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Abstract 
The Lambert W function dates back to Euler’s time and despite offering solutions to many operations 
management problems it is still relatively unknown.  This may be due to the fact that it is only incorporated into 
specialist mathematical software and is not generally available in common spreadsheet applications.   This 
obscurity is rather unfortunate as it is relatively easy to use when the significance and mechanics of the function 
are known.  In order to illustrate the use of the Lambert W function we consider two Economic Order Quantity 
(EOQ) scenarios: an EOQ model with perishable inventory; and a Net Present Value (NPV) analysis of an EOQ 
problem with trim loss.  Both scenarios are motivated by real world situations.  Via these two examples we 
reflect upon the pedagogical aspects of using the Lambert W function, specifically at a postgraduate level, and 
provide guidance on the manipulation of equations containing exponentials.  We present a Lambert W function 
‘look-up’ table for classroom use (which we suggest is no more difficult to use than the standard normal table 
popular in operations management texts) and a Microsoft Excel ‘Add-In’ for self-study and practical use.  We 
also illustrate the use of the Laplace transform to conduct NPV analyses of the EOQ model, and demonstrate the 
close relation between the Laplace transform and the Lambert W function.  It is hoped that is paper will 
accelerate the resurgence of the use of the Lambert W function in our field, as it provides exact analytical 
solutions to many problems that currently are viewed as not having explicit solutions. 
 
Keywords: Lambert W function, Economic Order Quantity, Net Present Value, perishable inventory, trim loss. 
 
1. Introduction 
The Lambert W function, W[z], is the function that satisfies [ ][ ] W zW z e z , where e is the 
natural exponential and z is a complex number.   Named after Johann Heinrich Lambert, it is 
sometimes called the Omega function or the Product Log function [1] and is known as the 
‘golden ratio of the exponentials’.  In general, z  and the Lambert W function is a multi-
valued function.   However, if we restrict z  then for 1 0e z    there are only two 
possible solutions of [ ]W z .  The ‘principle’ branch satisfying [ ] 1W z    is denoted by 0[ ]W z  
and the ‘alternative’ branch satisfying [ ] 1W z    is denoted by 1[ ]W z .  For [ ] 0W z   there is 
only one real solution, 0[ ]W z .  Figure 1 illustrates the real solutions to the Lambert W 
function. 
 
Although the Lambert W Function is not well known, it is available in modern computer 
software packages such as Maple and Mathematica.  In Maple, it is known as ‘LambertW’ 
function, in Mathematica as the ‘ProductLog’ function.  Corless et al [2] recently popularized 
the Lambert W function, beginning its resurgence as a useful, if under-appreciated function, 
and suggested the symbol ‘W’ after the pioneering work of Wright [3]. [2] show that the 
applications of the Lambert W function are wide ranging but often go unnoticed.  They 
review many practical applications that include the jet fuel problem, combustion models, 
enzyme kinetics, molecular physics, water movement in soil, epidemics, and applications in 
computer science. 
 
The Lambert W function also plays a role in the stability and evolution of the differential 
delay equations.  [4] used the Lambert W function to identify the stability boundary for a  
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Figure 1.  Real solutions of the Lambert W function 

 
supply chain model in continuous time when a pure time delay represents the production and 
distribution delay.  [5] characterises the time evolution of a continuous time production and 
inventory system.  [6] use the Lambert W function in order to determine expressions for the 
bullwhip and inventory variance amplification produced by a continuous time Order-Up-To 
policy.   These bullwhip and inventory variance expressions are needed in order to conduct an 
economic analysis of a system with random demand processes – see [7] for an example of 
how to achieve this in discrete time.    
 
[8] has recently noted the usefulness of the Lambert W function for certain Economic Order 
Quantity (EOQ) problems.  Specifically, [8] considers EOQ problems when the inventory 
deteriorates over time, when demand contains a stock dependent term and when the Net 
Present Value (NPV) of the cash flows is considered.   
 
Herein we make a small additional contribution to literature on the Lambert W function 
applied to EOQ problems by studying two cases.  First we consider the problem of EOQ with 
perishable inventory, and emphasize that there is a difference between deteriorating inventory 
and perishable inventory.  In the deteriorating inventory scenario, the inventory physically 
decays and is destroyed over time, whilst perishable inventory loses value but it is not 
destroyed.  In a second EOQ scenario we include net present value (NPV) in an EOQ problem 
with trim loss. The addition of the trim loss is a rather trivial extension of the classic EOQ 
problem [9].   Our focus here, however, is to derive the cash flows via the Laplace transform 
(rather than directly from the time domain description of the inventory levels and order 
placements as in [8]), which is novel and more interesting.  We believe the Laplace transform 
approach is advantageous as descriptions of the cash flows are obtained in a rather concise 
manner.    
 
