
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/1843/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Rosin, Paul L. 2006. Training cellular automata for image processing. IEEE Transactions on Image
Processing 15 (7) , pp. 2076-2087. 10.1109/TIP.2006.877040 

Publishers page: http://dx.doi.org/10.1109/TIP.2006.877040 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 1

Training Cellular Automata for Image Processing
Paul L. Rosin

Abstract— Experiments were carried out to investigate the
possibility of training cellular automata (CA) to perform several
image processing tasks. Even if only binary images are considered
the space of all possible rule sets is still very large, and so the
training process is the main bottleneck of such an approach.
In this paper the sequential floating forward search method
for feature selection was used to select good rule sets for a
range of tasks, namely: noise filtering (also applied to gray scale
images using threshold decomposition), thinning, and convex
hulls. Various objective functions for driving the search were
considered. Several modifications to the standard CA formulation
were made (the B-rule and 2-cycle CAs) which were found in
some cases to improve performance.

I. I NTRODUCTION

Cellular automata (CA) consist of a regular grid of cells,
each of which can be in only one of a finite number of
possible states. The state of a cell is determined by the
previous states of a surrounding neighbourhood of cells and
is updated synchronously in discrete time steps. The identical
rule contained in each cell is essentially a finite state machine,
usually specified in the form of a rule table with an entry for
every possible neighbourhood configuration of states

Cellular automata are discrete dynamical systems, and they
have been found useful for simulating and studying phenom-
ena such as ordering, turbulence, chaos, symmetry-breaking,
etc, and have had wide application in modelling systems in
areas such as physics, biology, and sociology.

Over the last fifty years a variety of researchers (including
well known names such as Stanislaw Ulam and John von
Neumann [1], John Holland [2], Stephen Wolfram [3], and
John Conway [4]) have investigated the properties of cellular
automata. Particularly in the 1960’s and 1970’s considerable
effort was expended in developing special purpose hardware
(e.g. CLIP) alongside developing rules for the applicationof
the CAs to image analysis tasks [5]. More recently there has
been a resurgence in interest in the properties of CAs without
focusing on massively parallel hardware implementations,i.e.
they are simulated on standard serial computers. By the 1990’s
CAs could be applied to perform a range of computer vision
tasks, such as

• calculating distances to features [6]
• calculating properties of binary regions such as area,

perimeter, convexity [7]
• performing medium level processing such as gap filling

and template matching [8]
• performing image enhancement operations such as noise

filtering and sharpening [9]
• performing simple object recognition [10]
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A related development over the last decade is the introduction
of cellular neural networks, an extension of CAs that includes
weight matrices. Both continuous time [11] and discrete
time [12] versions have been applied to a variety of image
processing tasks.

One of the advantages of CAs is that, although each cell
generally only contains a few simple rules, the combination
of a matrix of cells with their local interaction leads to more
sophisticated emergent global behaviour. That is, although
each cell has an extremely limited view of the system (just
its immediate neighbours), localised information is propagated
at each time step, enabling more global characteristics of the
overall CA system. This can be seen in examples such as
Conway’s Game of Life as well as Reynolds’ [13] Boids
simulation of flocking.

A disadvantage with the CA systems described above is
that the rules had to be carefully and laboriously generated
by hand [14]. Not only is this tedious, but it does not scale
well to larger problems. More recently there has been a start
to automating rule generation using evolutionary algorithms.
For instance, Sipper [15] shows results of evolving rules
to perform thinning, and gap filling in isothetic rectangles.
Although the tasks were fairly simple, and the results were
only mediocre, his work demonstrates that the approach is
feasible. (In addition, it should be noted that he used non-
uniform cellular automata in which cells can have different
rules). Another example is given by Adorni, who generated
CAs to perform pattern classification [16].

This paper concentrates on techniques for training CAs to
perform several fairly standard image processing tasks to a
high level of performance. Once this is achieved the benefit
of the approach is that it should be possible to easily retrain
the system to work on other new image processing tasks.

II. D ESIGN AND TRAINING OF THE CELLULAR AUTOMATA

In the current experiments all input images are binary, and
cells have two states (i.e. they represent white or black). Each
cell’s eight-way connected immediate neighbours are consid-
ered (i.e. the Moore neighbourhood). Fixed value boundary
conditions are applied in which transition rules are only
applied to non-boundary cells. The input image is provided
as the initial cell values.

A. The Rule Set and its Application

Working with binary images means that all combinations of
neighbour values gives28 possible patterns or rules. All the
tasks covered in this paper should be invariant to certain spatial
transforms, and so equivalent rules are combined. Taking
into account90◦ rotational symmetry and bilateral reflection
provides about a five-fold decrease in the number of rules,
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yielding 51 in total (see figure 11). The problem now becomes
how to choose a good subset of these rules (which we denote
as therule set) to obtain the desired effect.

Fig. 1. The complete rule set containing 51 patterns after symmetries and
reflections are eliminated. Note there remains the symmetry of the top half of
the set being equivalent to the lower half after reversal of black and white.

