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Training Cellular Automata for Image Processing

Paul L. Rosin

Abstract— Experiments were carried out to investigate the A related development over the last decade is the introotucti
possibility of training cellular automata (CA) to perform several  of cellular neural networks, an extension of CAs that ineuid
image processing tasks. Even if only binary images are Cons'deredweight matrices. Both continuous time [11] and discrete

the space of all possible rule sets is still very large, and so the ti 12 . h b lied t ety of i
training process is the main bottleneck of such an approach. ime [12] versions have been applied to a variety of image

In this paper the sequential floating forward search method Processing tasks.
for feature selection was used to select good rule sets for a One of the advantages of CAs is that, although each cell

range of tasks, namely: noise filtering (also applied to gray scale generally only contains a few simple rules, the combination
images using threshold decomposition), thinning, and convex ¢ 5 matrix of cells with their local interaction leads to raor

hulls. Various objective functions for driving the search were histicated t alobal behavi That i ith
considered. Several modifications to the standard CA formulation SOPNISticated emergent global behaviour. at 1s, aithoug

were made (the B-rule and 2-cycle CAs) which were found in €ach cell has an extremely limited view of the system (just
some cases to improve performance. its immediate neighbours), localised information is pagtad
at each time step, enabling more global characteristichef t
overall CA system. This can be seen in examples such as
Conway’s Game of Life as well as Reynolds’ [13] Boids
Cellular automata (CA) consist of a regular grid of cellssimylation of flocking.
each of which can be in only one of a finite number of A gisadvantage with the CA systems described above is
possible states. The state of a cell is determined by gt the rules had to be carefully and laboriously generated
previous states of a surrounding neighbourhood of cells agg hand [14]. Not only is this tedious, but it does not scale
is updated synchronously in discrete time steps. The ic&inti\yel| to larger problems. More recently there has been a start
rule contained in each cell is essentially a finite state nm&ch g automating rule generation using evolutionary alganih
usually specified in the form of a rule table with an entry fogor instance, Sipper [15] shows results of evolving rules
every possible neighbourhood configuration of states to perform thinning, and gap filling in isothetic rectangles
Cellular automata are discrete dynamical systems, and tbﬂ?though the tasks were fairly simple, and the results were
have been found useful for simulating and studying phenomnly mediocre, his work demonstrates that the approach is
ena such as ordering, turbulence, chaos, symmetry-b@akigyasible. (In addition, it should be noted that he used non-
etc, and have had wide application in modelling systems (hiform cellular automata in which cells can have different
areas such as physics, biology, and sociology. rules). Another example is given by Adorni, who generated
Over the last fifty years a variety of researchers (includingas to perform pattern classification [16].
well known names such as Stanislaw Ulam and John vonThjs paper concentrates on techniques for training CAs to
Neumann [1], John Holland [2], Stephen Wolfram [3], an@lerform several fairly standard image processing tasks to a
John Conway [4]) have investigated the properties of a@llulhigh level of performance. Once this is achieved the benefit
automata. Particularly in the 1960’s and 1970’s consideralyf the approach is that it should be possible to easily retrai

effort was expended in developing special purpose hardwgfg system to work on other new image processing tasks.
(e.g. CLIP) alongside developing rules for the applicatidn

the CAs to image analysis tasks [5]. More recently there hﬁs_
been a resurgence in interest in the properties of CAs withou ) ) , ,
focusing on massively parallel hardware implementatiaes, In the current exper!ments all input Images are binary, and
they are simulated on standard serial computers. By the'a 9gf!IS have two states (i.e. they represent white or blacaghE

CAs could be applied to perform a range of computer visidte!l S éight-way connected immediate neighbours are eensi
tasks, such as ered (i.e. the Moore neighbourhood). Fixed value boundary

. calculating distances to features [6] conditions are applied in which transition rules are only

« calculating properties of binary regions such as are"’a}lpplled to non-boundary cells. The input image is provided

; . as the initial cell values.
perimeter, convexity [7]
« performing medium level processing such as gap filling

I. INTRODUCTION

DESIGN AND TRAINING OF THE CELLULAR AUTOMATA

and template matching [8] A. The Rule Set and its Application
« performing image enhancement operations such as nois&Vorking with binary images means that all combinations of
filtering and sharpening [9] neighbour values give8® possible patterns or rules. All the
« performing simple object recognition [10] tasks covered in this paper should be invariant to certaitialp
transforms, and so equivalent rules are combined. Taking

Manuscript received January X, X; revised November X, X. Mgk was . . . .
supported by the IEEE. into account90° rotational symmetry and bilateral reflection

P.L. Rosin is with Cardiff University. Email: Paul.Rosin@afsac.uk provides about a five-fold decrease in the number of rules,
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yielding 51 in total (see figurel The problem now becomes_F’rOCte‘_jure Cé
. n - m
how to choose a good subset of these rules (which we den'af%ut! iig‘;%
as therule se) to obtain the desired effect. begin
step 1:initialisation
10
B+ T
set “active” flags on required rules

repeat
141+ 1
A<+ B
for each pixelA[z][y] begin

step 2: encode neighbourhood pattern
make 8 bit stringS from values in3 x 3 neighbourhood
if A[z][y] = white then

S <+ one’s complement of

L e B
LB
B O
o O e
w B
o
MM
5
Fr
Ll
LI

step 3:convert pattern to rule ID
C = LUT[S]

step 4: conditional application of rule
if activgC] = true then
Blz][y] « invert (Alz][y])