Both of the EOQ problems studied here are motivated by real-world situations, which provide 
authentic data and compelling observations.  The perishable inventory problem follows 
Blackburn and Scudder’s [10] study of a melon supply chain in California, USA, while the 
NPV of the EOQ with trim loss problem was motivated by the case of VT Foams in the UK 
[11].  In order to obtain numerical solutions to these EOQ problems it is necessary to have 
access to the real solutions of the Lambert W function.   Hence, we present a ‘look-up’ table 
of the principle and alternative solutions of the Lambert W function for classroom use.  We 
also present the Visual Basic code needed to write a Microsoft ‘Add-In’ for enumerating the 
Lambert W function in Excel.   We believe that these pedagogical features will make this 
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paper an interesting source for teaching advanced EOQ problems with ‘Lambert W’ solutions 
to postgraduate students in both engineering and business schools.   
 
2. EOQ with perishable inventory 
Blackburn and Scudder [10] recently investigated the supply chain design for melons.  
Interestingly, as soon as the melons are picked from the vine, they lose value as they respire.   
The temperature of the melon determines the rate of respiration and hence the rate of value 
loss.  [10] carefully and clearly describe the melon supply chain.  We do not repeat this 
description here; we simply refer readers to [10] for information on this aspect.  [10] then go 
on to justify an appropriate cost function, (see Eq. 3 in  [10]), which we repeat below. 
 

   /1j rt t Q pKD D
jQ QTC DV pVe e cD C  


         (1)

 
Ignoring the exogenous variable D and the constant Cj the optimisation problem becomes  
 

     /1min / 1  s.t. , 0j rt t Q p
QTC K pe V e Q p        . (2)

 
This is equivalent to (Eq. 5 in [10]) when their small error with the second closing bracket of 
the RHS is corrected.  [10] show that the optimal Q satisfies (Eq. 6 in [10]) 
 

  /p pQ pQ e     (3)

 
where the constants in (Eq. 6 in [10]) have been replaced by /j rt te K V    for ease of 
exposition.  Failing to recognise that this equation has an exact solution via the Lambert W 
function, [10] provide an approximate solution with the following lower bound, 
 

2 /Q p  . (4)

 
This approximation is not necessary.  There is an easily obtainable exact solution with the 
Lambert W function. The general approach to be taken is to transpose all the Q’s to the right 
hand side (RHS) of the equation, with the goal of manipulating it into the form xy xe .  The 
optimal Q can then be determined from the Lambert W function, [ ]x W y .  For the melon 
case, we depart from (3) and collect all the Q’s on the RHS by dividing throughout by /Q pe  , 
 

  /p p Q pQ e 
     . (5)

Multiplying by  / pe  yields 

   11 1 ,
Q

pQ
pe e p e


  

    (6)

 
which is in the form required by the Lambert W function as the solution will then be given by 

[ ]x W y .   Thus the exact solution is 
 

 
1

1

* 1
1

1

1 .

Q
p pe e

p
pe e

W

Q W

 








     

     
 (7)

 



Disney, S.M. and Warburton, R.D.H., (2010), “On the Lambert W function: EOQ applications and pedagogical considerations”,  
in Grubbström, R.W., Hinterhuber, H.H., (Eds), Pre-prints of the 16th International Working Seminar of Production Economics, Innsbruck, Austria,  

March 1st –  5th, Vol. 1, pp129 – 140. 

 4

 

Figure 2.  Blackburn and Scudder’s lower bound and the exact Lambert W solution  

 
We emphasize that (7) is an exact analytical solution for the optimal order quantity,  *Q .  
Notice that in (7), we have specified the alternative branch to the Lambert W function.  This is 
because we know the optimal order quantity, the deterioration rate, and the picking rate are all 
positive

 
 *, , 0.Q p    It then follows that   1W z   , which only occurs on 1[ ]W z , the 

alternative branch, see Figure 1.   
 
2.1.  Practical example 
Let’s compare our exact solution (7) to the lower bound given by (4).  We assume, as did [10], 
that the following enumeration is relevant: The value of the melons at picking is, V=$7, and 
the deterioration rate at a field temperature of 30°C, 0.03   per hour. The batch transfer 
time, 1

2rt   hour, the batch transfer cost, K=$75, the time in the cold chain, 5jt   days, and 
the deterioration rate in the cold chain, 0.02   per day.  
 
Allowing the picking rate to vary between 1 and 120 cartons per hour produces an optimal 
transfer batch quantity, *Q , as shown by Figure 2, where we have plotted both the lower 
bound given in [10] and the exact Lambert W solution.   The lower bound (Q) consistently 
underestimates the true optimal batch quantity  *Q  by 8 to 14 units. The percentage error, 
  * */ 100%Q Q Q  , has also been plotted in Figure 2.  

