
The Resonant Acousto-Optic Effect

R. H. Poolman

A Thesis submitted to

Cardiff University

for the degree of

Doctor of Philosophy

March 6, 2012





Declaration

This work has not previously been accepted in substance for any degree
and is not being concurrently submitted in candidature for any degree.

Signed:
Candidate

Date:

Statement 1

This thesis is the result of my own investigations, except where otherwise
stated. Other sources are acknowledged by giving explicit references. A
bibliography is appended.

Signed:
Candidate

Date:

Statement 2

I hereby give consent for my thesis, if accepted, to be available for pho-
tocopying and for inter-library loan, and for the title and summary to be
available to outside organisations.

Signed:
Candidate

Date:

iii



iv



Dedicated to the memory of Prof. Alexei Ivanov

v



vi



Acknowledgments

It has been my privilege to work with my late supervisor Prof. Alexei Ivanov. He
was a source of great help and support throughout both my final undergraduate year
and my PhD studies. I could not have asked for a more dedicated supervisor. Prof.
Ivanov’s support is acknowledged in the dedication of this thesis. I would also like to
thank Dr. Egor Muljarov, initially for his help with the numerical methods used in
this thesis and lately for replacing Prof. Ivanov as my first supervisor, under difficult
circumstances. In the later stages of PhD in particular, Dr. Muljarov has shown a
great deal of patience and support to his student. I have been very fortunate to be
taught by such dedicated physicists.

I am thankful to my office mates, Joanna, Joe, Kanchana, Leonidas and Mark. They
have been a continual source of support, encouragement and good humour. I am
particular thankful to Joe for putting his kettle in the office, the most vital piece of
equipment I used in my entire PhD!

I am grateful to the invaluable advice I received in the earl stages of my PhD from
Dr. Fabio Biancalana on computational numerics in particular, and on the pitfalls
of PhD studies in general. Briefly, before Dr. Muljarov came to Cardiff, he was my
second supervisor and provided a great deal help in this role. I would also like to
thank Prof. Wolfgang Langbein, Prof. Sergei Tikhodeev, Prof. Dmitry Khokhlov
and Prof. R. Zimmermann for valuable discussions throughout my PhD. I am also
grateful to Dr. George Zorinyants for his assistance in translating Russian texts.

Finally, I would like to thank my family. My parents, Ken and Lyn, for the support
and love they have shown. I could not have taken this opportunity if they had not
helped me through the early stages of education with patience and enthusiasm. My
partner, Hannah, for her love, help and patience. Without her encouragement I would
not have attempted a PhD and without her support I would not have completed it.
Throughout my undergraduate and postgraduate years she has been a constant source
of support and encouragement, thank you.

vii



Abstract

This dissertation is theoretical investigation of the resonant acousto-optic effect in
ionic crystals and thin metal foils. The optical properties of these types of materials,
in the presence of coherent acoustic pump excitation, are numerically modelled and
compared with analytical results.

The resonant acousto-optic effect in bulk ionic materials is shown to be dependent on
the coupling of a bulk acoustic wave to the TO-phonon component of a TO-phonon
polariton. This requires that the material used is not only an ionic crystal but also
has a strongly anharmonic interatomic potential. It is also demonstrated that the
process “TO phonon ± one (two) transverse acoustic phonon(s)→ TO phonon” is
responsible for the cubic (quartic) resonant acousto-optic effect. The role of acous-
tic intensity and frequency in the optical properties of CuCl and TlCl is considered.
Higher order transitions are also investigated.

It is shown that, in the ferroelectric material LiNbO3, both cubic and quartic scat-
tering channels are sufficiently strong enough to consider the resonant acousto-optic
effect associated with them on an equal footing. The coupling strength of both scat-
tering channels is estimated to the nearest order of magnitude. The cubic coupling is
found be σ3 = 5 meV and the quartic coupling strength is found to be σ4 = 0.3 meV
both for the acoustic intensity Iac = 25 kWcm−2. The effect the phase difference
between the two anharmonic terms has on the optical properties of LiNbO3 is then
investigated. A tunable THz filter is proposed, based on the resonant acousto-optic
effect in LiNbO3.

A numerical method is developed to calculated the partial wave amplitudes and op-
tical properties of metal foils with acoustically excited, propagating sinusoidally cor-
rugated surfaces. It is then used on a system of a thin acoustically perturbed Au foil
on a glass substrate. The effects of varying the angle of incidence, acoustic wavevec-
tor, corrugation amplitude and foil thickness are investigated. The numerical method
is shown to remain stable even for strong coupling between the acoustic wave and
surface plasmon polariton
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1 Introduction

In 1922 Leon Brillouin proposed the diffraction of light by an acoustic wave (AW)

propagating through a given medium, this became the discipline of acousto-optics.

However, the experimental confirmation showed that the photoelastic effect was ex-

tremely weak, with the dielectric constant contrast of only ∼ 10−5. Therefore, the

resulting diffraction of light was also weak, it is normally seen in the lowest diffrac-

tion order only. While this is the case for the non-resonant acousto-optic effect, the

resonant acousto-optic (RAO) effect causes a far stronger optical response.

This thesis is a theoretical study of the physics of the RAO effect and the resulting

modification of the optical properties of the given material. Data were obtain through

numerical modelling of two cases and have been compared to analytical results where

applicable. The first case to be considered is the RAO effect for transverse optical

(TO) phonon polaritons in several ionic crystalline materials. The second is the RAO

effect associated with surface plasmon polaritons (SPP) in a thin gold film on a glass

substrate.

1.1 Overview

The first chapter studies the theory of the components necessary for RAO effect

and gives a review of the previous research on the topic. It presents a conceptual

discussion of the cases of the RAO effect studied in this thesis.

9
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Chapter two is entitled “Resonant Acousto-Optics with TO-Phonons: One Anhar-

monic Term in the Lattice Potential” This chapter considers the RAO effect due to

either cubic or quartic anharmonicity in CuCl and TlCl, respectively. It includes a

derivation of the macroscopic equations used to perform the numerical calculations,

which produced results for both chapters two and three. It also discusses the Hamil-

tonian of TO-phonon polaritons undergoing acoustic pumping. The numerical results

for both the cubic anharmonicity RAO effect and the quartic equivalent will be pre-

sented and compared with analytic calculations where applicable. In this chapter

higher order effects such as a phase difference induced between multiple anharmonic

components will be introduced.

The third chapter is entitled “Resonant Acousto-Optics with TO-Phonons: Two An-

harmonic Terms in the Lattice Potential” This chapter investigates an RAO effect

due to two anharmonicities in LiNbO3. It includes a discussion of the increased total

strength of the RAO effect and of higher order effects of a possible phase difference

between the two anharmonic components. Ideas relating to devices constructed from

acoustically driven LiNbO3 are also presented.

Chapter four is entitled “Acousto-Plasmonics” and discusses the RAO effect for SPPs

in a thin gold film on a glass substrate. This chapter gives an in depth discussion of

the effects of replacing the TO-phonon as the mediator between acoustic and light

waves. Also discussed is the geometry used in modelling the effect and the particular

numerical scheme used to produced the numerical results. Comparison of these results

with analytical equivalents is presented where appropriate.

Finally, general conclusions are present in the fifth chapter, along with proposals for

further investigation.

1.2 Background

The RAO effect is essentially the enhancement, via the mediation of a solid state

excitation, of the interaction between light and sound in a given material. It was

proposed in 2001 by Ivanov and Littlewood, who where investigating the possibility

of an acoustically induced Stark shift for excitons [1]. The optical Stark effect in a

semiconductor is the result of two exciton states being coupled by a high intensity laser

pulse in a quantum well structure then probed by weak light [2–4]. The proposal by
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Ivanov and Littlewood was to replace the coupling between excitons by high-intensity

laser pulses, with acoustical coupling of mixed exciton and light field states, known

as exciton polaritons. One of the implications of this is the use of the strong coupling

between the exciton and light field in the polariton to improve the strength of the

interaction between the acoustic wave and the near infrared light field.

The RAO effect concept has been expand to include various different mediating solid

state excitations in a variety of different contexts. In 2003 Ivanov and Littlewood

proposed microcavity polaritons for the mediating solid state excitation between the

light field and the acoustic wave [5]. The microcavity polariton is a mixed state of

quantum well excitons and optical microcavity modes. The acoustic wave induced

polariton transitions result in large modifications of the materials optical properties,

that are dependent on the acoustic intensity [6, 7]. The experimental confirmation

was produced in 2006 from the examination of a surface acoustic wave (SAW) driven

quantum well microcavity [8].

An analog of the RAO effect is the coarse periodic modulation superimposed on a

Bragg mirror, proposed by Phillip Russel in 1986 [9]. Here, the Bragg mirror takes

the place of a polarization field of the crystal lattice. This was extended by Paulo

Santos in 2001 when a photonic crystal structure (PCS) was modulated using a SAW,

where its was shown that the efficiency of light-sound coupling could be improved by

acoustically induced umklapp scattering events in PCS band structure. [10].

In this work the focus will be on the RAO effect mediated by two types of solid

state excitation, the transverse optical (TO) phonon [11] and the surface plasmon.

The TO-phonon is a dipole active acoustic excitation from one of the upper phonon

branches. In ionic materials it propagates as a mixed mode with light, this is know

as a TO-phonon polariton. In an analogous way to the RAO effect for excitons, the

TO-phonon mediates and strongly enhances the acoustic wave interaction with the

light field. For this case of the RAO effect the range of interaction falls between

0 < ω < 60 meV, which corresponds to THz light frequencies.

This work also includes a chapter on the use of surface plasmons as a mediator in

the RAO effect. A plasmon is the quanta of the oscillation of Fermi-Dirac gas of

conduction electrons in a metal, in thin films these are known as surface plasmons

and their resonance is red-shifted relative to the bulk plasmon due to the confinement

in one direction [12, 13]. For the surface plasmon polariton (SPP) the RAO effect

occurs in at the blue of the visible spectrum up to the near ultra violet.
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1.3 Surface Acoustic Waves

In general, all AWs can be treated as propagating elastic deformations of a homoge-

neous and continuous solid medium. The analytic study of these phenomena begins

from consideration of the forces exerted on an infinitesimal volume of the material in

question by the contiguous volume of which it is a part. This is expressed using the

stress tensor Tij , which is the component of force per unit area of the infinitesimal

volume normal to the xi direction, acting on the surface normal to the xj direction.

If the resultant displacement is uj and there are no further forces to consider then

µ
∂2ui
∂t2

=
∑

j

∂Tij
∂xj

, (1.1)

where µ is mass per unit length.

Eq. (1.1) gives a general description of stress induced deformation of a continuous

homogeneous media rather than merely surface disturbances. By substituting a plane

wave solution into the equations an eigenvalue problem can be derived

∑

j

(Kij − δijµv
2)βj = 0,

where Kjk =
∑3

k,l=1 κiκjcijkl and βj are the eigenvectors. The elastic constant tensor

is cijkl and the wavevector of the plane wave solution κi, all subscripts take values

of 1,2 or 3. The eigenvalues for this set of equations are the phase velocities v of

the acoustic plane wave associated with βj. The polarization of the plane wave these

solutions represent are mutually orthogonal, there is one quasi-longitudinal and two

quasi-shear modes of vibration. In most circumstances the quasi-longitudinal has the

higher velocity. In bulk waves the symmetry of the medium can cause waves to adopt

pure longitudinal or transverse characteristics, an example of this would isotropic

crystals. This bulk case is applicable to the TO-phonon RAO effect, discussed in

Chapters 2 and 3.

The case above is for a non-piezoelectric material in which the stress tensor is an

expression of the deformation of the material that is linearly dependent on mechanical

strain. However, the piezoelectric effect is a part of most surface wave components,

leading to a necessity to treat the resultant electric field. It should be noted that,

due to the propagation speed of acoustic waves, the electric field can be treated as

the gradient of a time dependent scalar potential ϕ. This not only modifies the stress
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tensor but also requires the introduction of an electric displacement D to which the

stress tensor is coupled

Tij =
∑

kl

cijkl
∂uk
∂xl

+
∑

k

ekij
∂ϕ

∂xk
, (1.2a)

Di = −
∑

j

εij
∂ϕ

∂xj
+
∑

jk

eijk
∂uj
∂xk

. (1.2b)

The cijkl term in Eq. (1.2a) defines the mechanical relationship between stress and

strain. The electromechanical tensor is eijk and is present in the final terms of both

Eqs. (1.2). Finally, the dielectric tensor εij relates the electric field E = ∇ϕ to the

dielectric induction D. This displacement field must now be taken into account in

the equations of motion by including Maxwell’s equation for a charge free dielectric

∇ · D = 0. It should be noted that in a piezoelectric material, the piezoelectric

interaction included in Eq. (1.2a) increases the magnitude of the elements of Tij .

Thus, the physical effect of the piezoelectric interaction is to stiffen the material.

The surface wave solution stems from the boundary conditions associated with a

semi-infinite medium of which the surface has no tangential stress component. On

definition of the surface normal in the x3 direction, and stating that the surface lies

at x3 = 0, we can express this boundary condition as

T3,1 = T3,2 = T3,3 = 0. (1.3)

The surface wave solution to Eq.(1.1) and ∇D = 0 is a linear combination of partial

waves of the form

uj = αje
ik(bixi−vt), (1.4)

where kbi is a decay constant and b1 ≡ 1, b2 ≡ 0 and b3 ≡ b. To ensure the amplitudes

vanish in the direction anti-parallel to the x3 axis, it is necessary that complex b have

a negative imaginary part.

Using Eq. (1.4) to solve the coupled system results in the eigenvalue problem [14]

(Lkl − δklµv
2)αk = 0,

where 1 ≤ k, l ≤ 3 and δk,l is the Kronecker delta. The matrix L is dependent of the

material constants cijkl, eijk and εik as well as b. Thus, to determine b the associated
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Figure 1.1: A diagram showing the path length difference caused by the reflection
of incident light from an array of ions.

determinantal equation can be solved. This produces four roots, the only one of which

that pertains to surface waves is complex with an imaginary part from the lower half

of the complex plain.

The characteristics of any given surface wave are dependent on the the symmetry of

the crystal in which they propagate. The symmetry defines the number of independent

elements that can be found in cijkl and the other material tensors. However, there

are few statements that can be made about surface waves in general. The most

immediately apparent is that the amplitude of such modes strongly decays into the

crystal becoming negligible within 2λac for an isotropic material, where λac is the

acoustic wavelength. It also the case that the phase velocity of these surface modes is

always lower than their bulk equivalent. Further information on SAWs can be found

in a collection of articles edited by Oliner [14].

1.4 Bragg Condition

In a material that is made of a periodic array of atoms, the structure can be in-

vestigated by considering the scattering of radiation of a specific frequency off the

material. This is the basis of X-ray crystallography and several other techniques for

characterization of periodic structure. Usually these techniques produce a spectrum

of the scattered radiation containing several peaks that yield information about the

materials structural properties.

For a monochromatic beam with a wavevector k, which is incident on some material
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diffracted beams can be observed at k′ = k + g. The reciprocal lattice vector of

the material is g. If the energy of the diffracted beam and the incident beam are the

same, i.e. wavevectors of the same length, then a condition is placed on the scattering

angle between the incident and diffracted beams. In Figure 1.1 (a) the angle between

the two beams is 2θ, therefore the reciprocal lattice vector is given by

|g| = 2|k| sin θ. (1.5)

The magnitude of the reciprocal lattice vector is |g| = 2πn/d where d is the distance

between the planes of atoms in a crystalline material as shown in Figure 1.1 (b) and

n is an integer. By combining this with Eq. 1.5 and rearranging the result is

nλ = 2d sin θ, (1.6)

where λ = 2π/|k|. This is the Bragg condition. In this thesis an acoustic wave

provides a dynamic superlattice and it is this periodicity to which the Bragg condition

will be applied. The role of the reciprocal lattice vector will be played by the acoustic

wave vector K.

1.5 Optical Phonons

A general crystal with p atoms per unit cell can have the displacement of those atoms

represented by u(lb), where l labels the unit cell and b the atom of that unit cell.

The potential energy of the crystal V is dependent on the instantaneous position of

the atoms contained within the crystal. The equations of motion for lattice waves

can be derived using the harmonic approximation of the crystal potential, in which

only those terms that are quadratic in u(lb) are retained

Vharm =
1

2

∑

l l′

b b′

α β

Φαβ

(
l l′

b b′

)
uα

(
l

b

)
uβ

(
l′

b′

)

where

Φαβ

(
l l′

b b′

)
=

∂2V

∂uα(lb)∂uβ(l′b′)
.
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This derivative is infinitesimal translational invariance, physically this means when

all atoms are displaced identically no potential results. It also displays lattice trans-

lational symmetry which manifests as Φ(lb; l′b′) = Φ(0b; (l′− l)b′). Using this invari-

ance, along with Newtons’s second law and Hooke’s law we can write the equation of

motion using the harmonic potential

mbüα(lb) = −
∑

l′b′αβ

Φαβ

(
0 l′

b b′

)
uβ(l

′b′). (1.7)

To derive the phonon dispersion relation a Fourier series solution is used in Eq (1.7)

which leads to a determinantal equation for the lattice wave frequency

|Dα,β(bb
′|k)− ω2δαβδbb′ | = 0,

where the dynamical matrix is Hermitian and given by

Dα,β(bb
′|k) = 1√

mbmb′

∑

l′

Φαβ

(
0 l′

b b′

)
eik·x(l

′)

with dimensions 3p × 3p. Thus, ω2(ks) are the real eigenvalues of the problem, the

real roots of which physically correspond to the phonon dispersion branches. The

s-dependency of ω indicates that, in general, the dispersion has multiple branches.

The most general phonon dispersion has 3p branches, the lowest lying set of three all

obey ω(0) → 0, these are the acoustic phonon modes. Along axis of high symmetry

the phonon modes display three orthogonal polarizations, two transverse and one lon-

gitudinal. Should p = 1 then these are the only phonon modes available to the crystal,

however for p > 1 higher modes can exist, these are characterized by stationary points

in the gradient of the dispersion at the Brillouin zone center. These phonon modes

are known as the optical modes, like the acoustic modes there are three polarizations.

In the TO-phonon RAO effect the transverse modes are used to mediate the light and

acoustic fields. A more complete discussion is given by Srivastava in chapters 2 and

3 of his book [15].
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1.6 Interatomic Potential Anharmonicity

The use of a lattice oscillation to mediate the interaction between the acoustic wave

and light field means that the interatomic potential plays an important role in the

TO-phonon polariton case of the RAO effect. The motion of atoms in a crystalline

lattice is caused by interatomic forces that are due to the potential of the given

crystalline lattice. The Taylor series expansion of the potential V in powers of the

atomic displacement uα is

V =
1

2

∑

l l′

b b′
α β

Φαβ

(
l l′

b b′

)
uα

(
l

b

)
uβ

(
l′

b′

)
+ (1.8)

1

3!

∑

l l′ l′′

b b′ b′
α β γ

Ψαβγ

(
l l′ l′′

b b′ b′′

)
uα

(
l

b

)
uβ

(
l′

b′

)
uγ

(
l′′

b′′

)
+ . . . ,

where Φ are the harmonic force constants in the α direction on the atom (l b) when

the atom (l′ b′) is displaced in the β direction. The cubic anharmonic equivalent is

given by Ψ, higher order anharmonicities would have their own terms. Including the

quadratic term only in any lattice dynamical model leads only to harmonic oscillations

of the atoms of the lattice [15, 16].

An anharmonic potential is the lattice potential that includes higher order terms than

quadratic. These terms describe the interaction of phonons and so are essential to the

TO-phonon RAO effect, which relies on acoustically induced TO-phonon transitions.

The anharmonic potential can be expressed in phonon coordinates A(q j) as [15]

∑

q1 q2 q3

j1 j2 j3

V

(
q1 q2 q3

j1 j2 j3

)
A

(
q1

j1

)
A

(
q2

j2

)
A

(
q3

j3

)
+ . . . , (1.9)

where

V

(
q1 q2 q3

j1 j2 j3

)
=
1

3!

i√
N0Ω

∑

b b′ b′′
α β γ

(
~
3

8mbmb′mb′′ω(q1j1)ω(q2j2)ω(q3j3)

)1/2

× eα(b | q1j1)eβ(b
′ | q2j2)eγ(b

′′ | q3j3)

Ψαβγ

(
q1 q2 q3

b b′ b′′

)
δG,q1+q2+q3 . (1.10)
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The mass of the atom is mb and the frequency of the phonon from branch jn with

wavevector qn is ω(qnjn), N0Ω is the crystal volume and N0 the number of unit cells.

The phonon polarization is e(b | qj) and the Kronecker delta ensures conservation of

crystal momentum. The phonon coordinates are given by A(qj) = a†qj − aqj where

a†qj and aqj are the phonon creation and annihilation operators respectively. These

are derived from canonically conjugate normal coordinates X(qj) (spatial coordinate)

and P (qj) (momentum) and are given by

aqs =
1√

2~ω(qj)
P (qj)− i

√
ω(qj)

2~
X†(qj), (1.11a)

a†qs =
1√

2~ω(qj)
P †(qj) + i

√
ω(qj)

2~
X(qj). (1.11b)

A full derivation of this can be found in Chapter 4 of Srivastava (1990) [15] and

phonon coordinates are discussed in Cowley (1968) [16].

The expansion of the phonon coordinates into their creation and annihilation op-

erators yields four types of terms; the annihilation of two phonons and the cre-

ations of one aq1jaq2j′a
†
q3j′′

, the creation of two phonons and the annihilation of

one a†q1j
a†q2j′

aq3j′′ , the creations of three phonons a†q1j
a†q2j′

a†q3j′′
and finally the an-

nihilation of three phonons aq1jaq2j′aq3j′′ . However, due to the crystal momentum

conservation q1 + q2 + q3 = G, where G = 0 (normal process) or G 6= 0 (umklapp

process), the latter two terms are virtual three phonon processes. The two types of

transition are described by the conservation laws

ω(q1j) + ω(q2j) = ω(q3j),

q1 + q2 = q3 +G,

In an Umklapp process the sum of the two momenta falls outside the first Brillouin

zone and the G vector is not zero, it acts to flip the third phonon back into the first

Brillouin zone.

For the RAO effect with TO-phonons the mediation requires the acoustic wave to

interact with the TO-phonon component of the polariton, making the lattice an-

harmonicity essential. Therefore, strongly anharmonic crystal lattices are the best

candidates for the RAO effect. In particular, lattices in which V (k jTO|K jac|k′ j′TO)

or a higher order equivalent are large, give the strongest interaction between the

acoustic wave and TO-phonon that results in an efficient TO-phonon transition.



1.7. Surface Plasmons 19

1.7 Surface Plasmons

This section will introduce the plasmon and plasmon polaritons by show the effect

confining it to two dimensions has on its resonant frequency.

1.7.1 Plasmons

In general, plasmons are the quanta associated with an oscillating charged gas. For

better understanding of the RAO effect in thin metal films, a discussion of the oscil-

lations of its conduction electrons is necessary. This will begin with a description of

plasmons in metals.

Originally, plasmons in metal were investigated by considering a fast electron inter-

acting with the conduction electrons. A physical picture for interactions of this sort

was suggested by Pines and Bohm in 1952 [17]. The central idea of this picture is that

the interaction of the fast electron with the conduction electrons, leads to fluctuations

in the density of the conduction electrons. These fluctuations can be split into two

parts, the collective electron behavior and the individual behavior.

The Coulomb repulsion felt between all electrons causes each to be surrounded by a

cloud with a radius of the Debye length in which there is lack of electrons. This results

in the screening of the field of any given electron. The screening is sufficiently strong

enough to render the collision cross section far smaller than the mean free path of the

given electron. Therefore, both an electron and its surrounding void are considered

an individual free particle. The thermally governed collisions of these particles are

the short range density fluctuations that form the individual half of the fast electron

interaction picture of Pines and Bohm.

The long range component of the Coulomb force leads to the simultaneous interaction

of many of the dressed electrons. To consider an assembly of electrons in a metal

requires some account of the ions that form the lattice, and the way in which they

effect the electrons. It is assumed that the lattice ions are fixed and that the average

charge density associated with them is the same as the electrons. As a result, the

positive ionic charge is said to be smeared out and serves to cancel the average negative

charge of the electrons. This is known as the jellium model of a metal [12, 17, 18].
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To begin with, a unit volume of the metal with periodic boundary conditions is con-

sidered. The Fourier transform of the potential energy of the inter-electron interaction

is then given by

e2

|xi − xj|
= 4πe2

∑

k

1

k2
eik·(xi−xj),

which gives the equation of motion

ẍi = −4πe2i

m

∑

j 6=i
k 6=0

k

k2
eik·(xi−xj). (1.12)

The electron position is given by x and the double dots on the left hand side indicate

second order differentiation with respect to time. The electron’s effective mass is given

bym and charge by e. The Fourier inverse of x is k. The k = 0 magnitude is excluded

from the sum because it corresponds to the mean electronic charge distribution which

is canceled in the jellium model.

For further study of the plasmon, Eq. (1.12) must be written in terms of electron den-

sity. As the electrons are considered point particles when dealing with their collective

behavior and the system is box of unit volume, conversion of position to density is

simply

ρ(x) =
∑

i

δ(x− xi).

The Fourier components of which are

ρk =
∑

i

e−ik·xi , (1.13)

and in the reverse

ρ(x) =
∑

i,k

eik·(x−xi).

The mean electron density is ρ0, which, as the system is a unit volumed box, is also the

number of electrons in the system n. When k 6= 0 the description is of fluctuations

about ρ0. To complete the conversion of Eq. (1.12) to ρk we simply differentiate

Eq. (1.13) with respect to time and use Eq. (1.12) to given the acceleration. This
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results in

ρ̈k = −
∑

i

(k · vi)2e−ik·xi −
∑

i 6=j, j 6=i
k′ 6=0

4πne2

m(k′)2
k · k′ei(k

′−k)·xie−ik
′·xj , (1.14)

where the electron velocity is given by vi.

