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SUMMARY 

 

1. Rivers are highly structured ecosystems in which habitat complexity and 

heterogeneity are postulated to affect species diversity and abundance. However, the 

exact links between habitat structure and organisms such as macro-invertebrates remain 

poorly understood. 

 

2. Field surveys at the patch and reach scale were combined with a field experiment in 

the Rivers Wye and Usk, Wales, to: i) quantify variations in habitat complexity and 

heterogeneity among habitats and river sections, ii) assess their influence on macro-

invertebrates, iii) separate the ecological effects of confounding physical factors and iv) 

determine whether habitat type and heterogeneity promote nestedness of assemblages. 

 

3. At the patch scale, surface complexity but not habitat heterogeneity increased macro-

invertebrate diversity, richness and abundance independently of surface area, but only 

when habitat type was ignored. Surface complexity and heterogeneity were minor 

determinants of variations in macro-invertebrates among habitat types. 

 

4. A field experiment involving baskets containing cobbles, pebbles, gravel or 50:50 

mixtures revealed that flow type explained significant variations in macro-invertebrate 

richness, abundance and composition, and appeared to filter organisms based on their 

body size. Surface complexity and interstitial volume had no ecological effect, implying 

that differences in assemblages among mineral habitats may result from flow-related 

effects. 

 

5. Macro-invertebrate assemblages occurring in some mineral habitats, typically with 

lower macro-invertebrate diversity, richness, abundance and trait diversity, appeared to 

be nested sub-sets of those occurring in some organic habitats. Nested assemblages had 

reduced trait diversity and altered trait representation. River sections containing fewer 

habitats supported assemblages of lower abundance, which appeared to be weakly 

nested sub-sets of those in heterogeneous sections.  

 

6. Habitat complexity and heterogeneity are concluded to have consistently weak effects 

on macro-invertebrates at the scales studied. In contrast, habitat type and flow type 

affected macro-invertebrate assemblage composition, structure, and traits, with 

important implications for river management and conservation. 
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Chapter 1 General Introduction 

 

1.1. Introduction  

 

The habitat is a central concept in ecology, and may be considered as one of its few 

unifying theories (Block and Brennan, 1993; Mitchell, 2005). Variations among habitats 

are implicated in the distribution and diversity of species at local, regional and global 

scales (MacArthur, 1965; MacArthur and Wilson, 1967; Shmida and Wilson, 1985). For 

individual species, habitat influences traits such as life-history strategy (Southwood, 

1977). At the community level, variations in habitat complexity, area and heterogeneity 

are important determinants of species co-existence, community structure and ecological 

functioning (e.g. MacArthur and Wilson 1967; Godbold et al., 2010).  

 

The ecological significance of habitat structure has been documented for grasslands, 

woodlands, deserts, rivers, lakes, rocky shores and coral reefs, with studies reporting 

positive relationships between species diversity and components of physical structure 

for birds, mammals, amphibians, reptiles, fish and invertebrates (e.g. MacArthur, 1965; 

Bell et al., 1991; Tews et al., 2004). In particular, rivers are highly structured 

ecosystems in which there is long-standing recognition of the importance of physical 

habitat structure in the distribution and abundance of organisms (Percival and 

Whitehead, 1929, 1930; Whitehead, 1935; Jones, 1949). Over 100 years of research has 

shown how different assemblages are associated with riffles and pools, variations in 

substrate size and the presence of vegetation (Hynes, 1970). This structure is nested 

within a hierarchy of spatial scales, occurring from the surface of individual substrate 

particles up to entire river catchments (Vaughan et al., 2009). Within this hierarchy, 

rivers are mosaics of physical habitat, with heterogeneity varying both laterally, 

longitudinally and in relation to stream size (Tockner and Ward, 1999; Ward et al., 

2002). Ecological theory on the importance of physical structure in influencing river 

organisms is also well-developed, suggesting that the biological and ecological traits of 

species are determined by variations in disturbance frequency and intensity among 

habitats creating spatial refugia (Townsend and Hildrew, 1994). 
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Rivers are however arguably the most simplified ecosystem as a result of widespread 

human influences, with direct and indirect changes to river habitats resulting from 

activities such as channel engineering, water abstraction and flow regulation 

(Malmqvist and Rundle, 2002). Whilst river management and conservation have 

typically focused on water quality issues, improvements in water quality in recent 

decades have highlighted the effects of changes in physical habitat on river biodiversity 

(Vaughan et al., 2009). Habitat structure is also commonly a central focus of river 

restoration schemes, many of which are based on a ‘building-block’ approach since this 

is perceived as being more manageable than attempting to influence individual species 

or factors such as natural disturbance regime (Petersen et al., 1992; Harper et al., 1995; 

Palmer et al., 2010). In Europe, these changes have been driven by legislative 

requirements which emphasise the ecological importance of physical structure in rivers. 

In particular, the Water Framework Directive (2000/60/EC) requires the implementation 

of Programmes of Measures to protect or restore ‘good ecological status’ at all scales 

from the reach to entire river basins (European Commission, 2000). Furthermore, the 

Directive explicitly recognises the importance of hydromorphology (European 

Commission, 2000).  

 

Central to this habitat-based approach to river management and conservation is the 

widespread assumption that greater habitat heterogeneity supports greater biodiversity 

(Harper and Everard, 1998; Palmer et al., 2010). Direct evidence to support this 

assumption remains scarce, whilst studies investigating the complexity of individual 

habitats have reported mixed effects of different structural features and on different 

aspects of assemblage composition and structure. These findings are exemplified by 

macro-invertebrates (e.g. Downes et al., 1995), a widespread, abundant and highly 

diverse group of organisms which have been the focus of a large number of studies of 

habitat structure in rivers (e.g. Hynes, 1970). Such studies have involved a variety of 

approaches including field surveys, manipulative in-stream experiments and laboratory 

flumes. Clear understanding of the importance of habitat structure is however limited 

because of confounding variation in other physical factors among habitats. One such 

major factor is flow, which influences macro-invertebrates as well as the distribution of 

habitats themselves. More complex habitats also tend to have a greater surface area and 

may therefore support a greater number of species due to a species-area effect (e.g. 

Coleman et al., 1982). Despite this, studies combining field surveys and in-stream 
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experiments to separate these effects are surprisingly few (e.g. Robson and Barmuta, 

1998). 

 

1.2. Aims and thesis structure 

 

The gaps and uncertainties in existing knowledge identified above created the context 

for this thesis. Using a combination of field surveys and a field experiment, I aimed to: 

i) quantify variations in habitat complexity and heterogeneity among habitats and river 

sections, ii) assess their influence on macro-invertebrates, iii) identify, and where 

possible separate, the ecological effects of confounding physical factors, and iv) 

determine whether habitat type and heterogeneity affect the spatial organisation of 

assemblages. The specific hypotheses tested were: 

 

1. At the patch scale, greater surface complexity and surrounding habitat 

heterogeneity increase macro-invertebrate diversity, richness and abundance and 

alter assemblage composition and body size (Chapters 3 and 4). 

 

2. Any effects of surface complexity on macro-invertebrates are not simply a result 

of increased surface area (Chapters 3 and 4). 

 

3. Habitat structure is a major determinant of variations in macro-invertebrates 

among mineral habitats (Chapter 3).  

 

4. Variation among river habitats in other conditions - in this case flow type - may 

transcend the effects of habitat structure (Chapter 4). 

 

5. Mineral habitats support macro-invertebrate assemblages of lower taxonomic 

diversity, richness, abundance and trait diversity than organic habitats. The 

assemblages in mineral habitats are nested sub-sets of those in organic habitats 

(Chapter 5). 

 

6. At the reach scale, homogeneous river sections support macro-invertebrate 

assemblages of lower taxonomic diversity, richness, abundance and trait 
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diversity than heterogeneous sections. The assemblages in homogeneous 

sections are nested sub-sets of those in heterogeneous sections (Chapter 5). 

 

Although tested specifically in rivers, each of these hypotheses is intended to have 

broader relevance to ecology more generally. In this respect, rivers are amenable to 

testing hypotheses about habitat structure because they are so are highly structured 

across a range of spatial scales. These aims are presented as specific hypotheses in the 

chapters in which they are investigated. All chapters are self-contained with their own 

references and are intended to be developed as papers for publication. 

 

1.3. Study area 

 

All the work for this thesis was carried out in the upland catchments of the Rivers Wye 

and Usk, mid-Wales. The Wye and Usk catchments provide a suitable location to assess 

the effects of habitat structure on macro-invertebrates for several reasons. Firstly, 

tributaries in the middle of the Wye catchment, where the work for this thesis took 

place, drain Devonian Old Red Sandstone or marls (Jarvie et al., 2003). Similarly, the 

geology of the Usk catchment is predominantly Silurian and Devonian Old Red 

Sandstone and mudstones, so there is little variation in underlying geology among 

locations. Urbanisation has a minimal impact in both catchments, with dominant land 

use a mixture of rough- and semi-improved pasture, although the Usk catchment is 

susceptible to sedimentation with localised effects on macro-invertebrates (Larsen et al., 

2009). Tributaries in the middle of the Wye catchment are relatively un-polluted and 

calcareous (50-250 mg CaCO3 l
-1

), contrasting the low pH of those in the acidified 

uplands and the moderately elevated biochemical oxygen demand (BOD) and nutrient 

concentrations of those in the lowlands (Ormerod and Edwards, 1987; Jarvie et al., 

2003; Clews and Ormerod, 2009). Water quality in the Usk catchment is also relatively 

uniform, with BOD and nutrient concentrations similar to the middle Wye catchment 

(Environment Agency, 2007, 2009). Other confounding factors were therefore 

minimised and should not obscure possible effects of habitat structure. 
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Chapter 2 Effects of habitat structure on river                             

macro-invertebrates - a review 

 

2.1. Abstract 

 

1. From the early 20th Century onwards, evidence has revealed how river habitat 

structure is a major influence on macro-invertebrates at local, catchment and regional 

scales. Structure has two distinct components, complexity (the abundance of structural 

features) and heterogeneity (the composition and arrangement of different structural 

features). Structure is also nested hierarchically, with small scale features determined by 

processes occurring at larger spatial scales. This review evaluates: i) the hierarchical 

arrangement of physical structure in rivers, ii) differences in macro-invertebrate 

assemblages among habitats, iii) the role of habitat complexity and heterogeneity in 

macro-invertebrate distribution and abundance, iv) evidence for underlying mechanisms 

and v) current challenges and future research needs. 

 

2. Habitats such as differently sized substrates or macrophytes of contrasting 

morphology typically vary in macro-invertebrate diversity, abundance and composition. 

The reported effects of habitat complexity on macro-invertebrate assemblages have 

however been mixed. Macro-invertebrate diversity, richness and abundance sometimes 

increase with complexity, whilst effects on composition have been less well studied. 

Understanding of these relationships and their underlying mechanisms are variable 

among habitats. Direct evidence for the widespread assumption that habitat 

heterogeneity enhances macro-invertebrate diversity is also scarce despite being widely 

applied in river restoration. 

 

3. A major obstacle to understanding the importance of habitat structure in rivers, as 

well as other ecosystems, is the use of many inconsistently defined terms. Furthermore, 

habitat complexity is difficult to quantify, which may account for inconsistencies in 

relationships between habitat structure and macro-invertebrates. Finally, most studies 

have been limited to a single, small spatial scale, whilst few have considered whether 

the effects of complexity are independent of surface area. Improved measurement of 

complexity, assessments of scale-dependent effects and investigations to separate the 
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effects of habitat structure from other physical variations in rivers would all provide an 

important advancement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

11 

2.2. Introduction  

 

Evidence of the importance of physical habitat structure in the distribution and 

abundance of macro-invertebrates is amongst the oldest in river ecology (Percival and 

Whitehead, 1929, 1930; Whitehead, 1935; Jones, 1949). Early studies recognised that 

different assemblages occurred on contrasting types of river bed and that the 

preferences of individual species were related to their biological requirements (Percival 

and Whitehead, 1929; Jones, 1949). Hynes (1970) reviewed 50 years of research 

showing how different assemblages are associated with riffles and pools, variation in 

substrate size and the presence of vegetation. Since then, habitat structure has been 

investigated at local, catchment and regional scales, and has frequently been cited as 

one of the main factors influencing macro-invertebrate biodiversity (e.g. Vinson and 

Hawkins, 1998; Ward and Tockner, 2001; Clarke et al., 2008; Heino, 2009). There are 

many possible mechanisms which are not mutually exclusive. Greater physical structure 

may increase the range of niches available for different species or reduce the likelihood 

of competitive exclusion (Shmida and Wilson, 1985; Townsend and Hildrew, 1994). 

More structured habitats might also support a greater abundance or range of resources 

(e.g. Gawne and Lake, 1995), or ameliorate the effects of disturbance and predation 

through the provision of refugia (e.g. Lancaster, 2000). However, structurally complex 

habitats also tend to have a greater surface area which may increase species richness 

through a species-area effect, for example passively by increasing the number of 

individuals (Coleman et al., 1982).  

 

Two distinct components of habitat structure are generally distinguished, both of which 

depend on the scale of measurement: complexity and heterogeneity (McCoy and Bell, 

1991). Heterogeneity encompasses both the composition (number and relative 

abundance) and configuration (spatial arrangement) of different structural features (e.g. 

habitat patches or types) (Li and Reynolds, 1995). In contrast, complexity has been 

defined as the total abundance of structural features (e.g. crevices on the surface of a 

substrate particle), with more complex habitats having greater numbers of structural 

features within a fixed area (McCoy and Bell, 1991). However, river ecologists 

recognised early on that these terms are often used interchangeably, and this is a 

problem which still exists today (Erman and Erman, 1984; Palmer et al., 2010). 

Problems in defining habitat structure have hindered general understanding of its 
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ecological importance and the underlying mechanisms, and these are discussed further 

below. Overall, this review aims to evaluate: i) the hierarchical arrangement of physical 

structure in rivers, ii) differences in macro-invertebrate assemblages among habitats, iii) 

the role of habitat complexity and heterogeneity in macro-invertebrate distribution and 

abundance, iv) evidence for underlying mechanisms and v) current challenges and 

future research needs. 

 

2.3. The hierarchical arrangement of physical structure in rivers 

 

Physical structure in rivers occurs not only within river reaches, but at all spatial scales 

from the surface roughness of individual substrate particles up to and including entire 

catchments. This structure is nested hierarchically, with small scale structure 

determined by progressively less frequent processes occurring at larger spatial scales 

(Townsend and Hildrew, 1994).  These ideas are conceptualised in the process-based 

framework of Frissell et al. (1986), in which microhabitats are nested within pool-riffle 

systems, pool-riffle systems within reaches, reaches within segments and segments 

within streams. Whilst rivers were initially considered as one-dimensional continua, for 

example the River Continuum Concept (Vannote et al., 1980), the integration of 

ecological, geomorphological and hydrological understanding has resulted in a 

development of these paradigms into those recognising rivers as dynamic mosaics 

arranged hierarchically within the wider landscape (Wiens, 2002; Poole, 2010).  

 

River systems are hierarchically branching structures, and this geometry has long been 

of interest to geomorphologists (Grant et al., 2007; Brown et al., 2011). Many such 

Dendritic Ecological Networks are fractal in nature, exhibiting self-similarity across 

scales (Rodríguez-Iturbe and Rinaldo, 1997; Grant et al., 2007). As the fractal 

dimension of a structural feature increases, it fills the space it occupies more 

completely, providing a quantitative measure of complexity. Horton’s (1945) classic 

Laws of Network Composition are themselves scaling relationships and are recognised 

as describing a fractal structure (Tarboton, 1996; Rodríguez-Iturbe and Rinaldo, 1997). 

Since river networks drain the entirety of their river basins it might be expected that 

their fractal dimension should approach 2 (Rodríguez-Iturbe and Rinaldo, 1997). 

Studies using the dividers method have generally confirmed this hypothesis, with 

estimates of fractal dimension based in the range 1.65-2 (Tarboton et al., 1988; Crave 
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and Davy, 1997; De Bartolo et al., 2006), although lower values have also been 

reported (Veltri et al., 1996). For example, an estimation of the fractal dimension of six 

river networks in Southern Italy extracted from 1: 25 000 maps gave values of 1.7-1.9 

(De Bartolo et al., 2006), whilst two river networks in French Brittany had a fractal 

dimension of 1.65 and 1.75 based on 1: 100 000 maps (Crave and Davy, 1997).  

 

Furthermore, the structure of river networks appears to be clustered at particular scales. 

River networks throughout the United States generally exhibited two distinct regions of 

scaling (Tarboton et al., 1988). The first region, between 10 and 1000 m, had a fractal 

dimension of ~1.05 and resolved the sinuosity of smaller streams, whilst a second 

region, between 1000 and 10 000 m, had a fractal dimension of almost 2 reflecting the 

branching characteristic of river networks. The existence of two distinct regions of 

scaling is not unique to rivers and does not exclude them from the fractal concept, but 

instead may facilitate the identification of ecologically relevant scales of habitat 

structure (Mandelbrot, 1977; Burrough, 1981).  

 

Since river systems are hierarchically organised, the diversity and distribution of macro-

invertebrate assemblages are expected to be organised in a similar manner (Ward et al., 

1999; Parsons et al., 2003). Although numerous studies have examined the relative 

effect of environmental variables at different spatial scales, few have adopted a truly 

hierarchical approach (Parsons and Thoms, 2007). Such studies suggest that patterns in 

macro-invertebrate distribution are arranged hierarchically in response to physical 

structure occurring at multiple scales (e.g. Parsons et al., 2003; Parsons and Thoms, 

2007). Large regions and catchments, and local reaches appear to be the important 

levels of organisation for physical-biological associations (Parsons and Thoms, 2007), 

corresponding to a hierarchy of environmental trait filters on the regional species pool, 

through which only species with the necessary trait characteristics are able to pass (Poff, 

1997). The occurrence of organisms within a particular habitat therefore not only 

reflects the bottom-up influence of local habitat structure but also the top-down 

constraints of catchment scale factors (Malmqvist, 2002; Parsons and Thoms, 2007). 

Management or restoration of physical structure at a particular point in the hierarchy 

therefore requires consideration of the larger scale context (Roni et al., 2008; Palmer et 

al., 2010).  
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2.4. Differences in macro-invertebrate assemblages among habitat types 

 

Early investigations recognised the importance of distinguishing different types of river 

habitat and their macro-invertebrate assemblages, although the selection of habitats was 

largely subjective (e.g. Percival and Whitehead, 1929).  Habitat inventories have figured 

prominently in subsequent studies, with the development of robust multivariate 

statistical techniques such as TWINSPAN and Detrended Correspondence Analysis 

(DCA) over the last 30 years providing important insights into these characteristic 

assemblages (e.g. Wright et al., 1984; Palmer et al., 1991; Armitage et al., 1995; Harper 

et al., 1995). One approach defines ‘mesohabitats’ as medium (approximately 1 m) 

scale habitats which may be visually identified from the bank, introducing a scalar 

dimension to the term biotope (Armitage et al., 1995). The classification of 

mesohabitats in rivers in Southern England using DCA identified eight mesohabitats 

('Ranunculus fast', 'Ranunculus slow', 'Silt', 'Nasturtium', 'Phragmites', 'Sand', 'Gravel 

fast' and 'Gravel slow’) supporting distinct macro-invertebrate assemblages and 

indicator species were subsequently identified (Armitage et al., 1995; Pardo and 

Armitage, 1997). Furthermore, many of these assemblages remain relatively distinct 

throughout the year (Armitage et al., 1995; Pardo and Armitage, 1997). A parallel 

approach developed by Harper et al. (1992) focuses on the ‘functional habitats’ of 

rivers, groups of ‘potential habitats’ which support characteristic macro-invertebrate 

assemblages and together represent the habitat structure and biodiversity of the river 

channel (Harper and Everard, 1998). Sixteen functional habitats were identified on the 

River Welland in the East Midlands based on TWINSPAN, with the similarity of 

functional habitats on a neighbouring river of contrasting water chemistry and macro-

invertebrate species indicating that this list was broadly applicable (Harper et al., 1992).  

 

There are several advantages to the habitat-level approach to river management and 

conservation. Habitat types are visually distinct and rapidly identifiable from the bank 

(Armitage et al., 1995). They are also associated with macro-invertebrate assemblages 

that remain relatively consistent temporally (Armitage et al., 1995; Pardo and Armitage, 

1997) and among locations (Harper et al., 1992). Studies have also shown that there are 

agreements between the habitats supporting distinct assemblages in Europe and 

elsewhere (Buffagni et al., 2000; Storey and Lynas, 2007). The habitat-level approach 

may provide a predictable link between the influence of geomorphological and 
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hydrological processes on river habitat occurrence and macro-invertebrate communities 

(Harper and Everard, 1998; Harper et al., 2000). The occurrence of functional habitats 

has been shown to be associated with flow biotopes and predictable based on depth, 

velocity and Froude number (Newson et al., 1998; Kemp et al., 1999, 2000). Habitat 

inventory approaches now have a central role in river survey, management and 

restoration. In the United Kingdom, they form an integral part of the Environment 

Agency’s River Habitat Survey, a standard method of surveying the entire river 

channel, together with the riparian zone and floodplain, at the reach scale (Raven et al., 

1997; Harper and Everard, 1998). The assumption is that if the characteristic macro-

invertebrate assemblages of different habitat types are known, habitat inventories can 

provide a surrogate for biodiversity and a means of assessing the effects of habitat 

modification (Harper et al., 1992; Armitage et al., 1995; Harper and Everard, 1998). 

Many restoration strategies also rely on a ‘building-block’ approach to enhancing 

habitat heterogeneity, in which different habitats are progressively added to a river 

channel as though they were units resembling building blocks (Petersen et al., 1992). 