 
3.  Net present value of an EOQ problem with trim loss 
VT Foams Ltd. [11] makes foam for other manufacturers to use inside products, usually 
furniture or vehicles.   Typically their customers order rolls of foam with specific properties, 
such as a certain thickness, colour, density, pore size, fire or heat resistance, and other special 
characteristics.  There are many different types of foam offered for sale by VT Foams, with 
the number of different types running into the hundreds. The foam is made by the process 
described in Figure 3 below.  
 
When the foam ‘sets’, it sets like a loaf of bread.  There is a crust on the outside and the top is 
dome shaped.   The raw loaf of foam is trimmed and the top is cut off to remove the crust.    
This produces a uniform block of foam, with a consistent density of holes throughout its 
volume.   This block of foam is then bent into a ‘donut’ and the ends are bonded together.   
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Figure 3.  Overview process flow chart of VT Foams 

 

 
The loaf The block The donut The skim 

Figure 4. Making rolls of foam: The loaf, block, donut and skim 

 
The donut is then skimmed (see Figure 4) to create rolls of continuous foam of a certain 
thickness.  The thinner the slice of foam shaved of the donut, the longer the slice is.   A 3mm 
slice will create about 18km of foam from a 2m high loaf.  There is about 1km of 3mm foam 
on a typical roll that is sold to a customer, so that a loaf can supply up to 18 rolls of foam. 
Customers typically order one roll of foam at a time, the rest being stored as a finished 
product in a warehouse until they are later sold. 
 
Now the loaf of foam is 60 meters long, and this is a fixed constant. If the loaf is any shorter, 
the ‘donut’ cannot be formed as the bend is too tight; and if the loaf is any longer, it will not 
fit into the skimming machine in the later stage.   The width is also fixed as this is the height 
of the roll that will be shaved off the donut later, and can’t be changed.  However the height 
of the loaf is a variable.  If demand for that particular foam is high, more chemicals can be 
sprayed onto the conveyor belt and the height of the loaf will rise.   
 
The higher the loaf that is made, the smaller the percentage of foam that is trimmed to create 
the uniform block.  In a 2m high loaf, about 20% of the material cost is due to the wastage 
from the trimming activities.  However, if a 1m high loaf is made, 40% of the material is lost 
in the trimming. About 60% of the final cost of the product is due to its material cost. The 
amount of waste trimmed off the loaf to create the block can be assumed to be a constant, 
regardless of the height of the loaf.   Obviously, the department that makes the loaf wants to 
minimise this waste by making loafs as high as possible.   However, this creates more finished 
goods to store later in the process (higher loafs create more rolls of foam in inventory).  This 
conflict results in the classic Economic Order Quantity trade-off.    
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Also of interest here is the very long interval between successive batches.  It is not uncommon 
for this company to make a batch that will satisfy a year’s worth of customer demand.  Given 
this long time scale, we propose that the NPV of the cash flows should be considered in the 
EOQ analysis.  
 

3.1  EOQ with trim loss 
First we will ignore the time value of money and briefly analyse the VT Foams Ltd. case as a 
classical EOQ problem.  Let TC be the total annual cost to be minimised by changing Q, 
where Q is directly linked to the height of the loaf, the decision variable in this case.  D is the 
annual demand for rolls of the foam variant, and h is the annual inventory holding (storage) 
cost per roll.  k is the production set-up cost associated with the loaf, block, donut and the Q 
rolls.  y is the cost of the lost yield due to the trimming of the loaf to create the uniform block.  
c is the direct cost to produce a unit of the foam (not including the holding, trim loss or order 
placement / set-up cost).  
 
Under the usual assumptions for EOQ models, (see Hopp and Spearman [12] for a concise list 
that are also relevant here), the average inventory holding over the whole year is / 2Q  and the 
average number of replenishment orders per year is /D Q

. 
Hence, the annual direct cost is 

given by Dc, the annual inventory cost is / 2Qh , the annual set-up cost is /Dk Q  and the 
annual cost of yield loss from the trimming is /Dy Q .  Thus the annual costs are given by 
 

   2Total Annual Costs Qh D
QTC Dc k y    . (8)

 
Differentiating (8) with respect to Q yields        2/ / 2dTC dQ h D k y Q   .  Setting 
 / 0dTC dQ   and solving for the positive root yields the optimal value of Q, *Q , which is 
 

 * 2 /Q D k y h  . (9)

 
It is easy to show that the second derivative of (8) is always positive for relevant parameter 
settings, hence (9) is a minimum.  Thus, as the optimal height of the loaf is related to Q, then 
the loaf height optimisation is simply an EOQ problem where the cost of the trimming is 
incorporated into the set-up cost of the traditional EOQ problem. 
 

