Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical
Engineering Science

http://pic.sagepub.com/

Rules-6: A Simple Rule Induction Algorithm for Handling Large Data Sets
D T Pham and A A Afify
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
2005 219: 1119
DOI: 10.1243/095440605X31931

The online version of this article can be found at:
http://pic.sagepub.com/content/219/10/1119

Published by:
®SAGE

http://www.sagepublications.com

On behalf of:

Institution of Mechanical Engineers

Additional services and information for Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science can be found at:

Email Alerts: http://pic.sagepub.com/cgi/alerts
Subscriptions: http://pic.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://pic.sagepub.com/content/219/10/1119.refs.html

>> Version of Record - Oct 1, 2005
What is This?

Downloaded from pic.sagepub.com at Cardiff University on April 4, 2012

http://pic.sagepub.com/
http://pic.sagepub.com/content/219/10/1119
http://www.sagepublications.com
http://www.imeche.org/home
http://pic.sagepub.com/cgi/alerts
http://pic.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://pic.sagepub.com/content/219/10/1119.refs.html
http://pic.sagepub.com/content/219/10/1119.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://pic.sagepub.com/

1119

RULES-6: a simple rule induction algorithm for

handling large data sets

D T Pham* and A A Afify

Intelligent Systems Laboratory, Manufacturing Engineering Centre, School of Engineering, Cardiff University,

Cardiff, UK

The manuscript was received on 7 September 2004 and was accepted after revision for publication on 6 July 2005.

DOI: 10.1243/095440605X31931

Abstract: RULES-3 Plus is a member of the RULES family of simple inductive learning
algorithms with successful engineering applications. However, it requires modification in
order to be a practical tool for problems involving large data sets. In particular, efficient mech-
anisms are needed for handling continuous attributes and noisy data. This article presents a new
rule induction algorithm called RULES-6, which is derived from the RULES-3 Plus algorithm.
The algorithm employs a fast and noise-tolerant search method for extracting IF-THEN rules
from examples. It also uses simple and effective methods for rule evaluation and handling of
continuous attributes. A detailed empirical evaluation of the algorithm is reported in this
paper. The results presented demonstrate the strong performance of the algorithm.

Keywords: classification, inductive learning, rule induction, discretization, noise handling

1 INTRODUCTION

Classification has numerous applications in mech-
anical engineering [1-3]. An automatic classifier is
constructed by employing a set of precategorized
examples to develop a model that can handle new
examples from the same population. Inductive
learning techniques are particularly suited to the
construction of classifiers. They are simple and fast.
Another advantage is that they generate models
that are easy to understand. Finally, inductive learn-
ing classifiers are more accurate compared with
other classification techniques.

Inductive learning techniques can be divided into
two main categories, namely, decision tree induction
and rule induction. There are a variety of algorithms
for building decision trees. The most popular are
CART [4], ID3 and its descendants C4.5 and C5.0
[5-9], SLIQ [10], SPRINT [11], and PUBLIC [12].
These learning systems are categorized as ‘divide-
and-conquer’ inductive systems [6]. The knowledge
induced by these systems is represented as decision

*Corresponding author: Intelligent Systems Laboratory,
Manufacturing Engineering Centre, Cardiff University, Queen’s
Building, The Parade, Newport Road, Cardiff CF24 3AA, UK.

"

trees. A decision tree consists of internal nodes and
leaf nodes. Each internal node represents a test on
an attribute and each outgoing branch corresponds
to a possible result of this test. Each leaf node
represents a classification to be assigned to an
example. To classify a new example, a path from
the root of the decision tree to a leaf node is ident-
ified on the basis of the values of the attributes of
the example. The class at the leaf node represents
the predicted class for that example. Decision trees
are generated from training data in a top—down,
general-to-specific direction. The initial state of a
decision tree is the root node that is assigned all
the examples from the training set. If all examples
belong to the same class, then no further decisions
need to be made to partition the examples, and
the solution is complete. If examples at this node
belong to two or more classes, then a test is made
at the node, which will result in a split. The process
is recursively repeated for each of the new intermedi-
ate nodes until a completely discriminating tree is
obtained.

As with decision tree learning, there are many rule
induction algorithms. Among them are AQ [13-15],
CNZ2 [16, 17], RIPPER [18], and SLIPPER [19], which
can all be categorized as ‘separate-and-conquer’
inductive systems. In contrast to decision tree

C15804 © IMechE 2005

iRk

" Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

1120 D T Pham and A A Afify

learning, rule induction directly generates IF-THEN
rules. Rule induction systems produce either an
unordered set of IF-THEN rules or an ordered set of
IF-THEN rules, also known as decision lists [20],
both including a default rule. To classify an instance
in the case of ordered rules, the ordered list of rules is
examined to find the first whose antecedent is satis-
fied by the instance. The predicted class is then the
one nominated by this rule. If no rule antecedent is
satisfied, the instance is predicted to belong to the
default class. In the case of unordered rules, it is
possible for some instances to be covered by more
than one rule. To classify a new instance in this
case, some conflict resolution approach must be
employed. The general operation of separate-and-
conquer rule induction algorithms is the same.
They create the rule set one rule at a time. After a
rule is generated, the instances covered by it are
removed from the training data set and the same
induction procedure is applied to the remaining
data set until all the instances are covered by at
least one rule in the rule set.

RULES (RULe Extraction System) is a family of
inductive learning algorithms that follow the
separate-and-conquer rule induction approach. The
first three algorithms in the RULES family (RULES-
1, 2, and 3) were developed by Pham and Aksoy
[21-23]. Later, the rule forming procedure of
RULES-3 was improved by Pham and Dimov [24]
and the new algorithm was called RULES-3 Plus.
Compared with its immediate predecessor RULES-3,
RULES-3 Plus has two new, strong features. First, it
employs a more efficient search procedure instead
of the exhaustive search conducted in RULES-3.
Second, it incorporates a metric called the H
measure [25] for selecting and sorting candidate
rules according to their generality and accuracy.
RULES-3 does not employ any measure for assessing
the information content of rules. The first incremen-
tal learning algorithm in the RULES family was
RULES-4 [26]. RULES-4 allows the stored knowledge
to be updated and refined rapidly when new
examples are available. RULES-4 employs a short
term memory (STM) to store training examples
when they become available. The STM has a user-
specified size. When the STM is full, RULES-4
invokes RULES-3 Plus to generate rules. Pham et al.
[27] described another algorithm, also based on
RULES-3 Plus, called RULES-5, which can effectively
handle problems involving continuous attributes. As
with RULES-3 Plus, RULES-5 employs the H measure
for evaluating the quality of rules.

RULES-3 Plus has been employed for the extrac-
tion of classification rules for solving different engin-
eering problems, e.g. the recognition of design form
features in CAD models for computer-aided process
planning [28], the mapping of manufacturing

information to design features [28], and the classifi-
cation of defects in automated visual inspection
[29]. RULES-3 Plus still suffers from problems that
limit its efficiency and widespread use. One of the
main problems is that RULES-3 Plus learns a com-
plete and consistent rule set that tries to cover all
of the positive and none of the negative training
instances — instances of the target class (the class
of the training instance under consideration) in the
training set are called positive instances and
instances in the training set that do not belong to
the target class are called negative instances. In the
case of noisy data, this leads to the generation of
over-specific rules that overfit the training data. A
second problem is that the H measure is computa-
tionally complex and does not lead to the highest
level of predictive accuracy and generality. Finally,
continuous-valued attributes are discretized using a
simplistic equal-width approach before data are
passed to the learning system. This discretization
method is arbitrary and does not seek to discover
any information inherent in the data, thereby
hampering the ability of RULES-3 Plus to learn.

This paper presents RULES-6, a new rule induction
algorithm which addresses the weaknesses of the
RULES-3 Plus algorithm. In particular, it employs a
new noise-tolerant search method which relaxes
the consistency constraint and uses search-space
pruning rules which significantly reduce the search
time. It also adopts a simple metric for rule evalu-
ation and a more robust method for handling con-
tinuous attributes. These enhancements enable the
efficient generation of accurate and compact rule
sets.

The paper is organized as follows. Section 2 briefly
reviews RULES-3 Plus. Section 3 gives a detailed
description of the RULES-6 algorithm. Section 4 dis-
cusses the evaluation of the performance of RULES-6
using real data. Section 5 concludes the paper and
provides suggestions for future work.

2 RULES-3 PLUS ALGORITHM

The RULES-3 Plus algorithm works in an iterative
fashion. In each iteration, it takes a seed example
not covered by previously created rules to form a
new rule. Having found a rule, RULES-3 Plus
removes those examples that the rule covers from
the training set, by marking them, and appends a
rule at the end of its rule set. The algorithm stops
when all examples in the training set are covered.
This produces an unordered set of complete and
consistent rules. It should be noted that only the
examples covered by previously formed rules are
marked in order to stop RULES-3 Plus from repeat-
edly finding the same rule. However, these examples

Proc. IMechE Vol. 219 Part C: J. Mechanical Eungineer‘i;;;g, Science

C15804 © IMechE 2005

http://pic.sagepub.com/

A simple rule induction algorithm 1121

are used to guide the specialization process and to
assess the accuracy and generality of each newly
formed rule. Considering the whole set of examples
when forming rules, RULES-3 Plus is less prone to
the fragmentation problem (i.e. the amount of avail-
able data reducing as induction progresses) [30, 31]
and the small disjuncts problem (i.e. rules covering
few training examples having a high error rate)
[32-36]. As a result, a compact rule set can be
obtained.

To form a rule, RULES-3 Plus performs a general-
to-specific beam search for the most general and
consistent rule. It starts with the most general rule
and specializes it in steps considering only con-
ditions extractable from the selected seed example.
The aim of specialization is to construct a rule that
covers the seed example and as many positive
examples as possible while excluding all negative
examples. The result is a rule that is consistent and
as general as possible.

To assess the information content of each newly
formed rule, RULES-3 Plus uses a metric called
the H measure. As mentioned previously, this is a
computationally complex measure that does not
discriminate well between rules of different qualities.
The algorithm deals with attributes having continu-
ous values by dividing the range of each attribute
into a fixed number of intervals using the equal-
width discretization method. With this method,
the number of intervals for each attribute is specified
by the user. From the given set of examples, RULES-3
Plus constructs a new set for which the values of all
continuous attributes are represented by appropriate
intervals. Induction is then carried out with the new
set of examples, the intervals being treated as any
other value.

A pseudo-code description of the RULES-3 Plus
algorithm and a simple example clearly illustrating
its operation can be found in reference [24].

3 RULES-6 ALGORITHM

RULES-6 stands for ‘RULe Extraction System -
Version 6’. A pseudo-code description of RULES-6
is given in Fig. 1. Like its predecessors in the
RULES family, RULES-6 extracts rules by processing
one example at a time. The algorithm first selects a
seed example, the first example in the training set
not covered by previously created rules, and then
calls the Induce-One-Rule procedure to extract a
rule that covers that example. Following this, all cov-
ered examples are marked, the learned rule is added
to the rule set, and the process repeated until all
examples in the training set have been covered. The
Induce-One-Rule procedure is outlined in Fig. 2.