R R BBl
i A

Fig. 1. The complete rule set containing 51 patterns after symeseand else
reflections are eliminated. Note there remains the symmetryeotogh half of Blz][y] < Alz][y]
the set being equivalent to the lower half after reversalla€lband white. endfor

The 51 neighbourhood patterns are defined for a centgal untl A =5 ori =M

black pixel, and the same patterns are inverted (i.e. black a
white colours are swapped) for the equivalent rule cornedpo
ing to a central white pixel. According to the applicatiot® g 2. The basic algorithm for applying the CA. The processmplying
are several possibilities: the rules continues until the system has converged or the auailterations
p
« both of these two central black and white rule sets c4iiS 'éached a preset maximum.
be learnt and applied separately,

» the two rule sets are considered equivalent, and egghch jteration all the image pixels are notionally processe
corresponding rule pair is either retained or rejected ff narallel. However, since we use a sequential operatien th
use together, leading to a smaller search space of poss'ﬁ'@cessed pixels are stored in a secondary infagestead,
rule sets, and then copied back to imagé at the end of each iteration.

« just one of the black and white rule sets is appropriatg, step 4 the pixels are copied to imageand inverted if
the other is ignored in training and application. the rule corresponding to thx 3 neighbourhood pattern is

Examples of the latter two approaches will shown in thi the rule set. This cycle is repeated until convergencéer t

following sections. maximum desired number of iterations is reached (fixed at 100
Typically the overall operation of the CA is such that at eagh all the examples shown in this paper).

pixel the rule set is tested to check if any of its rules makeh t

pixel neighbourhood pattern. If so, the central pixel colsu B computational Complexity

inverted, otherwise it remains unaltered. The individuaps

T e o sy 2wl avalable (5] (47, 18], the uming me of the Ci
ge, P 9 moderate. At each iteration, if there afe pixels, and a

i ; ]
which have been chosen to be in the rule set. In Step 2 fhe! ) o
8 pixel values in the3 x 3 neighbourhood are extracted, andnelghbourhood size ol (where N = § in this paper) the

concatenated to form an 8 bit string. If the two rule setslier t Computational complexity i®( V). Note that the complexity

: . : : . is independent of the number of rules available or active.
central pixel being white and black are considered equitale . o : . .
To give an indication of the running times, to denoise

(see the paragraph above) then the instances of a cerﬁqzél binary 1536 x 1024 images in section IlI-A on a 2.0

white pixel are inverted (using ones complement) to form tlEHz Pentium 4 with programs coded in C, took between
corresponding equivalent pattern for a central black pikak 1-55 seconds using & x 3 median filter ané between 5—

extracted pattern (one of 256 possibilities) is converigo i : : . .
S . . : 15 seconds using the CA, depending on how many iterations
the rule ID (one of 51 possibilities), in which symmetrieslan . S .
yyere required. Of course, training the CA takes considgrabl

reflections have been removed. This can easily and eﬁ'y'enlonger, but this is not a problem since it can be carried ot of

be performed using a look-up table (LUT) — Step 3. Aﬁne. Again, depending on how many iterations of the rules,

IThe rules are shown with a black central pixel — which is flppdter and how many rule combinations were considered, this took
application of the rule. The neighbourhood pattern of eighite and/or black petween 30-60 minutes.

(displayed as gray) pixels which must be matched is shown. Uleeset is ; ;
shown (left to right) in the order that the rules were addeth®set by the Convergence of the CA is not guaranteed. As a simple

SFFS process. counter-example, consider the rU applied to the image

Even without the specialised hardware implementationts tha
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configuratiorm, (where shaded squares indicate black pixeldearning the training set was not fixed during evolution, but

Repeated application of this rule (in which the rule is aggbli gradually increased in difficulty. Thus, once initial saduts

to both black and white pixels as in the noise filterinfor simple versions of the problem were learnt, they would

application in section IlI-A) results in the output alteting be extended and improved by evolving the data to become

between ™ and P, In other situations convergence doesnore challenging. Instead of GAs Ande al. [24] used

occur, but is slow. For instance, the two ruls and ™ will @ standard genetic programming framework. Since this was

erode the end of a single pixel width rectilinear spiral, ohi Computationally expensive it was run in parallel on 64 PCs.

could be half the number of image pixels! and so the numbgxtending the density classification task to 2D grids,ehee

of iterations equals the length of the spiral. Nevertheliesthe Moraleset al. [25] again applied standard GA to learn rules.

examples presented in this paper, convergence was actifeved ! comparison to such evolutionary methods, a determaisti

all but one instance (of the B-rule CA), and required at motgature selection method called the sequential floatingdcd

a few tens of iterations. search (SFFS) [26] is very widely used in the building classi
By more careful coding several speedups could be achiev8! Systems. Several studies have compared the effecéisene

For instance, the assignment < B at the beginning of Of SFFS against alternative strategies for feature sefeckor

the repeat loop in figure 2 would be more efficiently imlnstance, Jain and Zongker [27] evaluated fifteen featusese

plemented by swapping buffer references rather than cgpyion algorithms (including a genetic algorithm) and fouhdtt
all the pixel values as is currently implemented. Other mofR¥erall SFFS performed best. Other experiments on difteren
sophisticated techniques involve avoiding processing esoiiata sets found that there was little difference in effectess
pixels by learning (or having prespecified) certain pattigeng. Petween GAs and SFFS [28], [29]. Therefore, we have used

blocks of empty cells), simultaneously processing muétipISFFS rather than evolutionary methods since it has several
neighbourhoods, etc. advantages: 1/ it is extremely simple to implement, 2/ it is

relatively fast, providing a good compromise between speed
o and effectiveness.

