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ABSTRACT
We present a comparison between the SCUBA (Submillimetre Common User Bolometer

Array) Half Degree Extragalactic Survey (SHADES) at 450 and 850 μm in the Lockman

Hole East with a deep Spitzer Space Telescope survey at 3.6–24 μm conducted in guaranteed

time. Using stacking analyses we demonstrate a striking correspondence between the galaxies

contributing the submm extragalactic background light, with those likely to dominate the

backgrounds at Spitzer wavelengths. Using a combination BRIzK plus Spitzer photometric

redshifts, we show that at least a third of the Spitzer-identified submm galaxies at 1 < z
< 1.5 appear to reside in overdensities when the density field is smoothed at 0.5–2 Mpc

comoving diameters, supporting the high-redshift reversal of the local star formation–galaxy

density relation. We derive the dust-shrouded cosmic star formation history of galaxies as a

function of assembled stellar masses. For model stellar masses <1011 M�, this peaks at lower

redshifts than the ostensible z ∼ 2.2 maximum for submm point sources, adding to the growing

consensus for ‘downsizing’ in star formation. Our surveys are also consistent with ‘downsizing’

in mass assembly. Both the mean star formation rates 〈dM∗/dt〉 and specific star formation

rates 〈(1/M∗ ) d M∗/d t〉 are in striking disagreement with some semi-analytic predictions from

the Millenium Simulation. The discrepancy could either be resolved with a top-heavy initial

mass function, or a significant component of the submm flux heated by the interstellar radiation

field.

Key words: galaxies: evolution – galaxies: formation – galaxies: starburst – cosmology:

observations – infrared: galaxies – submillimetre.

1 I N T RO D U C T I O N

The SCUBA (Submillimetre Common User Bolometer Array)

Half Degree Extragalactic Survey (SHADES; Mortier et al. 2005;

†Spitzer Fellow.

Coppin et al. 2006) is a long-term submm survey conducted at the

James Clerk Maxwell Telescope (JCMT) from 2003 to 2005. A key

goal of SHADES has been to determine whether submm galaxies are

the likely progenitors of giant ellipticals. The clustering of submm

galaxies is a strong discriminant of competing models (van Kampen

et al. 2005), and measurement of the angular correlation function

of submm galaxies in broad �z � 0.5 redshift shells is one of the
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principal experimental aims of SHADES. In this paper we will take

a different approach to the problem, by estimating the matter over-

densities in which submm galaxies reside via the assembled stellar

masses in the submm galaxy environments. The SHADES survey

was conducted in two fields, each with abundant multiwavelength

supporting survey data. The ∼0.1 deg2 surveyed by SHADES in

the Lockman Hole East field, in particular, has some of the best

Spitzer Space Telescope data of any contiguous field over hundreds

of square arcminutes. The comparison between SHADES and this

Spitzer data, which was taken in Spitzer guaranteed time, forms the

basis of our constraints on the submm galaxy environments, and

allows us important new insights on the submm extragalactic back-

ground light.

The galaxies that dominate the extragalactic background light at

any given redshift are necessarily the same as those which dominate

the comoving volume-averaged luminosity density at that redshift

(e.g. Peacock 1999). The favourable K-corrections in the submm

make the submm extragalactic background light sensitive to the

cosmic star formation history throughout most of the history of the

Universe. Resolved submm point sources from blank field surveys

(i.e. those at the few mJy level) contribute a few tens of per cent

to the 850-μm extragalactic background, but cannot account for

all of it (Barger et al. 1998; Hughes et al. 1998; Barger, Cowie &

Sanders 1999; Blain et al. 1999; Eales et al. 2000; Cowie, Barger &

Kneib 2002; Scott et al. 2002; Smail et al. 2002; Scott, Dunlop &

Serjeant 2006). At 350–450 μm there are very few reliably detected

resolved point sources (e.g. Scott et al. 2002; Khan et al. 2005, 2007),

and those that have been detected are far from accounting for the

majority of the 450-μm extragalactic background light. However,

850-μm-selected galaxies can be readily detected at 350–450 μm

and can account for a minority of the 350–450 μm background (e.g.

Chapman et al. 2005; Khan et al. 2005, 2007; Kovács et al. 2006;

Coppin et al. 2008).

This situation, particularly at 450 μm, will change with the advent

of the SCUBA-2 camera on the JCMT. In the meantime, attention

has focused on stacking analyses. Instead of aiming to detect indi-

vidual resolved galaxies, this approach seeks to detect the average

signal from a population. This has met with some success. Peacock

et al. (2000) found a ∼3σ signal at 850 μm from the Lyman-break

population in the Hubble Deep Field-North. The submm:UV flux

ratio suggested an obscuration very different to that of the submm

point source population, and there were hints of a flat redshift dis-

tribution at z > 1 in these faint submm-emitting galaxies. Further

stacking analyses of extremely red galaxies (e.g. Webb et al. 2004;

Takagi et al. 2007) found them to contribute a significant minority

of the obscured star formation history. A submm stacking analysis

of near-infrared (IR) and mid-IR selected galaxies from the 5 ×
5 arcmin2 Spitzer Early Release Observations (Serjeant et al. 2004)

found that Spitzer 5.8- and 8-μm populations could account for

around a quarter of the 850-μm extragalactic background light, and

the majority of the 450-μm background, albeit in a small sample.

The sample size was not large enough in this study to distinguish the

stacked signal from low-redshift red dusty galaxies, and that from

high-redshift galaxies.

To constrain the redshift ranges responsible for the submm ex-

tragalactic background light, larger samples were needed. Wang,

Cowie & Barger (2006) and Dye et al. (2006) both made stack-

ing analyses of Spitzer-selected galaxies, though in the former case

it was combined with H-band selection. Both groups found that

Spitzer galaxies contribute significantly to the submm extragalac-

tic background light. However, the redshift ranges responsible in

these surveys differed, with Wang et al. finding the z < 1 population

dominating (their fig. 12), while Dye et al. found z > 1 the more

important (their fig. 6) though with slightly larger errors. One possi-

ble explanation for this difference is cosmic variance; the wide-area

SHADES would be ideal to resolve this controversy. Another pos-

sibility is the effect of redshifted PAH features in the Dye et al.

analysis, which would not be present in the � 3.6-μm Wang et al.

analysis.

In this paper we extend these results to a deeper Spitzer catalogue,

and a wider area submm survey. In a confusion-limited submm

survey, the stacking signal-to-noise ratio (S/N) is roughly propor-

tional to the square root of the number of submm beams, and since

SHADES is the widest area contiguous submm survey to a depth

approaching the effective point source extraction limit (Scott et al.

