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Abstract 
We illustrate the use of the Lambert W function by analyzing two Economic Order 
Quantity (EOQ) scenarios: an EOQ model with perishable inventory; and a Net Present 
Value analysis of an EOQ problem with trim loss.  Both scenarios are motivated by real 
world situations.  Via these two examples, we reflect upon the pedagogical aspects of 
using the Lambert W function.  We present a Lambert W function �look-up� table for 
classroom use and a Microsoft Excel �Add-In� for self-study and practical use.  We also 
illustrate the use of the Laplace transform to conduct NPV analyses of the EOQ model. 

Keywords: Lambert W function, Economic Order Quantity, Net Present Value, perishable inventory, trim 
loss. 

1. Introduction 
The Lambert W function, W[z], is the function that satisfies [ ][ ] W zW z e z , where e is the 
natural exponential and z is a complex number.   Named after Johann Heinrich Lambert, 
it is sometimes called the Omega function or the Product Log function [1] and is known 
as the �golden ratio of the exponentials�.  In general, z  and the Lambert W function 
is multi-valued.   However, if we restrict z  then for 1 0e z    there are only two 
possible solutions for  W z .  The �principle� branch, which satisfies   1W z   , is 

denoted by  0W z  and the �alternative� branch, which satisfies   1W z   , is denoted by 

 1W z .  For   0W z   there is only one real solution,  0W z .  Figure 1 illustrates the real 
solutions to the Lambert W function.  

Although the Lambert W Function is not well known, it is available in modern computer 
software packages such as Maple and Mathematica.  In Maple, it is known as the 
�LambertW� function, and in Mathematica as the �ProductLog� function.  Corless et al [2] 
recently popularized the Lambert W function, beginning its resurgence as a useful, if 
under-appreciated function, and suggested the symbol �W� after the pioneering work of 
Wright [3]. [2] show that the applications of the Lambert W function are wide ranging 
but often go unnoticed.  They review many practical applications that include the jet fuel  
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Figure 1.  Real solutions of the Lambert W function 

problem, combustion models, enzyme kinetics, molecular physics, water movement in 
soil, epidemics, and applications in computer science. 

The Lambert W function also plays a role in the stability and evolution of differential 
delay equations.  [4] used the Lambert W function to identify the stability boundary for a 
supply chain model in continuous time when a pure time delay represents the production 
and distribution delay.  [5] characterised the time evolution of a continuous time 
production and inventory system, while  [6] used the Lambert W function in order to 
determine expressions for the bullwhip and inventory variance amplification produced by 
a continuous time Order-Up-To policy.   These bullwhip and inventory variance 
expressions are needed in order to conduct an economic analysis of a system with random 
demand processes � see [7] for an example of how to achieve this in discrete time.   

[8] has recently noted the usefulness of the Lambert W function for certain Economic 
Order Quantity (EOQ) problems.  Specifically, [8] considers EOQ problems when the 
inventory deteriorates over time, when demand contains a stock dependent term and 
when the Net Present Value (NPV) of the cash flows is considered.   

In this paper we make an additional contribution to literature on the Lambert W function 
applied to EOQ problems by studying two real cases.  First we consider the problem of 
EOQ with perishable inventory.  We note that there is a difference between deteriorating 
inventory and perishable inventory.  In the deteriorating inventory scenario, the inventory 
physically decays and is destroyed over time, while perishable inventory loses value but 
it is not destroyed.  In a second EOQ scenario we study the net present value (NPV) of 
the cash flows in an EOQ problem with trim loss. The trim loss aspect is an interesting, if 
rather trivial, extension of the classic EOQ problem [9].   Our focus is to derive the cash 
flows via the Laplace transform (rather than directly from the time domain description of 
the inventory levels and order placements as in [8]), which is novel and more interesting.  
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We believe the Laplace transform approach has the advantage that descriptions of the 
cash flows are obtained in a rather concise manner.    

Both EOQ problems are motivated by real-world situations, use authentic data and 
provide practical, compelling observations.  The perishable inventory problem follows 
Blackburn and Scudder�s [10] study of a melon supply chain in California, USA, while 
the NPV of the EOQ with trim loss problem was motivated by the case of VT Foams in 
the UK [11].  In order to obtain numerical solutions to these EOQ problems it is 
necessary to have access to the real solutions of the Lambert W function.   Therefore, we 
present a �look-up� table of the principle and alternative solutions of the Lambert W 
function for classroom use.  We also provide the Visual Basic code needed to write a 
Microsoft �Add-In� for calculating the Lambert W function in Excel.   We believe that 
these pedagogical features make this paper an interesting source for teaching the 
�Lambert W� function (with only slightly advanced EOQ problems) to postgraduate 
students in both engineering and business schools.   

