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Abstract
We develop a Bayesian treatment of the problem of detecting unmodelled
gravitational wave bursts using the new global network of interferometric
detectors. We also compare this Bayesian treatment with existing coherent
methods, and demonstrate that the existing methods make implicit assumptions
on the distribution of signals that make them sub-optimal for realistic signal
populations.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym

1. Introduction

Gürsel and Tinto [1] first noted that a system of three ground-based interferometers sensitive
to two incoming gravitational wave polarizations over-determines the signal, permitting a
consistency check in the absence of knowledge of the waveform. Their statistic was based on
the failure to reject the null hypothesis that the observations were consistent with a gravitational
wave from a postulated direction. Subsequent authors generalized the Gürsel–Tinto statistic
to more than three interferometers and supplemented it with other consistency tests [2], and
proposed various alternatives related to it [3–6]. With the partial exception of [7], the use
of Bayesian inference in the literature on coherent detection of unmodelled bursts has been
confined to the justification of individual steps in the design of various statistics.

A fully Bayesian treatment of the problem requires (and uniquely follows from) the
explicit specification of competing models of an experiment, including an explicit statement
of how plausible we find any particular combination of the model parameters. This includes
working out a priori how to ‘spread our bets’ over the large dimensional space of all possible
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signal waveforms. Such prior plausibility distributions are necessarily subjective—there is
no ‘right’ nor ‘wrong’ way to choose them—but they do make definite statements about
our expectations, and it is difficult to conceive of a scientist who would knowingly bet, for
instance, that large-amplitude gravitational wave bursts occur more frequently than small-
amplitude ones.

The Bayesian requirement for a waveform prior stands in stark contrast to Gürsel–Tinto’s
advertised independence of signal waveform. The difference reflects a common criticism
of Bayesian inference: that the use of priors introduces subjectivity and even bias into an
analysis. One response to this criticism is to note that non-Bayesian statistics are not free of
prior expectations about the world, but that their priors are merely implicit, unexamined and
because of this may even contradict the stated intent of their designers. This suggests the
question: what choice of priors will make a Bayesian statistic behave like the Gürsel–Tinto
statistic and its relatives?

In this paper, we set up a Bayesian analysis treating the experiment as a linear model
with unspecified multivariate normal distributions as the priors on noise and signal. We then
demonstrate how the Bayesian statistic reduces to (or limits to) Gürsel–Tinto and other related
methods if we choose certain priors. The results are astonishing: none of the methods assume a
uniform signal population across the sky, and most assume gravitational waves are unphysically
large or undetectably small and very frequent. These priors are not ‘wrong’, but they are very
far from the best guess of the scientists that designed them. Nor are the statistics necessarily
ineffective, but they must be less effective than a practically implementable Bayesian statistic
whose priors better reflect the real world.

2. Bayesian formulation

We can formulate much of the problem as a linear system. Pack N time series, each of an
observatory’s M dimensionless strain measurements, into a vector

x = [x1,1, x1,2, . . . , x1,M, x2,1, . . . , xN,M ]T . (1)

We could work equally well with any linear transformation of the time series (such as the
Fourier or wavelet transforms).

One model for the noise in the system is that it is drawn from a multivariate normal
distribution, described by an MN × MN covariance matrix A. (Real detector noise exhibits
non-Gaussian features, one kind of which we will address in section 4.1.) The plausibility of
x assuming the noise-only hypothesis is then

p(x|‘noise’) = 1

(2π)MN/2
√

det A
exp

(
−1

2
xT A−1x

)
. (2)

We may search for a particular signal with dimensionless strain

h = [h+,1, h+,2, . . . , h+,M, h×,1, . . . , h×,M ]T (3)

which produces an additive response Fh, where the MN × 2M response matrix F includes
the antenna patterns and geometrical time delay associated with the particular direction (θ, φ)

of the signal and the physical locations of the interferometers. The distribution of the data
expected in the presence of this signal is

p(x|h) = 1

(2π)MN/2
√

det A
exp

(
−1

2
(x − Fh)T A−1(x − Fh)

)
. (4)
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This form is of no direct use because we do not know any particular signal h we want to
search for. Bayesian marginalization solves this problem for us but requires us to place a prior
plausibility distribution on h:

p(x|‘signal’) =
∫

h
dhp(h)p(x|h). (5)

We must specify a priori how likely we think any particular signal is to occur. If the
marginalization integral is to be solved symbolically, this distribution can take the form of
a multivariate normal distribution. However, some desirable signal models (those where the
signal has L < 2M degrees of freedom) will result in singular covariance matrices. Instead we
adopt a multivariate normal distribution with an L × L covariance matrix Z for dimensionless
signal parameters y related to h through a 2M × L matrix W of template waveforms, so that
h = Wy.