2002), this is the best opportunity to date to examine the submm

stacking signal of Spitzer galaxies.

This paper is the ninth in the SHADES series of papers. Paper I

(Mortier et al. 2005) presented the survey design, motivation and

data analysis. Paper II (Coppin et al. 2006) presented further data

analysis, the source counts, the catalogues and the maps. Paper III

(Ivison et al. 2007) gave the radio and Spitzer 24-μm identifica-

tions of the submm galaxies in SHADES. Paper IV (Aretxaga et al.

2007) made photometric redshift estimates of the SHADES cata-

logue galaxies using the far-IR to radio spectral energy distributions

(SEDs). Paper V (Takagi et al. 2007) examined the submm properties

of near-IR galaxies in the SHADES survey data in the Subaru–XMM
Deep Field. Paper VI (Coppin et al. 2008) presented the results of

350-μm observations of a subset of SHADES sources. Paper VII

(Dye et al. 2008) made fits to the SEDs of the SHADES galaxies in

the Lockman Hole and Paper VIII (Clements et al. 2008) performed

a similar analysis for the SHADES galaxies in the Subaru–XMM
Deep Field. Paper X (van Kampen et al., in preparation) measures

the clustering of the submm galaxies in the SHADES survey. A

further series of papers will concern the 1.1-mm data taken to sup-

plement the SHADES survey with the AzTEC instrument on the

JCMT.

This paper is structured as follows. The Spitzer and submm data

are summarized briefly in Section 2. Section 3 describes our method-

ology and results. We discuss the context of our results in Section 4,

and we draw conclusions in Section 5. Throughout the paper we

assume a ‘concordance’ cosmology, with density parameters �M =
0.3 and �� = 0.7 and a Hubble constant of H0 = 72 km s−1 Mpc−1.

2 DATA AC QU I S I T I O N

The submm data were taken from 2003 to 2005 at the JCMT with

the SCUBA camera, in submm opacities of 0.265 < τ 850 μm < 0.283

and 1.41 < τ 450 μm < 1.52, i.e. JCMT weather bands 2–3. Chop-

ping/nodding was performed at position angles of 0◦ and 90◦, with

chop throws of 30, 44 and 68 arcsec, though at the centre of the map

only the 30 arcsec/90◦ combination was used (Scott et al. 2002).

The submm data acquisition, calibration, reduction and analysis are

described in full in Mortier et al. (2005). A noise-weighted point

source filtering was made on the maps, and the separate chop/nod

images were combined optimally (Serjeant et al. 2003a, Mortier

et al. 2006). Note that the SCUBA 450-μm absolute flux calibration

is typically uncertain to ∼30 per cent. The maps from this analysis

are used in this paper. Three further parallel data reduction efforts

are described in Coppin et al. (2006), and 850-μm maps from some

of these reductions have been used to test the robustness of the re-

sults presented in this paper. The 450-μm maps used in this paper

are from the SHADES data reduction described as the ‘primary’ re-

duction in Mortier et al. (2005), and analysis ‘B’ in the later Coppin
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Figure 1. The SHADES 850-μm map with point sources subtracted, used

for stacking analyses in this paper (grey-scale). Also plotted is the coverage

of the Spitzer 24-μm data (solid red line), the 3.6-μm data (solid blue line),

4.5-μm data (solid green line), 5.8-μm data (dashed red line) and 8-μm data

(dashed magenta line). Note the availability of Spitzer data over most of the

SHADES area.

et al. (2006). These maps have the lowest noise of the available 450-

μm maps, and have short time-scale opacity variations modelled

using the water vapour meter. No reliable 450-μm point sources

are detected in SHADES, though this is not to say that one cannot

find point source candidates in the maps. A cross-comparison of

the four reductions found very few overlaps between the candidate

source lists; this demonstrated that the 450-μm opacity during the

SHADES runs (see appendix A of Coppin et al. 2006), and the stabil-

ity of the opacity, were not suited to reliable point source extraction.

We will show that this does not preclude statistical constraints on the

450-μm-emitting populations. The 850-μm maps of the four data

reduction methods are in excellent agreement (Coppin et al. 2006),

and the SHADES point source list is derived from the consensus of

the four analyses.

The Spitzer data were taken in guaranteed time, using the IRAC

and MIPS instruments (Fazio et al. 2004; Rieke et al. 2004). As

shown in Fig. 1, most of the SHADES survey area in the Lockman

Hole East is covered at 3.6 μm (4.47 μJy, 3σ ), 4.5 μm (4.54 μJy, 3σ ),

5.8 μm (20.9 μJy, 3σ ), 8 μm (12.5 μJy, 3.2σ ) and 24 μm (38 μJy,

4σ ). We only use Spitzer IRAC sources detected in at least two

Spitzer bands. The area was also mapped at 70 and 160 μm, and the

comparison between this data and SHADES will be the subject of

a future paper (Egami et al., in preparation). Most of the SHADES

Lockman field was also covered by a deep 15-μm survey with the

CAM instrument on the Infrared Space Observatory (ISO), further

details of which can be found in Elbaz et al. (1999) and Rodighiero

et al. (2004). We select galaxies with 15-μm flux densities above

100 μJy for this paper. The Subaru–XMM Deep Field was also ob-

served by SHADES, and has Spitzer data from the SWIRE survey

(Lonsdale et al. 2004), but since these data are significantly shal-

lower than the Lockman data we do not consider them here.

BRIz imaging was obtained from the SUPRIMECAM instrument

on the Subaru telescope to 5σ point source depths of 26.8, 25.8,

Figure 2. Model stellar mass estimates of Spitzer galaxies discussed in

the text, versus photometric redshifts from Dye et al. (2008, SHADES Pa-

per VII). Note that the model stellar masses above z = 0.5 depend only

weakly on photometric redshift.

25.7 and 25.0 in B, R, I and z, respectively (3-arcsec diameter AB

magnitudes). K-band photometry was obtained from the UKIRT

Deep Infrared Sky Survey (UKIDSS; Lawrence et al. 2007) to a

point source sensitivity of 22.9 (5σ AB magnitude). Further details

are in Dye et al. (2008, Paper VII).

3 M E T H O D O L O G Y A N D R E S U LT S

3.1 Photometric redshift estimates

We use the Spitzer galaxy photometric redshift catalogue of Dye

et al. (2008). This catalogue is derived using the HYPER-Z code

(Bolzonella, Miralles & Pelló 2000) applied to the nine-band optical-

IRAC photometric catalogue. Further details of the SED templates

are found in Dye et al. (2008). In Fig. 2 we show the model stellar

masses (derived below) as a function of the photometric redshifts.