2. EOQ with perishable inventory 
Blackburn and Scudder [10] recently investigated the supply chain design for melons.  
They carefully and clearly describe the melon supply chain, which we briefly summarise.  
Melons are picked from the vine at time 0t , at the field temperature (about 30°C), at a 
rate of p cartons per hour (�cartons of melons� is the unit of analysis).  D is total annual 
harvest and c is the cost of picking one carton, and so cD is the total annual cost of 
picking melons.   A trailer moves slowly through the field as gangs of pickers toss 
melons onto the trailer, where they are sorted into cartons depending on size.  Each case 
can hold up to 30 melons; 42 cases of melons make up a crate; and the trailer can hold up 
to 14 crates of melons. Adding more pickers increases the picking rate.   

Before the field trailer is full, the crates of melons are transferred to another vehicle 
before they are sent to a cooling facility.  This transfer vehicle holds a significant amount 
of melons and may take 3-4 hours to fill by collecting melons from several gangs 
working the field.  The transfer batch is Q cases of melons and is the decision variable in 
this case.  The cooling facility is typically rt  = 15 mins to 1 hour transport time from the 
field and is owned and operated by the co-operative of melon farmers.  The cost of this 
transfer is $K.  The cooling facility uses hydro, forced air or vacuum cooling technologies 
to cool the melons at time 1t .   The melons remain in the cooling facility until they are 
sold to the retailer.  The transport cost for delivery to retailer j is jC .  When the melon 
reaches the retail store, the cold chain ends at time 2t  and so the time in the cold chain is 

2 1 jt t t  . 

Interestingly, as soon as the melons are picked from the vine, they start to lose value as 
they respire.   The temperature of the melon determines the respiration rate and hence the 
rate of value loss [10].  When held at the field temperature, the value of the melons, V, 
falls by a rate of   per hour.  In the cold chain, the value of the melons falls by a rate of 
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  per day.  From this case data [10] then go on to justify an appropriate cost function, 
(see Eq. 3 in  [10]), which we repeat below.    

  /1j rt t Q pKD D
jQ QTC DV pVe e e cD C  


        (1)

Ignoring the exogenous variable D and the constant Cj the optimisation problem becomes  

     /1min / 1  s.t. , 0j rt t Q p
QTC K pe e V e Q p        . (2)

This is equivalent to (Eq. 5 in [10]) when their small error with the second closing 
bracket of the RHS is corrected.  [10] show that the optimal Q satisfies (Eq. 6 in [10]) 

  /p pQ pQ e    (3)

where the constants in (Eq. 6 in [10]) have been replaced by /r jt te K V     for ease of 
exposition.  Failing to recognise that this equation has an exact solution via the Lambert 
W function, [10] provide an approximate solution based on a Taylor Series Expansion 
with the following lower bound, 

2 2 .
r jt tp KpeQ

V

 
 



  (4)

Equation (4) implies that *Q  exists if 0Kp
V  , which can only happen if an odd number of 

 , , ,K p V   are negative.  However, given the context of these variables, this cannot 
happen, and so (4) implies an optimal Q always exists.

This approximation is not necessary.  There is an easily obtainable, exact solution in 
terms of the Lambert W function. The general approach is to transpose all the Q�s to the 
right hand side (RHS) of the equation, with the goal of manipulating it into the form 

xy xe .  The optimal Q can then be determined by inspection of the Lambert W function: 
 x W y .  For the melon case, we start from (3) and collect all the Q�s on the RHS by 

multiplying throughout by /Q pe  , 

  /p p Q pQ e 
     . (5)

Multiplying by  / pe  yields 

   11 1
Q

pQ
pe e p e


  

    , (6)

which is in the form required by the Lambert W function, and the solution is then given 
by  x W y .   Thus the exact solution is: 
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 
1

1

* 1
1

1

1 .

Q
p pe e

p
pe e

W

Q W

 








     

     
(7)

Equation (7) implies that *Q  does not exist if an odd number of  , ,p K   are negative, 

or if there is an even (or zero) number of  , ,p K    are negative and 
r jt te KV

p

  

 .  

Thus there is a significant structural difference between the approximation given by the 
Blackburn and Scudder approximation (4) and exact solution in terms of the Lambert W 
function (7). This highlights the value of exact, analytical solutions. 

We emphasize that (7) is an exact analytical solution for the optimal order quantity, *Q .  
Notice that in (7) we have specified the alternative branch to the Lambert W function.  
This is because we know the optimal order quantity, the deterioration rate, and the 
picking rate are all positive  *, , 0Q p   . It then follows that   1W z   , which 

only occurs on  1W z , the alternative branch, see Figure 1.   

2.1.  Practical example 
We now compare our exact solution in (7) to the lower bound given by (4).  We assume, 
as did [10], that the following enumeration is relevant: The value of the melons at picking 
is, V = $7, and the deterioration rate at a field temperature of 30°C, 0.03   per hour. 
The batch transfer time, 1

2rt  hour, the batch transfer cost, K = $75, the time in the cold 
chain, 5jt   days, and the deterioration rate in the cold chain, 0.02   per day.  

