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Abstract

We compare a variety of methods for estimating the gas/ice depth offset (∆depth) at
EPICA Dome C (EDC, East Antarctica). (1) Purely based on modelling efforts, ∆depth
can be estimated combining a firn densification with an ice flow model. Observations
allow direct and indirect estimate of ∆depth. (2) The diffusive column height can be es-5

timated from δ15N and converted to ∆depth using an ice flow model and assumptions
about past average firn density and thickness of the convective zone. (3) Ice and gas
synchronisation of the EDC ice core to the GRIP, EDML and TALDICE ice cores shifts
the ice/gas offset problem into higher accumulation ice cores where it can be more ac-
curately evaluated. (4) Finally, the bipolar seesaw hypothesis allows us to synchronise10

the ice isotopic record with the gas CH4 record, the later being taken as a proxy of
Greenland temperature. The bipolar seesaw antiphase relationship is generally sup-
ported by the ice-gas cross synchronisation between EDC and the GRIP, EDML and
TALDICE ice cores, which provide support for method 4. Applying the bipolar seesaw
hypothesis to the deeper section of the EDC core confirms that the ice flow is complex15

and can help improving our reconstruction of the thinning function and thus of the EDC
age scale. We confirm that method 1 overestimates the glacial ∆depth at EDC and we
suggested that it is due to an overestimation of the glacial Close Off Depth by the firn
densification model. In contrast we find that the glaciological models probably underes-
timate the ∆depth during termination II. Finally, we show that method 2 based on 15N20

data produces for the last deglaciation a ∆depth estimate which is in good agreement
with methods 3 and 4.

1 Introduction

Ice cores provide a wealth of information on past climatic variations (Jouzel et al.,
2007; Pol et al., 2010) and on past greenhouse gases concentrations (Lüthi et al.,25
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2008; Loulergue et al., 2008) at time scales ranging from centennial to orbital (Earth
orbit variations, 104–105 yr).

To interpret the records from ice cores, it is essential to derive accurate chronolo-
gies (e.g. Parrenin et al., 2007b). One of the peculiarities of ice core dating is that two
age scales need to be derived: one for the ice matrix and one for the gas phase. Gas5

bubbles are always younger than the surrounding ice because they close off and trap
the air at 50–120 m (depending on site conditions) below the surface, after the snow
has densified into ice (Schwander and Stauffer, 1984). What is important for paleo-
climatic studies is the Lock-In Depth (LID), where gas diffusion becomes negligible,
which is slightly smaller than the Close Off Depth (COD), where it is not possible to10

pump air (Witrant et al., 2011). The determination of this ice/gas offset is essential to
derive the phase relationship between proxies recorded in the ice phase and in the
gas bubbles. As an example, CO2 was estimated to lag Antarctic temperature changes
by 800±600 yr during the last deglaciation (Monnin et al., 2001), by 800±200 yr dur-
ing termination III (Caillon et al., 2003) and on average by 600±400 yr during the last15

three deglaciations (Fischer et al., 1999). This finding suggests that CO2 was an am-
plifier rather than the initial trigger of glacial terminations.

The gas/ice offset can be characterized in two different ways. ∆age measures the
difference in age between the ice and gas phases at any given depth. ∆depth, on the
other hand, represents the depth difference between gas and ice of the same age.20

Each parameter has advantages and drawbacks. ∆age is fixed when the gas is locked
in and does not evolve with time because there is no relative movement of the gas
bubbles or hydrates with respect to the surrounding ice. ∆age is, however, strongly
dependent on the rate of surface snow accumulation at the site, which is poorly con-
strained for the past: for a given LID and density profile, ∆age is inversely proportional25

to the accumulation rate. By contrast, ∆depth is independent of the reference age scale
used. However, it continually evolves as the ice thins, which complicates its evaluation.
Inversely, having observations of ∆depth from ice and gas proxies can provide useful
information on the past flow of ice.

1091

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/1089/2012/cpd-8-1089-2012-print.pdf
http://www.clim-past-discuss.net/8/1089/2012/cpd-8-1089-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
8, 1089–1131, 2012

On the gas-ice depth
difference (∆depth)

along the EPICA
Dome C ice core

F. Parrenin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In this paper we will focus on the evaluation of the ∆depth along the EDC ice core.
There are several ways of estimating it and these fall into two categories: (1) estimation
of the initial LID of gas bubbles and estimation of the thinning of snow/ice layers; (2)
determination of synchronous events in gas and ice proxy records. In this study, we will
apply different approaches to deduce ∆depth estimates along the EDC ice core. These5

various estimates will be inter-compared and discussed.
Note that in the following, we have to deal with datasets on both the EDC96 and

EDC99 ice cores. We systematically transfer all EDC96 datasets to EDC99 depths
using a linear interpolation of the volcanic tie points between both cores (Parrenin et
al., 2012). We use the same depth-depth relationship for both gas and ice datasets,10

i.e. we assume that ∆age as a function of age is the same for both cores.

2 Methods

∆depth from ice flow and densification models
From a mechanical point of view, ∆depth is given by:∫ D
(
z′,t

)
τ (z′,t)

dz′ =
∫ D

(
z′,t = 0

)
τ (z′,t = 0)

dz′, (1)15

where D(z′) and τ(z′) are respectively the density of the material relative to pure ice
and the thinning as a function (the ratio of a layer thickness to its initial thickness)
of the depth z′ and h is the Lock-In Depth (LID) at the time t when the initial snow
layer, which is now ice at depth z−∆depth(z), was at surface. We further define hie the
Lock-In Depth in Ice Equivalent (LIDIE):20

hie =
∫
D (y ,t)dy , (2)

Using this formalism, ∆depth is a function of the gas depth. We implicitly assumed that
at a given depth z, the gas age is uniquely defined. In reality, because of gas diffusion
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in the firn and because of the gradual bubble close off process, any depth contains
a distribution of age which can be accurately approximated by a log-normal function
(Köhler, 2010). We implicitly use here the median of this log-normal distribution as the
so-called gas age for any given depth.
D(z’,t = 0) can be estimated by measuring the weight and the volume of the ice5

cores. However, no reliable quantitative proxy has been proposed for τ(z′,t) and D(z′,t)
and their evaluation usually relies on ice flow (e.g. Reeh, 1989; Parrenin et al., 2007a;
Salamatin et al., 2009b) and firn densification modelling (e.g. Herron and Langway,
1980; Arnaud et al., 2000; Salamatin et al., 2009a). We will detail in the following the
ice flow model and firn densification model used in this study.10

2.1 Ice flow model

A one-dimensional (1-D) ice flow model has been used to construct the modelled age
scale Xm at the EDC drilling site and to derive a modelled thinning function τm (Parrenin
et al., 2007a). In this model, the vertical velocity uz̄ of the ice relative to the bedrock is
expressed as:15

uz̄ (z̄) = −
[
m+

(
a− ∂H

∂t
−m

)
ω (ζ )