The first term of this equation is simply the motion of the electrons due to thermal

excitation, it is the second term that contains the pertinent information. By consid-

ering the second term and splitting the sum over k′ into two parts, one of the central

approximations of collective electron behavior can be investigated. The first part of

the sum in the second term is k′ = k and corresponds to the mean electron density,

which in the current case of a unit volume, leads to the sum over i yielding n. The

second term is the sum over k′ 6= k and includes the phase factors exp[i(k′ − k) · xi].

These position dependent phases tend to cancel to zero, as there are a large number

of electrons, randomly distributed. Neglecting this second part of the sum in the first

approximation is known as the random phase approximation. This allows Eq. (1.14)

to be expressed as

ρ̈k = −
∑

i

(k · vi)2e−ik·xi − 4πne2

m

∑

i

e−ik·xi . (1.15)

In this equation the second term takes account of the effect of particle interactions.

When k is sufficiently small the first term can be neglected leading to

ρ̈k = −4πne2

m
ρk,

This is a wave equation for the electron density where the frequency of oscillation is

given by the factor in front of ρk. The organised collective motion of the electrons,

manifest as an oscillating electron density, is the plasma oscillation and the plasma

frequency ωp is given by

ωp =

√
4πne2

m
. (1.16)

From this discussion it must be concluded that unperturbed electrons in a bulk metal

take part in random thermal motions that show no collective behavior. In fact the

random motions of free particles work to damp any collective disturbance due to the

individual angular frequencies of each particle k · vi expressed in the first term of



1.7. Surface Plasmons 22

Eq. (1.15). However, when a Coulomb interaction is applied the result is a collective

oscillation, in which each particle shares the same frequency of oscillation given by

ωp. This collective oscillating displacement of the electron density is the plasma

oscillation, the quantum of which is a plasmon with energy ~ωp.

1.7.2 Dielectric Treatment of an Electron Gas

Thus far, the plasmon has been described in a unit volume of a given metal, for use

in the RAO effect it is necessary to consider the plasmon confined to a thin film.

To proceed with this discussion it is convenient to express the effect of electron-

electron interactions via a wavevector and frequency dependent dielectric function

ε(k, ω). This scheme was originally developed independently by Lindhard in 1954 and

Hubbard in 1955 as an effective way of dealing with electron many body problems [19].

The condensed treatment given here comes from Solyom, Ziman and Dressel and

Gruner [18, 20, 21].

To start with we consider a time dependent perturbation, acting on a free electron gas.

The perturbation can be split into two potentials with the same r and t dependence

δU(r, t) = δV (r, t) + δΦ(r, t), (1.17)

where δV is the applied potential, δΦ is the induced potential and the total potential

is δU . At position r and time t any given electron experiences a potential of frequency

ω and wavevector q given by

δU = U(q)eiq·re−iωteαt,

which grows, slowly, with time constant α. The perturbation is real and so δU and

its complex conjugate δU∗ act on state |k〉 and couple states |k+q〉 to it. From time

dependent perturbation theory it follows that the electron density fluctuation due to

the perturbing potential is given by

δρ =e
∑

k

[
U(q)

E(k)− E(k+ q) + ~ω + i~α

+
U(q)

E(k)− E(k− q)− ~ω − i~α

]
eiq·re−iωteαt + complex conjugate.
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To generalise δρ the probability that |k〉 is occupied in the unperturbed metal f0(k)

is introduced . This is done by changing the summation variable k in the second term

to k+ q. This leads to

δρ = e
∑

k

f0(k)− f0(k+ q)

E(k)− E(k+ q) + ~ω + i~α
eiq·rU(q)e−iωteαt + complex conjugate.

(1.18)

This is the charge distribution calculated in terms of the total potential.

The charge distribution gives rise to the δΦ potential, which is described in Eq. (1.17),

via the Coulomb interaction of the electrons. This allows Poisson’s equation to be

used to calculate δΦ as a function of δρ

∇2δΦ = −4πeδρ. (1.19)

The combination of Eq. (1.18) and Poisson’s equation gives

Φ(q) =
4πe2

q2

∑

k

f0(k)− f0(k+ q)

E(k)− E(k+ q) + ~ω + i~α
U(q). (1.20)

By definition

δU ≡ δV

ε(q, ω)

where, from Eq. (1.17),

δU =
δΦ

1− ε(q, ω)
.

Thus, rearranging this and combining with Eq. (1.20) gives

ε(q, ω) = 1− 4πe2

q2

∑

k

f0(k)− f0(k+ q)

E(k)− E(k+ q) + ~ω + i~α
, (1.21)

which is known as Lindhard’s dielectric function. This is the dielectric function for

an electron gas in the jellium model of a metal.

For plasmons ω >> α, therefore in this region only the real part of the Lindhard

dielectric function needs to be considered. By writing Eq. (1.21) as two terms and

using a change of variables k + q → k in the second term the Lindhard dielectric
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function can be written as [20]

ε(q, ω) = 1− 4πe2

q2

∑

k

f0(k)

E(k)− E(k+ q) + ~ω
− f0(k)

E(k− q)− E(k) + ~ω
.

By changing the variables k → −k in the second term and introducing the energy

of the state k + q as E(k + q) = ~
2k · q/me then, after some rearrangement, this

becomes

ε(q, ω) = 1− 4πe2
~
2

me

∑

k

f0(k)

(~ω − ~2k · q/me)2 − E(k)2 .

For large ω this can be expanded up to q2 as

ε(q, ω) = 1− 4πe2

meω2

∑

k

f0

[
1 + 2

~

meω
k · q+ 3

(
~

meω

)2

(k · q)2
]
.

By considering only the first term, the summation over k returns number of occupied

k states n, therefore

ε(q, ω) = 1−
ω2
p

ω2
(1.22)

where ωp = (4πne2)/me. This is the Drude dielectric function.

1.7.3 Surface Plasmons

The concept of the surface plasmon was introduced in 1957 by Ritchie, who predicted

that the confinement of a plasmon in a thin metal foil would lead to reduction in the

resonant energy of the plasmon [12]. In a 1959 a pair of papers by Powell and Swann

verified Ritchie’s predictions. The first paper showed a resonance at a lower energy

as well as the bulk plasmon resonance in Al films up to 100 Å in thickness [22], the

second paper showed the same in Mg films of equivalent thickness [23]. It is this

resonance at a reduced energy that is the surface plasmon predicted by Ritchie.

The perturbation discussed in the previous section causes transitions of electrons

from occupied to unoccupied levels. Should a conduction electron make a transition,

it would be necessary for it to gain a quanta of energy ~ω and momentum ~k, the

exciting particle would lose energy and momentum of corresponding amount. In the
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case of Ritchie, like Pines and Bohm, this exciting particle is a fast electron. The

probability, per unit path length, of transitions of this nature occurring is

P (k, ω) =
1

~ω
W (k, ω), (1.23)

where W (k, ω) is the energy absorbed per unit k-space volume, frequency interval

and path length of the fast electron.

Before calculating W (k, ω) for the thin metal film, the associated potential U(k, ω)

must first be derived. This is achieved with linearized hydrodynamic Bloch equations

and an assumption of irrotational motion. These equations are [13]

γψ +
∂

∂t
ψ = − e

m
U +

Pρ

mρ0
, (1.24a)

∂ρ

∂t
= ρ0ψ, (1.24b)

∇2U = 4πe[ρ+ δ(x− vt)δ(y)δ(z)], (1.24c)

∇2U = 4πeδ(x− vt)δ(y)δ(z). (1.24d)

The first equation is the integral of the equation of motion, the second is the continu-

ity equation, the third is Poisson’s equation for the metal and the fourth is Poisson’s

equation in the vacuum. The damping is given by γ, the velocity potential is ψ and

the fast electron velocity is v. The pressure change per unit number density is P/ρ0

in the undisturbed gas.

To solve Eqs. (1.24) for U in a foil of thickness a in the x-direction, boundary condi-

tions (BC) that state both field intensity and electric potential are continuous across

the boundary and at the foil surface the normal velocity component vanishes are

applied. It is also assumed that the incident electron is a lot faster than the con-

duction electrons, this is ensured by making the final term on the right hand side

of Eq. (1.24a) small. By considering only the first order terms in P/(ρ0m), U can

be derived and its Fourier transform taken to give the total energy lost by the fast

electron

W = e
i

(2π)3

∫
dk

∫
dωkxδ

(
kx +

ω

v

)
U(k, ω), (1.25)

where kx is the component of the wavevector in the x-direction. To calculate the

probability of a conduction electron transition occurring due to the fast electron
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Eq. (1.25) is substituted into Eq. (1.23). The probability of a transition perpendicular

to the fast electron velocity can then be calculated by splitting k into k‖ and k⊥ and

integrating over kx, where k⊥ and k‖ and the components of k that are perpendicular

and parallel to the velocity vector of the fast electron. We can then split P (k⊥, ω)

into a term for the transition probability per unit foil thickness in an infinite foil

P∞(k⊥, ω) and for boundary effects Pb(k⊥, ω). Thus, the total probability is

P (k⊥, ω) = aP∞(k⊥, ω) + Pb(k⊥, ω).

In the limit of large foil thickness this result is given by [12]

P (k⊥, ω) =
e2a

~π2v2

[
Im(1/ε)

k2⊥ + ω2/v2
− 2k⊥
a(k2⊥ + ω2/v2)2

Im

(
(1− ε)2

ε(1 + ε)

)]
.

On substitution of the appropriate Drude dielectric function, the boundary effect is

Pb(k⊥, ω) =
e2

π2~v2
2k⊥(

k2⊥ + ω2

v2

)2 ·
γω4

p

ω

·
[

1
4
ω2
p

(ω2 − 1
2
ω2
p)

2 + γ2ω2
−

ω2
p

(ω2 − ω2
p)

2 + γ2ω2

]
. (1.26)

The contents of the large square bracket are the key result, it shows the there are

two resonances. The second term in this bracket is the bulk plasmon term, it shows

that the boundary causes a decrease in the energy loss the fast electron feels due

to excitation of plasmons. Concurrent with that reduced is the new term, the first

term in the bracket, that states a loss will be felt by the fast electron at the surface

plasmon frequency, given by

ωs =
ωp√
2
. (1.27)

By decreasing foil thickness the strength of the bulk plasmon resonance reduces as

the surface plasmon resonance increases. The shift in frequency occurs because a

thin foil’s surface will display the depolarizing effect [12]. That is, the applied field

results in dipole ordering within the material. This order induced a field counter to

the applied field causing a resonance at the interfaces of the foil at a lower energy

than the bulk plasmon.
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1.8 Polaritons

This section gives a discussion of the two cases of polaritons that are pertinent to

the the RAO effect that was studied in this thesis. In general the polariton is a

propagating mode of a given material that is a mixture of both an optical mode and

some matter excitation.

1.8.1 TO-phonon Polaritons

The treatment of lattice vibrations in ionic crystals was the topic of a paper by

Kun Huang in 1951, in it he proposed the extension of the then current electrostatic

theory to include the remaining three Maxwell equations, that is Gauss Law and the

two cross product equations [24]. This inevitably leads to a prediction of a mixed

state between the lattice vibrations of an ionic crystal and any incident light field of

resonant frequency.

In a second paper on the topic Huang gave a derivation of the mixed modes and

relative energy of a spatially dispersionless mixed lattice state, for a two-ion, optically

isotropic lattice [25, 26]. The starting point is the macroscopic equations for the

motion of the charges in an ionic crystal

ẅ = −ω2
0w +

(
ε0 − εb
4π

)2

ω0E, (1.28a)

P =

(
ε0 − εb
4π

)2

ω0w +
εb − 1

4π
E, (1.28b)

where the dielectric polarization is P and the electric field is E, ω0 is called by Huang

the frequency of the infrared dispersion and is the frequency of the lowest energy

optical lattice vibration. Huang has also used a form of relative ionic displacement

w = u[(m− + m+)/V0]
1/2, where u is the relative ionic displacement, m+,− are the

reduced masses of the ions and V0 is the volume of unit lattice formed by the ion pair.

The dielectric constants in these equations are the low frequency dielectric constant

ε0, measured when the electric field frequency ω << ω0, and the high frequency

dielectric constant εb measured when ω >> ω0. These equations are then solved with
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Figure 1.2: A schematic of (a) the dispersion, (b) the of the photon and phonon
components and (c) the reflectivity of the TO-phonon polariton. The first panel
includes the bare light dispersion for dielectric constant in the case ω → 0 (blue
dashed line) and ω → ∞ (red dashed line).

Maxwell’s equations

∇ ·D = 0, (1.29a)

∇ ·H = 0, (1.29b)

∇× E = −1

c
Ḣ, (1.29c)

∇×H =
1

c
Ḋ, (1.29d)

where D = E+ 4πP and H is the magnetic field.

The inclusion of all four of Maxwell’s equations allows the calculation of propagating

modes around the center of the Brillouin zone in ionic crystals. The five vibrational

solutions to Eqs. (1.28) and Eqs. (1.29) consist of one longitudinal mode and four

transverse. Including the retarded electric field leads to the transverse lattice modes

coupling to it. The result is that all four transverse modes are mixed states between
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lattice vibrations and the optical field, these are TO-phonon polariton modes. This

result differs from the original electrostatic approximation, i.e. Eq. (1.29a) and ∇×
E = 0, . This serves as a first approximation for the modes that are valid for short

wavelengths, far from the Brillouin zone center, where the polariton modes behave as

if they are unretarded.

Fig. 1.2 (a) shows that the transverse mode of the lower polariton (LP) branch is

approximated by the bare light mode, that is the optical mode which is considered

uncoupled to the ionic lattice vibrations, ω = ck/(ε
1/2
0 ). As the wavevector increases

through the range the dispersion becomes an asymptote of the TO-phonon dispersion.

This suggests that the degree to which a polariton is a mixed state is dependent on

the polariton wavevector. This is more clearly demonstrated in Fig. 1.2 (b). The

fraction of the energy in the polariton which is due to the lattice vibrational and due

to transverse electric field is shown over a range of photon energy. This demonstrates

that near to the restrahlen band the polariton has large amount of its energy as a

lattice vibration, this is the region where no polaritons can propagate and the solution

is purely due to lattice vibrations.

In the upper polariton (UP) branch, the polariton begins as approximating a pure

transverse lattice vibration, and asymptotically approaches the bare light dispersion

ω = ck/(ε
1/2
b ), which would exist if the ions where assumed to be fixed and the

dielectric constant εb depended only on the electronic motion of the crystal. This is

the reverse of the LP branch and is clearly demonstrated in Fig. 1.2 (b).

It should be noted that the longitudinal mode is a pure lattice vibration because the

light field is transverse, and therefore does not usually couple to lattice vibrations.

This solution can be obtained from either the electrostatic approximation or the

Maxwell’s equations methods.

The result on the optical properties of the system, due to the mixed mode propagation

of light through the ionic material, is that at the frequencies at which the lattice

mode character is dominant no optical propagation occurs. This leads to to the

characteristic optical stop gap that is present in all polariton supporting lattices.

This effect is clearly seen in Fig. 1.2 (c), which shows the polariton reflectivity, rotated

through a right angle for easier comparison with the dispersion of Fig. 1.2 (a).

A more convenient method of expressing the polar motion of an ionic crystal us-

ing macroscopic equations was suggested in 1958 by J. J. Hopfield in his study of
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light absorption in dielectrics [27]. His study was of the role of exciton polaritons

in optical absorption, which was later expanded to include spatial dispersion of ex-

citon polaritons [28]. In both papers, the macroscopic equation for the polarization

field associated with an undamped, spatially dispersionless polariton in an optically

isotropic dielectric was given as

(
∂2

∂t2
+ ω2

0

)
P =

εbω
2
c

4π
E, (1.30)

where ω0 is the frequency of an undamped TO-phonon polariton.

By solving this equation and Maxwell’s wave equation in a polarizable medium

(
εb
c2
∂2

∂t2
− ∂2

∂x2

)
E = −4π

c2
∂2

∂t2
P,

with a plane wave electric field and polarization the dispersion equation of the un-

damped TO-phonon polariton can be derived. This can be expressed as

k2c2

ω2
=

(
1 +

ω2
c

ω2
0 − ω2

)
εb (1.31)

and is the equation used to calculate the dispersion given in Fig. 1.2 (a).

The dispersion can also be calculated by using the Hopfield Hamiltonian as a starting

point [27]. It is expressed here in terms of the photon creation and annihilation

operators c†k,ck and the polarization equivalent b†k,bk [27, 29],

Hpol =
∑

k

[
~ck c†kck + ~ω0 b

†
kbk + iBk (c†kbk − ckb

†
k + c−kbk − c†−kb

†
k)

+Dk (c†kck + ckc
†
k + c−kck + c†−kc

†
k)
]

(1.32)

where,

Bk = ~ω0

√
εbωc
4ω0kc

and

Dk = ~
εbωc
4kc

.

The Hamiltonian given here is for a mixed state of photon and polarization, this is
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the polariton.

1.8.2 Surface Plasmon Polaritons

It has been previously established that confinement of plasmons to thin films led to

the red shifting of the resonant energy of the plasmon [Eq. (1.27)], which is now called

the surface plasmon with a resonant frequency ωs. For the in-plane surface plasmon

wavevectors k in the range ωs/c << k << ωf/c, where ωf is the Fermi frequency,

ω(k) is only weakly dispersive. This is the nonretarded regime, where the discrepancy

between the surface plasmon phase velocity and light velocity is sufficiently great that

the light velocity can be considered infinite. Any surface plasmon in this wavevector

region can be consider only weakly dispersive. The retarded region is k < ωs/c where

the plasmon velocity and the vacuum speed of light are comparable. In this region

the optical field and the plasmon couple, this results in a surface plasmon polariton.

This section of the introductory chapter is a description of the SPP.

The excitation of surface plasmons by light is possible but a pair of criteria must be

fulfilled before this occurs. The most general, is that for any propagating transverse

surface wave to be excited by light, there must be an electric field component that is

normal to the surface in which the wave is to be excited. The solutions to Maxwell’s

equations [Eqs. (1.29)] can be split into two possible polarizations in which either the

electric field is parallel to the interface or the magnetic field is, these are known as s-

polarised [transverse electric (TE)] and p-polarized [transverse magnetic (TM)] waves,

respectively. The p-polarised solution consists of a magnetic field component parallel

to the interface and two electric field components, one parallel and the perpendicular.

In the case of a field confined to a flat surface at z = 0 the p-polarised solutions are

Ei =



Eix

0

Eiz


 e−κi|z|ei(kix−ωt), (1.33a)

Hi =




0

Hiy

0


 e−κi|z|ei(kix−ωt), (1.33b)

where κi is the decay constant along z and the subscript defines the material.
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There are no s-polarised surface oscillations [13]. For surface oscillations to be gen-

erated it is required that the electric field has a component perpendicular to the

surface. In only the p-polarised case does this happen, therefore only p-polarised

light can generate surface plasmon polaritons.

It is necessary for surface plasmons that the decay of the associated light field into

each medium are equal and opposite [13]. This requirement leads to the surface

plasmon condition

ε1
κ1

+
ε2
κ2

= 0, (1.34)

where εi is the dielectric function in each semi-infinite medium. By using Eqs. (1.33)

in Maxwell’s equations (Eqs. (1.29)) with D = εiE we can show that

κi =

√
k2 − εi

(ω
c

)2
,

where, because the boundary condition require the in plane wavevector to be contin-

uous across the interface, k = k1 = k2. By using this Eq. (1.34) the surface plasmon

condition becomes

k(ω) =
ω

c

√
ε1ε2
ε1 + ε2

. (1.35)

Finally, for a simple Drude metal in a vacuum

ε = 1− ωp
ω(ω + iΓ)

,

where the damping is given by Γ. By using this in the surface plasmon condition

Eq. (1.35) the dispersion relation can be derived as

k2c2

ω2
=

ω(ω + iΓ)− ω2
p

2ω(ω + iΓ)− ω2
p

. (1.36)

In Fig.1.3 the SPP dispersion is shown for Γ = 0.

The upper red solid line in Fig. 1.3. is the dispersion of the light field in the bulk

of the metal. Due to the highly absorptive nature of metal it is of little interest for

optical manipulation. The lower blue solid line is the dispersion of the SPP and is
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Figure 1.3: A dispersion for a surface plasmon of energy ~ωp = 15 eV, compared
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and the dashed blue line is Ritchie’s surface plasmon frequency ωs [Eq. (1.27)].
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red line is the polariton frequency ωp [Eq. (1.16)] given by Pines and Bohm. The
dashed black line is the vacuum light line and the dashed green line is the light for
the prism ATR coupler.

given by

ω2(k) =
ω2
p

2
+ c2k2 −

√
ω4
p

4
+ c4k4, (1.37)

and displays interesting behavior in two separate regions [13]. The first region occurs

when k < ωs/c, which is the region left of the thin black line in Fig. 1.3. Below this k-

value is the retarded region and the polariton nature of light propagation is dominant.

The second region occurs when k >> ws/c, the dispersion asymptotically approaches

Ritchie’s surface plasmon frequency, where no plasmon-light coupling occurs.

At no point along the SPP dispersion is there an intersection with light line ωk.

Physically, this is because the wavevector found in Eq. (1.37) is for a 2D mixed

state in the plane of the surface, due to the lack of a propagating mode in the z-

direction. This conclusion leads to the second of the two criteria needed to optically

excite the SPP. As light incident on the surface of a metal cannot have the correct
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dispersion properties to excite an SPP, the dispersion relation must be modified.

This can be achieved in two ways, either through imparting extra momentum via the

umklapp processes associated with scattering of gratings or some other roughness [30],

or through the manipulation of the light dispersion via an attenuated total reflection

(ATR) coupler, which excites the plasmon from the substrate side [31]. In this thesis

the scattering method is used.

1.9 Resonant Acousto-Optic Effect

The optical, dynamical or AC Stark effect has been known for some time, in general

it causes an excitation state of a given medium to split in to multiple states via

an oscillating perturbation [32]. The optical Stark effect was observed in crystalline

materials via the coupling of two exciton-polariton states in Cu2O crystals [2] and

GaAs multiple quantum wells (MCW) [3]. The later experiment pumped the exciton

well away from their resonance with a laser pulse, yet transmittance spectra of the

much weaker probe pulse was modified due to this pumping. The pump pulse causes

internal transitions of exciton polaritons formed by the probe pulse [3, 4].

In 2001 Ivanov and Littlewood proposed to use an acoustic wave (AW) as part of an

improved scheme to study the dynamical Stark effect [1]. They proposed a scheme in

which the pumping laser pulse of the optical Stark effect is replaced by an acoustic

wave, the exciton polaritons are still formed by the weak probe beam. The proposed

acoustically induced Stark effect was to remove the many-body effects associated with

laser pumped equivalent. The weak probe pulse is not strong enough for many body

effects to be a concern. In 2003 this idea was generalised to include microcavity polari-

tons. In this case, quantum well (QW) excitons formed polaritons with microcavity

(MC) photons, which were in turn modulated by a collinearly propagating SAW [5].

The dynamical Stark effect that is parametrically driven by a coherent AW is the

RAO effect. In both exciton case and the microcavity polariton case mentioned

in Section 1.2, the intensity of the AW controls the splitting of the probed states.

The term “resonant” in the acronym RAO refers to fact that, unlike conventional

acousto-optics, the coherent acoustic wave is resonantly coupled to the solid state

excitation. In the two cases previously mentioned these excitations are two separate

case of exciton. The matter excitation must be optically “dressed”, i.e a polariton,

to allow the AW to modulate the light field. This gives rise to a picture of the solid
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Figure 1.4: A schematic representation of the RAO effect as a physical process
and the effect it has on the polariton dispersion

state excitation resonantly enhancing the acousto-optic interaction. The schematic

in Fig. 1.4 represents this process, the matter component of the polariton mediating

the interaction between light and sound. The arrows in the bare polariton dispersion

show the acoustic coupling of two states of the solid state excitation and are equal

to the phonon wavevectors. In Fig. 1.4the polariton frequency is ω = ν/(2π), the

polariton wavevector is p and the acoustic wavevector is k.

The acoustically induced transitions of the solid state component of the polariton,

at the points in the dispersion resonant with AW, result in the opening of band

gaps in the dispersion at those resonant points. Like the main polariton restrahlen

band these acoustically induced band gaps are regions in which no polaritons can

propagate. This has a strong effect on the optical properties of the material in which

the RAO effect is occurring, for example the total reflectivity spectrum shows very

pronounced peaks at the spectral position of the acoustically induced band gaps. An

example is shown in Fig. 1.5. The color of the arrows corresponds to the order of the

TO-phonon transition given in dispersion of Fig. 1.4.
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Figure 1.5: A figure to show the results of the RAO effect on the reflectivity
spectrum in CuCl

The periodicity of the AW used to modulate the polarization field in the material

leads to an acoustically induced superlattice. The periodicity determines the spectral

position of the acoustically induced band gaps, which occurs at p ≃ ±nk/2 where n is

an integer. Like its crystalline analogue, this acoustically induced band structure can

be probed using Bragg scattering through the manipulation of the angle of incidence of

a probe light field [6, 7]. In 2006 this technique was used to experimentally investigate

and confirm the existence of the RAO effect for microcavity polaritons [8].

The polariton involved in an RAO effect constitutes strong coupling between the pho-

ton and the solid state excitation, however for an RAO effect to occur it is necessary

that the coupling of the acoustic field to the polarization be just as strong. Thus, they

must be treated on an equal footing [6]. For the cases of excitons and microcavity

polaritons discussed above the coupling associated with the AW comes from both the

deformation potential and the piezoelectric matrix element.

The deformation potential is the potential generated by the deformation of the unit

cell of a crystalline material due to the time dependent strain of a non-zero wavevector

acoustic phonon. It relates the volume dilation of a given volume of the crystalline

medium to an energy shift of an electronic energy band [33]. This is the dominant

coupling mechanism for the AW to exciton coupling in exciton polariton and MC

polariton RAO effect when a purely longitudinal acoustic wave is used [11]. This
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is because the dilation of the crystalline volume due to a purely longitudinal AW is

sufficiently symmetric that stress induced by a macroscopic electric field is small.