Allowing the picking rate to vary between 1 and 120 cartons per hour produces an 
optimal transfer batch quantity, *Q , which is shown in Figure 2, where we have plotted 
both the lower bound given in [10] and the exact Lambert W-based solution.   The lower 
bound (4) consistently underestimates the true optimal batch quantity  *Q  by 8 to 14 
units. This is a significant amount, since a typical picking rate of 40 cartons per hour 
results. The percentage error,   * */ 100%Q Q Q  , has also been plotted in Figure 2.   

It is also interesting to determine the minimum value of the melons (V) required to ensure 
that an optimal transfer batch quantity, *Q , exists in this practical example.  Allowing the 
picking rate, p, to vary against the deterioration rate at field temperature,  , the 
following contour plots can be constructed (when K = 75, 0.02  , 0.5,  5r jt t  ).   

Figure 3 confirms that the minimum value of melons required to ensure *Q  exists 
increases when the picking rate decreases and when the deterioration rate increases.  
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Figure 2.  Blackburn and Scudder�s lower bound and the exact Lambert W solution 

Figure 3. The minimum value of melons (V) required to ensure Q* exists 

3.  Net present value of an EOQ problem with trim loss 
VT Foams Ltd. [11] makes foam for other manufacturers to use inside products, usually 
furniture or vehicles.   Typically, their customers order rolls of foam with specific 
properties, such as a certain thickness, colour, density, pore size, fire or heat resistance, 
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and other special characteristics.  There are many different types of foam offered for sale 
by VT Foams, with the number of different types running into the hundreds.  

Trucks transport the chemicals used to make the foam to the factory from all over Europe.   
After they arrive, the volatile chemicals are left to settle in storage tanks for 2-3 days.   
When they are settled the chemicals are combined and sprayed onto a slowly moving 
conveyor belt that is 3m wide and 60m long.  This process takes about 2 hours.   The 
chemicals react and the foam �sets�. That is, it rises like a loaf of bread, up to 2m high.  
There is a crust on the outside, and the top is dome shaped, see Figure 4. 

The raw loaf of foam is trimmed and the top is cut off to remove the crust.    This 
produces a uniform block of foam, with a consistent density of holes throughout its 
volume.   This block of foam is then bent into a �donut� and the ends are bonded together.   

The donut is then skimmed (see Figure 4) to create rolls of continuous foam of a certain 
thickness.  The thinner the slice of foam shaved of the donut, the longer the slice is.   A 
3mm slice will create about 18km of foam from a 2m high loaf.  There is about 1km of 
3mm foam on a typical roll that is sold to a customer, so that a loaf can supply up to 18 
rolls of foam. Customers typically order one roll of foam at a time, the rest are stored as a 
finished product in a warehouse until they are sold. 
The loaf of foam is 60 meters long, and this is a fixed constant. If the loaf is any shorter, 
the �donut� cannot be formed as the bend is too tight; and if the loaf is any longer, it will 
not fit into the skimming machine in the later stage.   The width is also fixed as this is the 
width of the conveyor belt and cannot be changed; it will become the height of the roll 
that will later be shaved off the donut.  However, the height of the loaf is a variable.  If 
demand for the foam variant is high, more chemicals can be sprayed onto the conveyor 
belt and the height of the loaf will increase.  A higher loaf will produce a longer skim. 

The higher the loaf, the smaller the percentage of foam that is trimmed to create the 
uniform block.  In a 2m high loaf, about 20% of the material cost is due to the wastage 
from the trimming activities.  However, if a 1m high loaf is made, 40% of the material is 
lost in the trimming. The material cost is about 60% of the final cost of the product.  The 
amount of waste trimmed off the loaf to create the block is assumed to be a constant, 
regardless of the height of the loaf.   Obviously, the department that makes the loaf wants 
to minimise this waste by making loafs as high as possible.   However, this creates more 
finished goods to store later in the process (higher loafs create more rolls of foam in 
inventory).  This conflict results in the classic Economic Order Quantity trade-off.    

Also of interest here is the very long interval between successive batches.  It is not 
uncommon for this company to make a batch that will satisfy a year�s worth of customer 
demand.  Given this long time scale, we propose that the NPV of the cash flows should 
be considered in the EOQ analysis.  

3.1  EOQ with trim loss 
First we will ignore the time value of money and briefly analyse the VT Foams Ltd. case 
as a classic EOQ problem.  Let TC be the total annual cost to be minimised by changing  



Disney, S.M. and Warburton, R.W.H., (2012), �On the Lambert W function: Economic Order Quantity applications and pedagogical considerations�, 
International Journal of Production Economics, Vol. 40, No. 2, pp756-764. DOI: 10.1016/j.ijpe.2011.02.027. 