]
(3)

where z is the vertical coordinate of the ice particle (oriented toward the top), z̄ = z−B is
the distance to the bedrock (B is the bedrock elevation), ζ = z̄/H is the non-dimensional
vertical coordinate, m is the melting rate at the base of the ice sheet, a is the surface
accumulation rate, H is the ice thickness and ∂H

∂t is its temporal variation. ω (ζ ), called20

the flux shape function (Parrenin et al., 2007c), depends on the non-dimensional ver-
tical coordinate and is the contribution of one sliding term and one deformation term:

ω (ζ ) = sζ + (1− s)ωD (ζ ) (4)
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where s is the sliding ratio (Ratio of the basal horizontal velocity to the vertically aver-
aged horizontal velocity; it is 0 for no sliding and 1 for full sliding) and ωD (ζ ) can be
approximated by [Lliboutry, 1979]:

ωD (ζ ) = 1− p+2
p+1

(1− ζ )+
1

p+1
(1− ζ )p+2 (5)

where p is a parameter for the vertical profile of deformation ωD (ζ ). The values of p,5

m and s are assumed constant through time.
The past variations of ice thickness H(t) are obtained from a 1-D model (Parrenin et

al., 2007a) fitted onto the results of a 3-D model of the Antarctic ice sheet (Ritz et al.,
2001). The main process is the reduced accumulation rate during glacial times, which
induces a lower elevation (and reduced ice thickness) at Dome C during glacial peri-10

ods. However, preliminary results with an improved 3-D model with increased spatial
resolution suggests that the presence of an ice sheet in the Ross embayment might
limit the impact of a reduced accumulation on the elevation at the EDC site, at least
during the last glacial maximum (Ritz, personal communication, 2012). This is why, in
the following, we will also test the hypothesis of zero ice thickness variations at the15

EDC site. This appears as an extreme case, given that some geomorphological data
in the Transantarctic Mountains show little elevation change of the Antarctic plateau for
the last glacial maximum (Denton et al., 1989), despite the presence of the ice sheet
in the Ross embayment.

Accumulation Am and temperature T are deduced from the deuterium content of the20

ice extracted from the drill core, through the following relationships:

Am = A0exp(β∆δDsmo) (6)

T = T 0 +α∆δDcor (7)
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where A0 and T 0 are surface accumulation and temperature for a reference deuterium
content of −396.5 ‰ (roughly corresponding to the present-day value). ∆δDsmo is a
50-yr smoothed version of ∆δDcor because the accumulation rate Am is supposed to
be related to the isotope content of the deposited snow only over a certain time interval
(high frequency variations of deuterium may be affected by post depositional processes5

such as wind scouring). The poorly constrained glaciological parameters p = 2.30,
m = 0.066 cm-of-ice yr−1, s = 2.23 %, A0 = 2.841 cm-of-ice yr−1 and β = 0.0157 were
obtained by fitting independent age markers identified within the core (Parrenin et al.,
2007a). The inferred value for β appears consistent with modern spatial gradients in
central East Antarctica (Masson-Delmotte et al., 2008). Given the inability of the model10

to fit some age markers (Dreyfus et al., 2007; Parrenin et al., 2007b), the thinning func-
tion τ and surface accumulation rate A were tuned a posteriori using a spline method
so that the age scale fit these age markers (see appendices of Parrenin et al., 2007b;
Dreyfus et al., 2007).

It is difficult to quantify the uncertainty on the modeled thinning function τm(z) be-15

cause we do not know which processes are missing in the ice flow models. Here we
consider only the non-laminar ice flow effects and assume that the error they induce
on ln(τm) is:

σln(τ) (z) =
k
H

∫ D
(
z′
)

τm (z′)
dz′, (8)

where D(z) is the density of the material relative to pure ice and k is a proportionality20

coefficient. We infer the value of k with a residual approach using the multiplicative
correction for the thinning function C(z) which has been inferred from the orbital tuning
of δ18Oatm in the 2700–3200 m interval of the EDC ice core (Dreyfus et al., 2007). k is
simply given by the standard deviation of the following function f (z) :

f (z) =
ln (C (z))

H

∫
dz′

τm (z′)
, (9)25
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which is represented in Fig. 1. This gives k = 0.0974 and the resulting σln(τ) function is
plotted in Fig. 7.

2.2 Firn densification model

For the firn densification modeling exercise and the determination of ρ (y), we used
the Arnaud/Goujon model (Goujon et al., 2003). Arnaud et al. (2000) developed an5

advanced densification model which considers two densification stages: pure sliding
of snow grains for density lower than ∼0.55 g cm−3, and pure deformation of grains for
density higher than ∼0.55 g m−3. Goujon et al. (2003) then incorporated heat transfer
into this model. In the applications below we used a surface density of 0.35 g cm−3.

The Lock-In density ρ(y = h) is determined from the Total Air Content (TAC) of the10

ice (Martinerie et al., 1992, 1994; Raynaud et al., 2007) corrected for local atmospheric
pressure changes (due in particular to elevation changes) using the perfect gas law.
In the applications below, for simplification and based on the approach by Martinerie
et al. (1992, 1994), we use a conventional linear empirical relationship between the
volume of pores at Close Off (Vc, cm3 g−1) and surface temperature TS (K) as:15

Vc = 6.95×10−4TS −0.043 (10)

The evolution of closed porosity in the firn, Pclosed, is deduced from the following rela-
tionship:

Pclosed = 0.37Ptotal

(
Ptotal

Pclose−off

)−7.6

, (11)

which has been calibrated with Pclosed and Ptotal measurements on several ice cores20

from Greenland and Antarctica (Jean-Marc Barnola, personal communication, 2009).
This relationship means that at Close-Off, 37 % of the pores are closed. The LID is
further defined, at EDC, when 20 % of the pores are closed.
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The steady LID, ∆age and LIDIE/LID ratio simulated by the Goujon/Arnaud model
are represented in Fig. 3 in a surface temperature-surface accumulation diagram for
a surface density of 0.35 g cm−3. Qualitatively speaking, LID is greater for a greater
accumulation or for a lower temperature, while ∆age is greater for a lower accumulation
or for a lower temperature. The LIDIE/LID ratio is practically constant: it only varies5

between 0.682 and 0.702.
∆depth from ice flow modelling and δ15N-based estimates of firn thickness
The ice flow modelling part of this estimate has been described above. We use here

the variations of ice thickness at EDC as derived for the EDC3 age scale (Parrenin et
al., 2007a, b).10