The piezoelectric interactions is a stress induced macroscopic electric field in a noncen-

trosymmetric crystal or, equivalently, a strain induced electric field. For sufficiently

small strains the relationship between the induced electric field and the strain is linear

and given by the third order electromechanical tensor [33]. A transverse AW in the

exciton or MC polariton RAO effect would lead to the piezoelectric interaction being

the dominant one for AW to exciton coupling [11]. The transverse AW would cause a

small asymmetric deformation of the crystalline structure leading to the piezoelectric

coupling between AW and exciton.

This thesis studies two examples of the RAO effect, one is associated with TO-phonon

polaritons and the other with SPPs. This first case uses TO-phonons as the polariza-

tion field providing the strong coupling to light and was initially proposed by Ivanov

in 2007 [11]. This limits the possible media in which this case of the RAO effect

is manifest, for polariton formation of this type to occur the medium must be an

ionic crystal. The coupling between the AW and the TO-phonon component of the

polariton occurs via the anharmonic components of the interatomic potential of the

medium in which the RAO effect takes place. Specifically, the third and fourth order

terms of the Taylor expansion of the interatomic potential are important for the cou-

pling of the TO-phonon to the transverse acoustic (TA) phonons of the AW in the

RAO effect. With this mind the materials used are CuCl, TlCl and LiNbO3 where the

third order term is strong for CuCl, the fourth order for TlCl and both are relevant

for LiNbO3.

The second case that will be studied in this thesis uses SPPs as the polarization field

in thin metal foils. Due to the strong attenuation properties of light it is necessary

to restrict the thickness of the metal. The SAW deforms the metal film periodically,

similar to the grating method of light-SPP coupling. The grating is used to impart

momentum to surface plasmons via umklapp processes to couple it to propagating

photon states. This will result in an acoustically induced Brillouin zone and the

corresponding peaks in the reflectivity. For the RAO effect the wavelength of the AW

can selected so that instead of coupling SPPs to photon states, they are coupled to

other SPPs of the same wavevector magnitude but with opposite sign.
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1.10 Summary

This chapter has introduced the concept of the RAO effect and discussed the required

background knowledge. The recent advances in the field of resonant acousto-optics

were outlined. Introducing the RAO effect by starting with the original case of

bulk exciton polaritons and microcavity polaritons. The coupling mechanism of the

TO-phonon polariton RAO effect, the anharmonic crystalline potential, was then

discussed. This was followed by the solid state excitation associated with the RAO

effect in metals, which is the surface plasmon. Polaritons were then introduced as a

coupled light-matter component of the RAO effect.

The following chapters will discuss the RAO effect for TO-phonons with either one

anharmonic term considered as the coupling mechanism or two. The RAO effect for

thin metal films will also be discussed, where SPPs are the matter excitation coupled

to the AW via Bragg scattering processes.



2 Resonant Acousto-Optics with

TO-Phonons: One Anharmonic Term

in the Lattice Potential

For TO-phonon polaritons the RAO effect is the coupling of a photon and acoustic

phonon mediated by TO-phonon, as discussed in section 1.9. The key to this inter-

action is the anharmonic coupling between the two phonon branches. This chapter

will separately discuss the nature of the interaction between an acoustic phonon and

TO-phonon due to cubic and quartic anharmonicities of an interatomic potential.

The results of numerical simulations of the RAO effect, based on a modification of

Hopfield’s macroscopic equation of the polariton, will be shown in this chapter. For

the cubic anharmonicity, a comparison of the numerical results will be made with

analytic calculations for low intensity acoustic waves, with good agreement.

2.1 Theoretical Background

In section 1.9 a brief discussion of the RAO effect and it’s development was presented.

In this section detailed background theory for the case of RAO effect of TO-phonon

polaritons will be given for a general ionic crystalline material. The most general form

39
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of the macroscopic equations, used in this thesis to model the RAO effect, are [34, 35]

[
εb
c2
∂2

∂t2
−∇2

]
E(r, t) = −4π

c2
∂2

∂t2
P(r, t), (2.1a)

[
∂2

∂t2
+ 2γTO

∂

∂t
+ ω2

0 + 4ω0σ4 + 4ω0σ3 cos(Ωt−Kr+ φ)

+ 4ω0σ4 cos(2Ωt− 2Kr)

]
P(r, t) =

εb
4π
ω2
RE(r, t). (2.1b)

The electric and TO-phonon polarization fields are E and P, the TO-phonon fre-

quency is ω0, the polariton Rabi frequency is ωR =
√
ω2
LO − ω2

0, where ωLO is the

longitudinal optical (LO) phonon frequency. The dielectric background constant is

εb. The TO-phonon mainly decays into short wavelength acoustic phonons, this is

included by the damping constant γTO. The cosine terms model the oscillatory nature

of the bulk acoustic wave to which TO-phonon polariton is anharmonically coupled.

The cosine with σ3 as a prefactor has the acoustic wavevector K and the acoustic

frequency Ω as arguments because the anharmonic coupling is a one phonon process

only in the cubic scattering channel. This is in contrast to the quartic coupling term,

which has an extra factor of 2 in the cosine argument due to the two-phonon process

which couples the TO-phonon polariton to the acoustic wave via the quartic channel.

The term φ is a phase difference between the two oscillating terms.

This thesis considers only an AW with linear dispersion properties Ω = vacK, where

vac is the acoustic velocity. The strength of the coupling between the TO-phonon

component of the polariton and the AW is given by σ3,4. The subscript refers to the

order in the anharmonic potential that is responsible for the interaction. The coupling

strength is also dependent on the intensity of the AW Iac, the exact relationship

varies for each anharmonic term of the Taylor expansion. For the anharmonicities

investigated in this thesis the relationships are as follows:

σ3 ∝
√
Iac; (2.2a)

σ4 ∝ Iac. (2.2b)

A full discussion of the relationship between the coupling constant and Iac will

be given in the next chapter, where the relationship between the two anharmonic

components is discussed.

Due to the propagating nature of the periodicity introduced by the AW, the solutions

of Eqs (2.1) can be expressed as a Fourier series, which simultaneously accounts for
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both temporal and spacial modulation,

E(z, t) = ei(kz−ωt)
∑

n

Ene
in(Kz−Ωt) , (2.3a)

P (z, t) = ei(kz−ωt)
∑

n

Pne
in(Kz−Ωt) . (2.3b)

where ω = 2πν and k are the frequency and wavevector of the light field, respectively.

The substitution of Eqs. (2.3) into Eqs. (2.1) leads to an eigenvalue problem

[
(k + nK)2 − εb

c2
(ω + nΩ)2

]
En =

4π

c2
(ω + nΩ)2Pn, (2.4a)

[
ω2
0 + 4ω0σ4 − 2iγ(ω + nΩ)− (ω + nΩ)2

]
Pn

+2σ3ω0(Pn+1e
−iφ + Pn−1e

iφ) + 2σ4ω0(Pn+2 + Pn−2) =
εb ω

2
R

4π
En. (2.4b)

The Chapters 2 and 3 deal with eigenvalues ω(k) and k(ω) and eigenvectors En and

Pn of this problem. The calculation of the reflectivity and extinction associated with

these results for a semi-infinite geometry is also important to the investigation of the

RAO effect. These calculations are also found in Chapters 2 and 3.

In general the matrix problem in Eqs (2.4) is complex, therefore both ω(k) or k(ω)

are, generally, complex even when γ = 0. The calculation of these two forms of

the dispersion are performed by either supplying real valued k to calculate the quasi-

energy spectrum ω(k) or by providing real valued ω to calculate the quasi-momentum

spectrum k(ω). From this latter calculation the optical properties, such as reflection

and transmission, of an AW driven TO-phonon polaritons can be obtained.

The Hamiltonian for a system of acoustically driven far infrared polaritons is

H = Hpol + ~

∑

p

[
4σ4b

†
kbk + (σ3e

−iΩtb†kbk−K +H.C.)+

(σ4e
−2iΩtb†kbk−2K +H.C.)

]
, (2.5)

where Hpol is the Hopfield polariton Hamiltonian (Eq.(1.32)) given in section 1.8.

Some properties of the RAO effect can be calculated using this Hamiltonian. However,

in this thesis all calculation where made using the macroscopic equations, Eqs. (2.1)

and the Hamiltonian is included for completeness only.
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Table 2.1: Parameters for bulk CuCl and TlCl used in the calculations presented
in this chapter (∗ ∼4 K †room temperature).

CuCl TlCl
~ω0 (meV) 20.28 7.81
~ωR (meV) 14.53 17.97
εb 5.22 5.1
~γ (meV) 0.02∗ 0.92†

2.2 Numerical Model

The numerical model presented in this section is for the coupling due to third order

anharmonicity, the coupling constant σ4 is set to zero in Eqs. (2.1). Initially, the eigen-

values ω(k) are calculated and the dispersion investigated, this is then followed with

the calculation and investigation of eigenvalues k(ω). In both case, the translational

properties of the acoustically induced branches are important to further calculation.

It should be noted that the model presented here is also used in Section 2.5 when σ4

is non-zero and σ3 = 0. The case of nonzero σ3 and σ4 is discussed in Chapter 3

2.2.1 Quasienergy Spectrum

The quasienergy spectrum ω(k) is, for nonzero damping, a complex quantity depen-

dent on real valued k in an unbound semiconductor. It shows the permitted values

of ω for any given real value of k propagating TO-phonon polaritons can take when

acoustically driven. At band-gaps the values of ω(k) become purely imaginary, which

corresponds only to decaying solutions of Eqs. (2.1). For the purpose of studying the

RAO effect it is useful to consider the propagating polariton solutions only. This can

be achieved by setting the γ = 0 and considering the real part of ω(k). In this context,

the rather idealised ω(k) can be used to investigate the effects that the AW driving

has on the propagating TO-phonon polaritons. Even in this case however there are

still regions where Im[ω(k)] 6= 0, at these frequencies acoustically induced band gaps

form. These will be discussed later. This subsection presents a comparison between

the AW driven quasienergy branches and the bare TO-phonon polariton dispersion,

which corresponds to the situation where both σ3 = 0 and σ4 = 0 in Eqs. (2.1).
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To consider only the third order coupling between the AW and the TO-phonon com-

ponent of the polariton, we put that σ4 = 0. In this case φ in Eqs. (2.4) becomes

arbitrary and so it is removed along with the σ4 terms. Equation (2.4b) is then

reduced to

[
ω2
0 − (ω + nΩ)2

]
Pn + 2σ3ω0(Pn+1 + Pn−1) =

εb ω
2
R

4π
En. (2.6)

This can be solved, along with Eq. (2.4a), as an eigenvalue problem for the polariton

eigenfrequency ω = ω̃λ. The subscript refers to the energy bands λ = 1, 2, . . . ,

which are separated by acoustically induced band gaps. The eigenvalue problem

itself can be put into linear form for ease of calculation, this is done in Appendix A.1

in the presences of both cubic and quartic anharmonicity. For the case of cubic

anharmonicity only (σ4 = φ = 0), the result is

Ŵ~X = ω̃~X. (2.7)

For the calculation of ω̃ to take place Eq. (2.7) must be truncated at −nr ≤ n ≤ nr.

This introduces the matrix dimension M = 2nr + 1. Thus, the dimensions of the ω̃-

independent matrix Ŵ are 4M ×4M . The vector ~X is 4M in length and contains the

electric field’s Fourier components. The factor of 4 in the matrix dimension M comes

from the fact that the polariton dispersion is split between the UP and LP branch,

which gives a factor of 2. The positive and negative pairs that all eigenfrequencies

come in provides the other factor of 2. Due to the periodic nature of the AW in

both space and time, each branch of the quasienergy dispersion has the translational

property

ω̃λ(k + sK) = ω̃λ(k) + sΩ. (2.8)

The eigenfunctions that correspond to each branch ωλ(k) also obey a similar property

En(k + sK) = En+s(k). (2.9)

An expression of the same form exists for Pn.

The quasienergy spectrum of AW driven polaritons is shown in Figure 2.1 for CuCl,

the units of the x-axis are the acoustic wavevector K. It is due to the periodicity in

both space and time, caused by the driving AW, that the first acoustically induced

Brillouin zone contains the folded bare polariton dispersion. This is then translated
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Figure 2.1: The quasienergy spec-
trum of both the UP (blue) and LP
(green) branches of a bulk undamped
TO-phonon polariton in CuCl. The po-
lariton is driven by an AW with ν =
100 MHz (K = 0.3109 µm−1) and an
acoustic intensity corresponding to σ =
1 meV. The acoustically unexcited spec-
trum is given by the thin dashed lines
and the heavy dashed line show the ar-
tificial cutoff of the LP quasicontinuum.
Panels (b)-(e) show ares of the spectrum
that are heavily modified by the acoustic
wave.

by both nK and nΩ, where n labels the order of the Bragg replica, into the other

acoustically induced Brillouin zones. At the center and boundary of these zones

band gaps open in the quasienergy spectrum, due to the coupling between the AW

and the polaritons. These band gaps are highlighted in Figures 2.1(b), 2.1(d) and

2.1(e). In these spectral regions polariton propagation is not permitted, this has a

large impact on the optical properties of the polaritons, e.g. the light reflectivity and

Bragg scattering. In general the position of the band gaps is dependent on Ω. The

width is dependent on both Ω and the coupling strength of the AW to the polariton.

This is discussed in more detail later in this chapter.

In the regions in which polariton propagation is permitted, the acoustically altered

spectrum deviates from the bare polariton spectrum. This is clearly seen in Fig-

ure 2.1(d) and 2.1(e), where the dashed line is the bare dispersion ω(0)(k). It is

clear from these insets that not only is there deviation but that it gets larger as

ω → ω0. Around the TO-phonon resonance the deviation is dramatic. The reason

for this is that the bare LP branch of the polariton spectrum has an upper bound of

the TO-phonon frequency, which it approaches asymptotically. However, the acous-

tically modified LP branch spectrum does not behave in the same way around the

TO-phonon frequency, this can be clearly seen in Figure 2.1 (a). The red line is

set at ω0 and clearly demonstrates that the degree of anti-crossing around the lower

Restrahlen band edge when the TO-phonon polariton is acoustically driven, which

is shown in Figure 2.1 (c), pushes states into the Restrahlen band. In principle the
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Figure 2.2: The (a) real and (b) imag-
inary part of the quasimomentum of
the central Bragg replica of acoustically
driven TO-phonon polaritons, for a vari-
ety of coupling strengths between the AW
and TO-phonon. The insets show the ef-
fect of the AW on the polariton quasi-
momentum for the lowest acoustic band
gap. The damping of the TO-phonon is
γ = 0.2 meV and the acoustic frequency
is ν = 50 MHz (K = 0.1555 µm−1).

quasi-continuum states continue over the whole range examined here, however the

contribution they make to the reflectivity of the acoustically driven TO-phonon po-

laritons drops very rapidly away from ω0. It should also be noted that around ω0 the

Bragg condition at which the band gaps appear breaks down, due to the excessive

anti-crossing and level repulsion.

2.2.2 Quasimomentum Spectrum

For an ionic material undergoing the RAO effect an incident light field of frequency

ω excites TO-phonon polariton modes in the bulk of the material. For the given

frequency of incident light, the polariton mode has a specific value of complex mo-

mentum k = κ̃j(ω). These values are known in the literature as as forced harmonic

solutions [36] and are calculated from Eqs. (2.4) by solving the inverse problem to

that solved in the previous section. Thus, κ̃j(ω) are complex eigenvalues. The asso-

ciated eigenvectors also gain an index becoming Enj and Pnj. This extra index has

the range −∞ ≤ j ≤ ∞ and distinguishes the different partial waves. The unique

partial wave composition of the total electric and polarization fields is determined

by the boundary conditions. However, these partial waves are not independent. The

eigenvalues and eigenvectors obey the translational relations that are analogous to

those given in Eqs. (2.8) and (2.9)

κ̃j+s(ω) = κ̃j(ω − sΩ) + sK, (2.10a)

En,j+s(ω) = En+s,j(ω − sΩ), (2.10b)

Pn,j+s(ω) = Pn+s,j(ω − sΩ). (2.10c)
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These relations invariably follow from the periodicity of both space and time caused

by the passage of the AW.

The calculation of the complex quasimomenta κ̃j(ω) begins at the same point as the

quasienergy spectrum, with Eq. (2.6). From this we can arrive at a linear eigenvalue

problem

V̂~Y = κ̃~Y,

the full derivation of which is given in the second section of Appendix A.2 where

both cubic and quartic anharmonicity are considered. To derive the quasimomentum

eigenvalue problem for the case of third order anharmonicity only, σ4 is set to zero

in Appendix A.2. To calculate the quasimomentum spectrum it is necessary that

the problem is truncated to −nr ≤ n ≤ nr, which makes V̂ a square 2M × 2M

matrix and the vectors ~Y have 2M elements. The factor of 2 is due to the symmetry

Im[κ̃] → −Im[κ̃]. The reason for only one factor of two in the matrix and vector

dimensions for the quasimomentum problem is the lack of separation into UP and LP

branches. This is due to the fact that while the real polariton wave falls to zero for

both γ = 0 and σ3 = 0, the imaginary part becomes non-zero because the polariton

solution is evanescent in Restrahlen band. For the more realistic case of a non-zero

γ the real part retains some small non-zero value, this is shown by the red line in

Figure 2.2.

When calculating the quasimomentum eigenvalues the matrices have to remain finite,

to ensure this it is necessary to truncate the matrices. At these truncation points

the quasimomentum Bragg replicas are badly distorted, the translational relations

Eqs. (2.10) can be used to solve this problem. First the central root κ = κ̃j=0(ω)

is selected. This is defined as the root which satisfies κ(0) = 0. The translational

property given by Eq. (2.10a) can be exploited to use κ to replace the other roots. It is

then necessary to use a linear interpolation scheme, this is because the AW introduces

an offset between frequency points in adjacent roots. Thus, ωi ≤ ω − jΩ ≤ ωi+1 and

the linear interpolation is

κ̃j(ω) = κ(ωi) +
κ(ωi+1)− κ(ωi)

ωi+1 − ωi
(ω − jΩ− ωi). (2.11)

After applying this interpolation any truncation issues are removed. To calculate κ(ω)

with minimal truncation effects present it is necessary to use fairly large matrices.

The size for any given calculation depends on the coupling strength, for the separate
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Figure 2.3: The solid lines show (a) both the real and imaginary parts of the
acoustically driven complex polariton quasimomentum, at the acoustically induced
band gap for no damping and in (b) for γ = 0.2 meV. The dashed lines show the
same but without acoustic excitation. The black and red (gray) colors show the
positive and negative acoustically shifted quasimomentum branches, respectively.
The acoustic frequency is ν = 50 MHz (K = 0.1555 µm−1).

third and fourth order coupling M = 161 therefore −80 ≤ j ≤ 80.

In Figure 2.2 the complex quasimomentum roots are shown, the real part in Fig-

ure 2.2(a) and the imaginary in Figure 2.2(b) both with and without the AW. The

most noticeable alterations to the quasimomentum spectrum occur around ω0 =

20.28 meV, which are dependent on the coupling strength σ. However, other less

noticeable alterations occur that are of remarkable importance to the THz proper-

ties of the crystal, despite their size relative to the Restrahlen band. The insets in

Figure 2.2 shows the regions where TO-phonon transitions occur, the features they

display are equivalent to the band gaps in the quasienergy spectrum. These features

are examined more closely in Figure 2.3. The upper panel of Figure 2.3(a) shows

the real part of the quasimomentum root for γ = 0. If this were calculated for

νac = 100 MHz then it would reproduce the band gap shown in Figure 2.1(e), the

difference between the two would be the horizontal line. Due to the factor of two

difference between both calculations, the spectral position of the features examined

in Figures 2.2 and 2.3 is half that of the band gap in Figure 2.1(e). The dashed lines

in Figure 2.3 are the bare quasimomentum branches, the band gap occurs because of

the strong AW induced coupling between them. The real part of the quasimomentum

displays anti-crossing behaviour while the imaginary part shows the band gap. Should

σ = γ = 0 no imaginary part would be present. In this band gap region the polariton
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modes decay rapidly, this determined by the finite imaginary part of the polariton

wavevector due to the coupling between AW and TO-phonon polariton component.

The introduction of non-zero γ, which obeys γ < σ, makes little difference to the

physical situation other than a non-zero imaginary part for all ω.

2.3 Band Gap Width

The modifications of the bare polariton dispersion due to the resonant acousto-optic

effect falls into two categories. Firstly, the alteration of the main polariton band

gap. Secondly, the creation of acoustically induced band gaps at specific points in

the dispersion given by the Bragg condition, which are examined in this section. In

the band gaps the propagation of the polaritons is forbidden, which results in the

reflectivity increasing in the region of the gap. The width of these gaps is a figure of

merit for the strength of the RAO effect, it is therefore worth consideration.

In this section a comparison is made between the numerically calculated band gap

widths and the analytical calculations made by Dr. Egor Muljarov. The results of

the analytical calculations given here are taken from the paper [35]. To begin, the

matrix equations, Eq. (2.4), have the polarization dependence removed by making Pn

the subject of Eq.(2.4a) and substituting it into Eq. (2.4b) gives

αnDnEn − σ
(
αn+1En+1 + αn−1En−1

)
= 0, (2.12)

where

Dn(k, ω) =
1

2ωt

[
ω2
t − 2iγ(ω + nΩ)− (ω + nΩ)2

ω2
R

αn(k, ω)

]
, (2.13a)

αn(k, ω) =
c2

εb

(
k + nK

ω + nΩ

)2

− 1. (2.13b)

The introduction of ξn = En/En+1 allows Eq. (2.12) to be solved recursively, by

rewriting it as

ξn =
σαn+1

αnDn − σαn−1ξn−1

. (2.14)

To solve Eq. (2.12) up to the N th order the truncation E−N−1 = E1 = 0 is used. This

approach to the solution of Eq. (2.12) is perturbative, with a small parameter σ/Dn,
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and will break down when ω → ω0 or ω →
√
ω2
0 + ω2

R.

The truncation is equivalent to the pair of BC for Eq. (2.12)

ξ−N−1 = 1/ξ0 = 0. (2.15)

The starting point for the calculation of ξn would be the first BC. Iteration then

continues until the relationship α0D0 = σα−1ξ−1 is reached via the final BC. This

section shows the analytical results calculated using this pertabative method and

compares it with the numerical calculations of the acoustically induced band gaps

only. For consistency with the quasienergy dispersion discussed in section 2.2 γ = 0.

The bare polariton dispersion ω = ω0(k) can be calculated from the N = 0 case of

Eqs. (2.14) and (2.15), which is

D0(k, ω) = 0. (2.16)

The bare dispersion ω0(k) consists of both UP and LP branches and can be seen in

Figure 2.1, represented by the dashed line. In the zeroth order pertabative calculation

no acoustic effects are apparent, the first and higher orders are required for that. The

polariton wavevector coordinate of the gaps is given by the Bragg condition

kN = NK/2 , N = 1, 2 . . . , (2.17)

where the AW provides the periodicity. This condition leads to band gaps forming

in the center and edges of the acoustically induced Brillouin zone. This is clear in

Figure 2.1, which shows the numerically calculated AW modified dispersion for the

extend zone scheme. The energetic position of the gaps, ωN can be found from

ωN = ω0(kN), (2.18)
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or by solving D0(kN , ωN) = 0. The gap widths are given by

∆1 = σS(ω1),

∆2 = σ2 S(ω2)

|D−1(k2, ω2)|
,

∆3 = σ3 S(ω3)

D2
−1(k3, ω3)

,

∆4 = σ4 S(ω4)

D2
−1(k4, ω4)|D−2(k4, ω4)|

. . . (2.19)

where

S(ω) =
2ωω0ω

2
R

(ω2 − ω2
0)

2 + ω2
0ω

2
R

.

A full derivation of this result can be found in Appendix C of [35].

The AW induced band gaps δN are created in the polariton dispersion as a result

of anti-crossing of different polariton dispersion branches. The origin of the anti-

crossings lie in the translational invariance of the dispersion, which is such that states

from opposite k sides of the bare polariton dispersion can become resonant. This can

be arranged by a translational shift in inverse space of the states from the negative-k

part of the dispersion by (NK,NΩ). Essentially, the N th order band gaps open up

in ω0(k) due to the acoustically induced transition of N TO-phonons, from one side

of the bare TO-phonon polariton dispersion to the other. The exact k-values which

are coupled from each side of ω0(k) are given by the Bragg condition detailed in

Eq. (2.17). Accordingly, the width of the gap ∆N is dependent on σN3,4.

In the RAO effect the light and acoustic fields do not directly interact, the entire RAO

effect is caused by the mediating TO-phonon as discussed in section 1.9. Therefore,

the efficiency of the effect can increase by either increasing the acoustic intensity or

by increasing the TO-phonon component of the polariton. In Figure 1.2 we show that

near the TO-phonon frequency the energy of the polariton is distributed strongly in

favor of the TO-phonon component. Thus, as detuning from the Restrahlen band

reduces the strength of the RAO effect increases, in both LP and UP branches. In

the LP branch considered in the perturbative results discussed above this is taken

into account by the form factor S(ω), which increases with decreasing detuning.

The comparison of the numerical band gap width and the analytical calculation is

shown in Figure 2.4 for a moderate acoustic intensity Iac = 2.4kW/cm2 (σ = 0.4meV).
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Figure 2.4: (a) Numerical (sym-
bols) and analytical (lines) calcula-
tion of the width of the acoustically
induced band gaps in the LP branch.
The lower horizontal axis gives the
abscissa as a detuning from the TO-
phonon energy (ω0 − ωN=1) and the
upper horizontal axis is simply the
acoustic frequency ν. (b) Presents
the same data as (a) but for the UP
branch. In this case the detuning
is given on the top horizontal axis
and is taken from the LO-phonon fre-

quency (ωN=1 −
√
ω2
0 + ω2

R). The

subscript N = 1 refers to the low-
est acoustically induced energy gap.
The coupling strength and damping
for both panels is σ3 = 0.4 meV and
γ = 0.2 meV, respectively.