"

Procedure Induce_Rules (TrainingSet, BeamWidth)

RuleSet =&

While all the examples in the TrainingSet are not covered Do
Take a seed example s that has not yet been covered.
Rule = Induce One_Rule (s, TrainingSet, BeamWidth)
Mark the examples covered by Rule as covered.
RuleSet = RuleSet U {Rule}

End While

Return RuleSet

End

Fig. 1 A pseudo-code description of RULES-6

The Induce-One-Rule procedure searches for rules
by carrying out a pruned general-to-specific search.
The search aims to generate rules which cover as
many examples from the target class and as few
examples from the other classes as possible, while
ensuring that the seed example remains covered. As
a consequence, simpler rules that are not consistent,
but are more accurate for unseen data, can be
learned. This contrasts with the rule forming pro-
cedure of the RULES-3 Plus algorithm, which
restricts its search to only those rules that are com-
pletely consistent with the training data, leading to
overfitting if the data is noisy.

A beam search is employed to find the best rule.
This is done by using two rule lists named Partial-
Rules and NewPartialRules. PartialRules, which is
the same size as the beam width w, stores the w
best partial rules during the specialization process.
Only the rules in this list are considered for further
specialization. NewPartialRules is used to save valid
partial rules obtained by specializing the rules in
Partial Rules. The learning of single rules starts with
the most general rule whose body is empty (step 1
in Fig. 2) and specializes it by incrementally adding
conditions to its body (step 3 in Fig. 2). Possible con-
ditions are attribute-value pairs of the selected seed
example. In the case of nominal attributes, con-
ditions of the form [A; = v;] are created, where v
is the value of A; in the selected seed example s. In
the case of continuous attributes, a prior discretiza-
tion method is used to split the range of each attri-
bute into a number of smaller intervals that are
then regarded as nominal values. For each condition,
anew rule is formed by appending a condition to the
current rule that differs from the conditions already
included in the rule. The score of each new rule is
computed and the rule with the best accuracy is
remembered (step 4 in Fig. 2). The new rule is then
inserted into the NewPartialRules list (step 9 in
Fig. 2) unless one of the conditional tests (step 5, 6,
or 7 in Fig. 2) prevents this because it is deemed
that no improved rule will be obtained from the
new rule. In the latter case, the new rule is regarded

C15804 © IMechE 2005

iRk

" Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

1122 D T Pham and A A Afify

PartialRules = NewPartialRules = &J

For each Rule € NewPartialRules Do

according to the conditional test in step (10)}

End For

For each Rule € NewPartialRules Do

End For
If w>1 Then

Remove all rules from NewPartialRules
End While
Return BestRule
End

Procedure Induce_One_Rule (s: Seed example, Instances: Training set, w: Beam width)

BestRule = most general rule (the rule with no conditions)

PartialRules = PartialRules {BestRule} (step 1)
While PartialRules # & Do (step 2)
For each Rule € PartialRules Do
{First, generate all specialisations of the current rule, save useful ones and determine all the
InvalidValues according to one of the conditional tests in steps (5), (6) or (7)}
For each nominal attribute 4; that does not appear in Rule Do
If v; € Rule.ValidValues, where v, is the value of 4, in s Then
NewRule = Rule A {4, = v4] (step 3)
If NewRule.Score > BestRule.Score Then (step 4)
BestRule = NewRule
If Covered_Positives (NewRule) < MinPositives OR (step 5)
Covered_Negatives (Rule) — Covered_Negatives (NewRule) < MinNegatives OR (step 6)
Consistency (NewRule) = 100% Then (step 7)
Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {v;} (step 8)
Else
NewPartialRules = NewPartialRules \ {NewRule} (step 9)
End For
End For
Empty PartialRules

{Next, delete partial rules that cannot lead to an improved rules and determine all the InvalidValues

If Rule.OptimisticScore < BestRule.Score Then
NewPartialRules = NewPartialRules — {Rule}
Parent (Rule).InvalidValues = Parent (Rule).InvalidValues + Last_Value_Added (Rule) (step 12)

{Finally, remove from the ValidValues set of each rule all the values that will lead to unnecessary
construction of useless specialisations at subsequent specialisation steps}

Rule.ValidValues = Rule.ValidValues ~ Parent (Rule).InvalidValues (step 13)

Remove from NewPartialRules all duplicate rules

Select w best rules from NewPartialRules and insert into PartialRules (step 14)

(step 10)
(step 11)

Fig. 2 A pseudo-code description of the Induce_One_Rule procedure. PartialRules, a list of rules to
be specialized and NewPartialRules, a new list of rules to be used for further specializations

as ineffective and additional specializations will not
improve the values for the quality measure. If the
new rule is discarded, the last attribute value used
to form it is added to the set of attribute values

(InvalidValues) of its immediate parent, the current
rule, so as to ensure that it will be removed from
the other specializations of the same parent rule
(step 8 in Fig. 2). Thus, the NewPartialRules list

a Cardilt ity-on-Aprila 20k

C15804 © IMechE 2005

http://pic.sagepub.com/

A simple rule induction algorithm 1123

only contains useful rules that can be employed for
further specialization. This process is repeated until
there are no remaining rules to be specialized in
the PartialRules list.

Another test that allows sections of the search
space to be pruned away is now applied to each
rule in the NewPartialRules list after the best rule
overall in the current specialization step is identified.
Rules that satisfy the conditional test at step 10 are
removed from the NewPartialRules list (step 11 in
Fig. 2), because they will not lead to improved
rules. The last attribute values used to generate
these rules are added to the InvalidValues of their
parents (step 12 in Fig. 2). All InvalidValues are
then deleted from the corresponding set of Valid-
Values for each rule in the NewPartialRules list
(step 13 in Fig. 2). Such values cannot lead to a
viable specialization from any point in the search
space that can be reached via identical sets of
specializations and thus excluding them will prevent
the unnecessary construction of ineffective specializ-
ations at subsequent specialization steps.

After eliminating all duplicate rules, the best w rules
from the NewPartialRules list are chosen to replace all
rules in the PartialRules list (step 14 in Fig. 2). The
comparison between rules is based on the quality
measure defined in section 3.1. If two rules have an
equal quality measure, the simpler rule, in other
words, the one with fewer conditions, is selected. If
both the quality measure and the number of con-
ditions of the rules are the same, the more general
rule that covers more instances is chosen.

The specialization process is then repeated until
the PartialRules list becomes empty (step 2 in
Fig. 2) owing to the tests at steps 5, 6, 7, and 10. It
should be noted that the PartialRules and NewPar-
tialRules lists are reused after each iteration. During
specialization, the best rule obtained is stored and
returned at the end of the procedure. In RULES-3
Plus, the specialization process stops once a consist-
ent rule that covers the seed example has been
formed and this rule is taken as the best one. It
should be noted that consistent rules having a very
low coverage might be discovered in the early
stages of the rule generation process and stopping
the search process once a consistent rule has been
found might lead to the generation of non-optimal
rules. However, if the search process continues,
more general rules might be created.

The following sections discuss the key ideas under-
lying RULES-6 in greater detail.

3.1 Rule quality metric

Given that the rule induction process could be con-
ceived as a search process, a metric is needed to

"

estimate the quality of rules found in the search
space and to direct the search towards the best
rule. The rule quality measure is a key element in
rule induction. In real-world applications, a typical
objective of a learning system is to find rules that
optimize a rule quality criterion that takes both train-
ing accuracy and rule coverage into account so that
the rules learned are both accurate and reliable.

A quality measure must be estimated from the
available data. All common measures are based on
the number of positive and negative instances cov-
ered by a rule. Several different metrics are used in
the existing algorithms. These include purity (uti-
lized in GREEDY [30] and SWAP-1 [37]), information
content (employed in PRISM [38]), entropy (adopted
in the original version of the CN2 algorithm [16]), the
metric applied in RIPPER [18], and accuracy (used in
I-REP [39] and PROLOG [40]). The problem of the
first four measures is that they attain their optimal
values when no negative instances are covered. For
example, a rule r; that only covers one positive
instance scores more highly than a rule r, covering
999 positive instances and one negative instance.
Also, they do not aim to cover many positive
instances. For example, a rule 5 that covers 100 posi-
tive and 10 negative examples is deemed of identical
value to another rule r, that covers 10 000 positive
and 1000 negative examples. As a result, these
metrics tend to select very specific rules covering
only a small number of instances. This is undesirable
as rules covering few instances are unreliable,
especially where there is noise in the data. The accu-
racy of these rules on the training data does not ade-
quately reflect their true predictive accuracy on new
test data. The problem of the accuracy measure, as
pointed out by Cohen [18], is that this measure
sometimes does not lead to a satisfactory behaviour.
For example, it favours a rule rs that covers 2000
positive and 1000 negative examples over a rule rg
that covers 1000 positive and only one negative
example.

One of the popular metrics that penalize rules with
low coverage is the Laplace accuracy estimate (used
in CN2 [17]), COVER [41, 42], and several other
algorithms). The Laplace formula is given by

Nelas 1
LaplaceAccuraCy(nclass’ncoveremk) = L (1)
Neovered T k

where k is the number of classes, ., is the number
of positive instances covered by the rule, and 7¢oyereq
is the number of instances covered by the rule. The
Laplace function balances accuracy against general-
ity. In general, it prefers rules that cover more posi-
tive instances over rules that cover fewer instances
and also prefers rules with a lower proportion of
the cover that is negative over those for which that

C15804 © IMechE 2005

iRk

" Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

1124 D T Pham and A A Afify

proportion is higher. Segal [43] showed that the
Laplace estimate has the desirable property of
taking into account both accuracy and coverage
when estimating rule accuracy. However, it has a
problem when learning rules with less than 50 per
cent training accuracy. The Laplace estimate does
not satisfy the requirement that the rule quality
value should rise with increased coverage. Cestnik
[44] also conducted experiments in four medical
domains and his results indicated that the Laplace
accuracy estimate was often unrealistic, especially
in multi-class decision problems. This occurred
because of the assumption that underlies Laplace
accuracy estimate, namely, the a priori distribution
is uniform.

A more general version of the Laplace estimate,
called the m-probability-estimate, has been devel-
oped by Cestnik [44] and is defined as follows

n mPy (G
mAccuraCy(nclasssncoveredak) = M (2)
Neovered + M

where Py(C,) is the a priori probability of the target
class C; and m is a domain dependent parameter.
The value of m is related to the amount of noise in
the domain. m can be small if little noise is expected
and should increase if the amount of noise is sub-
stantial. The Laplace estimate can be obtained from
the m-probability-estimate when m is set to k, the
total number of classes, and Py(C,) is assumed to be
uniform. It should be noted that the m-probability-
estimate generalizes the Laplace estimate so that
rules that cover no instances will be evaluated with
the a priori probability instead of the value 1/k,
which is more flexible and convenient.