Now h is estimated using the fact that, below a convective zone of height hconv where
the air is mixed (Colbeck, 1989, 1997), gravitational settling enriches heavy isotopes of
inert gases (such as δ15N of N2 and δ40Ar) proportionally to the diffusive column height
hdiff (Craig et al., 1988; Sowers, 1989; Dreyfus et al., 2010) until gases no longer diffuse
in the open pores . We implicitly assume here that all gases stop diffusing at the same15

depth. Note that a recent study suggested that some trace gases continue to diffusive
below the LID defined by the start of the δ15N plateau (Buizert et al., 2011). In delta
notation, this gravitational fractionation is expressed as:

δgrav =
[

exp
(
∆mghdiff

RT

)
−1

]
×1000, (12)

where ∆m is the mass difference between species (kg mol−1), g is the gravitational20

acceleration (9.81 m s−2), R is the universal gas constant (8.314 J mol−1 K−1) and T is
the firn temperature (K). Equation (12) can be approximated within 0.02 % with:

δgrav '
(
∆mghdiff

RT

)
×1000. (13)
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Thermal fractionation of δ15N occurs because of the temperature difference ∆T be-
tween the surface and the LID:

δth =Ω (T )Ghdiff, (14)

where G is the vertical temperature gradient in the firn. Ω(T ) has been estimated from
laboratory measurements (Grachev and Severinghaus, 2003).5

Conversely one can deduce h from the δ15N data (Dreyfus et al., 2010):

h = hconv +δ15N
(
∆mg×1000

RT+Ω (T )G

)−1

. (15)

In the applications below, we will assume that there was no convective zone at EDC
during the last 800 kyr, in agreement with current observations (Landais et al., 2006).
One of the reasons for variations in the convective height is the change of wind stress.10

GCM experiments for the LGM show little variations in wind on the East Antarctic
plateau (Krinner et al., 2000). Note that we have evidence of a large convective zone
at some sites and for the present (Bender et al., 2006; Severinghaus et al., 2010).
We further assume a constant 0.008 ◦ m−1 vertical temperature gradient in the firn, as
measured for the present between 20 and 100 m (L. Arnaud, personal communica-15

tion, 2012). We take the surface temperature as computed for the EDC3 age scale
(Parrenin et al., 2007a), as a function of the ice depth. We also need a prior ∆depth
estimate to convert the ice depths to gas depths and we use the EDC3 scenario 1 esti-
mate (Loulergue et al., 2007). We estimate the uncertainty on the temperature estimate
to be <4 K which translates into a <2 % 2σ error on h. We estimate the uncertainty on20

the temperature gradient to be <0.003 which translates into a <1 % 2σ error on h.
Following the Goujon/Arnaud model simulations (see Fig. 3c), Eq. (2) is simplified

into:

hie ' h×0.698. (16)
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Bender et al. (2006) also used a similar approximation. It corresponds to assuming that
the average density of the firn is correctly predicted by the Goujon/Arnaud model. If this
model would not predict the right average densification velocity but would predict the
right densification profile shape, this approximation would still be valid. So this leaves
us with mainly two reasons why this approximation would not be valid: (1) a variable5

surface density and/or (2) a variable Lock In density. Option (1) cannot be ruled out
since depending on the characteristics of the surface (glazed surface, megadunes, etc.)
surface densities >0.4 g cm−3 are observed on the East Antarctic plateau (Courville et
al., 2007). Note that because the densification velocity is greater at surface than in
depth, an error of x on the surface density has a relatively low impact of ∼ x/3 on10

the average density. Because the density at the COD does not change very much
with time (it is well constrained by the measured Total Air Content of the ice), option
(2) would imply a varying difference between LID and COD. In total, we estimate the
2σ error of Eq. (16) to be 5 %. Equation (1) is solved assuming the thinning function
expressed as a function of zie, the ice equivalent depth, was the same at the time of15

deposition as for the present. The error of this approximation is due to the varying basal
melting/accumulation ratio and to the varying ice thickness (Parrenin et al., 2007a) but
we evaluate it to be <0.1 % on ∆depth. The δ15N record from the EDC ice core covers
the last three glacial terminations and five glacial-interglacial cycles between 300 and
800 ka (Dreyfus et al., 2010).20

2.2.1 ∆depth from ice and gas synchronisation to GRIP

∆depth at the depth of the 10Be peak (Raisbeck et al., 2007) in the EDC ice core
can be estimated by linking the ice and gas signals to GRIP (Loulergue et al., 2007).
The ice link is obtained by 10Be synchronisation of EDC and GRIP for two 10Be sub-
peaks during the Laschamp event (Raisbeck et al., 2007). The gas link is obtained25

by matching the EDC CH4 record to the GRIP ice isotopic record (Fig. 4), assuming
that these two records are synchronous during the rapid DO transitions (Flückiger et
al., 2004; Huber et al., 2006). On Fig. 4, we align the onsets of DO9 and DO11 and
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remark that the onset of DO10 is also aligned. Linear interpolations allow to obtain the
corresponding gas depths in EDC99. Note that our horizontal scale is expressed in
GRIP ages, since there are significant variations of accumulation which would make
the interpolation inaccurate in depths. It is not necessary to use an age scale for EDC
since the variations of accumulation are small and the variations of thinning is <2 % in5

the considered interval.
This finally gives these two estimates of the ∆depth at EDC99: ∆depth at

782.9 m=48.9±2 m (2σ); ∆depth at 791.5 m=48.2±2 m (2σ). The uncertainty ac-
counts for the uncertainty in the 10Be sub-peaks positions in EDC (1.1 m) and in GRIP
(1.1 m EDC equivalent depth) and for the GRIP-EDC synchronization (1.3 m).10

2.2.2 ∆depth from ice and gas synchronisation to EDML

Another approach to deduce EDC ∆depth is to synchronize the ice core records, both
in the ice and gas phases, to a higher accumulation Antarctic ice core, such as EDML
(see Fig. 5) which has a better constrained ice/gas offset (Loulergue et al., 2007). Such
an approach has already been applied to constrain the Vostok gas/ice offset using data15

from the Byrd ice core record (Blunier et al., 2004; Bender et al., 2006) and the EDC
gas/ice offset using EDML (Loulergue et al., 2007). The EDC and EDML ice cores have
been synchronised (Severi et al., 2007; Ruth et al., 2007) using volcanic stratigraphic
markers recorded in the ice phase. Here we also derive 20 new CH4 tie points (see
Table 1 and Fig. 6) [Loulergue et al., 2007, 2008; Schilt et al., 2010] mainly at the20

onsets of Greenland Interstadials (GI) over the period 0–140 kyr BP. Note that we did
not use systematically the tie points of Loulergue et al. (2007) or of Schilt et al. (2010)
since, (1) we do not use ends of GIs because they are less well marked than the
onsets and therefore bring little information with respect to the neighboring onsets, (2)
we do not use GI2 and GI9 because we reckon their identification is too ambiguous25

(3) we choose the tie points exactly at the mid-transitions. The evaluation of ∆depth at
EDC now relies on its evaluation at EDML. We derived the later from Eq. (1). For the
thinning, we did not use estimates based on an ice flow model (Huybrecht et al., 2007)
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because for the same age, the depth is larger at EDML than at EDC and the evaluation
of the thinning function from ice flow modelling thus becomes inaccurate. Instead, we
fixed the EDML1 age scale (synchronized to EDC3, Ruth et al., 2007), used EDML
accumulation rates from Loulergue et al. (2007, scenario 1) and deduced an EDML
thinning function. For the LID, we used the Goujon et al. (2003) densification model5

forced with the temperature and accumulation estimates as derived from Loulergue et
al. (2007, scenario 1). The LID is taken at 5 % of closed porosity.