This approach is perceived as being more manageable than attempting to influence 

individual species or factors such as natural disturbance regime (Harper et al., 1995; 

Palmer et al., 2010). 

 

There are however inevitably differences between the habitat types considered to be 

important to macro-invertebrates (Palmer et al., 1991; Harper et al., 1992; Armitage et 

al., 1995; Brunke et al., 2002). There are also overlaps in the macro-invertebrate 

assemblages occurring in even relatively distinct habitat types (Palmer et al., 1991; 

Harper et al., 1992; Armitage et al., 1995; Pardo and Armitage, 1997). Habitat 

boundaries do not represent physical barriers and in reality may be indistinct, with 

gradients of substrate size and assemblage composition existing between mineral 

habitats (Pardo and Armitage, 1997; Armitage and Cannan, 2000). Most species are 

capable of movement among habitats through a combination of active upstream 

dispersal and downstream drift, and may occupy different habitats at different stages of 

their life cycle (Hynes, 1970; Hanquet et al., 2004). Species occurrence is also 

influenced by the availability of local colonisation sources, reflecting patch dynamics at 

the reach scale (Pringle et al., 1988; Townsend, 1989), as well as processes at larger 

scales (see above). Furthermore, macro-invertebrate assemblages may reflect seasonal 

fluctuations in the physical distinctiveness of habitats and the distribution of habitat 



Chapter 2 

16 

patches themselves (Pardo and Armitage, 1997; Armitage and Cannan, 2000). Even 

within the same river, the distinctiveness of assemblages may vary longitudinally, with 

macro-invertebrate assemblages in the Buffalo River in South Africa associated with 

habitats in middle and lower reaches but not in the headwaters (Palmer et al., 1991). 

This lack of distinctiveness in upland streams may reflect the dominance of mixtures of 

substrate sizes, the absence of marginal depositional areas dominated by vegetation or 

the occurrence of small habitat patches in which physical conditions are highly variable 

(Palmer et al., 1991; Pardo and Armitage, 1997).  

 

2.5. Habitat complexity  

 

2.5.1. Substrate 

 

Substrate is one of the most important factors determining variations in macro-

invertebrate assemblages within and among rivers, with many species restricted to 

certain substrate types or showing distinct preferences for them (Hynes, 1970). Surface 

complexity and substrate size are among the most important characteristics and have 

been most commonly investigated (e.g. Vinson and Hawkins, 1998). Substrate 

heterogeneity is discussed later. 

 

Complexity of the surface of individual substrate particles 

 

One important characteristic at the scale of individual organisms is the surface 

roughness of individual substrate particles, which depends largely on the geological 

nature of the substrate (Sanson et al., 1995; Boyero, 2003a). Colonisation experiments 

involving trays of natural substrates have reported greater total abundances on rough 

substrates (sandstone) compared to smooth (quartzite), although there was no effect on 

richness or composition (Erman and Erman, 1984). Rough artificial substrates can 

support greater densities and richness than smooth ones, with several individual taxa 

found in larger numbers on rough tiles (Clifford et al., 1989, 1992; Way et al., 1995). 

These artificial surfaces may not however realistically mimic the texture of natural 

substrates (Clifford et al., 1989; Downes et al. 2000a). To overcome this problem, 

Sanson et al. (1995) quantified the surface roughness of natural stones and Downes et 

al. (1998; 2000a, 2000b) subsequently manipulated the roughness of paving bricks 
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within the natural range observed. Rough bricks were colonised by more species 

(Downes et al., 1998; 2000a, 2000b), and in some instances greater abundances 

(Downes et al., 1998), than smooth ones. In the same experiment, natural substrates 

consisting of rough-textured granodiorites and crystal-rich volcanic rocks supported 

more individuals and greater rarefied species richness than smooth-textured crystal-poor 

volcanic rocks, siltstones and sandstones (Downes et al., 2000a). Quantification of the 

roughness of stones in a previous field survey demonstrated that when stones were 

categorised based on their surface roughness, rough stones supported a greater species 

richness and abundance than smooth ones, although categories were also associated 

with the volume of cracks, pits and shelves (Downes et al., 1995). Mean cross-sectional 

areas of cavities less than 0.36 mm and 0.36-0.68 mm, which provided continuous 

measures of roughness, were also not related to richness or abundance (Downes et al., 

1995).  

 

The effects of surface roughness on macro-invertebrates are however likely to be 

complex and depend on factors such as colonisation time and other environmental 

conditions. Whilst rough cobbles in experimental substrate patches supported greater 

richness and abundance after two hours compared to smooth cobbles, no effect was 

observed for richness after one week and the opposite effect occurred for abundance 

(Boyero, 2003a). Smooth tiles may also be preferentially colonised by species such as 

heptageniid mayflies in response to near-bed hydraulic conditions or the ability to attach 

to the surface (Clifford et al., 1989, 1992; Boyero, 2003a). 

 

Pits, grooves and crevices on the surface of substrate particles also provide surface 

complexity at a larger scale. Evidence for the effect of these structural features on 

macro-invertebrates comes mainly from experimental studies manipulating artificial 

substrates. Paving bricks with large crevices similar to those on natural stones supported 

greater species richness and densities of individuals in a stony, upland stream (Downes 

et al., 1998). Furthermore, the richness and abundance of species colonising artificial 

paving bricks of identical surface area significantly increased with the number of 

grooves, although there was no significant difference in the abundance of organisms on 

bricks with no grooves and the lowest number of grooves (Douglas and Lake, 1994). In 

a laboratory flume, the total density of macro-invertebrates was 2.3 times greater on 

grooved concrete blocks than smooth ones (Way et al., 1995). Macro-invertebrates may 
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actively seek out crevices, with significantly higher proportions of baetids and 

hydropsychids observed in large crevices than on the equivalent area on top of creviced 

bricks (Downes et al., 1998).  

 

Other studies have however provided contrasting results. Natural stones covered in a 

greater proportion of pits did not support greater densities of two species of 

hydropsychid larvae, whilst a subsequent colonisation experiment showed that only one 

of these species occurred at a greater density on pitted bricks (Downes and Jordan, 

1993). The presence and number of pits also had no effect on diversity, total density or 

the individual density of other species (Downes and Jordan, 1993). Natural stones with 

a greater volume of cracks, pits and shelves or mean cross-sectional areas of cavities 

less than 3.6 mm also did not support a greater richness or abundance of species 

(Downes et al., 1995). Furthermore, the response of individual species to pits, grooves 

and crevices varies among studies. Whilst Douglas and Lake (1994) reported that the 

abundance of Agapetus monticolus was three times greater on grooved than ungrooved 

artificial paving bricks of equivalent surface area, in a subsequent experiment the 

presence of grooves had no significant effect on colonisation by A. monticolus, with 

equal densities of individuals occurring on the sides of bricks as within grooves (Gawne 

and Lake, 1995). Clay tiles to which pits or crevices were added did not support greater 

macro-invertebrate densities than plain, sand-blasted tiles without pits or crevices 

(Robson and Barmuta, 1998). 

 

Current studies suggest that the effects of the surface complexity of individual substrate 

particles are attributed to a number of factors. In a laboratory flume, the distribution of 

organisms reflected the ability to cling to the substrate in their preferred flow 

conditions, with Baetis rhodani only able to persist in fast current velocities on rough 

substrates (Lancaster and Mole, 1999). Grooves, pits and crevices provide flow refugia 

as well as more favourable flow conditions for activities such as net construction by 

species such as polycentropodids and hydropsychids (Downes and Jordan, 1993; Way et 

al., 1995). Surface complexity may also increase the provision of epilithon, which 

provides food for scrapers such as A. monticolus. Natural stones and experimental 

bricks of greater surface roughness, as well as grooved bricks, have been shown to 

attain higher abundances of algae than smooth ones, with evidence that only scrapers 

were more abundant in experimental patches with rough cobbles after one week of 
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colonisation (Gawne and Lake, 1995; Sanson et al., 1995; Boyero, 2003a). Effects are 

however likely to be complex, with other studies reporting lower algal abundances on 

natural and artificial substrates with large crevices than those without or that surface 

roughness has no effect on algal colonisation (Downes et al., 1998; Robson and 

Barmuta, 1998). The effect of complexity on epilithon abundance may also vary 

temporally (Gawne and Lake, 1995).  

 

Furthermore, several studies investigating surface complexity at this scale have not 

considered the independent effects of surface area, or adjusted species richness and 

abundance for the increase in surface area on complex substrates (e.g. Lancaster and 

Mole, 1999; Downes et al., 2000a). Despite evidence that macro-invertebrate richness 

and abundance may be correlated with surface area (e.g. Downes et al., 1995; Boyero, 

2003a; cf. Erman and Erman, 1984), current studies suggest the effects of complexity 

provided by grooves may independently influence macro-invertebrates (Douglas and 

Lake, 1994; Downes et al., 2000a). Measurement of the possible increase in surface 

area with surface roughness has generally not been attempted even when it has been 

considered for other structural features (e.g. Downes et al., 1998, 2000a). Despite this, 

rough surfaces still supported more species than smooth ones when richness was 

rarefied by the smallest number of individuals observed (Downes et al., 1998; 2000a) 

and greater densities of individuals when abundances were adjusted for increased 

surface area (Clifford et al., 1989).  

 

Substrate size  

 

Some of the earliest published studies reported that greater macro-invertebrate richness 

occurred on large substrates associated with riffles compared to the fine substrates 

typically occurring in pools (Percival and Whitehead, 1929, 1930; Hynes, 1970). 

Subsequent studies have confirmed these results, with clay, silt and sand supporting 

distinct assemblages typically of lower richness and abundance in a number of rivers 

(Harper et al., 1992, 1995; Cogerino et al., 1995; Pardo and Armitage, 1997). Fine 

substrates are often dominated by Sphaerium, Pisidium, Limnaea and Gammarus, whilst 

larger substrates typically support diverse assemblages including mayflies such as 

Rhithrogena semicolorata and Baetis rhodani (Percival and Whitehead, 1930; Hynes, 

1970). Substrate selection by some species is reasonably distinct, with no significant 
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variation in the preferences of macro-invertebrates colonising four substrate size classes 

along an altitudinal gradient in an alpine stream (Allan, 1975). Experimental studies 

have also shown that substrates of increasing size from sand to cobbles support greater 

species richness and abundance (Allan, 1975; Hart, 1978; Williams and Mundie, 1978; 

Erman and Erman, 1984; Bourassa and Morin, 1995). Boulders typically support lower 

densities (Bourassa and Morin, 1995) whilst bedrock, especially within pools, supports 

species-poor macro-invertebrate assemblages (Brown and Brussock, 1991; Harper et 

al., 1995).  

 

Larger stones often have a greater surface area, which typically increases species 

richness (Hart, 1978; Clements, 1987; Douglas and Lake, 1994). In Hart’s (1978) study, 

larger stones supported lower species richness per unit area than small ones, indicating 

that the greater species richness observed on large stones was attributed to their greater 

surface area. Whilst some studies showing positive relationships between substrate size 

and macro-invertebrate richness and abundance have not considered surface area 

(Williams and Mundie, 1978; Erman and Erman, 1984; Bourassa and Morin, 1995), 

other studies have reported weak relationships with surface area indicating other 

mechanisms are also involved (Minshall and Minshall, 1977; Reice, 1980; Heino and 

Korsu, 2008). For example, passive sampling was rejected as an explanation for the 

species-area relationship reported by Douglas and Lake (1994), with groups of small 

stones harbouring fewer species than large stones of the same surface area. Larger 

substrates are less likely to be disturbed by high flows, and this greater stability may 

also facilitate the development of epilithon (Douglas and Lake, 1994). Greater 

interstitial volume in large and medium substrates is also likely to be important 

providing they do not become clogged with fine sediment (e.g. Richards and Bacon, 

1994; Bo et al., 2007), with experimental studies showing that gravel and cobbles 

containing interstitial spaces supported a greater richness and abundance than cement-

embedded substrates with few interstices (Flecker and Allan, 1984). Interstices provide 

habitat for macro-invertebrates and may act as refugia from disturbance (Williams and 

Hynes, 1974; Harper et al., 1995; Dole-Olivier et al., 1997; Robertson and Wood, 

2010), although the provision of refugia from predation may be less important (Flecker 

and Allan, 1984). The accumulation of detritus in interstices has also been shown to 

determine colonisation patterns among substrates in other studies (see below). 
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The relationship between substrate size and macro-invertebrate assemblages is however 

not a simple one, with some studies reporting that small substrates are colonised by a 

greater number of species and total abundance than larger ones (Minshall and Minshall, 

1977; Wise and Molles, 1979). Other studies have found greater abundances on 

intermediate sized substrates, often attributed to their greater accumulation of detritus 

(Rabeni and Minshall, 1977; Williams and Mundie, 1978; Reice, 1980). Some species 

may show no distinct preference for particular sized substrates whilst, as discussed 

previously, others may exhibit changes in substrate preferences with season and life 

stage (Williams and Mundie, 1978; Williams, 1980; Hanquet et al., 2004). 

Relationships between substrate size and macro-invertebrate assemblages are also likely 

to be confounded by complex interactions with flow conditions, which play a primary 

role in determining macro-invertebrate assemblages as well as the distribution of 

differently sized substrates themselves (Allan, 1995). This co-variation in flow and 

substrate size in the field is observed most obviously among riffles and pools (Hynes, 

1970; Minshall and Minshall, 1977).  

 

Complexity of river bed surfaces 

 

Few studies have investigated surface complexity at scales greater than individual 

substrate particles, which can be described as the complexity of the river bed surface. 

Measurement typically involves taking profiles of the river bed using a profiler such as 

the one used by Gore (1978), however most studies have recorded variation in substrate 

height as a measure of substrate roughness or heterogeneity although not strictly 

included in the definition of complexity or heterogeneity given here (e.g. Gore, 1978; 

Statzner et al., 1988; Schmid-Araya, 1998; Tockner and Ward, 1999; Crosa and 

Buffagni, 2002; Muotka and Laasonen, 2002; Muotka et al., 2002; Brooks et al., 2005; 

Lepori et al., 2005; Muotka and Syrjänen, 2007).  

 

An alternative approach is to calculate the fractal dimension of the river bed surface 

(Robson, 1995 cited in Robson and Chester, 1999; Schmid, 2000; Robson et al. 2002). 

Studies have reported that for 1-2 m transects, bedrock riffles have a fractal dimension 

of around 1.01 and are significantly less complex than boulder-cobble riffles, which 

have values of approximately 1.1 (Robson, 1995 cited in Robson and Barmuta, 1998). 

For 10 cm transects, however, bedrock and boulder-cobble riffles had fractal 
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dimensions of 1.02 and 1.029 respectively, and were indistinguishable (Robson, 1995 

cited in Robson and Chester, 1999). In a further study, the fractal dimension of cobble, 

gravel and bedrock riffles was measured along transects of approximately 1-10 m using 

rolling balls with a circumference of one-tenth of the transect length (Robson et al., 

2002). Three groups varied significantly in complexity: bedrock at all extents and gravel 

at 2-6.8 m which had the lowest values, gravel at the 1.2 m scale and cobbles at 4.25-7 

m which had greater values, and cobbles at 1.2-2 m which were the most complex 

(Robson et al., 2002). Whilst all values for bedrock were below 1.03, fractal dimension 

varied significantly across spatial scales for other habitat types and peaked at the 1.2-2 

m scale (Robson et al., 2002). In other words, bedrock consistently provides a simple, 

uniform habitat for macro-invertebrates. In contrast, cobbles and gravel appear to 

provide the greatest complexity at 1.2-2 m, corresponding to the fact that the greatest 

number of substrate particles is encountered at this scale, whilst at smaller and larger 

scales, surfaces are more uniform relative to transect length.  

 

The effect of surface complexity on macro-invertebrates at scales between the surface of 

individual substrate particles and 10 m remains unclear. Structurally complex boulder-

cobble riffles in the Mountain River, Tasmania, supported greater species richness than 

bedrock riffles in three seasons (Robson and Chester, 1999). However, differences in 

smaller scale ‘microhabitats’ among riffle types accounted for a greater amount of the 

variance than differences in ‘riffle-scale’ structure (Robson and Chester, 1999). 

Furthermore, comparisons of species richness between patches of bare rock and patches 

of filamentous algae, the only ‘microhabitats’ which occurred in both riffle types, 

revealed that neither supported greater species richness in spring or winter (Robson and 

Chester, 1999). A previous experiment investigating the effects of two scales of habitat 

structure in Mountain River reported similar results, with riffle-scale structure affecting 

the colonisation rate of clay tiles by two slow-moving grazers but not overall species 

density or the density of fast- or slow-moving grazers (Robson and Barmuta, 1998). 

Conversely, Taniguchi and Tokeshi (2004) manipulated the number and size of cavities 

on experimental plates of equal upper surface area to create five levels of complexity 

measured using fractal dimension. Fractal dimension was significantly correlated with 

taxon richness and density in all seasons except for density in spring (Taniguchi and 

Tokeshi, 2004). 
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Studies investigating the mechanisms for these effects are even scarcer. Most interest 

has focused on the provision of food resources, however relationships remain unclear. 

For example, whilst more complex experimental plates accumulated more fine 

particulate organic matter, ‘chlorophyll a’ concentrations weakly declined with 

complexity whilst coarse particulate organic matter showed no relationship (Taniguchi 

and Tokeshi, 2004). Differences in macro-invertebrate richness and density between 

resource pre-conditioned and control plates were largely insignificant (Taniguchi and 

Tokeshi, 2004), however the applicability of these results is limited by the lack of 

significant differences in resources between treatments. In another study, complex 

boulder-cobble riffles supported greater algal abundances than simple bedrock riffles in 

winter but not in summer because they created a refuge from macro-invertebrate grazing 

(Robson, 1996). Effects were however complex, and may also have been due to greater 

fish predation pressure in boulder-cobble riffles in winter weakening the interaction 

between macro-invertebrate grazers and algae (Robson, 1996). Despite this, evidence 

suggests that possible effects of the complexity of river bed surfaces may be 

independent of variations in surface area, with rarefaction indicating that the greater 

species richness in boulder-cobble riffles compared to bedrock riffles was not 

determined by random placement (Robson and Chester, 1999). 

  

2.5.2. Macrophytes 

 

Macrophyte stands have been the focus of long-standing interest, with studies in 

European rivers showing that they support greater macro-invertebrate densities and 

species richness than adjacent mineral substrates (e.g. Percival and Whitehead, 1929; 

Wright et al., 1992; Buffagni et al., 2000; Harrison, 2000). Different macrophyte 

species typically support different macro-invertebrate assemblages, varying in 

abundance and species composition (e.g. Feldman, 2001). Such differences are often 

attributed to differences in morphology, although growth habit is also important (Harper 

et al., 1995).  

 

Macrophytes with dissected leaves generally support greater abundances of macro-

invertebrates than those with simple morphologies (Krecker, 1939; Rooke, 1986; 

Humphries, 1996; Taniguchi et al., 2003). For example, macro-invertebrate abundances 

were greatest on Myriophyllum, with the greatest degree of leaf and stem dissectedness, 
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in a lowland Tasmanian river (Humphries, 1996). Fewer studies have investigated 

differences in macro-invertebrate species richness, although these have typically shown 

that complex natural and artificial plants also support a greater number of species 

(Rooke, 1986; Taniguchi et al., 2003; Warfe and Barmuta, 2006). Species richness was 

higher on structurally complex Ranunculus yezoensis than on simple Sparganium 

emersum, as well as on complex artificial plants compared to simples ones of the same 

surface area, across a range of patch sizes in a Japanese stream (Taniguchi et al., 2003).  

 

Despite this, few studies have quantified the structural complexity provided by 

macrophytes in rivers. Warfe et al. (2008) distinguished between the structure provided 

by three macrophyte analogues imitating the structurally complex Myriophyllum 

variifolium, less complex Triglochin procera and simple Eleocharis sphacelata using 

nine indices including the size and frequency of interstitial spaces and fractal 

dimension. Both macro-invertebrate abundance and rarefied species richness were 

greatest on the Myriophyllum analogue, and were strongly related to the average refuge 

space from predation and the fractal dimension at 5 x magnification (Warfe et al., 

2008). Fractal dimension varied also among macrophytes in a Pampean stream in the 

order Egeria densa < Stuckenia striata < Elodea ernstae < Ceratophyllum demersum 

and was positively related to macro-invertebrate abundance but not rarefied richness or 

diversity (Ferreiro et al., 2011).  

 

Numerous studies have reported the importance of macrophytes in providing refugia 

(e.g. Heck and Crowder, 1991; Harrison et al., 2005), a direct food resource for 

shredders and miners as well as periphyton and detritus (e.g. Sand-Jensen and Madsen, 

1989), and oviposition and emergence sites (e.g. Harrison, 2000), as well as modifying 

physico-chemical conditions and near-bed velocities (e.g. Sand-Jensen, 1998; 

Champion and Tanner, 2000). Specifically, more complex macrophytes may be 

colonised by a greater abundance of periphyton and epiphytic algae and consequently 

greater abundances of scrapers (Rook, 1984; Warfe and Barmuta, 2006), although other 

studies have shown contrasting results (Taniguchi et al., 2003) or that effects vary 

among macrophyte species (Ferreiro et al., 2011). Macrophytes with finely-dissected 

leaves have also been shown to accumulate more detritus, and support proportionally 

more gatherers, in some studies (Rooke, 1984) but not others (Taniguchi et al., 2003). 