A source with known waveforms w+ and w× whose relative amplitudes and projections
onto the detector’s polarization basis are unknown (as is the case for a source of unknown
polarization angle and inclination) could be modelled with four amplitude parameters, Z = I
and

W =
[

w+ w× 0 0

0 0 w+ w×

]
. (6)

This is a Bayesian analogue of a coherent matched filter analysis.
If we know little about the waveform, we might argue that we have no grounds to

expect any one strain sample hi to be larger than, or smaller than, or correlated with, or
anticorrelated with any other strain sample hj . We can encode this lack of knowledge with
a (relatively) uninformative prior stating that the 2M strain samples (one for each sample of
each polarization) are independently and identically distributed, which we express by setting
Z = I and W = σ I, where σ is the characteristic amplitude of the signal and I is the identity
matrix of appropriate dimension. This distribution also describes white noise, and we will
call it a ‘white noise’ signal prior, even though it detects all signals, not just those we would
classify as ‘noise-like’.

With a signal prior defined we may now solve

p(x|‘signal’) =
∫

y
dyp(y)p(x|h)

=
∫

y
dy

exp
(− 1

2 ((x − FWy)T A−1(x − FWy) + yT Z−1y)
)

(2π)(MN+L)/2
√

det A det Z
(7)

= 1

(2π)MN/2
√

det C
exp

(
−1

2
xT C−1x

)
(8)

where C−1 = A−1 − (A−1FW)[(FW)T A−1(FW) + Z−1]−1(A−1FW)T . This is just another
multivariate normal distribution.

The Bayesian odds ratio tells us how likely the ‘signal’ hypothesis is, given the observation
x in terms of how likely the observation is, given the two hypotheses under consideration and
the prior plausibility of those hypotheses:

O = p(‘signal’|x)

p(‘noise’|x)
= p(‘signal’)

p(‘noise’)

p(x|‘signal’)

p(x|‘noise’)

= p(‘signal’)

p(‘noise’)

√
det A
det C

exp

(
−1

2
xT (C−1 − A−1)x

)
. (9)
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We should choose the prior odds ratio p(‘signal’)/p(‘noise’) to be �1, reflecting the
infrequency of detectable gravitational waves. (This is analogous to choosing the threshold λ

for a frequentist likelihood.)
This is not yet a gravitational wave search; it looks for any gravitational wave of a known

size from a known direction at a known time. In section 4.2, we will see how to perform a
Bayesian search. However, this odds ratio is the part of the Bayesian analysis that can be
compared with previously proposed methods.

3. Comparison with existing methods

Several previously proposed tests have been expressed in the form

xT Bx > λ (10)

for matrix B and threshold λ. The Bayesian test is instead

p(‘signal’)

p(‘noise’)

√
det A
det C

exp

(
−1

2
xT (C−1 − A−1)x

)
> 1 (11)

or, rearranging equation (11),

xT (A−1 − C−1)x > −2 ln
p(‘signal’)

p(‘noise’)

√
det A
det C

(12)

suggesting that by the appropriate choice of priors (including the signal model) we can create
a Bayesian test that behaves like one of the previously proposed tests.

3.1. Tikhonov regularized statistic

Consider A = I, W = σ I and Z = I (white noise detectors and white noise signal of
characteristic amplitude σ ). Also let

p(‘signal’)

p(‘noise’)
= e−λ/2

√
det(σ 2FT F + I). (13)

As F varies with direction, so too does the prior. For these priors, the Bayesian test of
equation (12) becomes

xT F(FT F + σ−2I)−1FT x > λ (14)

which is the Tikhonov regularized statistic of [6] with regularizer α = σ−1.
The priors show that the Tikhonov regularized statistic implicitly assumes that

gravitational wave bursts have a particular size (this physical interpretation of the regularizer
was not made in [6]) and are distributed non-uniformly on the sky.

3.2. Gürsel–Tinto statistic

If we take the limit σ → ∞ (the large signal limit) equation (14) limits to

xT F(FT F)−1FT x > λ (15)

which is the Gürsel–Tinto statistic [1].
The priors show that the Gürsel–Tinto statistic implicitly assumes that gravitational wave

bursts are very large, very frequent (note that p(‘signal’)/p(‘noise’) → ∞), and distributed
non-uniformly on the sky. Alternatively, we could regard Gürsel–Tinto as a pseudo-Bayesian
analysis with an improper (unnormalizable) flat prior on strain, p(h) = 1 (and a directional
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bias). The flat prior, loosely speaking, assigns equal plausibility to all waveforms, which is
not as good an idea as it first appears. Gürsel–Tinto works quite well in practice, but one of its
failure modes is to misidentify a typical gravitational wave injection as a much larger (but, it
believes, equally likely to occur) gravitational wave from a different direction and polarization
that the network is nearly insensitive to.