This method is more precise than a direct evaluation of the ∆depth at EDC from
modelling. Indeed, the accumulation rate is 3 times higher at EDML than at EDC. An
error in EDML LID thus has a 3 times lower impact than at EDC in terms of ages.10

There are 4 sources of uncertainty in this EDML-synchro based approach: (1) the
uncertainty in the gas (CH4) synchronisation, (2) the uncertainty in the LID estimate at
EDML, (3) the uncertainty in the thinning function at EDML and (4) the uncertainty in
the ice (volcanic) synchronisation (including the interpolation between two neighboring
volcanic tie points). We estimate uncertainty (1) (2σ) as half the duration of the CH415

transition. Uncertainty (2) (2σ) is thought to be <20 % at EDML (Landais et al., 2006)
i.e. <7 % at EDC. Based on the relative duration of events in different glaciological time
scales (Parrenin et al., 2007b) we deduce that uncertainty (3) (2σ) is <10 % (Parrenin
et al., 2007b). With the same argument, uncertainty (4) (2σ) is estimated to be <10 %
of the distance to the nearest tie point, i.e. we neglected the uncertainty in the tie points.20

In order to compute the total uncertainty, we assume uncertainties 1, 2, 3 and 4 to be
independent to compute the total uncertainty.

Note that a recent study (Köhler, 2010) suggested that aligning the mid-transitions
of CH4 in different ice cores induces an error because of the different diffusion times
of the gas signals. We think their conclusion only applies if one defines the gas age as25

the minimum gas age of the distribution. We defined here the gas age as the median
of the distribution and we are therefore free from such an error.
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2.2.3 ∆depth from ice and gas synchronisation to TALDICE

The method is the same as in the previous sub-section (see Fig. 5). Its advantage is
also based on the fact that TALDICE accumulation rate is 3 times higher than EDC ac-
cumulation rate. The EDC and TALDICE ice cores can be synchronized in the ice phase
using volcanic markers for the last 42 kyr (Severi et al., 2012) and isotopic records else-5

where (Jouzel et al., 2007; Stenni et al., 2011, see Table 2) and in the gas phase using
CH4 records (Loulergue et al., 2008; Buiron et al., 2011, see Table 3 and Fig. 6). Note
that we do not use the tie points of Buiron et al. (2011) since they are not always placed
exactly at mid-transitions. We also restricted the tie point selection to the part of CH4
records bearing the less disputable common structure. We use ∆age at TALDICE as10

computed by Buiron et al. (2011).
The uncertainty is calculated in the very same way as for the synchronisation to

EDML.

2.2.4 ∆Depth from the thermal bipolar seesaw hypothesis

Following the so-called thermal bipolar seesaw hypothesis (Stocker and Johnsen,15

2003), Greenland temperature is related to the derivative of the Antarctic tempera-
ture derived from EDC isotopic record (Barker et al., 2011). The most viable mecha-
nism for abrupt climate changes in the North Atlantic region involves reorganizations of
the ocean circulation (Stommel, 1961; Ruddiman and McIntyre, 1981) but atmospheric
mechanisms may also be at play in the antiphase relationship proven for the last glacial20

period (Blunier et al., 1998; Blunier and Brook, 2001; EPICA community members,
2006; Capron et al., 2010). Using the seesaw hypothesis, we can consequently syn-
chronise the deuterium content of the EDC ice (a proxy for Antarctic temperature) with
the CH4 content of the EDC (Loulergue et al., 2008) gas bubbles (a proxy of Green-
land temperature) and produce ∆depth estimates during periods of fast CH4 variations25

corresponding to maximas or minimas in the deuterium record.
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To localize the maximas or minimas in the deuterium record, we used the synthetic
Greenland temperature curve GLT syn from Barker et al. (2011) calculated from the
deuterium record of ice at EDC. This curve was constructed by a mathematical process
which involves separation of the high and low frequency components of the Antarc-
tic temperature record and differentiation of the high frequency component before it5

is recombined with the low frequency component. Identifying an extrema in the EDC
deuterium record thus corresponds to identifying a fast transition in the GLT syn curve.
The fact Barker et al. (2011) were able to reconstruct a curve from an Antarctic ice
isotope record which resembles the Greenland ice isotope record and in particular ex-
hibits similar fast transitions is another proof that the seesaw was at play during the10

past.
In Fig. 7, we compare the GLT syn curve of Barker et al. (2011) and the EDC deu-

terium record of Jouzel et al. (2007) with the CH4 record from EDC (Loulergue et al.,
2008) on a depth scale. Using these constraints, 82 tie points (see Table 4) are derived
between the two records, mainly at times of fast variations in Greenland temperature.15

These tie points correspond to maxima and minima in the EDC deuterium record (see
Fig. 7). ∆depth estimates are simply computed as the depth of the transition in the
methane record minus the depth of the transition in the GLT syn curve (or equivalently
to the depth of the maxima or minima in the deuterium record).

There are two sources of error in this procedure. First, the identified transitions in20

GLT syn and CH4 may not correspond to the same event. We therefore tagged the
pairs of tie points as “virtually certain” or “tentative”. Second, even if the transitions
in GLT syn and CH4 correspond to the same event, there is an error linked to the
determination of the depth of the transitions in both curves. To evaluate this (2σ) error
of these ∆depth estimates, we added the error of the depth estimates of the transition25

in the methane and GLT syn curves respectively. These errors are evaluated as half of
the duration of the transition.

The reasons why we used GLT syn and not the raw deuterium record are: (1) it
is easier and more accurate to select a mid-transition than an extrema and (2) it is
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also easier to estimate the error in the tie point picking as half of the duration of the
transition.

3 Discussion

In Fig. 8, we compare the various ∆depth estimates derived previously. Several con-
clusions can be outlined.5

3.1 Confirmation of the bipolar seesaw anthiphase

The GRIP-synchro based estimate of ∆depth during the Laschamp is the most accu-
rate (±2 m) and robust (it does not rely on controversial hypotheses) estimate available
among the EDC ice core data. It is important to note that this estimate is fully com-
patible with the bipolar seesaw-based estimate. In other words, the seesaw phasing10

is observed during the Laschamp geomagnetic excursion between EDC and GRIP, as
was already concluded by Raisbeck et al. (2007).