3.2.  NPV of the cash flows in the EOQ with trim loss problem 
Let EOQNPV  be the NPV of the cash flows resulting from the EOQ decision for a particular 
product variety of foam.   Our objective is to maximise EOQNPV  by changing Q.  All 
notations and assumptions from above also hold here.  The production orders are placed 

/Q D  periods apart and the inventory levels fall linearly by D per period of time.  Using the 
Laplace transform and some rather basic control engineering knowledge (see Nise [13], or 
Buck and Hill [14]) we may develop the block diagram in Figure 5 to describe the cash flows 
in this EOQ system.  The use of the Laplace transform to capture this information is possible 
as the NPV of a cash flow over time, f(t) is given by it’s the Laplace transform, F(s), when the 
Laplace operator, s, has been replaced by the continuous discount rate, r, Grubbström [15]. 
 

   
0

st

s r

NPV F s e f t dt
 



     . (10) 

 
The Laplace transform approach is rather scalable as complex cash flows can be easily 
handled.   In Figure 5 we have used; the impulse response  , the standard input that drives  
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Figure 5.  Block diagram of the cash flows in the EOQ with trim loss model 

 
the whole system, the integrator 1s  to convert the impulse into a unit step, that has been 
scaled by pD to represent the sales cash flow.  The feedback loop / 1(1 )Qs De  converts the 
single impulse responseinto a sequence of repeating impulse responses that occur /Q D  
periods apart.   These are scaled by  ( )k y cQ   to represent the order cost cash flow.  The 
inventory cost cash flow uses; the ramp function 2s with a slope is D, a repeating impulse 
generated by the feedback loop / 1(1 )Qs De  which is then converted into a “staircase” by the 
integrator 1s  where each step is scaled by Q.  The scaled ramp and scaled staircase is then 
joined and scaled by h to generate the inventory holding cost cash flow.   The three flows can 
then be combined the give the complete cash flow of the EOQ model.  Figure 6 gives an 
illustration of the individual signals that constitute the NPV.  
 
Consider now each of the three cash flows in turn.  Using standard block diagram 
manipulation techniques, we can determine the relationship between the sales cash flow and 
the Dirac delta function, the unit impulse,  .  The Laplace transform of the sales cash flow is 
given by /pD s .  Setting the Laplace operator (s) to the discount rate yields the PV of the 
sales 

Sales
pD
sPV  . (11)

 
The PV of the order costs can also be determined from the block diagram, which is 
 

/Order Cost 1 Qs D

k y cQ

e
PV 

 


 .  (12)

 
In a similar manner we can also obtain the PV function of the inventory cost cash flow, 
 

  2/Inventory Cost 1 Qs D

Qh Dh
ss e

PV 
  . (13)

 
The NPV of all three cash flows in the EOQ model is given by 
 

 / 2/1 1
EOQ Qs D Qs D

pD k y cQ hQ Dh
NPV

s e se s 

 
   

 
. (14)

 
Differentiating (14) w.r.t. Q yields, 
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Figure 6.  Block diagram signal that constitute the cash flows generated by the EOQ model 

 

 
        

 
/ 2

2 / /2

d

d 1

Qs D

EO

Qs D Qs D

Q
e D h cs k y s Qs h cs D h cs

Ds

NPV

Q e e



 

     


 


, (15)

 
where it is easy to see that the stationary points are at 
 

        / 2Qs De Qs h cs D h cs k y s D h cs        . (16)

 

Multiplying by    1
D h cs


   gives 

 
  2

/
( )1 1k y sQsQs D

D D h cse 
     . (17)

 

Finally, multiplying by 
  2

( )1
k y s

D h cse

 

 formats the stationary point in the required Lambert W form, 
 

      2 2
2

( ) ( )1 1

( )1
k y s k y sQs

D D h cs D h csk y sQs
D D h cs e e

 
     

     , (18)

 
where can now identify the following ‘W’ terms, 
 

     2
2

( )1

( )[ ] 1 ;  
k y s

D h csk y sQs
D D h cs zW z e


 

      . (19)

 
Re-arranging Equation (19) for *Q yields 
 

   
 

2
1*

11
( )

k y s

D h cs
k y s D

Q W e
h cs s


 



    
         

. (20)

 
In (20) we have selected the alternative branch of the Lambert W function.  Note that in our 
problem  *, , , , , , 0k y c s h D Q   , which implies that 

21 (( ) )/( ( )) ][ 1.D h csk y sW e       Now the 
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Figure 7.  Net present value costs in the EOQ with trim loss against the batch size Q 
 
exponential term 

 
 

2
11 0

k y s

D h cse e

     , which in turn means that 

 
 

2
1

[ 1]
k y s

D h csW e

 

    will only 
happen if the alternative branch is selected, and hence our choice in (20).   
 