3.3. Soft constraint statistic

Now allow the signal’s characteristic amplitude to vary with direction, so that W = σk(�)I,
and divide the Bayesian test in equation (12) through by σ 2:

1

σ 2
xT F

(
FT F +

1

σ 2k2(�)
I
)−1

FT x > − 2

σ 2
ln

p(‘signal’)/p(‘noise’)√
det[σ 2k2(�)FT F + I]

.

Let
p(‘signal’)

p(‘noise’)
= e−λσ 2/2

√
det[σ 2k2(�)FT F + I]. (16)

Then in the limit of σ → 0 we have

k2(�)xT FFT x > λ (17)

which is the soft constraint statistic of [3] if the normalization function k−2(�) is equal to the
principal eigenvalue of FT F (though the normalization function k−2(�) = tr FT F is required
to give a direction-free null hypothesis distribution).

The priors show that the soft constraint statistic implicitly assumes gravitational wave
bursts are very small and very frequent (note that p(‘signal’)/p(‘noise’) → 1). The Bayesian
statistic can only draw very weak conclusions about the presence of very small signals (the
division of equation (12) by σ 2 is necessary to ‘blow up’ its diminishing range), so even though
the priors depend only weakly on direction they still strongly bias the soft constraint.

3.4. Hard constraint statistic

Now consider a linearly polarized signal model with a polarization angle that is a known
function of direction, ψ(�), so that W = σk(�)U where

U =
[

cos 2ψ(�)I

sin 2ψ(�)I

]
. (18)

Let
p(‘signal’)

p(‘noise’)
= e−λσ 2/2

√
det[σ 2k2(�)(FU)T FU + I]. (19)

Then in the limit of σ → 0 the Bayesian test equation (12) divided by σ 2 goes to

k2(�)xT FU(FU)T x > λ. (20)

If the polarization angle is defined as the one the network is most sensitive to, and the
normalization function k−2(�) is taken to be the principal eigenvalue of (FU)T FU, this
expression is the hard constraint statistic of [3].

As well as the explicit design assumptions that gravitational wave bursts are linearly
polarized and optimally oriented, the priors show that the hard constraint statistic implicitly
assumes that gravitational wave bursts are very small and very frequent (note that
p(‘signal’)/p(‘noise’) → 1), and (like the soft constraint) is strongly affected by the weak
directional dependence of its priors.
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Figure 1. Four statistics as a function of direction � = (θ, φ) for an injection of 1/16 s of white
noise with amplitude SNR 5 into three identical white noise detectors sampled at 1024 Hz with the
locations and orientations of LIGO Hanford, LIGO Livingston and Virgo. Black is least plausible;
white is most plausible; a circle indicates the true direction; a square indicates the maximum of the
statistic. Top left: ln Bayesian odds ratio with σ = 5; the signal is localized with 95% confidence
to 10−4 of the sky including the true direction. Top right: Tikhonov with α = 1/5; this differs from
the Bayesian case only by the direction prior. Bottom left: Gürsel–Tinto; note the discontinuities
where the network becomes insensitive to one polarization. Bottom right: soft constraint with
k(�)−2 = tr FT F. For this injection, the global maxima of the non-Bayesian statistics are not
consistent with the true direction.

3.5. Implications of implicit priors

The unphysical priors required to make a Bayesian analysis behave like any of the previously
proposed methods indicates that none of these methods are optimal for the realistic scenarios
their designers were targeting; they are optimal for scenarios greatly different, where
gravitational waves are infinitely large or small and not uniformly distributed on the sky. A
Bayesian analysis whose priors better reflect the physical system will necessarily outperform
all of these methods (see figure 1), but the analysis above does not indicate how much better
it will do.

What went wrong in the design of these methods? In the case of Gürsel–Tinto, the
good idea of waveform independence was translated into an uninformative improper prior;
but if an observation can be explained by either a moderately sized signal or an unphysically
enormous signal, it is not optimal to treat these as equally credible alternatives. Ensuring
that all directions have the same null hypothesis distribution counter-intuitively introduces a
bias on the sky, because where the network is more sensitive the absence of excess power is
actually stronger evidence against the signal hypothesis. The ‘two detector paradox’ described
in [3] is simply an artefact of Gürsel–Tinto’s uninformative prior. Of the ad hoc attempts to fix
the ‘paradox’ described in [3, 6], only the Tikhonov regularizer constitutes an unambiguous
theoretical improvement.