A second noteworthy remark is that the EDML ice core records mainly confirm the
seesaw hypothesis, as was already concluded (EPICA community members, 2006;
Capron et al., 2010). One can however remark that the EDML synchro estimates tend15

to underestimate ∆depth during the last glacial period with respect to the seesaw-
based estimates, by ∼2–3 m in average, probably resulting from an underestimation of
∆depth at EDML, because a systematic offset in the CH4 and volcanic synchronisations
is unlikely. An underestimated LID by the densification model is also unlikely, because
δ15N data shows the contrary (Landais et al., 2006). It thus leaves us only with an20

underestimation of EDML thinning, which may be due to an overestimation of EDML
accumulation rates during the glacial. We indeed did not take into account the fact that
accumulation rates are lower upstream of the EDML site, from where the ice originates
(Huybrecht et al., 2007).
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A third remark, coming from the present study, is that the TALDICE ice core records
confirm the seesaw hypothesis. Contrary to the EDML ice core, we did not observe for
the TALDICE ice core a systematic offset with respect to the seesaw-based estimates.

In the detail, there are EDML-based or TALDICE-based estimates which deviate sig-
nificantly from the seesaw-based estimates. Note that we used exactly the same depths5

for the CH4 transitions in all three methods. At ∼651.90 m (onset of DO4), the seesaw-
based estimate is very small (44.64 m) compared to the EDML-based and TALDICE-
based estimates. The corresponding maxima in the deuterium curve is ambiguous and
it is why this tie point has been tagged as “tentative”. Another possible explanation is
that EDC3 underestimates the duration of events in this interval, leading to overesti-10

mated thinning function at EDML and TALDICE. At 809.2 m (onset DO11) and 848.5 m
(onset DO12), the TALDICE-based estimates are very small (53.23 m and 48.42 m)
compared to the EDML-based and seesaw-based estimates. We note however that we
are here beyond the EDC-TALDICE volcanic synchronization, so this discrepancy can
comes from a poor EDC-TALDICE ice synchronization. At 1105 m, 1142 m, 1239 m,15

1431.5 m and 1473 m (onsets DO19, 20, 21, 23 and 24), the seesaw-based estimates
are systematically higher than the EDML-based and TALDICE-based estimates. One
possible explanation is that EDML and TALDICE ∆depths are underestimated due to
an overestimation of durations in EDC3.

3.2 The glacial ∆depth paradox at EDC20

Focusing now on the modelling estimates of ∆depth during the last glacial period (the
last deglaciation and the last glacial period), they are on average ∼15 % larger than
the seesaw-based estimates or the EDML-synchro and TALDICE-synchro based es-
timates. It is very likely that the modeled ∆depth may be inaccurate during this time
period. We call this model-data discrepancy the “glacial ∆depth paradox at EDC”. This25

may be due either to an overestimation of the thinning function or to an overestimation
of the LID.
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One factor influencing the thinning function is the non-laminar flow effects. However,
the amplitude of the ∆depth paradox is greater than the uncertainty on the thinning
function due to non-laminar flow effects (Fig. 2).

Another factor which has a significant impact on the thinning function in the upper
part of the ice sheet is the past variations of ice thickness. As previously explained,5

apart from the EDC3 scenario of past ice thickness variations, we tested a scenario
without ice thickness variations as an extreme case (see Fig. 8). This scenario only
partially solves the glacial ∆depth paradox at EDC.

The last factor that has a significant impact on the thinning function in the shallow
part is the ice thickness at the site of snow deposition. The glacial ∆depth paradox at10

EDC could be solved if one assumes that the ice flow was not vertical in the past and
that the ice originates from a site with greater ice thickness. This hypothesis is difficult
to test from a modelling point of view because there are many unknown parameters in
3-D ice flow models of the Antarctic ice sheet influencing the position of the ridges and
of the domes. We however remark here that the glacial ∆depth paradox at EDC only15

concerns the glacial part and is not present (and is even inverted) for the Eemian ice.
This paradox therefore seems to have a climatic origin. Our conclusion is thus that, for
reasons which are beyond the scope of the present manuscript, the firn densification
model overestimates the glacial LID at EDC. A possible explanation is the effect of
impurities on the densification process (Hörhold et al., 2012).20

This remark is in contradiction with the conclusions of Caillon et al. (2003), who
stated that the firn densification model applied for the termination III at Vostok correctly
estimate ∆age. However, Caillon et al. (2003) based their conclusions on the assump-
tion that δ40Ar is a gas phase temperature proxy, which has never been demonstrated.
If, as proposed by Hörhold et al. (2012), the densification velocity (and thus the grav-25

itational fractionation) is influenced by impurities, δ40Ar should be better correlated
with the impurity record than with the ice isotopic record when both are not in phase
(Röthlisberger et al., 2008).
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3.3 The Termination II ∆depth paradox at EDC

During termination II, we have two different estimates of the ∆depth (see Fig. 8a, depth
interval 1700–1800 m). On one hand the model-based estimate suggests a relatively
low ∆depth. On the other hand, the seesaw method roughly agrees with the EDML-
synchro and TALDICE-synchro methods and suggests a relatively high ∆depth (we5

should note however that the two seesaw points are only tentative at this stage). We
call this discrepancy the “termination II ∆depth paradox at EDC”.

There are two possible explanations for this discrepancy. Either the seesaw phe-
nomenon is not at work during the penultimate deglaciation, as it is the case during
the last glacial period and the EDML-synchro and TALDICE-synchro methods are not10

precise during this time period; or the modelled estimates are too low.
One possibility to reconcile the model with the seesaw based estimates would be

to increase the thinning function, which would have the side effect to decrease the
duration of the penultimate interglacial in EDC and to give a better agreement with
the duration of this stage in the Dome Fuji ice core (Parrenin et al., 2007b). Another15

possibility would be to increase the LIDIE, for example by assuming that the surface
temperature has been underestimated during this time period. It is indeed not clear
that the δD-T relationships used in this study are valid for this time period which was
warmer than the present (Sime et al., 2009).