The NPV and the three individual costs have been plotted as a function of Q in Figure 7.   The 
curves refer to the practically relevant case of sales price p = 75, demand D = 18, discount 
rate s = 0.2, order placement cost k = 25, direct (variable) order cost c = 10, trim loss per order 
y = 2, inventory holding cost h = 4.   Interestingly we can see that when the individual cash 
flows are considered there is even a minimum in the order costs, a result that was also found 
by [8].  This is something that did not happen in the classical EOQ approach.  We leave it to 
interested readers to derive the optimal Q to minimise the order costs.  It is rather easy with 
the approach we have discussed here.  Whilst the inventory cost NPV curve looks linear 
plotted in Figure 7, it is in fact a curve.  It’s derivative is  / 2h s  at 0Q   and / 2h  at Q   .   
 
Finally, we note that even though the NPV curve implies that small deviations in *Q  will not 
result in a significant loss in NPV, the batch size given by the classical EOQ formula is 

*
Classical 31.82Q  , whilst that provided by the NPV EOQ approach is * 12.44NPVQ  .  This is 

implies that the VT Foams should reduce its batch size and produce more frequently.  The 
NPV of producing to Q = 12 is £1,849.70, and to Q = 31 is £1,665.70, a fall of 10% in NPV. 
Given the number of batches produced per year this is a significant cost difference. 
 
4.  Pedagogical considerations 
In order to arrive at these exact solutions we did not have to change anything in the way we 
set up the equations. It was only at the point of solving the equation did the ‘Lambert W’ 
function emerge.  We only had to manipulate the equations, and the most difficult aspect of 
that is to recall how to treat exponential functions.  This should be easily achievable by 
postgraduate students after a short refresher, see Table 1.  The other slight complication is the 
selection of the relevant branch of the Lambert W function.  In essence however, it is no more 
complicated or abstract that selecting the positive square root in the classic EOQ procedure.  
Indeed, selecting the wrong branch will result in a negative Q, prompting one to consider the 
other branch. 
 
The Lambert W function does however require enumeration. Whilst this is easy to do in 
specialist mathematical software such as Maple or Mathematica, access to this software is 
rather limited.   In order to overcome this is a class-room setting, we have provided a ‘look-
up’ table for the real solutions to the Lambert W function in the Appendix.  This may be 
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      &

kx xke e x k       xd e x
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lim [ ] 0x

x
e 

  0 xe x    1ie     

Table 1.  Properties of the exponential function 
 

printed out by interested readers and become part of their teaching materials.   It is intuitive 
and no more difficult to use than the standard normal table used in many operations 
management / industrial engineering texts.  However, a much more useful iterative procedure 
for determining the real solutions to the Lambert W function has been proposed by Johnson 
[16], see (21).   It is based on Newton’s Method and converges rather quickly (usually within 
5-10 iterations, so there is no need to do limitless iterations).   
 

2

1 1 ;  [ ] lim
wi

i

i

ze w
i iw i

w W z w
 

  
   (21)

 
The principle branch, 0[ ]W z , can be found by using 0 0w   when 1 10e z   , when 10z   
use    0 log log logw z z     .  For the alternative branch, 1[ ]W z , use 0 2w    if 

1 0.1e z     or    0 log log logw z z        if 0.1 0z  . [16] also proposes another 
iterative procedure (see (22)) for use when z is near 1e  that converges more rapidly than 
(21).    

  1/
1 1/

1 1 ;  [ ] limwi
i

z e
i i iw e e i

w w W z w
  
      (22)

 
Here the principle branch, 0[ ]W z , can be found by using 0 0w  .  For the alternative branch, 

1[ ]W z , use 0 2w   .  It is a trivial matter to incorporate both of these iterative procedures 
into a User Defined Function in Microsoft Excel.  The Visual Basic code is shown below in 
Table 2, and provides both the 0[ ]W z  and 1[ ]W z  branches.  This can be saved as a ‘Microsoft 
Excel Add-In’.  After such a procedure is undertaken, then “=LambertW(mode,z)” can be 
used within Microsoft Excel to enumerate the Lambert W Function.  Interested readers may 
also email the authors to request an electronic copy if they so wish. 
 