The performance of the H measure and the seven
quality measures mentioned earlier when used with
the RULES-6 algorithm was evaluated empirically
[45]. The evaluation was carried out on a large
number of data sets and the results showed that
the m-probability-estimate outperformed the other
measures. Therefore, RULES-6 employs the
m-probability-estimate (equation (2)) to select the
best rule (step 4 in Fig. 2) and to decide on the best
specializations to retain (step 14 in Fig. 2) after
each specialization step. In RULES-6, the m value is
set to k and the a priori probability Py(C,) is assumed
to be equal to the training accuracy of the empty rule
that predicts the target class, namely

Po(C) = % 3)

where n¢, is the number of instances in the target
class C; and N is the total number of instances in
the training data set. This version of the Laplace
accuracy estimate is a good choice because it has a

strong theoretical background [46] and it meets the
requirements of a good estimation function.

For the examples mentioned earlier, if it is
assumed that k equals 2 and that both the total
numbers of positive and negative instances are
equal, the rule r; that only covers one positive
instance scores 0.667 and the rule r, that covers 999
positive instances and one negative instance scores
0.998. Scores of the rules 13, 14, 15, and rg with positive
and negative coverages of (100, 10), (10 000, 1000),
(2000, 1000), and (1000, 1) are 0.902, 0.909, 0.667,
and 0.998, respectively. Therefore, rules r,, r4, and
r¢ are considered better than rules r;, r3, and rs,
which seems intuitively correct. This indicates that
the m-probability-estimate prefers rules that cover
many positive instances and few negative instances,
thus being biased towards finding general rather
than more specific rules.

3.2 Search-space pruning rules

The size of the search space for inducing one rule
grows exponentially with both the number of attri-
butes used to describe each instance and the
number of values allowed for each attribute. More-
over, the iterative nature of rule induction algorithms
suggests that the computational requirements would
be high on large data sets even with the reduced
search spaces considered by algorithms such as
RULES-6. Therefore, an efficient search method is
essential in order for a learning algorithm to handle
large data sets.

The search space can be efficiently organized by
taking advantage of a naturally occurring structure
over the hypothesis space that exists for any classifi-
cation learning problem - a general-to-specific
partial ordering of hypotheses [47]. This structure
implies that all specializations of a rule cover a
monotonically decreasing number of positive and
negative instances. This organization property pro-
vides a powerful source of constraints on the
search performed by the RULES-6 algorithm.
RULES-6 constrains the search space by employing
the four pruning rules listed in Table 1. These prun-
ing rules remove portions of the search space that do
not maximize the quality measure, thus significantly
speeding up the search process. Although the rules

Table1 Search-space pruning rules employed by RULES-6

(1) If Covered_Positives (r) < MinPositives Then Prune (1)
(2) If Covered_Negatives (r)—Covered_Negatives
(r) < MinNegatives Then Prune (1)
(3) If Consistency (r) = 100% Then Prune (r)
(4) If Optimistic_Score (1) < Score (BestRule) Then Prune (r)

' is any specialization of rule r and Prune (r) indicates that the
children of r should not be searched.

Proc. IMechE Vol. 219 Part C: J. Mechanical Eungineer‘i;;;g, Science

C15804 © IMechE 2005

http://pic.sagepub.com/

A simple rule induction algorithm 1125

removed by the pruning rules are relatively poor
rules, pruning rules improve performance without
affecting the quality of the learned rules.

The effectiveness of these pruning rules depends
upon how efficiently they can be implemented and
upon the regularity of the data to which the search
is applied. The remainder of this section describes
the pruning rules in detail.

The pruning rules in Table 1 are derived from the
following ideas. As the aim of specialization is to
find a rule that maximizes the quality measure,
further specialization of a rule can be stopped the
moment it becomes clear that additional specializ-
ation will not improve the quality measure for the
rule. Furthermore, in order to reduce the number
of specialization steps and thus speed up the learn-
ing process, a rule ought to be an improvement
over its parent. If this is not the case, the rule
should not be further specialized. Finally, as only
one solution is sought, further specialization of a
rule can be terminated when it cannot improve on
the current best rule.

The first pruning rule (step 5 in Fig. 2) is used to
stop further specialization when the number of posi-
tive instances covered by a rule is below a threshold
(MinPositives) and thus can be viewed as implement-
ing a form of prepruning. Such specializations are
deemed ineffective as the goal is to find rules that
cover as many positive instances as possible. In
RULES-6, MinPositives is a user-specified parameter.
The value of this parameter should be kept low,
especially in domains that are free of noise, to
avoid generating over-simplified rule sets. An appro-
priate empirical range for this parameter is between
1 and 5. This pruning rule requires almost no
additional overhead to employ, as the number of
positive instances covered by a rule must, in any
case, be determined to calculate its accuracy. Section
4.1 gives empirical evidence that this pruning rule
reduces the learning time of RULES-6 without
decreasing the accuracy of its rule sets.

The second pruning rule (step 6 in Fig. 2) discards
descendants of a rule that does not exclude at least
some new negative instances. A rule that does not
remove any new negative instances is deemed inef-
fective as either it excludes positive instances only
or it keeps the covered instances unchanged. With
greater values of the minimum number of removed
negative instances (MinNegatives), this pruning
rule ensures that each specialization step changes a
rule significantly. As a result, part of the search
space can be eliminated in the early stages of the
rule specialization process, which speeds up the
execution of the algorithm. In RULES-6, MinNega-
tives is a parameter of the algorithm that can be
specified by the user. An appropriate empirical
range for this parameter is between 1 and 5. As is

"

the case for the first pruning rule; no additional over-
head is required to employ this pruning rule as the
number of negative instances covered by a rule
must be determined for the quality measure. Section
4.1 shows that this pruning rule improves the quality
of the generated rules and speeds up the execution of
the algorithm.

The third pruning rule (step 7 in Fig. 2) avoids
expanding rules that have become consistent. The
reason is that any further specialization will only
decrease the number of positive instances covered
by these rules and therefore yield lower values for
the quality measure. It should be noted that the
best overall rule will still be returned because the
best rule is retained after each specialization step.
Again, no additional overhead is required to use
this pruning rule. Section 4.1 demonstrates the effec-
tiveness of this pruning rule.

The fourth pruning rule (step 10 in Fig. 2) removes
all specializations of a rule if its optimistic value of
the quality measure cannot improve on the current
best rule. The optimistic value can be determined
by observing that the specialization of a rule can
only make it become more specific and thereby
decrease the number of instances that it covers. As
the quality measure is highest when positive cover
is maximized and negative cover is minimized, a
simple optimistic value is obtained by determining
the quality measure of a rule with the same positive
cover as the current rule but with a negative cover
of zero. If this value is lower than that for the current
best rule, specialization is terminated because none
of the rule specializations can improve on the current
best value. Section 4.1 confirms that this pruning rule
improves the quality of the rule sets of RULES-6
substantially and reduces its learning time.

Clearly, the effectiveness of this pruning rule
depends on the value of the current best rule. In
general, the larger the best rule value, the greater
the search space that can be removed. As a result,
the implementation of the fourth pruning rule is
delayed until the best overall rule in the current
specialization step is determined. In this way, the
performance of this rule is maximized. It should be
noted that when all rules at a certain specialization
level satisfy any of the aforementioned pruning
rules, the PartialRules set becomes empty. This
terminates the search for the best rule (step 2 in
Fig. 2).

The pruning rules discussed earlier only remove
specializations of rules that are guaranteed not to
be a solution. The effect of these rules can be maxi-
mized on the basis of the following ideas. If it can
be determined that an attribute value used to
specialize a certain rule in the search space cannot
lead to a solution, then it follows that no solution
can result from the application of such an attribute

C15804 © IMechE 2005

iRk

" Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

1126 D T Pham and A A Afify

value to the other specializations of this rule. This
can be justified as follows. Consider the rule
r=AA C— target class, where condition C is used
to specialize a conjunct A. Let p=AABAC—

target class be another rule where conditions B and
C are successively used to specialize the same con-
junct A. If rule r resulting from the application of
condition Cto conjunct A does not cover any positive
instances, then it follows that rule r will not be con-
sidered for further specialization according to the
first pruning rule. Furthermore, as conjunct A A B is
a specialization of conjunct A, it must cover fewer
instances than those covered by A. As a result, rule
p resulting from the application of condition C to
conjunct A A B will also not cover any positive
instances and consequently rule p should also be
excluded from further specialization.

A similar argument demonstrates that if the
application of condition C to conjunct A causes rule
r to be discarded according to any of the other prun-
ing rules in Table 1, then it follows that rule p should
also be discarded as it covers a subset of instances
covered by rule r.

The aforementioned idea can be implemented by
maintaining and manipulating for each rule, r, a sep-
arate list containing all possible attribute values,
r.ValidValues, that can be applied in the search
space below r. Initially, the list contains all the nom-
inal attribute values. A rule is specialized only by
appending values to it, provided that the attributes
of such values do not already appear in the rule.
Each value that is appended to a rule is removed
from its r.ValidValues list. When the rule is special-
ized, the values are examined to determine if any
values can be pruned away. Any values that can be
pruned away are deleted from r.ValidValues to pre-
vent the unnecessary construction of ineffective
specializations at subsequent specialization steps.
New rules are then created for each of the attribute
values remaining in r.ValidValues.

3.3 Discretization method

As most real-world applications of classification
learning involve continuous-valued attributes, prop-
erly handling these attributes is important. Discreti-
zation of the data is one possibility. The usual
approach to discretization of continuous-valued
attributes is to perform this discretization prior to
the learning process [48-52]. First, all continuous
attributes in the data are discretized to obtain a dis-
crete data set. Then, learning algorithms are applied
to this discretized data set.

Several prior discretization methods have been
developed. The equal-width method proposed by
Wong and Chiu [53] and used in the RULES-3 Plus

algorithm is perhaps the simplest discretization
procedure. It simply involves dividing the range of
a continuous variable into [equal intervals, where [
is a user-defined parameter. As the equal-width
approach considers neither the distribution of the
values of the continuous attribute nor the depen-
dency between the class label and the continuous
attribute, it is likely that classification information
will be lost as a result of combining values that are
closely associated with different classes into the
same interval. Furthermore, the number of intervals
has a strong impact on performance. If too many
intervals are specified, the learned model will be
complex. If too few intervals are specified, infor-
mation that can be used to distinguish instances
will be lost.

The 1R Discretizer method introduced by Holte
[54] is a simple example of supervised discretization.
This method first sorts the values of a continuous
attribute in ascending order and then puts instances
having equal values or having the same class label
into one interval. Adjacent intervals can then be
merged if they share the same majority class label.
To avoid too many intervals being generated, each
interval must include at least a prespecified
number of instances.