Structurally complex macrophytes may also provide more prey refuges, with the 
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effectiveness of both pygmy perch (Nannoperca australis) and the predatory damselfly 

Ischnura heterosticta tasmanica significantly reduced in a structurally complex 

Myriophyllum imitation compared to the structurally simpler Triglochin and Eleocharis 

in a laboratory experiment (Warfe and Barmuta, 2004). Furthermore, the use of 

Myriophyllum by damselfly larvae in response to the presence of pygmy perch meant 

they captured fewer prey (Warfe and Barmuta, 2004). Results, however, vary among 

studies, with the influence of pygmy perch on macro-invertebrate grazers in a 

subsequent field experiment greatest on a complex Myriophyllum imitation (Warfe and 

Barmuta, 2006). The importance of macrophyte complexity per se also remains elusive. 

Whilst Ferreiro et al. (2011) reported that fractal dimension was independent of plant 

surface area, surface area was correlated with both the fractal dimension at 5 x 

magnification and the average refuge space from predation measured by Warfe et al. 

(2008).  

 

Studies have revealed inconsistencies in the relationship between macro-invertebrates 

and macrophyte morphology. For example, Taniguchi et al. (2003) reported that more 

structurally complex artificial, but not natural, plants supported greater abundances of 

macro-invertebrates. Growth habit may also interact with morphology to produce 

complex effects on macro-invertebrates. For example, significantly greater densities of 

phytophilous macro-invertebrates occurred on Vallisneria americana, which has 

structurally simpler leaves but occupies the full water column, compared to Trapa 

natans, which has sparse finely dissected leaves and is largely emergent (Feldman, 

2001). The importance of complexity may also be overridden by other environmental 

factors, with structurally simpler Triglochin procera and Eleocharis sphacelata 

supporting greater macro-invertebrate richness than Myriophyllum in a lowland 

Tasmanian river due to the lower likelihood of being exposure by low water levels 

(Humphries, 1996).  

 

2.5.3. Moss and macro-algae 

 

Greater abundances of macro-invertebrates also typically occur on mosses and macro-

algae than adjacent mineral substrates (e.g. Percival and Whitehead, 1929, 1930; 

Brusven et al., 1990; Suren, 1991a; Cattaneo et al., 2004; Stream Bryophyte Group, 

1999). They have also been shown to support distinct macro-invertebrate communities, 
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typically of increased species richness, compared to other substrates in a range of 

stream types (Suren 1991a; Harper et al., 1992; Stream Bryophyte Group, 1999). For 

example, the algae Cladophora and Enteromorpha as well as the moss Fontinalis had 

distinct macro-invertebrate assemblages compared to mineral substrates and 

macrophytes in lowland streams in the East Midlands (Harper et al., 1992). Macro-

invertebrate abundance and species richness typically increase with the biomass of moss 

(e.g. Suren, 1993; Clenaghan et al., 1998; Chantha et al., 2000; Heino and Korsu, 

2008), although increased richness may simply be attributed to the greater number of 

individuals passively increasing species richness (Heino and Korsu, 2008).   

 

Whilst there are no known studies investigating the effects of the structural complexity 

of moss and macro-algae, bedrock crevices containing moss and small patches of 

filamentous algae both supported greater species richness than bare rock or the 

underside of cobbles in boulder-cobble and bedrock riffles in the Mountain River 

(Robson and Chester, 1999). Furthermore, differences in these ‘microhabitats’ 

accounted for a greater amount of the variance than differences among riffle types 

(Robson and Chester, 1999). In a previous experiment, addition of artificial moss to 

sandblasted clay tiles increased species density, as well as the densities of fast- and 

slow- moving grazers, over plain tiles and those to which pits or crevices had been 

added (Robson and Barmuta, 1998).  

 

Groups of stones covered in greater amounts of filamentous macro-algae have been 

shown to support different macro-invertebrate communities of greater species richness 

(Downes et al., 1995), although species richness and total abundance as well as algal 

cover itself were related to stone surface area. Overall, algal-covered bricks also 

supported greater richness and abundance than those from which algae were removed 

(Downes et al., 1998). However, algal abundances were also affected by other structural 

features and therefore their effects were confounded (Downes et al., 1998). A 

subsequent experiment to assess their independent effects on natural and artificial 

substrates showed that macro-algae independently increased the abundance and rarefied 

richness of colonising macro-invertebrates (Downes et al., 2000a). 

 

Mosses are considered to influence macro-invertebrates through a number of 

mechanisms (Stream Bryophyte Group, 1999). The presence of moss may provide 
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refugia from the effects of predation and high flows (Brusven et al., 1990; Suren, 

1991a; Stream Bryophyte Group, 1999). Mosses also provide a surface for the growth 

of periphyton, whilst the reduction of water velocities results in the accumulation of 

large quantities of fine sediment and detritus (Glime and Clemons, 1972; Suren, 1991a; 

Suren, 1992; Cattaneo et al., 2004). For example, Fontinalis dalecarlica supported 

significantly greater ‘chlorophyll a’ concentrations, and a greater frequency and 

abundance of grazers than gravel in a small Québec stream (Cattaneo et al., 2004). 

Abundances of the majority of species on artificial bryophytes were related to 

periphyton or detrital biomass whilst ‘stem’ density had little effect, suggesting that 

shelter was less important than the provision of food resources (Suren and Winterbourn, 

1992). Whilst a few species associated with moss feed on it directly, such as some 

Nemoura, most feed almost exclusively on accumulated periphyton and detritus (Hynes, 

1970; Suren and Winterbourn, 1991; Harper et al., 1995). Experimental studies 

comparing colonisation of natural and artificial mosses confirm this, showing that 

imitations support broadly similar assemblage composition (Glime and Clemons, 1972; 

Suren, 1991b). Macro-algae such as Cladophora are also generally more important as a 

substrate for epiphytic algae that are subsequently grazed by macro-invertebrates than 

as a direct food resource (Harper et al., 1995). Whilst the majority of studies have not 

assessed whether the presence of moss and macro-algae are simply attributed to an 

increase in surface area (Robson and Barmuta, 1998; Robson and Chester, 1999; 

Downes et al., 1995), stones and experimental bricks with macro-algae still supported 

more species than those without when richness was rarefied by the smallest number of 

individuals observed (Downes et al., 1998; 2000b). 

 

2.5.4. Woody debris, leaf litter and tree roots  

 

Several reviews have considered the importance of woody debris in rivers (e.g. Gregory 

et al., 2003) and its influence on macro-invertebrate assemblages (e.g. Hoffman and 

Hering, 2000; Benke and Wallace, 2003). Woody debris may support a larger biomass 

and diversity of macro-invertebrates than other habitats, despite typically occupying a 

small proportion of the river channel (O’Connor, 1991; Benke and Wallace, 2003). 

Small scale additions of woody debris are now a common goal of river restoration 

schemes (e.g. Lester and Boulton, 2008), with an increasing number of experimental 
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studies investigating the ecological effects (e.g. Hilderbrand et al., 1997; Lemly and 

Hilderbrand, 2000; Spänoff et al., 2006; Lester et al., 2007; Entrekin et al., 2008).   

 

Despite increasing recognition of the importance of woody debris, few studies have 

investigated the effect of their variable surface complexity provided by interstitial 

spaces and furrows. Current research shows that the diversity and density of macro-

invertebrate communities is significantly related to surface complexity, which is 

dependent on the degree of wood decay (O’Connor, 1991; Phillips, 2003; cf. Warmke 

and Hering, 2000). Individual species may also show a preference for wood with 

surface furrows and avoid wood with a smooth surface (Warmke and Hering, 2000). To 

assess this experimentally, O’Connor (1991) added rows of shallow grooves to blocks 

of red gum. Grooving increased species richness as well as evenness and the abundance 

of small particle feeders compared to ungrooved blocks of the same surface area 

(O’Connor, 1991). Complexity provided by the number of sticks or branches has also 

been shown to have a significant effect on macro-invertebrates (Scealy et al., 2007; 

Schnieder and Winemiller, 2008). Scealy et al. (2007) compared the macro-

invertebrates colonising groups of Eucalyptus sticks and branches to those colonising 

single trunk logs of a similar surface area. After 30 days, groups of sticks and branches 

supported a greater number of species and individuals, as well as altered assemblage 

composition (Scealy et al., 2007). Other studies however have found contrasting results. 

Whilst wood hardness and in-stream pre-conditioning had an effect on the densities of 

some taxa, rough wood where more than 75% of the surface was covered in grooves 

and crevices did not support greater densities or a greater number of taxa than smooth 

wood where less than 10% of the surface was covered (Magoulick, 1998). 

 

One of the main effects of woody debris is to reduce current velocity, increasing the 

retention of fine substrates and detritus (e.g. Palmer et al., 1996; Pretty and Dobson, 

2004). These associated patches of sand and leaf litter have been shown to provide 

refugia for macro-invertebrates from disturbance, increasing the resistance of macro-

invertebrate communities to flooding (Palmer et al., 1996). More complex woody debris 

traps more sediment (O’Connor, 1991), whilst groups of small sticks accumulate more 

organic matter than single logs (Scealy et al., 2007). Despite this, the size and branching 

of wood in debris dams appeared to have no effect on whether macro-invertebrates 

accumulated in associated fine sediments during floods (Palmer et al., 1996). Greater 
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abundances and richness of macro-invertebrates may also reflect differences in predator 

distribution among woody debris and neighbouring patches, with lower abundances of 

fish in bundles of 16 sticks than 8 and compared to reference patches (Schnieder and 

Winemiller, 2008). Woody debris may also act as a direct food resource, and has been 

shown to contribute significantly to the carbon flux of streams (Elosegi et al., 2007). 

This however is likely to be less important than other factors since obligate xylophagous 

species are uncommon (Hoffman and Hering, 2000). Colonisation of wood and plastic 

of similar dimensions and surface area by similar abundances of macro-invertebrates 

supports this theory (Hofer and Richardson, 2007). Whilst there is evidence that the 

complexity of the surface (O’Connor, 1991) and patches (Scealy et al., 2007) of woody 

debris may influence macro-invertebrates independently of surface area, in the majority 

of studies surface area has not been considered. 

 

Leaf litter also provides an important habitat for macro-invertebrates. In lowland 

streams, leaf litter support a distinct macro-invertebrate assemblage from other habitat 

types, and macro-invertebrates have been shown to preferentially colonise experimental 

leaf patches over adjacent natural and artificial substrates (Palmer et al., 2000; Quinn et 

al., 2000). Furthermore, the density of macro-invertebrates has widely been shown to 

increase with the biomass of leaf litter occurring in streams (Egglishaw, 1964; Harper et 

al., 1992; Ruetz et al., 2006). Studies investigating the effects of leaf diversity have 

however shown that assemblages colonising mixtures are not richer or more diverse 

than those colonising single leaf species (Abelho, 2009). Effects on macro-invertebrates 

appear to be complex, with non-additive effects on macro-invertebrate assemblage 

composition, abundance and diversity (Leroy and Marks, 2006; Abelho, 2009; Sanpera-

Calbet et al., 2009). Structural effects are however confounded by the fact that leaves 

from different tree species vary in their decomposition rate and palatability, and that 

these factors themselves may be affected in leaf mixtures (Dobson, 1994; Dudgeon and 

Wu, 1999; Leroy and Marks, 2006; Sanpera-Calbet et al., 2009). 

 

Early evidence indicated that the majority of species whose abundance increased with 

the volume of detritus feed directly on it (Egglishaw, 1964). Since then many 

experimental studies have compared the colonisation of artificial and natural leaves, 

largely showing that leaf litter is primarily colonised for its value as a food resource 

rather than simply as an additional surface for colonisation (Dobson et al., 1992; 
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Richardson, 1992; Dudgeon and Wu, 1999; Gjerløv and Richardson, 2004; Hofer and 

Richardson, 2007). For example, only shredder-detritivores preferentially colonised 

experimental cages containing alder leaves compared to artificial leaves or just natural 

substrates, which supported similar abundances (Gjerløv and Richardson, 2004). 

Evidence that shredder densities increase proportionally to the mass of experimental 

leaf packs but are not affected by leaf surface area support this conclusion (Ruetz et al., 

2006), although artificial leaves have been shown to support greater abundances than 

adjacent bare substrates (Quinn et al., 2000). Furthermore, whilst leaf litter retention in 

streams may alter near-bed flows, changes are too inconsistent to explain variations in 

the abundances of shredders with increasing amounts of leaf litter (Dobson et al., 1992). 

Colonisation of leaf litter by non-shredders appears to be related to the retention of fine 

particulate organic matter, with greater abundances on natural leaves compared to 

artificial ones reflecting their greater retention (Richardson, 1992). Relatively few 

studies have considered the importance of leaf litter as a refuge from predation 

compared to other habitats and the effects remain unclear (Holomuzki and Hoyle, 1990; 

Reice, 1991; Ruetz et al., 2006). Densities of macro-invertebrates in leaf packs were not 

reduced by fish predation in contrast to densities on cobbles (Reice, 1991). Predation 

rates of Gammarus minus by green sunfish (Lepomis cyanellus) were also lower in leaf 

litter than gravel and silt/sand substrates in laboratory experiments, however in the field 

the presence of fish did not affect habitat use (Holomuzki and Hoyle, 1990). The 

provision of refugia from predation also appears to be unaffected by leaf pack mass or 

surface area (Ruetz et al., 2006).  

 

Tree roots have also been shown to support distinct macro-invertebrate assemblages 

(Harper et al., 1992; Cogerino et al., 1995). Greater species richness and abundance 

occurred on tree roots than adjacent mineral substrates in a French stream (Beisel et al., 

1998), attributed to the provision of refugia and the accumulation of plant detritus 

respectively (Beisel et al., 1998). There are, however, no known studies investigating 

the complexity of this habitat. 

 

2.6. Habitat heterogeneity 

 

As discussed previously, habitat structure can also be generated by variations in the 

composition and configuration of different structural features. Studies investigating 
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habitat heterogeneity have typically been undertaken at the patch scale, either focusing 

on the composition of differently sized substrate mixtures or the composition and 

configuration of surrounding habitat patches. 

 

2.6.1. Substrate size heterogeneity 

 

Despite the influence of substrate size on macro-invertebrates, evidence for the effect of 

substrate size heterogeneity on macro-invertebrates remains scarce. Colonisation 

experiments in an alpine stream showed that the number of species colonising two-, 

three- and four-way combinations of  >64 mm, 32-64 mm, 16-32 mm and 8-16 mm 

sized substrates was greater than for single substrates (Allan, 1975). Species richness 

did not, however, increase continuously with the number of substrates at all sites and 

there appeared to be no clear additive effect of the number of substrate types on species 

richness (Allan, 1975). Natural substrate diversity also showed no correlation with 

species diversity across eight sites, although the substrate composition of sites was 

extremely similar (Allan, 1975). There was also no response of macro-invertebrate 

diversity, richness or abundance to reach-scale manipulations of substrate size 

heterogeneity measured as D84:D50 (the ratio of the particle size larger than 84% of 

particles to the median particle size) (Brooks et al., 2002).  

 

Other experimental studies have also provided inconsistent results (Wise and Molles, 

1979; Williams, 1980; Erman and Erman, 1984). For example, Wise and Molles (1979) 

reported that baskets containing an equal mixture of small (10-25 mm) and large (>75 

mm) gravel supported an intermediate abundance and richness compared to baskets 

containing single substrates. However, macro-invertebrates may have been responding 

to average particle size, which neither Allan (1975) or Wise and Molles (1979) 

accounted for (Erman and Erman, 1984). Despite controlling for this, Erman and Erman 

(1984) reported that neither differences in the number of size classes or their 

proportions had an effect on the abundance or number of taxa, whilst median particle 

size had a significant positive effect in agreement with a previous experiment. Williams 

(1980) also found that differences in substrate size class proportions had no significant 

effect when mean particle size was held constant, although the number of taxa was 

greater in random mixtures of the greatest heterogeneity compared to those just 

containing 32 mm sized particles.  
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As a result, few studies have considered the mechanisms responsible for these 

relationships. Erman and Erman (1984) reported that the most heterogeneous substrate 

mixtures accumulated a greater amount of detritus compared to single substrates. 

Abundance increased with the amount of detritus whilst richness declined, however 

these effects were removed before testing the effect of substrate heterogeneity (Erman 

and Erman, 1984). More heterogeneous mixtures contained greater amounts of detritus 

and fine sediment in Williams’ (1980) study, although as discussed above fine sediment 

accumulation may have negative effects on macro-invertebrates (e.g. Richards and 

Bacon, 1994; Bo et al., 2007). Interstitial volume may also be reduced in substrate 

mixtures (Williams, 1980; Gayraud and Philippe, 2003).  

 

2.6.2. Spatial habitat heterogeneity 

 

The potential importance of spatial habitat heterogeneity on macro-invertebrate 

distribution has long been recognised (Pringle et al., 1988; Townsend, 1989). 

‘Landscapes’ of habitat patches can be characterised in a number of ways, with 

measures of their composition and configuration increasing over the last 20 years with 

developments in the field of landscape ecology (Li and Reynolds, 1995; Palmer et al., 

2000). Composition describes the number and diversity of different habitat types (Beisel 

et al., 1998, 2000; Boyero, 2003b; Brown, 2003) whilst configuration has been 

measured as the number and diversity of habitat patches (Beisel et al., 1998, 2000; 

Boyero, 2003b; Palmer et al., 2000), patch size (Palmer et al., 2000), patch shape and 

total patch boundary (Beisel et al., 2000; Boyero, 2003b; Palmer et al., 2000). Other 

studies have also used variability in patch size and patch compactness (the ratio of the 

length to the width of the patch) as a measure of configuration (Palmer et al., 2000; 

Boyero, 2003b), although not strictly included in the definition of heterogeneity given 

here. Enhancing habitat heterogeneity, for example through the addition of woody 

debris, boulders or gravel, is now a central aim of many restoration schemes, with the 

underlying assumption that habitat heterogeneity enhances biodiversity (Miller et al., 

2010; Palmer et al., 2010; Feld et al., 2011). 

 

It is predicted that greater species richness will occur in more heterogeneous habitat 

mosaics due to the availability of a greater range of niches (Shmida and Wilson, 1985; 

Townsend and Hildrew, 1994) and food resources (Beisel et al., 2000), and a reduction 
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in the likelihood of competitive exclusion (Townsend and Hildrew, 1994). 

Heterogeneous habitat mosaics may also ameliorate the effects of disturbance and 

predation through the provision of refugia (Townsend and Hildrew, 1994; Brown, 

2003). For example, slower flow conditions in some patches enable individuals to 

persist during flood events, with reduced distances between small patches with large 

perimeters increasing the ability of macro-invertebrates to re-colonise neighbouring 

patches (Lancaster, 2000). There is also evidence that habitat heterogeneity may reduce 

temporal variability in macro-invertebrate assemblages (Brown, 2003).  

 

Direct evidence for the relationship between habitat heterogeneity and species richness 

remains scarce. Macro-invertebrate richness increased approximately 1.5 times with the 

diversity, evenness and contagion of patches with 1 x 2 m plots in a New Hampshire 

stream (Brown, 2003). Macro-invertebrate diversity and richness also significantly 

increased with the number of surrounding habitats and patches and mean area/perimeter 

ratio within a 2 m circle in a French stream, whilst dominance decreased with mean 

area/perimeter ratio, the relative area of the sampled patch and the number of patches 

(Beisel et al., 2000). Macro-invertebrate richness, evenness and abundance increased 

with substrate diversity within 15 x 15 cm plots, whilst evenness and abundance 

decreased with the variability of patch compactness (Boyero, 2003b). Reach-scale 

abundances of chironomids and copepods were related to a number of measures of leaf 

litter patch arrangement such as the perimeter of the largest patch, with models 

including spatial information explaining more variance in abundances than those 

without (Palmer et al., 2000).  

 

Despite these results, there is a lack of consistency among and even within studies 

(Beisel et al., 1998, 2000; Palmer et al., 2000; Boyero, 2003b). For example, Beisel et 

al. (2000) reported that the evenness, diversity and dominance of habitats and patches 

were unimportant, whilst no heterogeneity measures influenced macro-invertebrate 

density or evenness. Furthermore, in an earlier study the richness and diversity of 

surrounding habitat patches within a 4 m circle did not determine macro-invertebrate 

assemblage structure (Beisel et al., 1998). The importance of habitat heterogeneity may 

also vary with the extent of the investigation. Beisel et al. (2000) investigated 

correlations between macro-invertebrate assemblage structure and the heterogeneity of 

mosaics within 0.5-4 m circles, reporting that the number of significant correlations was 
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greatest for 2 m circles. One possible explanation is that the passive dispersal of macro-

invertebrates, often over large distances, may override any movement of macro-

invertebrates among neighbouring patches (Palmer et al., 2000). Seasonal trends in the 

number and arrangement of habitat patches themselves may also obscure the response 

of macro-invertebrates (Palmer et al., 2000). 

 

Some recent reviews have reported that whilst most restoration projects successfully 

enhance habitat heterogeneity, few meet their anticipated ecological benefit of 

enhancing macro-invertebrate diversity (e.g. Jähnig et al., 2010; Miller et al., 2010; 

Palmer et al., 2010; Feld et al., 2011). Although a number of factors may limit the 

success or restoration schemes, including larger scale processes (Bond and Lake, 2003; 

Spänhoff and Arle, 2007), this has given rise to a critical discussion of the underlying 

theory (Palmer et al., 2010). Only one-third of the studies investigating natural habitat 

heterogeneity reviewed by Palmer et al. (2010) found a positive relationship with 

species diversity, leading the authors to conclude that the underlying assumption that 

habitat heterogeneity enhances species diversity is unsubstantiated.  

 

2.7. Current challenges and research needs 

 

This review has highlighted several challenges to assessing the relationship between 

macro-invertebrates and habitat structure, although many are not unique to rivers. Five 

of the most important are: i) the use of many inconsistently defined terms, ii) difficulties 

in quantifying habitat structure, iii) distinguishing different components of habitat 

structure, iv) separating the effects of habitat complexity and surface area, and v) the 

limitation of most studies to a single, typically small, spatial scale.  