C. Training Strategy The SFFS algorithm can be described as follows. Ret

Most of the literature on cellular automata studies thecgffedenote the rule set at iteratiérand its score bd (R;). In our
of applying manually specified transition rules. The ineerscase,J (R;) is computed by applying the CA with the rule set
problem of determining appropriate rules to produce a ddsirR; to the input image as specified in figure 2, and returning
effect is hard [19]. In our case, if separate black and whithe error computed by one of the objective functions deedrib
rule sets are used, there a@¥&? ~ 5 x 103° combinations in the next section. The initial rule s@&, is empty. At each
of rules (possible rule sets) to be considered! Under certaieration: all rules are considered for addition to the rule set
conditions (when adding a feature to a subset does not decre®; ;. Only the rule giving the best score is retained, to make
the criterion function) optimal feature selection is tedite and R;. This process is repeated until no improvements in score
can be performed using branch and bound algorithms for ea¢e gained by adding rules (an alternative termination isile
ample [20]. However, in general an optimal selection of sulevhen a known desired number of rules has been found). This
cannot be guaranteed without an exhaustive enumerationdetcribes the sequential forward search, which is extetaled
all combinations [21], and this is clearly generally imgreal. the sequential floating forward search by interleaving leetw
A simple approach would be to rate the effectiveness of eaehch iteration the following test. One at a time, each rule in
rule when applied independently, and then use this criteido R; is removed to find the rule whose removal provides the
direct construction of rule combinations. However, in pise candidate rule seR)_, with the best score. If this score is
this does not work well, and methods are required that revésmtter than/ (R;_1) thenR; is discardedR;_ is replaced by
at least some of the inter-rule relations. R;_,, and the process continues with the addition of &tte

In the literature on automatically learning rules for CAsule. OtherwiseR,_, is discarded, and the process continues
most of the papers focus on a single, somewhat artificial, exith the addition of the; + 1'th rule to R;. Whereas the
ample which is a version of the density classification pnoblestandard SFFS algorithm continues to remove rules one after
on a 1D grid. Given a binary input pattern, the task is to deciéinother while this improves the score, the version used here
if there are a majority of 1s or not, i.e, a single binary outeo only removes a single rule between adding two rules, andtend
For CAs with rules restricted to small neighbourhoods this to speed up the training process. A procedural descriptfon o
a non-trivial task since the 1s can be distributed through tthe SFFS algorithm is given in figure 3.
grid, and so it requires global coordination of distant<#fat As an alternative to SFFS, Taguchi's orthogonal array
cannot communicate directly. method for factorial design [30] was also considered, but it

Evolutionary solutions appear to be preferred. Mitchedll consistently gave worse results than SFFS, and will not be
al. [22] used a standard genetic algorithm (GA) to solvdescribed any further.
the density classification task. Some of the difficultiesythe The power of training algorithms such as those described
encountered with the GA learning were 1/ breaking of synina this section is that all that is required is 1/ a set of tiregn
metries in early generations for short-term gains, and &/ thmages, 2/ a set of corresponding target (i.e. ideal) output
training data became too easy for the CAs in later genémages, and 3/ an objective function for evaluating the iual
ations of the GA. Julle and Pollack [23] tackled the lattesf the actual images produced by the CA, i.e. the error betwee
problem using GAs with co-evolution. To encourage bettéhe target output and the CA output. If this is available ttien
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Procedure SFFS

begin

step 1:initialisation

E. Extensions
There are many possible extensions to the basic CA mech-

;‘; 0 anism described above. In this paper two modifications were
At implemented and tested. The first is based oreval’s [31]
do

step 2: select and add the best rule
rt — argmin,gr, J(Ri +7)
Rit1 R+t

14141

step 3:select the worst rule

r~ <= argminger,; J (R; — 1)

step 4: conditional removal of worst rule
if J(Ri—r") <J(Ri)

B-rule class of one dimensional CA. Each rule tests the value
of the central pixel of thereviousiteration in addition to the
usual pixel and its neighbour’s values at tharent iteration.
The second variation is to split up the application of thesul
into two interleaved cycles (denoted the 2-cycle appradah)
the even numbered iterations one rule set is applied, arfekin t
odd numbered iterations the other rule set is applied. Tle tw
rule sets are learnt using SFFS as before, and are not tegdtric

then .
Rigr Ry —r— to be disjoint.
else
Rit1 < Ri [1l. NOISEFILTERING
1 i+1 . .
while J (R;) < J(R;_1) and unassigned rules remain A. Binary Image Processing