A number of entropy-based discretization algor-
ithms have been developed [55,56]. They are
mostly inspired by Quinlan’s decision tree induction
algorithms ID3 and C4.5 [6, 7]. The method of Fayyad
and Irani [56] is similar to that of Catlett [55], but
employs an elegant test based on the minimum
description length (MDL) principle to determine a
stopping criterion for the recursive discretization
strategy. Moreover, the method takes advantage of
the fact [57] that the optimal cut points when discre-
tizing a continuous attribute using an average class
entropy evaluation function can only be selected
from a set called the boundary points. This can be
used to improve the efficiency of the discretization
algorithm, where the algorithm need only examine
the boundary points of each continuous attribute
rather than all its distinct values.

The aforementioned methods are heuristic
techniques and, therefore, they cannot guarantee
finding the optimal discretization. However, their
efficiency makes them attractive choices in practical
applications. In recent years, several optimization
techniques for discretization of continuous-valued
attributes have been developed [58-63]. The opti-
mum discretization method of Cai [63] is an efficient
algorithm using an evaluation function based on the
MDL principle. The optimal number of intervals is
obtained by searching only the boundary points’
search space of each continuous attribute and
selecting those points that optimize the evaluation
metric.

Proc. IMechE Vol. 219 Part C: J. Mechanical Eungineer‘i;;;g, Science

C15804 © IMechE 2005

http://pic.sagepub.com/

A simple rule induction algorithm 1127

The experimental results of many studies [63-66]
have indicated that the choice of a discretization
method depends on both the data to be discretized
and the learning algorithm. The performance of the
four discretization methods mentioned earlier
when used with the RULES-6 algorithm was evalu-
ated empirically [45]. The evaluation was carried
out on a large number of data sets and the results
showed that the performance of the RULES-6 algor-
ithm significantly improved when continuous-
valued attributes were discretized using the entropy
method. As a result, this discretization method is
adopted for use with RULES-6.

4 EMPIRICAL EVALUATION OF RULES-6

This section reports on a series of experiments to
assess the performance of the RULES-6 algorithm.
First, an empirical evaluation of the pruning rules
of RULES-6 was presented. Experiments were
conducted to explore the relative contribution of
each of these rules to the performance of the algor-
ithm. Second, RULES-6 was compared with its
immediate predecessor RULES-3 Plus and with the
well-known inductive learner C5.0, which is probably
the best performing induction algorithm commer-
cially available.

Three criteria were used to evaluate the perform-
ance of the tested algorithms, namely, classification
accuracy, rule set complexity, and execution time.
Classification accuracy is obviously the most import-
ant criterion in most induction tasks. It is defined as
the percentage of instances from the test set that
were correctly classified when the rules developed
from the corresponding training set were applied.
The complexity of a rule set is commonly measured
by the total number of rules or total number of con-
ditions in that rule set. The assessment of the
execution time is more difficult because of uncer-
tainties in computer systems. The time measures
considered here are the total CPU time in seconds
and the number of rules evaluated during the
search process. All execution times were obtained
on a Pentium IV computer with a 2.4 GHz processor,
512 MB of memory, and Windows NT 4.0 operating
system.

In order to draw reliable conclusions about the
behaviour of the learning algorithms, 40 data sets
(listed in Table 2) were considered. All data sets
were obtained from the University of California at
Irvine (UCI) repository of machine learning data-
bases [67]. These data sets are commonly used to
evaluate machine learning algorithms. They are
representative of many different types of classifi-
cation learning problems. They differ in the
number of learning instances that are available, the

"

degree of noise in these instances, the number of
classes and the proportion of instances belonging
to each class, the number of nominal and conti-
nuous-valued attributes used to describe the
instances, and the application area from which the
data were obtained.

In the experiments conducted in this study, the
hold-out approach was used to partition the data
into training and test data [68, 69]. For large data
sets with more than 1000 instances, each set was
randomly divided once into a training set with two-
thirds of the data and a test set with the remaining
one-third. For small data sets with fewer than 1000
instances, the previously described procedure was
repeated 10 times and the results were averaged.

4.1 Evaluation of the search-space pruning rules

To evaluate the relative effectiveness of each of the
search-space pruning rules given in Table 1, the
RULES-6 algorithm was employed to find rule sets
using first none of the pruning rules and then using
each individual rule. Results are also reported for the
case where all pruning rules were employed. In this
experiment, the data sets from Table 2 were used
and the beam width, MinPositives, and MinNegatives
parameters were set to 8, 2, and 1, respectively.

Table 3 presents the number of rules explored for
each search method. Also given is the percentage
by which the number of rules examined is reduced
by the addition of each pruning rule. This equals
(a— b)/b*100, where a is the number of rules
explored when no pruning rules were applied and b
is the number of rules considered using the added
pruning rule(s). A rule is deemed to have been
examined if it is generated at step 3 of the RULES-6
algorithm (Fig. 2).

As can be seen, the addition of each pruning rule
reduced the number of rules that RULES-6 had to
process for all the data sets. Further, in many cases,
the magnitude of this reduction was very large. For
example, for the Sonar data set, the number of
rules to explore dropped by 99.4 per cent (from
282 406 to 1823) when all the four rules were applied.
It is also notable that the second pruning rule has the
largest impact on the number of rules examined. The
order of importance of the remaining pruning rules
appeared to be as follows: fourth pruning rule
(most important), first pruning rule, and third
pruning rule (least important).

Table 4 shows the execution time in CPU seconds
for each additional pruning rule. The percentage
reduction in the execution time for each search
method is also indicated. For all the data sets, the
addition of the pruning rules resulted in a decrease
in computation time. It is worth noting the

C15804 © IMechE 2005

iRk

" Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

1128 D T Pham and A A Afify

Table 2 Summary of the data sets used in the experiments [67]

Number of Number of nominal Number of continuous Number of
Data set name instances attributes attributes classes
Abalone 4177 1 7 29
Adult 48 842 8 6 2
Anneal 898 32 6 6
Australian 690 8 6 2
Auto 205 10 15 6
Balance-scale 625 0 4 3
Breast 699 0 10 2
Breast-cancer 286 9 0 2
Car 1728 6 0 4
Chess 3196 36 0 2
Cleve 303 7 6 2
Crx 690 9 6 2
Diabetes 768 0 8 2
German 1000 13 7 2
German organization 1000 12 12 2
Glass2 163 0 9 2
Heart-disease 270 0 13 2
Heart-Hungarian 294 5 8 2
Hepatitis 155 13 6 2
Horse-colic 368 15 7 2
Hypothyroid 3163 18 7 2
Ionosphere 351 0 34 2
Iris 150 0 4 3
Lymphography 148 15 3 4
Monkl1 556 6 0 2
Monk2 601 6 0 2
Monk3 554 6 0 2
Mushroom 8124 22 0 2
Promoter 106 57 0 2
Satimage 6435 0 36 6
Segment 2310 0 19 7
Shuttle 58 000 0 9 7
Sick-euthyroid 3163 18 7 2
Sonar 208 0 60 2
Soybean-large 683 35 0 19
Splice 3190 61 0 3
Tic-tac-toe 958 9 0 2
Tokyo 961 0 46 2
Vehicle 699 0 18 4
Vote 435 16 0 2

computation times for the Anneal, Chess, Hypothyr-
oid, Ionosphere, Promoter, Sick-euthyroid, Sonar,
Soybean-large, and Tokyo data sets.

Table 5 presents the complexity of the rule sets
generated with each of the pruning rules. The per-
centage reduction in the number of conditions
obtained with each experiment is also given.
Table 6 shows the classification accuracies obtained
with each of the pruning rules. The percentage
increase in the classification accuracy achieved
with each condition is also given. A number of results
are notable. First, the application of the third and
fourth pruning rules resulted in a minor increase in
the complexity of the rule sets. Second, the other
pruning rules caused a large reduction in the com-
plexity of the rule sets and this reduction resulted
in an improved classification accuracy in most
cases. For example, for the Satimage data set, the
number of conditions dropped from 1909 to 664,
whereas the accuracy increased from 82.0 to 82.9
per cent when all the pruning rules were employed.

4.2 Comparison with RULES-3 Plus

This section describes an empirical study to
compare RULES-6 with RULES-3 Plus. Table 7 lists
the results obtained. As can be seen from the table,
the performance obtained by RULES-6 was impress-
ive. There were considerable improvements in
classification accuracy for 25 data sets. For data
sets Abalone, German-organization, Glass2, Heart-
Hungarian, Hepatitis, Horse-colic, Lymphography,
Shuttle, Sick-euthyroid, and Vehicle, the improve-
ments were more obvious. The accuracy degraded
for 11 data sets. For the remaining four data sets,
equivalent results were obtained. It can also be
seen from the table that RULES-6 produced much
more compact rule sets than RULES-3 Plus. The
total number of rules decreased by 88.5 per cent
(from 11 654 to 1342). Also, the total number of
conditions dropped by 95.7 per cent (from 101 787
to 4361). The reduction in the number of rules and
number of conditions for the Adulr data set is