 

2.7.1. Definition of habitat structure 

 

One of the main issues in the investigation of habitat structure is the use of a large 

number of inconsistently defined terms, a problem which is not unique to river ecology 

(McCoy and Bell, 1991; Tews et al., 2004). Together with difficulties quantifying 

habitat structure (see below), this has hindered comparisons among studies both within 

rivers and among ecosystems, limiting general understanding of the importance of 

habitat structure. McCoy and Bell (1991) recognised this problem and attempted to 
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provide a general framework for the study of habitat structure by distinguishing three 

components: i) complexity, the absolute abundance of individual structural features per 

unit area or volume, ii) heterogeneity, the relative abundance of different structural 

features and iii) scale, the variation resulting from the area or volume in which habitat 

complexity or heterogeneity is measured. In this review, the definition of heterogeneity 

incorporates structure provided by the addition of different types of structural features 

in line with previous studies (e.g. Downes et al., 1998), although as Matias et al. (2007) 

point out this was not the original definition proposed by McCoy and Bell (1991). 

According to the definitions given here, studies using terms such as ‘surface 

heterogeneity’ (Erman and Erman, 1984) and ‘structural heterogeneity’ (Ferreiro et al., 

2011) actually investigated complexity, whilst conversely studies using terms such as 

‘substratum complexity’ actually investigated heterogeneity (Allan, 1975). Other 

studies use the terms ‘complexity’ and ‘heterogeneity’ interchangeably (e.g. Palmer et 

al., 2010). Furthermore, some studies investigating complexity actually manipulated 

heterogeneity. Comparisons between bricks with a rough surface or large crevices and 

rough bricks with large crevices tested the effect of increasing heterogeneity, although 

this was considered an effect of increasing complexity (Downes et al., 1998). Further 

complications arise because heterogeneity has also been defined as “the variability in a 

process or pattern over space or time” (Palmer and Poff, 1997). It also has another 

specific meaning in the field of landscape ecology, where heterogeneity encompasses 

not only variability but also complexity, which is used to refer to the composition and 

configuration of habitat patches (Li and Reynolds, 1995). As mentioned previously, a 

number of studies have therefore measured ‘substrate heterogeneity’ as the variability in 

substrate topography (e.g. Tockner and Ward 1999; Lepori et al., 2005), or used 

variability in patch size and compactness as a measure of habitat heterogeneity (e.g. 

Palmer et al., 2000; Boyero, 2003b). Future studies should therefore explicitly define 

the terms used, preferably within the context of a general framework such as the one 

proposed by McCoy and Bell (1991), and clarify whether habitat complexity and/or 

heterogeneity is being investigated/manipulated.  

 

2.7.2. Measurement of habitat structure 

 

One possible explanation for the inconsistency in relationships between habitat structure 

and macro-invertebrates is that habitat complexity in particular is difficult to quantify 
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(McCoy and Bell, 1991). As a result, many studies of complexity have been limited to 

qualitative or categorical descriptions, such as ‘simple’ and ‘complex’ (e.g. Taniguchi et 

al., 2003) or ‘rough’ or ‘smooth’ (e.g. Boyero, 2003a), which only provide information 

about basic patterns. Another issue is that measures of habitat structure may be collinear 

or measure only subtly different aspects of habitat structure, confounding relationships 

with macro-invertebrates. Despite this few studies have assessed whether different 

measures of complexity (e.g. Downes et al., 1995; Warfe et al., 2008) or heterogeneity 

(e.g. Boyero, 2003b) are collinear. Current studies suggest that this may be the case, but 

have not always taken this into account when subsequently investigating relationships 

with macro-invertebrates (e.g. Boyero, 2003b; Warfe et al., 2008). The use of a 

continuous measure to quantifying complexity would provide a more comprehensive 

understanding of possible relationships with macro-invertebrates. Ideally such a 

measure would also permit comparisons among studies and ecosystems. Determining 

which measures best describe complexity and heterogeneity may also enable an 

assessment of their ecological relevance. 

 

2.7.3. Distinguishing the effects of habitat complexity and habitat heterogeneity  

 

Few studies have explicitly assessed the independent effects of increasing the 

abundance of structural features (complexity) from the addition of different structural 

features (heterogeneity) (see definitions in Section 2.2.). One exception is research on 

the surface roughness and macro-algal cover of individual substrate particles, two 

structural features which have both been shown to increase species richness (see above). 

Surface roughness of paving bricks and the presence of macro-algae appeared to have 

additive effects on species richness but not the number of individuals, which was 

similar among rough and smooth substrates (Downes et al., 2000a). Rough bricks 

covered in macro-algae supported a significantly greater number of species than rough 

bricks with no macro-algae, smooth bricks with macro-algae or bare, smooth bricks 

(Downes et al., 2000a). As mentioned above, studies should carefully consider whether 

habitat complexity or heterogeneity is being investigated (e.g. Downes et al., 1998), and 

additional research is needed to separate their effects. 
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2.7.4. Separating the effects of habitat complexity and surface area 

 

As mentioned previously, structurally complex habitats tend to have a greater surface 

area and may therefore support more species because they support a greater number of 

individuals (Coleman et al., 1982). In the majority of studies, however, surface area was 

either not considered as a separate factor or it correlated with complexity (Warfe et al., 

2008). Furthermore, those studies considering surface area have largely controlled for 

surface area effects, for example by using artificial substrates of a constant surface area 

(e.g. O’Connor, 1991; Douglas and Lake, 1994; Taniguchi et al., 2003; Taniguchi and 

Tokeshi, 2004). There is therefore a need for investigations separating the effects of 

continuous variations in complexity and surface area on macro-invertebrates, of which 

there are surprisingly few (e.g. Downes et al., 1995; Boyero, 2003a).  

 

2.7.5. Study design  

 

Most studies quantifying habitat complexity have been conducted at a single, small 

spatial scale, and have typically involved artificial substrates (e.g. O’Connor, 1991; 

Downes et al., 1998; Warfe et al., 2008). Few studies have considered intermediate 

scale structure provided by the complexity of river bed surfaces or the effect of habitat 

structure at more than one spatial scale (e.g. Robson and Chester, 1999). Studies 

combining field surveys and manipulative in-stream experiments are also scarce (e.g. 

Robson and Barmuta, 1998). Whilst experiments have the advantage of enabling 

variation in other environment factors to be taken into account, the use of artificial 

substrates in particular may have limited realism and caution is required in extrapolating 

the results. In-stream experiments and field surveys which assess whether habitat 

structure is ecologically relevant at multiple scales are therefore required to advance 

current knowledge. 
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Chapter 3 Re-appraising the effects of habitat structure on river 

macro-invertebrates 

 

3.1. Abstract 

 

1. Although rivers are highly structured physically, generalisations about the exact 

consequences for macro-invertebrates remain elusive. Challenges include quantifying 

structure per se and differentiating the effects of complexity (i.e. the abundance of 

structural features), heterogeneity (i.e. the composition and spatial arrangement of 

different structural features) and surface area. 

 

2. Three hypotheses about habitat structure were tested at the patch scale (0.0625 m
2
) in 

tributaries of the Rivers Wye and Usk, mid-Wales (UK): i) greater habitat heterogeneity 

and surface complexity alter macro-invertebrate composition and increase diversity, 

richness and abundance, ii) complexity effects are distinct from increased surface area 

and iii) habitat structure is a major determinant of variations in macro-invertebrates 

among habitat types.  

 

3. Surface complexity, described using fractal dimension, and surface area were 

estimated from river bed profiles at locations where macro-invertebrate were sampled. 

Habitat heterogeneity was determined within 1 m radii and described by Principal 

Components reflecting the patchiness of habitat mosaics (PC1) and evenness of patch 

sizes (PC2).  

 

4. Bedrock was the least complex habitat, whilst pebbles were the most complex. 

Cobbles were surrounded by the least even habitat mosaics, occurring within 

significantly less even mosaics than gravel or bedrock.  

 

5. Complexity (but not heterogeneity) increased macro-invertebrate diversity, richness 

and abundance independently of surface area, but only when habitat type was ignored. 

Differences in macro-invertebrate assemblages among habitat types were greater than 

along the gradients of habitat structure, and physical structure accounted for <10% of 
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this among habitat variation. Bedrock, silt and sand typically had reduced diversity, 

richness and abundance mostly of EPT taxa whilst silt had abundant Chironomidae. 

 

6. These results give empirical support only to the first two hypotheses: habitat 

heterogeneity had no effect on macro-invertebrates whilst complexity effects were 

weak. The implication is that habitat type must affect macro-invertebrates through other 

factors such as porosity, hydraulic conditions, stability or resource distributions that 

transcend the effects of structure alone.  
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3.2. Introduction 

 

Habitat structure is postulated to affect community composition in terrestrial, marine 

and freshwater ecosystems, with structural complexity and heterogeneity often 

increasing species diversity and abundance (MacArthur, 1965; MacArthur and Wilson, 

1967; Shmida and Wilson, 1985; Bell et al., 1991; Statzner and Moss, 2004; Tews et 

al., 2004). In rivers in particular, where physical structure is a major feature, recognition 

of the potential importance of habitat structure to benthic organisms is long-standing 

(Percival and Whitehead, 1929; Whitehead, 1935; Jones, 1949). Here, where macro-

invertebrates have been shown to be influenced by complexity and heterogeneity (e.g. 

Vinson and Hawkins, 1998), structural features have now become a central focus in 

river management and restoration (Harper et al., 1992; Harper and Everard, 1998; 

Vaughan et al., 2009; Palmer et al., 2010; Feld et al., 2011). 

 

Despite this interest, generalisations about the exact relationship between habitat 

structure and macro-invertebrate communities in rivers remain elusive. For example, 

both macro-invertebrate richness and abundance are sometimes greater on plants with a 

complex architecture (Krecker, 1939; Rooke, 1986; Warfe et al., 2008) but not always 

(Taniguchi et al., 2003; Ferreiro et al., 2011). Fewer than half of the studies reviewed 

by Vinson and Hawkins (1998) showed that macro-invertebrate richness increased with 

substrate size heterogeneity, whilst Palmer et al. (2010) concluded that the majority of 

restoration projects that increase habitat mosaic heterogeneity do not enhance macro-

invertebrate diversity.  

 

There are several challenges to assessing the relationship between organisms and habitat 

structure. Firstly, key components of habitat structure such as heterogeneity and 

complexity are often poorly defined or differentiated. Heterogeneity encompasses both 

the composition (number and relative abundance) and configuration (spatial 

arrangement) of different structural features (e.g. habitat patches or types) (Li and 

Reynolds, 1995). In contrast, complexity has been defined as the total abundance of 

structural features (e.g. crevices on the surface of a substrate particle), with more 

complex habitats having greater numbers of structural features within a fixed area 

(McCoy and Bell, 1991). This property is often described as the roughness, rugosity or 

topography of a surface.  
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Secondly, habitat structure is difficult to quantify (McCoy and Bell, 1991). For 

complexity, categorisations based on surface texture (e.g. Boyero, 2003a) or plant 

morphology (e.g. Taniguchi et al., 2003) are likely to provide only a partial 

understanding of any relationship with macro-invertebrate communities. Quantitative 

measures have included the number and size of crevices on and between substrate 

particles (Sanson et al., 1995), as well as particle height and length (Evans and Norris, 

1997), whilst other studies have used variation in substrate height to describe 

topography (e.g. Statzner et al., 1988; Tockner and Ward, 1999; Crosa and Buffagni, 

2002; Muotka et al., 2002; Brooks et al., 2005; Lepori et al., 2005). Alternatively, 

fractal dimension provides a quantitative measure of the complexity of a line or surface 

(Mandelbrot, 1977, 1983). As the fractal dimension of a structural feature increases, it 

fills the space it occupies more completely. The majority of freshwater studies have 

focused on macrophytes (McAbendroth et al., 2005; Thomaz et al., 2008; Warfe et al., 

2008; Dibble and Thomaz, 2009; Ferreiro et al., 2011; Mormul et al., 2011). Studies 

assessing the fractal dimension of river bed surfaces are scarce (Robson, 1995 cited in 

Robson and Chester, 1999; Schmid, 2000; Robson et al. 2002).  

 

For habitat mosaic heterogeneity, numerous measures have been developed over the last 

20 years in the field of landscape ecology (Palmer et al., 2000). Composition is 

described by the number and diversity of different habitat types (Beisel et al., 1998, 

2000; Boyero, 2003b; Brown, 2003) whilst configuration can be described by the 

number and diversity of habitat patches (Beisel et al., 1998, 2000; Boyero, 2003b; 

Palmer et al., 2000), patch size (Palmer et al., 2000) and patch shape and boundary 

length (Beisel et al., 2000; Downes et al., 2005; Boyero, 2003b; Palmer et al., 2000). 

Other studies have also used variability in patch size as a measure of configuration 

(Palmer et al., 2000; Boyero, 2003b). Such a large number of measures have, however, 

further hindered understanding of the importance of habitat structure. Some may be 

collinear or measure only subtly different aspects of habitat structure in ways that 

confound relationships with macro-invertebrates (Boyero, 2003b; Warfe et al., 2008; 

Zuur et al., 2010). Conversely, individual measures may fail to capture all aspects of 

structural variation (Wilson et al., 2007). Assessing which measures or combination of 

measures best describe complexity and heterogeneity may therefore facilitate improved 

understanding of their ecological relevance.  
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A third problem in understanding the relationship between habitat structure and benthic 

organisms is that heterogeneity and complexity vary among habitat types such as 

differently sized substrates, macrophytes, tree roots and leaf litter (Robson, 1995 cited 

in Robson and Chester, 1999; Beisel et al., 1998, 2000; Palmer et al., 2000; Robson et 

al., 2002). Consequently, relationships between habitat structure and macro-invertebrate 

communities may partly reflect other physical or ecological differences among habitat 

types such as variations in current velocity or resource availability. Despite this, few 

studies have assessed how complexity and/or heterogeneity vary among habitat types or 

have appraised the contribution of habitat structure to variations in macro-invertebrates 

among differently sized substrates (Robson, 1995 cited in Robson and Chester, 1999; 

Beisel et al., 1998, 2000; Robson et al., 2002).   

 

Finally, relationships between organisms and habitat structure may be confounded by 

variations in surface area. Complex habitats typically have a larger surface area and may 

therefore support more species due to a species-area effect (Arrhenius, 1921; Gleason, 

1922; MacArthur and Wilson, 1967; Connor and McCoy, 1979; Coleman et al., 1982). 

Some studies have controlled for surface area effects by using artificial substrates of a 

constant surface area (O’Connor, 1991; Jeffries, 1993; Douglas and Lake, 1994; 

Taniguchi et al., 2003; Taniguchi and Tokeshi, 2004), whilst direct investigations of the 

species-area relationship have focused on individual substrate particles (Hart, 1978; 

Clements, 1987; Douglas and Lake, 1994; Heino and Korsu, 2008). Few studies have 

however attempted to assess the independent effects of continuous variations in 

complexity and area on macro-invertebrates in rivers (Downes et al., 1995; Boyero, 

2003a; Warfe et al., 2008), whilst there are no known investigations on natural river bed 

surfaces.  

 

This chapter tested the hypotheses that: i) greater habitat heterogeneity and surface 

complexity alter macro-invertebrate composition and increase diversity, richness and 

abundance, ii) complexity effects are distinct from increased surface area and iii) habitat 

structure is a major determinant of variations in macro-invertebrates among habitat 

types.  
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3.3. Methods 

 

3.3.1. Study area 

 

The Welsh Rivers Wye and Usk drain catchments of 4136 km
2 

and 1358 km
2
, 

respectively, flowing 215 km and 120 km into the Severn Estuary (Figure 1). The Wye 

rises in the Plynlimon Mountains (National Grid reference SN 795 864) and the Usk on 

the Black Mountain (National Grid reference SN 819 239). 

 

Although the Wye catchment varies in geology, relief and land use between upper, 

middle and lower sub-catchments (Edwards and Brooker, 1982; Jarvie et al., 2003), 

work for this study focused on the middle catchment draining Devonian Old Red 

Sandstone or marls. Land use here is dominated by rough/semi-improved pasture and 

tributaries are relatively un-polluted and calcareous (50-250 mg CaCO3 l
-1

), contrasting 

with the low pH of those in the acidified uplands and the moderately elevated 

biochemical oxygen demand (BOD) and nutrient concentrations of those in the 

lowlands (Ormerod and Edwards, 1987; Jarvie et al., 2003; Clews and Ormerod, 2009). 

Average annual rainfall varies from 900-2100 mm depending on altitude (Environment 

Agency, 2008).  

 

The land use and geology of the Usk catchment matches the middle Wye catchment and 

general water quality, BOD and nutrient concentrations are also similar (Environment 

Agency, 2007, 2009). River discharge varies closely with rainfall, which averages 1336 

mm annually across the catchment (Environment Agency, 2007).  

 

Fieldwork was conducted in 2008 (from September to October) at 3 x 10 m sections at 

three sites on the Edw, a tributary in the middle Wye catchment, and in 2009 (from July 

to August) at 3 x 10 m sections at single sites on the upper Usk and two of its 

tributaries, the Honddu and Tarrell (Table 1; Figure 1). Tributaries were selected to 

minimise any confounding effects of water quality, land use or channel modification 

and drained a mixture of rough/semi-improved pasture and broadleaved woodland.  

 

 

 



Chapter 3 

64 

3.3.2. Sampling design 

 

Surface complexity and area of the river bed were determined within 0.25 x 0.25 m at 

five random locations within each 10 m section, from which macro-invertebrates were 

sampled and habitat heterogeneity determined within 1 m radii (Figure 1). In addition, a 

small number of samples were collected to ensure that all substrate sizes (excluding 

boulders and clay) within each 10 m section based on the Wentworth scale were 

sampled, resulting in a total of 108 samples of six habitat types (cobbles=47, 

pebbles=29, gravel=16, sand=4, silt=5 and bedrock=7).  

 

3.3.3. Data collection  

 

Habitat heterogeneity  

 

The habitat mosaic within each 10 m section was mapped onto a 0.25 m grid. Visual 

assessments of substrate size were made based on the Wentworth scale (Wentworth, 

1922).  

 

Surface complexity and area 

 

At each sampling location ten pin profiles of the river bed were obtained using a profiler 

consisting of 104 pins at 2.4 mm intervals (Figure 2). Using a sampling frame, the 

profiler was positioned at five 62.5 mm intervals parallel to the flow, and five 

perpendicular to it, each pin pushed down until it touched the river bed and the height of 

each pin recorded (Figure 3). 

 

Macro-invertebrates 

 

At each sampling location macro-invertebrates were kick-sampled for 1 minute 

immediately after pin profiles were taken using a standard net (0.25 x 0.25 m with a 1 

mm mesh). The net was also held downstream during pin-profiling to ensure any 

disturbed macro-invertebrates were captured. Samples were preserved in 70% ethanol 

for subsequent analysis, when macro-invertebrates were identified to species level 

where possible and counted.  
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3.3.4. Data analysis  

 

Habitat heterogeneity  

 

Habitat maps were digitised in ArcMap version 9.2 using ArcScan (ESRI, 2006). Patch 

Analyst version 4.2 (Rempel et al., 2008) was used to calculate a range of previously 

published measures of the composition and the configuration of the habitat mosaic 

within a 1 m radius around the centre of each sampling location (Table 2). Samples at 

the edge of a 10 m section, where the habitat mosaic within the entire 1 m radius was 

not mapped, were removed from the heterogeneity analysis to avoid edge effects 

resulting in a total of 90 samples for which habitat heterogeneity was measured.  

 

Surface complexity and area 

 

The ten pin profiles from each sampling location were used to calculate mean fractal 

dimension in addition to the standard deviation in pin height, one of the most widely 

used measures of the topography of river bed surfaces. To calculate the mean fractal 

dimension each pin profile was first digitised in ArcMap version 9.2 using Hawth’s 

Analysis Tools version 3.27 (Beyer, 2004). FracLac for ImageJ version 2.5 (Karperien, 

1999) was used to calculate fractal dimension using the box-counting method, in which 

a line or outline is covered with a series of grids and the number of occupied grid 

squares counted (Mandelbrot, 1983; Fielding, 1992). The slope coefficient from the 

regression of the number of grid squares occupied versus the square size on log-log axes 

then provides an estimate of fractal dimension (Mandelbrot, 1983). The analysis was 

restricted to grid squares between twice the distance between pins and one-fifth of the 

profile length to avoid fractal dimension estimates of less than 1, which can occur when 

the same number of grid squares is occupied at very large consecutive grid sizes 

(Buczkowski et al., 1998; Halley et al., 2004). For a small proportion of profiles where 

this did not remove the effects of these artefacts, fractal dimension estimates were 

replaced by a value of 1.  

 

An index of surface area for each sampling location was estimated as the square of the 

mean profile length (Kostylev et al., 2005). 
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Prior to further analysis, Principal Component Analyses (PCAs) extracted from 

correlation matrices were used to examine collinearity among measures of: i) habitat 

heterogeneity and ii) surface complexity and area from all sampling locations and 

identify the measure(s) describing the main aspects of variation (Zuur et al., 2010). 

Reducing the number of variables also reduced the risk of Type I errors - incorrectly 

rejecting the null hypothesis - when analysing relationships with macro-invertebrate 

assemblages.  

 

Differences in habitat structure among habitat types were analysed using a One-Way 

ANOVA followed by a Tukey test or a Kruskal-Wallis test followed by Mann-Whitney 

tests, for which P=0.003 (=0.05/15) was used as the critical level of significance to 

reduce the chance of Type I errors. 

