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We present first a compatibility equation for the misfit strains induced in alloyed quantum dots �QDs� by the
mismatch in the lattice constants or the thermal-expansion coefficients of their alloying elements and show that
it imposes some restrictions on the alloy composition profiles from a theoretical point of view. We then solve
the strain field in embedded alloyed QDs induced by the nonuniform misfit strains. It is found that the induced
field is uniform if the misfit strains satisfy the compatibility equation, but not otherwise. Finally, we consider
the energy of nucleation of a circular prismatic dislocation loop to relieve the misfit strain and calculate the
critical size of a dislocation-free alloyed QD. We show that this size is much larger when the alloy composition
meets the restrictions imposed by the strain compatibility equation than when it does not.
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I. INTRODUCTION

The behavior of the electronic devices made of alloyed
quantum dots �QDs� �e.g., InxGa1−xAs, CdTexSe1−x� is
strongly affected by their enriched but nonuniform
composition.1–4 The possibility of tuning a particular compo-
sition profile via alloying is of great importance as it repre-
sents another degree of freedom in the design of self-
assembled heteroepitaxial structures.5 Many theoretical and
experimental investigations have been conducted to under-
stand how different growth parameters influence the size,
shape, and composition of alloyed QDs, in the hope that such
understanding will allow better control of their electronic
properties.5–16 A recent literature review17 suggests that no
existing theory can predict the complicated interdependence
of QD shape, strain, and composition. Moreover, if a QD
island grows sufficiently large, it will eventually induce
strain-relieving misfit dislocations.4 Hence the assessment of
the composition profiles and strains is important to both the
identification of the dominant growth mechanisms and the
modeling of the confining potential of quantum dots.5,18,19

There is much experimental evidence in support of
position-dependent compositions in various QDs.7,15,16,18

Rosenauer et al.7 evaluated the composition of
InxGa1−xAs/GaAs QD structure by measuring local lattice
parameters and displacements assuming a linear dependence
of the lattice parameter on the In content �Vegard’s law�. Chu
and Wang20 and Duan et al.21 analyzed the strain fields for
QD structures with a nonuniform composition, and showed
that the strain fields are not uniform in the QD. In this paper,
by assuming that the lattice constants or the thermal-
expansion coefficients of alloyed QDs obey Vegard’s law, we
present first a compatibility equation for the misfit strains
induced in alloyed quantum dots �QDs� by the mismatch in
the lattice constants or the thermal-expansion coefficients of
their alloying elements and show that it imposes some re-
strictions on the alloy composition profiles in a theoretical
sense. Then, we reveal the profound effect that the compat-
ibility of the misfit strains induced by the nonuniform com-
position has on the strain fields and the critical sizes of
dislocation-free QDs.

II. MISFIT STRAINS

To reveal the profound effect of a nonuniform composi-
tion on the stress state of a QD, consider, for simplicity, a
spherical alloyed QD embedded in an infinite matrix �rela-
tive to the size of the dot, Fig. 1�. The analytical method is
equally applicable to QDs of other shapes, sizes, and com-
position profiles. We assume that the nonuniform composi-
tion of the QD is spherically symmetric, i.e., it is a function
of the radial coordinate r only. Therefore the misfit eigen-
strains �*�r� induced by the mismatch of the lattice constants
or thermal-expansion coefficients can be expressed as

�*�r� = �rr
* �r�er � er + ���

* �r��e� � e� + e� � e�� , �1�

where er, e� and e� are the local unit base vectors in the
spherical coordinate system, and �rr

* �r� and ���
* �r� are the

misfit strains in the radial and tangential directions, respec-
tively. The misfit strains induced by the mismatch in the
lattice constants and those by the mismatch in the thermal-
expansion coefficients are20,22,23

�rr
* �r� = cr�r��m0

* , ���
* �r� = c��r��m0

* �2�

and

FIG. 1. �Color online� A spherical QD and a circular prismatic
misfit dislocation loop nucleating in the QD cross section.
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�rr
* �r� = cr�r��tm0