Note that redshift aliasing can scatter galaxies to erroneously high

redshifts (and hence to high masses), and there are plausible exam-

ples of this in Fig. 2. We have opted not to impose any arbitrary cuts

in the photometric redshift catalogue to remove these outliers, and

instead leave this to the discretion of the reader. Redshift aliasing

and consequent erroneously high stellar masses in a small subset

would not alter the statistical conclusions of this paper.

Dye et al. (2008) also uses optical and Spitzer photometery to de-

rive photometric redshift estimates for the SHADES galaxies them-

selves, and comparisons with other redshift estimators can be found

in Aretxaga et al. (2007), Clements et al. (2008) and Dye et al.

(2008). We will use the Dye et al. (2008) determinations in this

paper. The main disadvantage of the photometric redshifts in the

Lockman Hole is the lack of spectroscopic training sets, though

a comparison of the Dye et al. photometric redshifts of submm-

selected galaxies with their spectroscopic redshifts, and between

independent photometric redshift determinations (their figs 3 and 4)

shows the photometric redshifts are accurate to |�z|/(1 + z) � 0.09

consistent with other studies (e.g. Chapman et al. 2005; Pope et al.

2006). This is more than sufficient for our purposes.

3.2 Mass estimates of Spitzer galaxies

The 3.6- and 4.5-μm IRAC bands are dominated by the red-

shifted light from old stellar populations, and are therefore useful

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 1907–1921
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Figure 3. Correlation between model stellar mass and absolute K magnitude

predicted using the Millenium Simulation by de Lucia et al. (2006) for several

redshift shells. Also plotted are the data from the MUNICS survey (Drory

et al. 2004). Note the small dispersion and the clear redshift dependence.

estimators of the assembled stellar masses. The K-corrections are

also simple at these wavelengths, since it samples the Rayleigh–

Jeans tail of the stellar photospheric emission. We use the model

SEDs from Dye et al. (2008) to obtain rest-frame K-band monochro-

matic luminosities; the results are insensitive to the assumed

SED.

There is no accepted conversion between rest-frame K-band lumi-

nosity and stellar mass, as a function of redshift. Our aim is to com-

pare our results with the de Lucia et al. (2006) Millenium Simulation,

and one can only do this self-consistently by adopting a conversion

consistent with that simulation. Therefore, we adopt an empirical

conversion based on these simulations, based on fits to the simu-

lated data in Fig. 3. This conversion is consistent with the observed

luminosity-dependent evolution in K-band stellar mass-to-light

ratios in the MUNICS survey (Drory et al. 2004). Our conversion

is

log10 M∗ = a(z) + b(z) Kabs,AB, (1)

where the values of a and b are interpolated from the best-fitting

values tabulated in Table 1.

In calculating the matter overdensities, we add a dark matter con-

tribution following the total mass estimates from gravitational lenses

by Ferreras, Saha & Williams (2005), who found that the total mass

scales as the stellar mass to the 1.2 power, with total mass equalling

stellar mass at 3.18 × 109 M�. Below this mass we make no cor-

rection for dark matter contribution. Our results are not sensitive to

the dark matter assumptions.

3.3 The density field around submm galaxies

As shown in Blake et al. (2006), the SHADES survey does not have

enough sources or field galaxy redshifts to accurately determine

the galaxy–SHADES cross-correlation function. We therefore used

an alternative estimator which is essentially a stack of the 3.6-μm

Spitzer data at the positions of the SHADES sources. Using Spitzer

Table 1. Best-fitting values for the conversion between K-band AB absolute

magnitude and stellar mass using equation (1), from the de Lucia (2005)

Millenium Simulation. The top row gives the redshift, and the other rows

give the fitted parameters in a narrow redshift bin centred on that redshift.

z 0.025 1.05 2.05 3.05 4.1 5.25

a 2.007 1.457 1.156 0.8193 0.3064 0.5831

b −0.3944 −0.4010 −0.4058 −0.4178 −0.4373 −0.4190

galaxy mass estimates discussed above, we created projected mass

density maps in broad redshift bins, and smoothed each map with a

top-hat circular kernel with 0.5–2 comoving Mpc diameters at the

central redshift of the bin. We then compared the projected matter

density at the positions of the SHADES galaxies with the histogram

of matter density for the map as a whole, using methods similar to

established techniques for stacking analyses (see e.g. Section 3.4).

We omitted SHADES galaxies lying in regions with zero density

(neither 3.6-μm identification nor sufficiently close neighbours) and

also restricted the comparison to the non-zero density regions of the

map as a whole.

This comparison is shown in Figs 4 and 5 where the percentile of

the submm galaxies’ environment is plotted against redshift. In the

0.5-Mpc smoothing case, the submm galaxies in the lower redshift

bin lie in the top 10–20 percentile of the matter density distribution.

However, the small smoothing kernel leaves large regions of the

map with no density field data, so the sample of submm galaxies is

small. In the 2-Mpc smoothing case, the sample size is more than

doubled; only five galaxies are excluded in the lowest redshift bin.

The submm galaxies appear to lie in a wide range of environments,

but around a third of the submm galaxies at 1 < z < 1.5 lie in the

top 15 percentile of the density distribution.

We performed a similar calculation for 3.6-μm-selected galaxies,

which are plotted as small dots in Figs 4 and 5. These appear to have

a more uniform distribution in the lower redshift bin than the submm

galaxies. We compared the submm galaxy and 3.6-μm-selected

Figure 4. Density distribution percentiles for submm galaxies (large sym-

bols), compared with that of 3.6-μm-selected galaxies (dots). The matter

density distribution estimated from Spitzer 3.6-μm imaging in broad red-

shift bins (indicated by dashed lines) was smoothed with a 0.5 comoving

Mpc diameter top hat kernel as discussed in the text. Regions with zero

estimated density were excluded from this test. Note that submm galaxies

sample the highest 10–20 percentiles of this matter density distribution at

lower redshifts.
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Figure 5. Density distribution percentiles for submm galaxies, compared

with that of 3.6-μm-selected galaxies (dots). The matter density distribution

estimated from Spitzer 3.6-μm imaging in broad redshift bins (indicated

by dashed lines) was smoothed with a 2 comoving Mpc diameter top hat

kernel as discussed in the text. Regions with zero estimated density were

excluded from this test. Note that around half of the submm galaxies in

the lower redshift bin sample the highest 10–20 percentiles of this matter

density distribution, when smoothed to this scale. The larger smoothing

width reduces the area with no density field data, so the sample of submm

galaxies is larger.

populations in the 1 < z < 1.5 bin using a Kolmogorov–Smirnoff

test. In the 2-Mpc smoothing case the difference is only marginally

significant (32 per cent probability that the distributions are the

same), but in the 0.5-Mpc case the distributions are clearly differ-

ent (0.2 per cent probability that the distributions are the same).