The 51 neighbourhood patterns are defined for a central
black pixel, and the same patterns are inverted (i.e. black and
white colours are swapped) for the equivalent rule correspond-
ing to a central white pixel. According to the application there
are several possibilities:

• both of these two central black and white rule sets can
be learnt and applied separately,

• the two rule sets are considered equivalent, and each
corresponding rule pair is either retained or rejected for
use together, leading to a smaller search space of possible
rule sets,

• just one of the black and white rule sets is appropriate,
the other is ignored in training and application.

Examples of the latter two approaches will shown in the
following sections.

Typically the overall operation of the CA is such that at each
pixel the rule set is tested to check if any of its rules match the
pixel neighbourhood pattern. If so, the central pixel colour is
inverted, otherwise it remains unaltered. The individual steps
of the algorithm are given in figure 2. Before processing
the image, in Step 1 a flag is set for each of the 51 rules
which have been chosen to be in the rule set. In Step 2 the
8 pixel values in the3 × 3 neighbourhood are extracted, and
concatenated to form an 8 bit string. If the two rule sets for the
central pixel being white and black are considered equivalent
(see the paragraph above) then the instances of a central
white pixel are inverted (using ones complement) to form the
corresponding equivalent pattern for a central black pixel. The
extracted pattern (one of 256 possibilities) is converted into
the rule ID (one of 51 possibilities), in which symmetries and
reflections have been removed. This can easily and efficiently
be performed using a look-up table (LUT) – Step 3. At

1The rules are shown with a black central pixel – which is flipped after
application of the rule. The neighbourhood pattern of eightwhite and/or black
(displayed as gray) pixels which must be matched is shown. The rule set is
shown (left to right) in the order that the rules were added tothe set by the
SFFS process.

Procedure CA
input: imageI
output: imageB
begin

step 1: initialisation
i← 0
B ← I
set “active” flags on required rules

repeat
i← i+ 1
A ← B

for each pixelA[x][y] begin

step 2: encode neighbourhood pattern
make 8 bit stringS from values in3× 3 neighbourhood
if A[x][y] = white then

S ← one’s complement ofS

step 3: convert pattern to rule ID
C = LUT[S]

step 4: conditional application of rule
if active[C] = true then

B[x][y]← invert (A[x][y])
else

B[x][y]← A[x][y]
endfor

until A = B or i = M
end

Fig. 2. The basic algorithm for applying the CA. The process of applying
the rules continues until the system has converged or the number of iterations
has reached a preset maximumM .

each iteration all the image pixels are notionally processed
in parallel. However, since we use a sequential operation the
processed pixels are stored in a secondary imageB instead,
and then copied back to imageA at the end of each iteration.
In Step 4 the pixels are copied to imageB and inverted if
the rule corresponding to the3 × 3 neighbourhood pattern is
in the rule set. This cycle is repeated until convergence or the
maximum desired number of iterations is reached (fixed at 100
in all the examples shown in this paper).

B. Computational Complexity

Even without the specialised hardware implementations that
are available [5], [17], [18], the running time of the CA
is moderate. At each iteration, if there areP pixels, and a
neighbourhood size ofN (whereN = 8 in this paper) the
computational complexity isO(PN). Note that the complexity
is independent of the number of rules available or active.

To give an indication of the running times, to denoise
the binary 1536 × 1024 images in section III-A on a 2.0
GHz Pentium 4 with programs coded in C, took between
1–55 seconds using a3 × 3 median filter, and between 5–
15 seconds using the CA, depending on how many iterations
were required. Of course, training the CA takes considerably
longer, but this is not a problem since it can be carried out off-
line. Again, depending on how many iterations of the rules,
and how many rule combinations were considered, this took
between 30–60 minutes.

Convergence of the CA is not guaranteed. As a simple
counter-example, consider the rule applied to the image
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configuration , (where shaded squares indicate black pixels).
Repeated application of this rule (in which the rule is applied
to both black and white pixels as in the noise filtering
application in section III-A) results in the output alternating
between and . In other situations convergence does
occur, but is slow. For instance, the two rules and will
erode the end of a single pixel width rectilinear spiral, which
could be half the number of image pixels! and so the number
of iterations equals the length of the spiral. Nevertheless, in the
examples presented in this paper, convergence was achievedin
all but one instance (of the B-rule CA), and required at most
a few tens of iterations.

By more careful coding several speedups could be achieved.
For instance, the assignmentA ← B at the beginning of
the repeat loop in figure 2 would be more efficiently im-
plemented by swapping buffer references rather than copying
all the pixel values as is currently implemented. Other more
sophisticated techniques involve avoiding processing some
pixels by learning (or having prespecified) certain patterns (e.g.
blocks of empty cells), simultaneously processing multiple
neighbourhoods, etc.

C. Training Strategy

Most of the literature on cellular automata studies the effect
of applying manually specified transition rules. The inverse
problem of determining appropriate rules to produce a desired
effect is hard [19]. In our case, if separate black and white
rule sets are used, there are2102 ≈ 5 × 1030 combinations
of rules (possible rule sets) to be considered! Under certain
conditions (when adding a feature to a subset does not decrease
the criterion function) optimal feature selection is tractable and
can be performed using branch and bound algorithms for ex-
ample [20]. However, in general an optimal selection of rules
cannot be guaranteed without an exhaustive enumeration of
all combinations [21], and this is clearly generally impractical.
A simple approach would be to rate the effectiveness of each
rule when applied independently, and then use this criterion to
direct construction of rule combinations. However, in practise
this does not work well, and methods are required that reveal
at least some of the inter-rule relations.