Function LambertW(mode As Integer, z As Double) 
Dim Wo As Double 
Dim Wnew As Double 
 
Wnew = 0 
If mode = 0 Then 
    If z > 10 Then 
    Wo = Log(z) - Log(Log(z)) 
    Else 
    Wo = 0 
    End If 
Else 
    If z < -0.1 Then 
    Wo = -2 
    Else 
    Wo = Log(-z) - Log(-Log(-z)) 
    End If 
End If 

If z < -0.35 Then 
    For grandloop = 1 To 10000 
       Wnew = -1+(Wo+1) * ((z+(1/ Exp(1))) / (Wo*Exp(Wo) + (1/Exp(1))))^ 0.5 
        If Wo = Wnew Then grandloop = 10000 
        Else Wo = Wnew 
        End If 
    Next grandloop 
Else 
    For grandloop = 1 To 10000 
        Wnew = ((z * Exp(-Wo)) + Wo ^ 2) / (Wo + 1) 
        If Wo = Wnew Then grandloop = 10000 
        Else Wo = Wnew 
        End If 
    Next grandloop 
End If 
 
LambertW = Wnew 
End Function 

Table 2.  Visual Basic Code to enumerate the real solutions to the Lambert W function  
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5. Conclusions 
We made a small, but we believe important, contribution to Blackburn and Scudder’s [10] 
EOQ problem with perishable inventory by improving upon their lower bound for the 
optimum order quantity.  We accomplished this by exploiting the properties of the Lambert W 
function.  Recognising that the Lambert W Function is useful also for other EOQ problems 
with exponential terms, we have illustrated a rather general approach that exploits the Laplace 
transform to optimise the NPV of an EOQ problem with trim loss. The relation between the 
Laplace transform and the Lambert W function emerged as an interesting feature. The 
parallelism between these two functions was first pointed out in [17]. 
 
Both of our EOQ problems were motivated by real-world scenarios.    Acknowledging that 
the Lambert W function is not well known, we have provided two pedagogical tools for the 
operations management and industrial engineering teacher.  One of these tools is a standard 
‘look-up’ table for class-room use, the other is a Microsoft Excel ‘Add-In’ for self study and 
professional purposes.  Arguably, together these tools render the ‘Lambert W’ solutions no 
more difficult to use and teach than other inventory problems.  Certainly they are no more 
difficult than a normal distribution table, which is ubiquitous in operations management texts.   
 
6. References 
1.   http://en.wikipedia.org/wiki/Lambert_W_function.  Verified 12/12/09. 
2.  Corless, R.M., Gonnet, G.H., Hare, D.G., Jeffrey, D.J. and Knuth, D.E., 1996. On the 

Lambert W Function.  Advances in Computational Mathematics, 5, 329-359. 
3. Wright, E.M., 1949. Solution of the equation zze a . Proceedings of the Royal Society of  

Edinburgh 65, 193-203. 
4.  Warburton, R.D.H., Disney, S.M., Towill, D.R. and Hodgson, J.P.E., 2004. Further 

insights into “The stability of supply chains”.  International Journal of Production 
Research, 42 (3), 639-648. 

5.  Warburton, R.D.H., 2004.  An exact solution to the production inventory control system. 
International Journal of Production Economics. 92 (1), 81-96. 

6.  Warburton, R.D.H. and Disney, S.M., 2007. Order and inventory variance amplifications: 
The equivalence of discrete and continuous time analysis.  International Journal of 
Production Economics. 110, 128-137.  

7.  Disney, S.M. and Grubbström, R.W., 2004. The economic consequences of a production 
and inventory control policy. International Journal of Production Research. 42 (17), 
3419 – 3431.  

8.  Warburton, R.D.H., 2009. EOQ extensions exploiting the Lambert W function. European 
Journal of Industrial Engineering, 3 (1), 45-69.  

9.  Harris, F.W., 1913. How many parts to make at once. Factory. The Magazine of 
Management, 10 (2), 135-136, 152.  Reprinted in Operations Research, 38 (6), 947-950. 

10. Blackburn, J. and Scudder, G., 2009. Supply chain strategies for perishable products:  The 
case of fresh produce. Production and Operations Management, 18 (2), 127-137. 

11. Disney, S.M., 2007. Making rolls of foam is an EOQ problem:  The case of VT Foams 
Ltd.  MBA / MSc Operations Management Lecture Notes, Cardiff Business School.   

12. Hopp, W.J. and Spearman, M.L., 2000. Factory Physics:  Foundations of Manufacturing 
Management, Mcgraw-Hill, Singapore.  

13. Nise, N.S., 1995. Control Systems Engineering. Benjamin Cummings, Redwood City, CA.  
14. Buck, J.R. and Hill, T.W., 1971. Laplace transforms for the economic analysis of 

deterministic problems in engineering. The Engineering Economist, 16 (4), 247-263. 
15. Grubbström, R.W., 1967. On the application of the Laplace transform to certain economic 

problems. Management Science, 13 (7), 558-567. 