Note that in making this comparison, we have subtly changed the

question we are asking. We wish to know if submm galaxies lie in

richer environments than average, but this average can be taken as

a volume average or as a per galaxy average. The raw percentiles

address the former, and the submm-Spitzer comparison addresses

the latter.

3.4 The submm emission of 3–24 μm Spitzer galaxies

In Serjeant et al. (2004), the regions of the map near submm point

sources were simply excluded from the analysis. This runs the risk

of removing the submm signal from companions to the submm

point source. Here, point sources detected in the combined point-

source-filtered 850-μm map with significance levels of �3.5σ were

subtracted from the original chop/nod images, which were then fil-

tered with the chopped/nodded point source kernels, and the maps

were optimally combined to create a residual 850-μm image. This

is the same as the procedure adopted by Dye et al. (2006), and this is

the threshold used for the submm point source catalogue in Coppin

et al. (2006). (We will show in Figs 6 and 7 that our results are not

sensitive to this threshold.) There is evidence that the submm point

source population has different Spitzer:submm flux ratios than the

Spitzer-selected population (Serjeant et al. 2004), so it is important

to remove the point source population before stacking. No reliable

450-μm point sources are detected, so the point-source-filtered maps

at 450 μm are used without modification. Our methodology differs

from that of Wang et al. (2006), in which submm point sources were

left in the map.

The submm point spread function sums to exactly zero, because

of the negative sidelobes from the chopping and nodding. Therefore,

there is no risk of overestimating the submm flux of a given Spitzer
galaxy by also counting its neighbours (Peacock et al. 2000; Serjeant

et al. 2004). This is because the expectation value of the submm

flux from (unclustered) neighbouring galaxies equals that of the

map, which is exactly zero by virtue of the zero-sum point spread

function. The effect of the clustering of the Spitzer population is

estimated in Section 3.6.

We can therefore calculate the mean submm flux of Spitzer galax-

ies by averaging the measurements at the positions of Spitzer galax-

ies in the submm maps, even if there is >1 Spitzer galaxy per submm

beam. The difficulty in extracting 450-μm point sources (Section 2)

raises the possibility of non-Gaussian features in the maps contribut-

ing to the signal. Such non-Gaussian features could be caused by,

for example, imperfect sky subtraction or imperfect correction for

atmospheric opacity; the sky is many orders of magnitude brighter

than the extragalactic signal (e.g. Serjeant et al. 2003a). However, by

the Central Limit Theorem, the probability distribution of the mean
of a sample is approximately Gaussian with a variance σ 2/n where

σ 2 is the variance of the underlying distribution being sampled; the

distribution of the mean is increasingly Gaussian for larger samples

and for more Gaussian-like underlying distributions. Here, the un-

derlying distribution is well approximated as Gaussians (e.g. Mortier

et al. 2005), and many thousands of samplings are taken from the

underlying distribution. We are therefore confident that the mean

flux levels of stacked populations are Gaussian distributed.

The mean flux level has the advantage of being physically inter-

pretable, but it is not necessarily the most efficient detection statistic

of a stacked signal. The Kolmogorov–Smirnoff test has been widely

used to test whether the distribution of submm fluxes at the posi-

tions of interest is a random sampling from the map as a whole

(e.g. Serjeant et al. 2004; Dye et al. 2006). This test is asymptoti-

cally distribution free, and is therefore insensitive to non-Gaussian

features in the underlying maps. Furthermore, a comparison with

a control sample (such as randomized submm source positions) is

intrinsic to the test, since it compares the flux distribution of the

map as a whole with the map fluxes at the positions of interest. It

is also possible to translate the Kolmogorov–Smirnoff significance

level into an equivalent number of σ of a Gaussian distribution, by

inverting PKS = 0.5 erf(σ/
√

2) + 0.5.

Some authors have advocated the use of the error-weighted mean

fluxes, rather than the unweighted mean stacked fluxes (e.g. Dye

et al. 2006). In Serjeant et al. (2004) it was argued that it was not ob-

vious that the Central Limit Theorem would apply to these weighted

quantities. However, Dye et al. (2006) tested their weighted means

and found them to be only subtly biased. The large area of the

SHADES maps may provide an advantage: provided the field of

view is sufficiently large, and provided the noise level is sufficiently

uniform, the zero-sum point spread function of each individual

source will still produce a zero net contribution on average to the

S/N and S/N2 images, as well as to the flux image S. In this paper

we will make error-weighted co-added submm postage stamps of

the sources to be stacked. We will show that our error-weighted

mean fluxes show no evidence for a systematic shift relative to the

unweighted mean fluxes.

We applied the methodology of Serjeant et al. (2004) to test

whether the submm fluxes at the positions of Spitzer/ISO galaxies

were representative of the submm map as a whole, or whether there

is on average positive flux at the Spitzer/ISO galaxy positions. We

excluded regions of the 850-μm map with noise levels above 5 mJy,

and regions of the 450-μm map with noise levels above 20 mJy,

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 1907–1921

 at A
cquisitions on February 20, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


1912 S. Serjeant et al.

Figure 6. Histograms of 850-μm flux in the SHADES Lockman map as a whole (unhatched bars) compared to the 850-μm fluxes at the positions of the

Spitzer/ISO galaxies selected at the indicated wavelengths (hatched bars). The left-hand side vertical scales show the numbers for the hatched histograms, and

the right-hand side scales refer to the unhatched histograms. Note that in all plots, the hatched bars lie typically to the right of the unhatched bars. The results

of a comparison using the Kolmogorov–Smirnoff test are also shown in the diagrams. Submm point sources have been removed.

since these disproportionately affect the non-noise-weighted stacks.

At both wavelengths, we then calculated the median noise levels in

the unmasked regions, and then masked all areas with more than

twice these noise levels. The 450-μm data quality is much more

dependent on the weather conditions, so more of the 450-μm map

is excluded by our noise cuts (e.g. Table 2). The results are shown

in Figs 6 and 7. We detect the Spitzer galaxies at � 99 per cent

confidence at both 450 and 850 μm, and for all Spitzer wavelengths

from 3–24 μm. We also detect the ISO 15-μm-selected population

at 99.6 per cent confidence at 850 μm and 96 per cent confidence at

450 μm. The mean fluxes are given in Table 2, as are the Gaussian-

equivalent σ values of the Kolmogorov–Smirnoff significance levels

(though recall the uncertainties in the 450-μm flux calibration noted

above). Our stacked mean fluxes are in good agreement with the pre-

vious determinations of Serjeant et al. (2004), though in addition

we have made clear submm stacking detections at 3.6 and 4.5 μm.