In the literature on automatically learning rules for CAs
most of the papers focus on a single, somewhat artificial, ex-
ample which is a version of the density classification problem
on a 1D grid. Given a binary input pattern, the task is to decide
if there are a majority of 1s or not, i.e, a single binary outcome.
For CAs with rules restricted to small neighbourhoods this is
a non-trivial task since the 1s can be distributed through the
grid, and so it requires global coordination of distant cells that
cannot communicate directly.

Evolutionary solutions appear to be preferred. Mitchellet
al. [22] used a standard genetic algorithm (GA) to solve
the density classification task. Some of the difficulties they
encountered with the GA learning were 1/ breaking of sym-
metries in early generations for short-term gains, and 2/ the
training data became too easy for the CAs in later gener-
ations of the GA. Julle and Pollack [23] tackled the latter
problem using GAs with co-evolution. To encourage better

learning the training set was not fixed during evolution, but
gradually increased in difficulty. Thus, once initial solutions
for simple versions of the problem were learnt, they would
be extended and improved by evolving the data to become
more challenging. Instead of GAs Andreet al. [24] used
a standard genetic programming framework. Since this was
computationally expensive it was run in parallel on 64 PCs.
Extending the density classification task to 2D grids, Jiménez
Moraleset al. [25] again applied standard GA to learn rules.

In comparison to such evolutionary methods, a deterministic
feature selection method called the sequential floating forward
search (SFFS) [26] is very widely used in the building classi-
fier systems. Several studies have compared the effectiveness
of SFFS against alternative strategies for feature selection. For
instance, Jain and Zongker [27] evaluated fifteen feature selec-
tion algorithms (including a genetic algorithm) and found that
overall SFFS performed best. Other experiments on different
data sets found that there was little difference in effectiveness
between GAs and SFFS [28], [29]. Therefore, we have used
SFFS rather than evolutionary methods since it has several
advantages: 1/ it is extremely simple to implement, 2/ it is
relatively fast, providing a good compromise between speed
and effectiveness.

The SFFS algorithm can be described as follows. LetRi

denote the rule set at iterationi and its score beJ (Ri). In our
case,J (Ri) is computed by applying the CA with the rule set
Ri to the input image as specified in figure 2, and returning
the error computed by one of the objective functions described
in the next section. The initial rule setR0 is empty. At each
iteration i all rules are considered for addition to the rule set
Ri−1. Only the rule giving the best score is retained, to make
Ri. This process is repeated until no improvements in score
are gained by adding rules (an alternative termination ruleis
when a known desired number of rules has been found). This
describes the sequential forward search, which is extendedto
the sequential floating forward search by interleaving between
each iteration the following test. One at a time, each rule in
Ri is removed to find the rule whose removal provides the
candidate rule setR′

i−1
with the best score. If this score is

better thanJ (Ri−1) thenRi is discarded,Ri−1 is replaced by
R′

i−1
, and the process continues with the addition of thei’th

rule. Otherwise,R′

i−1
is discarded, and the process continues

with the addition of thei + 1’th rule to Ri. Whereas the
standard SFFS algorithm continues to remove rules one after
another while this improves the score, the version used here
only removes a single rule between adding two rules, and tends
to speed up the training process. A procedural description of
the SFFS algorithm is given in figure 3.

As an alternative to SFFS, Taguchi’s orthogonal array
method for factorial design [30] was also considered, but it
consistently gave worse results than SFFS, and will not be
described any further.

The power of training algorithms such as those described
in this section is that all that is required is 1/ a set of training
images, 2/ a set of corresponding target (i.e. ideal) output
images, and 3/ an objective function for evaluating the quality
of the actual images produced by the CA, i.e. the error between
the target output and the CA output. If this is available thenthe
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Procedure SFFS
begin

step 1: initialisation
i← 0
Ri ← {}

do
step 2: select and add the best rule
r+ ← argminr/∈Ri

J (Ri + r)
Ri+1 ← Ri + r+

i← i+ 1

step 3: select the worst rule
r− ← argminr∈Ri

J (Ri − r)

step 4: conditional removal of worst rule
if J

(

Ri − r−
)

< J (Ri)
then

Ri+1 ← Ri − r−

else
Ri+1 ← Ri

i← i+ 1
while J (Ri) ≤ J (Ri−1) and unassigned rules remain

end

Fig. 3. The slightly modified version of the sequential floating forward search
algorithm used; individual rules are denoted byr, and the score is computed
by applying the objective functionJ (which is to be minimised) to the subset
of rulesRi.

training process should be able to select a good (but typically
not optimal) set of rules to produce the functionality implicitly
specified by the training input and target images, with the
following caveats: 1/ the image processing function needs to
be computable using the available range of rules, and 2/ the
objective function is appropriate for the problem, since the
optimisation process depends crucially on it.

D. Objective Functions

An objective function is required to direct the SFFS, which
is essentially a hill climbing algorithm, and various error
measures have been considered in this paper. The first is root
mean square (RMS) error between the input and target image.