Disney, S.M. and Warburton, R.D.H., (2010), “On the Lambert W function: EOQ applications and pedagogical considerations”,  
in Grubbström, R.W., Hinterhuber, H.H., (Eds), Pre-prints of the 16th International Working Seminar of Production Economics, Innsbruck, Austria,  

March 1st –  5th, Vol. 1, pp129 – 140. 

 12

16. Johnson, B., 2009. “Computing LambertW”, www.whim.org/nebula/math/lambertw.html. 
Verified 8 October 2009.  

17. Warburton, R.D.H., 2004. An analytical investigation of the bullwhip effect. Production 
and Operations Management. 13 (2), 150-160. 

 
Appendix: The real solutions to the Lambert W function 
Numerical solutions for 1[ ]W z  and 0[ ]W z  are provided in Table 3. 

 
 z W-1[z] W0[z]   z W0[z]  x W0[z]  x W0[z] 

-1/e = -0.36788 -1 -1  0.01 0.009901  0.8 0.490068  4.5 1.267237 
-0.365 -1.13066 -0.87982  0.02 0.019612  0.85 0.510279  4.75 1.297615 
-0.36 -1.22277 -0.80608  0.03 0.029138  0.9 0.529833  5 1.326724 

-0.355 -1.29124 -0.75624  0.04 0.03849  0.95 0.548774  5.25 1.354670 
-0.35 -1.34972 -0.71664  0.05 0.047672  1 0.567143  5.5 1.381545 

-0.345 -1.40239 -0.68311  0.06 0.056693  1.05 0.584975  5.75 1.407432 
-0.34 -1.4512 -0.65369  0.07 0.065558  1.1 0.602304  6 1.432404 

-0.335 -1.49726 -0.62731  0.08 0.074273  1.15 0.619158  6.25 1.456526 
-0.33 -1.54127 -0.60327  0.09 0.082844  1.2 0.635564  6.5 1.479856 

-0.325 -1.58368 -0.5811  0.1 0.091277  1.25 0.651548  6.75 1.502447 
-0.32 -1.62485 -0.56049  0.11 0.099574  1.3 0.667132  7 1.524345 

-0.315 -1.66502 -0.54118  0.12 0.107743  1.35 0.682337  7.25 1.545593 
-0.31 -1.70439 -0.52299  0.13 0.115786  1.4 0.697182  7.5 1.566230 

-0.305 -1.74312 -0.50577  0.14 0.123709  1.45 0.711684  7.75 1.586292 
-0.3 -1.78134 -0.4894  0.15 0.131515  1.5 0.725861  8 1.605811 

-0.295 -1.81915 -0.47379  0.16 0.139208  1.55 0.739728  8.25 1.624817 
-0.29 -1.85665 -0.45886  0.17 0.146791  1.6 0.753298  8.5 1.643337 

-0.285 -1.89391 -0.44453  0.18 0.154268  1.65 0.766585  8.75 1.661395 
-0.28 -1.93101 -0.43076  0.19 0.161642  1.7 0.779601  9 1.679016 

-0.275 -1.968 -0.41749  0.2 0.168916  1.75 0.792358  9.25 1.696220 
-0.27 -2.00495 -0.40468  0.21 0.176093  1.8 0.804866  9.5 1.713028 

-0.265 -2.04191 -0.3923  0.22 0.183177  1.85 0.817136  9.75 1.729458 
-0.26 -2.07892 -0.38031  0.23 0.190169  1.9 0.829176  10 1.745528 

-0.255 -2.11604 -0.36869  0.24 0.197072  1.95 0.840997  10.25 1.761252 
-0.25 -2.15329 -0.3574  0.25 0.203888  2 0.852606  10.5 1.776647 

-0.245 -2.19073 -0.34643  0.26 0.210621  2.05 0.86401  10.75 1.791726 
-0.24 -2.2284 -0.33576  0.27 0.217272  2.1 0.875219  11 1.806502 

-0.235 -2.26633 -0.32537  0.28 0.223843  2.15 0.886238  11.25 1.820988 
-0.23 -2.30457 -0.31523  0.29 0.230337  2.2 0.897074  11.5 1.835195 

-0.225 -2.34315 -0.30535  0.3 0.236755  2.25 0.907734  11.75 1.849135 
-0.22 -2.38212 -0.29569  0.31 0.2431  2.3 0.918224  12 1.862816 

-0.215 -2.42151 -0.28626  0.32 0.249373  2.35 0.928548  12.25 1.876250 
-0.21 -2.46136 -0.27703  0.33 0.255575  2.4 0.938714  12.5 1.889445 

