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Abstract

This thesis concerns the statistical characterisation of the large scale properties

of our Universe. Two complementary data sets are considered: all-sky maps

of the cosmic microwave background (CMB) temperature fluctuations from the

Wilkinson Microwave Anisotropy Probe (WMAP); and large area maps of galax-

ies detected through the sub-millimetre electromagnetic emission using the Her-

schel Space Observatory.

The CMB temperature field has been extensively studied; one remaining task is

to check that the distribution of temperature fluctuations is Gaussian, homoge-

neous and isotropic as predicted by the standard model. Since these perturba-

tions could deviate from the standard model in many different ways, a number

of complementary approaches to investigate the data are required.

All-sky maps of the CMB are often decomposed into spherical harmonic modes.

Any modes aligned with the Galactic plane are particularly interesting because

any anomalous behaviour in them could indicate errors in the subtraction of

Galactic foreground. Here a simple statistical analysis of these modes is tested

and shown to be a useful diagnostic of possible foreground subtraction system-

atics.

In addition, two methods for characterising patterns in all sky CMB maps re-

sulting from anisotropic universes are discussed. The methods are tested against

simulated CMB maps from anisotropic cosmologies and both show promise as

effective diagnostics for identifying global asymmetry in the Universe.

Whilst many anomalous features have already been identified with WMAP data,

xiv



ABSTRACT xv

they have only been found at confidence levels below 3σ (equivalent to 99%).

Soon the next generation of CMB data from the recently launched Planck space-

craft will be available. Testing descriptors against this new data will finally allow

analyses to probe higher statistical significances with which to hopefully confirm

or reject the various anomalous claims.

The second part of this thesis concerns analytical models of the correlation func-

tion for the distribution of galaxies. The standard ‘Halo’ model is comprehen-

sive, in that it considers separately all the components expected to contribute

to the clustering of galaxies, but it is also complex and rather unwieldy.

Here we promote a simpler alternative based on fitting functions found from

numerical simulations. Both models are shown to compare well to each other,

and the observational data, thereby showing that the fitting function method

can be a quick and easy option. Also, we show that some of the apparently

‘key’ Halo model assumptions, such as intra-halo correlations, are not required

to produce a good fit.

We summarise by discussing the different approximations used in the current

galaxy clustering models, and the limits of the currently available data. We

consider the components which have the most impact on the resulting accuracy,

such as uncertainty surrounding the redshift distribution of the sources. Finally

we look at future areas of development.



Chapter 1

Introduction to Cosmology

Science is the systematic study of the structure and behaviour of processes and

phenomena. Scientists propose hypotheses, based on the limited available evi-

dence, which are subsequently investigated and tested against observable quan-

tities and via experimentation. This methodical process of posing questions,

suggesting potential solutions, and testing them against the available data has

enabled successive generations to achieve an increasingly comprehensive and re-

liable understanding of the world in which we live.

Cosmology is the science of the origin and evolution of our Universe. Experi-

mentation in cosmology can be difficult to implement. Some experiments can

be done on the very small scales, but clearly not on large scales. Simulations

are often used to try to bridge this gap, but they still need to be tested against

data. Observations of our Universe, on all scales, are therefore crucial. Never-

theless, this also has its drawbacks. We live in, and can therefore only observe,

one Universe. This can makes things difficult when you are trying to derive

statistical conclusions about cosmology on Universal scales.

The current standard cosmological model is known as the concordance model,

because it consists of many pieces of evidence from different sources (e.g. the

cosmic microwave background, supernovae, and large scale structure) that all

independently point to one set of assumptions being true. To provide a back-

1



CHAPTER 1. INTRODUCTION TO COSMOLOGY 2

ground to the work in this thesis, in this introduction we discuss the theoretical

framework for the concordance model including highlighting some of the as-

sumptions and a selection of the corresponding sets of evidence.

1.1 Cosmological Principles

The Copernican principle says that ‘we’ are not in a special place. In other

words, given that there is no evidence to the contrary, the simplest assumption

we can make is that our local Galactic neighbourhood is a good representation

of our Universe as a whole.

The Cosmological principle follows on from this to say that on large scales our

Universe is homogeneous (invariant to translation) and isotropic (invariant to

rotation).

Both of these statements are ‘principles’ meaning they are not fact but reason-

able assumptions given that we need to start somewhere and there is currently

no strong evidence to the contrary.

To quote another principle, Occam’s razor advocates choosing the hypothesis

which makes the least new assumptions when the competing hypotheses are

otherwise equivalent. However this still requires research into potential alterna-

tives to assess their viability. For example later in this work we will consider a

universe which is not isotropic and therefore breaks this Cosmological principle.

1.2 Hubble’s Law

We know from just looking up into the night sky that our Universe is not totally

‘smooth’. There are very dense areas, such as stars and galaxies, and in between

there is rarefied gas. So our assumption that the Universe is homogeneous and

isotropic must only be valid on large scales i.e. scales much larger than the size

of a galaxy.

However, if our Universe is the same everywhere then there must infinitely many

stars. If this were the case, then whatever direction we look in the night sky
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there should eventually be a star meaning that the sky would look white not

black. This is Olbers’ paradox and is one piece of evidence that points towards

a non-static universe i.e. our Universe must be evolving.

The discovery of the expansion of our Universe is credited to Edwin Hubble

(Hubble, 1929). He used observations of variable1 stars in nearby galaxies to

show that on average all these objects have a global motion away from us.

Hubble’s Law states that the velocity (v) at which an object is receding from us

is proportional to their distance away from us (r) i.e.

v = H(z)r. (1.1)

The Hubble Space Telescope Key project (Freedman et al., 2001) made a much

more comprehensive study of these variable stars to extract a current value for

the Hubble constant of H0 = 72± 8 km s−1 Mpc−1.

Initially it was assumed that the expansion of the Universe was slowing down

due to the action of its self gravity i.e. H(z) was decreasing over time. However

in 1998, two teams studying distant (type Ia) supernovae (Supernova Cosmology

Project and the High-z SN Search Team) presented independent evidence that

the expansion of the Universe is speeding up (Riess et al., 1998; Perlmutter

et al., 1999).

1.2.1 Redshift

If an object is moving away from an observer then the wavelength of the photons

it emits are stretched so that they appear more red. This is known as Doppler

redshift. Alternatively, objects moving towards an observer appear more blue

(known as blue-shift).

Similarly, gravitational redshift occurs when photons lose energy to climb out

of a gravitational field, and cosmological redshift is caused as photons traverse

1Cepheid variable stars have regular variations in their luminosity which are directly related

to the period of this pulsation.
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expanding space. The amount of redshift (blue-shift) is calculated as,

z =
λobsv − λemit

λemit
. (1.2)

1.2.2 Comoving coordinates

Because the Universe is expanding, the physical (proper) distances (x) between

objects are always changing. It is therefore useful to introduce a comoving

coordinate (χ) system to describe cosmological distances. This comoving co-

ordinate remains constant in time (t), and a scale factor (a) is introduced to

accommodate the actual physical change in distance,

x(t) = a(t)χ. (1.3)

So applying this to the cosmological redshift on the wavelength of a photon

then,

λemit = ∆x(temit) = a(temit)∆χ,

and

λobsv = ∆x(tobsv) = a(tobsv)∆χ.

These expressions can then be substituted into Equation 1.2 to describe the

scale factor in terms of a redshift i.e.

z =
a(tobsv)

a(temit)
− 1,

or more generally a(tobsv) or a0 is normalised to 1, so this is written as,

a(t) =
1

1 + z
. (1.4)

This relates the observable quantity, i.e. the redshift, to the key parameter used

in the theoretical General Relativity equations which will be discussed later in

Section 1.4.
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1.3 Equation of state

The contents of the Universe are thought of as a fluid which is characterised

by a number of key parameters that describe the state of the fluid for exam-

ple, pressure, density, temperature, or internal energy. The equation of state

describes the relationship between all these key parameters.

1.3.1 Perfect Fluid

To simplify the model, and subsequent calculations, this cosmological fluid is

often assumed to be a perfect fluid which is a fluid that can be completely de-

scribed by just its energy density ρ and its pressure p i.e. it has no viscosity,

and it does not conduct heat. Whilst this sounds like a rather idealised ap-

proximation, in certain situations it can be quite realistic. For example, the

mean free path between particles is generally much smaller than the large scales

considered in cosmology meaning that on these scales viscosity is negligible and

conduction of heat is poor as required.

However this still leaves a number of different solutions for p(ρ). We assume

here, as is generally done, that the fluid is also an ideal gas meaning that the

relationship between the pressure and the density is linear i.e.

p = p(ρ) = ωρ, (1.5)

where ω is a constant.

1.3.2 Relativistic fluid

We also consider the special case where the fluid consists of radiation (or any

ultra-relativistic particle) which will be useful to consider later in the chapter

(see Section 1.6.4). To calculate the equation of state, consider a relativistic

fluid where the particles have a kinetic energy (ε), a momentum (P ), and an

average velocity (v). Pressure is defined as the rate of momentum transfer in

a given direction through a unit area per unit time. Since the direction of the
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momentum is randomly distributed in three dimensions, the pressure p is given

by,

p =
1

3

∞∫
0

P (ε)v(ε)n(ε)dε, (1.6)

where n(ε)dε is the number of particles with energy between ε and ε + dε in a

unit volume. Given the fluid is relativistic, then v ' c and therefore P ' ε/c to

give,

p ' 1

3

∞∫
0

εn(ε)dε =
1

3
ρc2 (1.7)

where ρ is the total energy density.

1.4 Einstein’s General Relativity

A further major component of the concordance model is Einstein’s theory of

General Relativity. It provides a description of the space-time geometry, the

action of gravity, and the properties of matter/energy. This relation is specified

in Einstein’s Field Equations2 (Coles and Lucchin, 2002),

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.8)

where G is the gravitational constant, and c is the speed of light. The Ricci

curvature tensor Rµν and the scalar curvature R describe gravity, the stress-

energy tensor Tµν describes the properties of matter/energy and the metric

tensor gµν describes the space-time. Note that ν and µ indices run from 0 to

3, where the first index is a time coordinate and the other three are spacial

coordinates.

2For zero cosmological constant.
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1.4.1 Stress-Energy Tensor

The stress-energy tensor Tµν describes the properties of matter/energy. The

components of the stress energy tensor can be given physical interpretations,

Tµν =


ν = 0 ν = 1, 2, 3

µ = 0 energy density energy flux

µ = 1, 2, 3 momentum density momentum flux

. (1.9)

For an ideal perfect fluid this is,

Tµν = (ρc2 + p)uµuν − gµνp, (1.10)

where uν is the four-velocity. This can be further simplified in the rest frame

(uα = 0 and u0 = 1) to,

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (1.11)

1.4.2 Friedmann-Robertson-Walker Metric

The standard metric used to describe the geometry of space-time is the Friedmann-

Robertson-Walker (FRW) metric which assumes homogeneity and isotropy. The

metric tensor takes the form (Coles and Lucchin, 2002),

gµν =


c2 0 0 0

0 − a(t)2

1−kr2 0 0

0 0 −a(t)2r2 0

0 0 0 −a(t)2r2 sin2 θ

 , (1.12)

where r, θ and φ are co-moving spherical polar coordinates, t is cosmological

proper time, a is the cosmic scale factor, and k is the spatial curvature which

in the later work in this thesis will be assumed to be flat (discussed further in

Section 1.4.4).
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1.4.3 Friedmann Equations

The solutions to the field equations for a Universe containing a homogeneous

and isotropic perfect fluid, with the FRW metric, are known as the Friedmann

equations (Coles and Lucchin, 2002),(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ, (1.13)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
, (1.14)

where the dot represents differentiation with respect to t, p is the pressure and

ρ is the energy density.

1.4.4 Critical Density

A very simplified way of understanding the critical density (for flat universes)

is that it determines the boundary value between a continually expanding and

contracting universe. In other words, a universe with ρc has a density which

is just sufficient to stop the expansion of space after infinite cosmic time has

elapsed.

The critical density can be derived from the first of the Friedman equations

(Equation 1.13) as,

ρc =
3H2

8πG
, (1.15)

where H = ȧ/a and k = 0. More generically than the explanation above, the

critical density (ρc) describes the overall geometry, or curvature, of the Universe.

We can see this by rearranging Equation 1.13 to give,

k =
ȧ2

c2

[
ρ

ρc
− 1

]
. (1.16)

So if the density is more than ρc, the geometry of space is called closed (k = 1),

and if the density is less than ρc then the geometry is called open (k = −1). If

the density is equal to ρc then the geometry is flat (k = 0) (see Figure 1.1).
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Figure 1.1: Examples of 3-dimensional equivalents to the three types of 4-dimensional

geometry discussed in Section 1.4.4: closed (left), open (centre), and flat (right).

1.4.5 Equations of motion

The equations of motion describe the evolution of the cosmological matter den-

sity where energy and momentum are conserved. The stress energy tensor (Sec-

tion 1.4.1) describes the properties of the matter/energy density and therefore

the conservation law requires the derivative of this to be zero. Since it is a

tensor we use a covariant derivative,

Tµν;β = Tµν,β − ΓαµβTαν − ΓανβTµα = 0, (1.17)

where Tµν,β = ∂Tµν/∂ξβ is an ordinary partial coordinate derivative and the

Γdbc are called Christoffel symbols which are related to the metric as,

Γαµν =
1

2
gβα
[
gµβ,ν + gβν,µ − gνµ,β

]
. (1.18)

By considering the different components of the expression in Equation 1.17 we

can derive the different equations of motion (Peacock, 1999).

The continuity equation, which describes the conservation of energy, can be

derived from the µ = 0 component of Equation 1.17 to give,

∂ρ

∂t
+ ρ∇.v = 0. (1.19)

where v is the classic 3-dimensional velocity and∇ denotes the vector differential

operator.

The Euler equation, which describes the conservation of momentum, can be
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derived from the µ = 1, 2, 3 component of Equation 1.17 to give,

Dv

Dt
= −∇p

ρ
−∇Φ, (1.20)

where the convective derivative D
Dt = ∂

∂t + v.∇, p is pressure, ρ is density and

Φ is the gravitational potential. Note these equations are for the unperturbed

case.

1.4.6 Newtonian Limit

If we consider Einstein’s equations in the weak gravitational field limit (i.e.

Φ/c2 << 1) then we can retrieve Newton’s description of gravity,

∇2Φ = 4πGρ. (1.21)

This is Poisson’s equation and describes the action of gravity for the Newtonian

approximation (Peacock, 1999).

1.5 Inflation

Given our Universe is expanding could lead us to surmise that it started from

a single point i.e. a singularity3 - the beginning of not just the Universe but

space and time itself. This singularity is estimated to have occurred approxi-

mately 13.7 billion years ago and has commonly become known as the Big Bang.

However there are a number of puzzles that are not explained by this Big Bang

model. For example, the energy density of the Universe is very close to the crit-

ical density (Section 1.4.4) which is very unlikely given that by the Copernican

principle it could take any value. This is known as the ‘flatness problem’.

To address this, and other issues, cosmic inflation was introduced (Guth, 1981;

Linde, 2008). Inflation is the accelerating expansion (i.e. ä > 0) of the early

3Actually, this is not strictly true; an additional assumption of an equation of state for

a perfect fluid is required else a singularity can be avoided. Also current theories of physics

break down at scales below the Planck scale so we can’t say much about the Universe at really

early times, just that above these scales the Universe was rapidly expanding.
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Universe thought to be driven by a vacuum energy density. This solves the ‘flat-

ness problem’ because the accelerated expansion causes the total matter/energy

density Ωt to tend to the critical density whatever it started out as i.e. |Ωt− 1|

tends to zero. Another interesting point is that if you apply the condition ä > 0

to Equation 1.14 then this requires
(
ρ+ 3p

c2

)
< 0 and since for a perfect ideal

fluid (p = ωρ) this must mean that the pressure is actually negative.

Inflation is generally interpreted as an isotropic scalar field4, φ. By comparing

the stress-energy tensor of the scalar field with that of a perfect fluid we can

get expressions that describe the energy density and pressure of the field,

pφ =
1

2
φ̇2 − V (φ), (1.22)

and

ρφc
2 =

1

2
φ̇2 + V (φ), (1.23)

where the first term can be thought as a kinetic energy, and the second is a

potential energy. These terms can be substituted into the Friedman equation

for ä (Equation 1.14) gives,

ä

a
= −8πG

3c2

(
φ̇2 − V (φ)

)
. (1.24)

So we see that for accelerating expansion (i.e. ä > 0) this requires φ̇2 < V .

Therefore φ̇ is generally assumed to be small (known as the slow roll condition),

which makes solving the Friedmann equations for a given form of V (φ) much

simpler.

Inflation also explains the generation of perturbations in the matter density. By

Heisenbergs Uncertainty Principle there would be quantum fluctuations in the

early Universe which during the inflationary phase which would be magnified

to a cosmic scale. The concordance model assumes these fluctuations are inde-

pendent of scale, or in other words they have a Gaussian statistical distribution.

This is predicted by many inflationary theories, for example Guth (1981), but

even in the absence of definitive physical evidence for a specific theory this choice

4A scalar field is just a function that assigns a scalar value to every point in space.
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is preferred because it makes the minimum amount of assumptions (Peacock,

1999). These fluctuations are observed in the cosmic microwave background

(CMB - see Part I) , and are thought to be the seeds of large scale structure.

1.5.1 Fluctuation type

Adiabatic perturbations are density variations where all forms of matter have

equal fractional over/under densities, whilst the total energy density does not

necessarily remain constant. This is the other way around for isocurvature

perturbations; density fluctuations for one form do not necessarily correspond

to density variations in others but the total energy density is preserved. The

concordance model assumes predominately adiabatic fluctuations. This is evi-

denced by the large anti-correlation seen in the cross power spectrum between

the temperature and the polarisation in the CMB (Peiris et al., 2003).

1.6 Matter and Energy

1.6.1 ‘Normal’ Matter

Normal matter, often referred to as baryonic matter which is the main con-

stituent, includes baryons such as protons and neutrons, and leptonic matter

such as electrons and neutrinos. At the beginning of the last century this mate-

rial, seen in planets, stars and galaxies, was thought to constitute all the matter

in the Universe. However it became apparent that this observed matter was not

nearly sufficient to account for the total density of the Universe extracted from,

for example the cosmic microwave background data.

1.6.2 Dark Matter

To account for the missing matter density, and other anomalous observations

such as the rotation curves of galaxies, a form of matter that only interacts

gravitationally was proposed called dark matter. This dark matter is very im-
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portant for the formation of large scale structure as will be discussed further in

Part II.

1.6.3 Dark Energy

In Section 1.2 we discussed that the expansion of the Universe is accelerating.

The reason for this is not known, but cosmologists have circumvented the prob-

lem by proposing a hypothetical substance called Dark energy responsible for

this expansion. In its most simple form it can be included as a simple cosmolog-

ical constant on the right-hand side of the Friedmann equations (Section 1.4.3).

It is often though of as a scalar field, similar to inflation, with a negative pres-

sure which is causing the accelerated expansion of the Universe. Dark energy is

a wide topic and involves a large body of research which, although interesting,

has limited relevance to the main focus of this thesis and will therefore only be

touched on here.

1.6.4 Evolution of matter/energy densities

To get a rough idea of how the density ρ varies as a function of time t, the Fried-

mann equations (Equations 1.13 and 1.14) can be combined with the equation

of state (Equation 1.5), to give,

ρ ∝ a−3(ω+1). (1.25)

Since the scale factor a is related to the redshift z as a0
a = 1 + z we get

ρ ∝ (1 + z)3(ω+1). (1.26)

For a pressureless material such as dust, ω = 0 so,

ρ ∝ (1 + z)3. (1.27)

In Section 1.3.2 we saw that for relativistic fluids, ω = 1
3 so,

ρ ∝ (1 + z)4. (1.28)
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By the nature of the dark energy term the density remains constant, which

therefore results in a negative pressure. Therefore, as demonstrated in Figure

1.2 there have been three distinct periods in the history of the Universe; initially

the energy density of the Universe was dominated by radiation until about 104

years after the Big Bang. Until recently it was dominated by matter, but now

this mysterious dark energy appears to have become dominant.

Figure 1.2: Evolution of the Universe’s radiation, matter and dark energy densities

since the Big Bang.

1.7 Testing the concordance cosmological model

So to summarise, the standard concordance cosmological picture is the current

best fit model. It is supported by a collection of complementary sets of informa-

tion from supernovae to the cosmic microwave background. However this model

still has outstanding questions that need to be explained; two key ones include

the nature of the dark matter and dark energy. So the model is still being

developed as improved theories and analysis techniques continue to evolve, and
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increased volumes and quality of data continue to become available.

In this work we consider two complimentary sets of data. Firstly we chose the

cosmic microwave background, which is the oldest light in the Universe, because

it provides a large scale look at the Universe very shortly after the Big Bang and

before the influence of gravity can disrupt any imprinted evidence of primordial

conditions. Secondly, we take a look at the large scale distribution of galaxies

which has also been affected by the primordial distribution of matter as well as

being greatly influenced by gravity and the other processes of galaxy formation.

Both these data sets, and a summary of the current understanding of the fields,

are discussed in the two separate parts comprising this thesis.



Part I

Cosmic Microwave

Background
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Chapter 2

Introduction to the Cosmic

Microwave Background

2.1 Standard Concordance Cosmological model

The standard concordance cosmological model (see Chapter 1) describes the

very early Universe as containing a hot plasma of charged particles, including

protons and electrons. Photons had small mean free paths due to Thomson

scattering1 and therefore the Universe was opaque.

As the Universe expanded, the temperature decreased sufficiently for ionised

atoms and electrons to combine to form neutral particles (∼ few thousand

Kelvin) which is known as recombination. Therefore the mean free path of the

photons suddenly grew large as their progress was no longer impeded by ionized

atoms, and the Universe subsequently became transparent. These photons are

seen today in the Cosmic Microwave Background (CMB). It is the furthest back

in time that can ever be observed (at least via electromagnetic radiation) and

is therefore known as the last scattering surface.

Another result of the Thomson scattering at the last scattering surface is that

1The elastic scattering of electromagnetic radiation by a free charged particle.

17
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the CMB radiation is partially linearly polarized. This polarization signal is at

least an order of magnitude weaker than the temperature anisotropy. Neverthe-

less it provides an important additional test of the concordance model.

2.1.1 Nature of the CMB Temperature Fluctuations

The distribution of matter in the early Universe is thought to have been homo-

geneous and isotropic on large scales (see Section 1.1), but there were fluctua-

tions of the order δρ/ρ ∼ 10−5. These are thought to have been generated via

phase transitions during inflation (see Section 1.5). For the simplest theories

of inflation, these fluctuations are thought to have had a Gaussian statistical

distribution (Guth and Pi, 1982; Bardeen et al., 1986).

These matter fluctuations are thought to be closely related to the fluctuations

in the CMB radiation. There are different ways in which these fluctuations in

the CMB temperature would be generated. Here are just some.

• Firstly, if matter and radiation were coupled at the last scattering surface

(i.e. adiabatic fluctuations) then areas of higher matter density would be

intrinsically hotter, i.e.

δT

T
=

1

3

δρ

ρ
, (2.1)

where ρ is the matter density and T is the temperature.

• In addition to this, matter at the last scattering surface would have been

moving around i.e. random motions. This would appear as a temperature

fluctuations as the radiation would be red or blue-shifted depending on

whether the matter was moving away from or towards the observer, i.e.

δT

T
∼ v

c
, (2.2)

where v is the speed of the random motions and c is the speed of light.

• Lastly, the ordinary Sachs-Wolfe effect (Sachs and Wolfe, 1967) describes

how CMB photons were gravitationally red-shifted (or blue-shifted) by
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over-densities (or under-densities) in the matter distribution at the last

scattering surface,

δT

T
=

1

3

δΦ

c2
, (2.3)

where Φ is the gravitational potential.

These different effects contribute to the CMB fluctuations on different scales.

The first two processes occur at recombination and therefore dominate on in-

termediate scales around the size of the horizon at that time. The Sachs-Wolfe

effect, whilst occurring at recombination, is due to gravity associated with pri-

mordial fluctuations and therefore dominates on the large scales.

2.1.2 Evolution of the CMB Temperature Fluctuations

The CMB temperature fluctuations observed today are also affected by processes

that occurred since the surface of last scattering.

• The early integrated Sachs-Wolfe effect occurred immediately after the or-

dinary Sachs-Wolfe effect. The CMB photons were gravitationally red/blue-

shifted due to over/under-densities in the radiation density, which likely

dominated the energy density at that time.

• The late integrated Sachs-Wolfe effect caused CMB photons traveling

through large-scale over-dense (under-dense) areas to get a residual boost

(loss) of energy because of the comparatively recent acceleration of the

expansion of the Universe due to dark energy.