In some applications there will be many more black pixels
than white (or vice versa) and it may be preferable to quantify
the errors of the black pixels separately from the white. This
is done by computing the proportionB of black target pixels
incorrectly coloured in the output image, and likewiseW is
computed for white target pixels. The combined error is taken
asB +W .

The above measures do not consider the positions of pixels.
In an attempt to incorporate spatial information, the distance
at each incorrectly coloured pixel in the output image to
the closest correctly coloured pixel in the target image is
calculated. The final error is the summed distances. The
distances can be determined efficiently using the distance
transform of the target image.

A modification of the above is the Hausdorff distance.
Rather than summing the distances only the maximum distance
(error) is returned.

E. Extensions

There are many possible extensions to the basic CA mech-
anism described above. In this paper two modifications were
implemented and tested. The first is based on Yuet al.’s [31]
B-rule class of one dimensional CA. Each rule tests the value
of the central pixel of thepreviousiteration in addition to the
usual pixel and its neighbour’s values at thecurrent iteration.
The second variation is to split up the application of the rules
into two interleaved cycles (denoted the 2-cycle approach). In
the even numbered iterations one rule set is applied, and in the
odd numbered iterations the other rule set is applied. The two
rule sets are learnt using SFFS as before, and are not restricted
to be disjoint.

III. N OISE FILTERING

A. Binary Image Processing

The first experiment is on filtering to overcome salt and
pepper noise. Two large binary images (1536 × 1024 pixels)
were constructed, one each for training and testing, and
consisted of a composite of several256 × 256 subimages
obtained by thresholding standard images. In the following
figures demonstrating the results of processing, only small
subparts of the test image are shown so that the fine detail is
clearly visible. Varying amounts of noise were added, and for
each level the CA rules were learnt using the various strategies
and evaluation criteria described above. In all instances the
rules were run for 100 iterations. It was found that using the
SFFS method with the RMS error criterion provided the best
results, and unless otherwise stated all the results shown used
this setup.

For comparison, results of filtering are providing using 1/ a
3×3 median filter and 2/ the mathematical morphology (MM)
operation of an opening followed by closing using a square
structuring element. While there are more sophisticated filters
in the literature [32] these still provides a useful benchmark.
Moreover, the optimal parameters (number of iterations of the
median and width of the structuring element) were determined
for the test image, giving them favourable bias.

At low noise levels (p = 0.01) the CA learns to use a single
rule to remove isolated pixels: . As the RMS values show
(table I) this is considerably better than median filtering which
in these conditions has its noise reduction overshadowed bythe
loss of detail. The B-rule CA produces even better results than
the basic CA. Fifty rules were learnt, although this is probably
far from a minimal set since most of them have little effect on
the evaluation function during training. As before, the first rule
is , applied when the central pixel is a different colour in
the previous iteration. In contrast, most of the remaining rules
are applied when the central pixel is the same colour in the
previous iteration. The difference in the outputs of the basic
and B-rule CAs is most apparent on the portion of the test
image containing the finely patterned background to Lincoln
(figure 4), which has been preserved while the noise on the
face has still been removed. The 2-cycle CA produces identical
results to the basic CA.

At greater noise levels the CA continues to perform con-
sistently better than the median and morphological filters (see
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TABLE I

RMS ERRORS OF FILTERED VERSIONS OF THE TEST IMAGE CORRUPTED BY SINGLE PIXEL SALT AND PEPPER NOISE. THE NUMBERS IN BRACKETS

INDICATE THE NUMBER OF ITERATIONS OF THE MEDIAN FILTER OR THESTRUCTURING ELEMENT SIZE THAT GAVE THE BEST RESULTS ON THEtest

IMAGE .

S & P orig. median MM CA CA CA
prob. 1 iteration 100 iterations optimal iterations B-rule 2 cycle

0.01 17.9 42.5 54.1 42.5 (1) 17.9 (1) 14.1 12.1 14.1

0.1 57.0 45.0 55.4 45.0 (1) 40.6 (2) 32.4 31.8 32.3

0.3 99.0 55.8 59.3 53.3 (2) 69.0 (2) 47.6 47.7 47.6

figure 5 and table I). Atp = 0.1 the learnt CA rule set is
and required 31 iterations for convergence. Atp = 0.3

the learnt CA rule set is and required
21 iterations for convergence. Again the 2-cycle CA produced
little improvement over the basic CA, while the B-rule CA
does atp = 0.1 but not p = 0.3. The B-rule rule sets are
reasonably compact, and the one forp = 0.1 is shown: the
rule set applied when the central pixel is a different colourin
the previous iteration is while for the same coloured
central pixel at the previous iteration the rule set is

.
Increasing levels of noise obviously requires more filtering

to restore the image. It is interesting to note that not only have
more rules been selected as the noise level increases, but also
that, for the basic CA, they are strictly supersets of each other.

To test that the training data was sufficiently representative
to enable a good rule set to be learnt, cross validation was
performed. The training and test images were swapped, so
that a new rule set was learnt from the original test data,
and then the CA was applied with these rules to the original
training image. The RMS errors obtained were very similar to
the values in table I. Over the three versions of the CA and the
three noise levels the maximum difference in corresponding
RMS values was 1.7, and the second largest was only 0.5.