For ∆1 and ∆2 (lines) the agreement with the numerics (symbols) is excellent over a

large range of the results. In the LP branch, shown in Figure 2.4 (a), at high acoustic

frequency (low detuning) the agreement between the analytics and numerics fails.

The assumption that the analytic model is based upon is that the detuning is large

compared to the coupling strength, in the case of small detuning this clearly breaks

down. This is also the case for low acoustic frequency in the UP branch. Due to the

postion of the UP branch above the Restrahlen band, low acoustic frequency corre-

sponds to small detuning. The higher order band gaps are not at all well reproduced.

This is due to analytical calculation considering Ω negligible, which holds for the first

two band gaps. However, at higher orders the band gap width has become µeV in

size, this is comparable with Ω.

2.4 Third Order Anharmonicity: Copper Chlo-

ride

This section details the boundary condition problem that was solved to produce the

reflectivity spectra including all important Bragg replicas. The numerical results are

presented for a variety of parameters and shown to be modified due to the AW driving
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Figure 2.5: The schematic of the boundary considered for the TO-phonon polari-
ton RAO effect. The vertical stripes symbolise a propagating bulk AW.

the TO-phonon polaritons. Some comparisons are also made to the approximate

analytical results calculated using Dr. Muljarov’s perturbative approach.

2.4.1 Numerical Bragg Reflectivity

This thesis considers a semi-infinite geometry for the TO-phonon polariton RAO

effect problem with an ionic crystal-vacuum boundary at z = 0. In Figure 2.5 we

see that the incident light, given by the red arrow results in reflected Bragg replicas

as well as co- and counterpropagting transmitted Bragg replicas. In the vacuum the

electric field takes the form

E(z < 0, t) = eiq0ze−iωt +
∑

n

rne
−iqnze−i(ω+nΩ)t, (2.20)

where qn = (ω + nΩ)/c and rn is amplitude of the outgoing Bragg replica, which has

been normalised to the unity of the incident light wave. In the ionic crystal region
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the electric field is joined by a polarization field, both have a similar form

E(z > 0, t) =
∑

n,j

AjEnje
i(κ̃j+nK)z−i(ω+nΩ)t, (2.21a)

P (z > 0, t) =
∑

n,j

AjPnje
i(κ̃j+nK)z−i(ω+nΩ)t. (2.21b)

Here, then normalised eigenvectors are Enj and Pnj for the electric and polarization

fields, respectively. The partial wave amplitude is given Aj.

Both the partial wave amplitudes Aj and the Bragg replica amplitudes rn are found by

considering the boundary using Maxwell’s boundary conditions (BCs). These require

that both the electric field and the magnetic field H(z, t) are continuous across the

boundary found at z = 0. Using the one dimensional form of Eq. (1.29c) from

section 1.8, H(z, t) can be calculated from E(z, t), which gives the set of equations

e−iωt +
∑

n

rne
−i(ω+nΩ)t =

∑

nj

AjEnje
−i(ω+nΩ)t,

e−iωt −
∑

n

rne
−i(ω+nΩ)t =

∑

nj

AjEnj
κ̃j + nK

qn
e−i(ω+nΩ)t.

These equations hold for any time t. By equating coefficients they can be written in

a more convenient form, that can be easily solved for rn and Aj.

δn,0 + rn =
∑

j

AjEnj, (2.22a)

δn,0 − rn =
∑

j

AjEnj
κj + nk

qn
. (2.22b)

These equations are numerically solved by a truncation −nB ≤ n ≤ nB, where the

total number of Bragg replicas is given by NB = 2nB + 1. The truncation used

for the BC problem is different from that used for the calculation of the central

polariton quasimomentum Bragg replica κ(ω). The number of Bragg replicas used

for the determination of rn and Aj is a lot smaller, therefore NB << M . An example

of this can be found when trying to calculate the reflectivity for σ3 = 2 meV and

ν = 100 MHz, to determine κ(ω) to an accuracy of 10−7 M = 81 but to calculate rn

and Aj the matrix dimensions is only NB = 21.

The Bragg replicas cannot be spatially selected because of the collinear propagation



2.4. Third Order Anharmonicity: Copper Chloride 54

0.0

0.5

1.0

 

 

 

 MHzR

0.0

0.5
 MHz

 

 

 

0.0

0.5

~
To

ta
l r

ef
le

ct
iv

ity
 w

ith
 in

te
rfe

re
nc

e 
R

|
nr n|2

 MHz

 S
am

e-
fre

qu
en

cy
 re

fle
ct

iv
ity

 R
0

|r 0|2

 T
ot

al
 B

ra
gg

 re
fle

ct
iv

ity
 R

n|r n|2

 
 

 

0.0

0.5
 MHz

 

 

 

0 10 20 30 40
0.0

0.5
(a)  MHz

 

 

(meV) 

0.0

0.5
 MHz

 

 

 

0.0

0.5

1.0

R0
 MHz

 

 

 

0.0

0.5
 MHz

 

 

 

0.0

0.5

 MHz

 

 

 

0.0

0.5
 MHz

 

 

 

0.0

0.5
 MHz

 

 

 

0 10 20 30 40
0.0

0.5
(b)  MHz

 

 

(meV)  

0.0

0.5

1.0

R  MHz

 

 

 

0.0

0.5
 MHz

 

 

0.0

0.5
 MHz

 

 

 

0.0

0.5
 MHz

 

 

 

0.0

0.5
 MHz

 

 

 

0 10 20 30 40
0.0

0.5
(c)  MHz

 

 

(meV)   

Figure 2.6: (a) Incoherent total Bragg reflectivity, (b) central Bragg replica re-
flectivity and (c) coherent total Bragg reflectivity for various acoustic frequency
and σ = 1 meV, while γ = 0.2 meV. (a) does not show any interferences terms but
(c) does. The thin red lines show the reflectivity without the presences of an AW.

of the AW and the TO-phonon polaritons. However, thanks to the propagating

nature of the AW each Bragg replica has its own unique temporal evolution. This is

clearly demonstrated by considering Eqs. (2.21), where the time dependence of the

nth Bragg replica has the frequency ω+nΩ. Clearly, the effect of this propagating AW

on the Bragg replicas is to either upconvert or downconvert the undressed polariton

frequency, depending on the sign of n. If a frequency selective technique is used

the intensity of the nth Bragg replica in the reflected light field Rn = |rn|2 can be

measured.

The effect of each Bragg replica having a unique temporal evolution will have an

important impact on the technique used to measure the reflected light field. If the

temporal resolution of the spectrometer τ is not sufficiently fine enough to resolve the
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interference fringes of the Bragg replicas then the reflectivity will be fully incoherent

R(ω) =

nB∑

n=−nB

|rn|2. (2.23)

The condition for this case of reflectivity measurement is Ωτ >> 1, for this to hold

τ would have to be of the order of nanoseconds. The other example of reflectivity

measurements in the case of the TO-phonon RAO effect is the fully coherent case.

Here the spectrometer would have sufficiently fine τ to resolve the interference fringes

of the Bragg replicas. In this case Ωτ << 1 putting τ in the sub-nanosecond to

picosecond range. The fully coherent total Bragg reflectivity can be calculated by

R̃(ω) =

∣∣∣∣∣

nB∑

n=−nB

rn

∣∣∣∣∣

2

. (2.24)

The two cases of measurement of the total Bragg reflectivity discussed above are

shown in Figure 2.6 for various AW frequency. Figure 2.6 (a) shows the incoherent

reflectivity and Figure 2.6 (c) shows the coherent equivalent. It should be noted that

Figure 2.6 (c) would be equivalent to a spectrometer measuring the reflectivity with

sufficient spectral resolution to observe variation of the reflectivity with time due to

Ω. Thus, in general Figure 2.6 (c) is time depdent and is shown here at t = 0. In

Figure 2.6 (b) the zeroth Bragg replica R0 is shown. It is the only Bragg replica to

survive the removal of the AW, which leads to the red curve shown in all panels of

Figure 2.6. This is calculated by setting σ3 = 0. The black curves are all calculated

for a coupling strength of σ3 = 1 meV. It can be clearly seen in Figure 2.6 that the

increasing acoustic frequency up to 1 GHz has the effect of blue shifting the peak

associated with the N = 1 TO-phonon transition. In the LP branch, when using

lower AW frequencies, the reflectivity peaks are due to individual acoustic band gaps

formed from specific acoustically induced TO-phonon transitions. These give rise

to the large peaks for AW frequencies up to ∼ 300 MHz. The thickness of these

peaks is dependent on the band gap width or the TO-phonon damping, whichever

has the greater magnitude. As the peak approaches ω0 it becomes wider, until the

peak becomes a cusp-like feature seen in all panels of Figure 2.6 at 1 GHz. In the UP

branch the peaks become hard to resolve at AW frequencies below 100 MHz as the UP

states are pushed in to the Restrahlen band. Between this frequency and 300 MHz the

AW frequency evolution of the peaks is similar to the LP branch counterparts. There

is a noticeably stronger effect in the coherent reflectivity R̃(ω), where the spectral
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Figure 2.7: The total Bragg re-
flectivity calculated for (a) ν =
50 MHz and (b) ν = 1 GHz and for
various coupling strengths. The
spike in (a) due to the third-order
band gap is highlighted by the ar-
row. The red (gray) line shows the
bare TO-phonon polariton reflec-
tivity spectrum. The damping is
set to γ = 0.2 meV.

modifications are considerably enhanced due to dispersive features caused by a strong

interference effect.

Due to the similarity of the three reflectivity spectra in Figure 2.6 at 1 GHz, it is

clear that the evolution of the peak into a cusp-like feature takes place only in the

zeroth Bragg replica, no other orders contribute. This is due to an AW frequency

that is equivalent to a submicron wavelength, while the polariton wavelength is in the

micron range. Thus, the light field has wavelength too large to resolve the AW. This

means that the polaritons pass through a homogeneous material in which the AW has

modified the ω-dependent dielectric constant, that is the AW no longer provides a

dynamic superlattice and the Bragg condition no longer holds. This leads to a direct

modification of the zeroth Bragg replica, all others vanish. The cusp-like feature

can be understood as the result of the acoustically induced band gaps accumulating

around the TO-phonon frequency, of which, in principle, there are an infinite number,

though increasingly less significant. Lower detuning from the Restrahlen band does

not produce a cusp like feature in the UP branch due to the shape of its dispersion.
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The approximately parabolic shape of the dispersion in this region of the LP branch

does not allow for the accumulation of band gaps.

In Figure 2.7 the effect of increasing the coupling strength is shown for both high

and low frequency limits. In the low frequency limit shown in Figure 2.7 (a), the

increased coupling strength leads, not only to an increase in the strength of the

N = 1 TO-phonon peak but also to new features. These new features correspond to

the second and third band gaps widening as a result of increased coupling strength,

that is an increase in the strength of the N = 2 and N = 3 acoustically induced TO-

phonon transitions. The new features can be seen in both the LP and UP branches.

Figure 2.7 (b) shows the effect the increased coupling strength has on the total Bragg

reflectivity in the high frequency limit. In this case there no new features appear,

however the strength of cusp increases with coupling strength, as does its splitting

from the Restrahlen band. The effect of this is to reduce the reflectivity of the

Restrahlen band.

Figure 2.8 shows the contribution each Bragg replicas makes to the reflected electric

field and how this is effected by the acoustic frequency. In the top panel of this

figure the zeroth Bragg replica dispersion κ(ω) is shown. In theses panels the Bragg

condition is highlight by horizontal gray lines, which are separate by a wavevector of

K/2, and arrows of lengthK. The y-axis is measured in units of the initial wavevector

K0 = 0.1555 µm. In the bottom panels the red lines show the total Bragg reflectivity

and the dashed lines highlight the reflectivity peaks that appear at spectral position

of the first-order acoustic bands gaps. These peaks are due to a set of one TO-phonon

transitions between the positive and negative sides of the dispersion κ(ω).

The term “one TO-phonon transition” refers to the scattering channel that the tran-

sitions use. The fact that the peak due to the N = 1 band gap in the total Bragg

reflectivity has contributions from at least up to the n = −4 Bragg replica, indicates

that this peak is dependent, albeit more weakly, on more than simply the transition

of one TO-phonon. That is, it has contributions from N concurrent TO-phonon tran-

sitions that all occur using the one TO-phonon transition scattering channel. This is

also true of the other peaks in the reflectivity spectrum.

The reflectivity of the nth Bragg replica also has more contributions than just those

due to the N = |n| TO-phonon transitions. In the LP branch of Figure 2.8 (a) it is

clear that some Bragg replicas contains peaks due toN -phonon transitions whereN 6=
|n|. This is because all higher order Bragg replicas accumulate the lower n-phonon
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Figure 2.8: The top panel shows the acoustically modified quasimomentum spec-
trum over both LP and UP branches. The central panels show the contributions
of the Bragg replicas in the range −4 < n < 2. Finally the bottom panel shows the
total Bragg reflectivity. The calculations used the parameters σ = 2 meV and (a)
ν = 50 MHz, (b) ν = 100 MHz and (c) ν = 150 MHz. The vertical dashed lines
indicated the positions of the band gaps, the colored arrows in the upper panels
show N -phonon transitions. The associated acoustic wavevectors are (a) K = K0,
(b) K = 2K0 and (c) K = 3K0 for K0 = 0.1555 µm.
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transitions. In some cases the higher order Bragg replicas contain contributions from

lower order transition that are stronger than N = |n| transition. For example, the

n = −4 Bragg replica in Figure 2.8 (a).

The effect of increasing the AW frequency is seen more explicitly in Figure 2.8. The

position of the TO-phonon transitions is given by the Bragg condition. Upon increase

of the Ω, which consequently increases K, this Bragg condition can only be fulfilled at

higher frequency positions in the dispersion. This must lead to a blueshift of the band

gaps. This blueshift also affects the width of the band gaps due to difference in the

TO-phonon content of the TO-phonon polariton at different points in the dispersion.

Higher TO-phonon contribution to the polariton leads to stronger coupling and a

wider band gap, these conditions can be found around the Restrahlen band. In

Figure 2.8 (a) the peaks in the LP branch are weaker than those in Figure 2.8 (b) and

(c) because of their spectral position. The opposite is true in the UP branch, where

a blueshift removes the band gap from the vicinity of the Restrahlen band leading to

weaker peaks in the reflectivity.

The fact that the negative n Bragg replicas contribution is strongly dominant over the

positive n Bragg replicas is simply because the reflectivity is being considered. The

incident light excites positively propagating polariton modes, that is modes with κ >

0. The AW can scatter these modes into the κ < 0 part of the polariton dispersion.

Due to the accompanying emission of acoustic phonons the scattering event is also a

downconversion in frequency of the TO-phonon polariton. The downconvert polariton

waves remain down converted in both crystal and vacuum and correspond to the

negative-n components of the electric field found in Eqs (2.20) and (2.21). This

is the cause of the dominant negative n TO-phonon transitions in the total Bragg

reflectivity.

Finally, the peaks found in each Bragg replica Rn are not actually due to individ-

ual N TO-phonon transitions, they are all dressed by higher order processes. Any

N th-order band gap is caused mainly by N TO-phonon transitions, but also has com-

ponents from multiple simultaneous emission of N + s phonons and the absorption

of s phonons, in principle for any integer s. The size of these higher order effects

is depend on the magnitude of σ and in the calculations presented in this chapter

|s| ≤ 20 even for coupling up to σ = 3 meV.
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2.4.2 Analytical Comparison

For a small σ (low acoustic intensity) the reflectivity of each Bragg replica can be

calculated using the approximate perturbation approach discussed in section 2.3. This

approach uses the N th perturbative order to describe the RAO effect in which only N

TO-phonons participate, there are no higher order effects. The approach would take

account of ∆N gaps due to N TO-phonon transitions. In what follows, the N th Bragg

replica is calculated in its lowest order, including both the upconverted rn=+N and

downconverted rn=−N cases. It is also explicitly shown that only the downconverted

rn=−N Bragg replica is resonantly enhanced.

The results of the perturbation theory presented here are derived in Appendix D of

reference [35]. For the N th Bragg replica the recursive form of the perturbative result

is

r±N = −
N∑

s=1

A±(N−s)E±s
β±s − β0
1 + β0

, (2.25)

A±N = −
N∑

s=1

A±(N−s)E±s
1 + β±s
1 + β0

, (2.26)

E±N = σN
α0

α±N

N∏

s=1

1

D±s

, (2.27)

where Dn(ω, k) is defined in Eq. (2.13a),

αn =

(
k + nK

p

)2

− 1 , βn =
k + nK

q
, (2.28)

q = ω/c, p =
√
εbq and for simplicity the Ω dependence has been dropped. The

recursive initial point is at N = 0 and the starting values are given by

r0 =
1− β0
1 + β0

, A0 =
2

1 + β0
, E0 = 1. (2.29)

Initially the zeroth order quasimomentum k is used in the the above equations, the

zeroth order being the bare polariton dispersion k = k0(ω). This can be calculated

from Eq.(2.16) and is the inverse of the bare quasienergy dispersion ω = ω0(k). By
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Figure 2.9: Black lines show the reflectivity of individual Bragg replicas calculated
numerically, the colored lines show their analytical counter parts. In (a) n =
−1,−2,−3 and (b) has n = 0, 1, 2, 3. Both analytical and numerical calculations
used the parameters: coupling strength σ3 = 0.4 meV, acoustic frequency ν =
50 MHz and damping γ = 0.2 meV. The inset highlights the reflectivity peak in
the region of first, lowest energy, band gap.

using Eq.(2.16) the functions Dn(ω, k) written in Eq. (2.13a) can be simplified to

αnDn =
ω2
R

2ωt

(k + nK)2 − k2

k2 − p2
(2.30)

when Ω is neglected.

Consider Eq. (2.27), in the denominator stands Dn and from Eq.(2.25) it is clear that

rn has a maxima when αnDn is minimized. This occurs when (k+ nK)2 ≈ k2, which

leads to a Lorentzian peak at the Bragg condition

Re(k) = −nK
2
, (2.31)

the widths of which are proportional to Im(k). Currently, Im(k) is fully determined

by the TO-phonon damping γ. It is instructive to note that the incident light excites

TO-phonon polaritons with wavevectors Re(k) > 0, therefore, by Eq. (2.31), only

n < 0 fulfills the Bragg condition. Thus, only the downconverted Bragg replicas are

observed in the reflectivity.
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The three lowest order Bragg replica amplitudes are given by

r−1 = σ
K

q

2

(1 + β0)2
α0

α−1D−1

, (2.32a)

r−2 = σ2 K

q

2

(1 + β0)2

[
2α0

α−2D−2D−1

− 1 + β−1

1 + β0

α2
0

α2
−1D

2
−1

]
, (2.32b)

r−3 = σ3 K

q

2

(1 + β0)2

[
3α0

α−3D−3D−2D−1

− 3 + 2β−1 + β−2

1 + β0

α2
0

α−2α−1D−2D−1

+

(
1 + β−1

1 + β0

)2
α3
0

α3
−1D

3
−1

]
. (2.32c)

These three results are the approximate analytical comparison to the numerical

results previously presented, this can be seen more clearly in Figure 2.9 where the

calculations were made for a moderate coupling strength of σ3 = 0.4 meV. There

is strong agreement between both results everywhere but the peaks, where only the

spectral position is correctly reproduced by the analytics. This is most clearly seen

in the inset to Figure 2.9 (a), which shows that not only is the Lorentzian shape

inaccurate but that it is unphysical, with |rn|2 > 1. However, this artifact can be

removed by taking into account the acoustically modified spectrum, which is discussed

below. In Figure 2.9 (b) both numerical and analytical calculations are shown for

n > 0, this panel clearly demonstrates a lack of acoustically induced reflectivity

peaks.

The r−1 downconverted Bragg replica peaks at the frequency ω1, which is the fre-

quency of the lowest acoustically induced band gap, this was shown in Eq. (2.18).

As discussed previously, the peak corresponds to a one TO-phonon transition from

the negative-k side of the polariton dispersion to the positive, this was shown in Fig-

ure 2.8. It is also important to note that while the following discussion focuses on

the LP branch, similar peaks can be found in the UP branch.

The second Bragg replica has more complex structure that can be used as the starting

point of a more general understanding of the Bragg reflection. In Figure 2.9 the

n = −2 replica has peaks at both ω = ω1 and ω2. This can be explained by considering

Eq. (2.32b), the first term in the square brackets describes a composite two phonon

process. The virtual intermediate state in this process emits only one acoustic phonon.

As a result when Eq. (2.32b) is examined in Figure 2.10 the origin of the two peaks in

r−2 becomes apparent. The red, dashed line of Figure 2.10 shows the first term in the

square brackets. It clearly shows two peaks in the LP part of the spectrum, the higher
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Figure 2.10: The analytic cal-
culation of the Bragg reflectivity
of the second Bragg replica from
Eq. (2.32b). The first term only is
given by the red dashed line, the sec-
ond only by the blue dotted line and
the full calculation by the black line.
The parameters used in the calcula-
tion are the same as Figure 2.9.

energy one is the final state which dominates the lower energy intermediate one. By

considering the second term, which is the blue dotted line in Figure 2.10, it has only

one peak which shows the one phonon transition in second order. The fact that there

is only one peak from the second term, is because the one phonon transition is the

only component of r−1. The resultant effect of these processes is that the ω ≈ ω1 peak

is dominant overall, as can be seen by the black line in Figure 2.10. This reasoning

can be generalised to higher order peaks, for example, in the Eq. (2.32c) the first term

is due to a three-phonon process with an intermediate states in which one and two

phonons are emitted. The last term is the third-order one phonon transition and the

second term is a mixture of the one and two phonon transitions. Thus, three peaks

are present in r−3, at ω = ω1, ω2 and ω3, all of which are due to various three phonon

processes.

As mentioned previously, the initial analytical calculation of rn used the bare polariton

dispersion, which lead to unphysical results for even a relatively modest coupling

strength. The solution to these problems is to replace k = k0(ω) in Eqs. (2.28)

and (2.30) with the numerically calculated, acoustically modified quasimomentum,

k = κ(ω). This results in a modification to the acoustic Bragg condition of Eq. (2.31),

which determines the resonant energies ωn of the RAO effect, given below

Re
[
κ(ω|n|)

]
= −nK

2
. (2.33)

This approach to the analytical calculation allows the a larger number of Bragg repli-

cas to be taken into account. While this is not strictly consistent with a lowest order

calculation of rn it does produced the desired improvements. Practically, this method

of calculation works provided the resonances are suitably narrow. Figure 2.11(a)
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Figure 2.11: The analytic calculation of the Bragg reflectivity for the n = −1 and
n = −2 Bragg replicas are shown by the coloured lines, the numerical calculation
is shown by the black lines. The solid coloured lines were calculated by taking into
account the effect of the AW on the dispersion, the dashed lines were calculated
from the bare TO-phonon polariton dispersion. The arrow indicates acoustically
induced gap width of the lowest energy band gap, as calculated by the first equation
of Eqs. (2.19). In (a) the lower polariton branch is shown and in (b) the upper
polariton branch is shown.

shows the improved calculations with the solid coloured lines and compares them

with full numerical calculations in black and the original analytics given by the dashed

coloured lines. In both analytic cases the red lines are for the n = −1 Bragg replica

and the green lines for the n = −2 Bragg replica. The solid coloured lines reproduce

the height and width of the full numerical calculations well, which is in contrast to

the original analytics. As mentioned previously, the linewidth in these calculations

is due solely to TO-phonon damping, in the improved calculations the use of κ(ω)

allows band gap width to determine the width of the peaks in rn. This is because

the band gap width is properly incorporated into κ(ω), which is not the case with

k0(ω). There is a slight discrepancy between the improved analytics and the numer-

ical calculation, which is due to the higher order corrections inevitably included in

the numerical calculation but absent from the analytics. The fact that these correc-

tions are large enough to make a noticeable, albeit small, discrepancy for a coupling

strength as modest as σ = 0.4 meV is rather surprising. These higher order correction

are more important for the UP branch at the low acoustic frequency of νac = 50 MHz

due to the increased coupling strength around the Restrahlen band. This can be seen

from the reduced impact the improvements have had on the analytics and the far
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Figure 2.12: The total
Bragg reflectivity less the
central Bragg reflectivity
for σ3 = 1 meV and vari-
ous acoustic frequencies.

larger discrepancy than in the LP branch.

Finally, a comment on the origin of the cusp-like dispersive features in the n = 0

Bragg replica. To begin second order corrections have to be included in the analytic

equation

r0 =
1− β0
1 + β

+ σ

(
K

q

)2
4

(1 + β0)3
α2
0

α1D1α−1D−1

. (2.34)

It is clear from D−1 in the denominator of the second term above, that resonant

features will be produced in r0. In higher order Bragg replicas the resonant term is

added to the Lorentzian line shape. However, in this case the term has only the bare

TO-phonon polariton reflectivity to which the first term can be added. As a result

of this mixing of the first and second terms in Eq. (2.34) a dispersive feature is seen

in the n = 0 Bragg replica instead of the Lorentzian peak. This can been seen in the

N shaped feature found in the zeroth Bragg replica, a numerical calculation of which

is found in Figure 2.6 (b) for various frequencies.

2.4.3 Low and High Acoustic Frequency Behaviour

Previously, in this section, a discussion of the effect of various acoustic frequencies Ω

on the AW driven polaritons has been presented and it was shown that Ω can be used
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Figure 2.13: The spectral area of the Bragg reflectivity of the n 6= 0 Bragg replicas
given by Eq. (2.35) and calculated for σ = 1 meV.

as a parameter to control the terahertz properties of semiconductors. Specifically,

Figure 2.6 showed that the position and widths of the acoustically induced peaks in

the reflectivity can be tuned by Ω. This figure also shows the effect of very large Ω

on the reflectivity. This was characterised by two features, the formation of the cusp

near the Restrahlen band, which was due to the accumulation of acoustically induced

band gaps, and the massive reduction in strength of the higher order Bragg replicas.