• Significant contamination of the CMB has also been generated via the

Sunyaev-Zeldowich effect. This is caused when CMB photons pass through

areas of high energy electrons; the CMB photons gained energy when they

inverse Compton scattered off the electrons. This depletion in lower energy

photons, and an excess in higher energy photons, has the effect of making

the temperature look lower.
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2.1.3 Statistics of the CMB Temperature Fluctuations

Here we discuss some of the standard statistics used to describe a set of density

fluctuations,

δ(x) =
ρ(x)− ρ̄

ρ̄
. (2.4)

The two point (auto) correlation function of a set of density fluctuations is

defined as,

ξ(r) =< δ(x)δ(x + r) >, (2.5)

where <> represents the normalised average over a given volume. It describes

that probability of finding two objects separated by a distance r above what

you would expect for a random distribution. However, rather than considering

statistics in physical coordinates, it is frequently more convenient to consider

fluctuations as a superposition of modes. The problem with considering say

separate volumes in physical space is that over time they will no longer be inde-

pendent as they interact with each other via gravity. The advantage of modes

is that they will evolve independently unless effected by a very strong gravita-

tional conditions (i.e. a non-linear regime). The fluctuations are expressible as

a Fourier transform,

δ(x) =
∑
all k

δ(k) exp (ik.x), (2.6)

where k is the wave vector. The power spectrum is then defined as,

P (k) =< |δ(k)|2 >, (2.7)

where k = |k| is the wave mode. So the power spectrum, which is essentially

the Fourier transform of the two point correlation function, is a measure of the

strength of the clustering as a function of scale. If the distribution of fluctu-

ations is Gaussian there is no dependence on direction or position, so all the

information contained in the fluctuations can be condensed into the power spec-

trum.
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The CMB power spectrum provides much information about the early Uni-

verse, from its amplitude and the peaks that are observed in it. The peaks are

known as Doppler peaks. As previously discussed, the density of the early Uni-

verse was incredibly smooth, bar some small fluctuations. Gravity acted upon

over-densities to compress them, however radiation pressure counter acted this

causing acoustic oscillations to form. At recombination, the radiation was re-

leased and therefore these oscillations ceased oscillating. Sound waves that had

reached the extreme of their oscillation at that time would have enhanced CMB

temperature fluctuations; this is seen as the peaks observed in the power spec-

trum.

These Doppler peaks are very sensitive to the different cosmological parame-

ters. For example the first peak corresponds to the physical length scale of the

horizon at recombination, which is equivalent to ` ∼ 200 in a flat universe. This

in itself is not very sensitive to the cosmological parameters, but the geometry

of the Universe affects the apparent size of this length scale to the observer. In

a universe with positive curvature, the angle which subtends this length scale

appears larger, and therefore the the associated ` calculated is small (vice versa

for negative curvature).

As a bit of an aside, these Doppler peaks are also visible in the galaxy matter

distribution (Percival et al., 2007) but at a much smaller contrast. This is be-

cause the ‘normal’ matter seen in galaxies comprises only a small fraction of the

total matter, and the matter power spectrum has evolved significantly since the

last scattering surface.

2.2 CMB Discoveries

The CMB was first discovered by Penzias and Wilson (1965) whilst they were

looking for the source of some ‘noise’ in their radio detector. They were in-

vestigating the properties of atmospheric noise when they found a signal at

microwave frequencies that they were unable to explain. With the help of Dicke

and Peebles they soon realized that this ‘noise’ was, in fact, the CMB radiation
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(Dicke et al., 1965). Following its discovery there have been many experiments

to measure the CMB. Barreiro (2010) provides a good summary of recent and

future experiments. Just of few of them are discussed here.

Cosmic Background Explorer COBE (Smoot et al., 1992) was one of the

first space-based experiment to measure the CMB. COBE was based in space

so it could map the whole sky without being subject to atmospheric absorp-

tion/noise. It carried three instruments; the Differential Microwave Radiometer

(DMR) which measured the CMB temperate fluctuations, the Far-InfraRed Ab-

solute Spectrophotometer (FIRAS) which measured the spectrum of the CMB,

and the Diffuse InfraRed Background Experiment (DIRBE) which was used to

map dust emission.

Millimeter Anisotropy eXperiment Imaging Array Spaced based ex-

periments are very expensive, but the atmosphere is very restrictive to ground

based telescopes when observing in the microwave bands. Many projects circum-

vent these problems by using balloon based instruments. MAXIMA (Hanany

et al., 2000) was one such experiment, first launched in 1995, to investigate the

Doppler peaks in the CMB power spectrum.

Balloon Observations Of Millimetic Extragalactic Radiation and Geo-

physics Another balloon based experiment, BOOMERanG (de Bernardis et al.,

2000), had two flights around Antarctica in 1998 and 2003 with similar objec-

tives as MAXIMA. It made large, high fidelity images of the CMB temperature

anisotropies, over 40 times more detailed than the COBE map.

Wilkinson Microwave Anisotropy Probe WMAP (Bennett et al., 2003)

was another space-based experiment which measured the small scale temper-

ature anisotropies of the CMB with much greater precision yielding strong

constraints on the cosmological parameters down to a few per cent. Rather

than measure the temperature of the CMB, WMAP measured the difference

in temperature between different points on the sky. It made observations in 5
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wavebands; K-band (13 mm), Ka-band (9.1 mm), Q-band (7.3 mm), V-band

(4.9 mm), and W-band (3.2 mm). The probe was launched in 2001 and has had

data releases at 1, 3, 5 and 7 years.

Quest (Q and U Extra-Galactic Sub-mm Telescope) at DASI (Degree

Angular Scale Interferometer) QuaD (Church et al., 2003) was a ground

based instrument designed to measure the spatial distribution of polarization

of the CMB. The CMB polarization is an important complementary set of in-

formation to the CMB temperature to extract information about cosmological

parameters, origin of temperature anisotropies in the CMB and differentiating

between different inflationary models.

Planck Space Observatory Planck (Tauber et al., 2010) was launched in

2009 with the preliminary results expected in 2012. The aim of this new space-

based survey is to record the CMB to even smaller angular resolution with the

aim of identifying more clearly areas of contamination by foreground structure.

This will allow both study of the foreground and a more precise cleaning of the

full sky CMB maps.

The key results from these instruments are discussed below.

2.2.1 Black Body Temperature

The discovery and subsequent study of the CMB has been pivotal in providing

evidence for the concordance model. COBE found that the temperature distri-

bution of the CMB was incredibly smooth (isotropic) over the whole sky which

provided strong evidence that the radiation came from an extragalactic source.

Also the spectrum from this background was incredibly close to that of a black

body as shown in Figure 2.1. This provided strong evidence for the Big Bang

model over its competitor at the time, the Steady State theory, which could not

account for these observations.
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Figure 2.1: Intensity plot of the CMB as measured by COBE and other ground based

experiments (Smoot and Scott, 1996). The data points show excellent agreement with

the theoretical intensity curve for a black body.

2.2.2 Temperature Anisotropies

COBE found that whilst the CMB temperature is incredibly smooth over the

sky there are some very small fluctuations at the level of around one part in

one hundred thousand (see Figure 2.2). These temperature fluctuations are

important because they directly relate to the matter density at the time the

CMB formed (as discussed in Section 2.1.1), so this map actually provides a

fingerprint of the matter distribution at that early time.

The fluctuations in the matter density are thought to be the seeds from which

structure has since formed and so much effort has gone in to studying them. If

these fluctuations are the seeds of structure formation it is important to study

them in the CMB to understand their properties before they have been influ-

enced by non-linear gravitational effects. These fluctuations hold information

about the conditions and processes at the time of their formation and can tell

us much about the very early Universe.
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Figure 2.2: Temperature maps of the CMB as measured by COBE (Smoot et al.,

1992, left) and WMAP (Jarosik et al., 2011, right). The pink spots on the COBE map

represent the hotter areas whereas the blue spots the colder areas. The fluctuations

in the COBE map are of the same variance as the instrumental noise. The WMAP

image shown is the 7 year Internal Linear Combination map. The temperature scale

is of the order of milliKelvin (mK).

2.2.3 CMB Power Spectrum

As discussed in Section 2.1.3, a power spectrum describes the difference between

the local density and the mean density as a function of scale. Figure 2.3 shows

the CMB power spectrum as derived from WMAP data compared to the best

fit simulation using the concordance model. The errors are due to instrumental

noise; the grey band represents cosmic variance, which is essentially statistical

uncertainty given there is only one realization of the Universe.

The Doppler peaks in the power spectrum are of great interest because their

positions and amplitudes are very sensitive to the different cosmological param-

eters such as the different matter/energy densities. For example the first peak

is sensitive to the geometry of the Universe, which has been found to be very

close to flat (de Bernardis et al., 2000).

2.3 Ongoing and Future CMB Studies

As well as trying to further constrain the cosmological parameters, many groups

studying the CMB are interested in developing methods to look for deviations

from the concordance cosmological model. One way in which this can be done

is by considering the distribution of temperature fluctuations. The standard
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Figure 2.3: The 7-year temperature power spectrum from WMAP as a function of

multipole moment. The multipole moment is a Fourier parameter which is inversely

proportional to scale. The curve is the current best fit cosmological model, which is the

concordance model (see Chapter 1). The plotted errors are due to instrumental noise;

the grey band represents cosmic variance.

model predicts that these fluctuations should follow a Gaussian distribution

(see Section 1.5) so many groups are currently looking to detect non-Gaussian

anisotropies. Currently there are no definitive detections of non-Gaussianity

although there have been some quite significant results. Martinez-Gonzalez

(2008) provides a good summary. A few examples are discussed below.

2.3.1 Wavelets and the Cold Spot

Wavelets are a common technique used in signal processing, and have recently

been employed in the analyses of CMB maps. They are small oscillations of

various shapes that are used to decompose a signal over different scales. By

analysing the distribution of wavelet coefficients at specific scales, it is possible

to detect weaker non-Gaussianity than would be detectable in just pixel values.
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The distribution of pixel temperature values can be insensitive non-Gaussianity

because of the central limit theorem which says a combination of non-Gaussian

features on different scales tends to a Gaussian as the number of features in-

creases. Utilizing wavelets means that the signal can be analysed at specific

scales, thereby avoiding this restriction (Hobson et al., 1999)

Wavelets were used to identify the cold spot, which is a cold area in the CMB

∼ 10 deg in size at Galactic coordinates b = −57, l = 209. It was first reported

by Vielva et al. (2004) and Cruz et al. (2005) using the wavelet analysis on a

map generated from the combined signal in the Q+V+W bands from the 1 year

WMAP data.

To account for this cold spot there have been many proposed explanations; two

of these are a cosmic texture (Cruz et al., 2007) or a large void (Inoue and Silk,

2006). A texture is a type of topological defect which creates a time-varying

gravitational potential. This causes CMB photons passing through to be red

or blue-shifted. A void, or under-density of galaxies/clusters in the local uni-

verse, would cause CMB photons to appear bluer by the integrated Sachs Wolfe

effect which causes photons traveling through large-scale under-dense areas to

loose energy because of the comparatively recent acceleration of the expansion

of the Universe. These predictions can be tested by their implications on up and

coming lensing data sets (Masina and Notari, 2009; Das and Spergel, 2009). Of

course another alternative is simply cosmic variance - that whilst unlikely, a cold

spot of this size and magnitude is not implausible given the current standard

model.

2.3.2 Phase Analysis

The concordance model says that the CMB fluctuations are well fit by a statisti-

cally homogeneous Gaussian random field, but this also means that the phases

are independent and uniformly random (Watts and Coles, 2003). Therefore

the sum of phases is also random (Coles et al., 2004) and so is the difference

between phases (Chiang and Coles, 2000). The first step towards quantifying
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phase information was introduced by Coles and Chiang (2000) who applied a

colour representation method, in this case to N-body simulations of large scale

structure formation. This technique was later developed for application to the

CMB by Chiang et al. (2003, 2004).

2.3.3 Multipole Vectors

Multipole vectors were first introduced to CMB non-Gaussianity studies by Copi

et al. (2004) and Katz and Weeks (2004). They are constructed from spherical

harmonics coefficients derived from CMB maps, but are useful because they give

results in real (i.e. pixel) space. Land and Magueijo (2005) first identified an

alignment of a number of multipoles in the 1 year WMAP data. This preferred

direction became known as the Axis of Evil. A number of subsequent studies

have further investigated and confirmed this claim: many different suggestions

of its origin have been proposed but no definitive answers have yet been found.

This isn’t the only ‘non-Gaussianity’ to have been identified using multipole

vectors. As well as identifying that the quadrupole (`=2) and octopole (`=3)

are closely aligned, de Oliveira-Costa et al. (2004) found a lack of power in the

quadrupole. Recently though work by Francis and Peacock (2010) may have

potentially explained this anomaly; using photometric redshift surveys they

estimated the integrated Sachs-Wolfe (see Section 2.1.2) effect on the CMB

anisotropies and applied this to the WMAP data. This resulted in a reduction

of the significance of a few reported anomalies (i.e. the low quadrupole power

and the alignment of the quadrupole and octopole).

2.3.4 Polyspectra

As discussed in Section 2.2.3, the power spectrum describes the CMB tempera-

ture distribution compared to the mean temperature as a function of scale. It is

the Fourier transform of the two point correlation function which describes the

probability of finding two random galaxies separated by a given distance. One

key observation made using the power spectrum by (Eriksen et al., 2004b; Park,
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2004; Eriksen et al., 2007; Hoftuft et al., 2009; Hansen et al., 2009) is that there

is an asymmetry in the power spectrum between the Northern and Southern

hemispheres.

If the distribution of temperature fluctuations is Gaussian then all the informa-

tion they hold can be contained in the power spectrum alone, with no correlation

in the higher order polyspectra. The absence of correlation in the higher or-

der polyspectra is therefore one way of looking for non-Gaussianities. Both the

bispectrum and trispectrum (Fourier transforms of the three and four point cor-

relation functions, respectively) have been used to test for deviations from the

predicted Gaussianity of the temperature fluctuations.

A phenomenological way of parameterizing the level of non-Gaussianity in cos-

mological perturbations is to introduce a non-linearity parameter fnl through

the gravitational potential,

ϕg = ϕ+ fnl(ϕ
2− < ϕ2 >), (2.8)

where ϕ represents the gravitational potential. Yadav and Wandelt (2008) found

a non-Gaussian value of fnl at a high significance of 99.5% using the bispectrum.

There have been many different attempts to investigate the Gaussianity of the

CMB temperature fluctuations, with varied results and conclusions. So more

detailed data and analyses methods are required to come to more conclusive

results. In this work, a selection of new analyses methods are considered. In

Chapter 3, and in Short and Coles (2010), a new simple diagnostic analysis

is proposed and tested, which offers the possibility of identifying foreground-

related biases and systematics in all-sky maps of the CMB. In Chapter 4, the

behaviour of a selection of anisotropic models is studied so as to identify charac-

teristics of the radiation fields they produce and test/develop methods that can

be used to identify more general forms of anisotropy. Two statistical measures

of anisotropy are studied in some detail. Finally, Chapter 5 summarises the

conclusions.



Chapter 3

Zonal Modes of CMB

Temperature Maps

As discussed in Chapter 2, there has recently been much interest in analysing

full sky maps of the temperature anisotropies in the cosmic microwave back-

ground (CMB), particularly those from the Wilkinson Microwave Anisotropy

Probe (Bennett et al., 2003, WMAP). More specifically much work has gone into

identifying deviations from the standard concordance cosmological model which

predicts Gaussianly distributed temperature fluctuations (see Section 1.5). This

non-Gaussianity could either be from a primordial or secondary source; the

analysis in this chapter is particularly aimed at identifying whether emission

from local Galactic foregrounds has been cleaned sufficiently from a selection

of full sky CMB maps. One of the greatest barriers to the detection of non-

Gaussianity, or other departures from the framework of the concordance model,

is the presence of residual foreground contamination or other systematic errors.

Since our own Galaxy emits radiation at microwave frequencies, the emission

from local foregrounds must be carefully cleaned out before a map can be ob-

tained that is suitable for analysis. One way of avoiding this problem is to cut

out regions of the map near the Galactic plane where contamination is partic-

30
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ularly severe, but this negates the benefit of having full sky coverage.

All-sky maps of the CMB temperature fluctuations are frequently represented

by a spherical harmonic decomposition (which will be explained later in more

detail in Section 3.1.1). Briefly though, spherical harmonics involve modes la-

beled by ` and m (where −` ≤ m ≤ +`). The zonal modes (i.e those with

m = 0) are of particular interest because they vary only with Galactic lati-

tude; any anomalous behaviour in them might therefore be an indication of

erroneous foreground substraction. In this chapter, a simple statistical analysis

is performed on the zonal modes with low `, for sky maps derived via different

cleaning procedures from WMAP. This work shows that the zonal modes pro-

vide a useful diagnostic of possible systematics in CMB all-sky maps and was

recently published in Short and Coles (2010).

3.1 Defining Zonal Modes

This section details what is meant by spherical harmonics, zonal and sectoral

modes with some visual examples. We also describe how zonal modes can be

used to distinguish between a Gaussian or non-Gaussian distribution of temper-

ature fluctuations in the CMB.

3.1.1 Spherical Harmonics

All-sky maps of the CMB temperature are frequently represented by a spherical

harmonic decomposition. Spherical harmonics are the angular portion of the

solution to Laplace’s equation in spherical coordinates. The statistical variation

of the CMB temperature, T (θ, ϕ), over the celestial sphere can be conveniently

decomposed as,

T (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

a`mY`m(θ, ϕ), (3.1)
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where the Y`m(θ, ϕ) are spherical harmonic functions, defined in terms of the

Legendre polynomials, P`m, using,

Y`m(θ, ϕ) = (−1)m

√
(2`+ 1)(`−m)!

4π(`+m)!
P`m(cos θ)eimϕ, (3.2)

and the a`m are complex coefficients which can be expressed as,

a`m = |a`m| exp(iΦ`m), (3.3)

where Φ`m are the phases and |a`m| are the amplitudes. Note, the Condon-

Shortly phase definition is used here; this is the (−1)m factor which is not

always included.

3.1.2 Zonal and Sectoral Modes

The spherical harmonics functions, Y`m, can be visualised on a sphere by con-

sidering their nodal lines, i.e. the set of points (θ, ϕ) where Y`m(θ, ϕ) = 0.

Nodal lines are therefore circles, either in the latitude or longitude direction

with respect to the coordinate system being used; in the case of CMB maps

this is usually the Galactic coordinate system. The number of nodal lines of

each type is determined by the number of zeros in Y`m in the latitudinal and

longitudinal directions; there are `−|m| zeros in the latitude direction from the

Legendre polynomial component and 2|m| zeros in the longitude direction from

the exponential component (see Figure 3.1).

In cases where 0 < m < `, there are zero-crossings in both directions, giving rise

to a patchwork appearance; these are called tesseral modes (Figure 3.1). Two

specific m are of particular interest in the context of this work: these denote

the zonal modes, with m = 0, and the sectoral modes, with m = `. In the

former case there are no zero-crossings in the longitude direction, so contours

of equal temperature run parallel to latitude lines; in the latter the contours

run parallel to longitude lines (see Figure 3.2). The analysis in this chapter will

concentrate on the zonal modes because they vary only with Galactic latitude,

therefore any anomalous behaviour in them may suggest some inconsistency
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Figure 3.1: Illustrative examples of spherical harmonics from individual ` and m

mode combinations. The example to the left is for ` = 4 and m = 3; the right hand

example is for ` = 10 and m = 5. Positive values of Y`m are shown in red and negative

values in blue. The resulting patterns show an expected `− |m| zero crossings (shown

in green) in the latitudinal direction, and 2|m| in the longitudinal direction.

Figure 3.2: Illustrative examples of zonal and sectoral modes for ` = 10; the first

example is the zonal mode with m = 0 and the second is the sectoral mode with

m = ` = 10. In the zonal case the contours of equal temperature run parallel to

latitude lines; in the sectoral case the contours run parallel to longitude lines.

with the subtraction of local Galactic foreground emission from full sky CMB

maps.

3.1.3 Non-Gaussianity of Zonal Modes

This section considers the behaviour of the zonal modes in the null hypothesis i.e.

for the concordance model. Statistically isotropic and Gaussianly distributed

CMB temperature fluctuations, of the type that result from the simplest ver-

sions of the inflationary paradigm, possess spherical harmonic coefficients (a`m)

whose real and imaginary parts are both mutually independent and Gaussianly

distributed (Bond and Efstathiou, 1987; Coles et al., 2004). The statistical
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properties of the fluctuations are therefore completely specified by the angular

power spectrum, C`, (see Section 2.1.3) where,

C` = 〈|a`m|2〉 =
1

2`+ 1

∑̀
m=−`

a`m. (3.4)

The spherical harmonics can be written as a sum of their real and imaginary

parts,

a`m = x`m + iy`m. (3.5)

Note that for m > 0, the variances of the real and imaginary parts of a`m are

equal,

σ2(x`m) = σ2(y`m) ≡ σ2
` =

1

2
C`. (3.6)

The distributions of x`m and y`m are independent and Gaussian with the same

variances and zero mean when 0 < |m| ≤ `. Therefore the amplitudes |a`m|

for these modes have a Rayleigh distribution, and the phases Φ`m are random

(Bond and Efstathiou, 1987; Stannard and Coles, 2005).

In the other case where m = 0, the imaginary part of a`m must be zero, so

this mode always has zero phase Φ`m. This is because the phase relates to

the variation around the polar axis only. Therefore the distribution of the

amplitudes |a`m| for m = 0 is equal to that of the modulus of the real part

|x`m| at a given `, namely a Gaussian distribution with zero mean and stated

variance.

3.2 Statistical Analysis with Zonal Modes

Statistical analysis of the spherical harmonics of CMB maps usually involves us-

ing all modes in an equivalent manner. However, since we are using the Galactic

coordinate system this means the zonal modes are parallel to the Galactic plane.

It is therefore worth looking at the properties of the zonal modes independently

to see whether they hold any clues to possible residual contamination aligned

with the Galactic plane.
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In order to construct a test which involved the smallest possible number of as-

sumptions, and in particular avoided the need to make estimates of the power-

spectrum C` along the way, this analysis focused on the modes with maximum

or minimum amplitude at a given `. This way the test does not take into account

the actual magnitude of the C` for which we would have had to make assump-

tions such as for the values of the cosmological parameters. The amplitudes for

a given `, which make up the the C`, are expected to be distributed randomly

over the different m given Gaussian fluctuations regardless any other additional

assumptions about the actual values of the C`. A preference for modes with

m = 0 to display the maximum (or minimum) amplitude might therefore be

plausibly interpreted as evidence that the zonal modes are either contaminated

with residual foreground, or that foregrounds have been excessively subtracted.

Both of these possibilities are supported by other evidence (Lopez-Corredoira,

2007; Chiang et al., 2007a; Naselsky and Verkhodanov, 2008; Chiang et al.,

2009).

To complement this the variances of the zonal amplitudes of WMAP CMB maps,

and the extrema of the remaining temperature map after removing all but the

zonal modes, are also tested.

3.2.1 WMAP CMB Maps

The maps analysed in this chapter, and the next, are the 1-year (Bennett et al.,

2003), 3-year (Jarosik et al., 2007), and 5-year (Hinshaw et al., 2009) Internal

Linear Combination (ILC) maps from the WMAP team, the 1 and 3 year maps

from Tegmark et al. (2003) and the 5 year harmonic ILC map by Kim et al.

(2008) (hereafter ILC1, ILC3, ILC5, TOH1, TOH3 and HILC). They are all

shown in Figure 3.3 at the resolution used i.e. ` = [0, 10]. The maps show some

variation from each other which is mainly localised around the Galactic plane.

The Internal Linear Combination (ILC) method takes smoothed temperature

maps from each of the five WMAP wavebands and calculates a weighted linear

combination that minimises the variance of the temperature values over the map
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Figure 3.3: CMB maps generated via different cleaning methods from observations

using WMAP (resolution is for 0 ≤ ` ≤ 10). The maps are ILC1 (top left), ILC3

(middle left), ILC5 (bottom left), TOH1 (top right), TOH3 (middle right), and HILC

(bottom right). The colour scale is marked in µK. The maps show some variation

which is mainly localised around the Galactic plane.

in real space (as opposed to Fourier space). To account for the spatial variation

of the different amounts and sources of foreground contamination across the

sky, this ILC method is applied to the CMB in twelve different regions, the

majority of which cover the Galactic plane. The WMAP team are confident

that on scales greater than ∼ 10 degrees, or for ` ≤ 10, their ILC map gives a

reliable estimate of the CMB signal (Limon, 2009). Hence this work uses only

the smallest of modes up to ` = 10.