end The first experiment is on filtering to overcome salt and

pepper noise. Two large binary imagd$36 x 1024 pixels)
Fio.3. The sliahtlv modified version of th il loa ’ o were constructed, one each for training and testing, and
allgbriihm l?SZ(IJg; iné/i\r/Ti]gulallerul\elir:r?andoenofe(si%];ir:jI?hec;g(:o?revvizrcosne\gﬁed conglsted of a compqsne of Seve@(i x 256 SUblmageS.
by applying the objective functiod (which is to be minimised) to the subsetObtained by thresholding standard images. In the following
of rulesR;. figures demonstrating the results of processing, only small
subparts of the test image are shown so that the fine detail is
clearly visible. Varying amounts of noise were added, and fo
training process should be able to select a good (but typicagach level the CA rules were learnt using the various stiegeg
not optimal) set of rules to produce the functionality insjiliy and evaluation criteria described above. In all instanbes t
specified by the training input and target images, with thales were run for 100 iterations. It was found that using the
following caveats: 1/ the image processing function needs $FFS method with the RMS error criterion provided the best
be computable using the available range of rules, and 2/ tiesults, and unless otherwise stated all the results sheet u
objective function is appropriate for the problem, since ttthis setup.
optimisation process depends crucially on it. For comparison, results of filtering are providing using 1/ a
3 x 3 median filter and 2/ the mathematical morphology (MM)
operation of an opening followed by closing using a square
structuring element. While there are more sophisticateerdilt
in the literature [32] these still provides a useful benchma

Moreover, the optimal parameters (number of iterationsef t

~ An objective function is required to direct the SFFS, whichegian and width of the structuring element) were deterchine
is essentially a hill climbing algorithm, and various errofy, the testimage, giving them favourable bias.

measures have been considered in this paper. The first is roogk; |ow noise levels § = 0.01) the CA learns to use a single
mean square (RMS) error between the input and target imaﬂﬁe to remove isolated pixels®. As the RMS values show

In some applications there will be many more black pixef(able 1) this is considerably better than median filterirtjch
than white (or vice versa) and it may be preferable to quantify these conditions has its noise reduction overshadoweieby
the errors of the black pixels separately from the white sThjpss of detail. The B-rule CA produces even better resutis th
is done by computing the proportiail of black target pixels the basic CA. Fifty rules were learnt, although this is pidipa
incorrectly coloured in the output image, and likewi8é is far from a minimal set since most of them have little effect on
computed for white target pixels. The combined error is takghe evaluation function during training. As before, thetfitse
asB+W. is @ applied when the central pixel is a different colour in
The above measures do not consider the positions of pixele previous iteration. In contrast, most of the remaininigs
In an attempt to incorporate spatial information, the disé&d are applied when the central pixel is the same colour in the
at each incorrectly coloured pixel in the output image tgrevious iteration. The difference in the outputs of theibas
the closest correctly coloured pixel in the target image ind B-rule CAs is most apparent on the portion of the test
calculated. The final error is the summed distances. Thﬁage Containing the f|ne|y patterned background to Lincoln
distances can be determined efficiently using the distanggjure 4), which has been preserved while the noise on the
transform of the target image. face has still been removed. The 2-cycle CA produces idaintic
A modification of the above is the Hausdorff distanceesults to the basic CA.
Rather than summing the distances only the maximum distancét greater noise levels the CA continues to perform con-
(error) is returned. sistently better than the median and morphological filtee® (

D. Objective Functions
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TABLE |
RMS ERRORS OF FILTERED VERSIONS OF THE TEST IMAGE CORRUPTED BYNS3LE PIXEL SALT AND PEPPER NOISETHE NUMBERS IN BRACKETS
INDICATE THE NUMBER OF ITERATIONS OF THE MEDIAN FILTER OR THESTRUCTURING ELEMENT SIZE THAT GAVE THE BEST RESULTS ON THtest

IMAGE.

S &P || orig. median MM CA CA CA
prob. 1 iteration | 100 iterations| optimal iterations B-rule | 2 cycle
0.01 17.9 42.5 54.1 42.5 (1) 179 (1) | 141 12.1 14.1
0.1 57.0 45.0 55.4 45.0 (1) 40.6 (2) | 32.4 31.8 32.3
0.3 99.0 55.8 59.3 53.3 (2) 69.0 (2) | 47.6 47.7 47.6

figure 5 and table I). Ap = 0.1 the learnt CA rule set i
and required 31 iterations for convergence.pAt 0.3

the learnt CA rule set is%] M- ] (] B A 4ng required

21 iterations for convergence. Again the 2-cycle CA produce =~
little improvement over the basic CA, while the B-rule Clamd
does atp = 0.1 but notp = 0.3. The B-rule rule sets are?
reasonably compact, and the one foe= 0.1 is shown: the ~
rule set applied when the central pixel is a different coliour 7
the previous iteration i< | & \while for the same coloured
%nﬁlﬁxgﬁhip;wous iteration the rule seiliaia a1 . T
Increasing levels of noise obviously requires more fillgringg.
to restore the image. It is interesting to note that not omalyeh g
more rules been selected as the noise level increases,sbut
that, for the basic CA, they are strictly supersets of eabkrot
To test that the training data was sufficiently represerdati
to enable a good rule set to be learnt, cross validation _
performed. The training and test images were swapped\f’
that a new rule set was learnt from the original test dat
and then the CA was applied with these rules to the origin*
training image. The RMS errors obtained were very similar
the values in table |. Over the three versions of the CA and t,*™
three noise levels the maximum difference in correspondi”ﬂ“"
RMS values was 1.7, and the second largest was only 0.5. (d)
The second experiment makes the noise filtering MOER 4 sait and pepper noise affecting single pixels odgrmith a
challenging by settingd x 3 blocks, rather than individual probability of 0.01; (a) original, (b) original with addeaise, (c) 1 iteration
pixels, to black or white. However, the CA still operates offf median (d) filtered with CA, (e) filtered with B-rule CA.
a 3 x 3 neighbourhood. Given the larger structure of the
noise larger § x 5) median filters are used for comparison.
However, at low noise levelsp(= 0.01) the 3 x 3 median

gave a lower RMS error than the x 5 although the later . . .
. , results of applying the same rules learnt during the presiou

was better at high noise levelp & 0.1). Nevertheless, the . . :