The mean flux ratios for the 5.8–8 μm selected galaxies presented in

Table 2 are somewhat lower than those presented in Serjeant et al.

(2004), which may be due to the lack of brighter Spitzer sources

in the very small field of view of the Early Release Observations.

There are some difficulties in interpreting these flux ratios, as they

are summed from galaxies spanning a range of redshifts, and the

contribution made by individual galaxies will depend on their loca-

tion in the luminosity–redshift plane. Furthermore, the mean mid-IR

flux is sensitive to the presence of the few brighter sources in the

sample, which may lead to underestimates in the quoted errors in

the flux ratios. We will return to this topic in Section 4. Another

anomalous flux ratio is the 450:15 μm ratio; we believe this is due

partly to small number statistics in this sample, and partly to the fact

that only brighter mid-IR galaxies are detected at this wavelength

which may bias the sample to submm-weak active galactic nucleus

(AGN) dust tori. These galaxies are also only marginally detected

(Table 2).

The Kolmogorov–Smirnoff test reports an apparently unrealis-

tically small significance when comparing the 850-μm fluxes of

24-μm-selected galaxies with the submm map as a whole. Exami-

nation of the numbers in the bins of the histograms shows why this is

the case; in effect, the probability that the distributions are identical

is immeasurably small. To our knowledge, this is the best submm

stacking detection ever made.

We constructed a noise weighted sum of the postage stamps

around Spitzer/ISO galaxies selected at each wavelength. Figs 8

and 9 show the S/N images of the galaxies selected at these wave-

lengths. We clearly have strong detections of our sample at all

wavelengths. Furthermore, the off-centre positions in these stacked

postage stamps provide a control, and confirm the stacking is not

prone to false positives. The weighted means are quoted in Ta-

ble 2 and are in good agreement with the unweighted means. In

particular, there is no evidence in Table 2 for weighted means

systematically offset from the unweighted mean fluxes; any sys-

tematic offset must be far smaller than the random noise in the

measurements.

Since our S/N is so high (unlike in the much smaller sample

of Serjeant et al. 2004), we can investigate the subpopulations

which dominate the stacking signal. In Fig. 10 we plot the comov-

ing volume-averaged star formation rate (SFR) estimated from the
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SHADES paper IX 1913

Figure 7. Histograms of 450-μm flux in the SHADES Lockman map as a whole (unhatched bars) compared to the 450-μm fluxes at the positions of the

Spitzer/ISO galaxies selected at the indicated wavelengths (hatched bars). The left-hand side vertical scales show the numbers for the hatched histograms, and

the right-hand side scales refer to the unhatched histograms. Note that in all plots, the hatched bars lie typically to the right of the unhatched bars. The results

of a comparison using the Kolmogorov–Smirnoff test are also shown in the diagrams.

Table 2. Mean submm fluxes for Spitzer-selected and ISO-selected populations. Also quoted are the numbers of galaxies in each stacking analysis. Kolmogorov–

Smirnoff significance values are quoted in Figs 6 and 7, and translated in this table into an equivalent number of σ of a Gaussian distribution as discussed in

the text, except for the 850-μm detection of 24-μm sources which has a significance level too high for numerical inversion. The quoted errors on the mean

fluxes are σ/
√

N , where N is the number of measurements and σ 2 the variance of the measurements, except in the case of flux ratios where the σ/
√

N errors

in each quantity have been propagated. Known submm sources have been subtracted from the maps prior to this analysis, as discussed in the text. The effect of

the clustering of Spitzer galaxies is discussed in Section 3.6.

3.6 μm 4.5 μm 5.8 μm 8 μm 15 μm 24 μm

N850 4803 4676 1505 1558 188 2656

〈S850〉/mJy 0.184 ± 0.029 0.181 ± 0.029 0.302 ± 0.052 0.300 ± 0.051 0.43 ± 0.14 0.361 ± 0.041

〈S850〉weighted/mJy 0.195 ± 0.024 0.191 ± 0.024 0.318 ± 0.043 0.292 ± 0.042 0.54 ± 0.12 0.343 ± 0.033

〈S850〉/〈Smid− I R〉 2.64 ± 0.24 3.49 ± 0.37 1.92 ± 0.27 2.80 ± 0.36 0.74 ± 0.08 1.98 ± 0.06

σKS,850 5.3σ 5.9σ 4.6σ 5.3σ 2.6σ �7σ

N450 1994 1977 586 625 84 1023

〈S450〉/mJy 1.23 ± 0.38 1.23 ± 0.39 2.98 ± 0.72 2.84 ± 0.70 4.1 ± 1.6 3.00 ± 0.51

〈S450〉weighted/mJy 1.55 ± 0.27 1.56 ± 0.27 3.00 ± 0.49 2.95 ± 0.47 3.6 ± 1.3 2.53 ± 0.36

〈S450〉/〈Smid− I R〉 45.2 ± 5.1 72.6 ± 7.3 14.7 ± 3.8 30.0 ± 5.4 1.58 ± 0.2 11.5 ± 0.4

σKS,450 3.8σ 3.8σ 3.9σ 4.2σ 1.8σ 5.1σ

850-μm stacked fluxes, assuming an M82 SED shape, and using a

conversion derived for this SED from the Kennicutt (1998) conver-

sion:

SFR

M�/year
= LFIR

5.8 × 109 L�
= νLν(60 μm)

3.6 × 109 L�
. (2)

This assumes a Salpeter initial mass function from 0.1 to 100 M�.

Our estimator for the total submm flux contribution from a popula-

tion of galaxies in a logarithmic mass interval � log 10 M is

Ftot(mJy deg−2 dex−1) = 1

A� log10 M
�N

i=1 M(i)/c(i), (3)

where A is the survey area, M(i) is the submm map flux at the position

of galaxy i (of which there are N) and c(i) is the completeness of

the Spitzer catalogue for galaxies similar to i. The calculation is

not sensitive to the completeness correction. To first order both the

submm and Spitzer fluxes are constant over the redshift intervals
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1914 S. Serjeant et al.

Figure 8. S/N images of stacked 850-μm postage stamps centred on Spitzer/ISO galaxies, as discussed in the text. The grey-scale is from −3σ to +4σ . The

scales marked are arcseconds. Note the clear detections at the centres of all the images. Negative sidelobes are also visible.

