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Understanding the effect of Mn substitution for Fe in Co ferrite presents a challenge because there
are three different transition-metal ions distributed among two distinct crystallographic and
magnetic sublattices with complicated superexchange and anisotropic interactions. In this study, a
series of six powder samples with compositions Co1.0MnxFe2−xO4 were investigated using
transmission Mössbauer spectroscopy. Mössbauer spectroscopy provides an excellent tool for
probing the local environment of the Fe atoms present in such materials. Results show two sets of
six-line hyperfine patterns for all samples, indicating the presence of Fe in bothA and B sites.
Identification of sites is accomplished by evidence from hyperfine distribution width, integrated
intensity, and isomer-shift data. Increasing Mn concentration was found to decrease the hyperfine
field strength at both sites, but at unequal rates, and to increase the distribution width. This effect is
due to the relative strengths of Fe–O–X superexchangesX=Fe, Co, or Mnd and the different
numbers of the next-nearest neighbors ofA andB sites. Results are consistent with a model of Mn
substituting intoB sites and displacing Co ions ontoA sites. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1846271g

INTRODUCTION

Spinel ferrite magnetic oxides have received consider-
able research and applications attention for soft magnetic
material and high-frequency applications; however, cobalt-
containing spinels have received relatively little attention due
to their high magnetomechanical coupling and magnetostric-
tion. Recently, however, it has been recognized that it is just
those properties that make cobalt ferrite, substituted cobalt
ferrite, and their metal-bonded composites as promising ma-
terials for magnetomechanical strain sensing and actuating
applications.1 Substitution of other elements, such as manga-
nese into cobalt ferrites, has been proposed in order to tailor
the magnetic and magnetomechanical properties.2 Previous
investigations of manganese-doped cobalt ferrites have con-
centrated on the study of thin films and fine particles for
magneto-optical applications.3,4 In the present study, we re-
port on the magnetic characterization of manganese-doped
cobalt ferrite powders as a function of manganese concentra-
tion using transmission Mössbauer spectroscopy.

EXPERIMENTAL DETAILS

A series of manganese-doped cobalt ferrite powder
samples with compositions CoFe2−xMnxO4 swherex ranges
from 0.0 to 0.8d were prepared by substituting manganese for
iron. The samples were made using standard powder ceramic
techniques, mixing Fe2O3, MnO2, and Co3O4 powders in the

proper ratios for the desired cation concentrations. The pow-
der was mixed, calcined, ball milled, mixed, and calcined
again. The powder was then remilled, mixed, and sintered in
air. The samples were then cooled by removal from the fur-
nace to room temperature, then reground to form the pow-
ders used in this study. Samples were mounted for transmis-
sion Mössbauer measurements by encasing a 0.5-mm-thick
layer of powder between two sheets of plastic tape.

The Mössbauer spectroscopy system used in this study
was operated in transmission geometry mode. The major
components of the Mössbauer system include an Austin Sci-
ence AssociatessASAd model S3 Mössbauer spectrometer
drive, an ASA K3 Linear Motor drive unit, an ASA CSP 200
gas proportional detector, a Canberra PCA-3 multichannel
analyzer computer board which is synchronized with the
drive unit, and a 15 mCi Co57 sRhd source.

DISCUSSION

In Fig. 1 Mössbauer spectra of the six samples are
shown with manganese concentration increasing from bot-
tom to topsX=0.0, 0.2, 0.3, 0.4, 0.6, and 0.8d. The spectra
show the presence of two distinct six line hyperfine patterns,
indicating two different types of ferromagnetic Fe atoms in
the structure. These can be identified as Fe in theA stetrahe-
drald andB soctahedrald site locations within the spinel struc-
ture. As the manganese concentration increases, the line
splitting sindicative of the magnetic hyperfine field at the Fe
nuclei, and related to the exchange couplingd can be seen toadElectronic mail: krieblek@moravian.edu
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decrease. In addition, the individual six line patterns vary
relative to one another, indicating a change in the relative
magnetic environments of Fe in theA andB sites.

To extract quantitative values for the hyperfine field
strength, distribution width, and isomer shift, a curve-fitting
process usingWMOSS software was applied to the raw data.
A composite of two hyperfine patterns was used because the
spectra appear to be composed of two sets of lines, corre-
sponding to iron in theA or B site locations. Figure 2 shows
the results of one such fit for the CoFe1.4Mn0.6O4 sample.
The two individual hyperfine patterns are shown above the
data, and the best-fit curveswhich is their sumd is shown
overlapping the raw data pointss1’sd.

The software uses a standard six line spectrum with
peaks constructed using a Lorentzian profile. The hyperfine
field is used as a variable parameter, as is the isomer shift,
which measures the overall shift of the spectrum from the
zero velocity location. A Gaussian distribution of hyperfine
fields is assumed for each pattern, with which the basic
Lorentzian line shape is convolved. This Gaussian distribu-
tion represents the fact that the iron atoms in the same crys-
tallographic site will not have an identical set of next-nearest
neighbors to which they are magnetically coupled by super-
exchange, but will have a statistical distribution of neighbors
and therefore hyperfine field strengths. The calculated value

for the hyperfine field represents the centroid of the Gaussian
distribution. Results of the fits are shown in Figs. 3–5.