The second experiment makes the noise filtering more
challenging by setting3 × 3 blocks, rather than individual
pixels, to black or white. However, the CA still operates on
a 3 × 3 neighbourhood. Given the larger structure of the
noise larger (5 × 5) median filters are used for comparison.
However, at low noise levels (p = 0.01) the 3 × 3 median
gave a lower RMS error than the5 × 5 although the later
was better at high noise levels (p = 0.1). Nevertheless, the
basic CA outperformed both medians and the morphological
filter (table II). At p = 0.01 the learnt rule set was

and required 42 iterations for convergence. The B-rule
CA further improved the result, and this can most clearly be
seen in the fragment of text shown in figure 6. Atp = 0.1

(figure 7) the learnt rule set was
and even after 100 iterations the CA had not

converged. The 2-cycle CA showed only occasional, marginal
improvement over the basic CA.

As it was found that the CA was particularly effective for
the portions of text in the noisy images, further tests were per-
formed on four images each made up from a scanned portion
of text (each image containing a different font style/size). The

(a) (b) (c)

(d) (e)

Fig. 4. Salt and pepper noise affecting single pixels occurring with a
probability of 0.01; (a) original, (b) original with added noise, (c) 1 iteration
of median (d) filtered with CA, (e) filtered with B-rule CA.

results of applying the same rules learnt during the previous
experiments are shown in table III, where it can be seen that
the CA again outperformed the median and the mathematical
morphology opening followed by closing. Since the images
contain very fine detail (the height of an upper case character
lie between 8 and 13 pixels) median filtering was too severe
(degrading rather than improving the image) for moderate
amounts of noise. Likewise, for moderate amounts of noise the
opening/closing tended to degrade the image for structuring
elements larger than1 × 1. For the more severe3 × 3 block
noise multiple iterations of the median could be effective,but
were still outperformed by the CA. The opening/closing did
not work at all well however, as structuring elements large
enough to eliminate the noise also removed all the finer detail
of the text.
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TABLE II

RMS ERRORS OF FILTERED VERSIONS OF3× 3 PIXEL SALT AND PEPPER NOISE

S & P orig. 3× 3 median 5× 5 median MM CA CA CA
prob. 1 iter. 100 iter. opt. iter. 1 iter. 100 iter. opt. iter. B-rule 2 cycle

0.01 53.1 60.9 58.9 56.1 (3) 62.6 79.3 62.6 (1) 53.1 (1) 44.8 37.7 44.6

0.1 141.0 135.0 116.5 116.5 (39) 125.0 95.1 94.5 (25) 131.4 (4) 92.4 89.9 92.9

TABLE III

RMS ERRORS OF FILTERED VERSIONS OF THE SCANNED IMAGES OF TEXT CORRUPTED BY SALT AND PEPPER NOISE.

noise orig. median MM CA B-rule 2 cycle

si
ng

le
pi

xe
l

p
=

0
.0
1 18.16 69.22 (1) 18.16 (1) 11.02 11.56 11.02

18.35 96.21 (2) 18.35 (1) 13.23 14.89 13.23
18.04 88.18 (2) 18.04 (1) 16.12 16.08 16.12
18.07 68.41 (1) 18.07 (2) 12.22 12.30 12.22

p
=

0
.1

57.00 69.93 (1) 57.00 (1) 45.73 41.51 44.27
57.21 96.40 (2) 57.21 (1) 52.02 47.97 51.65
56.78 88.08 (2) 56.78 (1) 57.79 54.07 57.81
56.89 69.65 (1) 56.89 (2) 43.28 41.44 42.75

p
=

0
.3

99.00 71.66 (2) 94.51 (2) 68.96 68.98 68.83
98.98 97.81 (2) 98.98 (1) 87.40 87.38 87.03
99.05 89.40 (2) 99.05 (1) 83.40 83.38 83.08
98.88 74.87 (2) 93.55 (2) 69.30 69.34 69.17

3
×

3
bl

oc
k

p
=

0
.0
1 53.52 75.68 (25) 53.52 (1) 42.40 40.71 42.42

53.36 100.35 (2) 53.36 (1) 58.32 50.50 58.46
53.60 93.06 (2) 53.60 (1) 58.02 52.49 57.78
53.53 79.22 (2) 53.53 (1) 50.55 44.07 50.96

p
=

0
.1

140.52 119.70 (35) 140.52 (1) 75.47 77.38 75.37
140.46 133.98 (42) 140.46 (1) 104.59 106.52 104.28
140.19 129.47 (46) 140.19 (1) 94.15 95.76 93.97
140.91 121.30 (58) 140.91 (1) 80.48 82.74 80.22

(a) (b) (c)

(d) (e)

Fig. 5. Salt and pepper noise affecting single pixels occurring with a
probability of 0.3; (a) original, (b) original with added noise, (c) 2 iterations
of median, (d) filtered with CA, (e) filtered with B-rule CA.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Salt and pepper noise affecting3 × 3 blocks occurring with a
probability of 0.01; (a) original, (b) original with added noise, (c) 3 iterations
of median filter, (d) 1 iteration of5 × 5 median filter, (e) filtered with CA,
(f) filtered with B-rule CA.
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TABLE IV

RMS ERRORS OF FILTERED VERSIONS OF GRAY LEVEL IMAGES CORRUPTED BY VARIOUS TYPES AND LEVELS OF NOISE. EACH SET OF THREE ROWS

