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Evolutionary fuzzy logic system for intelligent �bre
optic components assembly

D T Pham* and M Castellani
Manufacturing Engineering Centre, School of Engineering, University of Wales, Cardiff, Wales, UK

Abstract: This paper presents a new evolutionary fuzzy logic system for use in the assembly of
optical �bre components. The system optimizes the light output from a �bre by applying a gradient-
based algorithm enhanced with momentum information. The parameters of the algorithm are
adjusted on-line by a fuzzy controller according to the progress of the alignment process. The control
knowledge base is automatically generated via a new evolutionary algorithm. The algorithm divides
the population into three subgroups, each concerned with a different level of knowledge-base
optimization, and employs a new adaptive selection routine that aims to keep the selection pressure
constant throughout the learning phase. The resulting fuzzy logic controller demonstrated a robust
performance with alignment times and accuracies comparing favourably against those obtained using
a manually designed controller. Moreover, the evolved knowledge base was expressed in a transparent
format that facilitated the understanding of the control policy.

Keywords: evolutionary algorithms, fuzzy logic, �bre optics, automatic assembly

NOTATION

a acceleration vector
f i �tness value of individual i
f i normalized �tness value of individual i
fastest individual fastest at locating the energy

peak in a generation
F force vector
Iij membership function of fuzzy term j of

input universe of discourse i
Oij membership function of fuzzy term j of

output universe of discourse i
m i mating chance of individual i
r position vector
steps peak search steps
t time
v velocity vector

e energy
m mass of body
k friction coef�cient
t time

Abbreviations

EA evolutionary algorithm
FL fuzzy logic
KB knowledge base
MF membership function
RB rule base

1 BACKGROUND

F ibre optic transmission is widely employed in modern
high-bandwidth telecommunication systems. One of the
greatest challenges in manufacturing �bre optic trans-
mitters is to couple the light ef�ciently from the laser
chip into the 9 mm diameter core of the �bre.

To match the laser spot size to the �bre core
effectively, some kind of lens system is required [1, 2].
All experiments in this study were carried out using the
discrete lens alignment approach (see Fig. 1), where a
focusing lens is embedded in the emitter frame to couple
the light into the optical �bre. To achieve optimum light
coupling the �bre must be positioned at a distance of a
few mm from the laser chip, while the components have
to be aligned with a precision better than 1 mm.

Current manufacturing technology does not allow the
required submicrometre �bre alignment to be achieved
by precision �tting of pre-formed components. It is
therefore necessary to use an active alignment technique,
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where optimum light coupling is achieved by activating
the laser chip and moving it relative to the �bre while
monitoring the light output from the latter. When the
maximum amount of light is obtained, the �bre
assembly is permanently �xed relative to the laser chip
using fast-setting adhesives or by laser welding.

At present, active alignment can be achieved either by
using manual techniques or by automatic systems. In the
�rst case, an operator controls a three-axis micrometre
stage trying to maximize the �bre light output mon-
itored on an optical powermeter display. This is a slow
process, with a cycle time ranging from 2 to 5 min
depending on the product being manufactured. Auto-
matic techniques employ high-precision stepping motors
to drive a three-axis stage on which the �bre assembly is
mounted. A computer drives the motors and simulta-
neously measures the output of a powermeter attached
to the �bre. A combination of area scans and gradient-
based search routines is used for the localization of the
energy peak.

The task is particularly complex as the laser beam
seldom exhibits the ideal well-behaved single Gaussian
energy spread. Rather, its energy distribution normally
presents a main peak surrounded by a number of
secondary peaks and other irregularities. The shape,
location and peak value of the energy distribution
depend on the laser emitter considered. The alignment is
also complicated by positional inaccuracies of the
stepping motors and mechanical vibrations of the frame.

Simple gradient-based algorithms can converge to
suboptimal peaks and lengthy area scans and other
techniques are necessary to ensure that the global energy
maximum is found. The simple gradient approach
results in the system making a large number of ‘move,
stop and measure’ cycles before the optimum position is
reached. Recently, Pham and Castellani [3] introduced
an improved peak search algorithm where the para-

meters of the gradient-based search were adjusted on-
line via a fuzzy logic (FL) [4] control module. The new
automatic system allowed a considerable reduction in
the laser-to-�bre alignment times.