* , ���
* �r� = c��r��tm0

* , �3�

where �m0
* �=�ain−aex� /aex� and �tm0

* �=��in−�ex��T� are the
misfit strains arising from the different lattice constants and
the thermal-expansion coefficients between different uniform
phases, respectively, ain, aex and �in, �ex, are the lattice con-
stants and the thermal-expansion coefficients of the interior
and exterior phases, respectively, and �T is the temperature
difference. cr and c� are the fractions of the ingredient at the
location r in the radial and tangential directions, respectively.
If cr�1 and c��1, Eq. �1� reduces to that for a uniform
composition. As �m0

* and �tm0
* are constants, we will often

make no distinction between �rr
* �r� and cr�r� and between

���
* �r� and c��r�. In fact, the linear expressions in Eqs. �2�

and �3� are the so-called Vegard’s law22 which states that for
an alloyed material Ealloy=xEA+ �1−x�EB, where EA, EB, and
Ealloy are the respective properties of pure A, pure B and the
alloy AxB1−x, and x is the fraction of one ingredient in a
material point.3 For example, experiments have shown that
the lattice constant of the nonuniform nano-onion
�ZnxCd1−xS� exhibits a nearly linear relation with the Zn
content x, which is consistent with Vegard’s law.24,25

III. ELASTIC FIELDS

The nonuniform distribution of the eigenstrains will result
in an elastic field in a QD, even when its surface is not
constrained, i.e., in a free-standing QD. To obtain simple
analytical solutions in a free-standing QD induced by the
nonuniform eigenstrains in Eq. �1�, we assume that the elas-
tic constants of the alloyed QD are uniform, and have the
same values as the surrounding isotropic matrix �Fig. 1�.
This is a reasonable assumption because the alloyed semi-
conductor QDs usually contain compounds �e.g.,
InAs/GaAs, CdTe/CdSe� with nearly identical elastic con-
stants, and it has been validated by comparing isotropic and
anisotropic solutions for semiconductor materials.26

Let the eigendisplacement vector in the free-standing QD
be u*. Then, according to the theory of infinitesimal elastic-
ity, the governing equation to obtain u* is

Cijkl�uk,lj
* − �kl,j

* � = 0, �4�

where the eigenstrains �ij
* �x� are given in Eq. �1�, and Cijkl is

the elastic modulus tensor of QD. Substituting Eq. �1� into
Eq. �4�, it follows that the only nonvanishing component of
the displacement vector u*, viz. ur

*�r�, must satisfy the equa-
tion

r2�2ur
*

�r2 + 2r
�ur

*

�r
− 2ur

* − �m0
* r2

�� �cr

�r
+

2�

�1 − ��
�c�

�r
+

2�1 − 2��
�1 − ��

�cr − c��
r

� = 0, �5�

where � is the Poisson ratio of the QD. Equation �5� and the
corresponding boundary conditions constitute the basic equa-
tions to find ur

*�r�. When the variations of c��r� and cr�r� are
known, ur

*�r� can be easily determined.
For the considered alloyed spherical QD, the only nonva-

nishing equation of compatibility of misfit eigenstrains �rr
*

and ���
* represented in Eq. �1� reduces to an equation relating

the radial and tangential alloy composition profiles,

r
�c��r�

�r
+ c��r� = cr�r� . �6�

Equation �6� is identically satisfied when the composition is
uniform, but it imposes restrictions on cr and c� when the
composition is nonuniform. This fundamental relation is not
met in the literature on QDs of nonuniform composition. As
will be shown below, the strain fields induced by nonuniform
composition profiles that meet Eq. �6� are vastly different
from those induced by profiles that violate this condition,
however slightly. Thus the compatibility condition �Eq. �6��
provides a theoretical basis for designing the composition
profile of an alloyed QD and for estimating its lattice defor-
mation. We do not, however, underestimate the difficulty that
the practical realization of such a composition profile may
present.