The later was caused by the AW modulation wavelength being reduced to the point

where the light field was no longer able to be diffracted by it, which leads to the

acoustic changes being limited to the zeroth Bragg replica. Figure 2.12 shows this

more clearly, with each consecutive panel the AW frequency is increased and the total

higher Bragg replica contribution decreases. Figure 2.13 highlights this for a greater

number of frequencies, showing the spectral area approaching zero as Ω → ∞. The

spectral area is calculated using

∫ ∞

−∞

∑

n 6=0

|rn(ω)|2 dω . (2.35)

In the opposite limit the spectral area of the higher Bragg also replicas reduces as

Ω → 0. In this case the AW becomes less effective at modulating the medium as

the wavelength becomes long. Essential, this is the limit of no AW modulation so it

is expected that for Ω < 10 MHz the spectral area will fall to zero. However, the

current numerical calculation does not produce results easily at ν < 20 MHz and so

it is difficult to produce results to support this claim.
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Finally, the region of the UP branch just above the Restrahlen band shows a peak in

the reflectivity in Figure 2.12 for Ω = 20 MHz. This is due to the accumulation of

transitions at the upper edge of the Restrahlen band. Unlike the effect at the lower

edge of the Restrahlen band the effect on the reflectivity remains associated with the

n-Bragg replicas for |n| 6= 0.

2.4.4 Electric Field and Interaction Length

In Figure 2.14, the wavelength of the incident light is comparable to the AW modula-

tion, which results in significant changes to the electric field. These changes are due

to strong Bragg scattering of the TO-phonon polariton modes by the AW induced

modulation of the CuCl crystal. The electric field shown in Figure 2.14 was calcu-

lated for ν = 50 MHz, which means it corresponds to the reflectivity spectrum of the

top panel of Figure 2.6 (a). The dashed red line shows the position of the interface

between the vacuum and semi-infinite CuCl crystal. On the left, the modulations of

the vacuum electric field are dependent solely on the light wavelength λ = λvac/
√
εb,

and are caused by the interference of incident and reflected waves. On the right, in

the semiconductor region, the medium is modulated by the AW which is constant

for all ω, and given by the AW wavelength 2π/K. An acoustically induced half-λ

modulation occurs at ~ω ≈ 5 meV. The resulting destructive interference between
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the co- and counterpropagting TO-phonon polaritons causes an abrupt attenuation

of the electric field, seen as a thin black line in Figure 2.14.

The interaction length of the RAO effect lint can be given an upper bound by the

decay length of the electric field. This will characterise the length, in real space, over

which the TO-phonon mediated coupling between the light and acoustic field takes

place. An analytical comparison to the numerical results is given here

lint =
Kc2

σεbωt

(ω2
0 − ω2)2 + 4γ2ω2

4ω2ω2
R

(2.36)

The derivation of the interaction length is provide in Appendix E of [35]. The inter-

action length is shown in Figure 2.15 with the numerical calculation in black and its

analytical comparison in green. In both case the calculation was performed at the first

resonant frequency ω = ω1 in the LP branch. The agreement between both results is

excellent for the whole range of AW frequencies. At smaller detuning δω = ω0−ω1 the

numerical interaction length decreases monotonically and is limited by the damping

of the TO-phonon. The dashed line showing the acoustic wavelength clearly indicates

that the interaction length is never more than ten to a hundred time greater, this is

a considerable improvement over conventional acousto-optics.
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2.5 Quartic Anharmonicity: Thallium Chloride

In the previous section CuCl was the material considered, where the cubic anharmonic

coupling between the TO-phonon component of the TO-phonon polariton and the AW

is dominant. This led to Eq. (2.6), which was derived via the substitution of Eqs. (2.3)

into the macroscopic equations Eqs. (2.1) and subsequently setting σ4 = 0. From this

tridiagonal matrix equation the numerical method was developed. In this section TlCl

is the material under consideration, where the fourth order term is dominant in the

Taylor expansion of the interatomic potential. This means that, while the derivation

of the numerical method does not change, it is required that σ3 = 0 instead of σ4.

The process by which the matrix problem is derived in the third order case of CuCl,

when applied to the fourth case gives

[
ω2
0 + 4ω0σ4 − 2iγ(ω + nΩ)− (ω + nΩ)2

]
Pn + 2σ4ω0(Pn+2 + Pn−2) =

εb ω
2
R

4π
En.

(2.37)

If a comparison is made between the matrix problems for the third order case, found

in Eq. (2.6), and the fourth order case above, then some differences are found. Firstly,

the off-center diagonals have moved out one place. The mathematical origin of this

change is due to the factor of two in the argument of the σ4 cosine term in Eq. (2.1b).

Physically, this term represents the TO-phonon transitions that are allowed because

of the cubic anharmonicity, which governs a four phonon scattering channel where

a TO-phonon scatters off two TA-phonons. The TO-phonon transitions that occur

due to the cubic anharmonicity coupling the AW must be due to only even order

transitions, that is n can only take even integer values. That two TA-phonons are

involved in the scattering process is also the reason for σ4 ∝ Iac.

The second major difference between the third and fourth order matrix problems

is the appearance of the static σ4 term that is found on the central diagonal. The

third order coupling of the previous section had no direct influence on the TO-phonon

component of the polariton. The static term in the central diagonal of the matrix for

the fourth order problem changes this. This term induces a static blue shift of the

TO-phonon frequency that for Iac 6= 0. This term is an acoustical analog of the Stark

shift briefly discussed in Chapter 1.
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Figure 2.16: The total Bragg reflectivity for TlCl driven by an AW. (a) shows
the reflectivity ν = 25 MHz and (b) for ν = 125 MHz. The acoustic intensity
used to calculate the black dashed line is Iac = 100 kWcm−2 corresponding to
a coupling constant of σ ∼ 0.4 meV, for the black solid line Iac = 200 kWcm−2

(σ ∼ 0.8 meV). The red line is the bare polariton reflectivity (Iac = 0 kWcm−2).
The inset highlights the acoustically induced Stark shift of the TO-phonon polariton
resonance.

In the optical Stark effect a semiconductor is pumped with a low power laser to gen-

erate a population of excitons. A laser with a higher power is then used to induce the

Stark effect and of the excitons by energy ∆E [2]. This was explained as the photons

from the high power laser dressing the excitons, which caused the nearly degenerate

ground and exciton state to split and resulted in the probe beam generating polariton

transitions [3]. Our case the acoustic wave generates the Stark blueshift rather than

a high power pumping laser. The TO-phonon polaritons are dressed by TA-phonons

leading to a shift in ω0.

This Stark shift can be seen in the inset of Figure 2.16 (b), where the dashed black

and solid black lines show the reflectivity for σ ∼ 0.4 and σ ∼ 0.8, respectively. It is

clear that the blue shift caused by the acoustically Stark effect is tunable through the

use of the coupling strength. The sharpest contrast for the Stark shift can be found

at the blue edge of the Restrahlen band, where the blue shift is shown to measure

∼ 0.15 THz.

There is, however, many similarities between the third and fourth order cases, which

can be illustrated by the optical properties of the material. In Figure 2.16 the total
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Bragg reflectivity is shown for two AW frequencies, one in the low range ν = 25 MHz

and one in the high ν = 125 MHz, both for room temperature. In the low range

frequency value the peaks in the reflectivity occur, in an similar fashion to the third

order case. That is, TO-phonon transitions lead to acoustically induced band gaps

and the peaks seen in Figure 2.16 (a). The only difference is that the lowest order

Bragg replicas shown for the fourth order problem are equivalent to the second order

Bragg replicas for the third order problem. This is the meaning of the n = −2 arrow

in Figure 2.16 (a) in both the UP and LP branches.

At high frequencies, an example of which is shown in Figure 2.16 (b), the cusp-like

feature appears due to the same physics as in the third order RAO effect. It is

again caused by the accumulation of acoustically induced band gaps near the TO-

phonon frequency. This modification of the total Bragg reflectivity spectrum, as in

third order RAO effect, overwhelmingly occurs in the zeroth Bragg replica. The AW

induced modulation of the material becomes too fine to be resolved by the TO-phonon

polaritons, which leads to the AW modifications of the spectrum occurring only in

the zeroth Bragg replica.

2.6 Summary

This chapter has covered the RAO effect for individual coupling between the TA

and TO-phonons using anharmonic three- and four-phonon scattering channels. Us-

ing a modified dispersionless Hopfield macroscopic equation the numerical model was

derived (see Appendix A) and the result of the analytical model found in [35] were pre-

sented. Using these models the AW induced TO-phonon transitions were investigated

and found to lead to peaks in the total Bragg reflectivity spectrum of semi-infinite

CuCl and TlCl crystal. It was shown that due to the resonant nature of the scattering

process in the RAO effect, the spectral position of these peak could be modified by

altering the AW frequency. The strength of the peaks was shown to be modifiable

due to via the acoustic intensity.

The investigation of the reflectivity peaks showed that, for both CuCl and TlCl, the

contribution of each Bragg replica to the total Bragg reflectivity was dependent of

detuning from the Restrahlen band in the LP branch. It was found that at very high

and very low detuning the contribution from the higher Bragg replicas was severely
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reduced thanks the discrepancy between the AW modulation period and the TO-

phonon polariton wavelength. It was also shown that the peaks become cusp-like

at low detuning in LP due to an accumulation of AW induced band gaps. This

also happens in the UP branch, but does not cause the same cusp-like feature. An

investigation of the electric field and interaction length in CuCl showed considerable

improvements over the conventional acousto-optic effect.

Finally, there where differences in the physics behind the third order RAO effect

(CuCl) and the fourth order RAO effect (TlCl). In the fourth order effect the AW only

induces even order (n even) TO-phonon transitions due to the scattering channel used.

This means that the first order band gap in TlCl was equivalent to the second order

band gap in CuCl. Also an acoustically induced renormalisation of the TO-phonon

frequency was documented in the fourth order effect that has not been predicted in

the third.



3 Resonant Acousto-Optics with

TO-Phonons: Two Anharmonic Terms

in the Lattice Potential

This chapter will focus on the RAO effect in LiNbO3, which is a ferroelectric mate-

rial. This class of material necessarily displays large phonon anharmonicities. The

temperature dependent phase transition of the soft phonon mode, which is respon-

sible for the ferroelectric behavior above the critical temperature, is evidence of a

strongly anharmonic interatomic potential. In the case of LiNbO3 the quartic anhar-

monicity, while weaker than the cubic, is still strong enough to have a relatively large

effect on the optical properties of the material. Therefore, they will be considered

simulataneously and on an equal footing.

3.1 Anharmonic Coupling Strength

This section estimates the coupling constants of both m3 and m4, which are the

coupling constants for the cubic and quartic anharmonicity respectively, to an order

of magnitude [34, 37]. These terms are related to the coupling strengths of the

previous chapter by σ3 = m3I
1/2
ac and σ4 = m4Iac.

73
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3.1.1 Cubic Anharmonic Coupling Constant

In Section 1.6 the anharmonicity of an ideal crystal was discussed, the cubic term of

the anharmonic Hamiltonian is

H(3) = V

(
q1 q2 q3

j1 j2 j3

)
(bj1,q1 + b†j1,−q1

)(bj2,q2 + b†j2,−q2
)(bj3,q3 + b†j3,−q3

)

and V (q1,q2,q3) is the cubic anharmonic potential given in Eq. (1.10). In the semi-

infinite 1D geometry considered here the phonon polarization factors are unity. Thus,

Eq. (1.10) can be rewritten as [16, 38, 39]

V

(
q1 q2 q3

j1 j2 j3

)
=
ρV0
3!

[
~
3

8(ρV0)3ω(q1j1)ω(q2j2)ω(q3j3)

]1/2
Ψ(q1,q2,q3) (3.1)

where ρ is the mass density and V0 is the lattice volume and [39],

Ψ(q1,q2,q3) =
1

ρV0

∑

α,β,γ

∂3V

∂uα∂uβ∂uγ
ei(q1·uα+q2·uβ+q3·uγ), (3.2)

where uα are the atomic displacements along the α direction and α, β and γ are

indices over the coordinates.

In the case of the RAO effect the interaction for the cubic anharmonic coupling is

given by TO+TA→ TO, which corresponds to the bTO,k · bTA,K · bTO,k+K. Thus, the

wavevectors take the values q1 = k, q2 = K and q3 = −k−K and the Hamiltonian

of the associated cubic anharmonicity is

H
(3)
RAO ≈ V

(
k K k+K

jTO jTA jTO

)
(bjTO,k + b†jTO,−k)(bjTA,K + b†jTA,−K)(bjTO,−k−K + b†k+K).

(3.3)

The phonon branches involved are j1 = jTO, j2 = jTA and j3 = jTO. By assuming

that ω(k, jTO) = ω(k+K, jTO) = ω0 the potential can be written as

V

(
k K k−K

jTO jTA jTO

)
=
ρV0
3!

(
~
3

8(ρV0)3ω2
0Ω

)1/2

Ψ(k,K,k−K) (3.4)

To proceed it is necessary to find a value for Ψ(k,K,k−K). As there is little literature

on this specific interaction an estimate is required.
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According to Guerevich [39] we can make an order of magnitude approximation of

the derivative in Eq. (3.2). Consider an atom displaced from equilibrium by an

interatomic distance a. The energy of this displacement is of the order of a typical

atomic energy ǫa, as a result the order of magnitude estimate is

∂3V

∂uα∂uβ∂uγ
≈ ǫa
a3
,

where ǫa can be expressed in characteristic quantities of the crystal. As the crystal

is invariant to a transform of a, the exponential term in Eq. (3.2) remains unaffected

provided |uα − uβ| << 1 and |uα − uγ| << 1.

The elastic energy of the displacement in the harmonic approximation is

(1/2)λilmnuilumn, where λilmn is the fourth order elastic tensor and uil is the second

order strain tensor. As the atomic displacement is small the harmonic approxima-

tion holds, and the deformation potentials are unity. The elastic coefficients can be

approximated as λilmn ∼ ρv̄2ac, where v̄ac is the average acoustic velocity. The total

elastic energy of the crystal can also be written as nsǫa, where n is the density of unit

cells and s the number of atoms per unit cell. This leads to ρv̄2ac = nsǫa. Rearranging

and canceling gives ǫa ∼ m̄v̄2ac, where m̄ = M/s is the average mass of an atom and

M is the mass of the crystal. It is now possible to rewrite the derivative as

∂3V

∂uα∂uβ∂uγ
≈ m̄v̄2ac

a3
.

The sum in Eq. (3.2) can now be estimated. First the indices need to be changed

to uα, uα − uβ and uα − uγ, which can done by considering the exponential term in

Eq. (3.2)

ei(q1·aα+q2·aβ+q3·aγ) = ei[q2·(aβ−aα)+q2·(aγ−aα)]ei(q1+q2+q3)aα .

The anharmonic coefficient described by Eq.(3.1) must be invariant to a translation

by a lattice vector [16, 40]. For phonon wavevectors, the conservation of momentum

can be written as that q1 + q2 + q3 = g. Due to the invariance of the lattice a

translation of a obeys a · g = 0. Therefore, Ψ(q1,q2,q3) can be written as

Ψ(q1,q2,q3) ≈
1

ρV0
N0

m̄v̄2ac
a3

∑

α−β,α−γ

ei[q2·(aα−aβ)+q3·(aα−aγ)],
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where the factor of N0 = ρV0/m̄ is the number atoms in the lattice and comes from

the completion of the sum over α [39]. The displacement of the atom is small, only

of an average interatomic distance ā. Thus, the number of terms that need to be

considered in the sum approaches unity [39]. Therefore, the summation is small and

Ψ can be approximated as

Ψ(q1,q2,q3) ≈
v̄2ac
ā3
.

This approximation no longer holds when one of the phonons is from an acoustic

branch and whose magnitude is small compared to ā−1. In this case, |K| is far

smaller than ā−1 and as |K| → 0 the vibrations become a translation of the entire

lattice. This motion cannot change the energy of the lattice. To ensure this is the

case a factor of |K|ā is included [39] in the previous approximation

Ψ(k,K,k′) ≈ |K|ā v̄
2
ac

ā3
.

The potential of the TO + TA→ TO channel can now be written as,

V

(
k K k−K

jTO jTA jTO

)
≈ 1

3!

[
~
3

8µ̄3ω2
0Ω

]1/2
|K|ā v̄

2
ac

ā3
, (3.5)

where µ̄ is the average effective mass of the phonon modes.

A classical approximation of the acoustic phonon term in the Hamiltonian can be

made by writing

〈
(bK + b†−K)√

V cell

〉
=
√
Nph =

(
Iac

~3v̄acΩ

)1/2

which, with the aid of the acoustic dispersion Ω(K) = vacK, allows the Hamiltonian

to be approximated as

H
(3)
RAO ≈ V

(
k K k−K

jTO jTA jTO

)(
Iac

~3Kv̄2ac
Vcell

)1/2

(bjTO,k + b†jTO,−k)(bjTO,k−2K + b†jTO,−k+2K),

(3.6)

where V (k,K,K,k − K) is defined in Eq. (3.5). The cubic anharmonic coupling
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Table 3.1: Parameters for bulk LiNbO3 used to calculate m3 and m4.

LiNbO3

V0 3.17941× 1022 cm3

vac 357290 cms−1

|V (Q0)| 18.2 mRy
ā 1.386× 10−7 cm

constant σ3 can be define as

σ3 = 3!V

(
k K k−K

jTO jTA jTO

)(
Iac

~Kv2ac
Vcell

)1/2

, (3.7)

where the factor of 3! is to account for the permutation of phonon branches. This

equation is related to the third order coupling strength m3 given in chapter 2 by

σ3 = m3

√
Iac.

For the ferroelectric materials LiNbO3 and LiTaO3 the value of the magnitude of the

derivative Ψ(k1,k2,k3) has been empirically deduced [29]

ΨLiNbO3(k1,k2,k3) =

(
3µ̄3ω6

0

16|V (Q0)|

)1/2

,

where V (Q0) are the minima of the interatomic ferroelectric potential. By applying

the small |K| approximation of Gurevich discussed previously we can write

ΨLiNbO3(k,K,k−K) ≈
(

3µ̄3ω6
0

16|V (Q0)|

)1/2

|K|ā.

The combination of this result with Eq. (3.4) and Eq. (3.7), after some manipulation,

leads to

σLiNbO3
3 =

3

8

[
Vcellω

4
0

v3ac|V (Q0)|

]1/2
āI1/2ac . (3.8)

Upon comparison with σ3 = m3

√
Iac this gives the cubic anharmonic coupling con-

stant for the ferroelectric materials LiNbO3 and LiTaO3 as

m3 =
3

8

[
Vcellω

4
0

v3ac|V (Q0)|

]1/2
ā. (3.9)
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Using the data provided in Table 3.1 [41, 42] σLiNbO3
3 ≈ 1 meV for Iac = 1 kWcm−2.

Throughout this chapter Iac = 25 kWcm−2 which gives σLiNbO3
3 ≈ 5 meV. For the

remainder of this chapter LiNbO3 is the only material considered, for brevity the

superscript will be dropped from σLiNbO3
3 .

3.1.2 Quartic Anharmonic Coupling Constant

The quartic anharmonic term of the Hamiltonian of an ideal crystal is

H(4) = V

(
q1 q2 q3 q4

j1 j2 j3 j3

)
(bj1,q1 + b†j1,−q1

)(bj2,q2 + b†j2,−q2
)(bj3,q3 + b†j3,−q3

)(bj4,q4 + b†j4,−q4
)

and the V (q1,q2,q3,q4) is the quartic anharmonic potential. As mentioned in the

previous sub-section the TO-phonon polarization factors are unity, as a result the

potential is

V

(
q1 q2 q3 q4

j1 j2 j3 j3

)
=
ρV0
4!

[
~
4

16 ¯ρV0
4
ω(q1j1)ω(q2j2)ω(q3j3ω(q4j3)

]1/2
Φ(q1,q2,q3,q4)

(3.10)

and,

Φ(q1,q2,q3,q4) =
1

ρV0

∑

α,β,γ,ς

∂3V

∂uα∂uβ∂uγ∂uς
ei(q1·uα+q2·uβ+q3·uγ+q4·uς), (3.11)

where α, β, γ and ς are indices over the coordinates.

In the case of the RAO effect the interaction for the quartic anharmonic coupling is

given by TO+TA+TA→ TO, which corresponds to the bTO,k ·bTA,K ·bTA,K ·bTO,k+2K.

Thus, the wavevectors take the values q1 = k, q2 = K, q3 = K and q4 = k− 2K and

the Hamiltonian of the associated quartic anharmonicity is

H
(3)
RAO ≈ V

(
k K K k− 2K

jTO jTA jTA jTO

)
(bjTO,k + b†jTO,−k)(bjTA,K + b†jTA,−K)

(bjTA,K + b†jTA,−K)(bjTO,k−2K + b†jTO,−k+2K). (3.12)

The phonon branches involved are j1 = jTO, j2 = j3 = jTA and j4 = jTO. Similar

to the previous section it is assumed that ω(k, jTO) = ω(k − 2K, jTO) = ω0, which
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allows the potential to be written as

V

(
k K K k− 2K

jTO jTA jTA jTO

)
=
ρV0
4!

(
~
4

16µ̄4ω2
0Ω

2

)1/2

Φ(k,K,K,k− 2K) (3.13)

Once again it necessary to find a value for Φ(k,K,K,k − 2K) to proceed. Like

the previous sub-section there is little literature on this specific quartic anharmonic

interaction so an estimate is required.

As in the last subsection, we apply Gurevich’s approximation to provide a value

for the derivative in Φ(k,K,K,k − 2K). Extending the logic of Gurevich [39], the

atomic displacement argument used in the last subsection approximates the fourth

order derivative as

∂4V

∂uα∂uβ∂uγ∂uζ
≈ m̄v̄2ac

a4
.

As in the cubic case ǫa = m̄v̄2ac. The invariance of the lattice to a translation by a

means the exponential in Eq. (3.11) term remains unaffected, provided |uα−uβ| << 1,

|uα − uγ| << 1 and |uα − uς | << 1.

The arguments used in the cubic case to approximate the summations in Ψ(q1,q2,q3)

appealed to the translational invariance of the potential V (q1,q2,q3) and conserva-

tion of phonon momentum. In the quartic case discussed here these arguments still

hold, V (q1,q2,q3,q4) is also invariant to a translation by a and the four phonon

interaction also obeys conservation of momentum. Also the same system is under

consideration so the sums will also evaluate to the same values. Thus, we can ap-

proximate Φ(q1,q2,q3,q4) as

Φ(q1,q2,q3,q4) ≈
v̄2ac
a4
.

As in the cubic case this approximation breaks down when the long wavelength acous-

tic phonons are present. However, in this case the quartic interaction involves two

acoustic phonons and therefore the approximation becomes

Φ(k,K,K,k′) ≈ (|K|ā)2 v̄
2
ac

a4
.

Where the factor of (|K|ā)2 corrects for both acoustic phonons. The potential of the
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TO + TA+ TA→ TO channel can now be written as,

V

(
k K K k− 2K

jTO jTA jTA jTO

)
=
ρV0
4!

(
~
4

16µ̄4ω2
0Ω

2

)1/2

(|K|ā)2 v̄
2
ac

a4
. (3.14)

The same classical approximation can be applied to H
(4)
RAO as to H

(3)
RAO. As there are

two (bK + b†K) terms the Hamiltonian to be approximated as

H
(4)
RAO ≈ V

(
k K K k− 2K

jTO jTA jTA jTO

)
Iac

~3Kv̄2ac
Vcell(bjTO,k + b†jTO,−k)(bjTO,k−2K + b†jTO,−k+2K),

(3.15)

where V (k,K,K,k −K) is defined in Eq. (3.14). Then, cubic anharmonic coupling

constant σ3 can be define as

σ4 = 4!V

(
k K K k− 2K

jTO jTA jTA jTO

)
Iac

~3Kv̄2ac
Vcell, (3.16)

where the factor of 4! is to account for the permutation of phonon branches. This

equation is related to the third order coupling strength m3 given in chapter 2 by

σ4 = m4Iac.

For the ferroelectric materials LiNbO3 and LiTaO3 an empirical value for the magni-

tude of Φ(k1,k2,k3,k4) has been deduced [29]

|Φ(k1,k2,k3,k4)| ≈
3µ̄2ω4

0

64|V (Q0)|
.

The small |K| approximation of Gurevich is applied, this time a factor of (|K|ā)2 is

included. Combining this approximation with Eq. (3.13) and Eq. (3.16) leads to

σLiNbO3
4 =

3

8

Vcellω
3
0

v3ac|V (Q0)|
ā2I1/2ac . (3.17)

Upon comparison with σ4 = m4Iac this gives the quartic anharmonic coupling con-

stant for the ferroelectric materials LiNbO3 and LiTaO3 as

m4 =
3

8

[
Vcellω

4
0

v3ac|V (Q0)|

]1/2
ā. (3.18)

The data found in Table 3.1 [41, 42] gives σLiNbO3
4 ≈ 0.01 meV for Iac = 1 kWcm−2,
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Figure 3.1: The solid black line shows the total Bragg reflectivity in which both
cubic and quartic anharmonicity has been taken into account in LiNbO3. The
dotted green and blue lines show the total Bragg reflectivity due to the individual
anharmonicities, the green line is the cubic anharmonicity and the blue line is the
quartic anharmoncity. The reflectivity was calculated for νac = 250 MHz and Iac =
25 kWcm−2. The dashed red line is the bare TO-phonon polariton dispersion (Iac =
0). The arrows label the peaks in the total Bragg reflectivity by the acoustically
induced transition that is responsible for them.

for Iac = 25 kWcm−2 the coupling strength is σLiNbO3
4 ≈ 0.25 meV. As with σ3, for

brevity the superscript will be dropped from σLiNbO3
4 .