Figure 9. S/N images of stacked 450-μm postage stamps centred on Spitzer/ISO galaxies, as discussed in the text. The grey-scale is from −3σ to +4σ . The

scales marked are arcseconds. Note the clear detections at the centres of all the images. Negative sidelobes are also visible.
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SHADES paper IX 1915

Figure 10. Evolution in comoving volume-averaged SFRs as a function of

total mass for 3.6-μm-selected galaxies, in ±0.5 dex mass bins centred on the

masses shown. The brighter submm point source population discovered by

Smail, Ivison & Blain (1997), Barger et al. (1998) and Hughes et al. (1998)

are not included, because we removed submm point sources prior to our

stacking analysis. Symbols: the circle is 109 M�, upward triangles 1010 M�,

downward triangles 1011 M�, diamonds 1012 M� and the square is the

1013 M� constraint. Note that the lower mass galaxies have star formation

histories peaking at much lower redshifts than the putative z � 2.2 peak in

the bright submm point source population.

in question (due to the negative K-corrections at both wavelength

ranges). Our estimate of the error on the total flux is

�Ftot = 1

A� log10 M

√
�N

i=1[M(i)/c(i)]2. (4)

For conversion from 850-μm fluxes to luminosities, we use the

central redshift of the bin, noting that the submm luminosity is

roughly independent of redshift over the redshift ranges considered.

We do not plot bins in which galaxies with masses equal to the mass

at the centre of the bin are not above the Spitzer flux limit throughout

the bin. We weight the flux contributions of each galaxy according

to its accessible comoving volume. Fig. 11 shows the mean (qui-

escent) SFR per galaxy. Fig. 12 shows the mean (quiescent) SFR

per unit galaxy mass, as a function of mass. This quantity has the

dimensions of one over time (e.g. Gyr−1). This characteristic star

formation time-scale can be regarded as the time-scale over which

Figure 11. Left: mean SFRs, dM/dt, of our galaxies. Symbols as in Fig. 10. Right: corresponding predictions from the de Lucia et al. (2006) simulation. Note

that the observed SFRs clearly exceed the predictions.

the bulk of the galaxy’s baryonic matter would be converted into

stars (though for consistency with elsewhere in this paper we use

the total mass estimates for the galaxies, not just baryonic). The

quantities plotted in Fig. 12 have no dependence on the complete-

ness of the Spitzer catalogue, though the errors on the quantities

depend on the sample size. We have also plotted the mass-doubling

time-scale as a function of redshift on this figure, assuming SFR/M∗
is constant; galaxies above this line may be regarded as starburst-

ing. A further useful metric, also plotted in this figure, is the specific

star formation required to build up the entire observed stellar mass

since the big bang, assuming SFR is constant. For comparison, the

specific SFRs of the SHADES point sources are shown in Fig. 13.

We will discuss these figures in Section 4.2.

3.5 The cosmic near-IR and submm backgrounds

In Figs 14 and 15 we plot the contributions to the cosmic submm

background light made by Spitzer/ISO galaxies, as a function of their

near/mid-IR flux. We correct the Spitzer/ISO catalogues for incom-

pleteness by comparison with published source counts from Fazio

et al. (2004), Papovich et al. (2004) and Rodighiero et al. (2004).

The figures show the submm background contribution per decade of

near/mid-IR flux, and compare these contributions to those made by

the same galaxies to the near/mid-IR backgrounds calculated from

the published source counts.

There is a remarkably strong correspondence between the 24-μm-

selected galaxy contribution to the 85-μm extragalactic background,

and to the 24-μm-selected background. There is also a correspon-

dence between the 3.6–4.5 μm selected galaxy contributions to the

450-μm extragalactic backgrounds, and to the 3.6–4.5 μm back-

grounds. The 24-μm background contributions also correlate well

with the 450-μm contributions. We will discuss the reasons for these

correspondences in Section 4.

In Figs 16 and 17 we integrate the data in Figs 14 and 15, and plot

the cumulative contributions to the cosmic submm background light,

as a function of Spitzer/ISO flux. It is clear that about a quarter of the

extragalactic 850-μm background light is resolved by Spitzer, and

the majority of the 450-μm extragalactic background is resolved.

3.6 The impact of clustering on stacking analyses

Because of the limited resolution provided by SCUBA, we should

be clear that the signal detected in the stacking analysis represents
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1916 S. Serjeant et al.

Figure 12. Left: SFR per unit galaxy mass, (1/M) dM/dt. This has dimensions of [T]−1 and the corresponding star formation time-scales are given in the

right-hand side ordinate. Symbols as in Fig. 10. Also plotted is the specific SFR required to double the stellar mass by z = 0 assuming a constant specific
SFR, and the rate required to assemble the galaxy since the big bang assuming a constant SFR. Points lying above either line may be regarded as starbursting.

Note that most of our detections can be regarded as starbursting. Right: corresponding predictions from the de Lucia et al. (2006) simulation. Note the obvious

discrepancies with the observations.

Figure 13. SFR per unit galaxy mass, (1/M) dM/dt, for the SHADES point

sources in the Lockman Hole. As with Fig. 12, the corresponding star for-

mation time-scales are given in the right-hand side ordinate. Objects with

spectroscopic redshifts are shown in filled symbols, and objects with optical-

Spitzer-based photometric redshifts from Dye et al. (2008) are shown as open

symbols. Note that the star formation time-scales for SHADES sources are

much shorter than in the population as a whole.

a contribution from any object within around 10 arcsec of the target

Spitzer/ISO galaxies. Because these galaxies will be surrounded by

a population of correlated neighbours, it is therefore possible that

the stacked flux gives an overestimate of the emission from the target

galaxies. This is simple enough to estimate: the additional flux is

just the integral of the background intensity, I, times the angular

cross-correlation between the target galaxies and the background,

w(θ ), times the beam B:

S = I

∫
w(θ ) B(θ ) 2πθ dθ. (5)

For a Gaussian beam, and assuming w = (θ/θ0)−0.8, this gives S =
0.20(θ 0/arcsec)0.8 mJy at 850 μm and S = 0.28(θ0/arcsec)0.8 mJy

at 450 μm. The appropriate value of θ0 is of course open to debate,

but Oliver et al. (2004) measure θ0 = 1.24 arcsec for the 3.6-μm-

selected population. The stacked fluxes at 450 μm are at least five

times the maximum value that could arise from neighbours (tak-

ing the extreme case in which all the 850-μm signal arises in this

way). At 850 μm the contribution may be more significant, but the

contribution estimated from equation (5) is necessarily an overesti-

mate because not all the 850-μm background is attributable to these

Spitzer galaxies. We can use Fig. 16, in which only �25 per cent

of the 850-μm background is attributable to the Spitzer galaxies,

to estimate iteratively the correlated 850-μm flux from the other

Spitzer galaxies. This reduces the clustered contribution by a factor

of 4, yielding S = 0.06 mJy with θ 0 = 1.24 arcsec, which is at most

a 20–30 per cent correction to the 850-μm fluxes quoted in Table 2.