The composition profile of an alloyed QD is usually given
in terms of the spatial coordinates of the alloying elements
with reference to the QD center.5,7,18 Without loss of gener-
ality, here c��r� in Eq. �6� is chosen as c��r�=k0+k1r /rco.
Then it follows from Eq. �6� that the compatible cr is cr�r�
=k0+2k1r /rco, where k0 and k1 are two constants and rco is
the radius of the QD. The corresponding unique ur

*�r� is
given by Eq. �5�,

ur
*�r� = k0�m0

* r +
r2k1�m0

*

rco
. �7�

When the alloyed QD is embedded in an infinite medium
�relative to its size�, the constraint imposed by the exterior
medium will induce an additional displacement field, identi-
fied by superscript 1 in the QD and superscript 2 in the
matrix: ur

1=F1r, ur
2=G2 /r2. The constants F1 and G2 are de-

termined from the interface condition ur
2= �ur

1+ur
*�r=rco

and
continuity condition of tractions across the interface. The
components of the elastic strain �1 and �2 in the alloyed QD
and the uniform matrix due to the linear radial and tangential
misfit eigenstrains that satisfy the compatibility equation �6�
are, in the spherical coordinates,

�rr
1 = ���

1 = ���
1 = −

2�k0 + k1��1 − 2���m0
*

3�1 − ��
,

�rr
2 = − 2���

2 = − 2���
2 = −

2�k0 + k1��1 + ���m0
* rco

3

3�1 − ��r3 . �8�

It follows from Eq. �6� that the elastic strain in the alloyed
QD is uniform when the nonuniform misfit eigenstrains
satisfy the compatibility equation. We have previously
shown that the strain field is nonuniform when the
compatibility of strains is violated, for example, when c��r�
=cr�r�=k0+k1r /rco.

21 For other variations of c��r�, e.g., it
could vary in a logarithmic or exponential manner with r,
ur

*�r� can be determined from Eqs. �5� and �6�, whereafter the
strain fields can be calculated in the same manner as for the
linear profile above. It can be shown that �we do not present
the details here� the strain field in the alloyed QD is uniform
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irrespective of the composition profile provided the nonuni-
form misfit eigenstrains satisfy the compatibility equation,
but not otherwise.

To illustrate the above finding, let us calculate the elastic
strain field in the embedded alloyed QD InxGa1−xAs �core�/
GaAs�matrix� induced by the misfit eigenstrains. The radius
of the core InxGa1−xAs is rco=9 nm, and the lattice constants
of InAs and GaAs are ain=6.0584 Å, aex=5.6532 Å, respec-
tively. The elastic constants of GaAs are bulk modulus
92.8 GPa, Poisson’s ratio 0.236. We consider both situations:
when the nonuniform eigenstrains satisfy the compatibility
equation �c��r�=k0+k1r /rco and cr�r�=k0+2k1r /rco�, and
when they do not �c��r�=cr�r�=k0+k1r /rco�. The numerical
results are shown in Figs. 2–4. It can be seen that the strain
distributions in and around QDs are very different in the two
situations; the strain in the alloyed QD is uniform when the
compatibility is satisfied but nonuniform otherwise. More-
over, it can be inferred from Figs. 2–4 that if there were two
neighboring alloyed QDs in close proximity, there would be
a strong interaction in their elastic strain fields.

IV. CRITICAL SIZES OF DISLOCATION FREE QDS

Strains play a very important role in the nanofabrication
technology, and strain relaxation through the formation of

dislocations is highly undesirable for the performance of the
semiconductor devices.4,27–29 Kolesnikova and Romanov29

obtained the critical radii of spherical QDs and cylindrical
quantum wire �QW� with uniform composition by consider-
ing the energy of nucleation of circular prismatic dislocation
loops from a spherical QD and a cylindrical QW.