3.2 Comparison with the Case of One Anhar-

monicity

In the previous chapter the RAO effect due to only one anharmonicity was discussed,

either for the cubic anharmoncity in CuCl or the quartic in TlCl. In this chapter the

anharmonic coupling is strong enough that both anharmonicities must be considered

on equal terms. While this leaves the numerical method of calculation unchanged, it

does require a greater number of Bragg replicas to be taken into account. To produce
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convergent dispersion branches for Iac = 25 kWcm−2 400 Bragg replicas are required.

The calculation of the total Bragg reflectivity requires far less Bragg replicas to be

taken into account, roughly 40 are required for a precision of 10−7.

The calculation proceeds by substituting the estimations produced in the previous

section for σ3 and σ4 in Eq. (2.1b). This gives the material equation

[
∂2

∂t2
+ 2γTO

∂

∂t
+ ω2

0 + 4ω0m4Iac + 4ω0m3

√
Iac cos(Ωt−Kr+ φ)

+ 4ω0m4Iac cos(2Ωt− 2Kr)

]
P(r, t) =

εb
4π
ω2
RE(r, t). (3.19)

The two major differences with the previous chapter’s case of one anharmoncity,

are that both anharmonic terms are always present in Eq. (3.19) and that φ is not

necessarily zero. This leads to the presence of both cubic and quartic anharmonic

coupling between the TO-phonon component of the polariton and the TA-phonons of

the bulk AW.

A comparison is made between the total Bragg reflectivity for each individual an-

harmonic coupling component and both components together in Figure. 3.1, which

was calculated for νac = 250 MHz and Iac = 25 kWcm−2. The solid black line gives

the total Bragg reflectivity spectrum for both the anharmonic contributions and the

dashed red line for the bare TO-phonon polariton spectrum. The dashed lines are

the individual anharmonic components of the RAO effect in LiNbO3. The green line

takes into account only the cubic anharmonic effect. Thus, the total Bragg reflectivity

is formed by the acoustically induced band gaps of every transition, similar to CuCl

investigated in the previous chapter. The dashed blue line is due solely to the quartic

anharmonicity, accordingly only the even order acoustically induced transitions affect

this line, as in TlCl discussed in the previous chapter.

Consider the peaks due to odd n TO-phonon transitions in Figure. 3.1. The total

Bragg reflectivity for both anharmonicities (solid black lines) at these transitions is

clearly very similar to the peaks due to cubic anharmonicity only (green dashed line).

This is because the cubic component is the only contributor to the odd peaks, which

is apparent from comparison of the two modulating terms in Eq. (3.19). The even n

peaks have contributions from both the cubic and quartic scattering channels. Thus,

discrepancies occur between the total Bragg reflectivity due to the third order and

both anharmonicities at the even n peaks. This can be seen in the inset to Figure. 3.1.

The apparent weakness of the quartic anharmonicity is very clear in this inset, the
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total Bragg reflectivity due to this scattering channel (blue dashes) is considerably

smaller than the cubic equivalent. However, from the difference between the cubic

peak and the peak due to both anharmonicities, it is clear that the fourth order

transition contributes significantly to the even n peaks.

In Figure. 3.1 the quartic only total Bragg reflectivity displays a blue shift with

respect to the bare TO-phonon line. This is the Stark shift discussed in the previous

chapter, which is due to the static quartic anharmonic term 4ω0m4Iac in Eq. (3.19).

This shift can be seen in the UP branch, n = −2 transition in the total Bragg

reflectivity for both anharmonicities. However, it is not so clear in the total Bragg

reflectivity for both anharmonicities. This is because the quasi-continuum that exist

in the dispersion associated with the RAO effect over compensates for the Stark

shift. A large increase in Iac would increase the magnitude of the Stark shift but

would also increase the strength of the quasi-continuum. Unfortunately, for Iac of

large magnitude the number of replicas required to calculate the dispersion becomes

prohibitively large.

The introduction of two non-zero amplitude sinusoidal modulations in Eq. (3.19),

leads to the introduction of one further parameter. The phase is a material parameter

that cannot be accessed and varied experimentally. However, there is no literature

on this parameter for LiNbO3. The phase difference between these two terms has an

impact on the reflectivity and extinction of a material undergoing the RAO effect.

This parameter controls the degree to which the modulations interfere with each

other, leading to variations in the strength of the coupling between the TO-phonon

component of the polariton and the AW for even n TO-phonon transitions.

3.3 Phase Dependence

In this section the difference in phase between the third and quartic anharmonic

effects of the acoustic modulation are discussed. Clearly, a class of material with

more than one large anharmonic coefficient is necessary to access an anharmonic phase

difference. It is for this reason that neither CuCl or TlCl, discussed in the previous

chapter, are suitable. However, the ferroelectric material LiNbO3 has very strong

third order anhamonic coupling constant and the fourth order coupling constant,

while much weaker, is of sufficient strength to be treated on an equal footing. These

values have been estimated in the first section of this chapter. The other parameters
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necessary for the calculation of the optical properties of acoustically excited LiNbO3

are ωTO = 31meV, ωR = 18.0meV, γTO = 1.26meV and εb = 44 [43].

Previously, it has been assumed that the matrix element between the AW and the

polarization component of the TO-phonon polariton is purely real. If this assumption

of reality is dropped in Eq. (2.5) then anharmonic coupling terms can be expressed

as,

(|σ3|e−iφ3e−iΩtb†kb
†
k−K +H.C.) + (|σ4|e−iφ4e−2iΩtb†kb

†
k−2K +H.C.),

where the amplitudes and the phases of the coupling constants were introduced σ3,4 =

|σ3,4|eiφ3,4 . In the material equation Eq. (2.1b) the corresponding coupling terms are

given by

|σ3| cos(Ωt−Kr− φ3) + |σ4| cos(2Ωt− 2Kr− φ4),

where the constant prefactor of ω0 has been dropped. Introducing a temporal offset

t′ = t+ t0 requires a change of variables, which allow the coupling terms to be written

as

|σ3| cos[Ω(t′ − t0)−Kr− φ3] + |σ4| cos[2Ω(t′ − t0)− 2Kr− φ4]. (3.20)

By choosing t0 = −φ4/2Ω we can remove φ4 from Eq. (3.20), this yields

|σ3| cos
[
Ω

(
t′ +

φ4

2Ω

)
−Kr− φ3

]
+ |σ4| cos(2Ωt′ − 2Kr).

Then by defining φ = −φ3 + φ4/2 and redefining t = t′, the usual coupling terms

found in Eq. (2.1b) can be written as

|σ3| cos(Ωt−Kr+ φ) + |σ4| cos(2Ωt− 2Kr).

Throughout the remainder of this work the effect that phase term will have on the

coupling strength will be referred to with the terms destructive and constructive

interference. It will be shown that the effect the phase has on the phonon-phonon

coupling strength will similar to the effect a phase term between two oscillations. This

is due to the oscillating factors in the cubic and quartic coupling terms. A decrease

in the absolute strength of the coupling will be observed in the reflectivity plots for

specific values of φ that is analogous to interference effects see in coherent oscillations.
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Figure 3.2: (a) to (e) show the development the THz reflectivity of LiNbO3 with
varying acoustic frequency and different phase shift between the cubic and quartic
anharmonic parameters, φ = 0 (black solid lines) and φ = π/2 (green dotted lines).
The red dashed line is the reflectivity spectrum at Iac = 0.

The acoustic intensity effects the acoustically induced band gaps in LiNbO3 in the

same way as in the previous materials studied. The variation of the coupling strength

for the cubic anharmonicity is still as the root of Iac. For the quartic anharmonicity the

coupling strength varies linearly in Iac. Throughout this chapter Iac = 25 kW/cm2,

unless otherwise stated, giving a third order coupling strength of σ3 = 5.02 meV and

a fourth order coupling strength of σ4 = 0.27 meV. Despite the order of magnitude

discrepancy between the two coupling strengths the interference effects are relatively

pronounced.

Figure. 3.2 shows the effect of the variation of frequency for the extreme values of con-

structive and destructive interference on the total Bragg reflectivity. As in previous
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chapters the bare reflectivity (Iac=0) is given by the dashed red line, the black solid

lines give the case of constructive interference φ = 0 and the green dotted lines give

the case of destructive interference φ = π/2. The arrows show the position of the TO-

phonon transition discussed previously. For frequencies away from the TO-phonon

polariton restrahlen band, the spectral position of the transitions remain unaffected

by anharmonic phase shift. Therefore, the peaks in the reflectivity associated with

these transition still occur at the Bragg condition, ω = ωpol(nK/2), where ωpol(q)

is the bare TO-phonon polariton frequency. This is the case in both LP and UP

branches, where the co- and counter-propagating polariton states are brought into

resonance.

The phase difference can only affect transitions, and therefore a reflectivity peak,

that has both cubic and quartic anharmonic components. The cubic anharmonicities

contributes to all the Bragg signals (n = −1, n = −2, and so on) found in the total

Bragg reflectivity of Figure. 3.2. The quartic anharmonicity contributes to only the

even number transition. As a result only the even n peaks of each panel are directly

effected by the phase difference.

In the LP branch in Figure. 3.2(a) it is clear that the n = −1 peak is almost indifferent

to the phase. The transition that causes this peak has only two contributions. The

n = −2 peak from the same panel and in the same branch, clearly demonstrates a

decrease in height by roughly a factor of a half for φ = π/2. The transitions that occur

to form this peak include a two-phonon transition from the fourth order process and

two one-phonon transition from the third order process. The former is the stronger

component, the latter is a second order multi-phonon transition. The combination of

the two allow for the interference effects that are seen by the green and black lines in

Figure. 3.2.

When close to the lower Restrahlen band edge, which occurs at ν = ω/2π ∼ 8 THz,

the acoustically induced peak in the reflectivity fails to conform to the expectation

of identical peaks for both phases. This is most clearly seen in Figure 3.2 (d) and

(e). In the LP branch as the frequency increases in Figure 3.2 (b) to (e), the phase

causes more pronounced changes in reflectivity. This is shown by the increasing dif-

ferences between the dashed green and solid black lines. As previously discussed (see

section 2.2), the flattening out of the LP branch of the bare TO-phonon polariton

dispersion causes the transition to accumulate below the restrahlen band, causing
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Figure 3.3: (a) The total Bragg reflec-
tivity of the n = −2 Bragg signal in LP
branch calculated for νac = 250 MHz and
phase differences φ = 0, π/4, and π/2.
The variation of the full linewidth taken
at half the peak maximum (FWHM) of
the peak shown in (a) is given by the red
squares in (b) and the peak height is given
by the green triangles in (b). The cu-
mulative cusp-like peak in the reflectivity
spectrum, calculated for νac = 2 GHz, is
shown in (c). The variation of the peak
position is shown by blue circles and the
peak height in green triangles of the peak
in (c).

overlap between the acoustically induced band gaps. Therefore, at an acoustic fre-

quency νac = Ω/2π ∼ 2 GHz the peak is due to multi-phonon transitions and it is

no longer possible to separate the odd transitions from the even. Thus, the peaks

becoming increasingly of a multi-phonon nature as the detuning decreases, leading to

interference effects.

The UP branch also demonstrates some unusual behavior close to the restrahlen band.

Unlike the LP branch the shape of the UP branch dispersion is not so conducive to

the accumulation effect (see Figure 2.1). In this case multi-phonon process have little

influence on the lowest energy peak in the UP reflectivity. However, there is still

clearly a discrepancy for the two phases for small detuning even for the n = −1 peak.

The discrepancy in this case is caused by virtual higher order transitions. These occur

close to the restrahlen band because of the increased coupling strength due to the

larger TO-phonon component of the polariton. In Figure 3.2(a) the n = −3 peak

shows the expected similarity between the two different extremes of phase.

The effect that the phase difference has on the acoustically induced peaks is quantified

in Figure 3.3. Figure 3.3 (a) clearly shows a very large difference in the efficiency of the
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n = −2 peak for νac = 250 MHz. The peak position is almost completely unaffected

by the phase because it is solely determined by the Bragg condition for this spectral

range. Figure 3.3 (b) shows that the peak height is decreased by a factor of two

and the FWHM falls by a third. This in line with the expectation of the destructive

interference of the two anharmonic scattering channels.

The multi-phonon transition reflectivity peak shown in Figure 3.3 (c) behaves quite

differently to the n = −2 transition investigated in Figure 3.3 (a) and (b). The peak

shows minimal alteration in peak width and height. The small increase in the high of

the multi-phonon peak is due to increase in the bare polariton reflectivity in this range.

The peak position is shown to vary smoothly but drastically with phase, increasing as

the interference becomes more destructive. In this case the accumulation effect near

the lower Restrahlen band edge means the peak position is no longer dependent on

the Bragg condition. As a result the peak position is effected solely by the interference

effects.

A comparison of the phase difference for two different acoustic intensities is given

in Figure 3.4. The black lines shows the total Bragg reflectivity R =
∑

n |rn|2 for

φ = 0 and the green line shows R for φ = π/2. The red lines show the bare TO-

phonon polariton reflectivity spectrum R(0), which has been calculated for Iac = 0.

The highlighted region is the area of the spectrum that is displayed in the inset to

each panel. It shows the n = −2 transition in more detail, to illustrate the effect that

the phase has on the even transitions.

In both Figure 3.4 (a) and (b) the phase difference of φ = π/2 causes the destructive

interference of the n = −2 peak, shown by the green line. As one would expect the

destructive interference at the even order resonances, away from the restrahlen band,

is nearly independent of the acoustic intensity. The slight difference that occurs for

Iac = 25kWcm−2 is due to higher order effects. In the insets of both Figure 3.4 (a) and

(b) the full destructive interference reduces the height of the reflectivity by roughly

half. This is repeated in the UP branch where the acoustically induced peaks, while

different between the two acoustic intensities, are reduced by half in both cases.

In the LP branch the peak at roughly 6 THz is caused by the acoustically induced

quasi-continuum, which results from the accumulation of states near the lower re-

strahlen band edge. The effect this has is to reduce the reflectivity in the region just

below the restrahlen band, immediately below ω/2π ∼ 8THz. This can be seen in

both Figure 3.4 (a) and (b). The propagating TO-phonon states, which are part of
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Figure 3.4: This shows the reflectivity of LiNbO3 undergoing the RAO effect for
Iac = 10 kWcm−2 and 25 kWcm−2 with νac = 250 MHz AW and for the chief values
φ = 0 and φ = π/2 of the phase difference. The black line shows the Total Bragg
reflectivity for LiNbO3 for φ = 0 and the green line for φ = π/2. The dashed red
line shows the total Bragg reflectivity when only the bare polariton is considered.

the acoustically induced quasi-continuum, cause this reduction. Increasing the acous-

tic intensity will then increase the width of the quasi-continuum, which reduces the

reflectivity. Conversely, the full destructive value of φ, which reduces the effective cou-

pling between the AW and TO-phonon, will reduce the width of the quasi-continuum.

This will actually increase the reflectivity close to the restrahlen band.

3.4 Device Applications

Recently, THz radiation has become an important field of study due to the varied

array of physics and chemistry that occurs in this spectral band [44]. Investigations

that have made use of this spectral range include studies of picosecond phonon dy-

namics, polariton propagation and the optical properties of various materials [45–48].

There are also applications for THz radiation in fields as diverse as sub-mm wave
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Figure 3.5: A schematic showing a possible design for a tunable THz filter,
achieved using the RAO effect in LiNbO3.

astronomy, chemical recognition, biomedical imaging, THz imaging and sensing for

security applications [49–51].

As a result of the variety of use in which THz radiation can be employed, spectrally

resolved control has become an important research topic. There are several examples

of attempts at spectral control of THz radiation in the literature. One example is the

optical control of carrier densities in type-I/type-II GaAs/AlAs multiple quantum

wells at cryogenic temperatures [52]. Other examples include magnetically tuned

liquid crystals in metallic hole arrays and Lyot and Sloc filters, shown to be tunable

over various range between 0.1 and 0.8 THz [53–55]. A further example includes the

relative lateral translation of two metallic photonic crystals to produce a THz filter,

tunable in the range 0.365 to 0.385 THz [56].

This section discusses the use of LiNbO3, undergoing the RAO effect, as a tunable

THz filter. This filter would be tunable over a range of up to 4 THz, an improvement

of an order of magnitude over previous designs. Figure 3.5 gives an example of the

type of device proposed. A slab of LiNbO3 undergoing the RAO effect is shown by

the alternating bands of orange and yellow and is up to a 1 mm thick. Two thin

contact layers of doped semiconductor produced the ultrasonic resonator necessary

to achieve the required acoustic intensity.

In the previous section, Figure 3.2 demonstrates that the frequency of the bulk acous-

tic wave makes for an easily accessible parameter to tune the reflectivity spectrum of

LiNbO3. The transmission through the LiNbO3 slab, which is undergoing the RAO

effect, is quantified by the extinction given in Figure 3.7. The extinction is defined as
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Figure 3.6: Extinction of the elec-
tric field at different acoustic frequen-
cies, for φ = 0 (black solid lines) and
φ = π/2 (green dashed lines), for
Iac = 25 kWcm−2.

the inverse of the decay length ℓ(ω), which is itself defined as E(ℓ, ω) ≡ E(z = 0, ω)/e.

Figure 3.6 shows the extinction up to ∼ 3 THz, for the two extremes of interference

at φ = 0 and φ = π/2.

The extinction, like the reflectivity, is clearly controlled by the acoustic frequency,

the acoustically induced band gaps result in regions of high extinction. The large

contrast between the background and the peaks in the extinction spectrum shown in

Figure 3.6, coupled with a tunability between 0.5 and 3 THz, is a marked improvement

on the other methods discussed previously. It is these factors that suggest that the

RAO effect in LiNbO3 would produce an effective filter.

In the schematic presented in Figure 3.5 GaAs contacts are used to compress and

rarefy the bulk LiNbO3. By passing an AC current through the films, the repulsion

and attraction of each will induce bulk oscillation in the LiNbO3. An estimate of

the parameters required for the narrow doped GaAs contacts, can be made by using

a pure Drude model to calculate the thickness and electron density ne. The Drude

dielectric function is given by [57]

ε(ω) = ε∞ −
ω2
p

ω2 + iωγ
,

where ε∞ is the high frequency dielectric constant and γ is the plasmon damping
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Figure 3.7: Transmission calculated using a Drude model, that is no phonon
broadening is considered, for doped GaAs film of (a) 1 µm and (b) 2 µm thickness.
The black line is for an electron concentration of ne = 1014 cm−3, the red line for
ne = 1015 cm−3 and the green line ne = 1016 cm−3.

constant. The plasma frequency ωp is given by

ωp =

√
4πnee2

m∗
,

where m∗ is the electron effective mass and e the electronic charge.

To calculate the transmission data shown in Figure 3.7 the scattering matrix method

was used. This is a modification of the transfer matrix method for improved stability

over multi-layered structures. A full description of this method can be found in the

next chapter, where it has been used to calculate the optical response of a metal

undergoing the acousto-plasmonic effect.

In Figure 3.7 the transmission of GaAs is shown, where the GaAs film is doped for an

electron concentration of ne = 1014 cm−3 (black solid line), for ne = 1015 cm−3 (red

solid line) and for ne = 1016 cm−3 (green solid line) over the range of operation of the

device. The graph shows that a reduced damping constant and thinner layer improves

the transmission in the range of values at which the filter could operate. It clearly

indicates a large enough transmission through the GaAs layer for a transmission mode

filter.
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3.5 Summary

The chapter has investigated, using numerical calculation, the TO-phonon RAO effect

for two anharmonic terms in the interatomic potential. The system used to investigate

this was semi-infinite LiNbO3. The reason for choosing LiNbO3 is that it is both

ionic and displays a large cubic and quartic anharmonicity. The ionic nature of

the material allows for the formation of the necessary TO-phonon polaritons. The

large anharmonicity ensures that the fourth order term in the interatomic potential is

sufficiently large enough to be treated on an equal footing with the third order term,

that is non-perturbatively.

Initially, an estimate of the coupling constant between the TO-phonon and the AW

was provided. It was found that there was a difference between the amplitudes of the

coupling terms σ3,4 of roughly an order of magnitude. Despite this, further investiga-

tion showed that the fourth order coupling constant was still of sufficient strength to

have a noticeable impact on the reflectivity of LiNbO3.

The phase difference between the two anharmonic terms in Eq. (3.19) has become

an important material parameter. This is due to the relative strengths of the two

anharmonic terms. It was shown in this chapter that for φ = π/2 the maximum

destructive interference occurs. This was due to the fourth order acoustic term in

Eq. (3.19) having twice the frequency of the third order term. It was also shown

that φ altered the total Bragg reflectivity in a slightly different manner close the TO-

phonon polariton restrahlen band. This was due to the quasi-continuum close to the

lower edge of the restrahlen band.

The tunability of the total Bragg reflectivity spectrum, caused by the RAO effect, is

the basis for a proposed tunable THz filter over a wide spectral range. This chapter

included an investigation of such a filter, one that sandwiches bulk LiNbO3 between

two doped GaAs films. The GaAs films proved the compressions and rarefactions

that form the AW, which modifies the TO-phonon polariton dispersion. In turn this

cause the tunable spikes that are the basis of the THz filter in a transmission mode.



4 Acousto-Plasmonics

One of the characteristics of metals is the high concentration of conduction electrons,

which are responsible for most of their thermal and optical properties. Under certain

circumstances the plasma oscillations of the free electrons can couple to light, this

forms plasmon polaritons. This chapter examines the effect that a surface acoustic

wave (SAW) has on a thin Au foil. The acoustical excitation of the surface plasmon

polariton (SPP) leads to dramatic changes in the optical properties of the foil.

4.1 Theoretical Background

This section discusses the method of calculation used to produce the numerical results.

It based on the scattering matrix method of Tikhodeev et. al. [58]. The method was

extended to include the possibility of a propagating sinusoidal corrugation at each

interface.

4.1.1 Theoretical Model

The acousto-plasmonic effect can be investigated by starting with Maxwell’s curl

equations. Approximating the permeability as µ = 1, the equations can be written

94
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as

1

c

∂H

∂t
= ∇× E, (4.1a)

−1

c

∂D

∂t
= ∇×H. (4.1b)

The magnetic field strength is given by H, the electric field strength by E and the

dielectric displacement by D = εE. To access the surface plasmons polariton (SPP)

some conditions must be met. The first of these requirements is that the electric field

must have a component normal to the interface. This is fulfilled only by p-polarised

light, where the magnetic field is given by

H =




0

Hy(x, z, t)

0


 ,

and the electric field by

E =



Ex(x, z, t)

0

Ez(x, z, t)


 .

There can be no s-polarised surface waves which couple to the surface plasmon [13].

In general, no SPP can be excited in a simple metal foil by light, the dispersion of

the SPP falls outside the light cone. To couple light to the plasmon requires that, for

a given photon energy ~ω, the SPP dispersion must be shifted inside the light cone.

This is the second condition required for light to excite SPPs. There are two methods

to achieve this. To excite SPPs by incident light the attenuated total reflection (ATR)

method is to pass the incident light through a dielectric medium with a wider light

cone than the vacuum. This allows direct excitation of the V/M SPP. As the ATR

method is not used in this thesis, no further mention will be made of it. The other

method is to directly provide the required ∆k by inducing some surface roughness,

such as a diffraction grating, to shift the wavevector of the incident light by ∆k.

The geometry of the system under study is shown in Figure 4.1. The upper interface

shows the boundary between the Au foil and vacuum, this is the surface on which

the light is incident. In the z direction the light has a wavevector q0 and along the x

axis a wavevector of k. The foil is of thickness d and shares a lower boundary with a
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Figure 4.1: The geometry of the RAO effect in a thin Au films studied in this
chapter. The light wavevector symbols are defined by the arrows labeled q0 and k.
The SAW wavevector is labeled by K. The amplitude of the SAW modulation is
B and d is the thickness of the Au foil. The light is incident on the foil at an angel
θ.

glass substrate, which has a dielectric constant of εg = 2.28. The foil is acoustically

modulated by a SAW. The interfaces of the foil the foil can be described by

z0(x, t) = B cos(Kx− Ωt), (4.2a)

z1(x, t) = z0(x, t) + d, (4.2b)

where the SAW wavevector is K and its transverse amplitude B.

The grating method of light excitation of SPPs involves the direct addition of the

required increase in wavevector ∆k for a given ω value. The grating allows the in

plane wavevector of the incident light to take the values

k =
ω

c
sin(θ) + n∆k,

where n is an integer and ∆k the wavevector shift induced by the grating. The

extra momentum provide by the grating allows the incident light to excite the V/M

SPP [31]. In this chapter a similar process occurs where the grating is provided by a

SAW propagating in the positive x-direction. This causes the appearance of n Bragg

replicas and results in ∆k = K. This is schematically shown by the orange arrows

in Figure 4.2. Strictly, the use of a propagating SAW as the grating means that
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Figure 4.2: The red and blue lines are the bare SPP dispersion at the V/M and
M/G interface, respectively. The dashed red and blue lines are the light dispersions
in vacuum and glass at normal incidence, respectively. The dispersion of light in
the vacuum is shown by the solid black line at θ = 45o. The arrows indicate the
SAW coupling for an acoustic wavevector K.

the photon energy is also altered by nΩ, giving each the dispersion curve of each

Bragg replica a slight frequency offset. However, while the plasmon energy in Au is

~ωp = 9.03 eV the energy of a SAW phonon is ~Ω < 8 × 10−6 eV. The value of n

required to make this offset more than negligible is several orders of magnitude larger

than the n = 5 that is necessary for the parameters used in this chapter.

Using a SAW to induce a dynamical superlattice in the plane of the Au foil results

in a folded dispersion, which is sketched in Figure 4.3. The blue lines show the

SAW induced folded dispersion of the SPP on the glass side of the Au foil and the

black lines show a similar dispersion for the vacuum side. The orange dashed lines

show the light cone for various angles of incidence and the red dashed lines the first

SAW induced Brillouin zone boundary. Like the TO-phonon polariton RAO effect

discussed in earlier chapters the crossing points are where the SAW induced band

gaps would form. In Figure 4.3 these gaps are not shown, the dispersion here is

simply the translation of the bare dispersion by up to nr = 2 Bragg replicas.