However there have been some of criticisms of the ILC method. For example,

the use of the different regions means that there are discontinuities in the maps.
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Also, there is a cross correlation term between the foregrounds and CMB, which

is not taken into account and could introduce bias. To overcome these two issues,

Kim et al. (2008) proposed the harmonic ILC method (HILC) which works in

a similar way to the ILC method but it minimises the variance in Fourier space

as opposed to real space. Completing the variance minimisation in spherical

harmonic space overcomes the first of the issues with discontinuities and they

consider the cross term separately via an iterative method. Finally the method

used to generate the maps by Tegmark et al. (2003) involves a combination

of the two previous methods. The five different WMAP waveband maps are

weighted together in such a way that depends both on both the angular scale

and the distance to the Galactic plane.

3.2.2 Extremal Mode Counts

This first test considers the value of the m associated with the largest (or small-

est) amplitude |a`m| for a given ` in the range [0, 10]. The spherical harmonics

were extracted from the CMB maps discussed above using the anafast function

in Healpix1 (Gorski et al., 2005). The null hypothesis prediction, discussed

earlier in Section 3.1.3, says that for all m where 0 < m ≤ ` the correspond-

ing spherical harmonic amplitudes a`m should have the same variance; a`m for

m = 0 should have half the variance. These predictions can then be used to

calculate whether the minimum or maximum value of |a`m| in WMAP observa-

tions occur preferentially at any particular value of m compared to what would

be expected. A very straightforward method is used to establish whether this

is the case.

For each map the number of separate `, within the range analysed, for which

the minimum or maximum value amplitude occurs at m = 0 (the zonal mode)

or m = ` (the sectoral mode) were counted. In other words, for each `, the

values of the m which have the minimum (or maximum) amplitude have been

identified and then counted when either m = 0 or m = `. The resulting statis-

1http://healpix.jpl.nasa.gov
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tics are recorded in Table 3.1. If the minimum is at m = 0 then this contributes

to the count in Column 2 of the table; if the maximum is m = 0 it contributes

to the count in Column 3; likewise occurrences of extrema at m = ` contribute

to the counts in the following two columns. Given ` − 10, the counts are out

of a total of 11. As discussed in Section 3.2.1, this analysis is restricted to low

Map mmin = 0 mmax = 0 mmin = ` mmax = `

ILC1 6 3 3 4

ILC3 7 2 2 4

ILC5 7 2 2 4

TOH1 6 2 3 4

TOH3 8 2 2 4

HILC 8 2 1 5

Table 3.1: This table shows, for the various cleaned all sky maps described in the

text, the number of times (i.e. number of values of `) for which the minimum (or

maximum) amplitude |a`m| is at m = 0 (zonal mode) or m = ` (sectoral mode). For

example, the mmin = 0 result for TOH3 means that 8 out of 11 different values of the

` ∈ [0, 10] have the lowest value of the amplitude |a`m| at m = 0.

` modes because as previously discussed the high ` modes are not necessarily

clean anyway so it would not reveal anything interesting to find zonal or sectoral

anomalies amongst them.

It is not a trivial matter to calculate significance levels analytically for this test

because the number of available m increases with `. It is therefore much more

probable that the minimum amplitude is at m = 0 for ` = 2 than for ` = 10

under the null hypothesis. Assessing the significance of the number of occur-

rences of zonal or sectoral extrema involves a messy exercise in combinatorics.

However, this difficulty is finessed by instead comparing the actual maps with

simulations constructed to have Gaussianly distributed fluctuations as assumed.

In addition to this, it is possible that the cleaning process used to remove fore-

ground contamination from the raw observations might introduce some sort of
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bias into the statistical distribution of amplitudes or induce correlations be-

tween different modes. To circumvent this difficulty, as well as the one noted in

the previous paragraph, the confidence levels in this test are based on a set of

simulations performed by Eriksen et al. (2005). These take ‘raw’ simulated sky

maps, generated assuming Gaussianly distributed fluctuations, add simulated

foregrounds and then recover the signal using the ILC methodology. Therefore

the simulated maps used already take into account any ‘artificial’ correlations

that the ILC process may generate. As result any anomalies found are above

the level known to be introduced by the ILC cleaning process.

In order to calculate significance levels of the results in Table 3.1, an ensem-

ble of ten thousand independent Monte Carlo realisations of CMB skies with

Gaussianly distributed fluctuations, contaminated with foreground and then

cleaned according to the ILC prescription as described above, are used. These

simulations are used to construct empirical distributions of the count statistics

displayed in the previous table and from these the empirical significance levels

are computed (see Table 3.2).

In the case of the mmin = 0 result for TOH3 described in the caption for Ta-

ble 3.2, the probability that a CMB sky has genuinely Gaussianly distributed

fluctuations, processed in the way described above, would produce up to the

number of zonal minima observed is only (100 − 98.2) = 1.8%. The mmin = 0

result for the HILC map is also of the same significance, which is pretty high,

being just below 3σ. The result shows that the amplitudes of the zonal modes

are smaller than the amplitudes of the other modes for a given ` more often than

would be expected in the standard model. So, assuming that the amplitudes

of the other modes do not deviate from the standard model which we confirm

when we look at the variance in Section 3.2.3, this suggests that the amplitude

of the zonal modes are smaller than would be expected for the standard model

i.e. there is a deficit in the amplitudes of the zonal modes for these maps.

Note that since N = 10000 independent simulations are used, the results are

expected to be affected by Poisson fluctuations at the level of order
√
N , which
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Map mmin = 0 mmax = 0 mmin = ` mmax = `

ILC1 75.2 15.4 64.2 80.4

ILC3 91.7 0.0 25.5 80.4

ILC5 91.7 0.0 25.5 80.4

TOH1 75.2 0.0 64.2 80.4

TOH3 98.2 0.0 25.5 80.4

HILC 98.2 0.0 0.0 94.9

Table 3.2: Monte Carlo estimates of the probabilities of the extremal mode counts, i.e.

occurrences of mext = 0 or `, for the various CMB maps shown in Table 3.1. These

are computed by forming the empirical distribution of the counts over an ensemble of

simulated skies and counting what fraction of the ensemble gives the results obtained

for the real maps. For example, in the case of the mmin = 0 result for TOH3, 9816

out of 10000 simulations have less than 8 (from Table 3.1) occurrences of minimum

amplitudes at m = 0. Given the probable sampling accuracy of around one percent,

the results have been rounded. Note that these are discrete distributions, so the zero

percentages do not (necessarily) indicate cases of exceptional significance, just that it

is not possible to have less than the observed number of occurrences. In other words,

they should be treated as a one-sided statistical test.

means the probabilities in Table 3.2 will only to be accurate to approximately

1%.

The results for the sectoral modes (i.e. m = `) show no significant anomalies

above 2σ (i.e. the 95% level); they are shown here for comparison and are not

discussed further. For the case of zonal maxima (i.e. mmax = 0), again it is

clear that there is no significant results.

We have seen the significant results are for the zonal minima (mmin = 0) in the

HILC and TOH3 maps. It is also interesting to note that the TOH3 map gives a

higher significance level than the TOH1 map, as does the ILC5 map compared

to the corresponding 1 year map ILC1. This is an interesting result because

it suggests that the anomaly in the zonal modes has actually become more
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prominent over time. This is counter intuitive to what we initially expected;

the improving techniques to remove foreground contamination from CMB maps

should mean that any anomalies become less significant over time.

These calculations are all performed in the Galactic coordinate system. How-

ever a number of anomalies have been identified in CMB maps aligned with

the Ecliptic plane (Eriksen et al., 2004a; Copi et al., 2006; Diego et al., 2009).

Therefore, for completeness the same calculation as described above is repeated

for the same maps but in Ecliptic coordinates i.e. the maps are rotated by

8π/15 degrees. The results are shown in Table 3.3. All of these results are

Map mmin = 0 mmax = 0 mmin = ` mmax = `

ILC1 19.5 49.1 88.5 0.0

ILC3 19.5 49.1 64.2 0.0

ILC5 19.5 49.1 88.5 0.0

TOH1 19.5 49.1 88.5 0.0

TOH3 4.1 49.1 25.5 0.0

HILC 48.0 15.4 64.2 0.0

Table 3.3: Monte Carlo estimates of the probabilities of the extremal mode counts, i.e.

occurrences of mext = 0 or `, for the various CMB maps in Ecliptic coordinates. These

are computed by forming the empirical distribution of the counts over an ensemble of

simulated skies and counting what fraction of the ensemble gives the results obtained for

the real maps. Given the probable sampling accuracy of around one percent, the results

have been rounded. Note that these are discrete distributions, so the zero percentages

do not (necessarily) indicate cases of exceptional significance, just that it is not possible

to have less than the observed number of occurrences. In other words, this should be

treated this as a one-sided statistical test.

much less significant than previously observed in the maps when considered in

Galactic coordinates. Therefore no evidence is found here for anomalies from

the standard concordance model for the CMB maps in Ecliptic coordinates.
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3.2.3 Variance of Amplitudes for Zonal Modes

To further investigate the source of the apparent deficit in the zonal modes for

the TOH3 and HILC maps reported in Section 3.2.2, this section considers the

variance of the spherical harmonic amplitudes of the zonal modes. The results

in Section 3.2.2 suggest that the spherical harmonic amplitudes when m = 0

are low in the ‘real’ CMB maps compared to the simulated CMB maps, so this

test considers whether this is because the variance of the amplitudes is lower for

m = 0 than for all other m. Since there is no imaginary part to the amplitude

when m = 0, just the real parts of the a`m (i.e. the x`m) are considered.

For this test the variance of the |x`0| for each of the six WMAP CMB maps was

calculated for 0 ≤ ` ≤ 10. The corresponding probabilities were calculated by

comparing these values to the variances of the |x`0| from the simulated CMB

maps with Gaussianly distributed fluctuations, again from Eriksen et al. (2005).

The resulting probabilities are detailed in Table 3.4; they show that the vari-

ance of the |x`0| in the WMAP CMB maps are somewhat smaller than in the

simulations. For all maps other than the ILC1, the variance of the |x`0| is low

at a significance above 2σ (i.e. the 95% level).

For comparison, the same calculation is also applied to the spherical harmonic

amplitudes ‘for all m’ (i.e. |x`m|). The results ‘for all m’, shown in the third

column of Table 3.4, show that the variance in the WMAP CMB maps is lower

than in the simulations with Gaussianly distributed fluctuations. This is consis-

tent with the previously reported low variance in the combined Q+V+W map

by Monteserin et al. (2008). However the result is less significant for the ‘for all

m’ than it was for the zonal modes; only the ILC5 map shows a result above

95%.

This leads to the further question of whether the zonal mode amplitudes are

entirely responsible for this low variance. So finally the variance of the spherical

harmonic amplitudes was also found ‘for all m not equal to 0 ’. The probabili-

ties of the resulting values derived from the concordance model simulations are
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Map m = 0 ∀m m 6= 0

ILC1 89.8 87.4 63.9

ILC3 97.1 93.0 69.8

ILC5 96.4 92.1 68.7

TOH1 95.2 95.5 80.1

TOH3 96.9 93.5 70.5

HILC 97.8 87.4 53.1

Table 3.4: Percentage of simulated CMB maps which have a variance of the x`m

which is greater than the specified WMAP CMB map, for given selection of m. For

example, the TOH3 result for m = 0 means that 9691 out of 10000 simulations had a

variance of the x`0 greater that the variance of the x`0 in the TOH3 map. Since the

Poisson fluctuations are of order 1% the resulting percentage has been rounded.

recorded in the last column of Table 3.4. They show that by removing the m = 0

amplitudes, the number of simulated maps with a variance greater than the test

map falls dramatically, suggesting that indeed the low variance of the m = 0

amplitudes does have a notable affect on the overall variance of the amplitudes.

3.2.4 Zonal CMB Maps

It is interesting to reconstruct what the CMB sky would look like if it only con-

tained the zonal modes as these are the modes that appear to have anomalous

properties, as discussed in Sections 3.2.2 and 3.2.3. This was done by setting

all amplitudes in the original CMB maps to zero bar the |a`0|; the resulting

maps generated using the synfast function in Healpix are shown in Figure 3.4.

The hottest regions tend to be near the poles and along the Galactic plane; the

coldest regions are above and below the Galactic plane. This third section tests

whether the minima and maxima pixel values of these zonal maps from WMAP

are of abnormal amplitude compared to the simulated maps; note this test is

done in pixel-space rather than using the a`m. Because the resolution of the
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Figure 3.4: Reconstructed CMB maps using only the zonal (m = 0) modes i.e. this

map is constructed from an original CMB map which has had all amplitudes but the

|a`0| set to zero. The maps are ILC1 (top left), ILC3 (middle left), ILC5 (bottom left),

TOH1 (top right), TOH3 (middle right), and HILC (bottom right). The colour scale

is marked in µK. The hottest regions tend to be near the poles and along the Galactic

plane; the coldest regions are above and below the Galactic plane.

maps is quite low, the analysis was restricted to the parts of the map that are

well-sampled (i.e. the Galactic pole areas were neglected).

For this test the maximum and minimum pixel values from each of the six dif-

ferent WMAP CMB zonal maps were recorded, as can be seen in Table 3.5. To

calculate the corresponding probabilities, Monte Carlo simulations by Eriksen

et al. (2005) were again used. Zonal maps were generated from each of the

10000 simulated CMB maps, and the maximum and minima pixel values were

found in the same way as with the WMAP CMB maps. These Monte Carlo



CHAPTER 3. ZONAL MODES OF CMB MAPS 45

Map Min. value on Probability of Max. value on Probability of

the zonal map the min. value the zonal map the max. value

ILC1 -12.9 96.3 17.4 90.4

ILC3 -10.2 98.9 16.8 91.5

ILC5 -10.0 99.0 16.8 91.6

TOH1 -12.2 97.1 16.6 92.1

TOH3 -10.8 98.7 11.1 99.0

HILC -11.1 98.4 16.3 92.6

Table 3.5: Probability of the observed maxima and minima in zonal maps, as derived

from Monte Carlo simulations. For example take the results for ILC5: out of 10000

simulations, 9903 have a minimum ‘temperature’ in the zonal (m = 0) map which is

less than that observed in the ILC5 zonal (m = 0) map (see Figure 3.4). Similarly, out

of 10000 simulations, 9159 have a maximum ‘temperature’ in the zonal (m = 0) map

which is greater than that observed in the ILC5 zonal (m = 0) map. The ‘temperature’

is recorded in mK.

simulations were then used to estimate the probability of each of the maxima

or minima pixel values observed in the WMAP CMB maps. For example, if

9903 out of the 10000 simulations had a minimum pixel value in the zonal map

which was less than that observed in the WMAP zonal map then the probability

recorded would be 99.0%. The resulting probabilities are shown in Table 3.5.

They show that the maxima (and minima) of the zonal maps are not as high

(and low) as expected compared to the simulations. The significance of these

results is higher in some WMAP CMB maps than others; the result for the

minima values is more significant than than for the maxima. For the case of

the minimum values, all maps give a result greater than 95% significance; only

the TOH3 maps gives a result at that significance for the maximum case. This

is consistent with work by Larson and Wandelt (2004) who found that the hot

and cold spots of the separate WMAP frequency maps (for all m) are not hot

and cold enough.
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Also note that the anomalous results increase in significance as the maps sup-

posedly become cleaner over time with improving techniques, corroborating the

evidence in Sections 3.2.2 and 3.2.3.



Chapter 4

Statistical Characterisation

of Temperature Patterns in

Anisotropic Cosmologies

The previous chapter tested observed maps of the CMB against the standard

concordance cosmological model, which predicts temperature fluctuations with

a Gaussian distribution (Section 2.1.1). Observations of the CMB provide com-

pelling support for the concordance model (Section 2.1.2). However, there is

some evidence for non-Gaussianity, including a hemispherical power asymmetry

(Eriksen et al., 2004b; Park, 2004) and a cold spot has been identified (Vielva

et al., 2004; Cruz et al., 2005). In other words there is some evidence of an

anisotropic universe; i.e. either a universe in which the background cosmology

is not be described by the standard Friedman-Robertson-Walker (FRW) metric,

or a universe with a non-standard topology.

This chapter considers a non-standard alternative to the concordance model,

and looks at methods for characterising the coherent large-scale patterns from

CMB temperature maps in globally anisotropic cosmologies. The methods in-

vestigated are reasonably general; the particular models which the methods are

47
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tested on are the homogeneous but anisotropic relativistic cosmologies described

by the Bianchi classification. Although the temperature variations produced in

these models are not stochastic, they give rise to a ‘non-Gaussian’ distribution

of temperature fluctuations over the sky.

The Bianchi classification provides a complete characterisation of all the known

homogeneous but anisotropic exact solutions to General Relativity. The classifi-

cation was first proposed by Bianchi (1897), to describe the different symmetries

of Lie groups, and was later applied to General Relativity by Ellis and MacCal-

lum (1969). Initial studies used the lack of large-scale asymmetry in the CMB

temperature to put strong constraints on the possible Bianchi models (Barrow

et al., 1985; Bunn et al., 1996; Kogut et al., 1997). However, simulations of the

CMB from Bianchi universes not only show a preferred direction, but models

with negative spatial curvature (such as the types V and VIIh) can produce

localised features (Barrow et al., 1985). So more recently attention has shifted

to reproducing a cold spot such as that claimed to exist in the WMAP data

(see Section 2.3.1). Initially, the Bianchi type VIIh was the favoured model to

best reproduce the anomaly (Jaffe et al., 2005, 2006a,b); this has subsequently

been investigated quite thoroughly (McEwen et al., 2006; Bridges et al., 2008).

However Pontzen and Challinor (2007) and Pontzen (2009) found that whilst

the VIIh type produces a localised feature in the temperature field, it gener-

ates large amounts of polarisation which is not observed. Therefore more recent

work has also looked at the Bianchi type V which also produces localised fea-

tures without the excess in the polarisation (Sung and Coles, 2009).

In the concordance model, the temperature fluctuation field is produced by

stochastic fluctuations which are Gaussianly distributed and statistically sta-

tionary over the celestial sphere. As discussed in Section 3.1.3 this means that

distribution of the real and imaginary parts of the spherical harmonic coeffi-

cients (a`m) are independent and Gaussian with equal variance. If this assump-

tion holds, then the amplitudes of the spherical harmonic coefficients (|a`m|)

are Rayleigh distributed and the phases of the spherical harmonics (Φ`m) are

independent and uniformly random on the interval [0, 2π] (Coles et al., 2004).
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If instead the temperature pattern on the sky is produced by a Bianchi geom-

etry then the a`m are no longer stochastically generated but can be directly

calculated from parameters of the model. An analytical result for the CMB

temperature fluctuations induced by the Bianchi models was first derived by

Barrow et al. (1985). However this preliminary analysis did not include a dark

energy component and so the work was later extended by Jaffe et al. (2006b).

More recently, work by Pontzen and Challinor (2007); Sung and Coles (2011)

considered a more comprehensive approach with a greater selection of free pa-

rameters and a more sophisticated treatment of recombination and reionsiation.

As well as producing temperature results they also produced predictions for the

polarisation fields. In this chapter, two methods are tested on simulations of

the radiation field for anisotropic universes by Sung and Coles (2011). The first

method is also discussed in Sung et al. (2010) and the second in Hansen et al.

(2011).

Of all the models which have the FRW universe as a limit, the most interesting

range of anisotropic structures are produced in Bianchi types VIIh, VII0 and

V. These different Bianchi types have the effect of focusing and/or twisting the

initial quadrupole over time (see Figure 4.1). In this chapter, the behaviour of

these Bianchi models is studied so as to identify characteristics of the radiation

fields they produce and develop methods that can be used to identify more gen-

eral forms of anisotropy. Understanding the characteristics identified in these

particular cases will hopefully help to find better and more systematic ways of

constraining the level of global asymmetry present in the real Universe. In this

work, just characteristics observable in the CMB temperature map are consid-

ered; not the polarised component. Please note all the Bianchi simulations are

courtesy of Rockhee Sung, and were generated as described in Sung and Coles

(2011).

Two methods are explored for quantifying non-Gaussian and/or non-stationary

fluctuation fields in order to see how they respond to the Bianchi models. Both

methods involve the Fourier decomposition of the maps; these spherical harmon-

ics are extracted from the simulations of the Bianchi CMB temperature maps
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Figure 4.1: Simulated maps

of the the CMB tempera-

ture, at redshift z = 0, us-

ing Bianchi type cosmologies.

The Bianchi types are: V,

VII0 and VIIh (top, middle,

and bottom respectively). The

colour scale is marked in mil-

liKelvin but please note that

this and the redshift scale are

arbitrary and can be scaled as

required. All the maps started

as a quadrupole at z = 500.

The Bianchi V map shows a

focused feature, the Bianchi

VII0 map has a twisted feature

and the Bianchi VIIh map has

both focusing and twisting in

the resulting temperature pat-

tern.

using Healpix . The first method investigates the behaviour of the phases of

the (complex) coefficients obtained from the spherical harmonic decomposition

of all-sky CMB maps. The second method examines the (normalised) cross-

correlation of adjacent spherical harmonic coefficients. They both give clear

signals of the presence of non-Gaussianity when applied to the selected Bianchi

models, suggesting that they have some promise as diagnostics of the presence

of global asymmetry in the Universe.
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4.1 Phase correlations of Bianchi CMB Maps

This section considers the phases of the spherical harmonic coefficients (Φ`m)

from simulated Bianchi CMB temperature maps to see if they have the poten-

tial to be a good descriptor to identify anisotropic universes. The phases Φ`m

were first used to analyse CMB temperature maps for non-Gaussianity by Coles

et al. (2004) who tested them on isotropic and homogeneous but non-Gaussian

fields. Since they have mainly been used to analyse observations (e.g. Naselsky

and Verkhodanov 2008) rather than quantify expected deviations from Gaus-

sianity for different types of models as they will be used here. The advantages

of using the phases Φ`m is their simplicity i.e. the assumption that they should

be randomly distributed over the interval [0, 2π] follows directly from the essen-

tial definition of the statistically homogeneous and isotropic Gaussian random

field. The disadvantage of this is that they are somewhat generic in that they

identify all types of ‘non-Gaussianity’. They therefore may not be particularly

optimised for efficiently finding the temperature patterns resulting from these

anisotropic universes. But rather than make further assumptions about the data

set, thereby making the descriptor less robust, the phases Φ`m are tested here

using a very simple statistical test, as described further below.

4.1.1 More about Spherical Harmonics

In Section 3.1.1, spherical harmonics were introduced with some visualisations

of individual combinations of the ` and m. We recall some examples of visu-

alisations of spherical harmonics on a sphere for individual values of ` and m

in Figures 3.1 and 3.2; they all have `− |m| rows and 2m columns. To further

understand spherical harmonics, it is useful to see how a`m are visualised on a

sphere for different ranges of ` and m, as demonstrated in Figure 4.2. The left

plot shows that for ranges in `, the initial quadrupole is disrupted so that the

peaks/troughs fade towards the bottom of the map. This is because the num-

ber of rows in each individual ` map increases with `. So when the individual

` maps are combined over the range, peaks and troughs near the origin always



CHAPTER 4. CMB MAPS FROM ANISOTROPIC COSMOLOGIES 52

Figure 4.2: Illustrative examples of spherical harmonics for different ` and m mode

combinations. The first example is for ` = 3 - 4 and m = 2 (left); the second example

is for ` = 4 and m = 2 - 3 (right). In other words the first example is Y3 2 + Y4 2

and the second example is Y4 2 + Y4 3. The first plot shows that for ranges in ` the

quadrupole is disrupted so that the peaks/troughs fade towards the bottom of the map.

For the range in m the signal is intensified in a ‘v’ shape.

align, whereas the lower rows become increasingly out of sequence and hence

annihilate. As the range in ` is increased, the quadrupole is focused towards

the origin. This looks similar to the Bianchi type V map (Figure 4.1 - top); the

number of columns in the Bianchi map suggests that m = 2 is dominant and

the columns are much more focused suggesting a larger range of ` than in this

example. For ranges in m (Figure 4.2 - right) the signal is intensified in a ‘v’

shape, which is similarly due to the fact that the number of rows and columns

vary with m.

So a focused quadrupole can be expressed using spherical harmonics; the other

feature to explain in the Bianchi maps in Figure 4.2 is the twisting seen in both

the VII0 and VIIh type maps. If a small rotation was applied between each `

map in the previous example then it would make sense that a spiral might start

to form. The rotation of a map is described by the phases (Φ`m) of the a`m.

Therefore Φ`m should increase with ` to generate a spiral whose direction will

depend on the sign of the phase difference (∆Φ`m) between each individual `

map. The example in Figure 4.3 demonstrates that this method does generate

twisting and it is interesting because it looks similar to the map for the Bianchi

type VIIh map (Figure 4.1 - bottom). This will be useful to understanding the

distribution of the phases of the Bianchi type VIIh CMB map which we will
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discuss further in Section 4.1.2.

