Pt6 53 4067 
Pt8  56 4770 
Pt9                 68 4732 
Pt10 85 5000 
Pt10 68 4493 
Pt11 56 4558 
Pt11 62 4491 
Pt12  69 4748 
Pt14 56 4089 
Pt14 57 3931 
Pt16  68 4039 
Pt17  90 5229 
Pt19 74 4261 
Pt19 60 4423 
Pt20  68 4556 
Pt21  68 4396 
Pt22 74 4592 
Pt23 88 4742 
Pt23 76 4909 
Pt24 73 4414 
Pt24  76 4559 
Pt30 56 4319 
Pt30 65 4504 
Pt31 96 4817 
Pt31 71 4599 
Pt35  94 4930 
Pt36 88 4342 
Pt36 65 4356 
Pt40 42 4990 
Pt40 115 5226 
Pt42  94 6178 
Pt44  33 4643 
Pt46  72 4262 
Pt48 76 4028 
Pt48 71 4190 
Pt49  121 4785 
Pt56 68 4636 
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Pt56 58 4292 
Pt61 96 4822 
Pt62 77 4925 
Pt62 80 4806 
Pt66 43 4595 
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List of PWTT and area measurements for arterial patient group 

Patients PWTT (ms) Normalised 
Area (a.u) 

Pt3 95 4838 
Pt4 172 5286 
Pt25 71 4464 
Pt26 130 4912 
Pt28 73 4986 
Pt32  113 4874 
Pt34 110 4866 
Pt34 90 4859 
Pt37 103 4851 
Pt39 65 4843 
Pt50 83 4835 
Pt50 82 4828 
Pt78 63 4820 
Pt83 150 4812 
Pt85 117 4805 
Pt94 134 4797 
Pt99 73 4789 
Pt101 77 4781 
Pt113  71 4774 
Pt115 124 4766 
Pt3 115 4758 
Pt13 106 4751 
Pt18 170 4743 
Pt18 209 4735 
Pt25 110 4727 
Pt27 161 4720 
Pt28 209 4712 
Pt33    157 4704 
Pt37 117 4697 
Pt45 131 4689 
Pt64 147 4681 
Pt70 67 4673 
Pt85 117 4666 
Pt86 124 4658 
Pt87 73 4650 
Pt88 128 4643 
Pt90 159 4635 
Pt90  151 4627 
Pt91 110 4619 
Pt91 52 4612 
Pt95 68 4604 
Pt98 145 4596 
Pt100 119 4589 
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Pt102 138 4581 
Pt105  106 4573 
Pt13  147 4565 
Pt27  223 4558 
Pt43  148 4550 
Pt43 133 4542 
Pt63 196 4535 
Pt87 149 4527 
Pt88 95 4519 
Pt89 242 4511 
Pt89 204 4504 
Pt93 114 4496 
Pt95 118 4488 
Pt96  331 4480 
Pt97 211 4473 
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 List of above and below knee median leading edge gradients at 

respiration frequencies for the venous control group 

 
 Controls Above knee 

gradients (a.u) 
Below knee 

gradients (a.u) 
Pt4 40 21 
Pt5 21 11 
Pt6  33 44 
Pt8 28 13 
Pt9 27 23 
Pt10 12 7 
Pt11 15 8 
Pt12 10 38 
Pt3 16 21 
Pt7  35 29 
Pt92 28 16 
Pt93 31 48 
Pt94 19 15 
Pt95 37 7 
Pt96 16 11 
Pt97 16 29 
Pt99 11 12 
Pt101 28 30 
Pt102 32 22 
Pt103 17 17 
Pt104 19 42 
Pt105 22 28 
Pt106 15 10 
Pt107 29 34 
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List of above and below knee median leading edge gradients at 

respiration frequencies for the venous patient group 

 
 

Patients Above knee 
gradients (a.u) 

Below knee 
gradients (a.u) 

Pt1 7 5 
Pt2 12 8 
Pt13 10 7 
Pt14 14 14 
Pt16 11 12 
Pt15  26 20 
Pt17 19 5 
Pt18 5 2 
Pt19 15 7 
Pt20 26 22 
Pt21 9 5 
Pt22 3 4 
Pt23 17 8 
Pt24 9 11 
Pt25 14 12 
Pt26 4 4 
Pt27 48 35 
Pt28 16 10 
Pt29 7 37 
Pt30 26 7 
Pt31 14 7 
Pt32 18 6 
Pt33 13 24 
Pt34 48 17 
Pt35 49 55 
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List of below knee power densities for venous control group 

 

Controls 
Below knee power density at 
respiration frequencies (a.u) 

Pt4 5293 
Pt5 3460 
Pt6  9274 
Pt8 2958 
Pt9 5161 
Pt10 1850 
Pt11 2448 
Pt12 11203 
Pt3 4636 
Pt7  6243 
Pt92 6088 
Pt93 8466 
Pt94 3410 
Pt95 2237 
Pt96 4836 
Pt97 7861 
Pt0099 3135 
Pt101 7995 
Pt102 5563 
Pt103 3241 
Pt104 7875 
Pt105 4543 
Pt106 3150 
Pt107 10325 
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List of below knee power densities for venous patient group 

 Patients Below knee power density at 
respiration frequencies (a.u) 

Pt1 1880 
Pt2 1904 
Pt13 2364 
Pt14 2772 
Pt16 2811 
Pt15  3750 
Pt17 2387 
Pt18 679 
Pt19 1418 
Pt20 4143 
Pt21 1107 
Pt22 2291 
Pt23 1859 
Pt24 2797 
Pt25 3730 
Pt26 1150 
Pt27 9719 
Pt28 2424 
Pt29 11061 
Pt30 2497 
Pt31 2743 
Pt32 1601 
Pt33 4161 
Pt34 7728 
Pt35 1880 