 8

Figure 4. Making rolls of foam: The loaf, block, donut and skim 

Q, where Q is directly linked to the height of the loaf, the decision variable in this case.  
D is the annual demand for rolls of the foam variant, and h is the annual inventory 
holding (storage) cost per roll.  k is the production set-up cost associated with the loaf, 
block, donut and the Q rolls.  y is the cost of the lost yield due to the trimming of the loaf 
to create the uniform block.  c is the direct cost to produce a unit of the foam (not 
including the holding, trim loss or order placement and set-up cost).  

Under the usual assumptions for EOQ models, (see Hopp and Spearman [12] for a 
concise list that are also relevant here), the average inventory holding over the whole year 
is / 2Q and the average number of replenishment orders per year is /D Q .  Hence, the 
annual direct cost is given by Dc, the annual inventory cost is / 2Qh , the annual set-up 
cost is /Dk Q   and the annual cost of yield loss from the trimming is /Dy Q .  Thus the 
annual costs are given by 

   2Total Annual Costs Qh D
QTC Dc k y    . (8)

Differentiating (8) with respect to Q yields  
2

d
d 2

D k yTC h
Q Q

  .  Setting  d / d 0TC Q   and 

solving for the positive root yields the optimal value of Q, *Q , which is 

 * 2 /Q D k y h  . (9)

It is easy to show that the second derivative of (8) is always positive for relevant 
parameter settings, and so (9) is a minimum.  Therefore, as the optimal height of the loaf 



Disney, S.M. and Warburton, R.W.H., (2012), �On the Lambert W function: Economic Order Quantity applications and pedagogical considerations�, 
International Journal of Production Economics, Vol. 40, No. 2, pp756-764. DOI: 10.1016/j.ijpe.2011.02.027. 

 9

is related to Q, the loaf height optimisation is simply an EOQ problem, where the cost of 
the trimming is incorporated into the set-up cost of the traditional EOQ problem. 

3.2.  NPV of the cash flows in the EOQ with trim loss problem 
Let EOQNPV be the NPV of the cash flows resulting from the EOQ decision for a 
particular product variety of foam.   Our objective is to maximise EOQNPV  by changing Q.  
All notations and assumptions from above also hold here.  The production orders are 
placed  /Q D periods apart and the inventory levels fall linearly by D per period of time.  
Using the Laplace transform and some rather basic control engineering knowledge (see 
Nise [13], or Buck and Hill [14]) we may develop the block diagram in Figure 5 to 
describe the cash flows in this EOQ system.  The use of the Laplace transform to capture 
this information is possible as the NPV of a cash flow over time, f(t) is given by its 
Laplace transform, F(s), where the Laplace operator, s, has been replaced by the 
continuous discount rate, r, Grubbström [15]. 

   
0

st

s r
NPV F s e f t dt

 



     . (10) 

The Laplace transform approach is rather scalable as complex cash flows can be easily 
handled.  In order to be able to exploit it, we recommend a block diagram approach as the 
necessary equations can be readily obtained graphically.  In Figure 5 we have used: the 
impulse response   for the standard input that drives the whole system, and the 
integrator 1s  to convert the impulse into a unit step, that has been scaled by pD to 

represent the sales cash flow.  The feedback loop   1/1 Qs De
  converts the single 

impulse response into a sequence of repeating impulse responses that occur /Q D
periods apart.  These are scaled by  k y cQ   to represent the order cost cash flow.   

The inventory cost cash flow uses the ramp function 2s with a slope is D, a repeating 

impulse generated by the feedback loop   1/1 Qs De
 , which is then converted into a 

�staircase� by the integrator 1s , where each step is scaled by Q.  The scaled ramp and 
scaled staircase are then joined and scaled by h to generate the inventory holding cost 
cash flow.   The three flows can then be combined the give the complete cash flow of the 
EOQ model.  Figure 6 gives an illustration of the individual signals that make up the 
NPV. 

Consider now each of the three cash flows in turn.  Using standard block diagram 
manipulation techniques, we can determine the relationship between the sales cash flow 
and the unit impulse, Dirac delta function,  .  The Laplace transform of the sales cash 
flow is given by /pD s .  Setting the Laplace operator (s) to the discount rate yields the 
PV of the sales 

Sales
pD
sPV  . (11)
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Figure 5.  Block diagram of the cash flows in the EOQ with trim loss model 

Figure 6. Signals that constitute the cash flows generated by the EOQ model 

The PV of the order costs can also be determined from the block diagram, which is 

/Order Cost 1 Qs D
k y cQ

e
PV 

 


 . (12)

In a similar manner we can also obtain the PV function of the inventory cost cash flow, 
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  2/Inventory Cost 1 Qs D
Qh Dh

ss e
PV 

  . (13)

