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Abstract: Fat pads are masses of encapsulated adipose tissue located throughout the human
body. Whilst a number of studies describe these soft tissues anatomically little is known about
their biomechanics, and surgeons may excise them arthroscopically if they hinder visual inspec-
tion of the joint or bursa. By measuring the coefficient of friction between, and performing
Sommerfeld analysis of, the surfaces approximating the in vivo conjuncture, this contact has
been shown to have a coefficient of friction of the order of 0.01. The system appears to be
lubricated hydrodynamically, thus possibly promoting low levels of wear. It is suggested that
one of the functions of fat pads associated with subtendinous bursae and synovial joints is to
generate a hydrodynamic lubricating layer between the opposing surfaces.
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1 INTRODUCTION joints, while the latter has been dedicated to an effort
to decrease wear and thus to increase the longevity
of prostheses. Related studies have been concernedThe coefficient of friction between two mating sur-

faces is the ratio of the frictional force to the applied with efforts to improve the comfort of both clothing
[7, 8] and grooming [9, 10]. Despite the need forload. Three distinct modes of lubrication have pre-

viously been identified: boundary, mixed, and fluid information regarding in vivo surface contacts for
improving clinical practice and advancing ortho-film. In boundary lubrication, the coefficient of fric-

tion is relatively high (typically about 0.1) with the paedic designs, such studies are limited by difficult-
ies associated with ethical considerations, tissuelayer of lubricant covering the conjoining surfaces

and being of insufficient thickness to achieve com- acquisition, and manufacturing limitations. While
extensive studies of synovial joints [6, 11, 12] haveplete surface separation. Thus, wear at the conjunc-

ture is expected. Optimum fluid-film lubrication can been published, little is known about soft-tissue
lubrication [12]. There appear to be no previousyield coefficients of friction as low as 0.001. Synovial

fluid typically provides this layer in the synovial joint accounts of the lubrication mechanisms associated
with the presence of fat pads both in synovial joints[1, 2]; thus minimal wear is expected at such a con-

juncture. The mixed-lubrication regime has proper- and in subtendinous bursae [13].
Fat pads are masses of adipose tissue that haveties between these two extremes.

Previous studies of friction within biological sys- been given relatively little attention by clinicians,
although the significance of Hoffa’s pad in the kneetems have concentrated on studies of natural and

total replacement joints [3–6]. The former work has in association with knee pain is well documented
[14, 15]. Some fat pads form compression-resistingrevealed the fundamental nature of the remarkable

bearing characteristics of healthy natural synovial devices which may act as effective shock absorbers;
others are a prominent feature of synovial joints or

* Corresponding author: Institute of Medical Engineering and subtendinous bursae [13]. The former include the
heel pad on the plantar surface of the foot whichMedical Physics, Cardiff University, Queens Building, The Parade,

PO Box 925, Cardiff, CF24 0YF, UK. email: TheobaldPS@ bears approximately 70 per cent of the body weight
[16] on heel strike and absorbs 90 per cent of thecardiff.ac.uk
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energy generated [17]. The latter includes Kager’s fat This apparatus was successfully validated by com-
pad, situated in Kager’s triangle, between the Achilles paring the positive gradient of the data points
tendon, flexor hallucis longus, and the calcaneus. obtained when measuring bovine synovial mem-
Kager’s fat pad is a highly mobile structure which brane (Fig. 2) with that achieved by Cooke et al. [12]
protrudes into the retrocalcaneal bursa on plantar (dashed line in Fig. 2) when examining similar tissue.
flexion [18], sliding over the periosteal fibrocartilage Both indicative of fluid-film lubrication, the slight
covering the calcaneus. As its tip has a synovial mem- offset of the results may be caused by a number of
brane that secretes synovial fluid into the bursa, factors including the viscosity of the synovial fluid,
the tribological role of this fat pad is likely to be sig- which can vary four-fold depending upon the health
nificant. of the joint [1]. The fact that the coefficient of friction