LISTS RESULTS FOR THREE NOISY IMAGES: BARBARA , COUPLE, AND VENICE. THE MEDIAN FILTER WAS RUN FOR THE OPTIMAL NUMBER OF ITERATIONS

DETERMINED FOReach testIMAGE . L IKEWISE, THE TWO PARAMETERS(h AND k) FOR THEMRHF FILTER, AND THE WIDTH OF THE MM STRUCTURING

ELEMENT WERE OPTIMISED FOR EACH TEST IMAGE. FOR THE TEST DATA WITH 3×3 BLOCK SALT AND PEPPER NOISE RESULTS ARE SHOWN FOR BOTH

THE CA TRAINED ON 3×3 BLOCK NOISE (p = {0.01, 0.1}) AS WELL AS THE CA TRAINED ON SINGLE POINT NOISE(p = 0.6). FOR EACH ROW(I .E.

EACH NOISY IMAGE THAT WAS FILTERED) THE LOWESTRMS VALUE IS HIGHLIGHTED .

noise model unfiltered median relaxed MRHF MM CA HMT
median 0.1 0.3 0.6 universal Wiener

Gaussian 10.00 14.48 6.94 8.46 10.00 9.79 11.91 16.19 10.60 6.90
σ = 10 9.97 10.27 8.90 6.97 9.40 7.86 7.78 11.67 7.22 6.38

9.73 6.94 14.48 6.02 7.75 7.04 6.19 9.19 5.93 5.59

Gaussian 24.63 16.74 10.62 15.10 20.39 17.12 15.44 17.11 15.42 11.64
σ = 25 24.71 12.31 12.31 12.76 16.78 15.92 12.41 13.23 11.95 10.88

23.26 10.62 16.74 11.48 15.19 15.10 11.10 11.13 10.79 10.06

salt and pepper 43.94 14.66 6.41 12.82 15.90 11.97 11.73 16.15 19.26 24.02
p = 0.1 42.72 10.29 8.40 8.62 9.50 9.56 6.94 11.54 16.21 19.87

47.59 6.40 14.66 7.71 8.28 9.26 4.87 9.00 17.56 23.41

salt and pepper 107.65 23.72 19.83 62.42 84.75 86.26 54.46 23.36 39.14 40.56
p = 0.6 104.60 19.75 19.75 59.38 83.63 83.41 51.77 19.64 32.72 34.33

116.37 19.82 23.72 66.79 88.56 92.37 57.13 19.96 52.05 52.95

unfiltered median r. median MRHF MM (0.01) 3×3 (0.1) 3×3 0.6 universal Wiener

salt and pepper 41.08 17.85 12.74 36.30 24.96 13.13 20.25 17.79 33.22 39.67
3×3 blocks 40.03 13.55 13.56 33.24 15.89 12.11 19.15 13.60 33.17 39.00
p = 0.01 44.45 12.73 17.85 35.58 13.42 13.29 19.21 12.32 35.64 43.45

salt and pepper 108.23 76.64 82.15 97.85 82.05 81.91 25.01 72.48 60.23 97.8
3×3 blocks 105.37 73.94 73.94 94.80 81.29 79.35 22.64 69.79 56.7 95.07
p = 0.1 117.58 100.48 76.64 106.08 85.27 88.93 26.04 77.42 70.3 107.46

(a) (b) (c)

(d) (e) (f)

Fig. 7. Salt and pepper noise affecting3 × 3 blocks occurring with a
probability of 0.1; (a) original, (b) original with added noise, (c) 39 iterations
of median, (d) 25 iterations of5× 5 median, (e) filtered with CA, (f) filtered
B-rule CA.

B. Gray-Scale Image Processing

While the previous discussion and results were restricted to
binary images it would obviously be advantageous to work
with gray level images too. The natural difficulty is that
increasing the range of intensities will also vastly increase
the number and/or complexity of the rules. However, one way
to avoid this consequence is to use threshold decomposition,
in which the gray level image is decomposed into the set of
binary images obtained by thresholding at all possible gray
levels. Binary filtering is applied to each binary image, andthe
results combined – in our case we simply add the set of filtered
binary images. Thus there are two advantages of this approach:
the same setup as binary image processing can be reused,
which means that, given the smaller search space compared
to that for gray level processing, faster training of the CA
is achieved. The downside is that, after training, running the
CA is less efficient given the overhead of performing thresh-
old decomposition. ForL intensity levels the computational
complexity becomesO(LPN) per iteration. In addition, there
is no equivalence between training and applying the CA on
gray level imagery as opposed to the set of thresholded, binary
images. This means that the training is not necessary optimal
for grey level processing.