3.4 Using ∆depth estimates in the deepest part to improve the EDC age scale20

For the depth interval 2000–2800 m, ∆depth estimates regularly decrease from ∼16 m
to ∼5 m. In this depth interval, the agreement between the seesaw-based and model-
based based estimates is surprisingly good. The fact that the model does not system-
atically overestimate the ∆depth in this depth interval, contrary to the last glacial period,
may be just a coincidence: an overestimated LIDIE may be exactly compensated by an25

underestimated thinning function.
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For the depth interval 2800–3200 m, the agreement is also good. In particular, the
seesaw-based ∆depth estimates reproduce well the bumps in thinning function which
have been suggested based on the comparison between 18Oatm measurements and
insolation variations and based on the phasing between δD and CO2 (Dreyfus et al.,
2007). We thus independently confirm the hypothesis that the flow in the bottom part5

of the EDC ice core is complex.
There are however several seesaw-based estimates which deviate significantly

from the model-based estimates at ∼2360 m (tentative tie point, ∼260 kyr), ∼2900 m
(∼527 kyr), ∼2930 m (554 kyr), ∼3000 m (∼585 kyr) and ∼3120 m (∼719 kyr). This is
somewhat in agreement with results by Landais et al. (2012) based on the tuning of10

the O2/N2 record on local insolation variations. They indeed suggested corrections of
up to ∼5 kyr for the time period 390–460 kyr, 550 kyr, 650 kyr and 750 kyr.

In conclusion, we thus suggest that using these seesaw-based estimates associ-
ated with new O2/N2 measurements could improve the reconstruction of the thinning
function and thus the evaluation of the EDC chronology in the deep part.15

3.5 Validity of the δ15N firn thickness estimate for the last deglaciation

The δ15N record in association with the thinning model gives an evaluation of the
∆depth decreasing from 67 m to 45 m in the course of the last deglaciation. In this
upper part of the EDC ice core, the uncertainty in the thinning function is thought to
be small (Fig. 2). These ∆depth estimates are in good agreement with the estimates20

based on the synchronisation to EDML and TALDICE or based on the seesaw hypoth-
esis. Consequently, we conclude that the model-δ15N data mismatch observed at EDC
during the last deglaciation (Dreyfus et al., 2010) probably results from an incorrect rep-
resentation of the densification process in firn models, and not to a varying convective
height or to poorly known δ15N fractionation processes (Dreyfus et al., 2010).25

This conclusion seems in contradiction with a study on the Vostok ice core using
ice and gas synchronisation to Byrd (Bender et al., 2006) which concluded that δ15N
underestimates the LID during the last glacial period. However, concerning this study,
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we note that: (1) there is no estimate of uncertainty in the Byrd-synchro method; (2)
the thinning function reconstruction is a lot more uncertain than in our case because
the coring point at Vostok is not situated on a dome (Parrenin et al., 2004); (3) the ice
synchronisation is less precise than in our study because it is based on the ice isotope
data; (4) the gas synchronisation is also less precise because it is based on a smaller5

number of CH4 measurements.
In consequence, the δ15N data seems to be a more appropriate tool as compared

to the current densification models to estimate the LID during the last deglaciation at
EDC. Is this conclusion valid for other time periods and for other Antarctic sites where a
model – δ15N data mismatch has been observed, such as Vostok (Sowers et al., 1992;10

Caillon et al., 2003), EDML (Landais et al., 2006), Law Dome (Landais et al., 2006) and
Dome Fuji (Severinghaus et al., 2010, based on the data by Kawamura, 2000)? Future
studies similar to the one developed in this article are needed to answer this question.

4 Conclusions

We have shown that the bipolar seesaw antiphase relationship is generally supported15

by the ice-gas cross synchronisation of EDC to the GRIP, EDML and TALDICE ice
cores. The glaciological model overestimates the glacial ∆depth at EDC (we called this
the “glacial ∆depth paradox at EDC”) and this is probably due to an overestimation of
the glacial Close Off Depth by the firn densification model. The glaciological models
seem to underestimate the ∆depth during termination II (we called this the “termina-20

tion II ∆depth paradox at EDC”). We have shown that the bipolar seesaw hypothesis
confirms that the ice flow is complex in the deep part of the EDC ice core and can help
improving the EDC age scale. For the last deglaciation, using δ15N data in association
with an ice flow model gives ∆depth estimates in agreement with the estimates based
on the synchronisation to TALDICE and EDML or based on the seesaw method.25

Complete, precise and highly resolved δ15N and CH4 records will be necessary to
further improve the EDC gas and ice age scales. An automatic method to synchronize
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records would both bring rigor and shorten the time to accomplish this difficult task.
Further studies will be needed to make the firn densification models more useful for
paleoclimatic studies in Antarctic ice core records. Both the firn modeling and δ15N
approaches need a precise evaluation of the past surface and lock-in densities and fur-
ther studies are needed to better constrain them. 10Be measurements are in progress5

and should allow to extend the Antarctic-Greenland ice synchronisation and thus pro-
duce more ∆depth estimates based on this hypothesis-free approach. Studies on the
∆depth comparable to the present one could be applied to other low accumulation
Antarctic ice cores such as Vostok and Dome Fuji. This study on the gas/ice depth
offset at EDC has important implications on the phasing between CO2 and Antarctic10

temperature during climatic changes and consequently on the role of CO2 during these
climatic changes.
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Köhler, P.: Rapid changes in ice core gas records – Part 1: On the accuracy of methane syn-
chronisation of ice cores, Clim. Past Discuss., 6, 1453–1471, doi:10.5194/cpd-6-1453-2010,
2010.

Kawamura, K.: Variations of atmospheric components over the past 340 000 years from Dome
Fuji deep ice core, Antarctica, Ph.D. thesis, Tohoku University, 2000.25

Krinner, G., Raynaud, D., Doutriaux, C., and Dang, H.: Simulations of the Last Glacial Maxi-
mum ice sheet surface climate: Implications for the interpretation of ice core air content, J.
Geophys. Res., 105, 2059–2070, 2000.

Landais, A., Barnola, J., Kawamura, K., Caillon, N., Delmotte, M., Ommen, T. V., Dreyfus, G.,
Jouzel, J., Masson-Delmotte, V., Minster, B., Freitag, J., Leuenberger, M., Schwander, J.,30

Huber, C., Etheridge, D., and Morgan, V.: Firn-air δ15N in modern polar sites and glacial-
interglacial ice: a model-data mismatch during glacial periods in Antarctica?, Quaternary
Sci. Rev., 25, 49–62, 2006.

1113

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/1089/2012/cpd-8-1089-2012-print.pdf
http://www.clim-past-discuss.net/8/1089/2012/cpd-8-1089-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2002JD003319
http://dx.doi.org/10.5194/cp-3-577-2007
http://dx.doi.org/10.5194/cpd-6-1453-2010


CPD
8, 1089–1131, 2012

On the gas-ice depth
difference (∆depth)

along the EPICA
Dome C ice core

F. Parrenin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Landais, A., Dreyfus, G., Capron, E., Pol, K., Loutre, M. F., Raynaud, D., Lipenkov, V. Y., Arnaud,
L., Masson-Delmotte, V., Paillard, D., Jouzel, J., and Leuenberger, M.: Towards orbital dating
of the EPICA Dome C ice core using ∆O2/N2, Clim. Past, 8, 191–203, doi:10.5194/cp-8-191-
2012, 2012.