. . : e>iper|ments are shown in table Ill, where it can be seen that
basic CA outperformed both medians and the morphologlc‘tﬁ . : i
i - N e CA again outperformed the median and the mathematical
filter_(table 11). '_A‘tp - 9'01 Fhe learnt rule set w morphology opening followed by closing. Since the images
e ¥ and required 42 iterations for convergence. The B-rulgyntain very fine detail (the height of an upper case characte
CA further improved the result, and this can most clearly b petween 8 and 13 pixels) median filtering was too severe
seen in the fragment of text shown in figure 6. At= 0.1 (gegrading rather than improving the image) for moderate
(figure 7) the learnt rule set wakd 0 P R - e [ amounts of noise. Likewise, for moderate amounts of noise th
o] i o e A and even after 100 iterations the CA had natpening/closing tended to degrade the image for strugurin
converged. The 2-cycle CA showed only occasional, margirelements larger thah x 1. For the more severg x 3 block
improvement over the basic CA. noise multiple iterations of the median could be effectingt,

As it was found that the CA was particularly effective fomere still outperformed by the CA. The opening/closing did
the portions of text in the noisy images, further tests wene p not work at all well however, as structuring elements large
formed on four images each made up from a scanned portiemough to eliminate the noise also removed all the finer Idetai
of text (each image containing a different font style/siZéje of the text.
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TABLE I
RMS ERRORS OF FILTERED VERSIONS OB X 3 PIXEL SALT AND PEPPER NOISE

S&P orig. 3 x 3 median 5 x 5 median MM CA CA CA
prob. 1 iter. | 100 iter. { opt. iter. 1 iter. | 100 iter. { opt. iter. B-rule | 2 cycle
0.01 53.1 60.9 58.9 56.1 (3) 62.6 79.3 62.6 (1) | 53.1 (1) | 448 | 37.7 44.6
0.1 141.0 | 135.0 116.5 | 116.5(39) | 125.0 95.1 94.5 (25) | 1314 (4)| 92.4 | 89.9 92.9
TABLE Il

RMS ERRORS OF FILTERED VERSIONS OF THE SCANNED IMAGES OF TEXT CRHBPTED BY SALT AND PEPPER NOISE

(d)

Fig. 5.

noise || orig. medan [ MM | CA B-rule | 2 cycle
— 18.16 69.22 (1) 18.16 (1) 11.02 11.56 11.02
2 |[1835 | 9621 (2) | 1835 (1) | 1323 | 1489 | 13.23
Il 18.04 88.18 (2) 18.04 (1) 16.12 16.08 16.12
1807 | 6841 (1) | 1807 (2) | 12.22 | 12.30 | 12.22
£ [ 5700 ] 6993 (1) | 57.00 (1) | 4573 | 4151 | 44.27
© =} 57.21 96.40 (2) 57.21 (1) 52.02 47.97 51.65
E I 56.78 88.08 (2) 56.78 (1) 57.79 54.07 57.81
@ 56.89 69.65 (1) 56.89 (2) 43.28 41.44 42.75
. 99.00 71.66 (2) 94.51 (2) 68.96 68.98 68.83
=} 98.98 97.81 (2) 98.98 (1) 87.40 87.38 87.03
I |[799.05 | 89.40 (2) | 99.05 (1) | 8340 | 8338 | 83.08
98.88 74.87 (2) 93.55 (2) 69.30 69.34 69.17
— 53.52 75.68 (25) 53.52 (1) 42.40 40.71 42.42
2 (75336 | 10035 (2) | 5336 (1) | 5832 | 5050 | 58.46
¥ | I || 5360 | 9306 (2) | 53.60 (1) | 58.02 | 5249 | 51.78
3 | & |[ 5353 | 7922 (2 | 5353 (1) | 50.55 | 44.07 | 50.96
2 - 140.52 | 119.70 (35)| 140.52 (1) | 75.47 77.38 75.37
RC =) 140.46 | 133.98 (42)| 140.46 (1) | 104.59 | 106.52 | 104.28
I |[140.19 | 129.47 (46)| 140.19 ()| 94.15 | 9576 | 93.97
140.91 | 121.30 (58)| 140.91 (1)| 80.48 | 82.74 | 80.22
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Fig. 6. Salt and pepper noise affectidgx 3 blocks occurring with a
probability of 0.01; (a) original, (b) original with addeaise, (c) 3 iterations
of median filter, (d) 1 iteration o6 x 5 median filter, (e) filtered with CA,
(f) filtered with B-rule CA.