The results of filtering different types and magnitudes of
noise on three images (barbara, couple, and venice) are listed
in table IV. The same filters are used as in the previous
section as well as two of the many modifications of the
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median in the literature: the relaxed median filter [33] and
the median-rational hybrid filter (MRHF) [34]. These are
additionally compared against two techniques based on hidden
Markov trees (HMT) applied to wavelet coefficients. The first
constructs a “universal” model [35] of the image, while the
second estimates the model parameters and applies a Wiener
filter with those parameters [36]. It can be seen that the HMT
performs the best for Gaussian distributed noise, but that the
CA performs best on the salt and pepper noise. For the case of
noise probability 0.1 it is noteworthy that the CA trained on
p = 0.3 is actually consistently more effective than that trained
on p = 0.1. This could either be an effect that arises because
the CA was trained on binary images rather than gray scale, or
else indicate poor generalisation from the training data. While
it is advantageous to train with data that matches the expected
test set as closely as possible, it can be seen that for each ofthe
Gaussian noise and single pixel salt and pepper noise filtering
tasks the CA outperformed the median filter for a range of
training data set parameter values.

(a) (b)

(c) (d)

Fig. 8. (a) A portion of the barbara image with3× 3 salt and pepper noise
(p = 0.01), (b) 9 iterations of median, (c) filtered with CA, (d) universal
HMT

An example of the outputs of the filtering are shown in
figure 8. The CA has removed most of the3×3 salt and pepper
noise, unlike the HMT method. While the optimal result from
the3×3 median filter has managed to eliminate slightly more

(a) (b)

Fig. 9. Difference images (intensities scaled by a factor of three) between
the uncorrupted barbara image and (a) 9 iterations of the median, and (b) the
CA. Note the texture removed by the median filter.

noise it has also blurred out most of the texture on the clothes.
This is made clearer in figure 9 which shows the difference
images between the results and the source image, with all
values scaled by factor of three to help visualisation. Unlike
the median, the CA has managed to retain the majority of the
detail.

Running times for applying the CA to the above images
(512 × 512 pixels, 236–256 gray levels) varied depending
on the number of iterations. The decomposition of the gray
level image into binary images took 20 seconds, while recon-
struction of the filtered binary images to a gray level image
took 7 seconds – the difference in times occurs only because
each of these tasks was carried out by separate stand-alone
programs that handled I/O in different ways. Applying the
CA to the set of decomposed binary images took between
50–220 seconds. Run-time would be improved by performing
the threshold decomposition within the CA program, thereby
minimising the large amount of slow I/O currently performed.

IV. T HINNING

The second application of CAs we show is thinning of black
regions, and so rules were only triggered by pixels. Training
data was generated in two ways. First, some one pixel wide
curves were taken as the target output, and were dilated by
varying amounts to provide the pre-thinned input. In addition,
some binary images were thinned by the thinning algorithm
by Zhang and Suen [37]. Both sets of data were combined
to form a composite training input and output image pair
(see figures 10a&b). Contrary to the image processing tasks
in the previous sections the RMS criterion did not produce
the best results, and instead the summed proportions of black
pixel errors and white pixel errors was used. Surprisingly the
summed distance and Hausdorff distance error measures gave
very poor results. It had seemed likely that they would be more
appropriate for this task given the sparse nature of skeletons
which would lead to high error estimates for even small mislo-
cations if spatial information were not incorporated. However,
it was noted that they did not lead the SFFS procedure to a
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good solution. Both of them produced rule sets with higher
errors than the rule set learnt using RMS, even according to
their own measures.

The test image and target obtained by Zhang and Suen’s
thinning algorithm are shown in figures 10c&d. The basic CA
does a reasonable job (figure 10e), and the rule set is

. The last rule has little effect, only changing
three pixels in the image. Some differences with respect to
Zhang and Suen’s output can be seen. In the wide black
regions horizontal rather than diagonal skeletons are extracted,
although it is not obvious which is more correct. Also, a
more significant problem is that some lines were fragmented.
This is not surprising since there are limitations when using
parallel algorithms for thinning, as summarised by Lamet
al. [38]. They state that to ensure connectedness either the
neighbourhood needs to be larger than3×3. Alternatively,3×3
neighbourhoods can be used, but each iteration of application
of the rules is divided into a series of subcycles in which
different rules are applied.

This suggests that the two cycle CA should perform better.
The rule set learnt for the first cycle is
and the second cycle rule set is a subset of the first:

. Again the last and least important rule from the first cycle
has little effect (only changing 6 pixels) and so the basic CA
and the first cycle of the B-rule have effectively the same rule
set. As figure 10f shows, the output is a closer match to Zhang
and Suen’s, as the previously vertical skeleton segments are
now diagonal. However, connectivity has not been improved.

V. CONVEX HULLS

The next experiment tackles finding the convex hulls of
all regions in the image. If the regions are white then rules
need only to be applied at black pixels since white pixels
should not be inverted. Again, like the thinning task, the
summed proportions of black pixel errors and white pixel
errors was used. After training the learnt rule set was applied
to a separate test image (figure 11a). Starting with a simple
approximation as the output target, a four-sided hull, i.e.the
axis aligned minimum bounding rectangle (MBR), the CA is
able to produce the correct result as shown in figure 11b. The
rule set learnt is .

Setting as target the digitised true convex hull (see fig-
ure 11c) the CA learns to generate an eight-sided approxi-
mation to the convex hull (figure 11d) using the rule set

. Interestingly, in comparison to the eight-
sided output the only difference to the rules for the four-sided
output is the removal of the single rule . The limitations of
the output convex hull are to be expected given the limitations
of the current CA. Borgefors and Sanniti di Baja [39] describe
parallel algorithms for approximating the convex hull of a
pattern. Their3×3 neighbourhood algorithm produces similar
results to figure 11d. To produce better results they had to use
larger neighbourhoods, and more complicated rules.