We have not considered here all the methods that have been proposed in the literature.
Some of these, notably the other regularization method in [6] and the almost-Tikhonov-
regularization in [5], likely suffer from similar problems.

6
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4. Bayesian search

4.1. Robustness

All the methods discussed so far (including the Bayesian test) consider the only source of
excess energy in interferometers to be a gravitational wave. Data orthogonal to span F
is ignored because the noise and signal hypothesis make identical predictions and cannot be
distinguished by it, even though that data is the Gürsel–Tinto null stream [1] and excess energy
in it rejects the gravitational wave hypothesis. Reference [2] supplemented Gürsel–Tinto with
an ad hoc statistic in an attempt to solve this shortcoming.

A better approach (used in [8]) is to include interferometer ‘glitches’ in the set
of hypotheses under consideration; they are just another kind of signal model. A
glitch can be represented as a different noise covariance distribution replacing A. For
example, if white noise glitches occur in white detectors with plausibility p(‘glitch’), are
additive and have characteristic amplitude γ , then we have a family of 2N covariance
distributions such as A01...0 = diag[I, (1 + γ 2)I, . . . , I] with prior plausibilities of the form
p(‘glitch’)k[1−p(‘glitch’)]2N −k . The N-glitch hypothesis can ‘explain’ any data, but it incurs a
large Occam penalty for its generality, whereas the signal hypothesis can more parsimoniously
explain the tiny subspace of all possible data that are consistent with a gravitational wave.
Signals from directions (or with a polarization) that one detector is insensitive to are forced to
compete against the less penalized N −1 glitch hypotheses. If we have more knowledge about
glitches, we can use a set of glitch waveforms and parameters analogously to the construction
of our signal hypothesis.

4.2. Marginalization

To perform a search over parameters the model is not linear in, like time-of-arrival τ , sky
direction � and signal model types, we need to numerically marginalize over these variables.
For example, we can produce the odds ratio for a signal from any direction by marginalizing
over �:

O = p(‘signal’)

p(‘noise’)

1

p(x|‘noise’)

∫
S2

d�p(�)p(x|‘signal’). (21)

Previously proposed methods would instead maximize their statistic over their parameters, so
we cannot directly compare this step, other than to note that for confidently detected signals
the marginalization will be dominated by a single peak and the integral will be proportional
to the maximum of the integrand.

Signals from sources distributed uniformly in space will have a power-law distribution
of characteristic amplitudes p(σ) ∝ σ−4 for σ above a lower bound (this encodes the ‘twice
the sensitivity, eight times the event rate’ rule of thumb). This provides us with a simple
example of a parametrized set of signal models W = σW1 and a physically-inspired prior
on the parameter. We may also want to look for signals parametrized in other ways. For
example, we may want to consider different time and frequency bounds on time- and/or
frequency-band-limited signals.

4.3. Implementation

If the noise and signal models are stationary, the Bayesian statistic for a particular signal
size can be implemented (using a transformation to the Fourier domain that diagonalizes C)
as efficiently as the coloured noise versions of the previously proposed statistics considered
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here. If we declare the glitch and signal hypotheses exclusive (so that we will reject the very
infrequent gravitational wave that occurs at the same time as a glitch) and model glitches in
each detector as independent, we incur only a minimal extra cost to gain robustness against
that population of instrumental artefacts. Marginalizing over σ can reuse many intermediate
values and requires relatively few samples for a steep σ−4 prior. Many other signal models
present comparable opportunities for optimization.

5. Conclusion

A simple Bayesian analysis of the problem of coherent detection of unmodelled gravitational
wave bursts with a network of ground-based interferometric gravitational wave detectors is
presented. It reduces or limits to several previously proposed methods for the same problem
only when unphysical priors are used, indicating that those previously proposed methods
cannot be optimal for realistic signal populations. A method for improving the robustness
of the Bayesian method by substituting a more realistic noise model was noted, as were the
steps for generalizing to an all-sky unknown-arrival-time search. The Bayesian method can be
implemented, depending on the signal model, to be computationally competitive with existing
methods.

We can contrast the process of specifying physical models of the world, quantifying
their predictions and forming the Bayesian statistic in section 2 with the looser process of
heuristically arguing our way to a statistic [1] and then noting its flaws and heuristically
arguing our way to a mutated statistic [2, 3, 6]. In both cases, designers have freedom
and subjective choices are made. In the Bayesian case, these are restricted to choosing the
physical model and its priors; these have immediate physical interpretations which are explicit
and can be contested. The Bayesian statistic follows uniquely from them. In the non-Bayesian
case choices are made at every stage and their implications are uncertain, leaving us open to
unexamined, unintended and unfortunate consequences.
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