Figure 4.3: Illustrative example of spherical harmonics when ` = 0− 20, m = 2, and

∆Φ`m = π/8.

One interesting point to note about Figure 4.3 is that the latitude of the spiral

depends on the size of the ∆Φ`m since it depends on how much the maps are

rotated by as to which bits annihilate and which intensify. Therefore to generate

the Bianchi type VII0 map (Figure 4.1 - middle) there must be a different ∆Φ`m

to the Bianchi VIIh map. This different ∆Φ`m is needed to align the spiral in

the middle of the map. In addition to this, a smaller range of ` than used in

Figure 4.3 is required to focus the twisted quadrupole less.

4.1.2 Visualising Bianchi Phase Correlations

A convenient way to visualise the information held in the phases of the spher-

ical harmonic coefficients, Φ`m, of the Bianchi maps is to plot them over all `

and m. Rather than using a 3D plot, colour has been used to represent the

Φ`m following Coles and Chiang (2000). The colours equate to the angle on a

colour wheel: red (Φ`m = 0), green (Φ`m = π/2), cyan (Φ`m = π), and purple

(Φ`m = 3π/2).

To understand these plots, it is useful to first consider what would be expected

in the case of an isotropic and homogeneous universe as predicted by the con-

cordance model. This would be a uniform map (as at this point fluctuations are

not yet being considered) but in spherical harmonics this only has power in one
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mode (` = m = 0), so there is no phase for the other modes. Better to consider

a map with Gaussianly distributed fluctuations as later in this chapter fluctua-

tions are added to the Bianchi CMB maps. Figure 4.4 shows the phases (Φ`m)

for a homogeneous and isotropic map with Gaussianly distributed fluctuations.

The phases are random over the space i.e. there are no visible patterns in the

distribution of colours in the plot.

Figure 4.4: Example of the spherical harmonic phases (Φ`m) for the concordance

(isotropic) model where `, m ∈ [0, 20]. The distribution of Φ`m is random, apart from

for m = 0, where the phases can only be 0 or π by definition. The colours represent

the different values of the Φ`m; red (Φ`m = 0), green (Φ`m = π/2), cyan (Φ`m = π),

and purple (Φ`m = 3π/2).

Note that for all the maps, Φ`m will equal either 0 or π for m = 0 because the

a`m coefficients are defined so that a`m = al,−m. Other than this, the distribu-

tion of Φ`m is random. Also, note that for all |m| > `, Φ`m = 0.
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In this analysis, the Φ`m from each of the Bianchi maps were extracted using

Healpix and plotted in the same way as Figure 4.4; the results are shown in

Figure 4.5. The plots show that the Φ`m are not random but have patterns,

i.e. the harmonic modes manifest some form of phase correlation. For all the

Bianchi types, Φ`m = 0 for all odd m. For the VII0 and V types, all the Φ`m

are orthogonal i.e. they are either 0, π/2, π, or 3π/2. Both the VII0 and VIIh

types show sequences of increasing/decreasing phases, which are particularly

prominent for m = 2.

While some patterns are apparent in these plots, an even better way to visualise

the phase correlations is to look at the phase differences which are defined here

as,

∆Φ`m = Φ`m − Φ`−1,m. (4.1)

Since the phases are random, the difference between any two random phases is

itself random (Chiang et al., 2007b). The phase differences are shown in Figure

4.6 and the correlations are much more apparent compared to the plots of Φ`m.

All the ∆Φ`m for the V type are lined up, i.e. either 0 or π. The ∆Φ`m for the

VII0 type are again orthogonal, but whereas in the phases the distribution of

0, π/2, π, and 3π/2 seemed some what random, in the phase differences similar

values ‘aggregate’ together. Similarly, the sequences of colours in the type VIIh

(see m = 2 for example) are now even more prominent.

So strong correlations are observed in the phases and phase differences of the

simulated Bianchi CMB maps, but only over large angular scales where there are

only a small number of independent data points. Therefore, even without noise,

it is important to ask the question whether these correlations are likely to be sta-

tistically significant. One way to quantify this is to use a Kolmogorov-Smirnov

test. This is a non-parametric statistical test which measures the maximum

distance of a given distribution from a reference probability distribution, which

in this case is a random set of ∆Φ`m, i.e. a uniform distribution, which is pre-

dicted by the concordance model.

To calculate the Kolmogorov-Smirnov test statistic, a set of phase differences
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Figure 4.5: Phases of the spher-

ical harmonic coefficients (Φ`m) for

Bianchi types V (top), VII0 (middle)

and VIIh (bottom) where `, m ∈ [0,

20] and z = 0. Note that ` is plot-

ted against the x axis, increasing from

left to right, and m is plotted against

the y axis, increasing from bottom to

top. The distributions are not random

(as in Figure 4.4) but exhibit some dis-

tinctive features. All the Φ`m for the

VII0 and V types are orthogonal, and

there are sequences of colours in the

type VIIh (see m = 2).
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Figure 4.6: ∆Φ`m for Bianchi types

V (top), VII0 (middle) and VIIh (bot-

tom) where `, m ∈ [0, 20] and z =

0. Note that ` is plotted against the

x axis, increasing from left to right,

and m is plotted against the y axis, in-

creasing from bottom to top. Like the

phases (Figure 4.5) the distributions

are not random but exhibit some dis-

tinctive features. All the ∆Φ`m for the

V type are either 0 or π. The ∆Φ`m

for the VII0 type are again orthogonal

but in a more correlated way. Simi-

larly, the sequences of colours in the

type VIIh are now even more promi-

nent (see m = 2).
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∆Φ`m are separated into ten bins of equal size between 0 and 2π. The number

of ∆Φ`m which fall into each bin are counted and a cumulative distribution

derived. If the distribution is uniform, as in the case of the reference prob-

ability distribution, then the number of ∆Φ`m in each of the bins should in-

crease roughly linearly. The difference between both the sample and uniform

cumulative distributions is found for each bin and the biggest difference is the

Kolmogorov-Smirnov statistic D.

To deduce the significance of D, a set of ten thousand tests have been run to

generate sets of random angles of equal size to the sample sets. D was found

for each of these sets and this data was used to find the significance of D for

the sample distributions from the Bianchi maps.

The Kolmogorov-Smirnov statistic D, and the derived probability of that statis-

tic P(D), for all the Bianchi maps are detailed in Table 4.1. This table shows

Map z D P(D) %

VIIh 500 0.11 94.5

VIIh 60 0.14 99.2

VIIh 3 0.27 >99.9

VIIh 1 0.38 >99.9

VIIh 0 0.27 >99.9

VII0 0 0.28 >99.9

V 0 0.76 >99.9

Table 4.1: Results from the Kolmogorov-Smirnov test comparing the distribution of

phase differences in the Bianchi CMB maps with a random distribution of phases as

predicted by the concordance model. D is the Kolmogorov-Smirnov statistic; P (D) is

the Monte Carlo estimate of the probability of getting the observed value of D, or less.

These are computed by forming an empirical distribution of D from sets of random

simulations and counting what fraction of the ensemble gives the results obtained for

the Bianchi maps. For example, in the case of the P (D) for the VIIh map (z = 500)

9447 out of 10000 simulations have a value of D less than 0.11. Given the probable

sampling accuracy of around one percent, the results have been rounded.
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that there is indeed a significant quantifiable deviation from a uniform distri-

bution for the phase differences for all Bianchi types. Of the 10000 random sets

of data, none showed a value for D as high as seen for the Bianchi cases.

The Bianchi VIIh type was also considered at different redshifts 1 to see how

the correlations changed with time. Table 4.1 shows that in general value of D

gets more significant over time i.e. the correlations in the phase differences of

the Bianchi maps become stronger over time.

4.1.3 Rotating maps and adding noise

In Section 4.1.2 the Kolmogorov-Smirnov test was applied to a ‘clean’ map that

is perfectly aligned with the vertical axis. This section addresses how noise and

rotation affect the identification of correlations in the phases of the spherical

harmonics of CMB maps from Bianchi models.

First rotation is considered. Phases of spherical harmonic coefficients are not

rotation-invariant. Rotating the coordinate system used to represent a CMB

map in φ (which is equivalent to rotation around the z axis) would increase

each of the spherical harmonic phases by φ, so the phase differences would re-

main the same. Therefore rotation in φ would have no effect on the value of the

Kolmogorov-Smirnov statistic D. Rotation in θ is more complicated to express

so an empirical approach is used to quantity the effect on D. The Bianchi CMB

maps were rotated by a small angle, θ = π/8, and then the spherical harmonic

coefficients were derived and used to calculate D. The results in Table 4.2 show

that the values of D for each of the maps are even higher than in maps that

hadn’t been rotated, indicating the presence of even stronger correlations. This

1Simulated CMB maps were generated for a selection of different redshifts. The tempera-

ture pattern at recombination (z = 500) was assumed to be a quadrupole. This quadrupole

was required to generate interesting high order patterns in the radiation field (Sung et al.,

2010). The radiation field was then evolved over time, and therefore smaller redshifts such as

z = 0 represent how the patterns would look at later times. Whilst in this work we generally

use the z = 0 example as an approximation for current time, the time scale was arbitrary

hence we also considered a selection of other redshifts.
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suggests that, at least for small rotations off the axis, the correlations are just

as significant, if not more so.

Map z D P(D) %

VIIh 0 0.46 >99.9

VII0 0 0.38 >99.9

V 0 0.77 >99.9

Table 4.2: Results from the Kolmogorov-Smirnov test comparing the distribution

of phase differences in the Bianchi CMB maps, rotated by θ = π/8, with a ran-

dom distribution of phase differences as predicted by the concordance model. D is

the Kolmogorov-Smirnov statistic; P (D) is the Monte Carlo estimate of the probabil-

ity of getting the value of D, or less. These are computed by forming an empirical

distribution of D from sets of random simulations and counting what fraction of the

ensemble gives the results obtained for the Bianchi maps. For example, in the case of

the P (D) for the VIIh map all of 10000 simulations have a value of D less than 0.46.

As an aside, the colour plots of the phase differences for Bianchi maps rotated

by a number of different θ in the range 0 to 2π were generated. These plots

have been condensed together into movies2 which show that the correlations in

the VII0 and V maps are visible across all θ and for the VIIh map are visible

within about π/3 of the preferred axis.

Now to investigate the effect of noise, three different types of noise are con-

sidered. Firstly the simplest form was tried by just adding white noise to the

Bianchi map. A map of random Gaussian noise (white noise) was generated

and using Healpix the spherical mode resolution was reduced to ` ≤ 20. Then

the ‘noise’ map was modified to have zero mean and variance the same as the

Bianchi map. The second ‘noise’ map was derived from a product available

on the WMAP Lambda3 website which provides the effective number of ob-

servations per pixel. A map of random Gaussian noise was again generated.

2see http://www.astro.cardiff.ac.uk/research/theoreticalcosmology/?page=research to

view the movies of the Bianchi phase differences.
3http://lambda.gsfc.nasa.gov/
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Figure 4.7: Simulated maps

of the the CMB temperature

as shown in Figure 4.1, ro-

tated off axis the same amount

as the cold spot and with con-

cordance fluctuations added.

The Bianchi types are: V,

VII0 and VIIh (top, middle,

and bottom respectively). The

colour scale is again marked

in milliKelvin but please note

that this scale is arbitrary.

The variance was modified per pixel so that it was inversely proportional to the

square of the number of observations in that pixel. Using Healpix the spherical

mode resolution was reduced to ` ≤ 20. Then the noise map was modified to

have zero mean and variance the same as the Bianchi map. The final ‘noise’

map used a simulation of concordance fluctuations of the CMB as performed by

Eriksen et al. (2005). Again the noise map was modified to reduce the spherical

mode resolution to ` ≤ 20 and have the same variance of the Bianchi map.

Each of these ‘noise’ maps was added to each of the rotated Bianchi maps, and

then the combined map was modified to return the overall variance and mean to

the same as the original Bianchi map (examples are shown in Figure 4.7). The

example in Figure 4.8 shows that the spherical harmonic coefficients derived
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still have visible correlations in the phases for the Bianchi V map. The results

of the Kolmogorov-Smirnov test (see Table 4.3) show that the correlations are

still detectable and significant for the Bianchi V and VIIh maps but not so well

for the VII0 maps4. So the method is better for detecting focused features that

twisted features.

Map z Dr P(D)% Dw P(D)% Dc P(D)%

VIIh 0 0.11 94.5 0.11 94.5 0.16 99.8

VII0 0 0.08 66.1 0.07 66.1 0.06 52.0

V 0 0.17 99.8 0.17 99.9 0.12 96.7

Table 4.3: Results from the Kolmogorov-Smirnov test comparing the distribution of

phase differences in the Bianchi CMB maps rotated by θ = π/8 with white (r), WMAP

(w), and concordance model (c) noise maps (z = 0) . D is the Kolmogorov-Smirnov

statistic found when considering the phase differences. P (D) is the Monte Carlo esti-

mate of the probability of getting the value of D, or less, found for the Bianchi models,

from a random selection of phase differences. These are computed by forming an em-

pirical distribution of D from sets of random simulations and counting what fraction

of the ensemble gives the results obtained for the Bianchi maps. For example, in the

case of the P (D) for the VIIh map with white noise 9447 out of 10000 simulations

have a value of D less than 0.11.

The effect of adding fluctuations here is not dissimilar to adding just Gaussian

noise. The concordance model predicts fluctuations which are stationary and

Gaussianly distributed, so although these fluctuations are correlated on the sky,

they have random phases so are incoherent with respect to what our statistic

measures.

The ‘noise’, or fluctuation, maps are added to the Bianchi maps so that the ratio

4Perhaps the most realistic noise model is a combination of ‘WMAP’ plus ‘concordance

model’ noise. A test with equal contributions from each of these noise maps results in confi-

dence levels which are consistent with the lowest values obtained when the noise maps were

considered individually.
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Figure 4.8: Φ`m for `, m ∈ [0, 20]

(Bianchi type V map at z = 0 with

white (top), WMAP (middle), and

concordance model fluctuations (bot-

tom) noise maps , θ = π/8). Note that

` is plotted against the x axis, increas-

ing from left to right, and m is plotted

against the y axis, increasing from bot-

tom to top. Correlations can still be

observed; the colour of the plot overall

has increasing red content.
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of the variances is of order unity. However, any ratio is possible; this specific

choice is just for illustrative purposes to demonstrate the proposed methods.

Nevertheless, for any amount of random-phase (Gaussian) signal that is super-

imposed on the Bianchi template, the phase coherence of the resulting map will

still be degraded. If the Gaussian component is too large, the overall map will

be indistinguishable from one with purely random phases. This analysis shows

the method still functions well with this level of ‘contamination’, but if the noise

variance is much higher than that of the Bianchi maps the method begins to

reduce in effectiveness.

4.1.4 Application to WMAP 5 Year Data

For methodological interest, the approaches described in Section 4.1.2 are ap-

plied here to the WMAP 5 year ILC map (Hinshaw et al., 2009). The results of

the Kolmogorov-Smirnov test on the ILC map in the Galactic coordinate system

show very low significance correlations in ∆Φ`m (see Table 4.4), i.e. showing no

evidence for an anisotropic Universe.

Map Axis D P(D) %

ILC Galactic 0.06 66.20

ILC Evil 0.07 86.05

Table 4.4: Results from the Kolmogorov-Smirnov test comparing the distribution of

phase differences in the WMAP ILC map, rotated to align with either the Galactic

axis or axis of evil, with a random distribution of phase differences as predicted by the

concordance model. D is the Kolmogorov-Smirnov statistic; P (D) is the Monte Carlo

estimate of the probability of getting the value of D, or less, found for the Bianchi

models, from a random selection of phase differences. These are computed by forming

an empirical distribution of D from sets of random simulations and counting what

fraction of the ensemble gives the results obtained for the Bianchi maps. For example,

in the case of the P(D) for the ILC map in the Galactic plane, 6620 out of 10000

simulations have a value of D less than 0.06.
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However Section 4.1.3 showed that to see correlations in the phases generated by

the Bianchi cosmologies, the CMB maps needed to be rotated relatively close to

the preferred axis. There have been studies that have found a preferred axis in

the WMAP CMB maps, highlighted by the alignment of at least the quadrupole

(` = 2) and octopole (` = 3). This preferred axis is known as the axis of evil

(Land and Magueijo, 2005). Therefore here we rotate this WMAP CMB map

to the axis of evil coordinate system to look to see if there is any evidence for

the Bianchi cosmologies as any correlations should appear stronger close to the

preferred axis. The methods from Section 4.1.2 are applied to the ILC map ro-

tated so that the vertical axis aligns with the axis of evil. These ∆Φ`m, plotted

in Figure 4.9, do not show any visual correlations. For comparison the figure

also includes a plot of the same ILC data but with the phases replaced with

random angles (i.e. so as to not affect the magnitude of the amplitudes of the

al,m).

Figure 4.9: ∆Φ`m for `, m ∈ [0, 20] for the 5 year ILC map with the axis of evil

aligned with the preferred axis (left) and for the same map but with the phases replaced

with random phases (right). Note that ` is plotted against the x axis, increasing from

left to right, and m is plotted against the y axis, increasing from bottom to top. No

correlations are visible in either plot.
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Whilst the Kolmogorov-Smirnov test (Table 4.4) finds higher significance re-

sults than when the map was in Galactic coordinates, the results are still at

a low significance. The results show no significant detections, so if we do live

in an anisotropic universe then any evidence for this hidden in the CMB must

be obscured with considerable ‘noise’ (fluctuations). However the fact that the

significance of the results does increase when the map is aligned with the axis of

evil is intriguing; it would therefore be worthwhile investigating this method on

future cleaner data sets such as that from Planck to see whether the anomaly

still arises. A cleaner data set would allow the investigation of a wider range of

modes; this would allow higher significances than considered here to be probed.
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4.2 Cross Correlation of Bianchi CMB Maps

In this section, a second method for analysing the Bianchi CMB maps is con-

sidered. Hansen et al. (2011) proposed a new approach for identifying possible

anisotropy in full sky CMB maps, using the cross correlation of the spherical

harmonic coefficients (a`m). The concordance model predicts the CMB temper-

ature to be a Gaussian random field; this requires that the real and imaginary

parts of the a`m should be independently and identically distributed. There-

fore the amplitudes of the spherical harmonic coefficients, |a`m|, should follow a

Rayleigh distribution and the Φ`m should be randomly distributed over [0, 2π].

The a`m are therefore not expected to be correlated and any cross correlation

between them should be zero in the Gaussian case. Any couplings between

different amplitudes would therefore indicate possible deviation from the statis-

tical isotropy and Gaussianity of the CMB signal.

Hansen et al. (2011) showed that for dipole modulation anisotropy a cross cor-

relation of the spherical harmonics is generated, and a selection of non-standard

anisotropic models of the CMB are considered to classify the different features

of the cross correlation. These included; a dipole modulation of the primor-

dial signal, a primordial magnetic field, and anisotropic Bianchi cosmological

models. This section discusses my contribution to the work which included in-

vestigating the expected signal from the anisotropic Bianchi universes using this

descriptor. The results show no evidence for the dipole modulation or primor-

dial magnetic fields in WMAP data, although these analyses do show evidence

for residual foreground contaminating the maps. Therefore definitive results will

require more accurate data such as that from Planck. For further discussion see

Hansen et al. (2011).
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4.2.1 Defining the Spherical Harmonic Cross Correlation

The normalised cross correlation of the spherical harmonic coefficients of full

sky CMB maps is defined here as,

Kkj(`) =

∑
m

a`ma
∗
(`+k)(m+j)√∑

m

|a`m|2
∑
m′

|a(`+k)(m+j)|2
= κkj(`) + iχkj(`) (4.2)

so that κkj(`) and χkj(`) are given by,

κkj(`) = γ−1(`)
∑̀
m=−`

|a`m||a(`+k)(m+j)| cos(Φ`m − Φ(`+k)(m+j)), (4.3)

and

χkj(`) = γ−1(`)
∑̀
m=−`

|a`m||a(`+k)(m+j)| sin(Φ`m − Φ(`+k)(m+j)), (4.4)

where

γ(`) =

[ ∑̀
m=−`

|a`m|2
∑
m′

|a(`+k)(m+j)|2
] 1

2

. (4.5)

Note that in this calculation Φl−m was actually set to equal Φlm, since no

additional information is held in the Φ`m for m < 0 because al−m is the complex

conjugate of a`m, and else many of the correlations would otherwise be canceled

out.

As is shown in Hansen et al. (2011), only a select few combinations of k and j

will ever yield non-zero values for Kkj(`). Another point to make here is that

there are some choices that can be made about how to interpret Equation 4.2.

Hansen et al. (2011) chose to use the convention where the sum over m′ was

from −(` + k − |j|) to (` + k − |j|) and the j in the subscript of a(`+k)(m+j) is

set to 0. This effectively means that the only correlations investigated are for

consecutive values of ` with no change in m which means that,

κ−1,0(`) ' κ1,0(`− 1) ' κ−1,1(`) ' κ1,−1(`− 1) ' κ−1,−1(`) ' κ1,1(`− 1),
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and,

χ−1,0(`) ' −χ1,0(`− 1) ' χ−1,1(`) ' −χ1,−1(`− 1) ' χ−1,−1(`) ' −χ1,1(`− 1).

Here, we investigate Kkj(`) further to see whether correlations were revealed

between adjacent m values as well `, and so in this work the sum over m′ is

taken to be from −(` + k) to (` + k) with the j in the a(`+k)(m+j) utilised.

However many of the results for Kkj(`) are still closely related i.e.

κ−1,0(`) ' κ1,0(`− 1),

κ−1,1(`) ' κ1,−1(`− 1) ' κ−1,−1(`) ' κ1,1(`− 1),

χ−1,0(`) ' −χ1,0(`− 1),

χ−1,1(`) ' −χ1,−1(`− 1) ' χ−1,−1(`) ' −χ1,1(`− 1).

So essentially the value of j has been defined differently here than in Hansen

et al. (2011) which gives different results in some cases. To clarify, the results

for j = 0 in this work match the results for all different values of j quoted in

Hansen et al. (2011), and the plots for |j| = 1 in this work are new additional

results. Therefore, for the rest of this chapter, only examples of Kkj(`) for k =

1 and j = [0, 1] are considered.

4.2.2 Application to Bianchi Simulations of the CMB

Here the normalised cross correlation of the spherical harmonics, Kkj(`), is

calculated for a selection of CMB maps simulated from Bianchi universes as

described at the beginning of this chapter. The spherical harmonic amplitudes of

the maps were found using Healpix and the cross correlation was subsequently

calculated using Equations 4.2 to 4.5. The results shown in Figure 4.10 are for

Bianchi maps with their main axis aligned with the coordinate system used to

decompose the map. There are some strong correlations in κkj(`) for Bianchi
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Figure 4.10: Cross

correlation, Kkj(`) =

κkj(`) + iχkj(`), for each

of the Bianchi models at

redshift z = 0 (solid line).

Results are for k = 1 and

j = 0 only since for these

models which are perfectly

aligned with the axis there

are no correlations for j = 1.

κkj(`) is shown in black and

χkj(`) is shown in red. Strong

correlations are observed in

κ10 from the Bianchi types

V and VIIh, whereas strong

correlations in χ10 are only

seen for types VII0 and VIIh.
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type V, in χkj(`) for Bianchi type VII0 and in both κkj(`) and χkj(`) for Bianchi

type VIIh. If the plots are not aligned with the coordinate axis, for example

if they are tilted so as to align with the observed WMAP cold spot, then this

results in the cross correlation for j = 0 being mixed into the cross correlation

for j = 1 (see an example for Bianchi type VIIh in Figure 4.11).

Figure 4.11: Cross corre-

lation, Kkj(`) = κkj(`) +

iχkj(`), for the Bianchi VIIh

model (tilted to align with the

cold spot), at redshift z = 0

(solid line). Results are for

k = 1 and j = [0, 1]; κkj(`)

is shown in black and χkj(`)

is shown in red. Strong cor-

relations are still observed for

j = 0 but now some weaker

correlations are observed for

j = 1 too.

In other words cross correlations in the j = 0 example are being diluted and

transfered to the j = 1 example. For the sake of keeping the number of plots

to the minimum, the rest of the work shall use un-tilted versions of the Bianchi

model, but the same principle as seen here applies in other maps if rotated off

the axis.
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Cross Correlation of Bianchi CMB Maps with Gaussian Fluctuations

The Bianchi CMB maps considered so far do not have stochastic fluctuations

superimposed on the deterministic pattern so, whilst the modes are strongly

correlated, the associated amplitudes may not be that significant. To under-

stand the dominant correlations, this section considers the Bianchi CMB maps

with Gaussianly distributed fluctuations added to them. The Gaussianly dis-

tributed fluctuations were taken from simulations by Eriksen et al. (2005) using

the standard concordance model assumptions. So as to understand the general

affect of adding fluctuations, the average results from 10000 simulations are

found. The Bianchi CMB maps were combined with the Gaussianly distributed

fluctuation maps at a signal-to-noise ratio of 1:1 as described in Section 4.1.3.