Proc. IMechE Vol. 219 Part C: J. Mechanical Eungineer‘i;;;g, Science

C15804 © IMechE 2005

http://pic.sagepub.com/

1129

A simple rule induction algorithm

1'S6 162 6L 10¢€ V'LE 9756 I'i8 6.8¢ 9'6L 911€ 6€¢ G1 9JOA
818 €0¢6 oAy cce 6e g6l 8L 07 €9 €29 81 1'cs L8C ¥¢C 699 0G S[JIYIA
L6 8679 092 L16 ¥S €Ge 181 871 G'¢6 8L¢ L1 9°€9 €vv €8 Gv0 6¢2¢ oo,
67§ 6281 'Sy L8¢¢C I'st GEGE (A% 18.¢ '8¢ 186¢ €91v 90]-01)-01],
€8 167 611 €69 G96 90¢ 0'1€E 6.¢ G9V 469 28¥ S0¢ 29 968 €5¢ 799 ¥29 2o11dg
G'g6 .69 6'9L G16 6€ 7oy 91IL 16 1’68 6¢L91 G'6€ 186 ¢6 96 €G1 ogre[-ueaqlog
766 €281 €6¢ 0v0 I1¢ 6L Y01 09¢ 1’66 06S¢ 9’1y €90 991 90¥ ¢8¢ Teuos
S'v6 L0S€E 8'ce 76 87 9'€l 1LL VS 616 LV1S 607 Gy LE 86€ €9 PIOIAYINS-YOIS
Vvl €96¢ 0°0L 0LvE €¢S 8059 029 C6EY 861 cLc6 VGG 11 anys
8C6 gees 8'GL 628 L1 7oV 08¥ 6€ 9vL el 8l €€9 V¢ L¢ 709 €L Juew3as
€06 GGLGL "6 €26 €61 6°0€ 960 8€S v'vs G9¢ GS€ T'LL CIS 8L 90T 622 ogewneg
886 L0L1 7'96 9€67 L8 VLL LT G'96 06L7 6°G6 LS 708 8€1 Iajowold
L.8 S08¥ 7'8L GEV8 8'1¢ 698 81 I'16 197€ (A4 L1¢ 8€ 680 6€ woorysnjy
€08 0ce 0'8¥% GEE (A s 911 699 9¢CI €99 9 SJUON
08¢ L6€EC g6 110€ LC 8€¢cE 66 866¢ 9'1¢ 809¢ 8¢EE UON
gce 9€8 0'0€ 2198 (A GLTT v 8811 (At €901 6€cl TUON
868 LYSI €69 vL9¥ 0'Tv 9,68 9'¢8 069¢ G§'99 96¢S 81¢ Gl Aydersoydudy
L'99 0¢ 0°99 Ic 0°G€ 6€ L91 0§ 00 09 09 SH]
1'.6 ¥8¢c G'LL €98 L1 *NAY LEL SV 2'€6 VLES 029 CLIVE S¥S 6L araydsouog
96 1L1¢ 1'9€ 916 9€ L'61 48 Gv 0¢6 L9S¥ o4 |VANAN L1 LS proidyrodAiyg
906 0622 8'0L 961 ¥¢ 6LV VEL €V 6L veC Ll 9’6 186 91 clL¢8 O1[09-9S10H
L'S6 166 9L 0089 0S¥ 68S ¢1 6’16 8¥8I1 Ly G6.LG 128 7¢¢ snnedoy
9’16 802 oy 6509 I'L1 8102 8'6. 80L1 1'8G 166€ G978 uenreSuni-1esq
6.8 2021 Ve Gas9 8¢l 1698 8'¢8 €191 €ve 6759 €966 MeaHq
696 144 9°0¢ 78 8¢l L26 €6 19 v'le cLL €901 ¢SSO
1'88 LVE 61 8'¢€¢ 8¢ €Cl 08 166 871 608 G628 0€ 6'7v ¥¢c 68 616 191 UONEZIUBSIO UBULIDY)
L'88 799 91 6'87 181 62 8'€¢ 8.6 TT1 €€eL GG¢ 6€ 129 VLL SS 600 LV ueue)
L'LL ¢se 97 ¥0S1 |4 Va1 992 89€ 00 961 9261 s9jaqeld
9'6L Sv9L g'6¥ 188 81 6°€C G8¥ 8¢ (A1) ¢I0 €l L'v9 c0c €l 01V LE X1D
€68 €0G1 €69 S0€9 '8¢ €¢I 01 9'GL 1¥ve 979 166¥% 960 ¥1 9A9D
G'16 G66 L1 6°€S 187 L6 ¢91 6GT LLT G'88 6Icve 6'9€ 9¢€ €E1 67¥ 11¢ $SIaYD
0LV 9291 8¢l G29¢ e 966¢ 9€ LG6¢C 61V V8LI1 690€ &)
(A7) €0L1 08¢ S9¢y 6'1¢ 0L€S Vv ¥89¢€ €0L £€V0¢C 9289 Iadued-Isealg
688 89¢€ L9 ¢L01 8'GE 8¢lIc 8'¢L 898 6'1S 76S1 L1€€E 1searg
g 961 (A4 861 00 991 00 91 00 991 991 d[eds-aduereqg
816 (440 €79 81 €1 qve 161 ¥¢ G'e8 LVY9 VLY 9¢v 61 116 9€ omy
¥'e8 001G 'Sy ¥€6 G1 I've 1v0 ¢¢ 979 28¢ 01 29 0€6 01 670 62 uelensny
096 0€LE 9’18 69V GV 9'v¢ LG8 0L 1'g6 8¢97 0'v¢ SIv 1L 896 €6 [eauuy
€1L L¥8 8¢ €'6e 6.6 79 |4 11C LL 8Ly VeV ¢S g'18 8G9 8¥ 1.€ 001 Impv
€€9 08¥1 8'1€ vSLe ¢S L28¢€ gl 1€S€ L'€ES 1281 LEOY auoreqy
uonoNpayy, loqumny ~ UondNpayy, IoqunN UONONPaYYy% ~ IoquNN ~ UONONpay% Iaquny UONONpayy JaquinN IaquunN Jureu 1as eje(
somna Surunid pappe pappe pappe pappe soma Surunid

e yim 9-SH'INY

(%) a1 M 9-SHTNY

(€) /I yim 9-SHTNY

(2) a1 Ym 9-S9'1NY

(1) a1 m 9-SH'1NY

ou M 9-SH'TNY

pOoYIoW YoI1eas Yoea 10J paIo[dxa sa[nl jo Ioquinu [ejo], € d[qeL

fr Aprit-4;

£

ty

afdiff-or

Science

gineering

J. Mechanical En

Proc. IMechE Vol. 219 Part C

at

froft

C15804 © IMechE 2005

http://pic.sagepub.com/

D T Pham and A A Afify

1130

0°0S ! 0°09 ! 0°09 ! 0°0g ! 0°0s ! 4 9JOA
0'GL € L1y L L91 0T €89 S 0°0S 9 ¢l S[JIUSA
L6 4 9vL 81 8'0¥% (44 1°06 L 7'€9 9¢ 12 oo,
00 ! 00 1 00 ! 00 ! 00 ! T 90)-01)-01],
198 LEC L'LL 6LE 0'1€ €LTT 1'8L €LE 969 91§ 0041 9o11ds
L'16 € 0°SL 6 68€ (44 €€8 9 1'9¢ €¢ 9€ ogre[-ueaqhog
0°001 0 v've 69 7’9 €L L'86 ! 01y 9¥ 8L Teuos
SR L G881 88 T'Il 96 L°06 0T 1'9¢ 69 801 PIo1AyINa-YOIS
8'1L 06 €89 101 8'09 LST 8'€¢ €ve €'1e 61¢ 61€ apnys
6'88 S I'iL €l vy 14 8'LS 61 8'LS 61 474 Jjuow3as
0'88 74 7oL 289 0'1€ L8G1 v'LE 184741 0'€L 29 10€¢ ogewnes
0°001 0 8'G6 ! L'16 4 866 ! 866 ! 4 Iajowold
6'C8 9¢ L'GL LE L'y 78 9'LL ve 00 ¢St ¢SI wooIysnj
00 0 00 0 00 0 00 0 00 0 0 EJUOIN
0°001 0 00 ! 0001 0 00 ! 0001 0 ! UON
00 0 00 0 00 0 00 0 00 0 0 PUON
0°001 0 0°001 0 00 1 0°001 0 0001 0 1 Ayderdoyduwd
00 0 00 0 00 0 00 0 00 0 0 SH]
8'€6 ! €18 € 0°08 8 G'.8 4 €98 L 91 araydsouoy
€66 S 0ve 0L 6°L1 L8 9'68 11 9'0¥% €9 901 proidyyodAH
606 ! €LC 8 7'9¢€ L 9°€9 14 LCL € 1T J1[09-9s10H
0°001 0 0°00T 0 0°0S ! 0°0S ! 0°0S ! 4 snnedoy
0°001 0 00 ! 00 ! 0001 0 0001 0 ! ueLeSUNH-}edH
0°00T 0 00 ! 00 ! 0°00T 0 00 ! 1 119
00 0 00 0 00 0 00 0 00 0 0 ¢SSO
0'98 L 0'ce 6€ 00 0S 092 ¢l 00V 0€ 0S uoneziuesIo Ueuen
8'¢8 9 6°Gv 0¢ 9'1¢ 6¢ G'6G ST 8'9¢ 91 LE ueuLsh
0°001 0 0°001 0 00 ! 0001 0 00 ! I s9jaqeId
A 4 6'Cv 14 €Vl 9 6Cv 14 T'LS € L XD
0°00T 0 00 I 00 ! 00 ! 00 ! 1 9A3[D
06 L€ €€g 81 961 6C€ 1'68 8¢ r'se €6¢ 06€ SSaUD
00 ! 00 ! 0001 0 00 ! 00 ! ! 1eD
0°001 0 0°001 0 00 ! 0001 0 0001 0 ! Iaoued-)sealq
0°001 0 0°00T 0 0001 0 0001 0 0001 0 ! Isealq
00 0 00 0 00 0 00 0 00 0 0 9[eos-aoueeyq
L'99 ! L'99 I €€e 4 2'99 ! €€e 4 € omy
€€8 ! 0°0S € L'91 S L'99 4 L'99 4 9 uelfensny
676 (4 €18 61 9'6e 6¢ €6 € 9'6e 6¢ 6¢ [eauuy
6°G9 LvL 0'8€ 09€1 9'1€ 00ST vy geel '8y LETT ¢61¢C npv
0°09 4 0'0¥% € 00 S 0°0¢ 14 009 4 S uoreqy
uononpay% (s) sy, uononpay% (s) auu], uononpay% (s) auu], uononpay% (s) auu], uononpay% (s) auur], (s) awur, QuIeu Jos ele(q
sana1 Surunid pappe pappe pappe pappe sana Surunxd
e ym 9-Sq1NY (P) o1 M 9-SHINY (€) a1 YPm 9-SHTINY (2) a1 ym 9-SHTINY (1) amI tPIM 9-SHTNY ou ym 9-SHTNY

POYIdW YOIeas Yorad I0J UIYE) SOWI UONNIAXY § d[qeL

frAprit4;

"