The NPV of all three cash flows in the EOQ model is then given by 

 / 2/1 1EOQ Qs D Qs D

pD k y cQ hQ DhNPV
s e se s 

 
   

 
. (14)

Differentiating (14) w.r.t. Q yields, 

        
 

/ 2

2 / /2
d

d 1

Qs D
EO

Qs D Qs D
Q e D h cs k y s Qs h cs D h cs

Ds
NPV

Q e e



 

     


 


, (15)

where it is easy to see that the stationary points are at 

        / 2Qs De Qs h cs D h cs k y s D h cs        . (16)

Multiplying by     1
D h cs


  gives 

  2/
( )1 1k y sQsQs D

D D h cse 
     . (17)

Finally, multiplying by 
  2

( )1 k y s
D h cse

   formats the stationary point into the required Lambert W 

form, 

      2 2
2

( ) ( )1 1
( )1

k y s k y sQs
D D h cs D h csk y sQs

D D h cs e e
 
     

     , (18)

where can now identify the following �W� terms, 
     2

2
( )1

( )[ ] 1 ;  
k y s

D h csk y sQs
D D h cs zW z e


 

      . (19)

Re-arranging Equation (19) for *Q yields 

   
 

2
1*

11
( )

k y s
D h cs

k y s DQ W e
h cs s


 



    
         

. (20)

In (20) we have selected the alternative branch of the Lambert W function.  Note that in 

our problem  *, , , , , , 0k y c s h D Q   , which implies that  
 
 

2
1

1;  
k y s

D h csW z z e

 

    .   
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Figure 7.  Net present value costs in the EOQ with trim loss against the batch size Q

Now the exponential term 1 0e z   , which in turn means that   1W z    will only 
happen if the alternative branch is selected, and hence our choice in (20).  

The NPV and the three individual costs have been plotted as a function of Q in Figure 7. 
The curves refer to the practically relevant case of sales price p = 75, demand D = 18, 
discount rate s = 0.2, order placement cost k = 25, direct (variable) order cost c = 10, trim 
loss per order y = 2, and inventory holding cost h = 4.   Interestingly, when the individual 
cash flows are considered, there is even a minimum in the order costs, a result that was 
also found by [8].  This did not happen in the classical EOQ approach.  We refer 
interested readers to Appendix 1 for the optimal Q that minimises the order cost function 
- a rather easy result with the approach we have followed here.  While the inventory cost 
NPV curve looks linear as plotted in Figure 7, it is in fact a curve.  Its derivative is 
 / 2h s  at 0Q   and / 2h  at Q   .  The NPV can be shown to be positive if (21) holds. 

   
2( ) ( )

( )
1 0

( ) ( ) ;  
D h ps s k y

Dd h csD ps h s k y D ps h s k y h psW z Q W z e
s h cs h cs s h c

z
s h cs h cs

  



                       

                (21) 

Finally, we note that even though the NPV curve implies that small deviations in *Q  will 
not result in a significant loss in NPV, the batch size given by the classic EOQ formula is 

*
Classical 31.82Q  , whilst that provided by the NPV EOQ approach is * 12.44NPVQ  .  This 

is implies that the VT Foams should reduce its batch size by 60% and produce more 
frequently.  The NPV of producing with Q = 12 is £1,849.70, and with Q = 31 is 
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£1,665.70. The smaller batch size improves the NPV by 10%. Given the number of 
batches produced per year this is a significant cost difference. 

4.  Pedagogical considerations 
In order to arrive at these exact solutions we did not have to change anything in the way 
we set up the equations. It was only at the point of solving the equation did the �Lambert 
W� function emerge.  We merely had to manipulate the equations, and the most difficult 
aspect of that is to recall how to treat exponential functions.  This should be easily 
achievable by postgraduate students after a short refresher, see Table 1.  The other slight 
complication is the selection of the relevant branch of the Lambert W function.  In 
essence however, it is no more complicated or abstract that selecting the positive square 
root in the classic EOQ procedure.  Indeed, selecting the wrong branch will result in a 
negative Q, prompting one to consider the other branch. 

The Lambert W function does however require calculation. Whilst this is easy to do in 
specialist mathematical software such as Maple or Mathematica, student access to this 
software is rather limited.   In order to overcome this in a classroom setting, we have 
provided a �look-up� table for the real solutions to the Lambert W function in Appendix 2.  
This may be printed out by interested readers and become part of their teaching materials.   
It is intuitive and no more difficult to use than the standard normal table used in many 
operations management / industrial engineering texts.   

It is interesting to note that in the region 0.36 0.01z    , a Lagrande Interpolating 
Polynomial with four data points (two above and two below z as given in Table 3 
provides an approximation with less than 0.09% error of the true value of the Lambert W 
function of the alternative branch, and less than 0.054% error on the principle branch.   
Additionally, for the principle branch, in the region 0.1 0.73z   , the error is less than 
0.00052%; in the region 0.7 4.4z   the error is less than  0.00004%; and in the region  
4.5 22.5z  , the error is less than 0.000032%. 