Although the construction of the knowledge base
(KB) for the FL control module is conceptually
straightforward, much effort is required manually to
tune the fuzzy rules and membership functions (M Fs)
that make up the controller. This paper presents the
application of an evolutionary algorithm (EA) devel-
oped by the authors [5] to the automatic generation of
the KB for the laser-to-�bre alignment controller.
Following an overview of the algorithm, its imple-
mentation in this problem is detailed together with the
experimental results obtained.

2 OVERVIEW OF THE EVOLUTIONARY
ALGORITHM

The evolutionary algorithm used in this work is
described in reference [5]. For ease of referencing, this
section gives a summary of the key features of the
algorithm.

In its present con�guration, the proposed EA is
designed for the generation of Mamdani-type FL
systems through simultaneous evolution of both the
rule base (RB) and MFs. The shape of the fuzzy MFs
has been �xed to be a trapezoid and is not subjected to
learning. To increase KB transparency, no rule con-
�dence factors are used in the fuzzy inferencing. For the
sake of generality, their representation was included in
the genome of the rules. Their value is set to one (i.e. full
con�dence, no action scaling) and is left unchanged by
the evolutionary procedure.

Fig. 1 Discrete lens con�guration
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The algorithm uses the generational replacement
reproduction scheme [6], a new selection operator [5]
and a set of crossover and mutation procedures [7]
dealing with different elements of the fuzzy KB to evolve
a population of FL systems. The population is divided
into three subgroups to which different operators are
applied. A speci�c integer-valued gene marks the species
of each individual.

The genetic operators acting on the �rst subpopula-
tion work at the level of input and output fuzzy
partitions. Crossover generates two new individuals by
mixing the MFs of the two parents for each variable.
Each parent transmits its RB to one of the offspring.
Random chromosomic mutations can create new fuzzy
terms, delete existing ones, or change the parameters
de�ning the location and shape of an MF. Whenever
genetic manipulations modify the set of MFs over which
an RB is de�ned, a ‘repair’ algorithm translates the old
rule conditions and actions into the new fuzzy terms.
The subpopulation of fuzzy systems undergoing this set
of operations is called species_1.

The operators manipulating the second subpopula-
tion search for the optimal RB. Genetic crossover
creates two individuals by exchanging sets of rules
between the two parents. Each of the offspring inherits
the input and the output space partitions from one of its
parents. The mutation operator randomly changes the
action of a fuzzy rule. To accommodate the new
partitions, the conditions and actions of the swapped
rules are translated into new linguistic terms. This group
of solutions is named species_2.

The operators acting on the third subpopulation deal

with all the components of the fuzzy KB. Genetic
recombination swaps all the MFs and the rules
contained in a randomly selected portion of the input
and output spaces. Mutation can take any of the forms
de�ned for the modi�cation of species_1 and species_2
genotypes. This third group of individuals is referred to
as species_3.

The above mutation operators function at the KB
level. There is also a mutation operator at the species
level that transforms one species into another.

The proposed algorithm represents candidate solu-
tions using multichromosome variable-length genotypes.
F igure 2 gives an example of an encoded solution for an
FL system having three input variables, each partitioned
into three linguistic terms, and one output variable
partitioned into �ve fuzzy terms.

A separate chromosome is used to describe the
partition of each input and output variable, each
chromosome being composed of a number of genes
equal to the number of linguistic terms. Each gene is a
real-valued string encoding the parameters de�ning the
location and the shape of one MF. Figure 3 details the
MF encoding scheme.

The fuzzy RB is represented as a multilevel decision
tree, the depth of the tree corresponding to the
dimensionality of the input space. The rule antecedent
is encoded in the full path leading to the consequent,
each node being associated with a rule condition. The
nodes at the last level of the decision tree represent the
rule consequent and contain a fuzzy action for each
output variable.

A �owchart of the complete algorithm is given in F ig. 4.

Fig. 2 Representation scheme
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3 CONTROL OF FIBRE OPTIC COMPONENTS
ASSEMBLY

3.1 Problem domain

Aligning an optical �bre with a laser emitter to achieve
optimum light coupling is essentially a search problem.