Therefore, extending the basic CA’s capability by applying
the 2-cycle version should enable the quality of the convex
hull to be improved. As figure 11e shows the result is no

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Image thinning; (a,b) training input and target output, (c) test
input, (d) test image thinned using Zhang and Suen’s algorithm, (e) test image
thinned with CA, (f) test image thinned with 2 cycle CA.

longer convex although is is a closer match to the target in
terms of its RMS error. This highlights the importance of the
evaluation function. In this instance simply counting pixels is
not sufficient, and a penalty function that avoids non-convex
solutions would be preferable, although computationally more
demanding.

Another approach to improving results is inspired by the
threshold decomposition described in section III-B. Rather
than develop more complicated rules, the simple rules are
applied to multiple versions of the data. In this case, the image
is rotated by equal increments between0◦ and45◦. The basic
CA is applied, and the outputs rotated back to0◦. The eight-
sided outputs are combined by keeping as convex hull pixels
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only those that were set as convex hull pixels inall the outputs.
This process is demonstrated in figure 11f, in which the five
orientations0◦, 9◦, 18◦, 27◦, and36◦ have been combined to
produce a close approximation to the convex hull.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Results of learning rules for the convex hull. (a) test input; (b) CA
result with MBR as target overlaid on input; (c) target convex hull output;
(d) CA result with (c) as target overlaid on input; (e) 2 cycleCA result with
(c) as target overlaid on input; (f) overlaid CA result generated by combining
five orientations.

VI. CONCLUSIONS ANDDISCUSSION

The initial experiments with CAs are encouraging. It was
shown that it is possible to learn good rule sets to perform
common image processing tasks. Moreover, the modifications
to the standard CA formulation (the B-rule and 2-cycle CAs)
were found to improve performance in several instances. In
particular, for filtering salt and pepper noise, the CA performed
better than standard median filtering.

While the examples in this paper demonstrated covered
fairly traditional tasks, the important benefit of the trained CA
approach is its flexibility. Having shown the capabilities of
such a system the next step will be to apply it to less common
image processing tasks, e.g. filtering of more specific and
unusual types of noise, and more specialised feature detection.

To further improve performance there are several areas to
investigate. The first is alternative neighbourhood definitions
(e.g. larger neighbourhoods, circular and other shaped neigh-
bourhoods, different connectivity), possibly in combination
(e.g. not all rules need to have the same neighbourhood
size or shape). Of course, larger neighbourhoods can lead to

computational difficulties. For example, ignoring symmetries,
a 7 × 7 window yields 248 ≈ 2.8 × 1014 rules, and22

48

different rule sets to consider. One possibility we explored
was to build larger neighbourhoods, but aggregate values
within sub-windows. For instance, figure 12 shows a5 × 5
neighbourhood, and the solid and dashed lines indicate the
eight overlapping sub-windows. From each sub-window only
the majority pixel colour was used, and so the total number of
patterns is28 as before. Thus, a larger neighbourhood has been
achieved without increasing the search space, but at the cost
of coarser granularity within the neighbourhood. However,
experiments on both the noise removal and thinning tasks did
not demonstrate any improvements in results over the basic
3×3 neighbourhood approach. An alternative is a modification
of the 2-cycle approach, in which the image is split into
subfields (e.g. each field containing alternate pixels) and each
subfield processed at separate, interleaved iterations [5].

Fig. 12. 5 × 5 neighbourhood, showing sub-windows from which the
majority pixel colour is extracted. Many other arrangements of sub-windows
are possible.

Larger numbers of rules leads to the second consideration:
can additional constraints be included to prune the search
space, improving efficiency and possibly effectiveness? Third,
alternative training strategies to SFFS should be considered,
such as evolutionary programming.

Fourth, in the current formulation, a cell’s state is equivalent
to its intensity. If cells were allowed extra states, separate from
or in addition to their intensities, the power of the CA system
would be substantially increased. A simple example of this is
filling holes in a binary image, which would be difficult to
perform with the current CA architecture. A simple solution
for this task was given by Yang [40], which differed from
our approach in two ways: 1/ the original source image was
available at all iterations (effectively providing an additional
state), and 2/ the CA was not initialised by the input image to
be processed. Instead the initial state was an all black image,
which was subsequently eroded around the holes.

Fifth, most CAs use identical rules for each cell. To enhance
the flexibility it may be necessary to extend the approach to
non-uniform CA, in which different rules could be applied in
different locations, and possibly also at different time steps.
For instance, as the state of a cell changes this could cause
the rule set to switch.

Finally, an important topic to develop is the objective func-
tion, which is critical to the success of the system. Although
several, fairly general, objective functions were evaluated,
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there may be better ones available – particularly if they are
tuned to the specific image processing task. For instance, for
thinning it would be possible to include some factor relating
to connectivity so as to penalise fragmentation of the skeleton.
A similar approach was taken by Kitchen and Rosenfeld [41]
for assessing edge maps, using a combination of good con-
tinuation and thinness measures which were calculated within
3 × 3 windows. Likewise, it was previously noted that for
the convex hull task non-convex solutions should be explicitly
penalised.
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