However, a much more useful iterative procedure for determining the real solutions to the 
Lambert W function has been proposed by Johnson [16], see (22).   It is based on 
Newton�s Method and converges rather quickly (usually within 5-10 iterations, so there is 
no need to do many iterations).   

0 1e  1
x

x
e

e  Each value of x determines 
a unique value of xe

1 2.718281828459045e    ,x y x ye e e x y    If x y  then  x ye e

lim x

x
e


        &

kx xke e x k      d

d

xe x
x e

lim 0x

x
e 
    0 xe x   1ie   

Table 1.  Properties of the exponential function 
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 
2

1 ;  lim
1

iw
i

i ii
i

ze ww W z w
w



 


 


(22)

The principle branch,  0W z , can be found by using 0 0w   when 1 10e z   , when 

10z   use    0 ln ln lnw z z     .  For the alternative branch,  1W z , use 0 2w    if 
1 0.1e z     or     0 ln ln lnw z z        if 0.1 0z  . [16] also proposes another 

iterative procedure (see (23)) for use when z is near 1e that converges more rapidly 
than (22).    

   
1

1 11 1 ;  lim
ii i iw i

i

z ew w W z w
w e e



  


    


(23)

Here the principle branch,  0W z , can be found by using 0 0w  .  For the alternative 

branch,  1W z , use 0 2w   .  It is a trivial matter to incorporate both of these iterative 
procedures into a User Defined Function in Microsoft Excel.  The Visual Basic code is 
shown below in Table 2, and provides both the  0W z  and  1W z  branches.  This can be 
saved as a �Microsoft Excel Add-In�.  After such a procedure is undertaken, then 
�=LambertW(mode,z)� can be used in Microsoft Excel to calculate the Lambert W 
Function.   

5. Conclusions 
We made a small, but we believe important, contribution to Blackburn and Scudder�s [10] 
EOQ problem with perishable inventory by improving upon their lower bound for the 
optimum order quantity.  We accomplished this by exploiting the properties of the 
Lambert W function.  Recognising that the Lambert W Function is also useful for other 
EOQ problems with exponential terms, we have illustrated a rather general approach that 
exploits the Laplace transform to optimise the NPV of an EOQ problem with trim loss. 
The relation between the Laplace transform and the Lambert W function emerged as an 
interesting feature. The parallelism between these two functions was first pointed out in 
[17]. 

Both of our EOQ problems were motivated by real-world scenarios.    Acknowledging 
that the Lambert W function is not well known, we have provided two pedagogical tools 
for the operations management and industrial engineering teacher.  One is a standard 
�look-up� table for class-room use, the other a Microsoft Excel �Add-In� for self study 
and professional purposes.  Together these tools make the �Lambert W� solutions no 
more difficult to use and teach than other inventory problems.  Certainly they are no more 
difficult than a normal distribution table, which is ubiquitous in operations management 
texts.   
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Function LambertW(mode As Integer, z As Double) 
Dim Wo As Double 
Dim Wnew As Double 

Wnew = 0 
If mode = 0 Then 
    If z > 10 Then 
             Wo = Wo = Log(z) / Log(2.718281828459045) - Log(Log(z) / Log(2.718281828459045)) / Log(2.718281828459045) 
    Else 
             Wo = 0 
    End If 
Else 
    If z < -0.1 Then 
             Wo = -2 
    Else 
             Wo = Log(-z) / Log(2.718281828459045) - Log(-Log(-z) / Log(2.718281828459045)) / Log(2.718281828459045) 
    End If 
End If 

If z < -0.35 Then 
    For grandloop = 1 To 10000 
       Wnew = -1+(Wo+1) * ((z+(1/ Exp(1))) / (Wo*Exp(Wo) + (1/Exp(1))))^ 0.5 
        If Wo = Wnew Then  
              grandloop = 10000 
        Else  
              Wo = Wnew 
        End If 
    Next grandloop 
Else 
    For grandloop = 1 To 10000 
        Wnew = ((z * Exp(-Wo)) + Wo ^ 2) / (Wo + 1) 
        If Wo = Wnew Then  
              grandloop = 10000 
        Else  
              Wo = Wnew 
        End If 
    Next grandloop 
End If 

LambertW = Wnew 
End Function 

Table 2.  Visual Basic Code to calculate the real solutions to the Lambert W 
function 
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Appendix 1:  The optimal order quantity to minimise the present value of the order 
costs 

The present value of the order costs is given by (12).   Differentiating w.r.t. Q yields, 

    
 

Order Cost
2

d
d 1

Qs Qs
D D

Qs
D

e cDe c D Qs s k yPV
Q D e

   