The aim of the process is to locate the position where the
laser beam intensity is maximum. Henceforth, a three-
dimensional Cartesian reference frame XY Z will be
assumed with X perpendicular to the surface of the
transmitter and corresponding to the axis of the
focusing lens. Z is taken to be vertical and pointing
upwards (see Fig. 1). F igure 5 illustrates the evolution of

Fig. 3 MFs encoding

Fig. 4 Flowchart of proposed EA
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the peak energy value along the X reference axis for a
sample laser emitter. F igure 6 shows the energy plot for
a different laser emitter on the focal plane. Figures 7 and
8 respectively depict a secondary peak and a plateau in
energy distributions sampled for different emitters on
planes perpendicular to the focal axis.

The laser-to-�bre alignment algorithm developed by
the authors [3] uses an enhanced gradient-based
technique modelled upon the dynamics of a body
travelling through a physical medium and experiencing
the attractive force of a potential �eld. For convenience,

the sign of energy readings from the optical powermeter
is reversed, thus turning the problem into a surface
minimization task.

The optical �bre is moved relative to the laser emitter
according to the equations of motion of the body. The
examples of a sphere falling down a valley and a
meteorite attracted by the sun can help to visualize this
strategy. Irregularities in real laser energy distributions
can be pictured for the �rst example as �at areas,
‘bumps’ or ‘potholes’ along the hillside and in the
second example as perturbations due to the gravita-

Fig. 6 Fine energy scan on the focal plane

Fig. 5 Peak energy distribution along the focal axis
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tional �elds of the various planets. The descent of the
imaginary body down the energy slope is slowed down
by friction.

The equations giving the motion of a body of mass m
in an attractive potential �eld and travelling in a
medium of friction coef�cient k can be readily derived
from classical physics. For a more detailed analysis, the
reader is referred to reference [3]. Approximating the
motion linearly for small movements and considering

unitary time steps lead to the following equations:

a
F
m

¡ De0 Dr0 k v0

m
1

v a dt v0&a Dt v0 a v0 2

Dr a Dt v0 dt r0&
a
2

v0 3

Fig. 8 A plateau at 400 mm from the focal point

Fig. 7 A secondary peak at 800 mm from the focal point

D T PHAM AND M CASTELLANI576

Proc Instn Mech Engrs Vol 216 Part C: J Mechanical Engineering Science C05601 # IMechE 2002
 at Cardiff University on April 4, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


where a is the body’s acceleration, v is the body’s
velocity, v0 is the initial velocity, r is the body’s position,
r0 is the initial position, e0 is the potential energy of the
�eld and dt&Dt 1 is the time interval.

Given m and the ratio k m, the displacement Dr of the
body can be computed from the previous displacement
Dr0 and the associated energy variation De0. Each
Dx , Dy and Dz motion component can be calculated by
resolving the vectorial equations (1), (2) and (3) along
the desired direction. For example, to obtain the Dx
component, Dr and Dr0 must be replaced by Dx and
Dx 0, v and a by vx and ax , and De0 with the energy
change along the X direction. A system of nine
equations will therefore completely determine the
motion of the imaginary body.

Because the magnitude of the energy gradient along
the focal axis was much smaller than along the other two
directions, it was convenient to divide the search
algorithm into two modules, one for the focal axis and
the other for the Y and Z directions, to reduce the
complexity of the controller. In the implementation of
the fuzzy controller, the proposed gradient-based search
algorithm was used only for optimizing the energy in the
Y Z planes. Once the maximum energy was found in a
plane, the stage carrying the emitter was made to step a
�xed distance along the X axis towards the �bre and the
search was restarted in a new plane. The procedure was
repeated until the Y Z plane nearest to the focal point
was found, i.e. the one where the peak value of the
energy was highest. A �nal tuning of the position was
performed, restarting the gradient-descent algorithm
from the energy peak location. The X step size was set to
80 mm after an examination of the laser energy distribu-
tion from a batch of sample emitters. This measure
allowed the focal plane to be determined with a
precision of 40 mm, a value that did not substantially
affect the peak energy value. As the energy gradient
along the three coordinate directions is not known a
priori, it is necessary to perform each motion component
separately and measure the energy at the end of each
step.

The search algorithm includes an initial scanning
routine to locate a convenient starting point for the
gradient descent. This point should be situated close
enough to the main peak to minimize the alignment time
and the risk of non-optimal convergence. On the other
hand, the location of the starting point necessarily
requires time consuming area scans. A trade-off is
therefore necessary between search accuracy and scan-
ning time.