The current lack of knowledge of fat pad biomech- lies predominantly between 0.001 and 0.01 is further
anics is likely to be a key factor in the decision of evidence of this lubrication regime, and thus of suc-
many surgeons to excise parts of this tissue if it cessful validation [20, 21].
obscures the arthroscopic view of a synovial joint. The mean average roughness (R

a
) of four measure-

Several decades ago, a similar lack of understanding ments (Form Talysurf Series 2, Taylor–Hobson Ltd,
of function led to what is now widely recognized as UK) of each of the surfaces was calculated. The fat
an inappropriate excision of knee joint menisci [19]. pad was then attached to the specimen holder H at
Menisci are now known to have important functions the end of the arm using Dermabond tissue adhesive
as load-bearing surfaces and the current surgical (Ethicon Inc., USA), before being positioned upon
preference is to preserve rather than to remove them. the disc. A counterbalance M ensured zero net load-
Thus, the purpose of the present study is to highlight ing. Excess synovial fluid was used to lubricate the
the potential importance of fat pads in the lubri- conjunction between the rotating glass or Perspex
cation mechanisms of joints and bursae by estimat- disc and the fat pad.
ing their coefficient of friction. The specimen was vertically loaded against the rot-

ating disc in the range 0.5–10 N. The deflection of
the arm promoted by friction between the fat pad

2 MATERIALS AND METHODS
and the rotating disc was resisted by a spring S of
known stiffness (k=0.02 N/mm). The in-vivo speedThe fat pad situated immediately proximal to the
of movement of Kager’s fat pad was measured in fourphalanges was harvested from four skinned bovine
volunteers using dynamic ultrasound during the gaitlegs, 18 months old and obtained fresh from an
cycle at a gentle cadence. It was estimated as reach-abattoir. In addition, synovial fluid was aspirated
ing 15 mm/s, and thus the minimum experimentalfrom the medial and lateral sides of the metacarpo-
speed that was achievable (16 mm/s) was usedphalangeal joint cavities, using a 20 ml gauge syringe
throughout the current work. Although the maxi-and needle. The apparatus, shown diagrammatically
mum experimental speed (140 mm/s) almost cer-in Fig. 1, consisted of an aluminium tube A (wall
tainly exceeded the fat pad speed during running,thickness, 5 mm; outer diameter, 25 mm; length,
predicted to be approximately two and a half times300 mm), pivoted and freely rotating on a pillar with
greater than that during gentle cadence, it was never-specially modified light bearings and suspended over
theless used to increase the range of test conditions.either a glass or a Perspex disc D.
To ensure that high-quality data were achieved, the
disc was ramped up to the desired speed for approxi-
mately 10 s, before the arm was allowed to settle. The
deflection of the arm was then logged for 10 s, with
ten readings per second being recorded on a per-
sonal computer via a data logger (Pico Technology
Ltd, UK). The mean deflection during the recording
period was calculated and recorded. The coefficient
of friction was then calculated and the results were
plotted against the ratio of sliding speed to load. This

Fig. 1 Diagrammatic representation of the apparatus:
ratio is representative of the Sommerfeld number forA, arm; B, bearing; D, rotating disc; H, specimen
a given viscosity and geometry. Comparison of theholder; M, counterbalance mass; P, pillar;
resulting trace against the Stribeck curve (Fig. 3), andS, spring. The arrows indicate the direction of

rotation the calculated levels of friction against known values,
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Fig. 2 Variation in the coefficient of friction of bovine synovial membrane against a Perspex disc
in the presence of bovine synovial fluid with reduced Sommerfeld number. The apparatus
was successfully validated following a comparison of the results with those of Cooke et al.
[12] (dashed line)

the lower range of values suggests that the conjunc-
tion was encountering some mixed lubrication.

4 DISCUSSION

The values of coefficient of friction presented in Figs
3 and 4 are relatively low and representative of fluid-
film lubrication conditions. The presence of this
mode of lubrication can be supported by considering
three different criteria.

1. Comparison of the shapes of the relationships (i.e.
the rising trend) between the coefficient of frictionFig. 3 Representation of the Stribeck diagram relating
and the reduced form of the Sommerfeld numberthe coefficient of friction to the Sommerfeld

number (represented by the ratio of sliding speed to load)
with the distinct form of Fig. 2 is indicative of
fluid-film lubrication.

enabled the dominant lubrication regime between 2. The majority of the data points lie within the
the fat pad and bone to be determined. coefficient of friction range 0.001–0.01; it is well

recognized that fluid-film lubrication predomi-
nates within these boundaries [12, 21].