The SAW induced SPP band gaps are regions in the spectrum where no propagating

SPP states occur. In contrast to the TO-phonon RAO effect, this reduces the reflec-

tivity around these band gaps. At these points in the dispersion no propagating SPP
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Figure 4.3: A schematic of the folded SPP dispersion for the SAW modulated
Au foil, where K = 10µm−1 and nr = 2. The solid black lines are the dispersion
of the SPPs at the VM interface and the solid blue lines are for SPPs at the MG
interface. The dashed orange lines are the light cones for light incident at θ = 5o,
25o and the limit of 90o. The red dashed line is the position of the SAW induced
Brillouin zone edge.

states occur reducing the reflectivity and leading to absorption in the metal. The

angle of incidence of the light decides which of the crossing points are to be excite.

With normal incidence only the crossing points near the center of SAW induced Bril-

louin zone are within the light cone. As the angle of incidence increases the widening

light cone allows a wider range of points in the dispersion to be accessed.

The electric and magnetic fields that are used to model this system take the form

Hy(x, z, t) =
∑

n

[H+
y e

iκnz +H−
y e

−iκnz]eikx+iωtei(Kx−Ωt)n,

Ex(x, z, t) =
∑

n

[E+
x e

iκnz + E−
x e

−iκnz]eikx+iωtei(Kx−Ωt)n,

Ez(x, z, t) =
∑

n

[E+
z e

iκnz + E−
z e

−iκnz]eikx+iωtei(Kx−Ωt)n,

where κn is the wavevector of light in a given material along the z-axis (vacuum,

metal or glass). Along the z-direction the dispersion takes the same form for each

material in the system. The derivation is presented in section B.1 of the appendices.
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Figure 4.4: The real and imaginary parts of the dielectric function of Au calcu-
lated using the Lorentz-Drude model. The real part of the dielectric function has
been multiplied by -1.

The form of the dispersion is given by

κn =

√
ε

c2
(ω + nΩ)2 − (k + nK)2 (4.3)

where ε = 1, εM or εG depending on the material in which the dispersion is calculated.

The dispersion in metal is given by εM , the dispersion in glass by εG.

4.1.2 Dielectric Function

The model used for the complex dielectric function was calculated by Rakić et al [59]

and is a Lorentz-Drude oscillator model. More information on this can be found in

Appendix C. In the case of the Lorentz-Drude model the free electron part of the

dielectric function is given by the Drude model and the bound electron part by the

Lorentz oscillator model. The full function is

εm = 1−
f0ω

2
p

ω(ω − iΓ0)
+

l∑

j=1

fjω
2
p

(ω2
j − ω2) + iωΓj

, (4.4)
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where Γ0 is the reciprocal of the time between collisions and ωp is the plasma fre-

quency. The summation is over l different oscillators of the strength fj, frequency ωj

with a damping constant of Γj. The values of these parameters are given in Table C.1

of Appendix C. The dielectric function is shown in Figure 4.4, the real part has a

factor of -1 include so it can be shown on a logarithmic scale.

The Drude component of dielectric function is given by the first two terms of Eq. (4.4).

The Drude model is a classical model that assumes the electrons are in constant

motion and undergo collisions only with the immobile ions of the crystal lattice [60].

The final term in Eq. (4.4) is the Lorentz component of the model and gives the

contribution to the dielectric behaviour of the material from the bound electrons.

The Lorentz oscillator model takes account of the interband transitions of the bound

electrons in the metal. The dielectric function can be split into these two components

because each component dominates a separate spectral range. At low frequencies

the Drude component dominates and at high frequencies the Lorentz components

dominate [61, 62].

4.2 Scattering Matrix Method

Conventionally, the calculation of the optical properties of an arbitrary layered system

is performed using the transfer matrix method. The transfer matrix formalism is a

method for calculating partial wave amplitudes across a layered system. The transfer

matrix formalism separates the amplitude of the electric field into a z-dependent part

and a part that depends only on the material properties. An interface transfer matrix

Ta,b will then be used to connect a vector A(z) of z-dependent parts, the elements

of the vector are partial wave amplitudes A±
j (z), across an interface. This interface

matrix is essentially a statement of the boundary conditions across the boundary in

question.

In the transfer matrix formalism A±
j (z) are split into vectors according to which side

of the layer they are on. This is schematically represented in Figure 4.5 (a), where

the amplitudes of matching colour are grouped into vectors Av on the vacuum side

and As on the substrate side. It is because A±
j (z) are organised into vectors in this

way that the transfer matrix, which propagates the partial waves across a layer, takes
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Figure 4.5: A diagram that defines the conceptual differences between the (a) the
transfer matrix and (b) the scattering matrix formalisms. The positive z-direction
is defined as running from bottom to top and the partial wave amplitudes in the
vacuum are A±

v and in the substrate A±
s , where the superscript indicates direction

propagation. The colours indicate how the amplitudes are group into vectors. In
(b) we can see that at the interface the each vector will contain elements of similar
magnitude because waves are grouped according to direction of propagation.

the form

TL =

(
eiKd 0

0 e−iKd

)
. (4.5)

The existence of evanescent solutions can make the element TL(2, 2) exponentially

large. For a layered system As can be calculated using

As = TAv,

where T is the product of all transfer matrices. This means that for higher values

of d or a great number of layers this can be a problem for numerical calculations.

However, it is still necessary to use the transfer matrices for each layer of the system

to calculate the scattering matrix. The transfer matrices at the V/M boundary of

the system described in Figure. 4.1 are given by

TV/M = V
−1
M, (4.6)
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and at the M/G boundary

TM/G = M
−1
G, (4.7)

where V, M and G are square matrices of dimension 2(2nr + 1). These matrices

contain the Bessel functions of the first kind that described the modulated interfaces.

The full transfer matrix of the system is given by

Ttotal = TV/M

(
E+ 0

0 E−

)
TM/G, (4.8)

where E− = δn,mexp(−ipnd) and E+ = δn,mexp(ipnd). A full derivation is provided in

Appendix B.

The geometry studied in this chapter has only two interfaces, one between the vacuum

and the metal and another between the metal and glass. While the amplitude of the

corrugation relative to the metal layer thickness is not great enough to require more

than two interfaces it could become so. The thickness d could also become too thick

for a reliable calculation to be made by the transfer matrix method. To deal with

this case a modification of the transfer matrix method is required. The scattering

matrix formalism, developed for problems such as this by Tikhodeev et al from similar

methods for electron tunnelling in hetrostructures [58, 63], solves some of the problems

associated with partial amplitudes calculated by the transfer matrix method. The

possibility of further research makes it prudent to use a method that would withstand

as wide a range of parameters as possible. For example, using the scattering matrix

method, the optical properties of a system with an arbitrary number of layers can be

investigated.

The scattering matrix avoids the problems associated with the transfer matrix by

organising A±
j in to vectors in a different way. A schematic example of this can be

found in Figure 4.5 (b), where A(±)
v,s are the grouped according to similar colour in

the vectors Bin,out. Red shows the partial amplitudes of the input vector

Bin =

(
A+
v

A−
s

)
, (4.9)
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and blue shows the partial amplitudes of the output vector,

Bout =

(
A+
s

A−
v

)
. (4.10)

These vectors are coupled by the total scattering matrix

Bout = Sv,sBin. (4.11)

The optical properties of the system under question can then be calculated from the

elements of Eq. (4.10),

Tn = |A+
s |2, (4.12a)

Rn = |A−
v |2. (4.12b)

The main disadvantages of the scattering matrix compared to the transfer matrix is

the slightly increased difficulty in calculating it. The method of deriving the scattering

matrix is given in the Appendix B

For the problem of acousto-plasmonics, as with the TO-phonon RAO effect of the

previous two chapters, the number of Bragg replicas generated has to be truncated

for the problem to be tractable. As in the previous chapters the number of Bragg

replicas used is −nr ≤ n ≤ nr. Each amplitude A±
j is actually a vector of dimension

N = 2nr + 1. The use of a calligraphic font will, henceforth, indicate either a vector

of the same dimension or a matrix of N × N dimensions. The vectors Bin,out and

Av,s are constructed of the partial amplitude vectors and have the dimensions 2N .

Henceforth, this bold font will only be used for vectors of this dimension or matrices

of dimension 2N × 2N .

4.3 Reflectivity of SAW Modulated Thin Au Foil

This section will show the effect that the SAW has on the reflectivity of the central

Bragg replica. It will also demonstrate the effect that varying each of the four param-

eters of the system has on the central Bragg reflectivity of the Au film. The section

demonstrates the tunability of resonant plasmonic state and the effect it has on the

central Bragg reflectivity of the system.



4.3. Reflectivity of SAW Modulated Thin Au Foil 104

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0

0.2

0.4

0.6

0.8

1.0

C
en

tra
l B

ra
gg

 R
ef

le
ct

iv
ity

 R
0=

|r 0|2

 

Photon Energy (eV)

M/G Feature

V/M Feature

0.78 0.79 0.80 0.81

0.852

0.856

0.860

0.864

Figure 4.6: A figure to show the effect the acoustic excitation has on the central
Bragg reflectivity of an Au foil where d = 0.04 µm, B = 0.01 µm, K = 10 µm−1

and θ = 75o. The small feature highlighted by the orange box is due to the acoustic
excitation of the SPPs at the M/G interface. The large peak at ω ∼ 1 eV is due to
the acoustic excitation of the SPPs at the interface between the vacuum and the
Au foil.

4.3.1 Acoustic Modification of the Bare Plasmon Polari-

ton Reflectivity

The bare, acoustically unexcited plasmon reflectivity is drastically modified by SAW

excitation. The SAW generates a corrugation in the surface of the Au foil. This

periodicity provides the extra momentum to the incident light necessary to couple it

to the SPPs. In the case presented in this chapter it is assumed that the foil thickness

is much smaller than the z-direction decay of the SAW induced corrugation. Thus,

coupling between the SPPs and light can occur at both interfaces.

In Figure 4.6 the bare reflectivity is shown by the red line and the black line shows the

the effect the SAW has. The SAW-modified reflectivity spectrum shows two features.

The highest frequency feature is caused by the V/M interface SPP and the lowest

by the M/G SPP. In both cases the light couples to the SPP at the values at which

the acoustic wave is resonant with SPP dispersion, as shown in Fig 4.2 by the orange

arrows, and Figure 4.3 by the crossing points.

The two features that are present in Figure 4.6 correspond to SAW induced band gaps
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Figure 4.7: A graph showing how the variation of the corrugation amplitude alters
the central Bragg reflectivity on an Au foil of d = 40 nm. (a) shows the central
Bragg reflectivity at the SPP resonance on the V/M interface for B = 3 nm, 6
nm and 10 nm with K = 10µm−1 and θ = 75o. The dashed red line shows the
reflectivity for B = 0. (b) shows the variation the dip depth with the square of the
acoustic amplitude for the same values of d, K and φ as (a). The red line is a linear
fit of the first 17 data points and highlights the nonlinear nature of the resonance
strength above B ∼ 2 nm.

at each face of the foil. The large feature is due to a band gap at the V/M interface.

The weaker feature is due to a band gap between the SPPs at each interface. In this

case the foil is sufficiently thin enough to allow the band gap to form.

4.3.2 Corrugation Amplitude

The amplitude of the corrugation B of the Au foil is the main parameter by which

the strength of the coupling between the light and surface plasmon can be controlled.

The increased efficiency of diffraction of the incident light by the grating associated

with larger B leads to larger splitting between the dispersion branches of the SPP.

The increase in gap width leads to larger dips in the reflectivity.

In Figure 4.7 (a) the red dashed line shows the reflectivity of the Au film unexcited

by a SAW. As the SPP dispersion falls outside the vacuum light cone no SPP are

excited in this case. The use of the SAW clearly changes this. By inducing a dynamical
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superlattice band gaps are induced, as shown in Figure 4.3. As the band gaps are

regions where the SPPs cannot propagate the absorption occurs, leading to the dips

in the reflectivity.

In Figure 4.7 (a) the black solid lines is for B = 3 nm, the red line for B = 6 nm and

the green line for B = 10 nm. The increase in the corrugation amplitude makes the

SPP coupling more efficient by diffracting a larger proportion of the light into the

first Bragg replica to couple with SPPs. This is analogous to the the increase in Iac

in the TO-phonon RAO effect. The resultant band gap at the Brillouin zone edge is

therefore larger. In this case the SPP under consideration is at the V/M boundary.

It is possible to use the depth of the reflectivity dip in the central Bragg replica to

quantify the strength of the coupling and see the effect the corrugation amplitude

has on it. In Figure 4.7 (b) the symbols show the value of the central Bragg replica

at the SPP resonance plotted against the square of the corrugation amplitude B2 in

units of nm2. As the coupling strength is proportional to the size the peak it varies

quadratically with B up to B ∼ 2 but higher order coupling becomes increasingly

dominant beyond this point.

4.3.3 Angle of Incidence

The effect of varying the angle of incidence on the central Bragg reflectivity is to

alter the resonant frequency of the coupling. The wavevector of the light parallel to

the surface is one of the parameters that determines the value of the SPP resonant

frequency. This is clearly seen in Figure 4.2. The light dispersion in black is given by

ω = −ck/ sin(θ). As the gradient changes with variation of θ, so will the value of ω

at which the coupling occurs, indicated by the orange arrows.

The alteration of the SPP resonant frequency strongly effects the reflectivity of the

central Bragg replica. This can be seen in Figure 4.8, where the dip position variation

is due to the alteration of θ. The lowest frequency dip occurs at ω ∼ 1 eV and is

for θ = 75o and as the angle of incidence reduces the resonant frequency rises. As

the angle of incidence rises the light cone narrows scanning through folded dispersion

in Figure 4.3. At the highest angle of incidence the lowest lying energy gap in the

spectrum occurs. Reducing the angle of incidence to normal, causes only the central

SAW induced band gap to fall within the light cone which occurs at the highest
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Figure 4.8: The central Bragg reflectivity is shown for the variation of the central
Bragg reflectivity for various θ. The data was calculated for an Au film of thickness
d = 40 nm, perturbed by a SAW of wavevector K = 10 µm−1 and B = 10 nm.
Starting on the left the dips are due to θ = 75o, 60o, 50o, 40o, 20o, 10o and 0o.

frequency. The dip widens and increases in depth as it moves to higher frequency. At

ω ∼ 1.65 eV the dip is for θ = 10o and the depth is at its minimum. However, this

minimum is an artifact caused by the shape of the bare reflectivity spectrum.

The broadening of the central Bragg reflectivity peak as it is blue shifted is displayed

in Figure 4.8. This is caused by the reduced detuning from the main surface plasmon

resonance that occurs at ω ∼ 3 eV. This behaviour is analogous to the broaden that

occured in the TO-phonon RAO effect mentioned in Chapters 2 and 3.

4.3.4 Foil Thickness

The properties of the SPP are dependent on the foil thickness and dielectric envi-

ronment in which the foil is placed. In the geometry described in this chapter the

foil shares each boundary with material of different dielectric constant. In these cir-

cumstances the foil is said to be supported because the dielectric medium on each

side differs. It said to be unsupported when dielectric medium is the same on each

side [64]. Whether the foil is supported or unsupported can alter the effect a variation

of thickness has on the SPPs in a thin foil. As the example under consideration in
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Figure 4.9: The reflectivity for light incident at θ = 75o on an Au film of various
thickness, perturbed by a SAW of B = 10 nm and K = 10µm−1. The region to
the left of the break on the horizontal axis shows the feature due to the interface
between the metal foil and the glass substrate. The region to the right shows the
large dip due to the SPPs at the vacuum metal interface.

this chapter is supported, this is the only case that will be considered.

In thick metal foils the plasmons at each boundary are independent. This is be-

cause the associated electric field decays rapidly into the metal. They do not interact

and their resonant frequencies are determined in large part by the dielectric me-

dia the metal surface is in contact with. As the thickness of the material reduces

the evanescent fields in the z-direction overlap. Thus, a transverse standing wave

is established with both symmetric and anti-symmetric modes each with their own

resonant frequency. The two excitations shown in Fig 4.9 show both reflectivity al-

terations caused the interaction of the evanescent fields associated with the SPPs at

each surface.

Figure 4.9 shows that narrower foils reduce the size of the peak. The electric field

amplitude of the SPP does not abruptly reach zero away from the surface of the

metal, the skin depth is the distance over which the electric field decays away from

the interface. As the thickness of the foil reduces the skin depth of the SPP in the

metal becomes larger than the foil thickness. This decay is then continuous over the

second boundary in the structure. The second boundary, within the range of the

evanescent field of the SPP, is an extra source of scattering which leads to increased
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Figure 4.10: The reflectivity of light at angle of incidence θ = 75o on an Au
film, excited by a SAW induced corrugation of amplitude B = 10 nm of various
wavevector K. (a) shows the central Bragg reflectivity for a foil of d = 40 nm
selected values ofK, from the leftK = 1 µm−1, 3 µm−1, 5 µm−1, 8 µm−1, 13 µm−1,
17 µm−1, 20 µm−1. (b) shows the variation of the depth of the dip in the central
Bragg reflectivity at the V/M SPP resonance, for K up to 20 µm−1, where the
black line is for d = 40 nm.

couple to the continuum states in the substrate. Thus, the thickness of the reflectivity

dip is increased.

4.3.5 SAW Wavevector

The corrugation periodicity is set by the SAW wavevector K. The first order band

gaps are found at the SAW induced Brillouin zone edges. The size of the Brillouin zone

is set using this K and therefore setting the spectral position of the SPP resonances.

This subsection examines the effect this has on the central Bragg reflectivity, for an

Au foil of d = 40 nm with a SAW induced corrugation of B = 10 nm. The light is

incident at an angle of 75o.

In Figure 4.10 the central Bragg reflectivity is examined for a range of different SAW

wavevectors. As expected, an increase in the wavevector blue shifts the dips in the

reflectivity. This is shown in Figure 4.10 (a), where the increasingly blue shifted

peaks are caused by successively large value of K. This is because the SAW induced
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Brillouin zone becomes larger for greater K. At the edge of the Brillouin zone is the

lowest order and strongest SAW induced band gap, these are the resonant points that

cause the reflectivity dip.

The data shown in Figure 4.10 (b) by the black squares is the variation of the depth

of the dip in the central Bragg reflectivity as a function of K for d = 40 nm. The

decrease in central Bragg reflectivity at the SPP resonance steadily decreases up to

a value of K = 3 µm−1. Beyond this value the dip depth variation with K levels off

before increasing. This is due the spectral position of the dips associated with each

data point in Figure 4.10 (b).

As shown in Figure 4.10 (a) increasing K blue shifts the resonant spectral position of

the SPP, this reduces its detuning from a surface plasmon resonance, which leads to a

reduction in the maximum reflectivity depth at the SPP resonance. By increasing K

the crossing points in Figure 4.3 occur at increasing values of ω. At higher frequencies,

i.e. in the non-retarded regime limit k >> ωs/c, the crossing points approach the

SPP Restrahlen band. At this point in the spectrum the larger surface plasmon

component of the SPP leads to stronger couple to the SAW. The result in a broader

band gap and therefore broader peak in the reflectivity.

4.4 Summary

This chapter has presented an extension to the method suggested by Tikhodeev et

al [58], for numerical calculation for electromagnetic fields in multilayer structures.

The extended method now allows for the calculation of propagating sinusoidal grat-

ings. This method was demonstrated by considering the optical properties of a thin

Au foil for strong coupling between SPPs. The parameters of the SAW induced

corrugation were varied and the effect of the reflectivity of the foil were reported.

The use of a SAW to produced propagating conformal modulations at each foil in-

terface was numerically investigated. It was shown that this caused the development

of sharp dips in the reflectivity spectrum and smaller features at a lower frequency.

This features were due the SPPs at each interface, the large feature due to the V/M

SPP and the smaller due to the M/G SPP.

It was also shown that corrugation amplitude effected the strength of the coupling
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between the SAW and the SPP. This lead to larger features in the reflectivity for

increased B. The increase in dip depth was shown to be proportional to B2 up to

B ∼ 2 nm. Above this non-linearities in the coupling become important.

The effect of the angle of incidence on the reflectivity spectrum of the thin Au foil

was discussed. The angle of incidence controlled the selection of the SPP dispersion

that fell inside the light cone. Therefore, the spectral position of SAW induced gaps

in the spectrum could be set using the angle of incidence.

It was shown that the thickness of the Au foil had effects on the strength and spectral

position of the dips in the reflectivity. Reducing the thickness of the foil lead to

deceased reflectivity dip depth as light increasingly coupled to the continuum in the

substrate. The blue-shift associated with increasing foil thickness was the result of

the change in the nature of the system from thin foil to bulk medium.

Finally, the effect of the SAW wavevector on reflectivity spectrum of a thin Au foil

was investigated. It was found that the increase in wavevector lead to a blue shift of

the dips in the reflectivity. This was due to the increased width of the SAW induced

Brillouin zone leading to SAW induced band gaps in the folded-dispersion occurring

at higher frequencies. The increased strength of the effect was apparent with wider

shallower dips due to stronger SAW-SPP coupling around the Restrahlen band.



5 Conclusion

This thesis discussed the RAO effect in both ionic and metallic crystal lattices. In

the introductory chapter a discussion of the previous research was given, as well as a

discussion of the the components necessary for the RAO effect to occur. The original

case of bulk exciton polaritons, followed by the case of microcavity polaritons was also

presented. A general concept of the RAO interaction was given, which showed that a

polarization could be used to mediate and enhance the acousto-optic interaction, in

sharp contrast to the conventional acousto-optic effect. Practically, this was achieved

by the spatial and temporal modulation of polaritons, which allowed the acoustic

wave to couple to solid state excitaions.

5.1 RAO Effect in Ionic Crystals: One Anhar-

monicity

The RAO effect for individual anhamonic coupling between the AW and the polar-

ization has been considered for cubic anharmoncity in semi-infinite CuCl and for

quartic anharmoncity in semi-infinite TlCl. The numerical model was derived from

a modification of Hopfield’s macroscopic equations. For the RAO effect in CuCl the

results of the numerical model were compared with approximate analytic results. It

was shown that the AW induced TO-phonon transitions caused band gaps in the

dispersion, which lead to spikes in the total Bragg reflectivity. The spectral position

of the peaks was shown to depend on the AW frequency and the peak strength on

the AW intensity.

112
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The strength of the peaks was also shown to be dependent on the detuning of the

acoustically induced band gaps from the Restrahlen band for both CuCl and TlCl.

The width of the AW induced band gaps increased as the detuning decreased leading

to larger peaks in the total Bragg reflectivity. At both very high and very low de-

tuning the contribution of higher Bragg replicas was severely reduced. This can be

attributed to the large discrepancy between the AW modulation period and the TO-

phonon wavelength. The reflectivity peaks in the LP branch take on a more cusp-like

appearance at low detuning. This was the result of the accumulation of AW induced

band gaps just below the Restrahlen band. A similar accumulation effect can also

happen in the UP branch at the top edge of the Restrahlen band but does not cause a

cusp-like feature. The interaction length of the AW with the electric field was shown

to be greatly reduced compared to the conventional acousto-optic effect.

The RAO effect in CuCl and TlCl did demonstrate some qualitative differences. In

CuCl the cubic anharmonicity is dominant and the corresponding scattering chan-

nel can produce any TO-phonon transition. In TlCl the quartic anharmonicity is

dominant and the associated scattering channel produces only even order (n even)

TO-phonon transitions. As a result the first order AW induced band gap in TlCl is

analogous to the second order AW induced band in CuCl. Finally, the quartic anhar-

monic RAO effect in TlCl produces a renormalisation of the TO-phonon frequency

that was not present in the cubic effect.

5.2 RAO Effect in Ionic Crystals: Two Anhar-

monicities

The TO-phonon RAO effect was investigated for an interatomic potential with two

anharmonic terms that were treated on an equal footing. The investigated system

was semi-infinite LiNbO3. This material was chosen for its large cubic and quartic

anharmonicity and ionic properties. It was necessary that the anharmonicity was

large, so that both cubic and quartic terms could be equally treated.

The strength of the coupling between the TO-phonon and the AW was estimated.

It was found that the coupling strength σ3,4 differed by as much as an order of

magnitude. However, on further investigation, and despite the large discrepancy in

coupling strength, σ4 was still sufficiently large enough to make significant impact on
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the reflectivity of the system.

With the inclusion of two anharmonic terms in the macroscopic equations the phase

difference has become an important material parameter. It was shown that the

maximum destructive interference occurred between the two anharmonicities when

φ = π/2. The dependence of the Bragg reflectivity on φ alters when the band gaps

have small detuning from the restrahlen band. This was due to the break down of

the Bragg condition near ω0.

The tunable Bragg reflectivity spectrum due to the RAO effect in LiNbO3, formed the

basis of a proposed tunable THz filter. The design of the filter involved a LiNbO3 layer

sandwiched between two doped GaAs films, which are transparent to THz radiation.

The current passing through the GaAs films would provide the compressions and

rarefactions of the AW. This would result in an RAO effect in the LiNbO3 with a

tunable reflectivity spectrum.

5.3 RAO Effect in Metals

The use of the scattering matrix method for the calculation of electromagnetic field

in multilayer structures was discussed. The extension allows for the calculation of a

multilayered structure undergoing sinusoidal modulation by a propagating acoustic

wave. A demonstration of the method was given by calculating the optical properties

of a SAW-modulated Au foil. The investigated system was of an Au foil on a glass

substrate, the SAW generated propagating conformal modulations of the foil, when

the thickness of the foil d was small compared to the SAW wavelength. The SPPs at

each interface allowed the SAW-induced modulations to alter the reflectivity spectrum

of the Au foil.