The choice of the parameters m and k m is important
for the effectiveness of the algorithm. Ideally, m and k m
should be small in the presence of a small gradient in
order to magnify the attraction force and let the body
quickly descend the slope. On the other hand, as the
energy decreases and the body approaches the energy
minimum, larger values of m and k m are required to

avoid excessive overshooting and oscillation around the
minimum. For similar reasons, in the presence of a steep
slope, a large mass and a high friction force will prevent
excessive growth of the momentum term.

The proposed algorithm employs an FL system [8, 9]
for the control of m and k m in each direction of motion.
Besides the simpli�cation of the control strategy, fuzzy
logic is particularly suitable for the task because of its
robustness to noise and the smoothness of its output
characteristic [10]. The FL system has two inputs, the
measure of the laser beam power and its change with
time, and two outputs, m and k m. The EA outlined in
the previous section is used automatically to generate
the fuzzy KB for the control of m and k m.

3.2 EA settings

The settings of the EA parameters are summarized in
Table 1. Parameters de�ned over a range of values were
randomly initialized in the given interval. The sought
solution had two inputs, the transmitted power e and its
time derivative, and two outputs, the control parameters
m and k m. During the seeding of the initial population,
for each variable, the universe of discourse was
partitioned into �ve linguistic terms having equal
support intervals and de�ning a normalized fuzzy
partition. The extremes of the de�nition interval of the
MFs of each variable were in some cases determined by
problem-speci�c constraints (e.g. the maximum measur-
able power is 2000 mW or the minimum mass m of the
imaginary particle is 0 units) and in other cases
randomly set constraints (e.g. the maximum m value
and the upper and lower extremes of De Dt).

If, during the evolutionary process, a solution
experienced an input value outside the MF range, one
of the two extreme terms had the support of its MF
extended to include the new value. By initializing the
terms of each solution around an interval of known
feasible values, it was possible to evolve minimal fuzzy
space partitions. This helped to reduce the search effort
as well as minimizing the number of sets and rules. Also,
to keep the solutions simple, a maximum of ten
linguistic terms per universe of discourse was set. If in
a genotype this number was exceeded, terms (i.e. genes)
were randomly removed from the chromosome con-
cerned until their number was regularized.

To prevent the generation of infeasible fuzzy rules, the
starting population was initialized with a blank RB.
During the �tness evaluation phase, all candidate
solutions were tested for a certain number of time steps.
At each step, a solution determined the set of fuzzy
actions by searching its fuzzy decision tree for paths
whose nodes were contained in the set of input
conditions. In general, not all combinations of fuzzy
conditions would lead to an existing rule action. At each
time step, the proposed algorithm created a new path in
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the fuzzy decision tree if the set of input conditions
having the highest matching degree did not result in a
valid action. The rule consequent was randomly
determined. The aim of the procedure was to limit the
RB growth only to the most relevant instances. This
feature allowed the creation of a minimal set of fuzzy
rules but also emphasized the importance of the training
procedure.

Once an individual was selected for mutation, the type
of KB modi�cation operator had to be chosen. For this
purpose, a random procedure was used for species_1
and species_3 individuals, while solutions belonging to
species_2 could only undergo rule action modi�cation.
In the case of species_1 individuals, the random
procedure gave a 20 per cent probability for the addition
of one fuzzy term, a 25 per cent chance for the deletion
of one fuzzy term and the remaining 55 per cent
probability for the modi�cation of one fuzzy MF. The
same operators were assigned half of these probability
values when applied to species_3 individuals, whereas
the modi�cation of a rule action had a 50 per cent
chance. The allocation of these probabilities was
according to practical experience, which also indicated
that the best rate for the species mutation operator was
0.1.

The evolutionary procedure was run three times and
each time the best solution was saved. At the end, the
three saved solutions underwent a further evaluation
stage to select the �nal solution. This repetition of the
evolution process was introduced to reduce further the
risk of a suboptimal result.