While non-zero, this is not sufficient to affect our conclusions.

4 D I S C U S S I O N

4.1 The link between the near-IR and submm backgrounds

Any stacking analysis is only capable of determining the first mo-

ment of the distribution; the mean values in Figs 10 and 12 may belie

a large variation in the population. We have also subtracted point

sources, so strongly starbursting galaxies are omitted from these

figures; we are therefore probing only the mean quiescent levels of

star formation in these galaxies.

Our stacking detections have much higher S/N than any previ-

ously obtained, partly because of the depths of the Spitzer and

SCUBA surveys, and partly also because the stacking S/N scales

with the square root of the number of submm beams and SHADES

has the largest contiguous submm survey fields to date. Our 450-

μm stacking results are the best indicators of the populations that

will be found to dominate the 450-μm background by SCUBA-2.

The prospects are good for follow-ups of the ultradeep SCUBA-

2 Cosmology Survey, because the Spitzer galaxies that appear to

dominate the 450-μm background are less challenging targets for

8–10 m class spectroscopy than SCUBA point sources (e.g. Serjeant

et al., in preparation). Similarly, the prospects appear good for spec-

troscopic follow-ups of ALMA point sources below the SCUBA-2

confusion limit. The clustering of bright submm point sources as a

function of redshift is a key goal of the SHADES survey (e.g. van

Kampen et al. 2005, Mortier et al. 2006), providing strong con-

straints on semi-analytic models of galaxy evolution; similarly, the
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SHADES paper IX 1917

Figure 14. Contributions of the Spitzer/ISO galaxies to the 850-μm extragalactic background light (data points, left-hand side ordinates) as a function of

Spitzer/ISO flux. Also plotted are the contributions of the same galaxies to the cosmic near-IR and mid-IR backgrounds (curves, right-hand side ordinates),

estimated from the source counts as discussed in the text. Note in particular the correspondence between the 24- and 850-μm extragalactic backgrounds.

redshift-dependent clustering of galaxies a factor of ∼10 fainter in

submm flux, for which optical follow-up is easier, is likely also to

provide a strong constraint on such models.

Paradoxically, it is the brighter submm point sources that are

the most challenging to follow up. The populations sampled by the

SPIRE instrument on Herschel will be challenging to follow up in the

optical (see also e.g. Khan et al. 2005, 2007). Spectroscopic redshifts

for such populations may be better determined in the medium term

by molecular line spectroscopy (e.g. Wagg et al. 2007), and in the

longer term by SPICA (e.g. Nakagawa 2004).

We find that the submm:24 μm ratios for most 24-μm-selected

galaxies are very different to those of most submm-selected galax-

ies, in agreement with Serjeant et al. (2004). If the 24-μm popu-

lation had submm:24-μm flux ratios consistent with those of the

submm point source population, the 24-μm sources considered in

this paper would overproduce the 850-μm background by a factor of

∼× 3. We argue that the bulk of the Spitzer population has a qui-

escent star formation level much lower than that of submm point

sources, while the latter are heavily obscured objects (e.g. Serjeant

et al. 2003b; Clements et al. 2004; Smail et al. 2004) that are chal-

lenging for optical follow-ups, and far-IR ‘loud’ with high specific

SFRs (Fig. 13) and short star formation time-scales. Such episodic

star formation is supported by models of AGN feedback in massive

galaxies in the early Universe, and by the small inferred mass ac-

cretion rates on to central supermassive black holes in submm point

sources (e.g. Alexander et al. 2005).

The physical sizes of populations dominating the far-IR back-

ground are rather smaller than those inferred for submm point

sources. At a flux density of ∼15 μJy, the 8-μm population which

we have found to contribute significantly to the 450-μm extra-

galactic background has optical identifications in our imaging with

typical diameters <∼ 1 arcsec (the optical identification diameters
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1918 S. Serjeant et al.

Figure 15. Contributions of the Spitzer/ISO galaxies to the 450-μm extragalactic background light (data points, left-hand side ordinates) as a function of

Spitzer/ISO flux. Also plotted are the contributions of the same galaxies to the cosmic near-IR and mid-IR backgrounds (curves, right-hand side ordinates),

estimated from the source counts as discussed in the text. Note in particular the correspondence between the 3.6–4.5- and 450-μm extragalactic backgrounds.

of submm point sources can be up to ∼2–4 arcsec, e.g. Smail

et al. 2004; Pope et al. 2005, though other authors claim subarc-

second sizes, e.g. Chapman et al. 2004; Biggs & Ivison 2008).

The regions of star formation in these galaxies will be resolv-

able with ALMA, which will probe the cool large-grained dust

phase, and Darwin direct imaging which will probe the tran-

siently heated small grains and PAH phases. This also suggests

that 0.1 arcsec is the coarsest resolution that would be useful for a

future ∼50–200 μm far-IR interferometer (FIRI) to resolve the inter-

nal structure of individual galaxies that comprise the cosmic far-IR

background.

4.2 The mass dependence of star formation

When plotting the total contribution to the submm background from

redshift shells in our Spitzer samples (not shown), we find that the

z <∼ 1.5 population is dominant, similar to the results of Wang et al.

(2006). However, this neglects the fact that different luminosity and

mass ranges are sampled at different redshifts. This may be one

underlying cause of the difference between the Wang et al. (2006)

and Dye et al. (2006) stacking results, since the K-correction effects

are different in their respective samples; cosmic variance is another

possibility. Ours is the first direct attempt to segregate the mass

contributions to the submm-derived cosmic star formation history.

The mass segregation in Fig. 10 shows evidence for star formation

in galaxies with model stellar masses �1010 M� assembling the

bulk of their stellar masses at much lower redshifts than the estimated

z ∼ 2.2 peak in the submm point source population. This implies

an increasing dominance at higher redshift of higher mass systems

in the volume-averaged SFR. These observations are in accordance

with qualitative expectations from ‘downsizing’ in star formation

(Matteucci 1994; Bressan, Chiosi & Tantalo 1996; Cowie et al.