Note that the original paper considered a signal-to-noise ratio of 1:3 by standard

deviation to be consistent with the variance of the WMAP cold spot but here

a signal-to-noise ratio of 1:1 is used to be consistent with the phase analysis in

Section 4.1. The cross correlation of each of these combined maps was calculated

as described previously; the average Kkj(`) over all the 10000 combined maps

are shown in Figure 4.12 for each of the Bianchi types. In addition, the one σ

confidence limits that the cross correlation is consistent with the concordance

model are plotted for comparison. These are again calculated from the Gaussian

simulations by Eriksen et al. (2005). As in the case without fluctuations, the

Bianchi V results show a characteristic deviation from the null hypothesis for

κ10 but in this case less strongly, particularly at higher values of `. The Bianchi

VII0 case shows a strong deviation in the χ10 variant, but again it is weaker

now there are fluctuations and is mainly localised to small ` ≤ 10. The Bianchi

VIIh type shows now very weak correlations in χ10 but stronger correlations in

κ10 for 10 ≤ ` ≤ 50.

Cross Correlation of the Bianchi Maps for different redshifts

It is useful to consider how features of the Bianchi models, characterised by

Kkj(`), vary as a function of redshift. The cross correlation was calculated as
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Figure 4.12: Average K10

for each of the Bianchi mod-

els combined with Gaussianly

distributed fluctuations at red-

shift z = 0 (solid line). κ10

is shown in black and χ10 is

in red. The green dotted lines

represent the one σ confidence

limits that the cross correla-

tion is consistent with the con-

cordance model. Again corre-

lations, albeit less strong than

seen when there were no fluc-

tuations, are observed in κ10

for the Bianchi types V and

VIIh, and in χ10 for types

VII0 and VIIh.
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described above for each of the Bianchi maps (with Gaussianly distributed fluc-

tuations) at a selection of different redshifts (see Figure 4.13 - 4.15). Please note

that the redshift in these Bianchi simulations is chosen in the initial conditions

of the simulations to be arbitrary, so these results are indicative of a trend not

conclusive. For all the different Bianchi classifications considered, the character-

istic peaks observed in the different variations of the cross correlation, Kkj(`),

all move to lower ` and decrease in intensity as redshift increases. For the

Bianchi type V, the characteristic peak in Kkj(`) at no point exceeds the one

sigma limits of the concordance model expected variation; the test is unlikely to

distinguish a Bianchi V cosmology from the standard concordance cosmology.

However for both the VIIh and VII0 cases there are stronger features that could

perhaps distinguish them from the standard cosmology. For the Bianchi type

VII0 the cross correlation shows a negative deviation from zero in χ10 around

` ≤ 5. For the Bianchi type VIIh, κ10 shows a positive deviation from zero

around ` ≤ 20.

Power Spectrum of the Bianchi maps with Gaussian fluctuations

The power spectrum of the CMB temperature fluctuations is well known from

observations such as those from WMAP. Therefore any non-Gaussianity gener-

ated by anisotropic universes needs to not affect the power spectrum else they

would immediately be eliminated as a possibility. Here the power spectrum of

the Bianchi CMB maps (with Gaussianly distributed fluctuations added as de-

scribed in Section 4.2.2) is considered to check it is consistent with observations.

Figure 4.16 shows the average power spectrum of each of the above mentioned

Bianchi maps combined with Gaussianly distributed fluctuations. Here there

are deviations from the standard model observed. However it is for a small

number of ` modes. Considering the power spectrum of the CMB as measured

by WMAP shown in Figure 2.3 in Section 2; whilst the majority of the data

points fit the model well there are deviations from the model, for example at

` ∼ 40, ` ∼ 2 and ` ∼ 12. Therefore the power spectrum does not rule out
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Figure 4.13: Average K10

for the Bianchi V model com-

bined with Gaussianly dis-

tributed fluctuations at red-

shifts z = 2, 6, and 30, top

to bottom respectively (solid

line). κ10 is shown in black;

χ10 is in red. The character-

istic features for all of the dif-

ferent Bianchi models move to

lower `, and decrease in inten-

sity, as z increases.
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Figure 4.14: Average K10

for the Bianchi VII0 model

combined with Gaussianly dis-

tributed fluctuations at red-

shifts z = 2, 6, and 30, top

to bottom respectively (solid

line). κ10 is shown in black;

χ10 is in red. The character-

istic features for all of the dif-

ferent Bianchi models move to

lower `, and decrease in inten-

sity, as z increases.
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Figure 4.15: Average K10

for the Bianchi VIIh model

combined with Gaussianly dis-

tributed fluctuations at red-

shifts z = 2, 6, and 30, top

to bottom respectively (solid

line). κ10 is shown in black;

χ10 is in red. The character-

istic features for all of the dif-

ferent Bianchi models move to

lower `, and decrease in inten-

sity, as z increases.
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Figure 4.16: Average power

spectrum of Bianchi CMB

maps, with Gaussianly dis-

tributed fluctuations, at z = 0.

The green dotted lines repre-

sent the one σ confidence lim-

its that the power spectrum

is consistent with the concor-

dance model.
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the Bianchi models but it does need to be considered in conjunction with the

cross correlation. If there is a deviation in the cross correlation then the power

spectrum should show corresponding deviations and vice versa. In provides a

useful cross check in this case. The expected deviations from the standard model

should occur at the same ` in the power spectrum as in the cross correlation.

4.2.3 Applications to Gaussian CMB Maps with Localised

Spots

For a comparison to the Bianchi results, this section considers how manually

adding a cold spot to Gaussianly distributed simulations would affect the cross

correlation (for example see Figure 4.17).

Figure 4.17: Example CMB

map of a concordance model

simulation with a cold spot

added in the bottom-right.

The average Kkj(`) calculated for these examples is shown in Figure 4.18; the

results show much weaker correlations for Kkj(`) compared to that for the

Bianchi maps, in this case around ` ∼ 20 which corresponds to the size of the

spot. Therefore this shows that the normalised cross correlation statistic would

not be good at identifying localised small deviations from the standard model

such as hot or cold spots.

4.2.4 Application to ILC processed Gaussian simulations

The expectation value of the cross correlation for Gaussianly distributed CMB

temperature fluctuations is zero. But even if the primordial CMB signal was
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Figure 4.18: Average nor-

malised cross correlation,

Kkj(`) = κkj(`) + iχkj(`), for

10000 concordance model sim-

ulations with a cold spot added

(solid line). The results for

κkj(`) are shown in black and

the results for χkj(`) are in

red, where k = 1 and j = [0,

1]. The dotted lines represent

the one σ confidence limits

that Kkj(`) is consistent with

the concordance model. The

correlations, around ` ∼ 20,

are very weak.

Gaussian, it has been suggested that the cleaning processes for generating full

sky maps might induce correlations into the map (Chiang et al., 2009). To

explore this for the cross correlation, it was calculated for the simulated Gaus-

sian CMB maps from Eriksen et al. (2005) which have been processed using

the ILC pipeline so as to replicate any systematics that might be generated in

the observed maps. To establish an average effect, Kkj(`) is found for 10000

simulations and the average results are shown in Figure 4.19. The results show

that the ILC processing introduces some small correlations at low `, but these

correlations are much smaller than the cosmic variance. Therefore the ILC pro-

cessing will not itself generate significant correlations in the observed ILC maps,

although it will still be useful to use these simulations to compare the maps to

for a more accurate significance.
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Figure 4.19: Average cross

correlation, Kkj(`) = κkj(`)+

iχkj(`), for 10000 Gaussian

simulations with ILC process-

ing (solid line). The results

for κkj(`) are shown in black

and the results for χkj(`) are

in red, where k = 1 and j = [0,

1]. The dotted lines represent

the one σ confidence limits

that Kkj(`) is consistent with

the concordance model. Negli-

gible deviations from the con-

cordance model are observed.

4.2.5 Application to WMAP CMB Data

This section is finished off by calculating the cross correlation of the spherical

harmonic coefficients for actual observational data from the WMAP 5 year ILC

map (Hinshaw et al., 2009). The results are plotted in Figure 4.20 as a function

of `, for the range 0 ≤ ` ≤ 100. For comparison we also include single realisations

of the results from Figure 4.12 in Figure 4.21. From the plots in Figure 4.20 it

is clear that the WMAP 5 year ILC map shows few significant correlations i.e.

very few of the Kkj(`) results lie outside the expected variation. There are some

instances of Kkj(`) going above the level of cosmic variance ( e.g. at ` = 5, 9, 17)

although only for one ` at a time not for a grouping of `’s. To be significant at all

we would expect these deviations to be consistent with deviations in the power

spectrum. Whilst the power spectrum of the CMB as measured by WMAP and
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Figure 4.20: The cross cor-

relation, Kkj(`) = κkj(`) +

iχkj(`), for the 5 year WMAP

ILC map. The results for

κkj(`) are shown in black and

the results for χkj(`) are in

red, where k = 1 and j =

[0, 1]. The dotted lines repre-

sent the one σ confidence lim-

its that Kkj(`) is consistent

with the concordance model.

other experiments is well known and shown to be in good agreement with the

concordance model, there remain some anomalies. For example see Figure 2.3

in the Introduction which shows the power spectrum as measured by WMAP.

In this we see there are positive deviations from the model for ` ∼ 40 and

negative deviations for ` ∼ 2 and ` ∼ 12. The deviations observed in the power

spectrum are at different ` to the deviations in the cross correlation. However

this could be because the cross correlation is analysed at a different rotation

from the preferred axis and hence the signal has been diluted.
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Figure 4.21: The cross cor-

relation, Kkj(`) = κkj(`) +

iχkj(`), for an individual re-

alisation of a Bianchi VIIh

model combined with Gaus-

sianly distributed fluctuations

at redshift z = 0. The re-

sults for κkj(`) are shown in

black and the results for χkj(`)

are in red, where k = 1 and

j = [0, 1]. The dotted lines

represent the one σ confidence

limits that Kkj(`) is consistent

with the concordance model.



Chapter 5

Conclusions for CMB

Analyses

Observations of the temperature anisotropies in the cosmic microwave back-

ground (CMB), particularly those from the Wilkinson Microwave Anisotropy

Probe (Bennett et al., 2003, WMAP), provide good evidence for the very suc-

cessful concordance cosmological model. An essential ingredient of this model is

the assumption that the primordial density fluctuations that seeded the for-

mation of galaxies and large-scale structure were statistically homogeneous,

isotropic and Gaussianly distributed. Analysis of currently available WMAP

data provide strong limits on the level of non-Gaussianity (Komatsu et al., 2003;

Spergel et al., 2007). On the other hand, Yadav and Wandelt (2008) reported

a detection of primordial non-Gaussianity at greater than 99.5% significance.

Further detailed analyses of non-Gaussianity in the CMB are clearly necessary

in order to reconcile and understand the various constraints and claimed detec-

tions.

Non-Gaussianity can be classified into two different types: primordial or sec-

ondary (i.e. present at the last scattering surface or occurring since then).

In Chapter 3 we presented a simple statistical analysis looking for secondary

84
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anomalies due to correlations induced via the process of cleaning out Galactic

foreground emission. This was based on properties of the zonal modes of full

sky CMB maps, i.e. those modes aligned parallel to the Galactic plane. An ap-

plication of the test to a selection of CMB maps generated via different cleaning

methods gave interesting results. At the 95 per cent level no significant anoma-

lies appear in the WMAP ILC maps (Bennett et al., 2003; Jarosik et al., 2007;

Hinshaw et al., 2009), but there seems to be a significant tendency in some other

maps (Tegmark et al., 2003; Kim et al., 2008) to have zonal modes with system-

atically lower amplitudes than would be expected in the concordance model.

Intriguingly, the maps that provide the most significant departures from the

behaviour expected under the null hypothesis are those based on later issues of

the WMAP data.

An additional investigation considering the variance of the zonal amplitudes

similarly found them to be significantly smaller than expected. It is worth high-

lighting that the variance of amplitudes over all modes is also low, although at

less significance than the zonal modes, which is consistent with previous work

by Monteserin et al. (2008), although they considered the combined WMAP

Q+V+W map1. Further analysis shows that once the zonal modes are removed

from the selection, the low variance of the amplitudes is no longer significant.

This strongly suggests that the zonal modes have a notable contribution towards

this low variance.

The final part of the analysis of the zonal modes considered the distribution of

maxima and minima in zonal maps, which showed the extrema values are not as

extreme as would be expected. Again, the earlier finding that the non-Gaussian

anomalies increase with later releases of data are reinforced.

Of course the different CMB maps themselves are not statistically independent.

Indeed, if the cleaning processes involved were perfect then they would all be

identical. The varying results found for the different maps are attributable to

the nature of the zonal modes and their extra sensitivity to structures associ-

1Note this map is slightly different to the ILC map which we used; it is a noise weighted

average of the foreground cleaned maps from each of the Q, V and W bands (see Section 2.2).
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ated with the Galactic plane. The appearance of significant anomalies in some

maps rather than others is not a statistical fluke but is clear evidence that some

cleaning methods leave artifacts in the distribution of mode amplitudes.

It must be noted that the probabilities quoted of around 98 to 99 percent are

not overwhelming; the results obtained are indicative rather than decisive. This

is not surprising, given the relatively small number of modes used. However,

when the analysis was repeated for a coordinate system aligned with the Ecliptic,

rather than Galactic plane, no significant results were found at all. This lends

further credence to the interpretation of the outcome of this analysis in terms of

an effect related to over-subtraction of Galactic emission consistent with work

by Chiang et al. (2009) and Naselsky et al. (2008), which becomes increasingly

pronounced with each data release. However, a more definitive result will have

to wait until more detailed foreground subtraction can be attempted, such as

will be the case with the Planck satellite.

The second half of this CMB part, in Chapter 4, explored a specific form of pri-

mordial non-Gaussianity; characterising the large-scale temperature patterns in

CMB maps generated by anisotropic Bianchi type V, VIIh and VII0 universes.

The ultimate purpose of investigating this behaviour was to find ways of quanti-

fying the global properties of the pattern produced in order to isolate the effect

of anisotropy from that of non-Gaussianity. Note that the non-Gaussianity

talked about here is not related to a stochastic field; there are no fluctuations

in the Bianchi simulations.

The first method described in Section 4.1, a phase analysis, has not been used

to quantify many alternative situations to the concordance model. The phases

of the spherical harmonic coefficients provide a generic way of looking at corre-

lations in harmonic space that could arise from anisotropy or non-Gaussianity.

While it is a potential strength of the approach that phase correlations will not

just be useful for identifying anisotropies specific to the Bianchi models but in

theory any isotropy introduced to the CMB, it could also prove a weakness in

that more general methods such as this may lack the power to discriminate very

specific models. In this work though the phase correlations identified in the
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Bianchi maps were much stronger than first expected; given the generic nature

of this descriptor it was not expected to yield good results. In addition to this,

the strong correlations for the Bianchi types V and VIIh were found to be ro-

bust to both rotation and moderate noise. However using the same methods

on the WMAP 5 year ILC map showed little evidence of non-Gaussianity when

analysed in Galactic coordinates. Further investigation of the map rotated to

the previously reported preferred axis showed a more significant result result,

but not above the 95 percent level.

Whilst the phase analysis has been shown to be an effective method for iden-

tifying non-Gaussianities, it identified them in harmonic (as opposed to pixel)

space. Therefore it is difficult to say whether any of the anomalies identified this

way are due to anisotropy or more generic non-Gaussianity. This anticipated

limit of the analytical method is something that was further considered in the

original paper (Sung et al., 2010) and addressed by also using multipole vectors;

these are based on spherical harmonic phases but give a resulting direction in

pixel space.

The alternative method described in Section 4.2, uses the cross correlation of

spherical harmonic coefficients to look for global anisotropy. This method is

similar to the phase analysis in that it relies very simply on the assumption of

a stationary Gaussian field generating no cross correlation and hence the re-

sult is very robust. This also has the advantage over the phase analysis that it

contains additional information about the amplitudes and therefore should be

less susceptible to noise (i.e. phases can be correlated but if their associated

amplitudes are weak then they will easily be masked by any amount of noise).

This analysis quantified the characteristic features of this measure specific to the

anisotropic Bianchi cosmological models in contrast to the concordance model.

The correlations found were not highly significant, but the cross correlation was

effective for identifying the VII0 and VIIh models given a reasonable amount

of noise and rotation. Analysis of the WMAP 5 year ILC map showed little

evidence for these cosmological models although they are not ruled out.

The patterns in the CMB temperature generated by Bianchi models represent
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fairly extreme departures from the standard framework so it is no real surprise

that they register strongly in the descriptors used. However, both analyses have

involved only a relatively small number of modes, so the fact that quantifiable

effects are seen emerging is very encouraging. Each of the measures considered

are based on very simple assumptions and seem to be most sensitive to different

aspects of non-Gaussianity; focused features, as seen in Bianchi types V and

VIIh, are detected in the case of the phases and twisting features, as seen in

Bianchi types VII0 and VIIh, are detected in the case of the cross correlation.

Therefore the two methods (phases analysis and cross correlation) considered

here provide complementary information.

Both methods consider the Bianchi simulations with fluctuations, or in other

words Gaussian ‘noise’, added to them at an arbitrary ratio. Any ratio is valid;

the greater the amount of fluctuations the greater the degradation of the under-

lying correlations. Therefore a null detection does not preclude the possibility

of a Bianchi universe. This investigation was more aimed at developing effective

methods for identifying the Bianchi models, as well as other forms of anisotropy,

and both methods have shown promise.

These analyses of the Bianchi simulations were restricted to large angular scales

because this is where the resulting patterns in the temperature map are strongest.

Therefore the significance of any potential non-Gaussianity found is always lim-

ited by the small number of modes. To increase the robustness of these tests,

more information needs to be utilised. This work simply considers the tem-

perature maps, but the Bianchi models also generate very characteristic signals

in the polarisation maps (Pontzen, 2009; Sung and Coles, 2011). Further in-

vestigation of this polarisation data is required to characterise it and develop

quantifiable measures. Therefore, in future, by using the temperature and po-

larisation results in conjunction hopefully a more robust test can be achieved.

These have been very preliminary analyses, aimed at establishing whether the

diagnostics considered are in principle capable of uncovering evidence of under-

lying anomalies in CMB data. It remains the case that the standard cosmolog-

ical model is a good fit to a huge range of observational data. Nevertheless, it
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is important that tools are developed that are sufficiently sensitive to hunt effi-

ciently for possible anomalies in the next generation of observations. There are

many ways that the CMB temperature pattern could be anomalous other than

those which have been studied here. Just as there are many ways a distribution

can be non-Gaussian, so are there also many ways a fluctuation field can be

non-stationary. Testing for departures from the standard model will require not

one but a battery of statistical techniques each sensitive to particular aspects

of the distribution.



Part II

Galaxy Clustering

90



Chapter 6

Introduction to Galaxy

Clustering

The large scale structure observed in the local Universe is a complex pattern of

long filaments, made up from clusters of galaxies, intersected with large empty

voids (see Figure 6.1). In contrast the early Universe had a matter distribution

Figure 6.1: Observed distribution of galaxies from the 2dF Galaxy Redshift Survey

(Colless et al., 2001). Galaxies are displayed as a function of look-back time or redshift,

and right ascension. Structure is clearly seen in filaments and voids.
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of relatively consistent density. However, very small temperature fluctuations

are observed in the cosmic microwave background (CMB, see Part I) as shown

in Figure 6.2.

Figure 6.2: ILC 7-year temperature map of the CMB as measured by WMAP (Jarosik

et al., 2011). Note, the temperature has a direct linear relationship with the matter

density, so this is effectively a map of the matter density variation over the full sky.

The amplitude of the fluctuations is of the order 10−5 that of the mean temperature

value.

These temperature fluctuations suggest corresponding variations in the matter

density in the early Universe. Models of galaxy formation provide strong ev-

idence that these matter fluctuations are the seeds that ultimately led to the

formation of large scale structure (Peebles, 1980). This chapter gives a brief

overview of the current theories describing the processes governing the growth

of this observed structure.

6.1 Standard Concordance Cosmological model

The current standard concordance cosmological model (see Chapter 1) is made

up of a framework of different parts, all of which are ongoing areas of study.

Together they form the current accepted model to describe how the total matter

distribution in the Universe evolves over time.
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6.1.1 Background cosmology

The background cosmology was discussed in detail in Chapter 1, but to sum-

marise the following are assumed in the concordance model: Einstein’s General

Relativity (see Section 1.4), Friedman Robertson Walker metric (see Section

1.4.2), flat geometry (see Section1.4.4) and cosmological constant (see Section

1.6.3).

6.1.2 Initial fluctuation spectrum

The concordance model assumes adiabatic density fluctuations in the early Uni-

verse which are independent of scale. Therefore the initial linear power spec-

trum, P0(k), is assumed to be given by a featureless power law and the distri-

bution of fluctuations is assumed to be Gaussian.

6.1.3 Dark Matter

So far we have talked about matter fluctuations but what do we mean by ‘mat-

ter’? Prior to the 1930s, matter meant ‘baryonic matter’ i.e. the material seen

in planets, stars and galaxies. However, by the 1970s there was mounting evi-

dence for a huge amount of matter, both on local and large scales, which could

not be accounted for simply by baryonic matter. In the 1980s an alternative

solution was proposed in the form of dark matter ; a form of matter that only

interacts gravitationally. Nowadays, (cold) dark matter is commonly accepted

to make up ∼ 83% of our Universe’s matter density, with the remaining matter

being baryonic. Bergstrom (2009) gives a comprehensive review of the different

candidate particles for dark matter, along with the current experimental status;

we shall not go into any further detail here.

6.1.4 Growth law

The previous items summarised above form the ‘initial conditions’ for structure

formation. Now we need a methodology for describing the subsequent evolution
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of these fluctuations. The growth of the perturbations due to the cosmology

discussed above is described by the growth law.

To derive this we need to consider the equations of motions for a perturbation,

where ρ = ρ0 +δρ, p = p0 +δp, v = 0+δv, Φ = Φ0 +δΦ and ∇Φ = 0. Therefore

ignoring higher orders of the small terms, Equations 1.19, 1.20 and 1.21 become,

∂δρ

∂t
+ ρ0∇.δv = 0, (6.1)

∂δv

∂t
= −∇δp

ρ0
−∇δΦ, (6.2)

and,

∇2δΦ = 4πGδρ. (6.3)

We also consider the equation of state p = p(ρ) (Section 1.3) which becomes,

δp = p(ρ0 + δρ) = p(ρ0) +

(
dp

dρ

)
ρ=ρ0

δρ+ ...,

and since c2s =
(
dp
dρ

)
ρ=ρ0

this gives,

δp ' c2sδρ. (6.4)

Taking the covariant derivative of Equation 6.2 and then substituting in Equa-

tion 6.4 and 6.3 gives,

∂∇.δv
∂t

= −c
2
s∇2δρ

ρ0
− 4πGδρ.

Taking the time derivative of Equation 6.1, substituting this into the previous

expression and rearranging this gives,(
∂2

∂t2
− c2s∇2 − 4πGρ0

)
δρ = 0. (6.5)

To solve this equation we look for solutions in the form of plane waves,

δρ = exp[i(k.x− ωt)], (6.6)

which substituted into Equation 6.5 gives,

ω2 − c2sk2 + 4πGρ0 = 0. (6.7)
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This dispersion relation then has two types of solution depending on whether

the wavelength (λ = 2π/k) is less than or greater than the Jeans’ length (Jeans,

1902),

λJ = cs

√
π

Gρ
. (6.8)

If λ < λJ then the δρ solution from Equation 6.7 will oscillate. Else if λ >

λJ then there are two solutions of exponential form, one of which decays and

one of which grows. Overtime this decaying solution disappears and so is not

considered later in the evolution of large scale structure.

The growing mode solution will have a dependence on t so to get a dependence

on z you need to consider the background geometry. Later we see that this

is approximated using a fitting function to numerical simulations. Whilst the

amplitude of the modes is small then linear theory can be assumed and so the

power spectrum grows proportionally to the growing mode i.e.

P (k, t)

P (k, t0)
=

D2
+(k, t)

D2
+(k, t0)

. (6.9)

6.1.5 Transfer function

However the growth of perturbations is affected by other phenomena such as

dissipative and radiation related processes. These are accounted for by the

transfer function.