(24)

where we can see that there is a stationary point at  

    0
Qs
DcDe c D Qs s k y     .  (25)

Dividing throughout by 
Qs
De  and collecting together the 

Qs
De  terms produces, 

    Qs
De c D Qs s k y cD     . (26)
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Dividing throughout by cD  yields 

 1 1
Qs
D Qs syks

cD D cDe       (27)

and multiplying by 
 1 s k y
cDe
   yields the required format to read directly the Lambert W 

terms, 

 
    1 11

s k y
cD

s k y cQ
s k y cQcD

cDe e


 
         (28)

which are 

     11 ;  
s k y

cDs k y cD
cDW z z e

        . (29)

Then we re-arrange (29) to yield *
Order CostQ , the optimal transfer batch quantity to 

minimise the present value of the order costs. 

 1*
Order Cost 11

s k y
cDk y D

c sQ W e
 


           . (30)

Note, in (30) we have selected the alternative branch of the Lambert W function as we 
can see the �W� term has to be negative to ensure *

Order CostQ  is positive. 
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Appendix 2: The real solutions to the Lambert W function 

Numerical solutions for W-1[z] and W0[z]  are provided in Table 3. 

z W-1[z] W0[z]  z W0[z]  z W0[z]  z W0[z]
-1/e = -0.36788 -1 -1 0.01 0.009901 0.8 0.490068 4.5 1.267237 

-0.365 -1.13066 -0.87982 0.02 0.019612 0.85 0.510279 4.75 1.297615 
-0.36 -1.22277 -0.80608 0.03 0.029138 0.9 0.529833 5 1.326724 
-0.355 -1.29124 -0.75624 0.04 0.03849 0.95 0.548774 5.25 1.354670 
-0.35 -1.34972 -0.71664 0.05 0.047672 1 0.567143 5.5 1.381545 
-0.345 -1.40239 -0.68311 0.06 0.056693 1.05 0.584975 5.75 1.407432 
-0.34 -1.4512 -0.65369 0.07 0.065558 1.1 0.602304 6 1.432404 
-0.335 -1.49726 -0.62731 0.08 0.074273 1.15 0.619158 6.25 1.456526 
-0.33 -1.54127 -0.60327 0.09 0.082844 1.2 0.635564 6.5 1.479856 
-0.325 -1.58368 -0.5811 0.1 0.091277 1.25 0.651548 6.75 1.502447 
-0.32 -1.62485 -0.56049 0.11 0.099574 1.3 0.667132 7 1.524345 
-0.315 -1.66502 -0.54118 0.12 0.107743 1.35 0.682337 7.25 1.545593 
-0.31 -1.70439 -0.52299 0.13 0.115786 1.4 0.697182 7.5 1.566230 
-0.305 -1.74312 -0.50577 0.14 0.123709 1.45 0.711684 7.75 1.586292 

-0.3 -1.78134 -0.4894 0.15 0.131515 1.5 0.725861 8 1.605811 
-0.295 -1.81915 -0.47379 0.16 0.139208 1.55 0.739728 8.25 1.624817 
-0.29 -1.85665 -0.45886 0.17 0.146791 1.6 0.753298 8.5 1.643337 
-0.285 -1.89391 -0.44453 0.18 0.154268 1.65 0.766585 8.75 1.661395 
-0.28 -1.93101 -0.43076 0.19 0.161642 1.7 0.779601 9 1.679016 
-0.275 -1.968 -0.41749 0.2 0.168916 1.75 0.792358 9.25 1.696220 
-0.27 -2.00495 -0.40468 0.21 0.176093 1.8 0.804866 9.5 1.713028 
-0.265 -2.04191 -0.3923 0.22 0.183177 1.85 0.817136 9.75 1.729458 
-0.26 -2.07892 -0.38031 0.23 0.190169 1.9 0.829176 10 1.745528 
-0.255 -2.11604 -0.36869 0.24 0.197072 1.95 0.840997 10.25 1.761252 
-0.25 -2.15329 -0.3574 0.25 0.203888 2 0.852606 10.5 1.776647 
-0.245 -2.19073 -0.34643 0.26 0.210621 2.05 0.86401 10.75 1.791726 
-0.24 -2.2284 -0.33576 0.27 0.217272 2.1 0.875219 11 1.806502 
-0.235 -2.26633 -0.32537 0.28 0.223843 2.15 0.886238 11.25 1.820988 
-0.23 -2.30457 -0.31523 0.29 0.230337 2.2 0.897074 11.5 1.835195 
-0.225 -2.34315 -0.30535 0.3 0.236755 2.25 0.907734 11.75 1.849135 
-0.22 -2.38212 -0.29569 0.31 0.2431 2.3 0.918224 12 1.862816 
-0.215 -2.42151 -0.28626 0.32 0.249373 2.35 0.928548 12.25 1.876250 
-0.21 -2.46136 -0.27703 0.33 0.255575 2.4 0.938714 12.5 1.889445 
-0.205 -2.50173 -0.26801 0.34 0.26171 2.45 0.948725 12.75 1.902409 