£

ty

C15804 © IMechE 2005

ience

Sc

froft

gineering

J. Mechanical En

Proc. IMechE Vol. 219 Part C

http://pic.sagepub.com/

1131

A simple rule induction algorithm

009 r44 00 s 00 g Gyl Ly 819 |4 GG 9107
gL 0¥l 00 6ze 00 gze A 022 gee 671 sze aIYaA
128 8v Le— ST1T Gy— L1T 662 6L gL 0L 411 ofyo[,
99 12 00 9. 00 9. €G- 08 99 L 9L 90}-08}-01],
L'y VLY zsE 185 01E Gz9 LLE 795 v'6b 8G¥ 906 do1dg
Ve ¥8 00 111 00 111 ¥'S S0T v'ee g It a81e[-ueaqhog
€9¥ 4% T1- €8 TI- €8 9'9¢ 4 0'6€ 0S 28 Teuos
G'9¢ gL 00 GIT 00 GIT A4 98 8v¢ GL GT1T PIOIATINS-XITS
G'g 801 80— 611 80— 611 89 011l 68 801 811 apInys
29¢ €Tl LT1— 081 00 LLT 00 LLT 6€e L11 LLT Juawsag
2G9 %99 1'ze 9621 0°1¢ LIET Gve 0521 G99 0%9 6061 a3ewnes
1'6€ i 00 €T 00 €T 0°€l 0C gey €1 €z 191001
0vE— 19 0¥ve— 29 097 — €L 002 o 00 0S 0S wooIysny
00 €T 00 €T 00 €T 00 €T 00 €T €T SJUON
0€T— cee 00 802 00 802 00 802 0€T— cee 802 DIUON
00 19 00 19 00 19 00 19 00 19 19 U0
A € 00 8¢ 00 8¢ 11— 9¥ 91¢ 9z 8¢ Ayderdoydwi
00 g 00 S 00 S 00 S 00 S S su]
iadd 0g 70z ¥ €6 6% 0°€l Ly cee 9¢ 7S a1aydsouo]
9'€s 97 TL— ¥0T TL— 201 90T LL L'€T i L6 proiAypodAyg
9¢ gzl 78— 21z 19— 802 g€l 691 A7 €1l 961 J1[00-9S10H
L'€S [o¥4 61 €g 61 €g 9Ch 1€ 6'1G 9z S snnedeap]
¥ 8z 00 4 00 s €Ll 54 vov € 43 uerresunH-1esq
881 9¢ 00 69 00 69 911 19 88T 95 69 1ROl
00T 6 00 01 00 o1 00 01 00T 6 01 Zsse
0'Z€ 61¢ G- 9.¥ 9¢— 987 4 147 (A4S 81¢ 69¥ uonezIue3Io UBULIDL
89¢ AR Lv— LTS 19— 128 9C-— 208 g'8¢ y0€ 76V uBWLION
00 oz 00 Y4 00 Y4 00 (o7 00 (o7 o4 s91RqeI
97¢ ovl Le— e LE— zee el 981 'ty 9z1 vie X1)
8'9% 05 00 ¥6 00 ¥6 €1e VL S1¥ GG 6 3D
cee i 8- 0ve €9— 9¢z 291 981 £z 891 7T ssoyD
g€z L€1 00 6L1 00 6L1 00 6L1 gee LE1 6L1 Ie)
9'¢ct 29 00 01T 00 011 GG ¥01 G'Gh 09 011l I9JUBD-)SEAIg
0°0€ 1z £e— 1€ 00 0€ 002 e cee 0z 0€ Jsealg
00 62 00 6C 00 62 00 6¢ 00 6¢C 6¢C a[eos-soueRy
86T 97 L6— 89 69— 99 91— €9 86T 9% 29 omy
7 601 G0 ¥4 50 ¥4 871 ¥81 vy 0z1 91¢ ueIRnNSNY
L8 rA7 L8~ 0S 18— 0S €Y 4% 0°€T (1} 9 [eoUUY
G'Ge 01¥ 90— 079 90— 0v9 T0— 1€9 G'Gg 01¥ 9¢9 Impy
e 0S 00 9. 00 9. €1 G/ 62€ 158 9. suoreqy
uononpay% ToquInN uononNpay% JoquInN uononNpay% IaquInN uononpay% IoquinN uononNpay% ToquInN IoquInN Qureu 1os Ble(
somni Surunid pappe pappe pappe pappe sona Suruni

e yim 9-SH'INY

(¥) a1 ym 9-SHTNY

(€) /I ynm 9-SHTNY

(2) a1 ym 9-SH1NY

(1) a1 ym 9-SH'1NY

ou M 9-SHTNY

POYIoW YOIBdS YOorad 10J pajeIausd suonIpuod Jo I9quInu [e10], S d[qeL

fr Aprit-4;

£

ty

afdiff-or

Science

gineering

J. Mechanical En

Proc. IMechE Vol. 219 Part C

at

froft

C15804 © IMechE 2005

http://pic.sagepub.com/

D T Pham and A A Afify

1132

00 966 00 966 00 966 80— 876 00 966 966 9107
0z— 1'89 00 G569 00 569 0Z— 189 re— ¥'29 669 IIYdA
20— 016 20 G'16 G0 L'16 - 006 00 €16 €16 ofyor,
00 8'86 00 8'86 00 8'86 €0— 786 00 8'86 8'86 90}-08}-01],
70 ¥'26 10 126 G0 56 80 826 71 £'€6 026 ao1ds
00 898 00 898 00 898 0% 706 96— 028 898 a81e[-ueaqhog
12 989 00 129 00 1'29 e 9'89 00 1'29 1'29 Teuos
70— 026 00 L6 00 L6 10 €6 I'v— €6 L6 PIOIAYING-)IIS
10 166 00 9'66 00 966 00 9'66 10 166 9'66 apINys
e1— 506 00 L'16 00 L'16 90— 16 80— 606 L'16 Juawsag
01 628 6C 78 ve 878 0'€¢ G¥8 1 0°€8 028 a3ewnes
T2— LG8 TL— LG8 T2— LG8 TL— LG8 0% — 9'88 €6 1910W0IJ
00 0001 10— 666 00 0001 00 0001 00 0001 0°00T wooIysny
00 1's6 00 1's6 00 1's6 00 1'S6 00 1'S6 1'S6 S[UON
L0] 00 878 00 878 00 878 L0 7’8 878 JIUOW
00 0001 00 0001 00 0001 00 0001 00 0001 0°00T DIUON
8y 088 00 078 00 0¥%8 ve— 028 8y — 008 0¥%8 Ayderdoyduwi
00 096 00 096 00 096 00 096 00 096 096 Su[
60 516 60— L'68 61— 6'88 8T €6 60 G516 906 a1eydsouo]
00 696 00 696 00 696 00 696 10 026 696 proiAmpodAy
61— 0°GL 00 S92 00 G9. 96 8°¢8 61— 0°SL G9. J1[00-9SI10H]
€z 978 00 128 00 128 €z 978 00 128 128 snnedoy
00 9'6. 00 96 00 9'6L €1 908 c1— 9'8L 96L uerredunp-1esay
00 ces 00 ces 00 c'es 00 ces 00 £'es €eg JIeaH
00 L 00 G¥L 00 L 00 (27 00 SV 7 Zsse
1 ¥ T1- L€l 70—) 8C—) ve— 8L 9%, UONBZIUBZIO URULIAY
12 0¥ 80 1'sL 80 'sL 12— 012 € 6L 5L uBUWLIon
00 ST 00 G1L 00 ST 00 G1L 00 STIL ST seeqeI(
€1 018 00 008 00 008 1 018 9°01— SIL 008 X1
00 18 00 18 00 18 00 18 T1- 08 718 Al
90 9'86 €0— L6 €0— L6 10— 6.6 20 786 086 ssoyD
90 78 00 1°€8 00 L'€8 00 L'€8 90 8 L'€8 Ie)
6'C LvL 00 9L 00 92L - 912 6C Ll 92 I90UBD-ISEAI
00 1's6 G- L6 00 1'¢6 71 ¥'76 60 0'¥6 1'¢6 JseaIg
00 9%9 00 9%9 00 9%9 00 9%9 00 9%9 9%9 9[eds-vouerey
A €29 T1- €29 ve 79 T'T 8¢9 v'e 7G9 1'€9 omy
G'1 LG8 G- 6€8 G0— 6€8 G- 0°€8 01— Geg Y8 uerEnNSNY
00 076 00 076 00 076 70— L'€6 I'1— 0°€6 0'¥6 [eauuy
€0—] 00 v'es 00 v'es 00 v'es 70— 1'e8 v'es IMpy
00 g6 00 GGz 00 GG 00 GGz 80— €'se (o7 auoreqy

9SBaIdUY, Q&&%UMHSUU/\ 9SBaIIUY, TNL%UNHSUU/\ 9SBaIdUlY, ?KL%U.NHSUQ/\ 9SBaIIUY, TNL%UN.:JUU/\ 9SBaIdUY, ?KHV%QNHSUU/\ QNL %umuﬂooz\ ouwIeu Jos ele(

sanI pappe pappe pappe pappe sona Surunid

Surunud e yum 9-SH1NY

(¥) a1 PIm 9-SH1NY

(€) oI ym 9-SHTNY (@) a1 m 9-SHINY

(1) a1 YPm 9-SH1NY

ou gnm 9-S4 1Ny

PO YOIeas Yord YIIM paurelqo SoI0BINOJE UONBOYISSE[D) 9 d[qel

frAprit4;

"

£

ty

C15804 © IMechE 2005

Science

froft

gineering

J. Mechanical En

Proc. IMechE Vol. 219 Part C

http://pic.sagepub.com/

A simple rule induction algorithm 1133
Table 7 Results for RULES-3 Plus and RULES-6
RULES-3 Plus RULES-6
Number CPU Number CPU
Accuracy Number Number of of rules time Accuracy Number Number of of rules time
Data set name (%) of rules conditions explored (s) (%) rules conditions explored (s)
Abalone 18.5 313 1947 26 853 28 25.3 21 49 1012 1
Adult 77.5 6686 70 144 1986 685 29938 83.1 118 395 16 193 415
Anneal 99.7 37 119 10119 3 93.3 16 45 1912 1
Australian 83.9 148 807 26 301 4 85.2 29 115 2892 0
Auto 62.3 48 94 5534 0 62.3 14 44 1582 0
Balance-scale 77.0 213 691 3341 1 64.6 11 29 155 0
Breast 95.7 40 94 2023 1 92.3 10 20 257 0
Breast-cancer 68.4 86 284 5674 1 72.6 26 74 1311 0
Car 88.4 165 801 7826 2 84.2 44 137 1374 1
Chess 99.0 108 2164 176 109 347 98.5 31 141 8728 19
Cleve 777 33 73 2214 0 82.2 17 48 913 0
Crx 80.0 142 863 30277 4 79.5 34 119 3624 1
Diabetes 66.8 190 739 12 399 2 71.5 12 25 305 0
German 70.9 247 1043 57 120 13 75.7 77 289 8402 3
German 66.4 252 1381 90 770 29 76.6 58 286 9684 3
organization

Glass2 69.1 46 154 2894 0 78.2 5 8 43 0
Heart-disease 81.1 60 158 4985 1 83.3 16 52 725 0
Heart-Hungarian 72.4 48 196 5611 1 79.6 11 28 396 0
Hepatitis 61.5 25 47 2023 0 82.7 11 29 519 0
Horse-colic 75.0 91 223 12 526 1 80.9 31 105 3902 1
Hypothyroid 94.9 138 1743 88 221 164 95.5 17 44 1000 2
Ionosphere 92.3 48 94 7654 2 94.0 15 38 1588 1
Iris 94.0 13 25 122 0 96.0 4 5 20 0
Lymphography 80.0 26 56 2431 0 86.0 15 37 882 0
Monkl 100.0 22 61 759 0 100.0 22 61 652 0
Monk2 98.8 262 1504 13709 1 83.6 47 174 1572 0
Monk3 95.1 12 23 270 0 95.1 12 23 263 0
Mushroom 100.0 25 37 1556 5 100.0 28 83 2779 14
Promoter 74.3 14 26 3481 1 77.1 9 14 1146 0
Satimage 82.0 915 7993 798 350 1943 82.8 196 666 42 926 155
Segment 90.5 172 1198 51 880 35 89.6 42 112 3136 3
Shuttle 91.7 63 289 4689 87 99.7 55 108 1927 60
Sick-euthyroid 89.4 195 3119 154 065 291 97.2 22 66 1678 3
Sonar 68.6 37 67 9293 1 70.0 13 39 921 0
Soybean-large 93.9 76 542 46 253 13 82.0 29 82 3953 1
Splice 91.8 239 1127 209 203 340 92.7 135 474 66 354 118
Tic-tac-toe 94.7 89 374 7970 1 97.8 29 101 1757 0
Tokyo 91.3 83 478 48 551 27 89.4 19 49 3673 2
Vehicle 59.6 214 875 42013 7 68.1 31 125 4032 1
Vote 97.0 33 134 4999 0 95.6 10 22 464 0
Total 3271.0 11 654 10 1787 3966 753 33294 3343.9 1342 4361 204 652 805

Bold figures indicate the best results.

particularly notable. The fewer and more general
rules created by the RULES-6 algorithm made it
much faster than RULES-3 Plus as indicated in
Table 7. The total number of evaluations fell by
94.8 per cent (from 3966 753 to 204 652) and this
was accompanied by a total reduction of 97.6 per
cent in the execution time from 33294 to 805s.
These results confirm that RULES-6 is more robust
to noise and more accurate than RULES-3 Plus.