We calculate the critical radii of the spherical alloyed QD
at which the nucleation of a misfit prismatic dislocation
�MD� loop shown in Fig. 1 becomes energetically favorable.
We will again study the effect of the compatibility of misfit
strains. The condition for the nucleation of an MD loop is29

EL+WIL�0, where EL is the elastic energy of the prismatic
dislocation loop and WIL is the interaction energy between it
and the QD. EL of a dislocation loop of radius rL and Burgers
vector of magnitude b is30

EL 	
	b2rL

2�1 − ��

ln

8�rL

b
− 2� , �9�

where � is a parameter that takes into account the energy of
the dislocation core. WIL is

WIL = − �
VL

�ij
*L
ij

1 dV = − �
SL

�− b�
zz
1 dS , �10�

where VL and SL are the volume and area of the dislocation
loop, respectively. Plastic distortion �ij

*L of a prismatic dislo-
cation loop located in the xoy plane in the xyz coordinate
system with the origin at the loop center �Fig. 1� is �zz

*L

= ±bH�1−r /rL���z�, H�1−r /rL� is the Heaviside function
and ��z� is the Dirac delta function. 
ij

1 are the stresses in the
QD, with 
zz

1 the normal stress in the z direction.
For the spherical QD under nonuniform eigenstrains �*

satisfying the compatibility equation of strains, the critical
radius RcI works out to be

RcI =
Rc0

�k0 + k1�
, �11�

where Rc0 is the critical radius of a spherical QD under uni-
form hydrostatic eigenstrain �m0

* ,29

Rc0 =
3b

8��1 + ���m0
* 
ln

1.083�Rc0

b
� . �12�

FIG. 2. Distribution of normalized elastic strain �zz /�m0
* in the

embedded QD �InxGa1−xAs/GaAs� subjected to nonuniform eigen-
strains �* satisfying the compatibility equation �k0=0.8;k1=−0.4�.

FIG. 3. Distribution of normalized elastic strain �zz /�m0
* in the

embedded QD �InxGa1−xAs/GaAs� subjected to nonuniform
eigenstrains �* not satisfying the compatibility equation
�k0=0.8;k1=−0.4�.

FIG. 4. Normalized biaxial strain �b /�m0
* (�b= ���xx−�yy�2

+ ��yy −�zz�2+ ��zz−�xx�2�1/2) in the embedded QD InxGa1−xAs/
GaAs structure subjected to nonuniform eigenstrains �* that either
satisfy the compatibility equation or not �k0=0.8;k1=−0.4�.
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For the spherical QD under the nonuniform eigenstrains
�*, not satisfying the compatibility equation, the critical ra-
dius RcII is

RcII =
Rc0

�k0 + 0.75k1�
. �13�

It can be seen from Eqs. �11� and �13� that RcI /RcII
=1−0.25k1 / �k0+k1�. It is evident that, k0
0, k0+k1
0.
Generally, for the “self-capping” alloyed QD �e.g.,
InxGa1−xAs on GaAs substrate�, the core is enriched in In
whereas the outermost layer becomes progressively depleted
in In.4 Therefore in the composition profile chosen here,
k1�0. Figure 5 shows the variation of the normalized critical
radii Rcr /Rc0 with k1 �k1�0, where Rcr stands for RcI and

RcII. The results show that dislocation nucleation is more
difficult in a compositionally nonuniform QD than in a uni-
form one �cf. Rcr /Rc0
1� in both situations�. However, it is
even more difficult when the compatibility equation is satis-
fied than when it is not �RcI /Rc0
RcII /Rc0 for k1�0�.

V. CONCLUSIONS

We have studied the implications of the satisfaction of the
compatibility equation for the nonuniform misfit strains in
alloyed QDs and shown that if the composition profiles are
such that the misfit strains satisfy this equation then the
strain field inside a buried alloyed QD is uniform notwith-
standing the nonuniformity of the misfit strains. Such an al-
loyed QD will be defect-free and likely to remain so until its
size reaches a critical value. Moreover, this critical size is
much larger than that of an alloyed QD whose misfit strains
and hence the alloy composition profiles do not satisfy the
compatibility equation. This theoretical study gives the ideal
composition profiles of alloyed QDs with a uniform strain,
but it cannot throw any light on how difficult it would be to
achieve such ideal compositions in practice.
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