The growth of perturbations can be inhibited by the presence of radiation pres-

sure; pressure only opposes gravity effectively for scales smaller then the Jeans’

length (Equation 6.8). For both baryonic and dark matter, λJ is significant

before recombination, but becomes small afterwards and so the growth of per-

turbations is then not inhibited by radiation pressure. However, the Jeans’

length scale for massive neutrinos remains significant after recombination. Be-

cause the neutrino density does not trace the matter perturbations (due to its

small interaction cross section) it has the effect of reducing the gravitational

collapse of matter over-densities.

In addition to radiation pressure, dissipative processes affect the growth of small
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scale perturbations. The first of these is free streaming which means that ran-

dom particle motions cause over-densities to disperse. In the early Universe

this initially happens at all scales; as the Universe cools, and the particles slow

down to non-relativistic speeds, this dispersion gradually becomes less effective

at smaller and smaller scales. This process switches off when particles become

non-relativistic. For massive neutrinos this occurs around recombination; for

dark matter this occurs well before.

In the case of baryonic matter a similar process occurs known as silk damping

(Silk, 1967) which causes fluctuations to be smoothed when matter and radi-

ation are coupled. When the Universe was still hot enough for matter to be

ionised, matter existed in a plasma coupled with radiation (i.e. adiabatic fluc-

tuations). According to the Jeans’ Instability Theory, fluctuations smaller than

the Jeans’ length will oscillate like acoustic waves. These oscillations continue

because when the density is increased by a compression, the pressure gener-

ated by photons causes a restoring force. When the fluctuation size falls below

the mean free path of a photon, then the photons are no longer providing this

balancing pressure and just move out to other areas resulting in a smoothing

effect.

6.1.6 Growth of linear fluctuations

The growth law and the transfer function combine to provide a linear descrip-

tion of the growth of fluctuations i.e. they describe the process well when the

over/under densities are still small. This linear description provides a good

approximation of the matter distribution over large angular scales, as demon-

strated in Figure 6.3, which shows some images of the matter distribution from

numerical simulations, as a function of time. The images start at the oldest im-

age (earliest time) which shows primordial density fluctuations, to the youngest

image which corresponds to the matter distribution at the present time which

shows a clear structure of voids and filaments. We see that over large scales,

the matter distribution stays the same i.e. we can see the brightest point of the
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Figure 6.3: The images show four snapshots from the Millennium (numerical) sim-

ulation of the matter density at different redshifts (Springel et al., 2005). Each of the

images shows the same co-moving area. Higher matter densities are shown as bright

white/yellow areas, and areas of under-density are shown by darker purple colours.

The different redshifts of the images are 18.3 (top left), 5.7 (top right), 1.4 (bottom

left) and 0.0 (bottom right).

image at early times is roughly in the centre of the image. It stays the brightest

spot through each of the following images. Similarly, the darker patches tend to

stay dark. But on smaller scales it is a different story. The image is becoming

more ‘focused’. Matter is being pulled into the areas which are denser, under

the influence of gravity, and leaving empty voids in between. So the linear ap-

proximation is good at large scales, but to describe the non-linear process in

areas experiencing strong gravitational effects we need further explanation.



CHAPTER 6. INTRODUCTION TO GALAXY CLUSTERING 98

6.1.7 Non-linear evolution

The linear regime of gravitational instability begins to break down when the

magnitude of the density fluctuations reaches the same order as the background

density. Interactions are at this point weakly non-linear ; the amplitudes of

the density perturbations may remain low, but gradually the distribution of

fluctuations will become more and more non-Gaussian as perturbations become

correlated. When perturbations become so massive that they separate from the

Hubble expansion of the Universe to become bound structures this is known as

the strong non-linear regime. These bound structures are known as dark matter

halos.

The non-linear growth of fluctuations is too involved to derive a simple analytic

expression as in the linear case. However there are currently many different

methods being developed for approximating this non-linear evolution, both via

modeling and analytical methods. These are discussed further later in Section

6.2.

6.1.8 Formation of galaxies

So far we have discussed the overall matter density; here the evolution of just

the baryonic matter is considered i.e. the matter than can be directly observed.

As the fluctuations in the dark matter start to collapse, they separate from the

Hubble expansion. Initially the baryonic gas is coupled to the radiation and

is prevented from collapsing with the dark matter by radiation pressure, but

after recombination the normal matter starts to follow the dark matter density.

Although the formation of the dark matter halos is now fairly well understood,

the formation of galaxies remains more elusive. When these bound structures

or halos form, the dark matter can no longer collapse as it cannot dissipate

its energy. Dark matter differs from normal baryonic matter because it only

interacts with other matter via gravity. It has a very small interaction cross

section so it is effectively able to pass right through other matter. As the dark

matter halo collapses, the motion of the baryonic matter separates from that of
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the dark matter, since the path of normal matter will be modified when it hits

other baryonic matter.

This collapsing baryonic matter then starts to form galaxies, albeit via processes

which are not yet well understood. There are different types of galaxies which

can be roughly categorised in the three groups; disks, ellipticals and irregulars.

It is thought that disks are ‘naturally’ formed via the collapse process; as the

baryonic matter flows in to the centre of the halo, it rotates faster and faster.

This rotation causes the matter to flatten into a disk.

These disk galaxies are still influenced by gravity, and this causes them to be

pulled together causing them the merge and grow into larger galaxies. Mergers

of galaxies are often associated with bursts of new star formation; these power-

ful ultra-luminous galaxies are known as starburst galaxies. The larger galaxies

observed are likely to have formed via a number of mergers. It is thought that

elliptical galaxies are likely to result from a large number of mergers and have

therefore gone through so many bursts of star formation that the majority of

the baryonic matter is no longer in gas but locked up in (older) stars.

That was a very brief background of the current view of galaxy formation. How-

ever, research in the field is ongoing and hence there in considerable literature

on the subject. Much of this is not relevant to this analysis though and there-

fore we will not go into any further depth here. Benson (2010) provide a good

review.

Dark matter is not directly observable; only the baryonic matter can be ob-

served, which is mostly visible in galaxies. Given current theoretical models

predict that galaxies form and evolve in cold dark matter (CDM) halos, the

galaxies consequently tend to trace the distribution of the total mass, although

the manner in which they do this may be biased (Kaiser, 1984; Coles, 1993;

Mo and White, 1996). In principle, therefore, once the bias is allowed for, it

is possible to use measurements of the clustering of galaxies to determine the

clustering properties of the underlying total matter. Therefore observations of

galaxies are of much interest in this work.

There are several different types of galaxies/objects that are commonly used for
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studies of large scale structure. Some of the objects that are common enough to

yield good statistics, and bright enough to be seen at the large distances, are;

• Lyman Break galaxies are bright star-burst galaxies detected using the

Lyman break. Radiation at wavelengths less than the Lyman limit at 91.2

nm is almost completely absorbed by the neutral gas found surrounding

star-forming regions of galaxies. This break in amplitude is used as a

selection technique to find star-forming galaxies at high redshift.

• Sub-millimeter galaxies are detected via strong emission in the submil-

limeter wavelength band (100 to 1000 µm). These are early, strongly

star-forming galaxies; by their nature are obscured by dust. Therefore a

high proportion of the radiation emitted from these galaxies is absorbed

by this dust and re-emitted at longer wavelengths.

• Quasars are associated with the very bright centres of some galaxies. They

are thought to be be driven by some very high energy processes, probably

related to the accretion of matter onto a supermassive black hole.

6.2 Measures of Galaxy Clustering

Much work has gone into understanding the global properties of large scale

structure. These are interesting firstly because, as described above, the mat-

ter distribution is sensitive to the cosmological parameters and therefore serves

as an additional independent test of the standard cosmological model. Sec-

ondly, clustering is also sensitive to other more physical parameters such as

the minimum mass a halo with one galaxy has (in your set of observable ob-

jects). Parameters like this are of interest because they can be used to better

understand the processes involved in the formation of galaxies.

6.2.1 Modeling methodologies

Various different methods have been used to try to model the galaxy distribu-

tion, some of which are discussed here.
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Numerical

Some groups have built large numerical simulations to simulate large scale struc-

ture formation, examples of which we will refer to later in Chapter 7. Initially

it was only possible to simulate the distribution of dark matter on large scales,

but this was key to comfirming the link between anisotropis in the CMB with

the growth of large scale structure. However, recent advances in computational

power have meant that numerical simulations are now increasingly used to sim-

ulate formation of galaxies. However these galaxy simulations are still limited

because the processes involved in galaxy formation occur at scales much below

that of the current resolution possible in these simulations.

Semi-Analytical

Because of the limitations of numerical simulations discussed above, semi-analytical

methods are often employed which use numerical simulations to generate the

dark matter distribution, then add analytic approximations for subsequent evo-

lution of the baryonic matter (Springel et al., 2005). Statistics can be extracted

from these simulations and compared to those from our own Universe.

These simulations can be used to characterise different scenarios from just the

standard model e.g. by varying cosmological parameters or properties of dark

matter. Also they can be used to investigate trends over different parameters

(e.g. redshift, mass) where the parameters are well known unlike in observations.

However these simulations cannot yet describe all the observations and also re-

quire a huge amount of computing power to generate, which can be limiting

when trying to probe the smaller scales (Baugh, 2006).

Analytical

Analytical methods consider purely theoretical approximations for the overall

statistical properties of the galaxy distribution. They combine a number of

different components expected to contribute to galaxy clustering. This work

considers just analytical methods and they will be discussed in further detail in
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Chapter 7.

6.2.2 Observational Data

We have said that analytical, and semi-analytical, methods can be used to esti-

mate the global statistics of galaxy clustering. These statistics can be compared

to observations of our own Universe. A steadily increasing number of surveys of

large-scale galaxy clustering are now becoming available. In the optical wave-

band there are projects such as the UKIDSS Ultra Deep Survey (Lawrence et al.,

2007; Hartley et al., 2010) and the Sloan Digital Sky Survey (SDSS) Redshift

Survey (York, 2000; Connolly et al., 2002; Ross and Brunner, 2009) which are

being used to extract information on clustering over large areas and as a func-

tion of redshift. X-ray observations, which are used to locate quasars, have been

performed by the ROSAT-NEP (Mullis et al., 2004; Miyaji et al., 2011) and sub-

sequently the XMM-COSMOS (Hasinger et al., 2007; Gilli et al., 2009) surveys.

Radio observations were made by the FIRST and NRAO VLA surveys (Cress

et al., 1996; Blake and Wall, 2002); Infra-red observations have been performed

by Blast (Viero et al., 2009), 2dF (Percival et al., 2001), and UKIDSS (Hartley

et al., 2010). Most recently, sub-millimeter observations have been made by the

Herschel Space Observatory (Pilbratt et al., 2010; Maddox et al., 2010; Cooray

et al., 2010).

6.2.3 Statistics of Galaxy Clustering

Several different statistics are commonly used, which we discuss further below.

Projected Angular Correlation Function

One standard way to quantify the distribution of galaxies is using a correlation

function. A two point correlation function effectively measures the likelihood of

finding a pair of galaxies at a given physical separation, above what you would

expect compared to a random distribution. It is the Fourier transform of the

clustering power spectrum. However, measurements of distances to individual
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objects in many surveys are quite uncertain, so it is usual to use the angular

correlation function. This describes the excess probability that a galaxy will

be observed to be within a given angle of a randomly selected galaxy on the

sky. Or in other words, it considers the increased likelihood of finding a pair of

galaxies at a given angular separation compared to what you would expect if

there were no clustering.

The correlation function can be measured from data (i.e. maps of 2-dimensional

galaxy fields) by counting pairs of galaxies in the data as a function of the an-

gular separation. These counts are then compared to counts of pairs of galaxies

in a random distribution in a map of similar size and with similar selection

effects. The two sets of counts can then be combined to estimate the angular

galaxy correlation function, ω(θ). There are several different methods for doing

this; one commonly-used approach is the Landy & Szalay estimator (Landy and

Szalay, 1993) which calculates the correlation function as,

ω(θ) =
DD − 2DR+RR

RR
, (6.10)

where DD is the number of data-data pairs, DR is the number of data-random

pairs and RR is the number of random-random pairs, all at a given angular

separation θ.

Two point correlation function / power spectrum

However, with the increasing availability of observations with associated redshift

data, work has begun to try to calculate the non-projected two point correla-

tion function. The best redshift information comes from spectroscopic redshifts

which compares well known lines in spectra in objects to accurately extract the

shift in the spectrum. However spectroscopic redshifts are not always possible

without good spectra from objects. Therefore in recent years photometric red-

shifts have been used much more prolifically - these use relatively wide filters

to calculate a redshift.

Whilst extracting this ‘true’ two point correlation is more complex, the resulting

correlation amplitude is stronger/clearer than the projected one since it is not
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diluted out over redshift. Many groups have been using this additional redshift

information to try to investigate the redshift evolution of the clustering signal,

for example that by Dodelson et al. (2002) who considered the power spectrum.

Of course higher order correlation functions can be and are now being investi-

gated e.g. Verde et al. (2000) and Marin (2010). These are useful as comple-

mentary investigations to the two point correlation function to find parameters

such as the bias parameters. In addition the higher orders hold additional use-

ful information which may provide evidence of non-Gaussianity (McBride et al.,

2010).

6.2.4 Cross correlation

So far the correlations discussed here have been auto correlations i.e. the cross

correlation of the galaxy distribution with itself. However, as has previously

been mentioned, there are now ongoing galaxy surveys over various wavelengths.

These different wavebands provide different views of the matter distribution.

Newly forming, dusty galaxies emit radiation in the submillimeter, whereas

starburst galaxies emit predominately in the optical range. Cross correlating

the observations between the different wavebands will show how the cluster-

ing for the particular objects compares e.g. whether they are stronger/weaker

or have different evolution. This will then yield clues on the different forma-

tion/evolution of the particular objects.

One project that is very relevant to this is the Galaxy and Mass Assembly

(GAMA) survey (Driver et al., 2009) which will collate imaging of the same

part of the sky in the optical, infrared, radio, ultraviolet and submillimeter

wavelength ranges, along with some spectroscopic/photometric redshift obser-

vations. So far only the optical and sub-mm observations have been completed

(using data from the SDSS and Herschel surveys) but the results so far look

promising. For example, Guo et al. (2011) used the large optical galaxy catalog

with well known spectroscopic redshifts from the SDSS to cross correlate with

the smaller submillimeter galaxy catalog from Herschel to show a weaker clus-
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tering in the submillimeter. Of course there are other cross correlation studies

other than those related to GAMA such as work by Krumpe et al. (2010) who

cross correlated X-ray (ROSAT All-Sky Survey) and optical (SDSS) sources,

and Jarvis et al. (2010) who cross correlated submillimeter (Herschel) and ra-

dio (NRAO VLA) observations.

The work in this second part of my thesis, and published in Short and Coles

(2011), considers a selection of analytical models for calculating the projected

two point angular auto correlation function which are described in Chapter 7.

The results of these models are compared with each other and against recent

observations from the Herschel Space Observatory in Chapter 8. Chapter 9

investigates the effect of varying the different free parameters on the galaxy

angular correlation function. Chapter 10 summarises the findings and discusses

potential future avenues for investigation.



Chapter 7

Analytical Galaxy Angular

Correlation models

This chapter describes a selection of analytical models for the galaxy angular

correlation function, which is a standard way of measuring galaxy clustering (see

Section 6.2.3). In Chapter 8 the results from these models will be compared to

observations from the Herschel Space Observatory.

The main focus of the work is to investigate a particular non-linear fitting func-

tion model, but for comparison, two additional models are also considered here.

First, a linear approximation (see Section 6.1.4) is considered which essentially

assumes that the matter distribution today remains the same as it was at early

times, such as that observed in the CMB. This is a very simplified approach, so

it is included to show what increase in accuracy the fitting function approach

for the non-linear approximation gives.

The other model considered is a non-linear approximation (see Section 6.1.7)

which takes into account strong gravitational effects on small scale clustering.

The Halo model is a complex and comprehensive model that takes in the account

all the components expected to contribute to the angular correlation function,

such as the halo dark matter profile. This Halo model is included as a compar-

106
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ison at the other extreme of complexity to the linear model to see if the fitting

function method can do anywhere near as well.

The fitting function version is also a non-linear method but uses a fairly simple

approach based on work by Peacock and Dodds (1996) who found an approx-

imation for the non-linear matter angular correlation combined with a bias

approximation by Moscardini et al. (1998).

All the models start by finding the dark matter power spectrum and then the

galaxy correlation function is subsequently found by effectively Fourier trans-

forming that power spectrum.

7.1 Linear galaxy angular correlation function

7.1.1 Initial linear matter power spectrum

As described in Section 6.1.2, the initial linear power spectrum, P0(k), is as-

sumed to be a featureless power law, i.e.

P0(k) = Akn, (7.1)

where k is the linear wave number, and n is known as the spectral index.

7.1.2 Transfer function

The transfer function, T (k), describes how the initial linear power spectrum

evolves due to radiative and dissipative processes (see Section 6.1.5). The pro-

cessed power spectrum1, P (k), which results following these additional processes

(not gravity), is calculated as;

P (k) = P0(k)T 2(k) = AT 2(k)kn. (7.2)

There are several different versions of the transfer function which have been

derived using fitting formulae to numerical simulations, for example those pro-

posed by Bond and Efstathiou (1984) and Bardeen et al. (1986). The currently

1Note that this power spectrum for the cold dark matter and does not include Baryon

Acoustic Oscillations.
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favoured transfer function is that derived by Eisenstein and Hu (1999), which is

more complex than the others and but gives a better fit to observations. This

model takes into account cold dark matter, dark energy and neutrino densities,

and is described in detail below.

The redshift at matter-radiation equality is given by,

zeq = 2.5× 104Ωm(0)h2Θ−4
cmb , (7.3)

where the temperature of the cosmic microwave background, Tcmb , is parametrised

as Θcmb = Tcmb/2.7K. We also define the redshift where ionised atoms were

released from their coupling to radiation at recombination (see Section 2.1) us-

ing a fitting formulae result by Hu and Sugiyama (1996) and later refined by

Eisenstein and Hu (1998),

zdrag =
1291(Ωm(0)h2)0.251(1 + b1(Ωm(0)h2)b2)

1 + 0.659(Ωm(0)h2)0.828
, (7.4)

where

b1 = 0.313(Ωm(0)h2)−0.419(1 + 0.607(Ωm(0)h2)0.674), (7.5)

and

b2 = 0.238(Ωm(0)h2)0.223. (7.6)

So the relative expansion between the matter-radiation equality and the point

where baryons are released from the drag of photons at recombination can be

expressed as,

ydrag =
1 + zeq

1 + zdrag
. (7.7)

The sound horizon, which is defined here as the co-moving distance a sound

wave can propergate before this drag at recombination, is approximated as

(Eisenstein and Hu, 1998),

s =
44.5 log ( 9.83

Ωm(0)h2 )√
1 + 10(Ωm(0)h2)0.75

Mpc. (7.8)
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Following Eisenstein and Hu (1998) we define this factor to approximate the

suppression of the growth rate by the presence of neutrinos,

pc =
1

4
(5−

√
1 + 24fc), (7.9)

where fc is the ratio of the cold dark matter density to the total mass density

i.e. fc = [Ωm(0)−Ωb(0)−Ων(0)]/Ωm(0). A factor for the suppression of power

is (Eisenstein and Hu, 1999),

αν =
(1− fb)(5− 2pc)(1− 0.553fb + 0.126f3

b )

5(1 + ydrag)pc

[
1 +

pc(1 + 1
7(3−4pc) )

2(1 + ydrag)

]
. (7.10)

where fb is the ratio of the baryon density to the total mass density i.e. fb =

Ωb(0)/Ωm(0). The effective wavenumber is then,

qeff =
kΘ2

cmb

Γeff
, (7.11)

where the effective shape parameter is given by,

Γeff = Ωm(0)h2
(√

αν +
1−√αν

1 + (0.43ks)4

)
. (7.12)

This is all then incorporated into a function with a form found by Eisenstein

and Hu (1998) to give:

T (k) =
L

L+ Cq2
eff

, (7.13)

where

C = 14.4 +
325

1 + 60.5q1.11
eff

, (7.14)

L = ln
[
exp(1) + 1.84βc

√
ανqeff

]
, (7.15)

and

βc =
1

1− 0.949fb
. (7.16)
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7.1.3 Growing mode of linear perturbations

As described in Section 6.1.4, the growth of perturbations due to gravity is

described by the growing mode of linear perturbations, D+(z), where

P (k, z) = P (k, 0)D2
+(z), (7.17)

and D+(z) is given by,

D+(z) =
g(z)

g(0)(1 + z)
, (7.18)

where g(z) is the linear growth factor. Carroll et al. (1992) derived an approxi-

mation formula for g(z) in a universe with a cosmological constant,

g(z) =
5

2
Ωm(z)

[
Ω4/7
m (z)− ΩΛ(z) +

(
1 +

Ωm(z)

2

)(
1 +

ΩΛ(z)

70

)]−1

, (7.19)

where ΩΛ(z) is the dark energy density parameter. Note ΩΛ(z) and Ωm(z) are

calculated as in Eisenstein and Hu (1999) as,

ΩΛ(z) =
ΩΛ(0)

Ωm(0)(1 + z)3 + (1− Ωm(0)− ΩΛ(0))(1 + z)2 + ΩΛ(0)
, (7.20)

and

Ωm(z) =
Ωm(0)(1 + z)3

Ωm(0)(1 + z)3 + (1− Ωm(0)− ΩΛ(0))(1 + z)2 + ΩΛ(0)
. (7.21)

7.1.4 Linear dark matter power spectrum

So to summarise, the above terminology can be used to approximate the linear

dark matter power spectrum,

P (k, z) = P0(k)T 2(k)D2
+(z), (7.22)

where P0(k) is the initial linear power spectrum (Section 7.1.1), T 2(k) is the

transfer function (Section 7.1.2) and D+ is the growing mode of linear pertur-

bations (Section 7.1.3).

This calculation requires a number of input parameters. In this work, results

from the WMAP experiment are used to estimate the cosmological parameters
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Parameter Description Estimate

n Spectral index 0.96

σ8 Variance of the field on the scale of 8 Mpc h−1 0.812

h Hubble parameter 0.705

Ωm(z = 0) Matter density1 0.274

Ωb(z = 0) Baryon density1 0.046

ΩΛ(z = 0) Dark energy density1 0.726

Nν Number of different neutrino species 3.04

Ων(z = 0) Neutrino density1 0.014

Tcmb Temperature of the CMB (K) 2.725

δc(z = 0) Critical density for spherical collapse2 1.686

Table 7.1: Cosmological parameters required as inputs to the angular correlation

models, along with current estimate from WMAP (Komatsu et al., 2009). These pa-

rameters will be used in all future calculations unless otherwise stated. 1All densities

are in units of the critical density. 2In an Einstein-de Sitter cosmology, δc(0) = 1.686;

this value is also a good approximation for the concordance model (Reed et al., 2007).

so that the analysis can concentrate on the effect of the halo parameters. These

cosmological parameters are detailed in Table 7.1.

Note, the power spectrum is also often expressed as a dimensionless quantity,

∆(k) =
k3

2π2
P (k). (7.23)

7.1.5 Linear dark matter angular correlation function

The two-point correlation function (Section 6.2.3) is a measure of the probability

of finding two galaxies of a given distance r away from each other in 3D space,

above what you would expect in a random distribution. It is defined as (Peacock,

1999),

ξ(r) =

∫ ∞
0

∆2(k)
sin kr

kr

dk

k
. (7.24)
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When you take into account the distribution of the objects observed as a function

of redshift, N (z), the observed correlation function becomes,

ξobs(r) = N−2

∫
Z

N 2(z)ξ(r, z)dz. (7.25)

where N is a normalising factor for N (z). However, given that distance measure-

ments are often uncertain, the observed angular correlation function, ωobs(θ),

is frequently used. This is defined as,

ωobs(θ) = N−2

∫
Z

G2(z)N 2(z)

∫ ∞
−∞

ξ(r(u, θ, z), z)dudz, (7.26)

where

r(u, θ, z) = a0

√
u2 + x2(z)θ2, (7.27)

G(z) =
(dx
dz

)−1

, (7.28)

x(z) =
c

H0a0

∫ z

0

dz′

[(1 + z′)2(1 + Ωmz′)− z′(2 + z′)ΩΛ]−1/2
, (7.29)

and a0 is chosen2 to be 1 Mpc h−1 (with the assumption that Ωt(0) = 1).

Note, this calculation of ωobs from ∆2(k) is valid for all linear/non-linear and

dark matter/galaxy cases as long as the appropriate power spectrum required

is used.

7.1.6 Linear galaxy angular correlation function

We have previously discussed how the distribution of galaxies is a good tracer

of the distribution of the total mass. However, it is not a perfect tracer and the

discrepancy between the galaxy power spectrum (∆2
GAL) and the dark matter

power spectrum (∆2
DM) is known as bias.