 

Macro-invertebrates 

 

Total abundance, taxonomic richness and taxonomic diversity (using Shannon’s 

diversity index) were calculated. Macro-invertebrate abundances were then analysed 

using Detrended Correspondence Analysis (DCA) in Canoco for Windows version 4.54 

to assess variation in composition (ter Braak and Šmilauer, 1997). This type of 

unconstrained ordination was selected as the DCA gradient lengths indicated that taxon 

response curves were non-linear and Correspondence Analysis showed a potential arch 

effect (ter Braak and Šmilauer, 2002). Abundance was normalised using a logarithmic 

transformation prior to subsequent analyses, with the exception of DCA. 

 

Relationships between habitat type, habitat structure, surface area and macro-

invertebrates 

 

Relationships between habitat type, measures selected from each PCA and macro-

invertebrates were analysed using Generalised Linear Mixed Models in ASReml 

version 3 (VSN International Ltd, 2009) or, where a random effect was not required, 

Generalised Linear Models in R version 2.9.2 (R Development Core Team, 2009). A 

random effect was used to control for possible dependence on site, but was excluded 

when it was not significant. Models were checked for validity through assessment of 

standardised residuals and refined using stepwise deletions at the P=0.05 level of 
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significance. Models were refined from two initial models: i) excluding and ii) 

including habitat type as a fixed effect. In models where a random effect was required 

and habitat type was significant, differences in macro-invertebrates among pairs of 

habitat types were analysed using Wald tests. 

 

Hierarchical partitioning using the hier.part package (Walsh and MacNally, 2008) in R 

was subsequently used to explore the variance in macro-invertebrates explained 

independently by habitat type, habitat heterogeneity, fractal dimension, surface area and 

by their joint effects. Two samples for which surface complexity and area were not 

measured were removed along with those at the edge of 10 m sections resulting in a 

total of 89 samples for which variance was investigated. 

 

3.4. Results 

 

Habitat structure and surface area  

 

For habitat heterogeneity, 58% and 22% of the variation was explained by the first two 

principal components (Figure 4). The number of patches (loading: 0.384), number of 

habitat types (loading=0.361) and total edge (loading=0.361) increased along 

Heterogeneity PC1 whilst mean patch size (loading=-0.379) and mean patch edge 

(loading=-0.352) declined. Patch diversity (loading=0.377) and habitat diversity 

(loading=0.365) increased along Heterogeneity PC2 whilst both the standard deviation 

and coefficient of variance in patch size declined (loading=-0.577 and -0.484 

respectively). In other words, moving from low to high scores, PC1 represented a 

gradient of increasingly patchy habitat mosaics whilst PC2 represented a gradient of 

increasing evenness of patch sizes within the mosaic. Sand and gravel were surrounded 

by more patchy mosaics than other habitat types, with cobbles occurring in the least 

patchy mosaics, although these differences were not significant (H=7.61; P=0.180; 

DF=5) (Figure 5). Heterogeneity PC2 scores did however vary significantly among 

habitat types (F=4.06; P=0.002; DF=5, 84), with cobbles surrounded by mosaics of less 

even patch size than bedrock or gravel (P<0.05) (Figure 5).   

 

For surface complexity and area, 60% and 35% of the variation was explained by the 

first two principal components. Surface area (loading=0.713) and standard deviation in 
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pin height (loading=0.694) increased on Complexity PC1, whilst fractal dimension 

(loading=0.962) increased on Complexity PC2. In other words, PC1 represented a 

gradient of increasing relief resulting in larger surface areas whilst PC2 represented a 

gradient of increasing surface complexity which was distinct from surface area. Since 

these gradients were so well described by surface area and fractal dimension, these 

measures were used in subsequent analyses with macro-invertebrates. Fractal dimension 

varied significantly among habitat types (F=25.83; P<0.001; DF=5, 100), being lowest 

for bedrock (P<0.05) (Figure 5). Fractal dimension was also significantly lower for 

cobbles than gravel or pebbles and significantly lower for sand than pebbles (P<0.05). 

Surface area also varied significantly among habitat types (H=51.71; P<0.001; DF=5) 

with cobbles>pebbles>gravel>bedrock and cobbles>pebbles>sand=silt (P<0.003) 

(Figure 5). 

 

Macro-invertebrate composition 

 

In DCA, two axes explained 21% of the variation in composition, with axis 1 explaining 

15%. Axis 1 scores generally separated the upper Usk from tributaries of the Usk and 

Wye (Figure 6). Chironomidae, Psychomyia pusilla and Hydroptila spp. tended to 

increase along this axis whilst Simuliidae, Sialis lutaria and Isoperla grammatica 

declined (Table 3). Axis 2 scores largely reflected differences between tributaries of the 

Rivers Wye and Usk (Figure 6), with less widely collected species such as Helodes sp., 

Helobdella stagnalis, Chaetopteryx villosa and Tipulidae increasing whilst 

Hydropsyche angustipennis, Gyrinus sp., Diplectrona felix and Glossosoma boltoni 

declined (Table 3). Macro-invertebrates occurring on bedrock, silt and sand were 

predominantly a sub-set of those occurring in other habitat types (Figure 7).  

 

Relationships between habitat type, habitat structure, surface area and macro-

invertebrates 

 

Macro-invertebrate diversity was positively correlated with fractal dimension whilst 

richness and abundance were positively correlated with both fractal dimension and 

surface area (Table 4). DCA axis 1 scores were negatively correlated with surface area, 

indicating that as surface area decreased macro-invertebrate assemblages contained 
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fewer Ephemeroptera, Plecoptera and Trichoptera (Table 4). Macro-invertebrates were 

not significantly correlated with Heterogeneity PCs. 

 

When habitat type was included in the models macro-invertebrate diversity, richness, 

and abundance and DCA axis 1 scores only varied significantly among habitat types 

(Table 5). None of the measures of habitat structure or surface area were significantly 

correlated with macro-invertebrates. Diversity was significantly lower on bedrock than 

in other habitat types except for silt, where it was significantly lower than on sand, 

gravel, pebbles and cobbles (P<0.05) (Table 6). Richness was significantly lower for 

bedrock than gravel, pebbles and cobbles (P<0.05) (Table 6). Abundance was 

significantly lower on bedrock and sand than on silt, gravel, pebbles and cobbles 

(P<0.05) (Table 6). DCA axis 1 scores were significantly greater for silt than other 

habitat types and significantly greater for sand than gravel, pebbles and cobbles 

(P<0.05) (Table 6). In other words, bedrock, silt and sand typically had reduced 

diversity, richness and abundance mostly of Ephemeroptera, Plecoptera and Trichoptera 

whilst silt had abundant Chironomidae. DCA axis 2 scores did not vary significantly 

among habitat types and were not significantly correlated with Heterogeneity PCs, 

fractal dimension or surface area. 

 

Hierarchical partitioning explained the redundancy of fractal dimension and surface area 

when habitat type was included in the models (Figure 8). Fractal dimension and surface 

area independently explained a maximum of 5% and 4% of the variance in macro-

invertebrates. With the exception of DCA axis scores, around half of the R
2
 values for 

fractal dimension and surface area comprised joint effects, predominantly with habitat 

type. In contrast, habitat type explained 6-30% of the variance in macro-invertebrates 

independently of fractal dimension and surface area. With the exception of macro-

invertebrate richness, around one-quarter of the R
2
 values at most were attributed to 

habitat type in combination with Heterogeneity PCs, fractal dimension and/or surface 

area.  

 

3.5. Discussion 

 

Theoretical and empirical links between habitat structure and the distribution of macro-

invertebrates are well documented. Heterogeneous habitat mosaics and structurally 
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complex habitats are expected to provide a greater range of niches and reduce the 

likelihood of competitive exclusion, enabling a greater number of species to co-exist 

(Shmida and Wilson, 1985; Townsend and Hildrew, 1994). They may ameliorate the 

effects of disturbance and predation through the provision of refugia (Townsend and 

Hildrew, 1994; Brown, 2003). For example, slower flow conditions in some patches 

enable individuals to persist during flood events, with large patch perimeters and 

reduced distances between patches increasing the ability of macro-invertebrates to re-

colonise neighbouring patches (Lancaster, 2000). Heterogeneous habitat mosaics and 

structurally complex habitats may also support a greater range and abundance of food 

resources. For example, complex habitats have been shown to accumulate greater 

abundances of epilithon (Gawne and Lake, 1995; Sanson et al., 1995).  

 

This study provided mixed results for these predictions. Contrary to the first hypothesis, 

habitat heterogeneity did not correlate with macro-invertebrate diversity, richness or 

abundance or alter composition. Relationships between the heterogeneity of habitat 

mosaics and macro-invertebrates have been reported in some studies (Beisel et al., 

2000; Boyero, 2003b; Brown, 2003) but not others (Beisel et al., 1998), and there is a 

lack of consistency among and even within studies (Beisel et al., 1998, 2000; Boyero, 

2003b). The importance of habitat heterogeneity may also vary with the extent of the 

investigation, although the number and significance of significant relationships with 

macro-invertebrates were greatest within 1 m radii in a previous study indicating this to 

be a sufficient extent to assess the surrounding habitat mosaic mapped with a resolution 

of 0.1-0.25 m (Beisel et al., 2000). It is possible however that neighbouring patches in 

the current study were insufficiently distinct and that gradients of substrate size rather 

than distinct boundaries occurred between patches. Alternatively, macro-invertebrates 

may not have responded to the composition and configuration of neighbouring patches 

even though the habitat type of the sampled patch was important. The generally passive 

dispersal of macro-invertebrates over frequently large distances may override any 

movement of macro-invertebrates among neighbouring patches (Palmer et al., 2000). 

Seasonal trends in the number and arrangement of habitat patches themselves may also 

obscure the response of macro-invertebrates (Palmer et al., 2000). 

 

In contrast to habitat heterogeneity, the diversity, richness and abundance of macro-

invertebrates correlated positively with surface complexity in agreement with the first 
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hypothesis. More complex natural and artificial surfaces have been shown to support a 

greater macro-invertebrate diversity, richness and abundance in some studies (Douglas 

and Lake, 1994; Downes et al., 1998, 2000; Taniguchi and Tokeshi, 2004), whilst 

others have reported inconsistent results among different structural features and 

different aspects of assemblage structure (Downes and Jordan, 1993; Downes et al., 

1995; Robson and Barmuta, 1998; Robson and Chester, 1999). Fractal dimension has 

previously been shown to provide an ecologically relevant measure of complexity, with 

habitats of a greater fractal dimension supporting greater abundances and/or species 

richness in freshwater (Taniguchi et al., 2003; Thomaz et al., 2008; Warfe et al., 2008; 

Dibble and Thomaz, 2009; Mormul et al., 2011) and marine ecosystems (Gee and 

Warwick, 1994; Beck, 2000; Kostylev et al., 2005), although other studies have found 

contrasting results (Hills et al., 1999; Attrill et al., 2000; Johnson et al., 2003; 

McAbendroth et al., 2005; Ferreiro et al., 2011). Fractal dimension appeared to be 

largely independent of variations in surface area in agreement with some studies of 

macrophytes in rivers (Ferreiro et al., 2011; cf. Warfe et al., 2008), whilst more 

complex habitat types did not necessarily have a greater surface area. The results of the 

PCA suggest that previous studies employing standard deviation may have been 

describing variations in surface area rather than structure per se. This may have caused 

difficulties in interpretation and account for some of the conflicting results in previous 

literature (e.g. Lepori et al., 2005). 

 

In agreement with the second hypothesis, complexity effects were not simply the result 

of increased surface area, supporting studies showing that increasingly complex 

artificial substrates and macrophytes of a constant surface area support greater macro-

invertebrate richness and abundance (O’Connor, 1991; Jeffries, 1993; Douglas and 

Lake, 1994; Taniguchi et al., 2003; Taniguchi and Tokeshi, 2004). Richness and 

abundance did however increase with surface area, indicating that surface area effects 

may also be an important determinant of species richness on river bed surfaces as well 

as individual substrate particles (Hart, 1978; Clements, 1987; Douglas and Lake, 1994). 

Nevertheless, it should be noted that both surface complexity and area were derived 

from two-dimensional profiles which are unable to capture overhangs or the three- 

dimensional shape of crevices and spaces (Sanson et al., 1995). It was also assumed that 

intersecting profiles were representative of the surface as a whole. Surfaces with the 
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same fractal dimension may also vary in the number of crevices or spaces of different 

sizes that are available to organisms (Sanson et al., 1995).   

 

Overall, surface complexity appeared to be a minor determinant of variations in macro-

invertebrates among habitat types, whilst heterogeneity was not important. This result 

was in contrast to the third hypothesis. Habitat type explained a much larger proportion 

of the variance in macro-invertebrates than habitat structure, with hierarchical 

partitioning suggesting that, excluding macro-invertebrate richness, complexity and 

heterogeneity explained up to around one-quarter of the differences among habitat 

types. Lower diversity, richness and abundance are characteristic of communities on 

bedrock and small substrates (Percival and Whitehead, 1929; Hynes, 1970; Harper et 

al., 1995). Richness and abundance have also been shown to increase from small to 

large substrates, such as from gravel to cobbles, in some studies (e.g. Allan, 1975; 

Erman and Erman, 1984) but not others (e.g. Minshall and Minshall, 1977; Rabeni and 

Minshall, 1977; Williams and Mundie, 1978; Wise and Molles, 1979). Whilst bedrock 

had the lowest fractal dimension, indicating that it essentially provided a two-

dimensional habitat for macro-invertebrates, silt and sand had a similar fractal 

dimension to larger substrates. This may reflect the tendency for silt and sand to have 

uneven surfaces, but may also be attributed to the ease with which pins could 

accidentally be pushed below the surface. Cobbles supported a similar macro-

invertebrate assemblage to pebbles and gravel despite having a lower fractal dimension, 

reflecting the fact that fewer substrate particles were encountered along each profile 

relative to profile length. Previous studies have reported a similar result for 10 cm 

transects, with bedrock and boulder-cobble riffles having fractal dimensions of 1.02 and 

1.029 respectively (Robson, 1995 cited in Robson and Chester, 1999). Bedrock appears 

to consistently provide a simple habitat for macro-invertebrates, whilst cobbles may 

provide greater complexity than bedrock or gravel along transects of approximately 1-

10 m measured at a resolution of one-tenth of the transect length, corresponding to the 

fact at this extent cobble surfaces are the least uniform (Robson, 1995 cited in Robson 

and Barmuta, 1998; Robson et al., 2002).  

 

The results of this study therefore give empirical support only to the first two 

hypotheses. The implication is that other factors are more important determinants of 

variations in macro-invertebrates among habitat types. Substrates of different sizes may 
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vary in other structural characteristics such as porosity, which might not be reflected by 

differences in their surface complexity. Interstitial spaces in large and medium 

substrates provide an important habitat for macro-invertebrates, whilst the low porosity 

of small substrates is one of the most important factors limiting colonisation (Hynes, 

1970; Harper et al., 1995). Other factors such as hydraulic conditions, stability and 

resource distributions are also likely to be important (e.g. Beisel et al., 1998) and may 

transcend the effects of habitat structure alone. However, separating the effects of such 

factors presents a major challenge because many of them may be dependent upon each 

other in natural systems (Allan, 1995). Progress in this area requires experimental 

investigation and should be prioritised, given that habitat structure is postulated widely 

to affect ecosystem structure and function and these ideas are central to river 

management and restoration. 

 

In summary, habitat heterogeneity had no effect on macro-invertebrates whilst 

complexity effects, despite being independent of surface area, were weak and largely 

attributed to habitat type. Differences in macro-invertebrate assemblages among habitat 

types were greater than along the gradients of habitat structure, and physical structure 

accounted for <10% of this among habitat variation. Bedrock, silt and sand typically 

had reduced diversity, richness and abundance mostly of EPT taxa whilst silt had 

abundant Chironomidae. 
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3.7. Tables and Figures 

 

Table 1. Location of 10 m sections on tributaries of the Rivers Wye and Usk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Measures describing habitat heterogeneity within 1 m radii of sampling 

locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

River Tributary 10 m section Grid reference 
    

Wye Edw-site 1 1 SO 11825 57329 
  2 SO 11673 57140 

  3 SO 11635 57052 

 Edw-site 2 4 

5 

SO 11440 54270 
  5 SO 11508 54153 

  6 SO 11601 53966 
 Edw-site 3 7 SO 09926 48026 

  8 SO 09716 47876 
  9 

 

 

SO 09621 47845 

Usk Usk-site 1 1 SN 81761 26868 

  2 SN 81917 26979 
  3 SN 81960 27054 

 Honddu-site 1 1 SO 02961 35463 
  2 SO 03206 35271 

  3 SO 03239 35251 

 Tarrell-site 1 1 

5 

SO 01268 26914 
  2 SO 01042 26958 

  3 SO 00936 26964 
    

Composition 

 

 

Mean patch size 

 
Number of habitat types 

Habitat diversity (calculated using Shannon Diversity Index) 
 

Configuration 

 
Mean patch size 

Patch size standard deviation 
Patch size coefficient of variance 

Mean perimeter/area ratio 

Mean patch edge 
Total edge 

Number of patches (regardless of habitat type) 
Patch diversity (calculated using Shannon Diversity Index) 
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Table 3. Detrended Correspondence Analysis (DCA) loadings of macro-invertebrates.  

 

Taxon DCA axis 1  Taxon DCA axis 2  

    
Chironomidae 4.11 Helodes sp. 5.09 

Wiedemannia spp. 4.02 Helobdella stagnalis 5.09 

Habrophlebia fusca 3.97 Chaetopteryx villosa 4.83 

Psychomyia pusilla  3.93 Tipulidae 4.80 

Orectochilus villosus 3.92 Glossosoma spp. 4.17 

Hydroptila spp. 3.87 Chloroperla tripunctata 3.90 

Radix peregra 3.87 Chelifera stigmatica 3.70 

Polycentropus flavomaculatus 3.85 Psycoda spp. 3.66 

Hydrocyphon sp. 3.81 Hydrobiidae 3.65 

Perla bipunctata 3.77 Dytiscidae  3.63 

Polycelis felina 3.76 Baetis fuscatus 3.57 

Caenis rivulorum 3.74 Lype sp. 3.51 

Planaria torva 3.73 Dinocras cephalotes 3.49 

Hydroporus sp. 3.71 Hydropsyche instabilis 3.46 

Tabanidae 3.69 Leuctra geniculata 3.40 

Esolus parallelepipedus  3.66 Polycelis felina 3.19 

Polycentropus kingi 3.60 Serratella ignita 3.15 

Centroptilum pennulatum 3.57 Sciomyzidae 2.95 

Micronecta poweri 3.55 Halesus radiatus 2.90 

Ecdyonurus venosus 3.48 Potamophylax latipennis 2.87 

Empididae  3.47 Leuctra spp. 2.85 

Phagochata vitta 3.41 Helophorus brevipalpis 2.85 

Hydracarina 3.38 Leuctra fusca 2.80 

Oligochaeta 3.35 Hydraena gracilis 2.78 

Tinodes waeneri 3.34 Limnophila sp. 2.67 

Haliplus lineatocollis 3.34 Orectochilus villosus 2.63 

Centroptilum luteoum 3.34 Baetis spp. 2.62 

Chloroperla torrentium 3.34 Hydrocyphon sp. 2.62 

Oreodytes sanmarkii 3.22 Hydroporus sp. 2.60 

Plectocnemia conspersa 3.14 Erpobdella testacea 2.50 

Limnophila sp. 3.10 Baetis scambus 2.45 

Hydropsyche siltalai 3.08 Baetis rhodani 2.41 

Oulimnius tuberculatus  3.03 Oreodytes sanmarkii 2.36 

Odontocerum albicorne 2.99 Tabanidae 2.32 

Helodes sp. 2.92 Baetis muticus 2.28 

Helobdella stagnalis 2.92 Plectocnemia conspersa 2.17 

Dinocras cephalotes 2.90 Hydracarina 2.16 

Baetis muticus 2.88 Perla bipunctata 2.05 

Chaetopteryx villosa 2.82 Chironomidae 1.98 

Platambus maculatus 2.82 Chloroperla torrentium 1.97 

Glossiphonia complanata 2.82 Odontocerum albicorne 1.87 

Heptageniidae 2.74 Sialis lutaria 1.84 

Paraleptophlebia submarginata 2.70 Simuliidae 1.77 

Ephemera danica 2.66 Esolus parallelepipedus 1.77 

Tipulidae 2.49 Hydroptila spp. 1.75 

Dicranota spp. 2.41 Wiedemannia spp. 1.74 

Limnephilidae 2.38 Planaria torva 1.72 

Elmis aenea 2.36 Limnius volckmari 1.71 

Sericostoma personatum 2.28 Ecdyonurus venosus 1.69 
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Table 3 continued.  