3.3 Fitness evaluation procedure

During the evolutionary search, the �tness of individual
FL controllers was evaluated according to their preci-
sion and speed of locating the energy peak. It was not
feasible to test the solutions on the real plant because of
the long laser-to-�bre alignment times. Consequently, it
was decided to employ a simulated alignment task based
on an empirical model of the laser beam. The model was
built by �tting three-dimensional energy scans of a batch
of laser emitters. Because the characteristics of the beam
varied widely with the source, the modelling effort was
focused on the main features of the emission rather than
the precise �tting of the acquired data. For the same
reason, the sample of �bre optic components was not
selected to be representative of the entire population.

For each individual, the search algorithm was run
until either the peak was localized or a prede�ned
number of steps t had elapsed. The search starting point
and the value of the energy peak were randomly varied
every generation. The former was set to values guaran-
teed to be obtained during the preliminary energy scan.
Once the algorithm had stopped, the �nal energy
reading and the number of search steps were recorded.
The �tness was then calculated as follows:

f i ef
steps fastest

steps i
ef

10
4

where f i is the �tness of individual i, ef is the �nal
energy reading, steps i is the number of steps it took

Table 1 Evolutionary FL controller—EA settings

EA parameters
Population size pop 60
Number of generations gen 500
Number of runs iter 3
Mutation rate (KB) mut_rate 0.15
Mutation rate (species) mut_rate_species 0.1
Maximum number of terms per variable max_terms 10

Initialization settings
Number of terms per variable init_terms 5
Lower bound of space partition of e min_e 50 mW
Upper bound of space partition of e max_e 2000mW
Range for lower bound of space partition of de/dt min_de/dt (¡450,¡225)mW
Range for upper bound of space partition of de/dt max_de/dt (225,450)mW
Lower bound of space partition of m min_m 0
Range for upper bound of space partition of m max_m (3,6)
Lower bound of space partition of k/m min_k/m 0
Upper bound of space partition of k/m max_k/m 1
Rule base Empty

Fitness function settings
Maximum number of evaluation steps t 50
Minimum power value at peak emax 500mW
Minimum power reading at start of search threshold 50 mW
Maximum X distance from peak at start of search max_X 350mm
Maximum Y /Z distance from peak at start of search max_Y Z 8 mm
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individual i to locate the peak and fastest is the solution
that localized the peak most quickly during that
evaluation trial.

Equation (4) is composed of two terms related to the
precision and the speed of the candidate solution. The
contribution of the speed evaluation term has a
magnitude 10 times smaller than the term expressing
the precision. This was to bias the search �rst towards
solutions able to locate the energy peak and then
solutions allowing fast alignment.

4 ALIGNMENT RESULTS

Some �rst conclusions can be drawn by comparing the
control KB produced by the proposed EA with the
manually designed KB for the same control problem
reported in reference [3]. In the automatically evolved
KB, the input universes of energy and change in energy
are respectively discretized into seven and four fuzzy
terms, while the output universes of m and k m are
respectively discretized into nine and three fuzzy terms.
The fuzzy RB contains 25 production rules.

The manually created KB was slightly more compact
in terms of fuzzy partitions and RB size. It divided the
input space into 564 overlapping ‘patches’ , each of
them associated with a control response. The two output
signals were created using �ve and four output terms
respectively. On the other hand, the automatically
evolved KB divided the input space into 764 over-
lapping patches, 25 of them associated with a control

response. It therefore de�ned eight more input subareas
and �ve more control rules. Also, the overall number of
output fuzzy terms was greater, amounting to 9 3
terms.

Nevertheless, closer examination of the fuzzy
response tables shows that, by applying some straight-
forward regrouping operations, the size of the learned
fuzzy KB could be greatly reduced. The upper part of
F ig. 9 depicts the fuzzy decision tables for the outputs of
the two fuzzy systems. As indicated by the arrows, both
tables have the same entries for the last four columns. It
is therefore possible to merge terms I13 to I16 to obtain a
464 decision matrix (see the lower part of F ig. 9).
Moreover, only four out of nine elements of the term set
for the �rst output are actually used in the control rules.
If needed, the introduction of manual or automatic
pruning should therefore noticeably reduce the KB
complexity. However, the complexity of the learned KB
is acceptable, especially considering that the proposed
EA does not contain any direct bias in favour of more
compact solutions.