Lliboutry, L.: A critical review of analytical approximate solutions for steady state velocities and5

temperature in cold ice sheets, Z. Gletscherkd. Glacialgeol., 15, 135–148, 1979.
Loulergue, L., Parrenin, F., Blunier, T., Barnola, J.-M., Spahni, R., Schilt, A., Raisbeck, G., and

Chappellaz, J.: New constraints on the gas age-ice age difference along the EPICA ice cores,
0–50 kyr, Clim. Past, 3, 527–540, doi:10.5194/cp-3-527-2007, 2007.

Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.10

M., Raynaud, D., Stocker, T. F., and Chappellaz, J.: Orbital and millennial-scale features of
atmospheric CH4 over the past 800,000 years, Nature, 453, 383–386, 2008.
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Table 1. CH4 synchronisation tie points between EDC and EDML and corresponding ∆depth
estimates at EDC.

EDC99 gas EDML gas 1σ
description depth (m) depth (m) ∆depth (m) Uncertainty (m)

YD-Hol 418.5 718.0 58.4 3.84
BA-YD 443.5 766.4 56.2 3.79

onset BA 476.1 830.2 55.4 3.92
onset DO3 639.1 1155.1 49.7 3.32
onset DO4 651.9 1174.2 50.2 3.37
onset DO5 688.1 1233.7 49.3 3.26
onset DO6 702.1 1260.8 46.3 3.05
onset DO7 719.7 1286.4 48.3 3.15
onset DO8 751.3 1338.0 47.9 3.23

onset DO10 791.0 1404.6 48.0 3.10
onset DO11 809.2 1439.0 42.0 3.32
onset DO12 848.5 1490.0 44.0 3.09
onset DO14 925.0 1601.8 43.6 2.99
onset DO17 986.5 1688.2 43.0 2.92
onset DO18 1038.5 1760.5 43.1 2.82
onset DO19 1105.0 1861.3 41.2 3.05
onset DO20 1142.0 1915.0 39.4 2.73
onset DO21 1239.0 2023.2 34.2 3.01
onset DO24 1473.0 2230.3 28.3 2.32

onset MIS5.5 1722.0 2369.0 38.2 3.18
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Table 2. Isotopic synchronization tie points between the TALDICE and EDC99 ice cores.

depth- depth-
TALDICE EDC99

1160 800
1220 880
1260 950
1285 1002
1303 1059
1312 1100
1331 1200
1353 1320
1375 1449
1411 1700
1440 1855
1446 1889
1463 1906
1471 1935

1477.5 1952.5
1485 1981

1493.7 2027
1497 2048
1508 2093

1522.5 2170
1528 2222
1534 2235
1545 2295
1582 2500
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Table 3. CH4 synchronisation tie points between EDC and TALDICE and corresponding ∆depth
estimates at EDC.

EDC gas Talos gas 1σ
description depth (m) depth (m) ∆depth (m) uncertainty (m)

8.2 kyr event 323 553.0 64.5 4.19
YD-Holo 418.5 695.4 64.0 4.29
BO/YD 443.5 736.8 61.1 4.07
onset BA 476.1 785.5 57.4 4.06
onset DO3 639.1 941.0 55.9 3.72
onset DO4 651.9 953.0 58.3 3.81
onset DO5 688.1 990.0 52.9 3.55
onset DO6 702.1 1004.0 53.6 3.53
onset DO7 719.7 1025.0 50.0 3.29
onset DO8 751.3 1059.2 50.0 3.43
onset DO9 776 1085.0 55.4 3.57
onset DO10 791.0 1098.6 56.7 3.63
onset DO11 809.2 1125.0 53.2 3.56
onset DO12 848.5 1170.7 48.4 3.44
onset DO13a 862.0 1183.0 46.4 3.64
onset DO13b 876.0 1192.0 48.7 4.37
onset DO14 925.0 1229.0 44.9 3.45
onset DO15 945.0 1239.4 48.2 3.58
onset DO17 986.5 1263.3 42.0 3.05
onset DO18 1038.5 1286.7 42.4 3.20
onset DO19 1105.0 1307.2 38.3 3.52
onset DO20 1142.0 1315.1 37.3 3.67
onset DO21 1239.0 1333.5 35.9 4.89
onset DO23 1431.5 1369.0 34.4 6.63
onset MIS5.5 1722.0 1411.2 28.8 3.42
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Table 4. Ice-depth/gas-depth synchronisation based on the seesaw method and corresponding
∆depth along the EDC ice core.

description Ice depth (m) Gas depth (m) ∆depth (m) 1σ (m) Tentative or not

YD-Holo 359.82 418.50 58.68 5.12
BA-YD 383.36 443.50 60.14 4.22
onset BA 418.83 476.10 57.27 4.86
end DO3 578.22 627.00 48.78 2.66 tentative
onset DO3 585.44 639.10 53.66 2.34
end DO4 593.79 647.00 53.21 2.50
onset DO4 607.26 651.90 44.64 2.10 tentative
end DO5 629.07 681.00 51.93 2.36
onset DO5 636.90 688.10 51.20 1.80
end DO6 644.07 696.00 51.93 1.95
onset DO6 651.06 702.10 51.04 1.72
end DO7 658.55 712.00 53.45 2.12
onset DO7 669.51 719.70 50.19 2.59
end DO8 686.46 732.50 46.04 3.05
onset DO8 700.51 751.30 50.79 1.90
end DO9 722.40 773.30 50.90 2.24
onset DO9 729.37 776.00 46.63 1.46
end DO10 733.82 784.20 50.38 1.68
onset DO10 740.83 791.00 50.17 1.42
end DO11 748.32 800.00 51.68 2.50
onset DO11 759.81 809.20 49.39 1.98
end DO12 772.34 823.00 50.66 2.83 tentative
onset DO12 797.00 848.50 51.50 2.76
onset DO14 878.00 925.00 47.00 1.90
end DO15 894.00 935.00 41.00 1.80 tentative
onset DO15 901.00 945.00 44.00 1.25
end DO16 909.00 953.00 44.00 2.12
onset DO16 923.00 969.00 46.00 2.12
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Table 4. Continued.

description Ice depth (m) Gas depth (m) ∆depth (m) 1σ (m) Tentative or not

end DO17 931.00 974.00 43.00 2.12 tentative
onset DO17 940.00 986.50 46.50 1.90
end DO18 990.50 1030.00 39.50 2.30
onset DO18 997.00 1038.50 41.50 1.72
onset DO19 1061.00 1105.00 44.00 1.85
onset DO20 1101.00 1142.00 41.00 2.27
onset DO21 1197.50 1239.00 41.50 2.50
end DO22 1245.50 1281.00 35.50 1.95
onset DO23 1393.00 1431.50 38.50 1.80
end DO24 1413.00 1445.00 32.00 2.50
onset DO24 1441.00 1473.00 32.00 1.95
end DO25 1458.00 1485.00 27.00 2.12
onset MIS5.5 1687.00 1722.00 35.00 3.64 tentative