2Since in this work the curvature k is chosen to be zero then a0, which is the characteristic

curvature length scale, has no specific value and can therefore be selected to be anything. In

this instance we are looking at galaxy clustering and so a Mpc length scale is appropriate.
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It was shown by Coles et al. (1999) that over large-scales the galaxy bias is well

approximated by a linear factor (b2eff), i.e.

∆2
GAL(k, z) = b2eff∆2

DM(k, z). (7.30)

We use an approximation for the bias by Mo and White (1996) who suggested

the following relation between the bias and mass density fluctuations,

b(z,m) = 1 +
1

δc

[ δ2
c

σ2
lin(z,m)

− 1
]
, (7.31)

where δc is the critical linear density required for collapse. σ2
lin is linear variance

in the smoothed density field (Equation 7.58).

The effective bias (beff), i.e. the bias averaged over the distribution of masses,

can then be derived as,

beff(z) =
1

NST

∞∫
ln(Mmin)

b(z,m)n(z,m)d lnm, (7.32)

where n is the mass function given by Sheth and Tormen (1999) and discussed

further in Section 7.3.3. NST is the normalisation factor for n.

Mmin is the minimum halo mass, or the minimum mass that a halo can have

to host a galaxy. This is because either baryonic material is prevented from

entering, or reaching the centre, of a halo below a certain mass; or baryonic

matter is in these dark matter halos but is prevented from cooling and collapsing.

The exact physical process responsible for this is not yet known, although one

suggestion that has been hypothesised is that it could be due photo-heating

associated with re-ionisation of the Universe. This increases the temperature of

the interstellar gas and prevents the cooling and collapse of low mass galaxies.

Evidence for this cutoff has been provided by work such as that by Bouche et al.

(2010) who used numerical simulations to show that without this cutoff relations

between the mass, the star formation rate and the rotational velocity of galaxies

can not be matched as well. Here we make the fairly simple assumption that

Mmin is a sharp cutoff so that no halos below this mass form galaxies, although

we do discuss alternatives later in Chapter 9.
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7.2 Non-linear galaxy angular correlation (Fit-

ting function)

The angular correlation function in the non-linear regime can be calculated in

the same way as described in Sections 7.1.5 - 7.1.6, but rather than using the

linear power spectrum we need to use an estimate for the non-linear power

spectrum.

A number of different approaches have been used to calculate this. Here we

consider a fitting function which has been derived from numerical simulations of

structure formation. Following on from work by Hamilton et al. (1991), Peacock

and Dodds (1996) showed that the non-linear power spectrum and wavenumber

can be approximated directly from the linear counter part as,

∆2
nl(knl , z) = F [∆2

lin(klin , z)], (7.33)

knl = klin [1 + ∆2(knl , z)]
1/3, (7.34)

where

F(x) = x
[ 1 +Bβx+ [Ax]αβ

1 + ([Ax]αg3(z)/[V x1/2])β

]1/β
, (7.35)

and

A = 0.482(1 + n/3)−0.947, (7.36)

B = 0.226(1 + n/3)−1.778, (7.37)

α = 3.310(1 + n/3)−0.244, (7.38)

β = 0.862(1 + n/3)−0.287, (7.39)

V = 11.55(1 + n/3)−0.423. (7.40)

This approximation uses a scale dependent value for the spectral index n where,

neff(k) =
d lnP

d ln k
(k = k/2). (7.41)

This method calculates the non-linear dark matter power spectrum. The non-

linear galaxy power spectrum can then be calculated using the same bias as

described in Section 7.1.6.
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7.3 Non-linear galaxy angular correlation (Halo

model)

Alternatively, the Halo model can be used to calculate the non-linear galaxy

power spectrum, which can then be used as described in Sections 7.1.5 - 7.1.6

to calculate the corresponding angular correlation function.

The Halo model considers two contributions to the galaxy power spectrum; the

one-halo (1h) term which takes into account contributions from galaxies in the

same halo, and the two-halo (2h) term which considers galaxies which are in

separate halos, i.e.

∆2(k, r) = ∆2
1h(k, r) + ∆2

2h(k, r), (7.42)

where k is wavenumber and r is the scale-length. The one-halo term is then

further subdivided; halos are assumed to have just one (or zero) central galaxies

and then all other galaxies in the halo are known as satellite galaxies. The

full expressions for each of these central-satellite pairs (cs) and satellite-satellite

pairs (ss) terms are,

∆2
cs(k, r) =

k3

2π2n2
g

∞∫
Mvir(r)

2Ncen(m)Nsat(m)u(k,m)n(m)dm, (7.43)

and,

∆2
ss(k) =

k3

2π2n2
g

∞∫
0

dmNcen(m)N2
sat(m)u2(k,m)n(m). (7.44)

The two-halo term is expressed as,

∆2
2h(k, r) =

∆2
lin(k)

[n′g(r)]
2

Mlim1(r)∫
0

Ntot(m)b(m, r)u(k,m)n(m)dm

×
Mlim2(r)∫

0

Ntot(m)b(m, r)u(k,m)n(m)dm.

(7.45)

Methods for approximating all the required terms in each of these expressions

are detailed in the following sections. Section 7.3.1 details limits and normali-

sation factors such as Mvir, Mlim1, Mlim2, ng and n′g. u(k,m) is the normalised
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Fourier transform of the halo dark matter density profile and is detailed in Sec-

tion 7.3.2. n(m) is the mass function and is detailed in Section 7.3.3. b(m, r) is

the scale dependent bias and is detailed in Section 7.3.4. The number of galax-

ies, Ncen(m), Nsat(m) and Ntot(m), are estimated using the halo occupation

distribution model (Section 7.3.5).

7.3.1 Limits and normalisation factors

ng and n′g are simply both normalisation factors and are defined as,

ng =

∞∫
0

Ntot(m)n(m)dm, (7.46)

and

[n′g(r)]
2 =

Mlim1(r)∫
0

Ntot(m)n(m)dm×
Mlim2(r)∫

0

Ntot(m)n(m)dm. (7.47)

The Mlim(r) values are the mass limits due to halo exclusion (i.e. halos are

spatially exclusive) and are defined in Tinker et al. (2005) as the values that

satisfy,

Rvir(Mlim1) = r −Rvir(Mmin), (7.48)

and

Rvir(Mlim2) = r −Rvir(Msat). (7.49)

Finally, the virial mass is defined here as the mass at which the mean density

inside a given radius is 200 times3 that of the background density, i.e.

3Mvir

4πr3
vir

= 200ρcΩm(0). (7.50)

3We use a factor of 200 here, as is commonly used by the community, following estimates

from early numerical simulations such as that by Cole and Lacey (1996).
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Substituting in the definition of the critical density ρc (see Equation 1.4.4) we

get,

Mvir(r) =
100H2

0 Ωm(0)r3
vir

G
. (7.51)

7.3.2 Normalised Fourier transform of the halo density

profile

The normalised Fourier transform of the dark matter distribution within a halo

of mass m, is defined as,

u(k|m) =

∫
ρ(x|m)eik.xd3x∫
ρ(x|m)d3x

,

where ρ is the density profile of the dark matter halo, and x is the distance from

the centre of the halo. If we assume spherically symmetric profiles, truncated

at the virial radius, this becomes,

u(k|m) =

2π∫
0

pi∫
0

rvir∫
0

ρ(r|m)eik.r

m
drdθdφ =

1∫
−1

rvir∫
0

2πρ(r|m)eikrµ

m
drdµ

where µ = cos θ, so

u(k|m) =

rvir∫
0

4πr2 sin kr

kr

ρ(r|m)

m
dr. (7.52)

Halo dark matter density profile

There are several different approximations for the density profile. Here we use

the density profile proposed by Navarro et al. (1997), which we shall abbreviate

as the NFW profile, who used numerical simulations of hierarchical clustering

to fit a profile of the form,

ρ(r) =
ρs

( rrs )(1 + r
rs

)2
, (7.53)

where rs is the scale radius and ρs is the density at rs. The scale radius is

defined as,

c =
rvir

rs
, (7.54)
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where rvir is the virial radius (Equation 7.51) and c is known as the concentra-

tion, which is discussed in Section 7.3.2.

ρs can also be found as a function of the concentration by substituting the

expression for ρ(r) into the definition of the mass to get;

m =

∫
ρ(x)d3x =

rvir∫
0

4πr2ρ(r)dr =

rvir∫
0

4πr2 ρs
( rrs )(1 + r

rs
)2
dr.

So using the identity,∫
x

(ax+ b)2
=

b

a2(ax+ b)
+

1

a2
ln |ax+ b|+ c,

with x = r, a = 1
rs

, and b = 1 we get,

m = 4πρsr
3
s

[
ln(1 + c)− c

1 + c

]
. (7.55)

Halo concentration

Following work by Bullock et al. (2001), the concentration can be approximated

using the following expression for the NFW dark matter density profile,

c̄(m, z) ' 9

1 + z

( m

m?(z)

)−0.13

, (7.56)

where m?(z) is characteristic mass scale at which ν(m?, z) = 1. Here,

ν(m, z) =
δ2
c

σ2(m, z)
. (7.57)

where δc is the critical density required for spherical collapse, and σ2(m) is the

variance in the initial density fluctuation field.

Variance of the initial density fluctuation field

The variance in the initial density fluctuation field is calculated as,

σ2(m) =

∫
∆2

lin(k)|W (kR)|2 dk
k
, (7.58)

where W (kR) is the window function, and R is the scale over which the distri-

bution is smoothed with a filter,

R =
( 3m

4πρcΩm

)1/3

. (7.59)
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The window function has different values depending on the filter used. Here we

use a Top Hat filter (i.e. a step function of radius) so,

W (kR) =
3

(kR)3
[sin(kR)− kR cos(kR)]. (7.60)

7.3.3 Mass function

The mass function (n) gives the differential number density of halos we would

expect to find for a given cosmology as a function of mass. The approximation

we use here for the mass function is that first proposed by Press and Schechter

(1974),

mn(m)

ρ̄
= f(ν)

dν

dm
, (7.61)

where ν = δ2
c/σ

2(m).

Press and Schechter (1974) had their own approximation for f(ν) but here we

use the approximation by Sheth and Tormen (1999),

νf(ν) = A (1 + (qν)p)
( qν

2π

)1/2

exp(−qν/2), (7.62)

where p = −0.3 and q = 0.707. Also note that the number density needs to be

normalised, i.e. ∫
n(m)dm = 1 (7.63)

Figure 7.1 shows the resulting distribution of the number of halos for a selection

of different redshifts. We see that the peak number of halos occurs at increasing

mass as the redshift decreases, which is consistent with a hierarchical model of

galaxy formation where many smaller objects gradually merge together to build

larger objects.

7.3.4 Scale dependent bias

The bias used here was calculated by Tinker et al. (2005) from numerical sim-

ulations as,

b(m, r) = b(m)

√
(1 + 1.17ξ(r))1.49

(1 + 0.69ξ(r))2.09
, (7.64)
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Figure 7.1: The differential number of halos as a function of mass M (M�h
−1) using

the Sheth-Tormen approximation, for a different redshifts z = 0 − 7 (for red - violet

respectively).

where,

b(m) = 1 +
1

δc
√
a

[√
aaν +

√
a

2
(aν)1−c − (aν)c

(aν)c + b(1− c)(1− c/2)

]
, (7.65)

with a = 0.707, b = 0.5 and c = 0.6. ξ is the dark matter cross correlation.

Dark matter cross correlation

The dimensionless non-linear dark matter power spectrum, as approximated by

the Halo model, can again be written as,

∆2
DM(k) = ∆2

1h(k) + ∆2
2h(k), (7.66)

where ∆2
1h(k) is the contribution from correlations within the same halo and

∆2
2h(k) is the contribution from correlations between separate halos (Cooray

and Sheth, 2002),

∆2
1h(k) =

k3

2π2

∫ (m
ρ̄

)2

n(m)|u(k|m)|2dm, (7.67)

∆2
2h(k) = ∆2

lin(k)
[ ∫

b(m)
(m
ρ̄

)
n(m)u(k|m)dm

]2
. (7.68)
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n(m, z) is the co-moving number density as defined in Equation 7.61, u(k|m) is

the normalised Fourier transform of the dark matter distribution as defined in

Equation 7.52, b(m) is the bias as defined in Equation 7.65, and ρ̄ is the average

dark matter density which is approximated here as the critical density ρc.

7.3.5 Halo Occupation Distribution model

The initial description of the Halo model, summarised by Cooray and Sheth

(2002), made simple assumptions about the halo occupation distribution. The

halo occupation distribution describes the number of galaxies expected to oc-

cupy the dark matter halos. Zheng et al. (2005) developed this further to show

that the properties of galaxies residing at the centres of halos differ from those

of satellite galaxies because of the differences in their formation histories. They

used semi-analytic models, derive expressions for the separate contributions of

central and satellite galaxies to the halo occupation distribution. They showed

that the probability of a central galaxy can be estimated using a step func-

tion, and a power law approximation can be used for satellite galaxies. They

approximated the total number of galaxies expected in a halo of mass m by,

Ntot(m) = Ncen(m) +Nsat(m), (7.69)

where the number of central galaxies is given by,

Ncen(m) = 0.5
[
1 + erf

( log(m/Mmin)

σ

)]
, (7.70)

and the number of satellite galaxies is given by,

Nsat(m) = 0.5
[
1 + erf

( log(m/Mmin)

σ

)]( m

Msat

)αs

. (7.71)

7.3.6 Non-linear Galaxy angular correlation

All these components can be combined to calculate the power spectrum as de-

scribed in Equations 7.42 to 7.45. This in turn can be used to estimate the

galaxy correlation function as described in Equation 7.26.
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To summarise, this chapter describes three different ways to approximate the

galaxy angular correlation function, which can now be compared with observa-

tions as described in Chapter 8.



Chapter 8

Herschel observations

compared to analytical

models of galaxy clustering

In the previous chapter, different analytical models for the galaxy angular cor-

relation function (ωobs) were discussed. In this chapter, and in Short and Coles

(2011), the different models are tested against sub-millimetre observations re-

leased from the science demonstration phase of the Herschel Space Observatory

and are used to put estimates on the minimum halo mass associated with these

sources.

8.1 Herschel Space Observatory

The Herschel Space Observatory was launched in 2009 and is the only space

observatory to cover a spectral range from the far infrared (∼ 1 − 100µm) to

sub-millimetre (∼ 100 − 1000µm). These wavelengths are obscured from view

from the ground due to absorption by water vapor in the Earth’s atmosphere,

therefore Herschel provides a new and unique window through which to study
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high-redshift galaxy clustering.

Observing in the Herschel wavelength ranges allows the study of cooler objects

with temperatures in the tens to hundreds of Kelvin. These objects include

galaxies, perhaps in the early stages of their formation, obscured in clouds of

gas and dust with star formation rate of around a few hundred solar mass per

year (Hughes et al., 1998). A large proportion of the energy distribution of the

radiation in the observable Universe is in the infrared to sub-millimetre part of

the spectrum.

Herschel has three scientific instruments:

• the Heterodyne Instrument for the Far Infrared (HIFI) is a very

high resolution spectrometer covering wavelengths from 157-625 microme-

tres in seven bands,

• the Photodetector Array Camera and Spectrometer (PACS) is an

imaging photometer and medium resolution spectrometer covering wave-

lengths from 55 to 210 micrometres, and

• the Spectral and Photometric Imaging Receiver (SPIRE) is an

imaging photometer and spectrometer. The imaging camera has three

bands, each centered at 250, 350 and 500 micrometres respectively.

One of the problems of observing/imaging in the far-infrared/sub-millimetre

wavelength range is that it has poor spacial resolution in comparison to say the

optical wavelength band (for example see Figure 8.1). Poor spacial resolution

is also one of the reasons it is difficult to get good spectroscopy in this spectral

range, that and there is not a high abundance of spectral lines. Therefore, in the

case of SPIRE particularly, redshifts are often derived photometrically rather

than spectroscopically.

Observing time on Herschel has been awarded to a number of different scientific

projects. Two of these surveys of particular interest to this work are HerMES

and H-ATLAS which are discussed further below. This data is processed and

cleaned to produce intensity maps, e.g. as shown in Figure 8.1. To calculate the
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Figure 8.1: The GOODS-North field shown as an example of a distribution of galaxies

and background noise observed by SPIRE (Nguyen et al., 2010). The data is taken in

the 250, 350 and 500 µm (left to right) wavelength bands. The green circles indicate

the size of the beam relative to the 16 × 16 arcmin2 image. This shows how sources

are less easily resolved at longer wavelengths.

angular correlation function, the intensity maps need to be further processed

to identify individual sources, which is normally done by imposing a flux cut-

off. Then the correlation function is then calculated using the Landy & Szalay

estimator described in Section 6.2.3.

8.1.1 Herschel multi-tiered extragalactic survey

The Herschel Multi-tiered Extragalactic Survey (Oliver et al., 2010, known as

HerMES) will cover approximately 70 deg2 of the sky, making observations

in a hierarchical structure of several levels with increasing area but shallower

coverage. The Lockman-SWIRE field, which is one of the shallower fields and 11

deg2, was covered by the science demonstration phase; results of the clustering

have recently been published by Cooray et al. (2010) along with a Halo model

analysis.

8.1.2 Herschel astrophysical terahertz large area survey

The Herschel Astrophysical Terahertz Large Area Survey (Eales et al., 2010,

known as H-ATLAS) will cover around 550 deg2 of the sky. H-ATLAS is a

legacy survey to record a large area of the sky; areas well studied in other
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wavelength bands at high Galactic latitudes were chosen. The current survey

consists of five areas: the North Galactic Plane, the South Galactic Plane and

three GAMA fields, designed to overlap with the Galaxy And Mass Assembly

(GAMA) survey (Driver et al., 2009). This work uses data released from the

science demonstration phase which consists of 16 deg2 in one of the GAMA

fields.

8.2 Model parameters

The analytical models have a number of input parameters. Firstly, cosmological

parameters such as the matter and energy densities have a significant impact on

the galaxy clustering. In this work they are fixed to match the current cosmo-

logical parameters as measured by the Wilkinson Microwave Anisotropy Probe

(WMAP) as shown in Table 7.1.

The redshift distribution of the sources also plays a vital role in modeling the

observed angular correlations. Figure 8.2 shows the normalised redshift distri-

butions, N (z), which were used in my calculations reported here for both the

HerMES and H-ATLAS data sets. The estimates for the redshift distribution

for the HerMES data sets are the same as those used by Cooray et al. (2010) in

their analysis. Several estimates of the redshift distribution of objects in the H-

ATLAS survey have been made. First, Amblard et al. (2010) used colour-colour

diagrams to estimate the redshift distribution; however this method includes

only a subset of the sources used in the angular correlation analysis and is

known to be slightly biased towards higher redshift objects. Second, Dye et al.

(2010) used optical counterparts of sub-mm sources to estimate the redshift

distribution; but again this method only uses a subset of all the objects and is

biased towards lower redshift objects. So far, the best estimates of the redshift

distribution, in that they use all the available sources, are those by Eales (2011)

who used spectral energy distribution (SED) fitting to find a best fit redshift

distribution.

In this analysis the estimates by Eales (2011) are used, but please note the



CHAPTER 8. HERSCHEL OBSERVATIONS OF GALAXY CLUSTERING127

Figure 8.2: The normalised distribution of galaxies as a function of redshift for data

sets from HerMES and H-ATLAS. HerMES estimates for different wavelength and

flux criteria are shown in the left plot and are sourced from Cooray et al. (2010): H-

ATLAS estimates in the right plot are from Eales (2011). The redshift distributions

are all roughly centred around z ∼ 2 but are much wider in the case of H-ATLAS

compared to HerMES.
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values for N (z) used here are for illustrative purposes only and should not be

regarded as definitive given the preliminary state of the data. We have tried a

variety of alternative models and find that, for reasonable choices, the results

for ωobs are not especially sensitive to a particular mean redshift in N (z); this

is probably because of the relatively slow evolution of the power spectrum at

low redshift in the concordance cosmology. On the other hand the results are

sensitive to the width of the distribution in z; the wider the distribution over

z the lower the amplitude of the angular correlation function. This is expected

given that the clustering signal is more concentrated in narrower redshift bands.

The other model parameters are the minimum halo mass (Mmin), and the av-

erage mass of a halo with one satellite galaxy (Msat) and the slope of the first

moment of the satellite galaxy HOD (αs) in the case of the Halo model. These

are used as free parameters to find a ‘best fit’ to the data. Because this work is

focused on comparing the models, rather than finding precise results from the

preliminary data, a ‘best fit’ is achieved ‘by eye’ as opposed to any particular

numerical method, unless otherwise stated.

8.3 Analytical models compared to HerMES ob-

servations

Results for the galaxy angular correlation from the initial science run by Her-

Mes were recently published by Cooray et al. (2010) along with a Halo model

analysis. Figure 8.3 shows the results from Cooray et al. (2010) for the Lockman-

SWIRE field of the HerMES survey for the different SPIRE wavelength bands.

The results from the PACS instrument were too noisy to be included in the

preliminary analysis. The criteria for sources to be included in the results are

defined by flux; S250 > 35mJy, S350/S250 > 0.85 and S350/S250 < 0.85. The flux

criteria S350/S250 was chosen to divide low and high redshift sources as can be

seen from Figure 8.2. Sub-mm sources at higher z peak in their spectral en-

ergy distributions at lower frequency: S350/S250 = 0.85 was chosen as a cut-off
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Figure 8.3: These plots are from Cooray et al. (2010) and show the angular corre-

lation function ωobs(θ) measured in the HerMES survey in the Lockman-SWIRE field.

Data is compared to the Halo model which fits well in all cases. The dot-dashed lines

show the two-halo term, the long-dashed lines shows the one-halo term and the solid

line shows the total correlation function.
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between sources at z < 1 which have S350/S250 < 0.85 and sources with z > 1

which have S350/S250 > 0.85.

From the observations we see that the angular correlation has similar ampli-

tudes in each of the three data sets; the middle panel has the highest amplitude

and this most likely because the redshift distribution of the component sources

is the most narrow of the three data sets making the clustering signal more

concentrated and appear stronger (see redshift distribution is Figure 8.2).

8.3.1 Observations compared to a power law

For interest we first consider a simple power law approximation for galaxy an-

gular correlation function. The power law is frequently used to approximate the

ω in quick analyses,

ω(θ) = Aθ−δ. (8.1)

But it doesn’t always fit the data that well, and the parameters used to fit

it don’t really have a particularly meaningful physical interpretation. The ex-

amples in Figure 8.4 show the power-law generally fits this data well at small

angular scales. However, the power law under estimates at mid scales and over

estimates at higher scales thereby limiting its usefulness in further analysis. The

power law fit was found using a least squares approach on the log of the data.

8.3.2 Observations compared to a linear model

The first model, the linear angular correlation function, is the simplest (ignoring

the power law) of the three models we consider in this work. It provides a good

fit to each of the data sets as can be seen in Figure 8.5. We see the linear

model fit is much improved than the power law approximation plotted against

the same data in Figure 8.4.
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Figure 8.4: These plots show the angular correlation function ωobs(θ) measured in

the HerMES survey in the Lockman-SWIRE field. Sources were divided into three sets

by flux density: S250 > 35mJy (left), S350/S250 > 0.85 (right - black) and S350/S250 <

0.85 (right - grey). Data is compared to a power law approximation; it over estimates

at large scales and under estimates at mid angular scales.
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Figure 8.5: These plots show the angular correlation function ωobs(θ) measured in

the HerMES survey in the Lockman-SWIRE field. Data is compared to two different

theoretical models: the non-linear approximation using the fitting function (green line)

and the linear approximation (light blue line). Both approximation fit the data well.
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8.3.3 Observations compared to a non-linear fitting func-

tion

Figure 8.5 also shows the results for the (non-linear) fitting function approxima-

tion. By comparing the linear and non-linear models we see that the transition

between linear and non-linear regimes does not become evident until quite small

scales (∼ 1 arcmin). However, limited resolution of the Herschel telescope in this

range makes it difficult to probe the clustering regime on scales much smaller

than this.

8.3.4 Observations compared to a non-linear Halo model

The results for the Halo model, as well as those from the fitting function method,

are shown in Figure 8.6. The fit at intermediate scales is perhaps slightly better

for the Halo Model over the fitting function, but then this approach has two

more free parameters. However, overall both the Halo model and the fitting

function method show good fits over the scales for which data is available. The

differences in the behaviour at large angular scales is a consequence of slightly

different best-fit values for the bias parameter.

The Halo model results are similar to the analysis by Cooray et al. (2010).