The corrugation amplitude B played a significant role in controlling the modifications

of the Au foils optical properties. Increased B led to large dips in the reflectivity at

the resonant positions in the spectrum. The depth of the dips was shown to increase

proportional to B2 up to B ∼ 2 nm. Above this value the variations were of a higher

order.

The angle of light incidence φ of the light on the Au foil was shown to effect the

regions of the spectrum that fell inside the light cone. This allowed the resonant
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position of the SAW-induced gaps, which produced reflectivity dips, to be set. By

deceasing φ the crossing points in the folded dispersion occurred at higher frequency

regions found along the dispersion branches. This lead to blue shifted dips in the

reflectivity spectrum for reduced φ.

Variations in the thickness of the Au foil effected both the strength and the spectral

position of the reflectivity peaks. It was shown that decreasing foil thickness reduced

the depth of the peak in the reflectivity and increased its width. This was caused by

increased coupling of the incident light directly to the continuum in the substrate.

It was shown that the SAWwavevectorK also played an important role in determining

the spectral position of the dips in the SAW modified reflectivity. An increase in K

lead to widening of the SAW induced Brillouin zone and to blue-shifted band gaps,

as the separation of SPP branches increases. As a result the dips in the reflectivity

spectrum are also blue-shifted This reduces the detuning of the resonant points from

the Restrahlen band resulting in deeper and wider reflectivity dips due to stronger

SAW-SPP coupling.

5.4 Future Work

In this thesis the RAO effect for TO-phonon polaritons was presented for a semi-

infinite geometry. The effect a different geometry would have on the AW modulated

reflectivity and transmissivity would be a possible line of inquiry. It would also

prudent to consider whether an increase in coupling strength could be achieved by

using a different geometry. It is worth noting that as the RAO coupling strength is

inversely dependent on the AW velocity square root of the AW velocity for cubic and

quartic anharmonicities, respectively. A reduction of the acoustic velocity by using a

SAW may impact the strength of the RAO effect.

It may also be a valuable exercise to investigate the possibility of a coherent TO-

phonon polariton state lasing in the THz range. The effect a dynamical superlattice

might have on such a device may also be of interest. Such a device would would allow

easy access to the THz band as sources of this type are currently lacking.



Appendix A Derivation of the Eigenvalue

Problem

The eigenvalue problem that is the basis of all the calculations in chapters 2 and 3
is derived in this appendix. The derivation is given here for a ferroelectric material
with both third and fourth order anharmonicity, the individual anharmonic coupling
derivation is accessed by setting σ3 = 0 or σ4 = 0, respectively. This appendix is
split into two cases; the eigenvalue problem for complex ω(k) (quasienergy) with real
k and for complex k(ω) (quasimomentum) with real ω.

A.1 Quasienergy Dispersion

Consider Eq. (2.4b) for the first case, ω(k), k is real and γ = 0 for convince. By
introducing

ω̃2
0 = ω2

0 + 4ω0σ4,

Eq. (2.4b) can be rewritten as

[
ω̃2
0 − (ω + nΩ)2

]
Pn + 2σ3ω0(Pn+1e

−iφ + Pn−1e
iφ) + 2σ4ω0(Pn+2 + Pn−2) =

εb ω
2
R

4π
En.

(A.1)

This can be simplified by defining the matrix

B =




ω̃2
0 2σ3ω0e

iφ 2σ4ω0 · · · 0

2σ3ω0e
−iφ . . . . . . . . .

...

2σ4ω0
. . . . . . . . . 2σ4ω0

...
. . . . . . . . . 2σ3ω0e

iφ

0 · · · 2σ4ω0 2σ3ω0e
−iφ ω̃2

0



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so that Eq. (A.1) can be written as

4π

εbω2
R

[
−(ω + nΩ)2Pn +BnmPm

]
= En.

The electric field eigenvalue En is then removed by the substitution of Eq. (2.4a). If
another matrix is defined

Anm = −Bnm

ω2
Rc

2
−
[
(k + nK)2

εbc2
+

1

c

]
δnm,

then Eq. (A.1) can be written as

1

c2ω2
R

(ω + nΩ)4Pn + (ω + nΩ)2AnmPm +
(k + nK)2

εbc2
BnmPm = 0.

By defining the vectors Qn = ωPn, Rn = ω2Pn and Sn = ω3Pn this can be written as
the eigenvalue problem for ω

Ŵ~X = ω~X.

The eigenvectors are defined as ~X = (Sn, Rn, Qn, Pn)
T and the matrix Ŵ is defined

as

Ŵ =




−4nΩδnm Xnm Ynm Znm
δnm 0 0 0
0 δnm 0 0
0 0 δnm 0


 ,

where

Xnm = −c2ω2
R

[
6(nΩ)2

c2ω2
R

δnm + Anm

]
,

Ynm = −c2ω2
R

[
4(nΩ)3

c2ω2
R

δnm + 2nΩAnm

]
,

Znm = −c2ω2
R

[
(nΩ)4

c2ω2
R

δnm + (nΩ)2Anm +
(k + nK)2

εbc2
Bnm

]
.

A.2 Quasimomentum Dispersion

The starting point for the derivation of the quasimomentum eigenvalue problem, in
which ω is real and k complex, is the same as for the quasienergy problem, Eq. (2.4b).
In this case γ is non-zero and by defining the vector

Gn = −(ω − nΩ)2 + ω̃2
0 − 2iγ(ω + nΩ),
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and the matrix

C =
4π

εbω2
R




G−nr
2σ3ω0e

iφ 2σ4ω0 · · · 0

2σ3ω0e
−iφ . . . . . . . . .

...

2σ4ω0
. . . . . . . . . 2σ4ω0

...
. . . . . . . . . 2σ3ω0e

iφ

0 · · · 2σ4ω0 2σ3ω0e
−iφ Gnr



,

Eq. (2.4b) can be rewritten as

∑

m

CnmPm = En, (A.2)

where nr is the Bragg replica cutoff. By making Pm the subject of Eq. (A.2), which
is possible only because Cnm is not k dependent, and substituting to remove Pn from
Eq. (2.4a) gives,

[
−εb
c2
(ω + nΩ)2 + (k + nK)2

]
En =

∑
DnmEm (A.3)

where the matrix Anm is

Dnm =
4π

c2
(ω + nΩ)2C−1

nm.

By defining the vector

Fn =

(
k + nK +

√
εb
ω + nΩ

c

)
En,

Eq. (A.3) can be rewritten as

(
k + nK −√

εb
ω + nΩ

c

)
Fn =

∑
DnmEm.

This can be written as the eigenvalue problem

V̂~Y = k~Y

where

V̂ =

(
−√

εb
ω1̂+nΩ

c
− n̂K 1̂

D̂
√
εb
ω1̂+nΩ

c
− n̂K

)
,

1̂ is an nr × nr identity matrix and

~Y =

(
En
Fn

)
.



Appendix B Acousto-Plasmonics: Elec-

tromagnetic Field, Interface Transfer

Matrix Derivation and Scattering Ma-

trix Formula.

This appendix presents the derivation of the transfer matrices across the vacuum-
to-metal (V/M) boundary and the metal-to-glass (M/G) boundary. Both of these
matrices form the basis for all the calculation of the RAO effect in thin metal films.

B.1 Electromagnetic Field Derivation

The starting point for the derivation of the electromagnetic field is Maxwell’s cross
product equations,

1

c

∂H

∂t
= ∇× E, (B.1a)

−1

c

∂D

∂t
= ∇×H. (B.1b)

The system that they will be applied to has two boundaries and a thickness of d,
which is the metallic layer thickness. These boundaries have a corrugation that is
acoustically induced with an amplitude B and given by

z0(x, t) = B cos(Kx− Ωt), (B.2a)

z1(x, t) = z0(x, t) + d, (B.2b)

were K and Ω are the acoustic wavevector and frequency, respectively.

Only p-polarized electric fields can be used to access surface plasmon polaritons
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Figure B.1: The geometry of the RAO effect in a thin gold films. The electromag-
netic field is p-polarized and Et is the electric field component along the corrugated
surface, s is the unit tangent vector to the surface.

(SPP). Thus, the magnetic field vector can be written as

H =




0
H(x, z, t)

0


 .

The y-components of ~H in each layer are

HV (x, z, t) =
∑

n

[
A(+,V )
n eiqnz +A(−,V )

n e−iqnz
]
eikx−iωtei(Kx−Ωt)n, (B.3a)

HM(x, z, t) =
∑

n

[
A(+,M)
n eipnz +A(−,M)

n e−ipnz
]
eikx−iωtei(Kx−Ωt)n, (B.3b)

HG(x, z, t) =
∑

n

[
A(+,G)
n eiq

(G)
n z +A(−,G)

n e−iq
(G)
n z
]
eikx−iωtei(Kx−Ωt)n. (B.3c)

The partial wave amplitudes in the positive and negative z-direction for the vacuum,
metal and glass are A(±,V,M,G)

n , respectively, and the wavevectors for these materials
are qn, pn and q

(G)
n , respectively. The dimensions are 2nmax + 1 for the calligraphic

letters.

The wavevectors are derived by substituting the Eqs. (B.3) into Eq. (B.1). The results
of this are

qn =

√
1

c2
(ω + nΩ)2 − (k + nK)2, (B.4a)

pn =

√
εM(ω)

c2
(ω + nΩ)2 − (k + nK)2, (B.4b)

q(G)
n =

√
εG
c2

(ω + nΩ)2 − (k + nK)2, (B.4c)

where εG is the dielectric constant of the glass substrate. The dielectric constant of
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the metal εM(ω) has been taken in a Lorentz-Drude model [59]. On the scale of nmaxΩ
The metallic dielectric constant is weakly dependent on ω, therefore any discrepancies
between εM(ω) and εM(ω + nΩ) can be neglected.

The x and y components of the electric field can now be calculated through Eq. (B.1b)
by using the material relation D(ω) = εM(ω)E(ω) and the H-field components given
in Eqs. (B.3). As p-polarized light is being used the y-component of the E-field is
zero and the x- and z-components are given by

i

c
E(x)
n (x, z) = − 1

ε(ω)

∂Hn(x, z)

∂z0

1

ω + nΩ
, (B.5a)

1

c
E(z)
n (x, z) =

1

ε(ω)

k + nK

ω + nΩ
Hn(x, z). (B.5b)

By the substitution of Eqs. (B.3) into Eqs. (B.5) we can derive the E-field from the H-
field. For the sake of brevity throughout the remainder of this appendix, the metallic
dielectric constant is written with implicit ω dependence εM .

We can finally write the electric and magnetic field in all layers in terms of the partial
wave amplitudes. These are, in the vacuum

HV (x, z, t) =
∑

n




0

A(+,V )
n eiqnz +A(−,V )

n e−iqnz

0


 eikx−iωtei(Kx−Ωt)n, (B.6a)

EV (x, z, t) =
∑

n




− cqn
ε0(ω+nΩ)

[
A(+,V )
n eiqnz −A(−,V )

n e−iqnz
]

0
c(k+nK)
ε0(ω+nΩ)

[
A(+,V )
n eiqnz +A(−,V )

n e−iqnz
]


 eikx−iωtei(Kx−Ωt)n,

(B.6b)

in the metal

HM(x, z, t) =
∑

n




0

A(+,M)
n eipnz +A(−,M)

n e−ipnz

0


 eikx−iωtei(Kx−Ωt)n, (B.7a)

EM(x, z, t) =
∑

n




− cpn
εM (ω+nΩ)

[
A(+,M)
n eipnz −A(−,M)

n e−ipnz
]

0
c(k+nK)
εM (ω+nΩ)

[
A(+,M)
n eipnz +A(−,M)

n e−ipnz
]


 eikx−iωtei(Kx−Ωt)n,

(B.7b)
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Figure B.2: The definitions of the partial wave amplitudes.

and in the glass substrate

HG(x, z, t) =
∑

n




0

A(+,G)
n eiq

(G)
n z +A(−,G)

n e−iq
(G)
n z

0


 eikx−iωtei(Kx−Ωt)n, (B.8a)

EG(x, z, t) =
∑

n




− cq
(G)
n

εG(ω+nΩ)

[
A(+,G)
n eiq

(G)
n z −A(−,G)

n e−iq
(G)
n z
]

0
c(k+nK)
εG(ω+nΩ)

[
A(+,G)
n eiq

(G)
n z +A(−,G)

n e−iq
(G)
n z
]


 eikx−iωtei(Kx−Ωt)n.

(B.8b)

B.2 Interface Transfer Matrix Derivation

Having derived the wavevectors in each layer and the corresponding E- and H-fields,
boundary conditions (BCs) can now be applied to calculate the partial wave ampli-
tudes. The boundary conditions require that the H-field amplitude and the compo-
nent of the E-field amplitude that is tangential to the boundary are continuous across
the boundary. For H-field continuity across the vacuum to metal (V/M) interface,
Eqs. (B.6a) and (B.7a) are equated at z = z0 and the eikx−iωt term cancelled to give

∑

n

[
A(+,V )
n eiqnB cosϕ +A(−,V )

n e−iqnB cosϕ
]
eiϕn =

∑

n

[
A(+,M)
n eipnB cosϕ +A(−,M)

n e−ipnB cosϕ
]
eiϕn, (B.9)

where, for the sake of brevity, ϕ = Kx − Ωt. For the E-field BC the tangential
component to the interface must be derived. Therefore, the starting point is to define
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the tangent unit vector

s =




1
0

z′0(x, t)


 =




1
0

−KB sin(ϕ)




where z′0(x, t) is the differentiation of z0(x, t) with respect to x. Therefore, the mag-
nitude of the tangential electric field is

Et =
s · E√
s · s = Et =

Ex + z′0Ez√
1 + (z′0)

2
.

After canceling the common denominator, the tangential E-field boundary condition
can be written as

E
(x)
V + z′0E

(z)
V = E

(x)
M + z′0E

(z)
M .

Thus, using Eqs. (B.6b) and (B.7b) gives

∑

n

[
− cqn
ε0(ω + nΩ)

{
A(+,V )
n eiqnB cosϕ −A(−,V )

n e−iqnB cosϕ
}

−KB sin(ϕ)
c(k + nK)

ε0(ω + nΩ)

{
A(+,V )
n eiqnB cosϕ +A(−,V )

n e−iqnB cosϕ
} ]

eiϕn =

∑

n

[
− cpn
εM(ω + nΩ)

{
A(+,M)
n eipnB cosϕ −A(−,M)

n e−ipnB cosϕ
}

−KB sin(ϕ)
c(k + nK)

εM(ω + nΩ)

{
A(+,M)
n eipnB cosϕ +A(−,M)

n e−ipnB cosϕ
} ]

eiϕn

(B.10)

In general the Fourier transform of eir cosψ gives

eir cosψ =
∑

l

ilJl(r)e
iψl, (B.11)

where Jl(r) is Bessel function of the first kind. The Fourier transform of the sin(ψ)exp[ir cos(ψ)]
term can calculated from Eq. (B.11)

∂

∂ψ
eir cosψ = −ir sinψeir cosψ =

∑

l

ililJl(r)e
iψl.

Thus,

sin(ψ)eir cos(ψ) = −
∑

l

ill

r
Jl(r)e

iψl, (B.12)
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where l is an integer [65].

We can now apply Eqs. (B.11) and (B.12) to Eqs (B.9) and (B.10), this will allow
them to be written more compactly with the use of the Bessel functions. Eq. (B.9)
becomes

∑

n,m

[
A(+,V )
n Jm(qnB) +A(−,V )

n Jm(−qnB)
]
eiϕ(n+m)im =

∑

n,m

[
A(+,M)
n Jm(pnB) +A(−,M)

n Jm(−pnB)
]
eiϕ(n+m)im, (B.13)

and Eq. (B.10) becomes

∑

n,m

[
− cqn
ε0(ω + nΩ)

{
A(+,V )
n Jm(qnB)−A(−,V )

n Jm(−qnB)
}
im

+KB
c(k + nK)

ε0(ω + nΩ)

{
A(+,V )
n Jm(qnB)

m

qnB

−A(−,V )
n Jm(−qnB)

m

qnB

}
im
]
eiϕ(n+m) =

∑

n,m

[
− cpn
εM(ω + nΩ)

{
A(+,M)
n Jm(pnB)−A(−,M)

n Jm(−pnB)
}
im

+KB
c(k + nK)

εM(ω + nΩ)

{
A(+,M)
n Jm(pnB)

m

pnB

−A(−,M)
n Jm(−pnB)

m

pnB

}
im
]
eiϕ(n+m)

(B.14)

To express the boundary conditions in matrix form it is necessary to let n +m = s
and m = s− n so in general

∑

n,m

Jm(rn)e
iψ(n+m) →

∑

n,s

Js−n(rn)e
iψs. (B.15)

If we allow s = m and apply the above to Eqs. (B.13) and (B.14) we can rewrite the
boundary conditions for the H-field as

∑

n,m

[
A(+,V )
n Jm−n(qnB) +A(−,V )

n Jm−n(−qnB)
]
im−neiϕm =

∑

n,m

[
A(+,M)
n Jm−n(pnB) +A(−,M)

n Jm−n(−pnB)
]
im−neiϕm, (B.16)
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and for the tangential E-field, Eq. (B.14) becomes

∑

n,m

[
− cqn
ε0(ω + nΩ)

{
A(+,V )
n Jm−n(qnB)−A(−,V )

n Jm−n(−qnB)
}

+KB
c(k + nK)

ε0(ω + nΩ)

{
A(+,V )
n Jm−n(qnB)

m− n

qnB

−A(−,V )
n Jm−n(−qnB)

m− n

qnB

}]
im−neiϕm =

∑

n,m

[
− cpn
εM(ω + nΩ)

{
A(+,M)
n Jm−n(pnB)−A(−,M)

n Jm−n(−pnB)
}

+KB
c(k + nK)

εM(ω + nΩ)

{
A(+,M)
n Jm−n(pnB)

m− n

pnB
+

−A(−,M)
n Jm−n(−pnB)

m− n

pnB

}]
im−neiϕm.

(B.17)

These two equations can now be used to derive the transfer matrix at the V/M
interface.

It is necessary to equate the coefficients of the exponential terms exp[iϕm] in Eqs. (B.16)
and (B.17) and express the result in matrix form

(
V (1,1) V (1,2)

V (2,1) V (2,2)

)(
A(+,V )
n

A(−,V )
n

)
=

(
M(1,1) M(1,2)

M(2,1) M(2,2)

)(
A(+,M)
n

A(−,M)
n

)
. (B.18)

Then by defining all open faced letters as either 2(2nr + 1) square matrices or equiv-
alent sized vectors, the elements of V are

V (1,1)
m,n = Jm−n(qnB)im−n, (B.19a)

V (1,2)
m,n = Jm−n(−qnB)im−n, (B.19b)

V (2,1)
m,n =

[
− cqn
ω + nΩ

Jm−n(qnB)im−n +K
c(k + nK)

ω + nΩ
Jm−n(qnB)im−nm− n

qn

]
, (B.19c)

V (2,2)
m,n =

[
cqn

ω + nΩ
Jm−n(−qnB)im−n −Kc(k + nK)

ω + nΩ
Jm−n(−qnB)im−nm− n

qn

]
,

(B.19d)



B.2. Interface Transfer Matrix Derivation 126

and the elements of M are

M(1,1)
m,n = Jm−n(pnB)im−n, (B.20a)

M(1,2)
m,n = Jm−n(−pnB)im−n, (B.20b)

M(2,1)
m,n =

[
− cpn
εM(ω + nΩ)

Jm−n(pnB)im−n +K
c(k + nK)

εM(ω + nΩ)
Jm−n(pnB)im−nm− n

pn

]
,

(B.20c)

M(2,2)
m,n =

[
cpn

εM(ω + nΩ)
Jm−n(−pnB)im−n −K c(k + nK)

εM(ω + nΩ)
Jm−n(−pnB)im−nm− n

pn

]
.

(B.20d)

As the transfer interface matrix T across the V/M boundary is defined by,

(
A(+,V )
n

A(−,V )
n

)
=

(
T1,1 T1,2

T2,1 T2,2

)(
A(+,M)
n

A(−,M)
n

)
,

from comparison with Eq. (B.18) we can say

TV/M = V
−1
M. (B.21)

The T-matrix at the second boundary between metal and glass (M/G) can be derived
from an identical process. The matrix of coefficients of the partial wave amplitudes
in glass AG is designated G and has the elements

G(1,1)
m,n = Jm−n(q

(G)
n B)im−n, (B.22a)

G(1,2)
m,n = Jm−n(−q(G)

n B)im−n, (B.22b)

G(2,1)
m,n =

[
− cq

(G)
n

εG(ω + nΩ)
Jm−n(q

(G)
n B)im−n +K

c(k + nK)

εG(ω + nΩ)
Jm−n(q

(G)
n B)im−nm− n

q
(G)
n

]
,

(B.22c)

G(2,2)
m,n =

[
cq

(G)
n

εG(ω + nΩ)
Jm−n(−q(G)

n B)im−n −K
c(k + nK)

εG(ω + nΩ)
Jm−n(−q(G)

n B)im−nm− n

q
(G)
n

]
.

(B.22d)

Using the same approach as for the first boundary

TM/G = M
−1
G. (B.23)

Having now calculated the T-matrix for both boundaries the reflectivity may be
calculated form the total T-matrix.
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The T of the entire system is then calculated from

Ttotal = TV/M

(
E+ 0
0 E−

)
TM/G, (B.24)

where E− = δn,mexp(−ipnd) and E+ = δn,mexp(ipnd). From the total T-matrix the
nth-order Bragg reflectivity Rn and transmissivity Tn are given by

Tn = |A+,G
n |2, (B.25a)

Rn = |A−,V
n |2. (B.25b)

The amplitudes of the partial waves contributing to Eqs. (B.25) are given by

A+,G
n = T −1

1,1 A+,V
n , (B.26a)

A−,V
n = T2,1T −1

1,1 A+,V
n . (B.26b)

Where A+,V
n is the partial wave amplitude vector for the incident light. For a

monochromatic incident plane wave it is a column vector with 2nr + 1 elements,
the central element is unity and the rest zero.

B.3 Scattering Matrix

To derive the scattering matrix an iterative process is required, based on the initial
condition

Sv = I, (B.27)

where I is a 2N × 2N identity matrix, and the use of the transfer matrix at layer
interfaces. In general, for a system in which the transfer matrix at a given layer L is

TL =

(
T1,1 T1,2

T2,1 T2,2

)
(B.28)

and the scattering matrix is

SL =

(
S1,1 S1,2

S2,1 S2,2,

)
(B.29)

then the scattering matrix to cross the boundary into the (L+ 1)th layer is

SL+1 =

(
DS11 DE

S21 + S22T21DS11 S22T21DE + S22T22

)
, (B.30)
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where the N × N block matrix E = S12T22 − T21 and D = (T11 − S12T21)
−1. To

propagate the wave across the (L+ 1) layer to the next boundary

SL+1 =

(
eiKd O
O I

)
SL

(
I 0
0 eiKd

)
. (B.31)

The block matrices O and I are N ×N zero and identity matrices, respectively. The
matrix K has the terms k + nK along its diagonal, where k is the wavevector of
light in the layer. Notice the absences of growing exponential terms in Eq. (B.31),
removing the problem found in the transfer matrix method. The calculation of the
necessary transfer matrices can be found in Appendix B.2.



Appendix C Dielectric Function of Au

In Eq (4.4) in section 4.1 the dielectric function has been split into two parts. The
first is a classical Drude model, which describes the optical effects of the conduction
electrons in the metal. The second part is a sum over a series of Lorentz oscillators
which describes the optical properties of the bound electrons. The separation of the
dielectric function into two components is allowed because the components operate
in different spectral regions.

The Drude dielectric function assumes the electrons interact only with the metallic
ions and not with each other. It can be derived by considering the current induced
by a time varying electric field in a metal. Consider the Maxwell-Faraday equation

∇× E =
1

c

∂E

∂t
(C.1)

and Ampere’s Law with Maxwell’s correction

∇×H =
4π

c
j+

1

c

∂E

∂t
, (C.2)

where j is current density. By making use of the vector calculus identity

∇×∇× F = ∇(∇ · F)−∇2F,

and the condition that ∇·E = 0 when there is no static charge and the fact that for a
metal the current density can be written as j = σ(ω)E, where σ(ω) is the conductivity,
a combination of Eq. (C.1) and Eq. (C.2) can be written as

∇2E = −1

c

∂

∂t

[
4π

c
σ(ω)E+

1

c

∂E

∂t

]
. (C.3)

If the wavelength of the electric field is far longer than the mean free path of the
electrons in the current then we can write the electric field as

E = E0e
iωt.

129



130

Table C.1: The value of the parameters used for the calculation of a Lorentz-
Drude model dielectric function.

Parameters f0 Γ0 f1 Γ1 ω1 f2 Γ2 ω2 –
Au 0.760 0.053 0.024 0.241 0.415 0.010 0.345 0.830 –

Parameters f3 Γ3 ω3 f4 Γ4 ω4 f5 Γ5 ω5

Au 0.071 0.870 2.969 0.601 2.494 4.304 4.384 2.214 13.32

Substituting into Eq. (C.3) for E to give

∇2E = −ω
2

c2

[
1 +

4πiσ(ω)

ω

]
E.

From this the dielectric function is defined as

ε(ω) = 1 +
4πiσ(ω)

ω
. (C.4)

The conductivity of a metal is given by [60]

σ(ω) =
ne2τ

m(1− iωτ)
, (C.5)

where n is the number of electrons, τ is the time between collisions with the metallic
ions and e and m is the electronic charge and mass, respectively. By substituting
Eq. (C.5) into Eq. (C.4) and defining Γ0 = τ−1 the Drude dielectric function for
classical electrons can be written as

ε(ω) = 1−
ω2
p

ω(ω − iΓ0)
, (C.6)

where ωp is defined in Eq. (1.16) in section 1.7.

The parameters necessary to model the dielectric function of Au are given in Table C.1
and are taken from Rakic et al [59].
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