 

Taxon DCA axis 1  Taxon DCA axis 2  

    
Hydropsyche spp. 2.24 Polycentropus kingi 1.64 

Leuctra geniculata 2.22 Radix peregra 1.59 

Ceratopogonidae 2.21 Caenis rivulorum 1.57 

Ancylus fluviatilis 2.20 Polycentropus flavomaculatus 1.55 

Nemoura avicularis 2.19 Psychomyia pusilla 1.51 

Micropterna lateralis 2.03 Habrophlebia fusca 1.48 

Helophorus brevipalpis 1.97 Goera pilosa 1.48 

Serratella ignita 1.92 Empididae  1.41 

Gammarus pulex 1.89 Hydropsyche siltalai 1.41 

Chloroperla tripunctata 1.87 Micropterna lateralis 1.40 

Glossosoma boltoni 1.79 Centroptilum pennulatum 1.38 

Hydropsyche angustipennis 1.78 Potamopyrgus antipodarum 1.34 

Ecdyonurus spp. 1.69 Perlodes microcephalus 1.30 

Baetis fuscatus 1.66 Rhyacophila dorsalis 1.25 

Potamophylax latipennis 1.63 Micronecta poweri 1.25 

Hydraena gracilis 1.53 Oligochaeta 1.17 

Limnius volckmari 1.49 Tinodes waeneri 1.16 

Ecdyonurus torrentis 1.49 Haliplus lineatocollis 1.16 

Erpobdella testacea 1.48 Centroptilum luteoum 1.16 

Psycoda spp. 1.47 Ancylus fluviatilis 1.12 

Pisidium spp. 1.45 Pisidium spp. 1.08 

Leuctra fusca 1.39 Platambus maculatus 1.04 

Nemoura erratica 1.37 Glossiphonia complanata 1.04 

Sciomyzidae 1.33 Limnephilidae 1.00 

Chelifera stigmatica 1.31 Ecdyonurus torrentis 0.96 

Halesus radiatus 1.17 Ephemera danica 0.82 

Baetis spp. 1.14 Ecdyonurus spp. 0.80 

Dytiscidae  1.11 Hydropsyche spp. 0.79 

Baetis scambus 1.00 Oulimnius tuberculatus 0.78 

Protonemura meyeri 0.93 Elmis aenea 0.73 

Perlodes microcephalus 0.90 Paraleptophlebia submarginata 0.73 

Gyrinus sp. 0.87 Dicranota spp. 0.36 

Hydrobiidae 0.83 Phagochata vitta 0.32 

Erpobdella octoculata 0.61 Hydropysche pellucidula  0.28 

Hydropsyche pellucidula  0.52 Isoperla grammatica 0.00 

Baetis rhodani 0.42 Gammarus pulex -0.04 

Agapetus spp. 0.39 Sericostoma personatum -0.14 

Rhithrogena  semicolorata 0.32 Erpobdella octoculata -0.20 

Glossosoma spp. 0.30 Protonemura meyeri -0.20 

Potamopyrgus antipodarum  0.29 Rhithrogena  semicolorata -0.41 

Diplectrona felix 0.27 Heptageniidae -0.52 

Hydropysche instabilis 0.27 Nemoura erratica -0.85 

Lype sp. 0.25 Ceratopogonidae -1.37 

Goera pilosa 0.20 Nemoura avicularis -1.39 

Rhyacophila dorsalis 0.08 Agapetus spp. -1.89 

Leuctra spp. 0.06 Glossosoma boltoni -2.03 

Isoperla grammatica 0.04 Diplectrona felix -2.06 

Sialis lutaria -0.16 Gyrinus sp. -3.43 

Simuliidae -0.45 Hydropsyche angustipennis -3.46 
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Table 4. Relationships between macro-invertebrates, including Detrended 

Correspondence Analysis (DCA) axis scores, and habitat heterogeneity, fractal 

dimension and an index of surface area (m
2
) when habitat type is not included as a fixed 

effect. Only significant fixed effects are shown.  

 

 

Table 5. Relationships between macro-invertebrates, including Detrended 

Correspondence Analysis (DCA) axis scores, and habitat type, habitat heterogeneity, 

fractal dimension and an index of surface area (m
2
). Only significant fixed effects are 

shown.  

 

Model Fixed effects F  P DF Random effect 
      

Diversity Habitat type 8.03 <0.001 5, 102 - 
Richness Habitat type 3.88 0.003 5, 102 Site 

Log(abundance) Habitat type 8.08 <0.001 5, 102 Site 
DCA axis 1 score Habitat type 14.46 <0.001 5, 102 Site 

DCA axis 2 score NS - NS - Site 

      

 

Table 6. Predicted macro-invertebrate diversity, richness, abundance and Detrended 

Correspondence Analysis (DCA) axis 1 score among habitat types ± 95% confidence 

intervals, with lower/upper confidence intervals given for back-transformed abundance. 

 

 

Model Fixed effects 

Coefficient 

(± 95% 

confidence 

interval) 

F P DF 
Random 

effect 

       
Diversity Fractal dimension 3.34±1.77 13.6 <0.001 1, 104 - 
Richness Fractal dimension 26.47±19.36 7.18 0.009 1, 103 Site 

 Surface area 60.05±39.76 8.76 0.004 1, 103 Site 

Log(abundance) Fractal dimension 5.86±3.55 6.43 0.013 1, 103 Site 
 Surface area 2.24±1.73 10.48 0.002 1, 103 Site 

DCA axis 1 score Surface area -7.54±4.72 9.80 <0.001 1, 104 Site 
DCA axis 2 score NS - - NS - Site 

       

Model 
Habitat type 

Bedrock Silt Sand Gravel Pebbles Cobbles 

       
Diversity 1.11±0.29 1.16±0.35 1.72±0.39 1.99±0.19 1.90±0.14 1.80±0.11 

Richness 8±6 12±7 14±7 15±4 13±4 12±4 

Abundance 10±6/12 94±55/131 17±10/26 63±28/49 80±32/53 65±24/39 
DCA axis 1 score 2.19±0.72 3.58±0.75 2.52±0.77 1.90±0.66 1.87±0.65 1.80±0.64 
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3 x 10 m sections  
at each site (black 

circles above) 

Sampling locations 
(white squares) within 

each 10 m section 

 

Figure 1. Sampling design showing 0.25 x 0.25 m sampling locations (white squares) 

within 10 m sections nested within sites (black circles) on tributaries of the Rivers Wye 

and Usk (in bold). 
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Figure 2. Profiler and example of a river bed profile used to assess surface complexity 

and area for 0.25 x 0.25 m sampling locations.  

 

 

 

Figure 3. Sampling frame (0.25 x 0.25 m) showing the location of holes for positioning 

the profiler.  
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Figure 4. Principal Component Analysis (PCA) loading plot of habitat heterogeneity 

measures. MPS=mean patch size, MPE=mean patch edge, TE=total edge, Habitat 

types=number of habitat types, Patches=number of patches, MPAR=mean 

perimeter/area ratio, PSCoV=patch size coefficient of variance and PSSD=patch size 

standard deviation.  
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Figure 6. Detrended Correspondence Analysis (DCA) score plot with samples grouped 

by tributary.  Samples from a tributary of the River Wye = ○, the upper River Usk = ■ 

and tributaries of the Usk = □. 
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Figure 7. Detrended Correspondence Analysis (DCA) score plot with samples grouped 

by habitat type. Bedrock = ●, silt = ▲, sand = ■, gravel = ○, pebbles =  and      

cobbles = □.  
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Chapter 4 Higher-level filters transcend the local effects of 

physical habitat complexity on river macro-invertebrates 

 

4.1. Abstract 

 

1. Physical habitat structure is considered to be fundamental to the distribution, 

composition and body size of organisms. Documented relationships between structure 

and organisms are however inconsistent with one possible explanation being that 

variations in other physical factors act as higher-level filters on species composition. 

Such effects are likely in highly physically-structured systems such as rivers which are 

characterised by variations in multiple physical factors. 

 

2. Based on these prepositions, two hypotheses were tested experimentally by 

manipulating patches of benthic habitat in a British upland river: i) greater surface 

complexity and interstitial volume increase macro-invertebrate diversity, richness and 

abundance whilst altering body size and composition independently of surface area and 

ii) variation among habitats in other conditions - in this case flow type - transcend the 

effects of structure alone. Experimental baskets containing cobbles, pebbles, gravel or 

50:50 mixtures were deployed in riffles and glides to create variation in surface 

complexity, surface area and interstitial volume independent of flow type.   

 

3. Flow type explained significant variations in macro-invertebrate richness, abundance, 

composition and mean body size, with riffles supporting richer assemblages containing 

greater numbers of individuals of smaller mean body size. Whilst substrates with greater 

surface areas supported an increased proportion of small- (<5 mm) relative to 

intermediate- (5-9 mm) sized individuals, surface complexity and interstitial volume 

had no measurable effects. 

 

4. As one of the few experiments attempting to separate the effects of habitat structure 

and flow on river macro-invertebrates, this study does not support the hypothesis that 

local habitat structure determines their assemblage composition and structure. Given the 

relationship between discharge and channel form in rivers, this implies that widely 

observed differences in assemblages among habitats result from flow-related effects, 
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rather than habitat structure per se. Species distributions may vary along other physical 

dimensions and cannot be assumed to result from habitat structure unless the effects of 

other physical factors are excluded.  
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4.2. Introduction 

 

Physical habitat structure is considered to be a fundamental factor affecting organism 

distribution and diversity in terrestrial, marine and freshwater ecosystems (McCoy and 

Bell, 1991; Tews et al., 2004). It is widely predicted that more complex habitats will 

support greater diversity and abundances of organisms by providing a greater range of 

niches (Shmida and Wilson, 1985; Townsend and Hildrew, 1994), refuges from 

disturbance and predation (e.g. Power, 1992; Rice et al., 2007) and a greater abundance 

of resources (e.g. Gawne and Lake, 1995; Sanson et al., 1995).  More complex habitats 

may also provide more usable space for small individuals and are therefore expected to 

have a greater relative abundance of small organisms than simple habitats (Morse et al., 

1985; Gee and Warwick, 1994). Body size in turn influences an organism’s energetic 

requirements and resource exploitation with implications for ecological processes and 

numerous life-history traits such as lifespan (Schmid et al., 2000; Brown et al., 2007). 

 

Despite the interest habitat structure has received in ecology, there are still however 

disparities among theory and empirical evidence. Many studies have documented how 

relationships between habitat structure and animal communities vary among structural 

features, species, locations, seasons and spatial scales, whilst others have found no 

relationship (e.g. Beck, 1998; Downes and Jordan, 1993; Downes et al., 1995; Vinson 

and Hawkins, 1998; Johnson et al., 2003; Taniguchi and Tokeshi, 2004; Tews et al., 

2004; Nakaoka, 2005; Meager et al., 2011). One possible explanation is that variations 

in other physical factors act as higher-level ‘filters’ on species composition, with 

species that do not possess the necessary trait characteristics unable to persist in a 

habitat even if the physical structure is suitable (Poff, 1997). The concept of 

environmental trait filters has received much attention since the ‘habitat templet 

concept’ of Southwood (1977) and such filters may mediate key processes structuring 

communities even in complex ecosystems such as tropical forests (e.g. Lebrija-Trejos et 

al., 2010). Environmental trait filters provide a framework for assessing which scales 

give rise to the greatest influence on communities (e.g. Algar et al., 2011), as well as 

predicting the distribution of organisms (e.g. Chessman and Royal, 2004) (Poff, 1997). 

Assessing which traits are filtered out within particular habitats as well as determining 

clear species-habitat associations also has conservation importance (Roy and de Blois, 

2006). One of the major challenges in testing these ideas is that habitat structure may be 
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correlated with higher-level filters, potentially confounding observational studies and 

necessitating an experimental approach. 

 

Environmental trait filters have generated much interest in river ecosystems (e.g. Poff, 

1997; Wiens, 2002; Lamoroux et al., 2004; Statzner et al., 2004) which are naturally 

highly structured across a hierarchy of spatial scales (Vaughan et al., 2009). Variation 

in multiple physical factors such as hydraulic conditions and resource distributions at a 

range of scales have been shown to influence river communities (e.g. Vinson and 

Hawkins, 1998), whist there is also long-standing interest in the role of habitat structure 

in the distribution and abundance of benthic organisms (Percival and Whitehead, 1929, 

1930; Whitehead, 1935; Jones, 1949). Among these, macro-invertebrates are a 

widespread, abundant and highly diverse group, which have a range of body sizes 

(Hynes, 1970). They exemplify the conflicting results from studies of habitat structure, 

with equivocal effects of different structural features and on different aspects of 

assemblage composition, structure and body size (e.g. Downes et al., 1995, 1998; 

Gayraud and Philippe, 2001). Rivers therefore provide a good system in which to 

examine hypotheses about the relative importance of habitat structure and possible 

explanations for the lack of a consistent relationship with organisms. 

 

Crucially, distinguishing the effects of habitat structure from other physical factors that 

affect organisms often requires experimentation because complex interactions occur in 

the field. In rivers, hydraulic conditions at the reach scale determine substrate size, 

which affects characteristics such as surface complexity, surface area and porosity 

(Allan, 1995). Conversely, substratum characteristics govern near-bed flow conditions 

(Davis and Barmuta, 1989). Experimental studies attempting to separate the ecological 

effects of habitat structure and flow are however few (Minshall and Minshall, 1977; 

Rabeni and Minshall, 1977; Lancaster and Mole, 1999; Boyero, 2003; Scealy et al., 

2007). A further complication arises from the fact that habitat structure is confounded 

by other physical factors. For example, more complex habitats typically have a larger 

surface area than simple ones and may therefore support a greater number of species as 

a result of a species-area effect (Arrhenius, 1921; Gleason, 1922; MacArthur and 

Wilson, 1967; Connor and McCoy, 1979; Coleman et al., 1982), but studies separating 

the relative effects of complexity and surface area on freshwater macro-invertebrate 
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communities are scarce (Downes et al., 1995; Boyero, 2003; McAbendroth et al., 2005; 

Becerra-Muñoz and Schramm, 2007; Thomaz et al., 2008; Warfe et al., 2008). 

 

In this chapter, I aim to distinguish the role of local habitat structure, flow conditions 

and surface area on river macro-invertebrates, using fractal dimension to quantify 

surface complexity as evidence suggests it may not be correlated with surface area 

(Chapter 3). Two hypotheses were tested: i) greater surface complexity and interstitial 

volume increase macro-invertebrate diversity, richness and abundance whilst altering 

body size and composition independently of surface area and ii) variation among 

habitats in other conditions - in this case flow type - transcend the effects of structure 

alone. 

 

4.3. Methods 

 

4.3.1. Study area 

 

The River Wye rises in the Plynlimon Mountains, draining a catchment of 4136 km
2
 

and flowing 215 km into the Severn Estuary (Figure 1). The catchment is divided into 

upper, middle and lower sub-catchments which vary in geology, relief and land use 

(Edwards and Brooker, 1982; Jarvie et al., 2003). Ordovian or Silurian sandstones, 

shales, grits and mudstones in the upper catchment are replaced by Devonian Old Red 

Sandstone or marls in the middle and lower catchment where this study took place. 

Land use is dominated by rough semi-intensive pasture with some arable farmland in 

the south-east lowlands. Tributaries in the middle of the catchment are relatively un-

polluted and calcareous (50-250 mg CaCO3 l
-1

), contrasting with the low pH of those in 

acidified uplands and the moderately elevated biochemical oxygen demand and nutrient 

concentrations of those in the lowlands (Ormerod and Edwards, 1987; Jarvie et al., 

2003; Clews and Ormerod, 2009). Average annual rainfall varies from 900-1200 mm 

depending on altitude (Environment Agency, 2008).  

 

The experiment was conducted in 2009 (from mid-August to late September 2009) in a 

50 m section of the River Edw, a fourth-order tributary in the middle Wye catchment 

(SO 09926 48026) (Figure 1). This tributary was selected to minimise any confounding 
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effects of water quality, land use or channel modification and drained a mixture of 

rough/semi-improved pasture and broadleaved woodland. 

 

4.3.2. Sampling design 

 

Variation in fractal dimension, surface area and interstitial volume was generated by 

filling six plastic baskets (21 x 21 x 7.5 cm covered in 1.5 cm plastic mesh to prevent 

loss of substrate particles) with each the following: i) cobbles (typical diameter 80 mm), 

ii) pebbles (typical diameter 30 mm), iii) gravel (typical diameter 20 mm), iv) a 50:50 

mixture of cobbles and pebbles based on volume, v) a 50:50 mixture of pebbles and 

gravel and vi) a 50:50 mixture of cobbles and gravel (Figure 2). Baskets were sunk level 

with the river bed at random locations distributed equally among riffles and glides, two 

distinct flow types based on velocity and Froude number (Padmore, 1998). Baskets 

were deployed for between five and six weeks (due to the time required to retrieve 

them), considered sufficient for colonisation by reasonably representative macro-

invertebrate assemblages (Mason, 2002), during a period of base flows.  

 

4.3.3. Data collection  

 

Following exposure, baskets were enclosed with a standard kick-sample net (250 x 250 

mm with a 1 mm mesh) and retrieved carefully to minimise disturbance to the 

arrangement of substrate particles. 

 

Surface complexity and area 

 

Following removal, ten pin profiles of the surface of each basket were obtained using a 

profiler consisting of 87 pins at 2.4 mm intervals (Figure 3). Once the mesh was 

removed, the profiler was positioned at five 52.5 mm intervals in each direction using a 

sampling frame, each pin pushed down until it touched the surface and the height of 

each pin recorded (Figure 4). 
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Interstitial volume 

 

Each basket was submerged carefully in a bucket filled with 5 l of water and the volume 

of water displaced measured to the nearest 100 cm
3
 (≡ 3% of the basket volume). 

Interstitial volume was then estimated as the difference between the geometric volume 

of the basket (3002.5 cm
3
) and the volume of water displaced. 

 

Macro-invertebrates 

 

The contents of each basket were preserved in 70% ethanol for subsequent analysis, 

when macro-invertebrates were identified to species level where possible and counted.  

 

4.3.4. Data analysis 

 

Surface complexity and area 

 

The ten pin profiles from each basket were used to calculate the mean fractal dimension. 

Each pin profile was first digitised in ArcMap version 9.2 using Hawth’s Analysis 

Tools version 3.27 (Beyer, 2004). FracLac for ImageJ version 2.5 (Karperien, 1999) 

was used to calculate fractal dimension using the box-counting method, in which a line 

or outline is covered with a series of grids of increasing size and the number of 

occupied grid squares counted (Mandelbrot, 1983; Fielding, 1992). The slope 

coefficient from the regression of the number of grid squares occupied versus the square 

size on log-log axes then provides an estimate of fractal dimension (Mandelbrot, 1983). 

The analysis was restricted to grid squares between twice the distance between pins and 

one-fifth of the profile length to avoid fractal dimension estimates of less than 1, which 

can occur when the same number of grid squares is occupied at very large consecutive 

grid sizes (Buczkowski et al., 1998; Halley et al., 2004). For a small number of profiles 

where this did not remove the effects of these artefacts, fractal dimension estimates 

were replaced by a value of 1. 

 

An index of surface area for each basket was estimated from the square of the mean 

profile length (Kostylev et al., 2005). 
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Differences in surface complexity, surface area and interstitial volume among substrate 

types were analysed using a One-Way ANOVA followed by a Tukey test to assess 

whether they were comparable to natural substrates. 

 

Macro-invertebrates 

 

Total abundance, taxonomic richness and taxonomic diversity (using Shannon’s 

diversity index) were calculated for each basket. Logarithmically (x+1) transformed 

macro-invertebrate abundances were then analysed using Principal Component Analysis 

(PCA) extracted from a covariance matrix to assess variation in composition. This type 

of unconstrained ordination was selected as the Detrended Correspondence Analysis 

gradient lengths indicated that taxon response curves were linear (ter Braak and 

Šmilauer, 2002).  

 

The body lengths of Ephemeroptera, Plecoptera and Trichoptera (EPT), which made up 

approximately 50% of the macro-invertebrates in each basket on average, were 

determined to the nearest 0.5 mm. Measurements were made along the dorsal edge, 

excluding antennae, cerci and anal gills, for a maximum of 50 randomly selected 

individuals of each species and each taxon identified above species level. Mean body 

size and the proportion of individuals <5 mm, 5-9 mm, 10-14 mm and 15-20 mm were 

used for analyses. 

 

Relationships between structural characteristics, surface area, flow type and macro-

invertebrates 

 

Relationships between habitat structural characteristics, surface area, flow type and 

macro-invertebrates were analysed using Generalised Linear Mixed Models in ASReml 

version 3 (VSN International Ltd, 2009) or, where random effects were not required, 

Generalised Linear Models in R version 2.9.2 (R Development Core Team, 2009). 

Random effects were used to control for possible dependence on sampling date and 

basket location, but were excluded when they were not significant. Macro-invertebrate 

abundance and PCA axis 1 scores were modelled using Generalised Least Squares in 

the nlme package in R (Pinheiro et al., 2009) to allow for unequal variances among flow 

types. Error and link functions are given in Table 1. Models for proportions of 
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individuals in body size classes included a scaling parameter to account for 

overdispersion. Models were checked for validity through assessment of standardised 

residuals and refined using stepwise deletions at the P=0.05 level of significance.  

 

4.4. Results 

 

Structural characteristics and surface area among substrate types 

 

Fractal dimension (F=6.09; P<0.001; DF=5, 30), surface area (F=13.07; P<0.001; 

DF=5, 30) and interstitial volume (F=2.96; P=0.028; DF=5, 30) varied significantly 

among substrate types (Figure 5). Fractal dimension was significantly greater for 

pebbles than cobbles and cobbles/gravel whilst surface area was significantly greater for 

cobbles and cobbles/pebbles than gravel, pebbles/gravel and cobbles/gravel, and for 

pebbles than gravel (P<0.05). Interstitial volume was significantly greater for gravel 

than cobbles/pebbles (P<0.05).  

 

Macro-invertebrate composition 

 

In PCA, two axes explained 63% of the variation in composition, with axis 1 explaining 

57% (Figure 6). Axis 1 scores completely separated riffles from glides (Figure 7) and 

represented increasing numbers of fast-flow specialists such as Hydropsyche siltalai, 

Baetis rhodani and Rhithrogena semicolorata whilst Erpobdella octoculata, 

Paraleptophlebia submarginata and Plectrocnemia conspersa declined. On axis 2, 

Sericostoma personatum, Glossosoma spp. and Ancylus fluviatilis increased whilst 

Hydropsyche pellucidula, Baetis rhodani and Simulidae declined, but this far weaker 

axis was excluded from subsequent analyses and it appeared to have no relevance to 

structural characteristics or flow type. 