-0.2 -2.54264 -0.25917 0.35 0.267777 2.5 0.958586 13 1.915152 
-0.195 -2.58415 -0.25051 0.36 0.27378 2.55 0.968303 13.25 1.927680 
-0.19 -2.62631 -0.24203 0.37 0.279719 2.6 0.97788 13.5 1.940001 
-0.185 -2.66917 -0.23371 0.38 0.285595 2.65 0.98732 13.75 1.952121 
-0.18 -2.71277 -0.22554 0.39 0.291411 2.7 0.996629 14 1.964049 
-0.175 -2.75718 -0.21752 0.4 0.297168 2.75 1.005809 14.25 1.975789 
-0.17 -2.80245 -0.20965 0.41 0.302866 2.8 1.014864 14.5 1.987347 
-0.165 -2.84866 -0.20192 0.42 0.308508 2.85 1.023799 14.75 1.998730 
-0.16 -2.89587 -0.19432 0.43 0.314094 2.9 1.032616 15 2.009943 
-0.155 -2.94415 -0.18684 0.44 0.319625 2.95 1.041318 15.25 2.020991 
-0.15 -2.99359 -0.17949 0.45 0.325104 3 1.049909 15.5 2.031879 
-0.145 -3.04429 -0.17226 0.46 0.33053 3.05 1.058391 15.75 2.042611 
-0.14 -3.09633 -0.16514 0.47 0.335905 3.1 1.066768 16 2.053192 
-0.135 -3.14983 -0.15813 0.48 0.34123 3.15 1.075042 16.25 2.063627 
-0.13 -3.2049 -0.15122 0.49 0.346506 3.2 1.083216 16.5 2.073919 
-0.125 -3.26169 -0.14442 0.5 0.351734 3.25 1.091292 16.75 2.084073 
-0.12 -3.32033 -0.13772 0.51 0.356914 3.3 1.099273 17 2.094092 
-0.115 -3.38099 -0.13111 0.52 0.362049 3.35 1.107161 17.25 2.103980 
-0.11 -3.44387 -0.1246 0.53 0.367138 3.4 1.114958 17.5 2.113741 
-0.105 -3.50918 -0.11817 0.54 0.372183 3.45 1.122667 17.75 2.123377 

-0.1 -3.57715 -0.11183 0.55 0.377184 3.5 1.130289 18 2.132892 
-0.095 -3.64808 -0.10558 0.56 0.382143 3.55 1.137827 18.25 2.142289 
-0.09 -3.72228 -0.09941 0.57 0.387059 3.6 1.145283 18.5 2.151571 
-0.085 -3.80014 -0.09331 0.58 0.391934 3.65 1.152657 18.75 2.160742 
-0.08 -3.88211 -0.0873 0.59 0.396769 3.7 1.159953 19 2.169802 
-0.075 -3.96871 -0.08136 0.6 0.401564 3.75 1.167172 19.25 2.178756 
-0.07 -4.06059 -0.07549 0.61 0.406319 3.8 1.174316 19.5 2.187606 
-0.065 -4.15853 -0.06969 0.62 0.411037 3.85 1.181385 19.75 2.196354 
-0.06 -4.2635 -0.06396 0.63 0.415716 3.9 1.188383 20 2.205003 
-0.055 -4.37672 -0.0583 0.64 0.420359 3.95 1.19531 20.25 2.213554 
-0.05 -4.49976 -0.05271 0.65 0.424965 4 1.202168 20.5 2.222011 
-0.045 -4.63465 -0.04717 0.66 0.429535 4.05 1.208958 20.75 2.230376 
-0.04 -4.78419 -0.0417 0.67 0.434071 4.1 1.215682 21 2.238649 
-0.035 -4.95225 -0.03629 0.68 0.438571 4.15 1.222341 21.25 2.246834 
-0.03 -5.14448 -0.03094 0.69 0.443037 4.2 1.228936 21.5 2.254932 
-0.025 -5.36964 -0.02565 0.7 0.44747 4.25 1.235469 21.75 2.262946 
-0.02 -5.64232 -0.02041 0.71 0.45187 4.3 1.24194 22 2.270876 
-0.015 -5.98976 -0.01523 0.72 0.456238 4.35 1.248352 22.25 2.278725 
-0.01 -6.47278 -0.0101 0.73 0.460573 4.4 1.254704 22.5 2.286495 
-0.005 -7.284 -0.00503 0.74 0.464877 4.45 1.260999 22.75 2.294186 

0  0 0.75 0.46915 4.5 1.267238 23 2.301801 

Table 3.  Enumeration of the real solutions to the Lambert W function 
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