1777.50 1812.00 34.50 2.02 tentative
2178.00 2194.00 16.00 2.12
2293.00 2307.00 14.00 1.58 tentative
2322.50 2337.00 14.50 1.60
2369.00 2380.00 11.00 1.25 tentative
2442.00 2454.00 12.00 0.90
2459.00 2470.00 11.00 1.12 tentative
2470.20 2480.50 10.30 0.71 tentative
2484.00 2493.50 9.50 0.71 tentative
2513.30 2523.30 10.00 0.71
2574.50 2584.70 10.20 1.30 tentative
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Table 4. Continued.

description Ice depth (m) Gas depth (m) ∆depth (m) 1σ (m) Tentative or not

2615.70 2623.30 7.60 0.38 tentative
2640.30 2647.70 7.40 0.25 tentative
2658.10 2665.50 7.40 0.39
2674.80 2682.70 7.90 0.49
2684.20 2691.00 6.80 0.43
2688.80 2694.90 6.10 0.57 tentative
2691.70 2697.00 5.30 0.61 tentative
2775.50 2780.70 5.20 0.71
2903.00 2907.00 4.00 0.71
2927.50 2935.00 7.50 1.12
2932.30 2941.00 8.70 0.64
2992.50 2997.80 5.30 0.64
3010.50 3013.20 2.70 0.35 tentative
3036.50 3038.50 2.00 0.71 tentative
3060.70 3064.90 4.20 0.29 tentative
3066.30 3070.30 4.00 0.46 tentative
3069.30 3074.30 5.00 0.43 tentative
3074.00 3078.70 4.70 0.40 tentative
3122.40 3124.00 1.60 0.35
3136.50 3139.50 3.00 0.56
3152.50 3157.50 5.00 0.35
3154.50 3159.10 4.60 0.35
3158.20 3162.20 4.00 0.57
3160.70 3164.40 3.70 0.43
3163.30 3167.00 3.70 0.61
3165.70 3169.00 3.30 0.35
3179.70 3182.60 2.90 0.39
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Figure 1: Function f(z) in EDC as described in Equation (9).Fig. 1. Function f (z) in EDC as described in Eq. (9).
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Figure 2: Evolution of the error in the thinning function as a function of the depth in the EDC ice  

core.

Fig. 2. Evolution of the error in the thinning function as a function of the depth in the EDC ice
core.
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A) 

B) 

C) 

Figure 3: Simulations of the Goujon/Arnaud firn densification model [Goujon et al., 2003], in a  

(surface temperature, surface accumulation) diagram. Surface density is 0.35 g/cm3. LID is taken at  

20% of closed porosity.

A) Simulated LID;

B) Simulated Δage;

C) Simulated LIDIE/LID ratio.
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Fig. 3. Simulations of the Goujon/Arnaud firn densification model (Goujon et al., 2003), in
a (surface temperature, surface accumulation) diagram. Surface density is 0.35 g cm3. LID is
taken at 20 % of closed porosity. (A) Simulated LID; (B) simulated ∆age; (C) simulated LI-
DIE/LID ratio.
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Figure 4: Synchronization of GRIP δ18O and EDC CH4 during DO9-11. The two vertical dashed 

lines mark the position of the 10Be sub-peaks in the GRIP core and give the corresponding gas  

depths in the EDC99 ice core.

Fig. 4. Synchronization of GRIP δ18O and EDC CH4 during DO9-11. The two vertical dashed
lines mark the position of the 10Be sub-peaks in the GRIP core and give the corresponding gas
depths in the EDC99 ice core.
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Figure 5: Scheme illustrating the deduction of the Δdepth at EDC from ice (volcanic) and gas  

(CH4) synchronisation to the EDML or TADLICE ice cores and evaluation of Δdepth at EDML or 

TALDICE.

Fig. 5. Scheme illustrating the deduction of the ∆depth at EDC from ice (volcanic) and gas
(CH4) synchronisation to the EDML or TADLICE ice cores and evaluation of ∆depth at EDML
or TALDICE.
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A)

B)

Figure 6: Gas synchronisation between EDC and EDML (A) and between EDC and TALDICE (B)  

using the CH4 records [Loulergue et al., 2007, 2008; Schilt et al., 2010; Buiron et al., 2011].

A)

B)

Figure 6: Gas synchronisation between EDC and EDML (A) and between EDC and TALDICE (B)  

using the CH4 records [Loulergue et al., 2007, 2008; Schilt et al., 2010; Buiron et al., 2011].

Fig. 6. Gas synchronisation between EDC and EDML (A) and between EDC and TALDICE
(B) using the CH4 records (Loulergue et al., 2007, 2008; Schilt et al., 2010; Buiron et al., 2011).
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A)

B)

C)

Figure 7: Comparison between the GLT_syn curve [Barker et al., 2011], the EDC CH4 record 

[Loulergue et al., 2008] and the EDC δD record [Jouzel et al., 2007]:

A) in the depth interval 0-2000 m,

B) in the depth interval 2000-2800 m,

C) in the depth interval 2800-3200 m.

The deuterium record has been resampled on 100 yr intervals. 

Fig. 7. Comparison between the GLT syn curve (Barker et al., 2011), the EDC CH4 record
(Loulergue et al., 2008) and the EDC δD record (Jouzel et al., 2007): (A) in the depth interval
0–2000 m, (B) in the depth interval 2000–2800 m, (C) in the depth interval 2800–3200 m. The
deuterium record has been resampled on 100 yr intervals.
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A)

B)780

A)

B)780

C)

Figure 8: Δdepth estimates along the EDC ice core.

A) Zoom on the 0-2000 m depth interval, which shows the glacial and termination II Δdepth 

paradoxes

B) Zoom on the 500-1000m depth interval encompassing the Laschamp event

C) Zoom on the 2000-3200 m depth interval.

The error bars have to be taken as 1σ uncertainty.

Fig. 8. ∆depth estimates along the EDC ice core. (A) Zoom on the 0–2000 m depth interval,
which shows the glacial and termination II ∆depth paradoxes. (B) Zoom on the 500–1000 m
depth interval encompassing the Laschamp event. (C) Zoom on the 2000–3200 m depth inter-
val. The error bars have to be taken as 1σ uncertainty.

1131

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/1089/2012/cpd-8-1089-2012-print.pdf
http://www.clim-past-discuss.net/8/1089/2012/cpd-8-1089-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