 

Relationships between structural characteristics, surface area, flow type and macro-

invertebrates 

 

Macro-invertebrate richness (by c 50%), abundance (by c 300%) and PCA axis 1 scores 

were significantly greater for riffles than glides, whilst mean body size was smaller by 

approximately 15% (Tables 1 and 2).   
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The proportion of individuals <5 mm also increased with the surface area of a basket 

whilst the proportion of individuals 5-9 mm decreased (Table 1). As the estimated 

surface area of a basket increased from 0.08 m
2
 to 0.18 m

2
 the proportion of individuals 

<5 mm increased from 51% to 62%, whist the proportion of individuals 5-9 mm 

decreased from 43% to 28% (Table 3).  

 

Macro-invertebrate diversity, richness, abundance, PCA axis 1 score and mean body 

size did not vary with fractal dimension or interstitial volume (Table 1). In other words, 

in contrast to the effects of flow type, neither macro-invertebrate assemblage 

composition nor structure varied with surface complexity or interstitial volume. 

 

4.5. Discussion 

 

This study is one of the first experimental attempts to separate habitat complexity from 

the ecological effects of flow velocity in rivers - two of the major factors thought to 

influence river organisms. Whilst individually both have been widely studied, 

experimental studies separating their influences are rare (Minshall and Minshall, 1977; 

Rabeni and Minshall, 1977; Lancaster and Mole, 1999; Boyero, 2003; Scealy et al., 

2007). Even fewer have assessed the ecological effects of a gradient of substratum 

complexity (e.g. Taniguchi and Tokeshi, 2004).  

 

Whilst habitat structure provided by the substratum is considered one of the most 

important local factors affecting macro-invertebrates in rivers (Hynes, 1970), the results 

of this study suggest that the effects of other physical factors - in this case flow type - 

are greater. Substrate size and roughness typically emerge as being of secondary 

importance to flow effects in the field (Quinn and Hickey, 1994; Mérigoux and 

Dolédec, 2004; Brooks et al., 2005; cf. Beisel et al., 1998), although situations occur in 

which flow velocity and surface complexity are related to different aspects of macro-

invertebrate assemblage composition and structure (Downes et al., 1995). Previous 

experimental studies have however indicated that both flow and habitat complexity have 

effects on organisms, and that these effects may be interactive (Rabeni and Minshall, 

1977; Lancaster and Mole, 1999; Boyero, 2003). Placement of large pebbles, a substrate 

type associated with erosional areas, into riffles (erosional areas) and pools 

(depositional areas) indicated that both substrate and current velocity were important 



Chapter 4 

106 

(Minshall and Minshall, 1977). In a laboratory flume, Baetis rhodani was only able to 

persist in its preferred fast current velocities on rough substrates (Lancaster and Mole, 

1999). In contrast, a broad categorisation of flow types was sufficient to explain most of 

the variation in macro-invertebrate richness, abundance, composition and mean body 

size in this study, despite the fact that near-bed flow conditions are likely to have varied 

within riffles and glides (Davies and Barmuta, 1989; Padmore, 1998). Evidence that 

riffles may support a greater richness and abundance of organisms than slower-flowing 

habitats is long-standing, and riffles in this study were characterised by baetid and 

heptageniid mayflies, hydropsychid caddisflies, stoneflies and simuliids in agreement 

with previous studies (Hynes, 1970; Minshall and Minshall, 1977; Logan and Brooker, 

1983; Brown and Brussock, 1991). In the present study, greater abundances of these 

taxa in riffles resulted in high unevenness of assemblages, and subsequently riffles did 

not support a greater diversity than glides. 

 

Surface complexity provided by substratum roughness, crevices and bed topography can 

increase macro-invertebrate diversity, richness and abundance (Douglas and Lake, 

1994; Downes et al., 1998; Robson and Chester, 1999) as well as alter assemblage 

composition (Downes et al., 1998, 2000a). Interstices in large and medium sized 

substrates also provide an important habitat for macro-invertebrates (Harper et al., 

1995; Robertson and Wood, 2010), with experimental studies showing that gravel and 

cobbles containing interstitial spaces supported a greater richness and abundance than 

cement-embedded substrates with few interstices (Flecker and Allan, 1984). 

Conversely, reduction in interstitial volume, for example due to the accumulation of 

fine substrates, decreases the richness and abundance of macro-invertebrates (Richards 

and Bacon, 1994; Gayraud and Philippe, 2001, 2003; Bo et al., 2007). Other studies 

have however found that only certain structural features are important (Downes et al., 

1995), or that there are only effects on aspects of assemblage structure (Downes et al., 

2000a, 2000b) or particular species (Downes and Jordan, 1993). Similarly contrasting 

results have been found among macro-invertebrate assemblages on freshwater 

macrophytes (e.g. Jeffries, 1993; Taniguchi et al., 2003; Thomaz et al., 2008; Warfe et 

al., 2008; Dibble and Thomaz, 2009; Mormul et al., 2011; cf. McAbendroth et al., 

2005; Ferreiro et al., 2011) and among the fauna of rocky shores (Beck, 1998; Johnson 

et al., 2003; Kostylev et al., 2005; Meager et al., 2011; cf. Attrill et al., 2000).   
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The results of this study are consistent with the hypothesis that other physical factors act 

as higher-level filters on species composition. Whilst small body size may be an 

adaptation to both substrate size and complex near-bed hydraulic conditions 

(Lamouroux et al., 2004), other studies have shown that flow conditions are the main 

filter acting on body size (Mérigoux and Dolédec, 2004). Smaller body size reduces 

drag and enables macro-invertebrates to avoid hydraulic stress by remaining within the 

boundary layer (Hynes, 1970; Lamouroux et al., 2004; Townsend and Thompson, 

2007). Macro-invertebrates also exhibit ontogenetic shifts in hydraulic habitat use, with 

early instars of species such as Baetis rhodani, Rhithrogena semicolorata and 

Hydropsyche siltalai occupying areas of greater current velocity than late instars to 

ensure occurrence in approximately constant hydraulic conditions (Statzner and 

Borchardt, 1994; Hanquet et al., 2004). 

  

Previous studies have reported weak relationships between substrate size and the body 

size distribution of macro-invertebrates (Bourassa and Morin, 1995; Solimini et al., 

2001). However, habitats of a greater fractal dimension typically support a greater 

proportion of small organisms than simple ones in a number of ecosystems (Morse et 

al., 1985; Shorrocks et al. 1991; Williamson and Lawton, 1991; Gunnarsson, 1992; Gee 

and Warwick, 1994; Kostylev et al., 2005; McAbendroth et al., 2005; Ferreiro et al., 

2011; Meager et al., 2011). Previous experimental studies in rivers have shown that 

individuals of smaller average body size occurred on plates of greater fractal dimension 

(Taniguchi and Tokeshi, 2004), whilst rough substrates with small crevices supported a 

greater proportion of small individuals than smooth substrates (Downes et al., 1998). 

Interstitial space is also considered to have an important effect on body size since this 

determines the ability of species to penetrate the substratum (Gayraud and Philippe, 

2001; Robertson and Wood, 2010). Smaller body size enables organisms to occupy 

small interstices between substrate particles, whilst larger macro-invertebrates are 

restricted to large pore spaces (Gayraud and Philippe, 2001; Schmid and Schmid-Araya, 

2010). Long, cylindrical body shapes also enable organisms to move within very fine 

sediments (Williams and Hynes, 1974; Lamouroux et al., 2004; Omesová et al., 2008). 

Studies have also shown that body size scales with the fractal dimension of the 

boundary between pore spaces and substrate particles, with the proportion of 

intermediate sized individuals increasing with pore complexity (Schmid et al., 2002).  
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Contrary to the majority of previous studies assessing the relative importance of habitat 

complexity and surface area, surface area did not have an effect on macro-invertebrate 

richness or abundance (Downes et al., 1995; Attrill et al., 2000; Boyero, 2003; Kostylev 

et al., 2005; Becerra-Muñoz and Schramm, 2007; Thomaz et al., 2008; Warfe et al., 

2008; cf. McAbendroth et al., 2005). The increased proportion of small- (<5 mm) 

relative to intermediate- (5-9 mm) sized individuals on substrates with greater surface 

areas is difficult to explain, however it is possible that this was not an effect of area in 

the strictest sense, and that larger substrates, which tended to have a larger surface area, 

were more exposed to size-selective predation, near-bed hydraulic conditions or 

different resource conditions (Townsend and Thompson, 2007). 

 

As with all ecological experiments this study had some limitations, and care is therefore 

needed in transferring the results to real field circumstances. Firstly, uncontrolled 

variations in environmental conditions are likely to have generated variations among 

baskets and restrict the extent to which results can be extrapolated. Secondly, whilst 

previous studies have reported mixed effects of substrate size and composition on 

interstitial volume (Gayraud and Philippe, 2001, 2003), differences in interstitial 

volume among substrates in this study may have been reduced by the accumulation of 

fine substrates or detritus during exposure or below the level of detection by water 

displacement (Gayraud and Philippe, 2003). In addition, both surface complexity and 

area were derived from two-dimensional profiles which are unable to capture overhangs 

or the three-dimensional shape of crevices and spaces and may not be representative of 

the surface as a whole. Surfaces which have a different number of crevices or spaces of 

different sizes may also have the same fractal dimension (Sanson et al., 1995). Thirdly, 

time constraints resulted in the survey being conducted during late summer, by which 

time some insects may have emerged as adults, with likely effects on assemblage 

composition and body size distribution (Hynes, 1970). Limited colonisation time did not 

however appear to result in the absence of taxa occurring naturally on the substratum 

during a similar period in the previous year. With two exceptions all of the taxa found in 

gravel, pebbles and cobbles at the study site during the field survey in September 2008 

colonised experimental baskets, and on average baskets supported greater macro-

invertebrate diversity, richness and total abundance than natural gravel, pebbles and 

cobbles at both the study site and across sites (Chapter 3). Furthermore, variations 

among substrate types reflected those among natural substrates for both fractal 



Chapter 4 

109 

dimension (cobbles<gravel<pebbles) and surface area (gravel<pebbles<cobbles), 

although average fractal dimension tended to be lower than for natural substrates and 

average surface area tended to be greater relative to the sampled area (Chapter 3).  

 

These data therefore only give empirical support to the second hypotheses: habitat 

structure had no effect on macro-invertebrates. Instead, macro-invertebrate assemblage 

composition and structure appeared to vary along other physical dimensions which 

filtered species based on their body size. Given the relationship between discharge and 

channel form in rivers, this implies that observed differences in assemblages among 

habitats result from flow related-effects, rather than habitat structure per se. Species 

distributions may vary along other physical dimensions and cannot be assumed to result 

from habitat structure unless the effects of other physical factors are excluded.  

 

In summary, whilst substrates with greater surface areas supported an increased 

proportion of small- (<5 mm) relative to intermediate- (5-9 mm) sized individuals, 

surface complexity and interstitial volume had no measurable effect on macro-

invertebrates. Instead, flow type explained significant variations in macro-invertebrate 

richness, abundance, composition and mean body size, with riffles supporting richer 

assemblages containing greater numbers of individuals of smaller mean body size. 
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Table 2. Predicted macro-invertebrate diversity, richness, abundance, Principal 

Component Analysis (DCA) axis 1 score and mean body size among flow types ± 95% 

confidence intervals where available. 

 

 

 

 

 

 

 

 

Table 3. Predicted proportions of individuals <5 mm and 5-9 mm at the minimum (0.08 

m
2
) and maximum (0.18 m

2
) surface areas recorded (to 2 d.p) ± 95% confidence 

intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 
Flow type 

Riffle  Glide 

   
Richness 41±2 28±1 

Abundance 1127 295 

PCA axis 1 score 4.66 0.48 

Mean body size 4.86±0.17 5.58±0.19 
   

Model 
Surface area 

0.08 m
2
 0.18 m

2
 

   
Proportion <5 mm 0.51±0.10 0.62±0.11 

Proportion 5-9 mm 0.43±0.09 0.28±0.08 
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Figure 1. Location of the River Edw, a tributary of the River Wye. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Examples of experimental baskets filled with cobbles, pebbles, gravel and 

50:50 mixtures.  
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Figure 3. Profiler and example profile used to assess surface complexity and area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Sampling frame (0.25 x 0.25 m) showing the location of holes for positioning 

the profiler.  
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Figure 6. Principal Component Analysis (PCA) loading plot of macro-invertebrates. For 

clarity not all taxa are shown. 

 

 

 

Figure 7. Principal Component Analysis (PCA) score plot with samples grouped by 

flow type. Glides = ■ and riffles = □. 
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5. Effects of habitat identity and heterogeneity on                 

macro-invertebrate assemblages, nestedness and species traits in 

rivers 

 

5.1. Abstract 

 

1. Physical modifications can represent a major ecological impairment in rivers by 

affecting organisms and ecological processes. Physical habitat management has 

therefore become an important focus for river management and conservation, founded 

on the assumption that greater habitat heterogeneity supports greater biodiversity. 

Variations in habitat identity and heterogeneity might also affect the organisation of 

assemblages, for example because species are ‘nested’ among habitats or reaches. 

Direct evidence to support these assumptions is, however, surprisingly scarce. 

 

2. Three hypotheses were tested at the patch and reach scale in tributaries of the Rivers 

Wye and Usk, mid-Wales (UK): i) mineral habitats (defined below) support macro-

invertebrate assemblages of lower taxonomic diversity, richness, abundance and trait 

diversity, which are nested sub-sets of those in organic habitats (defined below), ii) 

homogeneous reaches support assemblages of lower taxonomic diversity, richness, 

abundance and trait diversity, which are nested sub-sets of those in heterogeneous 

reaches and iii) nestedness is attributed to differences in trait diversity and composition 

among assemblages. 

 

3. Habitat heterogeneity (the number of patches, the number of habitats and habitat 

diversity) was determined for 18 x 10 m river sections. Within each section, macro-

invertebrate assemblages were sampled randomly from organic (macrophytes, moss, 

leaf litter and tree roots) and mineral habitats (boulders, cobbles, pebbles, gravel, sand, 

silt and bedrock). 

 

4. At the patch scale, some organic habitats - in particular macrophytes and moss - 

supported greater macro-invertebrate diversity, abundance and trait diversity, as well as 

disproportionally greater richness, than some mineral habitats - in particular bedrock. 

Macro-invertebrate assemblages were highly nested, with those occurring on bedrock, 
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boulders and cobbles appearing to be sub-sets of those occurring on macrophytes, moss 

and tree roots. Nested assemblages had lower trait diversity and altered habitat and 

feeding trait representation. 

 

5. River sections containing fewer habitats supported macro-invertebrate assemblages 

of lower abundance, but not richness, taxonomic diversity or trait diversity, which 

appeared to be weakly nested sub-sets of those in heterogeneous sections. This is 

probably because habitats in homogeneous sections were not sub-sets of those in 

heterogeneous ones. 

 

6. These results support the first and third hypotheses with two major implications for 

river conservation. Firstly, conserving or restoring patches of macrophytes and moss is 

likely to enhance local richness and prevent a reduction in trait diversity in stony-bed 

rivers. Secondly, restoration strategies that maximise the area of species-rich habitats 

are likely to enhance species richness more than those simply increasing habitat 

heterogeneity. Further research is required to assess the generality of these results.  
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5.2. Introduction 

 

Rivers naturally consist of mosaics of physical habitat across a range of scales, with 

their heterogeneity varying laterally, longitudinally and in relation to stream size 

(Tockner and Ward, 1999; Ward et al., 2002). Like many other ecosystems, rivers have 

been extensively modified as a result of widespread human influences, with activities 

such as channel engineering, water abstraction and flow regulation causing direct and 

indirect changes to river habitats (Malmqvist and Rundle, 2002). Whilst recognition of 

the importance of physical habitat is long-standing in river ecology (Percival and 

Whitehead, 1929; Whitehead, 1935; Jones, 1949), it has only become a central focus for 

river management and conservation in recent decades (e.g. Harper and Everard, 1998). 

This change of emphasis is in part due to improvements in water quality, which has 

typically dominated river management, highlighting the effects of changes in physical 

habitat on river biodiversity (Vaughan et al., 2009). In Europe, the Water Framework 

Directive (2000/60/EC) has also been a major legislative driver, stating explicitly that 

hydromorphology should support ‘good ecological status’ (European Commission, 

2000). This and parallel conservation legislation elsewhere has increased initiatives to 

restore rivers, a trend which is expected to continue (Lake et al., 2007; England et al., 

2008).  

 

Whilst some river restoration strategies aim to return rivers as closely as possible to 

natural conditions, the most common restoration measures involve adding woody 

debris, boulders or gravel to river reaches (Feld et al., 2011). This strategy is based on a 

‘building-block’ approach to enhancing habitat heterogeneity, in which different 

habitats are progressively added to a river channel as though they were units resembling 

building blocks (Petersen et al., 1992). This approach is perceived as being more 

manageable than attempting to influence individual species or factors such as natural 

disturbance regime (Harper et al., 1995; Palmer et al., 2010). Central to this habitat-

based approach is the widespread assumption that greater habitat heterogeneity supports 

greater biodiversity (Harper and Everard, 1998; Palmer et al., 2010). Greater species 

richness is expected to arise from a greater range of niches (Shmida and Wilson, 1985; 

Townsend and Hildrew, 1994), a reduction in the likelihood of competitive exclusion 

(Townsend and Hildrew, 1994), provision of refugia from the effects of disturbance and 

predation (Townsend and Hildrew, 1994; Brown, 2003) and a greater range of food 
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resources (Beisel et al., 2000). Direct evidence to support this basic assumption remains 

scarce (e.g. Beisel et al., 2000; Brown, 2003; Palmer et al., 2010), whilst critical 

reviews suggest that the restoration of physical heterogeneity in rivers is not guaranteed 

to enhance biodiversity (Palmer et al., 2010; Feld et al., 2011). Closer evaluation of the 

underlying theory about the relationship between habitat heterogeneity and biodiversity 

in rivers therefore seems important to river conservation and restoration. 

 

Alongside the requirement to re-appraise basic theory linking diversity to habitat 

structure in rivers is a need to incorporate recent perspectives that move beyond 

assemblage composition to emphasise ecological function. Reductions in species 

diversity are postulated to affect ecosystem functioning as species with particular traits 

are replaced by others (Loreau et al., 2001; Palmer et al., 2010). Such changes in trait 

composition can aid in diagnosing changes in environmental conditions whilst 

providing a mechanistic understanding of the factors responsible for organisms’ 

responses. This approach is becoming increasingly widespread, particularly in Europe 

where trait information for macro-invertebrates is readily available (Statzner et al., 

2001). Underlying this approach is the hypothesis that environmental variations among 

habitats act as a templet onto which species traits have evolved (Southwood, 1977). In 

rivers, these ideas have been recast as the River Habitat Templet (Townsend and 

Hildrew, 1994) and combined with evidence to reveal how trait composition varies 

among habitats (Usseglio-Polatera, 1994; Usseglio-Polatera et al., 1999). Assessments 

of macro-invertebrate traits in relation to habitat heterogeneity are, however, still rare 

(e.g. Jähnig et al., 2009), despite their potential to provide insights into how habitat 

heterogeneity affects assemblage structure and ecological function (Beisel et al., 1998).  

 

A further important consideration in understanding habitat structure in rivers is the need 

to appraise how species assemblages are organised in space, and in particular the extent 

to which species are nested among the habitat patches that comprise reach scale 

mosaics. Often regarded as the inverse of beta diversity, high degrees of nestedness 

occur when assemblages in species-poor locations are sub-sets of those in richer 

locations, with evidence suggesting that this pattern might be widespread across a range 

of taxa and environments (Patterson and Atmar, 1986; Wright et al., 1998; Leibold and 

Mikkelson, 2002). The effect has been attributed to a number of mechanisms including 

differences in extinction probabilities, variations in colonisation, gradients in habitat 



Chapter 5 

132 

quality along which species vary in their precise requirements, and gradients in habitat 

heterogeneity (Hylander et al., 2005; Heino et al., 2010). One major implication for 

conservation biology is that species protection in highly nested assemblages could be 

optimised by preserving species-rich locations (Malmqvist and Hoffsten, 2000). More 

directly in relation to habitat degradation or restoration, nestedness may help to 

determine how habitat modification affects species diversity in any given location 

(Cook, 1995).  

 

Despite long-standing recognition of nestedness in conservation biology more generally 

(Patterson, 1987; Cutler, 1994), there have been relatively few applications to macro-

invertebrate assemblages in rivers and even fewer attempts to assess the potential 

mechanisms (Omesová et al., 2008; Heino et al., 2009, 2010). Most studies across 

ecosystems have focused on extinction and colonisation as possible underlying 

mechanisms whilst the importance of habitat quality or heterogeneity has received 

relatively little interest (Cutler, 1994; Hylander et al., 2005; Heino et al., 2010). In 

rivers, organic habitats such as macrophytes, moss, tree roots and woody debris could 

represent ‘high quality’ habitats, contributing disproportionately to macro-invertebrate 

species richness based on their coverage of the river channel (Harper et al., 1995; 

Shupryt and Stelzer, 2009). Relatively species-poor assemblages in ‘low quality’ 

mineral habitats such as bedrock or silt may therefore represent nested sub-sets of these 

assemblages, supporting species which vary in their precise environmental 

requirements. There is however also a general scarcity of studies examining whether 

species nestedness in macro-invertebrate assemblages is attributed to the representation 

of certain traits (e.g. Omesová et al., 2008; Heino, 2009; Heino et al., 2009; Larsen and 

Ormerod, 2010). Moreover, habitat heterogeneity could have major implications for 

reach scale species diversity by promoting nestedness in assemblages if homogeneous 

sites contain a sub-set of the habitats occurring in heterogeneous ones (Hylander et al., 

2005).   