-0.205 -2.50173 -0.26801  0.34 0.26171  2.45 0.948725  12.75 1.902409 
-0.2 -2.54264 -0.25917  0.35 0.267777  2.5 0.958586  13 1.915152 

-0.195 -2.58415 -0.25051  0.36 0.27378  2.55 0.968303  13.25 1.927680 
-0.19 -2.62631 -0.24203  0.37 0.279719  2.6 0.97788  13.5 1.940001 

-0.185 -2.66917 -0.23371  0.38 0.285595  2.65 0.98732  13.75 1.952121 
-0.18 -2.71277 -0.22554  0.39 0.291411  2.7 0.996629  14 1.964049 

-0.175 -2.75718 -0.21752  0.4 0.297168  2.75 1.005809  14.25 1.975789 
-0.17 -2.80245 -0.20965  0.41 0.302866  2.8 1.014864  14.5 1.987347 

-0.165 -2.84866 -0.20192  0.42 0.308508  2.85 1.023799  14.75 1.998730 
-0.16 -2.89587 -0.19432  0.43 0.314094  2.9 1.032616  15 2.009943 

-0.155 -2.94415 -0.18684  0.44 0.319625  2.95 1.041318  15.25 2.020991 
-0.15 -2.99359 -0.17949  0.45 0.325104  3 1.049909  15.5 2.031879 

-0.145 -3.04429 -0.17226  0.46 0.33053  3.05 1.058391  15.75 2.042611 
-0.14 -3.09633 -0.16514  0.47 0.335905  3.1 1.066768  16 2.053192 

-0.135 -3.14983 -0.15813  0.48 0.34123  3.15 1.075042  16.25 2.063627 
-0.13 -3.2049 -0.15122  0.49 0.346506  3.2 1.083216  16.5 2.073919 

-0.125 -3.26169 -0.14442  0.5 0.351734  3.25 1.091292  16.75 2.084073 
-0.12 -3.32033 -0.13772  0.51 0.356914  3.3 1.099273  17 2.094092 

-0.115 -3.38099 -0.13111  0.52 0.362049  3.35 1.107161  17.25 2.103980 
-0.11 -3.44387 -0.1246  0.53 0.367138  3.4 1.114958  17.5 2.113741 

-0.105 -3.50918 -0.11817  0.54 0.372183  3.45 1.122667  17.75 2.123377 
-0.1 -3.57715 -0.11183  0.55 0.377184  3.5 1.130289  18 2.132892 

-0.095 -3.64808 -0.10558  0.56 0.382143  3.55 1.137827  18.25 2.142289 
-0.09 -3.72228 -0.09941  0.57 0.387059  3.6 1.145283  18.5 2.151571 

-0.085 -3.80014 -0.09331  0.58 0.391934  3.65 1.152657  18.75 2.160742 
-0.08 -3.88211 -0.0873  0.59 0.396769  3.7 1.159953  19 2.169802 

-0.075 -3.96871 -0.08136  0.6 0.401564  3.75 1.167172  19.25 2.178756 
-0.07 -4.06059 -0.07549  0.61 0.406319  3.8 1.174316  19.5 2.187606 

-0.065 -4.15853 -0.06969  0.62 0.411037  3.85 1.181385  19.75 2.196354 
-0.06 -4.2635 -0.06396  0.63 0.415716  3.9 1.188383  20 2.205003 

-0.055 -4.37672 -0.0583  0.64 0.420359  3.95 1.19531  20.25 2.213554 
-0.05 -4.49976 -0.05271  0.65 0.424965  4 1.202168  20.5 2.222011 

-0.045 -4.63465 -0.04717  0.66 0.429535  4.05 1.208958  20.75 2.230376 
-0.04 -4.78419 -0.0417  0.67 0.434071  4.1 1.215682  21 2.238649 

-0.035 -4.95225 -0.03629  0.68 0.438571  4.15 1.222341  21.25 2.246834 
-0.03 -5.14448 -0.03094  0.69 0.443037  4.2 1.228936  21.5 2.254932 

-0.025 -5.36964 -0.02565  0.7 0.44747  4.25 1.235469  21.75 2.262946 
-0.02 -5.64232 -0.02041  0.71 0.45187  4.3 1.24194  22 2.270876 

-0.015 -5.98976 -0.01523  0.72 0.456238  4.35 1.248352  22.25 2.278725 
-0.01 -6.47278 -0.0101  0.73 0.460573  4.4 1.254704  22.5 2.286495 

-0.005 -7.284 -0.00503  0.74 0.464877  4.45 1.260999  22.75 2.294186 
0   0  0.75 0.46915  4.5 1.267238  23 2.301801 

Table 3.  Enumeration of the real solutions to the Lambert W function 