4.3 Comparison with C5.0

RULES-6 was compared with C5.0 for the 40 data sets
listed in Table 2. C5.0 has a facility to generate a set of

pruned production rules from a decision tree. Table 8
presents the results for each algorithm on each data
set. In each case, the accuracy of the test data and the
complexity of the resulting rule sets are given. The
number of rules was taken as a measure of the com-
plexity of the rule set. A complexity of 1 was assigned
to the default rule.

It is clear from Table 8 that the accuracy obtained
by RULES-6 was, in total, higher than that of C5.0. In
addition, RULES-6 achieved higher accuracies for 19
out of 40 data sets, whereas C5.0 yielded better accu-
racies for 17 out of 40 data sets. Both algorithms
achieved similar accuracies for the remaining four
data sets. It is also clear from the table that, in
total, RULES-6 created fewer rules than C5.0.

o

C15804 © IMechE 2005

"
-at-Cardiif

Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

1134 D T Pham and A A Afify

Table 8 Results for RULES-6 and C5.0

C5.0 RULES-6
Accuracy Number Accuracy Number
Data set name (%) of Rules (%) of Rules
Abalone 23.4 522 25.3 21
Adult 86.4 100 83.1 118
Anneal 93.3 11 93.3 16
Australian 87.4 20 85.2 29
Auto 62.3 23 62.3 14
Balance-scale 81.3 19 64.6 11
Breast 95.0 9 92.3 10
Breast-cancer 75.8 17 72.6 26
Car 91.8 58 84.2 44
Chess 97.2 21 98.5 31
Cleve 77.2 13 82.2 17
Crx 84.5 23 79.5 34
Diabetes 70.7 14 71.5 12
German 72.7 15 75.7 77
German 71.8 17 76.6 58
organization
Glass2 69.1 9 78.2 5
Heart 78.9 12 83.3 16
Heart-Hungarian 74.5 7 79.6 11
Hepatitis 76.9 5 82.7 11
Horse-colic 83.8 10 80.9 31
Hypothyroid 94.8 5 95.5 17
Ionosphere 89.7 6 94.0 15
Iris 92.0 5 96.0 4
Lymphography 76.0 7 86.0 15
Monkl 100.0 17 100.0 22
Monk2 65.7 1 83.6 47
Monk3 100.0 6 95.1 12
Mushroom 99.8 10 100.0 28
Promoter 74.3 7 77.1 9
Satimage 86.9 118 82.8 196
Segment 93.4 24 89.6 42
Shuttle 99.9 12 99.7 55
Sick-euthyroid 90.4 8 97.2 22
Sonar 74.3 11 70.0 13
Soybean-large 93.4 32 82.0 29
Splice 92.7 60 92.7 135
Tic-tac-toe 92.2 34 97.8 29
Tokyo 92.3 8 89.4 19
Vehicle 69.9 46 68.1 31
Vote 97.0 5 95.6 10
Total 3328.9 1347 3343.9 1342

Bold figures indicate the best results.

However, with RULES-6, the number of rules was
lower for 10 data sets but higher for 30 data sets.
The smaller number of rules produced by C5.0 can
be attributed to the rule set (decision tree) pruning
techniques employed. Research is ongoing to
develop pruning techniques for the RULES-6 algor-
ithm. Overall, RULES-6 is very competitive when
compared with C5.0.

5 CONCLUSIONS AND FUTURE WORK

RULES-6 is an improved version of the RULES-3 Plus
algorithm. The innovation in RULES-6 is that it has
the ability to handle noise in the data, which is
achieved by employing a search method that

tolerates inconsistency in the rule specialization pro-
cess. This makes the rule sets extracted by RULES-6
both more accurate and substantially simpler than
those produced using RULES-3 Plus. RULES-6 also
employs appropriate search-space pruning rules to
avoid useless specializations and to terminate
search during rule construction, which substantially
increases the efficiency of the learning process.
Finally, RULES-6 adopts a very simple criterion for
evaluating the quality of rules and a robust method
for handling attributes with continuous values,
which further improves the performance of the
algorithm. The new features of RULES-6 make it
not only more robust and effective but also more effi-
cient, thus enhancing the usefulness of the algorithm
for applications involving very large data sets.

More work could be carried out to improve the
performance of the RULES-6 algorithm. Additional
rule-space pruning strategies could be considered
to increase the speed of the learning algorithm
further. Postpruning techniques could also be
used to reduce the error and complexity of the learned
rule set in a postprocessing phase. Finally, a method
for discretization of continuous-valued attributes
during the learning process could be considered.
Incorporating discretization into the learning
process has the advantage of taking into account
the bias inherent in the learning system as well as
the interactions between the different attributes.

ACKNOWLEDGEMENTS

This work was carried out within the ERDF (Objec-
tive One) projects ‘Innovation in Manufacturing’,
‘Innovative Technologies for Effective Enterprises’,
and ‘Supporting Innovative Product Engineering
and Responsive Manufacturing’ (SUPERMAN) and
within the project ‘Innovative Production Machines
and Systems’ (I*'PROMS).

REFERENCES

1 Braha, D. Data mining for design and manufacturing:
methods and applications, 2001 (Kluwer Academic
Publishers, Boston).

2 Monostori, L. ATl and machine learning techniques for
managing complexity, changes and uncertainties in
manufacturing. In Proceedings of the 15th Triennial
World Congress, Barcelona, Spain, 2002, pp. 119-130.

3 Pham, D. T. and Afify, A. A. Machine learning tech-
niques and their applications in manufacturing. Proc.
Instn Mech. Engrs, Part B:]. Engineering Manufacture,
2005, 219(B5), 395-412.

4 Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
C.). Classification and regression trees, 1984 (Belmont,
Wadsworth).

Proc. IMechE Vol. 219 Part C: J. Mechanical Eungineer‘i;;;g, Science

C15804 © IMechE 2005

http://pic.sagepub.com/

A simple rule induction algorithm

1135

5

10

11

12

13

14

15

16

17

18

19

20

21

Quinlan, J. R. Learning efficient classification procedures
and their application to chess endgames. In Machine
learning: an artificial intelligence approach (Eds R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell), 1983,
Vol. I, pp. 463-482 (Tioga Publishing Co., Palo Alto, CA).
Quinlan, J. R. Induction of decision trees. Mach. Learn.,
1986, 1, 81-106.

Quinlan, J. R. C4.5: Programs for machine learning,
1993 (Morgan Kaufmann, San Mateo, CA).

ISL. Clementine data mining package, 1998 (SPSS UK
Ltd., Surrey, UK).

RuleQuest. Data Mining Tools C5.0. Pty Ltd, 30 Athena
Avenue, St Ives NSW 2075, Australia, available from:
http://www.rulequest.com/see5-info.html, accessed 1
February 2003.

Mehta, M., Agrawal, R., and Rissanen, J. SLIQ: a fast
scalable classifier for data mining. In Proceedings of
the fifth International Conference on Extending data-
base technology, Avignon, France, 1996, pp. 18-32.
Shafer, J., Agrawal, R., and Mehta, M. SPRINT: a scalable
parallel classifier for data mining. In Proceedings of the
22nd International Conference on Very large data bases
(VLDB), Mumbai (Bombay), India, 1996, pp. 544—555.
Rastogi, R. and Shim, K. PUBLIC: a decision tree
classifier that integrates building and pruning. In
Proceedings of the 24th International Conference on
Very large data bases (VLDB), New York, USA, 1998,
pp. 404-415.

Michalski, R. S. On the quasi-minimal solution of the
general covering problem. In Proceedings of the fifth
International Symposium on Information processing
(FCIP 69), Bled, Yugoslavia, 1969, A3 (Switching Cir-
cuits), pp. 125-128.

Michalski, R. S., Mozetic, 1., Hong, J., and Lavrac, N.
The multi-purpose incremental learning system AQ15
and its testing application to three medical domains.
American association of artificial intelligence, 1986,
pp.- 1041-1045 (Morgan Kaufmann, Los Altos, CA).
Michalski, R. S. and Kaufman, K. A. The AQ19 system
for machine learning and pattern discovery: a general
description and user guide. Reports of the Machine
Learning and Inference Laboratory, MLI 01-2, George
Mason University, Fairfax, VA, USA, 2001.

Clark, P. and Niblett, T. The CN2 induction algorithm.
Mach. Learn., 1989, 3(4), 261-284.

Clark, P. and Boswell, R. Rule induction with CN2:
some recent improvements. In Proceedings of the
fifth European Conference on Artificial intelligence,
Porto, Portugal, 1991, pp. 151-163.

Cohen, W. W. Fast effective rule induction. In Proceed-
ings of the 12th International Conference on Machine
learning, Lake Tahoe City, California, USA, 1995, pp.
115-123 (Morgan Kaufmann, San Francisco, CA).
Cohen, W. W. and Singer, Y. A simple, fast and effective
rule learner. In Proceedings of the 16th National
Conference on Artificial intelligence, Menlo Park, CA,
1999, pp. 335-342 (AAAI/MIT Press, Menlo Park, CA).
Rivest, R. Learning decision lists. Mach. Learn., 1987, 2,
229-246.

Pham, D. T. and Aksoy, M. S. An algorithm for auto-
matic rule induction. Artificial Intelligence in Engineer-
ing, 1993, 8(4), 227-282.