3 RESULTS 3. Mixed lubrication is also evident (in particular, in
Fig. 5), which occurs when the fluid-film lubri-

The results obtained from the fat pad–rotating disc cation breaks down at lower speeds and higher
conjunction are summarized in Figs 4 and 5 for the loads.
glass and Perspex discs respectively. These graphs
show how the coefficient of friction of the fat pad on Whilst the well-defined positive gradient obtained

for the interaction between fat pad and glass shownthe two surfaces depended on the ratio of speed to
load and hence upon the Sommerfeld number. in Fig. 4 clearly reflects hydrodynamic lubrication,

comparing Fig. 5 with the Stribeck curve indicatesThe glass disc results clearly show a positive gradi-
ent, indicative of fluid-film lubrication. The Perspex that there was a transition from fluid-film to mixed

lubrication at lower speeds or higher loads. Thisdisc results displayed in Fig. 5 exhibit similar levels
of friction coefficient to those obtained with the glass characteristic has been reported earlier for synovial

joints [2, 22–25]. As the hydrodynamic layer brokedisc. However, the rising trend of the coefficient of
friction as the Sommerfeld number was reduced in down at slower speeds, some surface contact was

JEIM176 © IMechE 2007 Proc. IMechE Vol. 221 Part H: J. Engineering in Medicine
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Fig. 4 Variation in the coefficient of friction of bovine fat pads against a glass disc in the presence
of bovine synovial fluid with reduced Sommerfeld number

Fig. 5 Variation in the coefficient of friction of bovine fat pads against a Perspex disc in the
presence of bovine synovial fluid with reduced Sommerfeld number

expected between opposing asperities, since the sur- measure the temperature in the lubricated conjunc-
tion. The mean laboratory temperature of 18 °Cface roughness of the Perspex (R

a
=0.297 mm) was

greater than that of glass (R
a
=0.034 mm). Since simi- remained reasonably constant and it is therefore

unlikely that changes in ambient temperature wouldlar coefficients of friction were detected between the
fat pad and glass and between the fat pad and have had a significant effect upon the major features

of the results. The problems of measuring the vis-Perspex, it seems clear that fluid-film lubrication
regimes predominated at the contacts with both sur- cosity of synovial fluid have been reported by others

[12, 26], but it was felt to be inappropriate to includefaces. However, it is possible that this mode of lubri-
cation could have developed owing to differences in this parameter in the reduced Sommerfeld number

adopted in Figs 4 and 5.the fat pad characteristics rather than to the change
in the counterface alone [26]. Whilst the area of contact at the experimental con-

juncture was similar to that in vivo, the shape of theThe viscosity of the lubricant, synovial fluid, is sig-
nificant in determining the lubrication regime. In tissues did vary. Physiologically, the wedged shape of

Kager’s fat pad is more likely to encourage the forma-this study it was assumed that the viscosity of the
shear thinning lubricant was constant, since little is tion of a lubricating layer of synovial fluid than the

shapeless bovine fat pad used experimentally. In con-known about the variation in synovial fluid viscosity
with the high shear rates [2] likely to have been en- trast, the formation of a hydrodynamic film is likely

to have been encouraged experimentally by thecountered in these tests.
It is also well known that temperature affects the flatter profile of the disc in comparison with that of

the in vivo bone geometry. As the magnitude of load-viscosity of synovial fluid [1]. The experiments
reported here were conducted under atmospheric ing at the physiological conjuncture is unknown, the

accuracy of the loading environment applied at thelaboratory conditions, but no attempt was made to
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experimental conjuncture is unclear. In addition, roughness of the counterface surfaces, and Mr David
Hobbs and Mr Alan Griffiths for their technicalwhilst the approximation of glass and Perspex to

fibrocartilage (the articulating tissue covering the support.
bone) has never been reported, these surfaces have
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[12, 26], which is functionally similar. The experi-
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