An important step in the analysis is the identification of
which pattern corresponds to theA sites, and which to theB.
Considering first the pure cobalt ferritesx-0.0d, hyperfine
field by itself is not a reliable way to determine this, since in
some studiesA is reported to have the higher hyperfine
field,5 and in someB.6 Following the model of Sawatzkyet
al.,7,8 this apparent discrepancy can be understood, if one
assumes different distributions of next-nearest neighbors.
The antiferromagneticA–B coupling is generally thought to
be the strongest coupling in the structure. EachA-site Fe is
coupled by superexchange to 12B next-nearest neighbors,
but eachB-site Fe is coupled to only 6A nearest neighbors.
Therefore theB site hyperfine distribution width and position
of the centroid are much more affected by where the Co goes
than is theA distribution, and theB-site width for the pure
Co ferrite should be greater than theA-site width.7 Thus the
pattern with the wider distribution atx=0.0 ssite 2d can be
identified as that corresponding to theB sites ssee Fig. 4d.
The ratio of integrated areas under the two patterns for the
pure Co ferrite is consistent with this identification. In addi-
tion, the isomer-shift results also support this identification
sFig. 5d. The hyperfine pattern identified asA sites ssite 1d
shows an isomer shift of 0.14 mm/s forx=0.0 and a range
of 0.14–0.23 mm/s with added Mn. The pattern identified as
B sites ssite 2d shows an isomer shift of 0.30 mm/s forx

FIG. 4. Hyperfine distribution width as a function of Mn contentsxd in
CoFe2−xMnxO4 ssee text for discussion of identification ofA andB sitesd.

FIG. 1. Raw transmission Mössbauer data for CoFe2−xMnxO4 wheresbottom
to topd x=0.0, 0.2, 0.3, 0.4, 0.6, and 0.8.

FIG. 2. Experimental Mössbauer data and fit with two six-line hyperfine
patterns for CoFe1.4Mn0.6O4 sx=0.6d.

FIG. 3. Hyperfine field strength as a function of Mn contentsxd in
CoFe2−xMnxO4 ssee text for discussion of identification ofA andB sitesd.
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=0.0 and a range of 0.30–0.39 mm/s with added Mn. The
expected range of Fe3+ with oxygen coordination is given in
Ref. 9 to be 0.20–0.30 mm/s, with an average of about
0.22 mm/s for tetrahedral oxygen coordination; and
0.30–0.46 mm/s, with an average of about 0.35 mm/s for
octahedral coordination. Thus the isomer-shift data also
agree with the identification ofA andB sites.

Having now identified theA-site andB-site patterns,
consider the effect of Mn substitution for Fe in Figs. 3 and 4.
Substituting Mn for Fe has the overall effect of decreasing
the hyperfine field at both theA sites andB sites. This can be
understood assuming that the Mn–O–Fe superexchange is
not as strong as the Fe–O–Fe superexchange. The hyperfine
field identified withB sites decreases at a steeper rate thanA,
and the width of its distribution increases faster. In substitut-
ing Mn for Fe in CoFe2O4, we assume that Mn+3 is substi-
tuting for Fe+3. Of the three cations Co+2, Fe+3, and Mn+3,
Mn+3 is reported to have the strongest octahedral preference,
and Fe3+ to have the strongest tetrahedral preferenceswith
Co+2 intermediated.10 sNote that our isomer-shift values indi-
cate that the Fe is indeed in the Fe+3 oxidation state, as Fe+2

with oxygen coordination has much higher isomer-shift
values.9d It appears that Mn substitution is not merely replac-
ing Fe in theB sitesswhich might be expected to affect the
A-site hyperfine field and distribution width more thanB,
sinceA–B coupling is the strongestd, but rather that it has the
effect of displacing Co ions to theA sitessand according to
Ref. 7, Fe–O–Co superexchange appears weaker than Fe–
O–Fe superexchanged. Indeed, that is what is shown in the
cation distributions proposed for the slow-cooled samples of
Ref. 6. And increasing the amount of Co onA sites has been
shown to increase the width and decrease the centroid of the
hyperfine field distribution in pure Co ferrite.7 B-site hyper-
fine field and width are much more easily affected thanA by
exchanging Fe–O–Fe superexchange links for Fe–O–X,
since eachB is only linked to 6A next-nearest neighbors,
whereas eachA is linked to 12Bs.7 The A-site width and
hyperfine field are also affected by the substitution, but to a
lesser extent. The relative rates of change of the hyperfine
field and width ofA andB sites as a function of Mn substi-

tution will be influenced by both the different numbers of
next-nearest neighbors linked by superexchange and the sta-
tistical distribution of the three different cations populating
those sites, and by the relative strengths of Fe+3–O–Fe+3,
Fe+3–O–Co+2, and Fe+3–O–Mn+3 superexchange.

CONCLUSIONS

The effects of manganese concentration on the magnetic
hyperfine characteristics of Mn-substituted Co ferrites have
been studied using Mössbauer spectroscopy. Separate contri-
butions due to theA stetrahedrald andB soctahedrald sites can
be observed. They can be identified by hyperfine field distri-
bution width, isomer shift, and integrated area under the hy-
perfine field pattern. The results indicate the reduction of
magnetic hyperfine field strength and increase of magnetic
hyperfine field distribution as manganese is substituted for
iron. TheB-site hyperfine field and distribution are affected
more than theA site. This is consistent with a hypothesis that
the Mn substitutes intoB sites and displaces Co ontoA sites.
Further measurements and more detailed analysis should
help elucidate how changes in Mn content affect the mag-
netic and magnetomechanical properties of these materials,
providing the knowledge base for future applications of the
materials.
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FIG. 5. Isomer shift as a function of Mn contentsxd in CoFe2−xMnxO4.
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