1996; see also Papers VII and VIII, Dye et al. 2008 and Clements

et al. 2008, respectively).
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Figure 16. Cumulative contributions to the 850-μm extragalactic back-

ground light, as a function of near/mid-IR flux, for various Spitzer/ISO sur-

veys. The horizontal dashed line is the total background derived by Lagache

et al. (1999), the uncertainties on which are less than a factor of 2. Note that

the Spitzer contributions converge to roughly a quarter of the total 850-μm

background.

Figure 17. Cumulative contributions to the 450-μm extragalactic back-

ground light, as a function of near/mid-IR flux, for various Spitzer/ISO sur-

veys. Symbols as Fig. 16. Note that the Spitzer contributions are capable of

accounting for the entire 450-μm background, within the errors.

Fig. 11 shows the mass- and redshift dependence of the mean

SFRs per galaxy, rather than per unit volume. The decrease in the

mean SFRs per galaxy at ∼1010 M� and z < 1 can only be rec-

onciled with their increasing volume-averaged contribution if their

number densities are increasing, in agreement with expectations

from mass downsizing (e.g. Pozzetti et al. 2007). Fig. 11 also shows

the corresponding predictions from the de Lucia (2005) Millenium

Simulation. Our SFRs are a factor of a few higher than those pre-

dicted in this simulation.

The star formation time-scales in Fig. 12 at redshifts z > 1 scale

approximately inversely with the mass of the system, quite unlike

e.g. a Schmidt law for local late-type galaxies. In Fig. 12 we again

compare this to the predictions from the de Lucia (2005) Mille-

nium Simulations. Again, there is a striking discrepancy with the

simulation predictions.

How bad would the photometric redshifts have to be in order to

explain the disagreement between model and data? The results in

Fig. 12 are surprisingly insensitive to photometric redshift, and it is

therefore not likely that errors in the photometric redshifts are the

cause of the disagreement. This insensitivity to redshift errors is due

to the model stellar mass and SFRs both being relatively insensitive

to redshift (e.g. Fig. 2) because both are to some degree subject to

negative K-corrections. The specific SFR estimates therefore depend

mainly on the submm:near-IR flux ratio, and not on redshift. It is

Figure 18. Bolometric luminosity as a function of redshift for an observed

850-μm flux of 1 mJy for three SEDs: M82 (full line), a cirrus-dominated

spectrum from Efstathiou, Rowan-Robinson & Siebenmorgen (2000) (short

dashed, green) and an Arp 220 model also from Efstathiou et al. (2000) (long

dashed, green).

therefore hard to see how a redistribution of galaxies among the

redshift bins could bring the data into agreement with the models;

removing galaxies from one redshift bin to make it agree better with

the models would make the disagreement worse in the other bins

into which the galaxies are moved.

One hint that the SFRs may be overestimated comes from asking

what will happen to the 1010 M� galaxies if they continue form-

ing stars at these high continuous rates. The galaxies appear to be

forming stars at over 10 times the rate required to double their mass

by the present day, almost regardless of redshift at z < 2. This is

clearly not sustainable; it would require a rapid truncation of the

star formation at slightly higher masses, and a continual feeding of

lower mass galaxies into the ∼1010 M� bin, for which there is no

evidence in the stellar mass functions of galaxies (e.g. Bell et al.

2004, 2007; Caputi et al. 2006).

There are at least two possibilities that might reduce our estimates

of the number of stars forming in these galaxies. One approach ex-

plored successfully by the Baugh et al. (2005) application of the

Millenium Simulation is to assume a top-heavy initial mass func-

tion in star-forming galaxies. The reduction in the number of stars

formed in this model is similar to the discrepancy between the de

Lucia (2005) predictions and our measurements. However, the top-

heavy initial mass function is normally only applied to extreme

starbursting systems, and not to the quiescent star formation level

in the galaxy population as a whole. A second possibility is that the

observed-frame submm fluxes are dominated not by star formation,

but by cool cirrus heated by the galaxies’ interstellar radiation fields.

The galaxies would then have a cooler SED than the M82 template

assumed above. We demonstrate the strength of this effect in Fig. 18.

Such a model was proposed for bright submm point sources by Ef-

stathiou & Rowan-Robinson (2003) (see also Clements et al. 2008,

Paper VIII), and although mm wave and radio interferometry have

not on the whole yielded the large angular sizes predicted by these

models (e.g. Tacconi et al. 2006; Ivison et al. 2007), it remains pos-

sible that these models are broadly correct descriptions of the fainter

submm population.

4.3 The environment dependence of star formation

We have attempted to measure the matter environments of submm

galaxies. Semi-analytic models predict that submm galaxies should

be strongly clustered and lie in some of the largest overdensities

at their redshifts (e.g. van Kampen et al. 2005), for which we have
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found tentative evidence (e.g. Figs 4 and 5) and which agrees at least

qualitatively with previous measurements (e.g. Blain et al. 2004;

Blake et al. 2006). Recently, Elbaz et al. (2007) and Cooper et al.

(2007) have shown evidence in the GOODS and DEEP2 surveys

that z ∼ 1 star-forming galaxies (as evidenced by 24-μm emission)

are preferentially found in richer galaxy environments. This trend

is in the opposite sense to that seen in the local Universe. Further-

more, the observed environment dependence of star formation is

stronger than that predicted by semi-analytic models. Our observa-

tions extend this trend to higher redshifts and SFRs. The properties

of the star formation density field, as opposed to the galaxy density

field, may be a key arena for the future confrontation of data and

semi-analytic predictions. Future Herschel and SCUBA-2 surveys

will yield large catalogues of bright submm-selected galaxies, and

their near-IR and submm environments will be easily measurable

with the warm AKARI/Spitzer missions and SCUBA-2 follow-ups,

respectively.

5 C O N C L U S I O N S

There is a strong correspondence between the galaxies that domi-

nate the submm extragalactic background light and those that are

detected in deep Spitzer surveys. The submm-derived specific SFRs

in the Spitzer populations are much higher than those predicted by

some semi-analytic simulations; this may be due to a component of

submm emission heated by the interstellar radiation fields leading

to overestimates of the SFRs, or to a top-heavy initial mass func-

tion in the Spitzer galaxies, or to some unknown deficiency in the

models. We find evidence for downsizing in both star formation

and mass assembly. We also find evidence that around a third of

submm-selected galaxies at redshifts 1 < z < 1.5 lie in the upper

∼20 percentile of the galaxy density distribution, in contrast to the

redshift zero tendency of star-forming galaxies to avoid the richest

environments.
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