"

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Pham, D. T. and Aksoy, M. S. RULES: a simple rule
extraction system. Expert Syst. Appl., 1995, 8(1), 59-65.
Pham, D. T. and Aksoy, M. S. A new algorithm for
inductive learning. J. Syst. Eng., 1995, 5, 115-122.
Pham, D. T. and Dimoyv, S. S. An efficient algorithm for
automatic knowledge acquisition. Pattern Recog., 1997,
30(7), 1137-1143.

Lee, C. Generating classification rules from databases.
In Proceedings of the Ninth Conference on Application
of artificial intelligence in engineering, PA, USA, 1994,
pp. 205-212.

Pham, D. T. and Dimov, S. S. An algorithm for incre-
mental inductive learning. Proc. Instn. Mech. Engrs,
Part B: J. Engineering Manufacture, 1997, 211, 239-249.
Pham, D. T., Bigot, S., and Dimov, S. S. RULES-5: arule
induction algorithm for problems involving continuous
attributes. Proc. Instn Mech. Engrs, Part C: J. Mechanical
Engineering Science, 2003, 217(C12), pp. 1273-1286.
Pham, D. T. and Dimov, S. S. An approach to concur-
rent engineering. Proc. Instn Mech. Engrs, Part B: J.
Engineering Manufacture, 1998, 212(B1), 13-27.
Jennings, N. R. Automated visual inspection of engine
valve stem seals. Internal Report, University of Wales
Cardiff, Cardiff, UK, 1996.

Pagallo, G. and Haussler, D. Boolean feature discovery
in empirical learning. Mach. Learn., 1990, 3, 71-99.
Domingos, P. A unified approach to concept learning.
PhD Thesis, University of California, Irvine, 1997.
Holte, R. C., Acker, L. E., and Porter, B. W. Concept learn-
ing and the problem of small disjuncts. In Proceedings of
the 11th International Joint Conference on Artificial intel-
ligence, Detroit, Michigan, USA, 1989, pp. 813-818.
Weiss, G. M. Learning with rare cases and small
disjuncts. In Proceedings of the 12th International
Conference on Machine learning, Lake Tahoe City,
California, USA, 1995, pp. 558-565 (Morgan Kaufmann,
San Francisco, CA).

Weiss, G. M. and Hirsh, H. The problem with noise and
small disjuncts. In Proceedings of the 15th Inter-
national Conference on Machine learning, Madison,
Wisconsin, USA, 1998, pp. 574-578 (Morgan Kauf-
mann, San Francisco, CA).

Frayman, Y., Ting, K. M., and Wang, L. A fuzzy neural
network for data mining: dealing with the problem of
small disjuncts. In IEEE International Joint Conference
on Neural networks (IJCNN-99), Washington, DC, 1999,
4, pp. 2490-2493.

Weiss, G. M. and Hirsh, H. A quantitative study of small
disjuncts. In Proceedings of the 17th National Confer-
ence on Artificial intelligence, Austin, Texas, 2000, pp.
665-670.

Weiss, S. and Indurkhya, N. Reduced complexity rule
induction. In Proceedings of the 12th International
Joint Conference on Artificial intelligence, Sydney,
Australia, 1991 pp. 678-684 (Morgan Kaufmann, San
Francisco, CA).

Cendrowska, J. PRISM: an algorithm for inducing mod-
ular rules. Int. J. Man-Mach Studies, 1987, 27, 349-370.
Fiirnkranz, J. and Widmer, G. Incremental reduced
error pruning. In Proceedings of the 11th International
Conference on Artificial intelligence, Amsterdam, The
Netherlands, 1994, pp. 453-457.

C15804 © IMechE 2005

iRk

" Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

1136

D T Pham and A A Afify

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Muggleton, S. Foundations of inductive logic program-
ming, 1995 (Prentice Hall, Englewood Cliffs, NJ).
Webb, G. Systematic search for categorical attribute-
value data-driven machine learning. In Al '94-Proceed-
ings of the sixth Australian joint conference on artificial
intelligence (Eds C. Rowles, H. Liu, and N. Foo),
Melbourne, 1993, pp. 342-347 (World Scientific,
Chicago).

Webb, G. OPUS: an efficient admissible algorithm for
unordered search. J. Artif. Intell. Res., 1995, 3, 431-465.
Segal, R. B. Machine learning as massive search. PhD
Thesis, Department of Computer Science and Engin-
eering, University of Washington, 1997.

Cestnik, B. Estimating probabilities: a crucial task in
machine learning. In Proceedings of the Third
European Conference on Artificial intelligence (ECAI-
90), Stockholm, Sweden, 1990, pp. 147-149 (Pitman,
London).

Afify, A. A. Design and analysis of scalable rule induc-
tion systems. PhD Thesis, University of Wales Cardiff,
School of Engineering, Systems Engineering Division,
Cardiff, UK, 2004.

Good, L.). The estimation of probabilities: an essay
on modern Bayesian methods, 1965 (MIT Press,
Cambridge, MA).

Mitchell, T. M. Machine learning, 1997 (McGraw Hill,
New York).

Ho, K. M. and Scott, P. D. Zeta: a global method for dis-
cretization of continuous variables. IEEE Trans. Knowl.
Data Eng., 1997, 9(5), 718-730.

Zighed, D. A., Rakotomalala, R., and Feschet, F. Opti-
mal multiple intervals discretization of continuous
attributes for supervised learning. In Proceedings of
the Third International Conference on Knowledge dis-
covery and data mining (KDD-97), Newport Beach,
California, USA, 1997, pp. 295-298 (AAAI Press, Menlo
Park, CA).

Frank, E. and Witten, I. H. Making better use of global
discretization. In Proceedings of the 15th International
Conference on Machine learning, Madison, Wisconsin,
USA, 1998, pp. 152-160.

Trautzsch, S. and Perner, P. Multi-interval discretiza-
tion methods for decision tree learning. In Advances
in pattern recognition (Eds A. Amin, D. Dori, P. Pudil,
and H. Freeman), 1998, 1451, pp. 475-482 (Springer-
Verlag, Germany).

An, A. and Cercone, N. Discretisation of continuous
attributes for learning classification rules. In Proceed-
ings of the Third Pacific-Asia Conference on Knowledge
discovery and data mining (PAKDD-99), Kyoto, Japan,
1999, pp. 509-514.

Wong, A. K. C. and Chiu, D. K. Y. Synthesizing statistical
knowledge from incomplete mixed-mode data. IEEE
Trans. Pattern Anal. Mach. Intell., 1987, 9(6), 796—-805.
Holte, R. C. Very simple classification rules perform
well on most commonly used data sets. Mach. Learn.,
1993, 11, 63-90.

Catlett, J. On changing continuous attributes into
ordered discrete attributes. In Proceedings of the
European Working Session on Learning, Porto,
Portugal, 1991, pp. 164-178 (Springer-Verlag,
Germany).

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Fayyad, U. M. and Irani, K. B. Multi-interval discretiza-
tion of continuous-valued attributes for classification.
In Proceedings of the 13th International Joint
Conference on Artificial intelligence, Chambery,
France, 1993, pp. 1022-1027.

Fayyad, U. M. and Irani, K. B. On the handling of con-
tinuous-valued attributes in decision tree generation.
Mach. Learn., 1992, 8, 87-102.

Maass, W. Efficient agnostic PAC-learning with
simple hypotheses. In Proceedings of the Seventh
Annual ACM Conference on Computational learning
theory, New Brunswick, New Jersey, USA, 1994,
pp. 67-75.

Auer, P., Holte, R. C., and Maass, W. Theory and appli-
cation of agnostic PAC-learning with small decision
trees. In Proceedings of the 12th International Confer-
ence on Machine learning, Lake Tahoe City, California,
USA, 1995, pp. 21-29 (Morgan Kaufmann, San
Francisco, CA).

Fulton, T., Kasif, S., and Salzberg, S. Efficient
algorithms for finding multi-way splits for decision
trees. In Proceedings of the 12th International Confer-
ence on Machine learning, Lake Tahoe City, California,
USA, 1995, pp. 244-251 (Morgan Kaufmann, San
Francisco CA).

Birkendorf, A. On fast and simple algorithms for find-
ing maximal subarrays and applications on compu-
tational learning theory. In Lecture notes in artificial
intelligence, 1997, 1208, pp. 198-209 (Springer-Verlag,
Heidelberg).

Rousu, J. Efficient range partitioning in classification
learning. PhD Thesis, Department of Computer
Science, University of Helsinki, Finland, 2001.

Cai, Z. Technical aspects of data mining. PhD Thesis,
University of Wales Cardiff, Cardiff, UK, 2001.
Dougherty, J., Kohavi, R., and Sahami, M. Supervised
and unsupervised discretization of continuous fea-
tures. In Proceedings of the 12th International Confer-
ence on Machine learning, Lake Tahoe City, California,
USA, 1995, pp. 194-202 (Morgan Kaufmann, San
Francisco, CA).

Ventura, D. and Martinez, T. R. An empirical compari-
son of discretization methods. In Proceedings of
the 10th International Symposium on Computer
and information sciences, Aydin, Turkey, 1995, pp.
443-450.

Kohavi, R. and Sahami, M. Error-based and entropy-
based discretization of continuous features. In Pro-
ceedings of the second International Conference on
Knowledge discovery in databases (Eds E. Simondis,
U. Fayyad), 1996, pp. 114-119 (AAAI Press, Menlo
Park, CA).

Blake, C. L. and Merz, C. J. UCI repository of machine
learning databases. University of California, Depart-
ment of Information and Computer Science, Irvine,
CA, 1998, available from http://www.ics.uci.edu/ ~
mlearn/MLRepository.html, accessed 1 February 2003.
Devijver, P. A. and Kittler, J. Pattern recognition: a
statistical approach, 1982 (Prentice Hall, Englewood
Cliffs, London).

Efron, B. and Tibshirani, R. An introduction to the
bootstrap, 1993 (Chapman and Hall, USA).

Proc. IMechE Vol. 219 Part C: J. Mechanical Eungineer‘i;;;g, Science

C15804 © IMechE 2005

http://pic.sagepub.com/

A simple rule induction algorithm

1137

APPENDIX

Notation

A;
G

k
m

MDL
Nclass

Neovered

the ith attribute in an example
the target class (the class to be
learned)

the number of classes in a data
set

a domain-dependent
parameter

minimum description length
the number of positive
instances covered by a

given rule

the total number of instances
covered by a given rule

"

nc,

N

Py (C)

r/

RULES
RULES-3 Plus

RULES-6

the number of instances in the
target class C,

the total number of instances in
the training data set

the a priori probability of the
target class C;

any specialization of rule r
RULe Extraction System

RULe Extraction System —
Version 3 Plus

RULe Extraction System —
Version 6

a seed example

the value of attribute A; in the
seed example s

the beam width

C15804 © IMechE 2005

iRk

" Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science

http://pic.sagepub.com/