The EA-generated FL system was tested on the
alignment of a batch of 40 different pairs of �bre optic
components. For each alignment trial, a different laser
emitter was used, while the optical �bre was changed
every �ve trials. For each pair of components, the search
algorithm was run until its completion or interrupted as
soon as the power reading reached the maximum
measurable value of 2000mW. A combination of manual
and conventional automated techniques were then used
to search for further energy improvements. If the �nal
energy peak value was not signi�cantly different from

Fig. 9 RB simpli�cation
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the value obtained by the proposed automatic alignment
system, the trial was considered to have succeeded.

The results obtained using the EA-generated fuzzy
system were compared with those of an identical
experiment carried out using the manually built FL
controller described in reference [3]. The comparative
data are presented in Table 2.

Both automatic alignment systems successfully
located the energy peak in all the trials performed,
suffering from slight occasional inaccuracies due to the
imprecision of the stepping motors. The new fuzzy
controller allowed better alignment times, giving an 8
per cent reduction on the original gradient-based search
time. However, such an improvement should be
moderated by the magnitude of the standard deviation
of the measurements.

Figures 10 and 11 show two examples of alignment
trials relating to different pairs of �bre optic compo-
nents and performed using the EA-generated KB. The
sharp energy steps mark the passage to a different Y Z
plane. The plots show that an average of 10–15 steps
was needed for the power optimization on a Y Z surface.

In the �rst case, the search had already started in the
proximity of the focal plane. The algorithm unsuccess-
fully explored the two neighbouring surfaces for
improvements and then returned to the initial Y Z plane
for the �nal adjustment of the position. In the second
case, the algorithm started two planes away from the
global optimum. The best surface was therefore the
third plane scanned. This corresponded to the energy
peak in the middle of the plot. A sharp energy drop

marked the move to the next Y Z plane, where the
algorithm unsuccessfully looked for further improve-
ments. A last small energy drop indicated the return to
the previously explored plane for the �nal energy
adjustment. The two examples of F igs 10 and 11
substantially replicate the observations made using the
manually designed FL system [3].

The results of the experiments therefore gave further
evidence of the effectiveness of the proposed laser-to-
�bre alignment technique. They also proved the
capability of the proposed EA to generate a sound KB
for the control of the gradient-based optimization
process. The results obtained using the automatically
generated KB are comparable with those achievable by
manual adjustment of the fuzzy control policy. How-
ever, the evolutionary technique requires much less
problem domain knowledge. It is also easily recon�gur-
able to new types of components and it is fast.
Throughout the experiments, the average EA running
time on a desk-top personal computer operating at
300 MHz was less than 15 min. This �gure compares
favourably with the 8 h or more needed for the manual
development of the control KB.

5 CONCLUSIONS AND FURTHER WORK

A new EA was used to generate the KB for a fuzzy
controller in the assembly of �bre optic components.
The proposed technique employs a new adaptive

Fig. 10 EA-generated fuzzy system: power optimization
curve 1

Fig. 11 EA-generated fuzzy system: power optimization
curve 2

Table 2 Comparison of manually built and EA-generated controllers

Using manually built FL
controller (40 alignment trials)

Using EA-generated FL
controller (40 alignment trials)

Initial scan Peak search Total Initial scan Peak search Total

Average (s) 17.65 15.20 32.85 17.00 13.95 30.95
Worst (s) 40 27 60 40 24 60
s (s) 8.36 5.91 10.93 8.75 5.88 11.29
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selection routine that aims to keep the selection pressure
constant throughout the learning phase. The algorithm
divides the population into three subgroups, each
concerned with a different level of KB optimization.
This allows the adaptive tuning of the disruptiveness
and scope of the genetic manipulation operators.

The proposed learning technique generated an effec-
tive and reliable control policy. The evolved KB was
expressed in a transparent format that facilitated the
understanding of the policy. On the other hand, the
proposed EA showed a tendency to produce redundant
fuzzy terms and rules. Consequently, the generated KB
was not as compact as a manually constructed KB
although it was possible to reduce its size through
tuning.

Further work should address the creation of auto-
matic pruning routines capable of detecting and
suppressing redundant KB elements. To minimize the
computational burden, those routines could be invoked
every �xed number of generations. Efforts spent on the
inspection and adjustment of the solutions would be
repaid by quicker processing of more compact solutions.
It would also be worth while to investigate the
possibility of adding an evolutionary bias towards
simpler solutions. The main advantages of producing
more compact solutions would be an increase in
transparency of the control policy and simpler hardware
and software implementation.
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