The Halo model approximation is the sum of two components: the one halo

and two halo terms. Cooray et al. (2010) and Amblard et al. (2011) argue

that the good comparison between observations and the Halo model in Figure

8.3 is evidence for these two components. We considered the fitting function

method, which doesn’t include correlations between galaxies in the same halo

(i.e. the one halo component), to give us a comparative model with which to test

this hypothesis. Given that both models fit the data equally well, by eye, this

shows that the two components are not (currently) necessary to model observed

results. Rather we are not yet probing scales where the intra-halo correlations

are becoming significant.
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Figure 8.6: These plots show the angular correlation function ωobs(θ) measured in

the HerMES survey in the Lockman-SWIRE field. Data is compared to two different

theoretical models: the non-linear approximation using the fitting function (green line),

and the Halo Model (blue line). The Halo and fitting function methods both fit the data

well.
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8.3.5 Estimates of the minimum halo mass

In both the fitting function and Halo models the amplitude of large-scale clus-

tering depends on the bias and that, in turns, boils down to the minimum halo

mass through Equations 7.32 and 7.69. We can therefore use the measured

clustering amplitude to get a rough estimate of the mass of halos hosting these

galaxies. The values of the minimum halo mass corresponding to the theo-

retical models in Figure 8.6 are shown in Table 8.1. We see that, for each of

the data sets, the minimum halo masses found from both the fitting function

and Halo models are in agreement (within the errors) and suggest a value of

Mmin ∼ 1013.2±0.4M�h
−1.

Data Set M
FF

min M
Halo

min Msat αs

S250 > 35mJy 1013.4 1013.0 1013.0 < 1.2

S350/S250 > 0.85 1013.2 1013.2 1013.4 < 1.2

S350/S250 < 0.85 1013.4 1013.0 1013.2 > 1.4

Table 8.1: Best fit parameters for the Halo and fitting function models for the Her-

MES results. Mmin is the minimum halo mass for which galaxies can form, Msat is

the average mass of a halo with one satellite galaxy and αs is the slope of the first

moment of the satellite galaxy HOD. All masses are in units M�h
−1. We see that

the Mmin found for each data set are consistent between models, given an accuracy of

10±0.2 M�h
−1 on the masses.

8.4 Analytical models compared to H-ATLAS

observations

The other results analysed here are from the H-ATLAS survey (see Section

8.1.2). Maddox et al. (2010) recently released measurements of the angular

correlation function of the galaxies observed. That analysis compares the results
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to a simple power law approximation for the angular correlation function. This

was because, as can be seen in Figure 8.7, results for the angular correlation are

quite noisy so none of the models fit particularly well - a more detailed analysis

will be possible on the completion of the survey. This noise is thought to be

due to Galactic cirrus in the H-ATLAS data as the number of detections are

very similar to the HerMES data sets and both surveys are similarly confusion

limited. Therefore here just the fitting function results are plotted against the

data. They were used to find approximate values of the corresponding minimum

halo masses, which are 1012.5 and 1013.0 M�h
−1 for the examples plotted in

Figure 8.7 left to right respectively.

The scale of the ωobs results for the S250 > 33mJy flux cut is significantly smaller

that those in the other examples. This is predominately due to the wide bimodal

redshift distribution (see Figure 8.2) although it does still suggest a slightly lower

minimum mass ∼ 1012.5 M�h
−1. This minimum mass is consistent with that

found in the cross correlation analysis by Guo et al. (2011).
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Figure 8.7: These plots show the angular correlation function ωobs(θ) measured in

the science demonstration phase of the H-ATLAS survey. The data are compared to

the fitting function model (green line).



Chapter 9

Investigating Galaxy

Clustering Models

In this chapter we investigate how sensitive the non-linear fitting function model

for the non-linear galaxy angular correlation function (described in Chapter 7)

is to the different free parameters. The free parameter common to both the

Halo model and the fitting function approach is the the minimum halo mass

(Mmin). However we also consider the redshift distribution of the observed

galaxies (N ) which, whilst not really a free parameter as it is fixed by a given

set of observations, is interesting to consider because it is known to be uncertain

as shown in the results in Chapter 8.

9.1 Investigating effect of variations in N (z)

In Chapter 8 we briefly touched on the importance of having accurate estimates

of the sources redshift distribution. Since the redshift distribution is not well

understood in all data sets it is worth discussing here to further understand the

potential significance on the results.

To demonstrate the effects of different redshift distributions on the angular cor-
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relation function, Figures 9.1 and 9.2 show the resulting ωobs for a selection of

source distributions over different ranges of redshifts. In Figure 9.1 the width of

the distribution is fixed and the mean value varies. Figure 9.2 shows the effect of

the changing width of the source distribution on ωobs , whilst keeping the mean

value fixed. Results for ωobs are derived using the fitting function approach for

a minimum halo mass of 1013.5 M�h
−1 (Note, these results are consistent with

the Halo model).

Figure 9.1 shows how the variation in mean redshift causes the amplitude of

ωobs to increase with increasing redshift. This is because at increasing redshift

only the brighter objects are actually observed. These bright objects tend to be

the largest of objects and therefore are the most strongly clustered1, hence the

effective bias is larger (see Figure 9.6), however the variation in amplitude is

not dramatic. Figure 9.2 shows how the increasing width of the source redshift

distribution causes the amplitude of ωobs to decrease. This is because clustering

occurs due to gravitational interactions between objects which therefore have

to be relatively close. Therefore as you increase the redshift range you look at

what would have been a strongly clustered group in a small range gets averaged

out to be weaker. In this example, the effect of varying the width of the source

distribution appears much more pronounced than for the mean redshift example

in Figure 9.1, although please note that the magnitudes of the variations in µ

and σ are not directly comparable.

This demonstrates that the evolution in redshift of the angular correlation func-

tion is not too fast, so if there is uncertainty in the actual distance of a pop-

ulation of objects the resulting errors would not be excessively large. More

important it seems, at least in this example, is the profile of a population over

redshift. If a population is picked up that spans a large range of redshifts this

has the effect of diluting out the clustering signal.

It is therefore important to understand the redshift distribution since it affects

1Larger halos (and their associated galaxies) are more strongly clustered because they are

generally associated with large scale over-densities which amplify local peaks in the smaller

scale fluctuations so that they collapse to form more massive halos than they otherwise would.
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Figure 9.1: Top: A selection of normalised Gaussian source distributions (N ) with

fixed standard deviation (σ = 0.25), but with different mean redshifts at z̄ =1.6, 2,

and 2.4. Bottom: Corresponding angular correlation function ωobs for Mmin = 1013.5

M�h
−1 using the fitting function method.
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Figure 9.2: Top: A selection of normalised Gaussian source distributions (N ) with

fixed mean redshift (z̄ = 2) but with different standard deviation of σ =0.125, 0.25

and 0.5. Bottom: Corresponding angular correlation function ωobs for Mmin = 1013.5

M�h
−1 using the fitting function method.
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the amplitude of ωobs . As we shall discuss in Section 9.2, this variation in the

amplitude of ωobs could likely be misinterpreted as being due to a change in the

minimum halo mass. Having said this, there is not much that can be done to

improve the model to account for this uncertainty, but awareness of the issue

means that results can be considered with caution.

9.2 Investigating effect of variations in Mmin

The minimum halo mass (Mmin) is the minimum mass that a halo can have to

host a galaxy. For example in case of the fitting function method it simply en-

ters the calculation as the lower limit on the integral over the mass function (see

Sections 7.2 and 7.1.6). Consequently it only has influence on the amplitude of

ωobs not its shape as a function of scale.

Note, this is not quite the same for the Halo model. Here Mmin also contributes

to the halo occupation distribution which describes the small scale intra-halo

clustering. This would therefore result in the amplitude of ωobs rising slightly

faster at small scales for increasing mass.

Figure 9.3 shows the angular correlation function estimated using the fitting

function method for a selection of Mmin = 1011.0, 1011.5, ..., 1014.0 M�h
−1. The

redshift distribution used is the same as for the 250µm HerMES data set con-

sidered in Chapter 8.

Figure 9.3 shows that the amplitude of ωobs increases with increasing Mmin . As

a very approximate comparison, the amount of evolution in the magnitude due

to an increase in log10Mmin = 0.5 is of the same sort of order of doubling the

width of the source distribution discussed in Section 9.1.

9.2.1 Smooth cutoff at Mmin

We discussed in Section 9.1 that the source redshift distribution is not really

a free parameter, it is fixed. So with observations of increased accuracy the

uncertainty will be reduced. The uncertainty related to N can not therefore
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Figure 9.3: The angular correlation function (ωobs) using the fitting function method

for a selection of fixed Mmin = 1011.0, 1011.5, ..., 1014.0 M�h
−1 increasing from light to

dark green (top to bottom). The redshift distribution is from the 250µm HerMES data

set.

really be improved via better modeling. However, in contrast to this perhaps

the Mmin free parameter can be better quantified.

In Section 9.1 and the first part of Section 9.2 we considered the minimum halo

mass to be a sharp cutoff. A sharp cutoff means that the survey data set in-

cludes all objects associated with halos above Mmin , but none of the objects

associated with halos below this cutoff. However this is a very simplistic ap-

proximation (Bouche et al., 2010); whilst the physical mechanism that quenches

the formation of galaxies in low mass halos is not known, it seems more intuitive

that this transition would be smooth.

Here we consider a more gradual cutoff or in other words, we assume that it

is increasingly unlikely to observe objects associated with halos of mass below

Mmin , but it is increasingly more likely to see objects associated with halos with

masses above Mmin . If this is the case, as seems reasonable, then we consider

how this would ‘bias’ the results if you used the simpler sharp cutoff analysis.

Of course it depends on the ‘gradient’ of this gradual cutoff; the steeper the
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gradient the more similar to the sharp cutoff the case becomes. So here we con-

sider how a couple of different ‘strengths’ of ‘gradient’ would bias the resulting

Mmin .

As a simple approximation we use a gradient shaped like an error function,

which is simply the integral of a Gaussian distribution. This is therefore equiv-

alent to a Gaussianly distributed Mmin . To calculate the ωobs resulting from this

Gaussianly distributed Mmin , we simply integrate the original ωobs calculation

over a Gaussian distribution, i.e.

ω′obs =

∞∫
0

P (logMmin)ωobsd logMmin , (9.1)

where

P (logMmin) =
1√

(2πσ2)
exp

(
−

(logMmin − µ)2

2σ2

)
. (9.2)

This is calculated here for two examples; Figure 9.4 shows the distribution of

P (logMmin) and corresponding ω′obs where µ = 13.4 and σ = 0.5, and Figure

9.5 shows the same for µ = 13.4 and σ = 1.0. As in Section 9.2, the redshift

distribution used is from the 250µm HerMES data set.

Figure 9.4 shows P (logMmin) and the corresponding ωobs for µ = 13.4 and

σ = 0.5 plotted in red. This is compared to the original method of just having a

fixed cutoff at the mean value µ = 13.4 or rather Mmin = 1013.4 M�h
−1 (plotted

in blue). We see that the amplitude of ωobs has increased with the Gaussianly

distributed Mmin . Thinking now about the problem reversed, we consider what

value of a fixed Mmin would be required to achieve this increase in amplitude,

and find in this example it is equivalent to a fixed cutoff at Mmin = 1013.5

M�h
−1 (plotted in green).

Figure 9.5 shows that same as Figure 9.4 except that the σ for the Gaussianly

distributed Mmin is 1 as opposed to 0.5 (plotted in red). The fixed cutoff at the

mean value µ = 13.4 is again plotted in blue. As in Figure 9.4 the amplitude of

ωobs has increased between the fixed Mmin and Gaussianly distributed Mmin ,
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Figure 9.4: Top: P (logMmin) for each of three examples: a fixed cutoff of at Mmin =

1013.4 M�h
−1 (blue); a Gaussianly distributed logMmin with a mean µ = 13.4 and

standard deviation σ = 0.5 (red); and another fixed cutoff of at Mmin = 1013.5 M�h
−1

(green). Bottom: The corresponding ωobs(θ) approximated using the fitting function

approach with data points from the HerMES survey for S250 > 35mJy, as is the source

redshift distribution.
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Figure 9.5: Top: P (logMmin) for each of three examples: a fixed cutoff of at Mmin =

1013.4 M�h
−1 (blue); a Gaussianly distributed logMmin with a mean µ = 13.4 and

standard deviation σ = 1.0 (red); and another fixed cutoff of at Mmin = 1013.9 M�h
−1

(green). Bottom: The corresponding ωobs(θ) approximated using the fitting function

approach with data points from the HerMES survey for S250 > 35mJy, as is the source

redshift distribution.
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but this time much more significantly. A fixed value of Mmin = 1013.9 M�h
−1

(plotted in green) would be required to achieve this increase in amplitude

So we see that the amplitude of the resulting ωobs is increased for a Gaussianly

distributed Mmin compared to what would be expected for a fixed cutoff at

the mean value. This effect becomes increasingly significant at an increasingly

rapid rate for higher values of σ. To understand the reason for this behaviour

we consider Figure 9.6 which shows the effective bias (beff , Equation 7.32) for a

range of (fixed) minimum halo masses: 1011.0, 1011.5, ..., and 1014.0M�h
−1. We

Figure 9.6: The effective bias (beff) for a range of (fixed) minimum halo masses:

1011.0, 1011.5, ..., and 1014.0M�h
−1 (light to dark blue respectively).

see that the bias becomes increasingly large with increasing mass, so when this

is averaged over a Gaussianly distributed Mmin as in the previous plots, the beff

will not average out to be the same as for a fixed log(Mmin) = µ but will have

a higher overall value.

To summarise this chapter, we have considered the effect of uncertainty in two

types of input to the galaxy angular correlation as approximated using the fit-

ting function model as described in Chapter 7. Firstly we looked at the effect

of varying the source redshift distribution and found that whilst sources at
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higher/lower redshift cause an increase/decrease in the amplitude of ωobs , this

evolution in the ωobs is not as significant as the ‘washing-out’ affect that occurs

when the redshift range is increased.

Then we looked at the minimum halo mass to confirm that, like the source dis-

tribution, Mmin affects the amplitude of ωobs . Therefore an error in N could

contaminate the extracted Mmin . We also discussed whether using a fixed cutoff

in Mmin was appropriate and considered an alternative gradient affect. If indeed

the gradient affect is more realistic then the resulting Mmin extracted using a

fixed Mmin technique would tend to appear higher than the true value.



Chapter 10

Conclusions for Galaxy

Clustering

Over the past few years, much work has gone into trying to develop the stan-

dard concordance cosmological model to include a standard explanation for the

formation and evolution of large scale structure. There are currently good meth-

ods for explaining the statistics of the overall matter distribution at early times

and its evolution in linear regimes. However, in areas of large over density,

with strong gravitational interaction, the non-linear motions of the matter are

less easily quantified. Further there is no universally agreed explanation for the

subsequent processes followed by baryonic matter to form galaxies.

With the recent launch of the Herschel Space Observatory (Pilbratt et al., 2010),

a project with which many astronomers at Cardiff University are actively in-

volved in, this is a good opportunity to test some of the current methodologies

on this new data set. Herschel is the first space based observatory to look in

the sub-millimeter wavebands, which opens up a whole new view of the Uni-

verse to us. Objects observed by Herschel are surrounded by lots of dust which

often means they are early in their evolution i.e. just forming. Observations

from Herschel will be used to investigate the properties of these galaxies, and
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compare the results to those in other wavebands.

That said, it should be stressed that the data sets considered in this work are

from the science demonstration phase of Herschel are therefore only preliminary.

We emphasise that this work is more focused on comparing the different analyti-

cal models for the angular correlation function, than drawing strong conclusions

about Herschel data. The availability of Herschel data provided inspiration for

the work as well as a new and exciting data set to provide realistic comparison

for the analytical models. The key results are the comparison of the models

themselves; the Herschel results are for illustrative purposes but do serve to

situate the otherwise theoretical research in an empirical context.

This work considers three analytical models for the galaxy angular correlation

function. This is a commonly used statistic to describe the overall statistical

properties of a set of galaxy observations. We recall the angular correlation

describes the probability of finding two objects at a given angular separation

on the sky above what would be expected in a random distribution of objects.

It considers the projected distribution of galaxies i.e. the observed distribution

over a solid angle of the sky, as opposed to varying as a function of redshift.

The main model of interest considered in this work is the fitting function method.

This follows from work by Hamilton et al. (1991) and Peacock and Dodds (1996)

who showed that the non-linear matter correlation function can be approximated

directly from its linear counter part, by way of a fitting function approach with

numerical simulations. Then Coles et al. (1999) showed that the bias required

to generate the galaxy angular correlation function from the matter one is well

approximated by a linear factor. This method is then compared with the other

two models.

The second of the three models is the linear approximation, which is included

as a simplistic comparison to the fitting function method in that it assumes

no non-linear clustering. Actually, the simplest approximation most frequently

used in the literature is a power law. This is briefly considered in this work, but

since it has no physical motivation the linear method is also considered. There

are several different analytical linear approximations; this work follows that by
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Eisenstein and Hu (1999).

The last of the three models is the Halo model (Cooray and Sheth, 2002), which

is included as currently the most comprehensive analytical approximation for

non-linear clustering.

The aim of this work is to ‘revive’ this fitting function approach. Whilst for full

analytical studies the Halo model is unarguably effective, its complexity is its

disadvantage. It makes it somewhat inaccessible for quick reports of observa-

tional results as it is a complicated and time consuming to perform. This work

concentrates on whether a more simplistic fitting function approach could fill

this void currently dominated by a power law which is known to be inaccurate.

To be able to do this the fitting function needs to have comparable results to

the Halo model without the ‘fuss’. This would then be useful for quick analyses,

and also for other studies which incorporate the angular correlation function

into further calculation.

In this work, and in Short and Coles (2011), we highlighted that the fitting func-

tion method provides a much improved fit to the Herschel data than a power

law, a slightly improved fit than the linear approximation and a similar fit to

that of the Halo model. We also show that the minimum halo mass found using

our fitting function approach is consistent with that found using the Halo model.

We therefore confirm the much improved fit over a power law, comparable to

that of the Halo model, of the fitting function method which is much simpler

and easier to use than the Halo model.

Another point to highlight is the number of free parameters used by each of

the different models. The linear approximation and the fitting function method

both have just one - the minimum halo mass Mmin . The power law has two

free parameters - the amplitude and slope of the clustering, neither of which are

actually physical parameters, in that they don’t physically describe the objects

being measured but are a parameterisation of the observable. Finally the Halo

model has three three physically meaningful free parameters which include the

minimum halo mass, along with a further two which describe the population of

multiple galaxies in a halo. This again highlights the advantage of using the
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fitting function method.

As we already said, the results showed that, in fact, the linear angular correla-

tion function also provides a reasonable fit to the data. Owing to the limited

resolution of the Herschel telescope it is difficult to identify pairs of galaxies suf-

ficiently close together on the sky to probe anything but the mildly non-linear

regime. The currently available data provide some evidence of a transition

between the linear and non-linear regimes, but as of yet they provide no unam-

biguous detection. Further investigation is required with the full data set which

will be available shortly.

We also touched on the fact that the Halo model includes in its calculation a

possibility of multiple galaxies per dark matter halo. However the fitting func-

tion method does not - it assumes either one or no galaxies per halo. This is

known to be incorrect as there is evidence for multiple galaxies per halo. The

additional intra-halo correlations generated by multiple galaxies will increase

the amplitude of the clustering, but only on smaller scales. The inflection seen

in the observed angular correlation function has in the past been used as ev-

idence for these intra-halo correlations. However this work highlights that on

the scales probed by current data the intra-halo correlations are not yet evident,

and in fact the inflection observed is simply due to non-linear correlations due

to galaxies in separate halos.

Having said this however, data is starting to reach the limit where intra-halo cor-

relations will be significant as can be seen by the deviation of the two non-linear

models just outside of the currently observable scales. Therefore the ability

to model intra-halo correlations, whilst not immediately necessary, will become

important in the future. It would therefore be interesting to investigate if a

simple approximation for this can be used to further extend the fitting function

approach.

The biggest stumbling block to a more complete analysis relates to the consid-

erable uncertainties in the redshift distribution N (z) of the sources involved.

The choices we adopted for this analysis are for illustration only so the results

should not be regarded as definitive. Further data, especially ancillary data
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providing spectroscopic redshifts, will be needed before the precise nature of

these galaxies can be determined.

To summarise, we have shown the advantage of using the fitting function method

over the other commonly used alternatives in the literature. Although neither

as sophisticated nor as flexible as the Halo model, it remains a useful tool that

is perfectly adequate for modeling currently available data. This does not mean

the Halo model is incorrect, of course, but what it does mean is that, at least

for the time being, the paraphernalia involved in modeling intra-halo correla-

tions is rather superfluous for these objects; simpler models can yield perfectly

adequate results.



Chapter 11

Discussion

Observations of the Cosmic Microwave Background have been key to develop-

ing the standard model. The initial discovery of the CMB brought the Big

Bang model to the forefront of models for the evolution of the Universe over

the preceding popular alternative (Steady State). Subsequent observations of

the fluctuations in the CMB have allowed cosmologists to extract per cent level

accuracy on key cosmological parameters (Larson et al., 2011).

Studying the CMB temperature perturbations for anomalies from the standard

model, generically known as ‘non-Gaussianities’, has for some time been the

focus of much debate. This is the area on which the first half of this thesis has

been focused. We considered three different methods; the first for identifying

possible contamination/over-subtraction of Galactic foregrounds and the second

two for assessing global anisotropy.

However, recent work by Francis and Peacock (2010) has shown how the in-

tegrated Sachs-Wolfe signal can account for some of the previously identified

large-scale anisotropic features. Furthermore, it is expected that the imminent

data release from the recently launched Planck will likely explain many of the

‘non-Gaussian’ anomalies. And if they are not explained away, then it is ex-

pected at least some definitive high significance results can be extracted.

In fact it seems that rather than being a CMB experiment, Planck may turn out
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to be most useful for looking at galaxy clusters via the Sunyaev-Zeldovich effect.

This is related to the second half of this PhD thesis which looked at statistical

measures of galaxy clustering. Whilst this is similar to the CMB part in that we

consider the statistics of the large scale properties of the Universe, the galaxy

clustering is much more complex. The distribution of galaxies will be structured

around the primordial conditions set down in the CMB, but in addition their

distribution is also governed by subsequent gravitational processes involved in

the formation of galaxies.

Key to the formation of galaxies is the unknown material termed ‘dark matter’.

Many studies are on-going at all scales to try to identify what this substance

really is (Bergstrom, 2009). This work addresses questions surrounding struc-

ture formation, such as understanding the characteristic sizes of the dark matter

halos associated with these galaxies, and also considers the structure of these

halos.

The recent release of data from the Herschel Space Observatory has prompted

further discussion of the ‘Halo model’, and observations of increased correlation

at small scale have been used as ‘evidence’ for its multiple objects per halo sce-

nario. This evidence is in no way definitive; this work demonstrates a similar

small scale effect can be generated without including intra-halo correlations.

However if further data does constrain the error bars to convince us that the

excess in small scale correlations is there, then there are still potentially other

explanations apart from intra-halo correlations that need to be considered. For

example, gravitational lensing occurs when two objects (a source and a lens)

coincidently align causing the light from the source object to be magnified (and

distorted) by the foreground lens. Lensing affects the distribution of observable

galaxies in different ways, for example; the lens and the source might appear

sufficiently compact to be detected as one much brighter object which may or

may not have been detected otherwise. The generation of small scale correla-

tions in the galaxy correlation function will occur when a lens and a source (or

possible multiple images of the source) can be distinguished as separate items

where one or both would not have been observed without the lensing effect.
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We see therefore that the models discussed here are still very approximate, with

much more study of the individual components and approximations required.

This work, and the majority of other current analyses of galaxy clustering, are

predominately based on source lists of positive (i.e. statistically significant) de-

tections of individual sources. Whilst these observations provide an abundance

of new information, the majority of the intensity map will actually be rejected

because positive identifications of individual sources will not be possible for

the fainter objects. Intensity maps contain much more information from fluc-

tuations caused by these fainter objects than just those identified statistically

significant lensed sources. One way forward with this work would to be to de-

velop models to investigate what structure remains in the maps after removing

detected sources. There are currently proposed methods, and the angular cor-

relation function is a key component, so the non-linear fitting function model

discussed here has a clear application in future analyses of intensity maps.

To summarise, whilst there have been huge developments in cosmology to build

a robust standard model, today there are still many unanswered questions.

Forthcoming new instruments such as Planck should help finally answer some

of these. However key cosmological questions still remain unanswered such as

the nature of dark matter and dark energy. Whilst dark energy remains very

mysterious, much progress is being made on characterising dark matter which is

believed to play a key part in the complex process of galaxy formation. Models

are still scratching the surface of this complexity but by continuing to address

the problem from a multitude of different angles we gradually continue to refine

and advance our understanding of the Universe.
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