of median, (d) filtered with CA, (e) filtered with B-rule CA.
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TABLE IV
RMS ERRORS OF FILTERED VERSIONS OF GRAY LEVEL IMAGES CORRUPTEDYB/ARIOUS TYPES AND LEVELS OF NOISE EACH SET OF THREE ROWS
LISTS RESULTS FOR THREE NOISY IMAGESBARBARA, COUPLE, AND VENICE. THE MEDIAN FILTER WAS RUN FOR THE OPTIMAL NUMBER OF ITERATIONS
DETERMINED FOReach testMAGE. LIKEWISE, THE TWO PARAMETERS(h AND k) FOR THEMRHF FILTER, AND THE WIDTH OF THE MM STRUCTURING
ELEMENT WERE OPTIMISED FOR EACH TEST IMAGEFOR THE TEST DATA WITH 3X 3 BLOCK SALT AND PEPPER NOISE RESULTS ARE SHOWN FOR BOTH
THE CA TRAINED ON 3x 3 BLOCK NOISE (p = {0.01,0.1}) AS WELL AS THE CA TRAINED ON SINGLE POINT NOISE(p = 0.6). FOR EACH ROW(I.E.
EACH NOISY IMAGE THAT WAS FILTERED) THE LOWESTRMS VALUE IS HIGHLIGHTED.

noise model unfiltered | median relaxed MRHF MM CA HMT
median 0.1 0.3 0.6 universal | Wiener
Gaussian 10.00 14.48 6.94 8.46 10.00 9.79 11.91 16.19 10.60 6.90
oc=10 9.97 10.27 8.90 6.97 9.40 7.86 7.78 11.67 7.22 6.38
9.73 6.94 14.48 6.02 7.75 7.04 6.19 9.19 5.93 5.59
Gaussian 24.63 16.74 10.62 15.10 | 20.39 17.12 15.44 17.11 15.42 11.64
oc=25 24.71 12.31 12.31 12.76 | 16.78 15.92 12.41 13.23 11.95 10.88
23.26 10.62 16.74 11.48 | 15.19 15.10 11.10 11.13 10.79 10.06
salt and pepper 43.94 14.66 6.41 12.82 | 15.90 11.97 11.73 16.15 19.26 24.02
p=0.1 42.72 10.29 8.40 8.62 9.50 9.56 6.94 11.54 16.21 19.87
47.59 6.40 14.66 7.71 8.28 9.26 4.87 9.00 17.56 23.41
salt and pepper 107.65 23.72 19.83 62.42 | 84.75 86.26 54.46 23.36 39.14 40.56
p=0.6 104.60 19.75 19.75 59.38 | 83.63 83.41 51.77 19.64 32.72 34.33
116.37 19.82 23.72 66.79 | 88.56 92.37 57.13 19.96 52.05 52.95
unfiltered | median | r. median | MRHF MM (0.01) 3x3 | (0.1) 3x3 0.6 universal | Wiener
salt and pepper 41.08 17.85 12.74 36.30 | 24.96 13.13 20.25 17.79 33.22 39.67
3% 3 blocks 40.03 13.55 13.56 33.24 | 15.89 12.11 19.15 13.60 33.17 39.00
p=0.01 44.45 12.73 17.85 35.58 | 13.42 13.29 19.21 12.32 35.64 43.45
salt and pepper 108.23 76.64 82.15 97.85 | 82.05 81.91 25.01 72.48 60.23 97.8
3% 3 blocks 105.37 73.94 73.94 94.80 | 81.29 79.35 22.64 69.79 56.7 95.07
p=0.1 117.58 100.48 76.64 106.08 | 85.27 88.93 26.04 77.42 70.3 107.46

\ 4

Fig. 7.

(d)

Salt and pepper noise affectiBgx 3 blocks occurring with a
probability of 0.1; (a) original, (b) original with added ise, (c) 39 iterations
of median, (d) 25 iterations df x 5 median, (e) filtered with CA, (f) filtered

B-rule CA.

()

()

B. Gray-Scale Image Processing

While the previous discussion and results were restricted to
binary images it would obviously be advantageous to work
with gray level images too. The natural difficulty is that
increasing the range of intensities will also vastly insea
the number and/or complexity of the rules. However, one way
to avoid this consequence is to use threshold decompasition
in which the gray level image is decomposed into the set of
binary images obtained by thresholding at all possible gray
levels. Binary filtering is applied to each binary image, &mel
results combined — in our case we simply add the set of filtered
binary images. Thus there are two advantages of this approac
the same setup as binary image processing can be reused,
which means that, given the smaller search space compared
to that for gray level processing, faster training of the CA
is achieved. The downside is that, after training, runnimg t
CA is less efficient given the overhead of performing thresh-
old decomposition. Fot. intensity levels the computational
complexity become®(LPN) per iteration. In addition, there
is no equivalence between training and applying the CA on
gray level imagery as opposed to the set of thresholdedpbina
images. This means that the training is not necessary optima
for grey level processing.

The results of filtering different types and magnitudes of
noise on three images (barbara, couple, and venice) aed list
in table IV. The same filters are used as in the previous
section as well as two of the many modifications of the
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median in the literature: the relaxed median filter [33] RN A RREHEH

the median-rational hybrid filter (MRHF) [34]. These ard ;
additionally compared against two techniques based orehidgg
Markov trees (HMT) applied to wavelet coefficients. The firgs
constructs a “universal” model [35] of the image, while the§
second estimates the model parameters and applies a Wi
filter with those parameters [36]. It can be seen that the HME
performs the best for Gaussian distributed noise, but theat
CA performs best on the salt and pepper noise. For the cas
noise probability 0.1 it is noteworthy that the CA trained of
p = 0.3 is actually consistently more effective than that traine
onp = 0.1. This could either be an effect that arises becauf
the CA was trained on binary images rather than gray scale $§
else indicate poor generalisation from the training datail&Vvh™

it is advantageous to train with data that matches the eggect (@) (b)

testsetas cI(_)ser as p_OSSIle, it can be seen that for_ eab_h Of_Fig. 9. Difference images (intensities scaled by a factorhoée) between
Gaussian noise and single pixel salt and pepper noiseriferthe uncorrupted barbara image and (a) 9 iterations of the mealai (b) the
tasks the CA outperformed the median filter for a range &f Note the texture removed by the median filter.

training data set parameter values.

noise it has also blurred out most of the texture on the ctothe
This is made clearer in figure 9 which shows the difference
images between the results and the source image, with all
values scaled by factor of three to help visualisation. kénli
the median, the CA has managed to retain the majority of the
detail.

Running times for applying the CA to the above images
(512 x 512 pixels, 236—-256 gray levels) varied depending
on the number of iterations. The decomposition of the gray
level image into binary images took 20 seconds, while recon-
struction of the filtered binary images to a gray level image
took 7 seconds — the difference in times occurs only because
each of these tasks was carried out by separate stand-alone
programs that handled I/O in different ways. Applying the
CA to the set of decomposed binary images took between
50-220 seconds. Run-time would be improved by performing
the threshold decomposition within the CA program, thereby
minimising the large amount of slow I/O currently performed

IV. THINNING

The second application of CAs we show is thinning of black
regions, and so rules were only triggered by pixels. Trgnin
data was generated in two ways. First, some one pixel wide
curves were taken as the target output, and were dilated by
varying amounts to provide the pre-thinned input. In additi
some binary images were thinned by the thinning algorithm
by Zhang and Suen [37]. Both sets of data were combined
to form a composite training input and output image pair
. . (see figures 10a&b). Contrary to the image processing tasks
(d) in the previous sections the RMS criterion did not produce
_ o of the barbara imade witf 3 salt and peoper noise the best results, anq in;tead the summed proportiqn; of blac
(zg':Sb.o(f)), A(\br)mgn Ii(t)gr;tions of median, ?c) filtered with CA,p (cri))punivars pixel errors and white pixel errors was used. Surprisingly t
HMT summed distance and Hausdorff distance error measures gave

very poor results. It had seemed likely that they would beemor

An example of the outputs of the filtering are shown imappropriate for this task given the sparse nature of skadeto
figure 8. The CA has removed most of the 3 salt and pepper which would lead to high error estimates for even small mislo
noise, unlike the HMT method. While the optimal result frontations if spatial information were not incorporated. Hoerg
the 3 x 3 median filter has managed to eliminate slightly mori was noted that they did not lead the SFFS procedure to a
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good solution. Both of them produced rule sets with high:&m &
errors than the rule set learnt using RMS, even according ﬂ <Q—l-—
their own measures. (;> @l, &
The test image and target obtained by Zhang and Sue » ©
thinning algorithm are shown in figures 10c&ad. The baS|c c.00 QQ
does a reasonable job (figure 10e), and the rule S
= anfe g ms M. The last rule has little effect, only changmg
three pixels in the image. Some differences with respect |
Zhang and Suen’s output can be seen. In the wide bla <
regions horizontal rather than diagonal skeletons araebdd,
although it is not obvious which is more correct. Also, i o PN
more significant problem is that some lines were fragmente| 5¢ o
This is not surprising since there are limitations when gsir| [0 AR\
parallel algorithms for thinning, as summarised by Lamn
al. [38]. They state that to ensure connectedness either the ()
neighbourhood needs to be larger tlaB. Alternatively,3x 3
neighbourhoods can be used, but each iteration of appiicat
of the rules is divided into a series of subcycles in whic X
different rules are applied. Yoo
This suggests that the two cycle CA should perform bett(‘\
The rule set learnt for the first cycle@ . . = o
and the second cycle rule set is a subset of the M@ Eae
ant) Again the last and least important rule from the first cycl
has little effect (only changing 6 pixels) and so the basic C™
and the first cycle of the B-rule have effectively the same ru :
set. As figure 10f shows, the output is a closer match to Zhang
and Suen’s, as the previously vertical skeleton segmesets ar (©)
now diagonal. However, connectivity has not been improve :

V. CONVEX HULLS A J

The next experiment tackles finding the convex hulls (i‘ I L'
all regions in the image. If the regions are white then rule. ! ;y
need only to be applied at black pixels since white p|xe‘>
should not be inverted. Again, like the thinning task, th (
summed proportions of black pixel errors and white pixe ]@‘ % g
errors was used. After training the learnt rule set was appli~ & o fﬁx
to a separate test image (figure 11a). Starting with a S|mp---'-' R s R
approximation as the output target, a four-sided hull, the. (e) )
axis aligned minimum bounding rectangle (MBR), the CA is Image thinning: (a.b) training input and target oRKc) test
able to produce the correct result as shown in figure 11b. T| gut (d) test image thinned using Zhang and Suen’s algurife) test image
rule set learnt |& E E E m @ E thlnned with CA, (f) test image thinned with 2 cycle CA.

Setting as target the digitised true convex hull (see fig-
ure 11c) the CA learns to generate an eight-sided approxi-
mation to the convex hull (figure 11d) using the rule ﬂ longer convex although is is a closer match to the target in
E @ E @ E Interestingly, in comparison to the eightterms of its RMS error. This highlights the importance of the
sided output the only difference to the rules for the fodlesi evaluation function. In this instance simply counting peéxis
output is the removal of the single rul. The limitations of not sufficient, and a penalty function that avoids non-canve
the output convex hull are to be expected given the limitatio Solutions would be preferable, although computationalgyren
of the current CA. Borgefors and Sanniti di Baja [39] deseribdemanding.
parallel algorithms for approximating the convex hull of a Another approach to improving results is inspired by the
pattern. Thei3 x 3 neighbourhood algorithm produces similathreshold decomposition described in section IlI-B. Rathe
results to figure 11d. To produce better results they hadeo uhan develop more complicated rules, the simple rules are
larger neighbourhoods, and more complicated rules. applied to multiple versions of the data. In this case, thegen

Therefore, extending the basic CA's capability by applying rotated by equal increments betwe¥nand45°. The basic
the 2-cycle version should enable the quality of the convéXA is applied, and the outputs rotated baclkOto The eight-
hull to be improved. As figure 11e shows the result is nsided outputs are combined by keeping as convex hull pixels
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only those that were set as convex hull pixelglinthe outputs. computational difficulties. For example, ignoring symriesty
This process is demonstrated in figure 11f, in which the fi@7 x 7 window yields 2*8 ~ 2.8 x 104 rules, and22"”
orientations0®, 9°, 18°, 27°, and36° have been combined todifferent rule sets to consider. One possibility we expiore
produce a close approximation to the convex hull. was to build larger neighbourhoods, but aggregate values

within sub-windows. For instance, figure 12 show$ & 5
neighbourhood, and the solid and dashed lines indicate the
eight overlapping sub-windows. From each sub-window only
the majority pixel colour was used, and so the total number of
patterns i28 as before. Thus, a larger neighbourhood has been
achieved without increasing the search space, but at thte cos
of coarser granularity within the neighbourhood. However,
experiments on both the noise removal and thinning tasks did
not demonstrate any improvements in results over the basic
3x 3 neighbourhood approach. An alternative is a modification
of the 2-cycle approach, in which the image is split into
subfields (e.g. each field containing alternate pixels) auhe
subfield processed at separate, interleaved iterations [5]

* L.

14!
> o T
& T~

w
>
o

(@) (b) () I .
c® v wé
o 00 0 0
® ® ® ® 0. 0 0 0
o o o 00 0 e @
D@ PHa e LBLIR BUI
" " . Fig. 12. 5 x 5 neighbourhood, showing sub-windows from which the
majority pixel colour is extracted. Many other arrangemeriitsub-windows
are possible.
(d) (e) ®

Fig. 11. Results of learning rules for the convex hull. (@} ieput; (b) CA Larger numbers of rules leads to the second consideration:
rgstétAwith l;:lBRthas targett ov?rlaid I0(1dinpult; (Ct)- targzet cg](xmll oILtJtpytL; can ad_ditional_ cons_trgints be includ_ed to prL_me the_ search
Ec)) as tarllre;:t ov\\/lérla(i((::i) :rf inarggf; (gvg\r/gjlaignc;zprtéééﬁ)gelfgd byrigtr;b\ilr\?ing space, |-mprov.|n.g efﬁmency and possibly eﬁeCtlveneSS?th
five orientations. alternative training strategies to SFFS should be consitjer
such as evolutionary programming.
Fourth, in the current formulation, a cell’'s state is eqldwh
VI. CONCLUSIONS ANDDISCUSSION to its intensity. If cells were allowed extra states, sefeafimm
The initial experiments with CAs are encouraging. It war in addition to their intensities, the power of the CA syste
shown that it is possible to learn good rule sets to perforwould be substantially increased. A simple example of this i
common image processing tasks. Moreover, the modificatioliting holes in a binary image, which would be difficult to
to the standard CA formulation (the B-rule and 2-cycle CAg)erform with the current CA architecture. A simple solution
were found to improve performance in several instances. fier this task was given by Yang [40], which differed from
particular, for filtering salt and pepper noise, the CA perfed our approach in two ways: 1/ the original source image was
better than standard median filtering. available at all iterations (effectively providing an atiloinal
While the examples in this paper demonstrated covergtate), and 2/ the CA was not initialised by the input image to
fairly traditional tasks, the important benefit of the tednCA be processed. Instead the initial state was an all blackemag
approach is its flexibility. Having shown the capabilitie owhich was subsequently eroded around the holes.
such a system the next step will be to apply it to less commonFifth, most CAs use identical rules for each cell. To enhance
image processing tasks, e.g. filtering of more specific atle flexibility it may be necessary to extend the approach to
unusual types of noise, and more specialised feature aatectnon-uniform CA, in which different rules could be applied in
To further improve performance there are several areasdifferent locations, and possibly also at different timepst
investigate. The first is alternative neighbourhood defing For instance, as the state of a cell changes this could cause
(e.g. larger neighbourhoods, circular and other shapeghneithe rule set to switch.
bourhoods, different connectivity), possibly in combiaat Finally, an important topic to develop is the objective func
(e.g. not all rules need to have the same neighbourhotiah, which is critical to the success of the system. Althoug
size or shape). Of course, larger neighbourhoods can leadséweral, fairly general, objective functions were evaddat
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there may be better ones available — particularly if they ajz]
tuned to the specific image processing task. For instance, fo
thinning it would be possible to include some factor relgtin[ZS]
to connectivity so as to penalise fragmentation of the skrle
A similar approach was taken by Kitchen and Rosenfeld [4
for assessing edge maps, using a combination of good ¢
tinuation and thinness measures which were calculatedrwith
3 x 3 windows. Likewise, it was previously noted that for[25]
the convex hull task non-convex solutions should be explici
penalised.
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