 

This chapter tested the hypotheses that: i) mineral habitats support macro-invertebrate 

assemblages of lower taxonomic diversity, richness, abundance and trait diversity, 

which are nested sub-sets of those in organic habitats, ii) homogeneous reaches support 

assemblages of lower taxonomic diversity, richness, abundance and trait diversity, 
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which are nested sub-sets of those in heterogeneous reaches and iii) nestedness is 

attributed to differences in trait diversity and composition among assemblages. 

 

5.3. Methods 

 

5.3.1. Study area 

 

The Welsh Rivers Wye and Usk drain catchments of 4136 km
2 

and 1358 km
2
 

respectively, flowing 215 km and 120 km into the Severn Estuary (Figure 1). The Wye 

rises in the Plynlimon Mountains (National Grid reference SN 795 864) and the Usk on 

the Black Mountain (National Grid reference SN 819 239). 

 

Although the Wye catchment varies in geology, relief and land use between upper, 

middle and lower sub-catchments (Edwards and Brooker, 1982; Jarvie et al., 2003), 

work for this study focused on the middle catchment draining Devonian Old Red 

Sandstone or marls. Land use here is dominated by rough/semi-improved pasture and 

tributaries are relatively un-polluted and calcareous (50-250 mg CaCO3 l
-1

), contrasting 

with the low pH of those in the acidified uplands and the moderately elevated 

biochemical oxygen demand (BOD) and nutrient concentrations of those in the 

lowlands (Ormerod and Edwards, 1987; Jarvie et al., 2003; Clews and Ormerod, 2009). 

Average annual rainfall varies from 900-2100 mm depending on altitude (Environment 

Agency, 2008).  

 

The land use and geology of the Usk catchment matches the middle Wye catchment and 

general water quality, BOD and nutrient concentrations are also similar (Environment 

Agency, 2007, 2009). River discharge varies closely with rainfall, which averages 1336 

mm annually across the catchment (Environment Agency, 2007).  

 

Fieldwork was conducted in 2008 (from September to October) at 3 x 10 m sections at 

three sites on the Edw, a tributary in the middle Wye catchment, and in 2009 (from July 

to August) at 3 x 10 m sections at single sites on the upper Usk and two of its 

tributaries, the Honddu and Tarrell (Table 1; Figure 1). Tributaries were selected to 

minimise any confounding effects of water quality, land use or channel modification 

and drained a mixture of rough/semi-improved pasture and broadleaved woodland.  
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5.3.2. Data collection  

 

Habitat heterogeneity  

 

The habitat mosaic within each river section was mapped onto a 0.25 m grid. Visual 

assessments of substrate size were made based on the Wentworth scale (Wentworth, 

1922) whilst patches of macrophytes were classified by species and patches of moss 

were classified as ‘moss’.  

 

Macro-invertebrates 

 

Within each river section, macro-invertebrates within 0.25 x 0.25 m were kick-sampled 

for 1 minute using a standard net (0.25 x 0.25 m with a 1 mm mesh) at five random 

locations at which mineral habitats occurred and additional random locations to ensure 

all habitats occurring in patches covering 0.25 x 0.25 m were sampled. This resulted in 

a total of 153 samples of 18 habitats (bedrock=7, clay=1, silt=5, sand=4, gravel=16, 

pebbles=29, cobbles=47, boulders=13, leaf litter=3, tree roots=8, woody debris=1, 

Callitriche sp.=1, Oenanthe crocrata=1, Mentha aquatica=1, Myriophyllum sp.=1 and 

moss=15). Samples were preserved in 70% ethanol for subsequent analysis, when 

macro-invertebrates were identified to species level where possible and counted. Due to 

an insufficient number of samples, those from Callitriche sp., Oenanthe crocrata, 

Mentha aquatica and Myriophyllum sp. are subsequently referred to as ‘macrophytes’ 

and were treated as a single habitat type in subsequent analyses. Samples from clay and 

woody debris were also scarce, and were excluded from subsequent analyses unless 

otherwise stated. 

 

5.3.3. Data analysis  

 

Macro-invertebrates 

 

Total abundance, taxonomic richness and taxonomic diversity (using Shannon’s 

diversity index) were calculated from the raw macro-invertebrate data. Trait diversity 

for each sample was calculated based on available information for 13 biological species 

traits (Table 2) (Schmidt-Kloiber and Hering, 2011 and references therein). Group-wide 
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averages were used for taxa identified above species level. Fuzzy coding was used to 

determine the affinity of each taxon for the categories of each trait and each affinity 

score re-scaled as a proportion of 1 (Chevenet et al., 1994). For each sample, affinity 

scores were then multiplied by log(x + 1) abundance of each taxon and the sum of taxon 

affinity scores for each category of each trait used to produce an abundance-weighted 

trait profile (Dolédec et al., 2000; Archaimbault et al., 2005). Trait diversity for each 

sample was calculated as the average diversity (using Shannon’s diversity index) across 

traits (Larsen and Ormerod, 2010).  

 

Macro-invertebrates among habitats 

 

Differences in abundance, taxonomic diversity and trait diversity among organic and 

mineral habitats were analysed using General Linear Mixed Models (GLMMs) in 

ASReml version 3 (VSN International Ltd, 2009). Abundance was normalised using a 

logarithmic transformation prior to analysis. A random effect was used to control for 

dependence on site. Models were checked for validity through assessment of 

standardised residuals and refined using stepwise deletions at the P=0.05 level of 

significance. In models where habitat was significant, differences in macro-

invertebrates among pairs of organic and mineral habitats were analysed using Wald 

tests. 

 

To assess whether organic habitats supported disproportionately greater macro-

invertebrate species richness, a sample-based rarefaction curve (Gotelli and Colwell, 

2001) was generated for each habitat by randomising sample order 100 times using the 

vegan package (Oksanen et al., 2010) in R version 2.9.2 (R Development Core Team, 

2009). Rarefaction rather than accumulation curves based on a single order of samples 

were used to avoid variations in the shape of the curve resulting from sample order and 

produce smooth curves facilitating comparisons among habitats (Colwell and 

Coddington, 1994; Gotelli and Colwell, 2001). Differences in rarefaction curves among 

organic and mineral habitats were analysed using General Linear Models in R following 

a reciprocal transformation to linearise the relationship. Rarefied taxonomic richness 

was compared between the sampled area of organic habitats (0.0625 m
2
) and areas of 

mineral habitats up to five times as large (0.325 m
2
) using the contrast package (Kuhn, 

2009) in R.  
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Patterns of macro-invertebrate nestedness were determined using the binary matrix 

nestedness temperature calculator (BINMATNEST) (Rodríguez-Gironés and 

Santamaría, 2006). BINMATNEST calculates the temperature (T) of a presence-

absence species matrix by re-ordering rows and columns to maximise nestedness. For 

perfectly nested matrices, in which species-poor assemblages are perfect sub-sets of 

richer assemblages and rare species are only found in rich assemblages, T=0 ˚C, whilst 

for totally random matrices where species are often unique to individual assemblages, 

T=100 ˚C (Cook, 1995; Rodríguez-Gironés and Santamaría, 2006). The temperature 

method is insensitive to matrix size and the original ranking of samples (Cook, 1995; 

Wright et al., 1998). The statistical significance of T was determined from comparisons 

with 400 random matrices generated using null model 3, in which the probability that a 

cell in a random matrix is occupied equals the average occupancy of its row and column 

in the actual matrix (Rodríguez-Gironés and Santamaría, 2006). This null model is the 

most conservative but reduces Type I errors - incorrectly rejecting the null hypothesis 

(Rodríguez-Gironés and Santamaría, 2006). To determine whether the macro-

invertebrate assemblages of mineral habitats were nested sub-sets of those from organic 

ones, differences in average sample rank in the maximally packed matrix among 

habitats were analysed using a Kruskal-Wallis test followed by Mann-Whitney tests 

among pairs of organic and mineral habitats. P=0.002 (=0.05/28) was used as the 

critical level of significance for Mann-Whitney tests to reduce the chance of Type I 

errors. Relationships between nestedness and habitat heterogeneity (see below) were 

analysed using Spearman’s rank correlations. P=0.017 (=0.05/3) was used as the critical 

level of significance to reduce the chance of Type I errors. To assess whether nestedness 

in macro-invertebrate assemblages was attributed to differences in trait diversity and 

composition, sample rank was related to trait diversity and the proportions of selected 

microhabitat/substrate preferences and feeding types using Spearman-rank correlations. 

P=0.05/number of categories for a particular trait was used as the critical level of 

significance to reduce the chance of Type I errors. 

 

Habitat heterogeneity  

 

Habitat maps were digitised in ArcMap version 9.2 using ArcScan (ESRI, 2006). Patch 

Analyst version 4.2 (Rempel et al., 2008) was used to calculate the number of patches, 



Chapter 5 

137 

the number of habitats and habitat diversity (using Shannon’s diversity index) within 

each river section.  

 

Relationships between habitat heterogeneity and macro-invertebrates 

 

Relationships between the number of patches, the number of habitats and habitat 

diversity within a river section and macro-invertebrates, including from clay and woody 

debris, were analysed using GLMMs using the package asreml version 2 (Butler, 2006) 

in R. A random effect was used to control for dependence on river section as well as 

pseudoreplication. Models were checked for validity through assessment of 

standardised residuals and refined using stepwise deletions at the P=0.05 level of 

significance.  

 

5.4. Results 

 

Macro-invertebrates among habitats 

 

Macro-invertebrates varied significantly among habitats based on several metrics (Table 

3). Taxonomic diversity was significantly greater on tree roots, macrophytes and moss 

than on boulders or bedrock; leaf litter than on boulders; tree roots than silt but also 

gravel than in moss (P<0.05) (Table 4). Abundance was significantly greater on 

macrophytes and moss than in mineral habitats, and in leaf litter and tree roots than on 

bedrock and sand (P<0.05). Trait diversity was significantly greater on leaf litter, tree 

roots, macrophytes and moss than on bedrock, and on macrophytes and moss than in 

pebbles, cobbles and boulders (P<0.05). No other differences in macro-invertebrates 

among organic and mineral habitats were significant. 

 

Rarefaction curves, showing the accumulation of species with increasing area, varied 

significantly among habitats (F=499.85; P<0.001; DF=10, 129) (Figure 2). Sample-

based rarefied taxonomic richness was significantly greater on macrophytes than in 

areas of bedrock, silt, sand and boulders five times as large, cobbles three times as large 

and gravel and pebbles twice as large (P<0.05). Richness in moss was significantly 

greater than on areas of bedrock five times as large, silt and boulders three times as 

large, sand twice as large and in equivalent areas of gravel, pebbles and cobbles 
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(P<0.05). Richness in leaf litter was significantly greater than on areas of bedrock four 

times as large and in equivalent areas of silt, sand and boulders (P<0.05) but less than 

equivalent areas of gravel and pebbles (P<0.05) and not significantly different from an 

equivalent area of cobbles (P=0.11). Richness in tree roots was significantly greater 

than on areas of bedrock four times as large, boulders twice as large and in equivalent 

areas of silt, sand and cobbles (P<0.05) but less than equivalent areas of pebbles 

(P<0.05) and not significantly different from an equivalent area of gravel (P=0.38). 

 

Nestedness 

 

Macro-invertebrate assemblages were highly nested (T=7.3 ˚C; P<0.001) (Figure 3), 

with sample rank varying significantly among habitats (H=54.06; P<0.001; DF=10) 

(Table 5). Boulders, cobbles and pebbles supported assemblages that were apparently 

nested sub-sets of those on macrophytes whilst bedrock, boulders and cobbles had 

nested assemblages compared to moss (P<0.002). Bedrock supported assemblages that 

were nested compared to tree roots (P<0.002). Assemblages from river sections with 

fewer habitats were apparently weakly nested sub-sets of those from river sections with 

a greater number of habitats (rs=-0.32; P<0.001; n=151), however there was no 

correlation between sample rank and the number of patches (rs=-0.04; P=0.654; n=151) 

or habitat diversity (rs=0.00; P=0.973; n=151). 

 

Nested assemblages had significantly lower trait diversity than species-rich assemblages 

(rs=-0.63; P<0.001; n=151) and were characterised by a greater representation of taxa 

preferring coarse gravel to cobbles, whilst richer assemblages were characterised by a 

greater representation of taxa preferring algae and woody debris (Table 6). Richer 

assemblages were also characterised by a greater representation of miners, xylophagous 

taxa, filter feeders, predators and parasites (Table 6).  

 

Relationships between habitat heterogeneity and macro-invertebrates 

 

River sections containing a greater number of habitats supported assemblages that were 

greater in abundance but not taxonomic diversity, richness or trait diversity, than 

homogeneous ones (Table 7). Macro-invertebrate assemblages were unrelated to the 

number of patches or habitat diversity.  
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5.5. Discussion 

 

Several important results emerged from this study, providing support for the first and 

last hypothesis but only limited support for the second. Firstly, some organic habitats - 

in particular macrophytes and moss - supported greater macro-invertebrate diversity, 

richness, abundance and trait diversity than some mineral habitats - in particular 

bedrock. Secondly, macro-invertebrate assemblages appeared to be highly nested 

among habitats. The combination of nestedness and trait analysis also revealed that 

nestedness may be attributed to differences in trait diversity and composition, with 

nested assemblages having reduced trait diversity and altered habitat and feeding trait 

representation. Finally, despite differences in macro-invertebrates among habitats, 

habitat heterogeneity had no effect on macro-invertebrate diversity, richness or trait 

diversity, and in general did not promote nestedness in species assemblages. The 

implications of these results are discussed below. 

 

Previous studies have shown that both macrophytes (Percival and Whitehead, 1929; 

Wright et al., 1983, 1992; Armitage and Cannan, 2000; Harrison, 2000) and moss 

(Percival and Whitehead, 1929; Brusven et al., 1990; Suren, 1991; Downes et al., 1995; 

Beisel et al., 1998; Cattaneo et al., 2004) support greater abundances and richness of 

macro-invertebrates than a number of mineral habitats. Leaf litter and tree roots are also 

important habitats for macro-invertebrates, with tree roots supporting greater macro-

invertebrate richness and abundance than a range of mineral habitats (Beisel et al., 

1998), whilst leaf litter enhances the abundance of some species (Egglishaw, 1964; 

Palmer et al., 2000). In this study, leaf litter and tree roots supported similar, if not 

lower, diversity, richness and abundance than gravel, pebbles and cobbles, however 

bedrock, silt, sand, bedrock and boulders were typically characterised by lower richness 

and abundance in agreement with previous studies (Percival and Whitehead, 1929; 

Hynes, 1970). In addition, the results suggest that macrophytes and moss in particular 

supported disproportionately greater macro-invertebrate richness than areas of mineral 

habitats several times as large, in agreement with previous studies (Harper et al., 1995; 

Shupryt and Stelzer, 2009). Greater trait diversity on macrophytes and moss compared 

to most mineral habitats, and in leaf litter and tree roots compared to on bedrock, is 

likely to reflect the greater range of niche opportunities for organisms. For example, 

whilst macrophytes provide a food resource for shredders and miners (Harper et al., 
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1995; Harrison, 2000), leaves and stems also accumulate periphyton and particulate 

organic matter providing food for other functional feeding groups which also occur in 

other habitats (Diehl, 1992; Harper et al., 1995; Harrison, 2000; Wright and Smock, 

2001). Moss also accumulates a large amount of detritus as well as acting as a direct 

food source (Glime and Clemons, 1972; Suren, 1991; Suren and Winterbourn, 1992; 

Beisel et al., 1998; Clenaghan et al., 1998).  

 

Macro-invertebrate assemblages showed a highly nested structure despite use of the 

most conservative null model for significance testing, with assemblages occurring on 

bedrock, boulders and cobbles appearing to be sub-sets of those occurring on 

macrophytes, moss and tree roots. Such a low matrix temperature is unusual for aquatic 

invertebrates, which generally exhibit a higher matrix temperature than vertebrate or 

terrestrial organisms due to their diverse composition and varied responses to 

environmental conditions (Boecklen, 1997; Wright et al., 1998; Malmqvist and 

Hoffsten, 2000; Omesová et al., 2008; Heino et al., 2009, 2010). Nestedness appeared 

to be attributed to differences in trait diversity and composition among assemblages, 

with reduced trait diversity and altered representation of some traits in nested 

assemblages possibly reflecting a reduced range of food resources in species-poor, 

typically mineral habitats. Supported by evidence that taxonomic richness and trait 

diversity was greater in organic habitats compared to some mineral habitats, these 

results indicate that the loss or modification of species-rich habitats in rivers is likely to 

be accompanied by altered or impaired ecological function. Furthermore, these results 

suggest that differences in habitat quality may influence nestedness in macro-

invertebrates, in agreement with previous studies in rivers (Omesová et al., 2008; Heino 

et al., 2010), lakes (Heino and Muotka, 2005) and ponds (McAbendroth et al., 2005). 

Variations in environmental conditions among habitats were not measured directly, and 

other mechanisms such as colonisation-extinction dynamics may however be important 

(Heino et al., 2009, 2010). 

 

Greater heterogeneity theoretically increases the range of ecological niches and reduces 

the likelihood of competitive exclusion enabling a greater number of species to co-exist 

(Shmida and Wilson, 1985; Townsend and Hildrew, 1994), increases the availability of 

refugia ameliorating the effects of disturbance and predation (Townsend and Hildrew, 

1994; Brown, 2003), and increases the range and abundance of food resources (Beisel et 
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al., 2000). Based on these assumptions it was hypothesised that river sections of greater 

habitat heterogeneity might, on average, support assemblages of greater taxonomic 

diversity, richness and trait diversity. However, these results support an increasing 

number of studies which suggest that habitat heterogeneity is not guaranteed to increase 

biodiversity (Palmer et al., 2010; Feld et al., 2011). Furthermore, whilst different 

habitats have been shown to support assemblages with specific groups of species traits 

(Townsend and Hildrew, 1994; Usseglio-Polatera et al., 1999), the implication is that 

enhancing habitat heterogeneity may not increase trait diversity and subsequently 

ecological function. These findings are probably attributed to the fact that habitats 

occurring in homogeneous river sections were not perfect sub-sets of those in 

heterogeneous ones, with species-rich organic habitats occurring in homogeneous river 

sections and some heterogeneous river sections containing a greater number of species-

poor mineral habitats compared to homogenous ones. As a result, the assemblages from 

homogeneous river sections were at most weakly nested sub-sets of the assemblages 

occurring in heterogeneous ones, indicating that there may be high beta diversity among 

river sections and that homogeneous reaches may therefore make an important 

contribution to gamma diversity at the catchment scale. 

 

Caution is required in extrapolating the results to the reach scale and beyond because 

they are based on patch scale samples. The sampling strategy employed did not permit 

pooling of samples to determine macro-invertebrate metrics for each river section and 

therefore further studies are required to determine the effect of habitat heterogeneity on 

macro-invertebrates at the reach scale, as well as the contribution of different habitats 

based on their relative area. Furthermore, only a low number of samples were obtained 

from some habitats, which for mineral habitats such as clay reflected their low 

frequency of occurrence and coverage, but for organic habitats was also an artefact of 

the sampling strategy. 

 

These results therefore provide support for the first and last hypothesis with two major 

implications for river conservation. Firstly, conserving or restoring patches of 

macrophytes and moss is likely to preserve local richness in stony-bed rives and prevent 

a reduction in trait diversity with likely consequences for ecosystem processes (Hooper 

et al., 2005; Cardinal et al., 2006). Secondly, restoration strategies that maximise the 

area of species-rich habitats may enhance species richness more than those simply 
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increasing habitat heterogeneity. However, since not all species will be supported by the 

most species-rich habitats, or heterogeneous reaches, river management should still 

maintain habitat and reach variety. Further research is required to assess the generality 

of these results.  

 

In summary, macrophytes and moss in particular supported greater macro-invertebrate 

diversity, abundance and trait diversity, as well as disproportionally greater richness, 

than some mineral habitats, in particular bedrock. Macro-invertebrate assemblages 

appeared to be highly nested among habitats, with nested assemblages having lower 

trait diversity and altered habitat and feeding trait representation. Finally, habitat 

heterogeneity had no effect on macro-invertebrate diversity, richness or trait diversity, 

and in general did not promote nestedness in species assemblages. 
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5.7. Tables and Figures 

 

Table 1. Location of 10 m river sections on tributaries of the Rivers Wye and Usk.  

 

River Tributary 10 m section Grid reference 

    
Wye Edw-site 1 1 SO 11825 57329 

  2 SO 11673 57140 
  3 SO 11635 57052 

 Edw-site 2 4 

5 

SO 11440 54270 
  5 SO 11508 54153 

  6 SO 11601 53966 
 Edw-site 3 7 SO 09926 48026 

  8 SO 09716 47876 

  9 

 

 

SO 09621 47845 
Usk Usk-site 1 1 SN 81761 26868 

  2 SN 81917 26979 
  3 SN 81960 27054 

 Honddu-site 1 1 SO 02961 35463 

  2 SO 03206 35271 
  3 SO 03239 35251 

 Tarrell-site 1 1 

5 

SO 01268 26914 
  2 SO 01042 26958 

  3 SO 00936 26964 
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Table 2. Species traits and categories.  

 

Trait Categories 

  
Microhabitat/substrate preference mud (grain size < 0.063 mm) 

 silt, loam, clay (grain size < 0.063 mm) 
 sand (grain size 0.063-2 mm) 

 fine to medium-sized gravel (grain size 0.2-2 cm) 
 coarse gravel to hand-sized cobbles (grain size 2-20 cm) 

 stones, boulders, bedrock (grain size > 20 cm) 
 algae 

 macrophytes 

 particulate organic matter 
 woody debris 

 edge of water bodies, moist substrates 

other   

 Current preference limnophil 

 limno to rheophil 
 rheo to limnophil 

 rheophil 
 rheobiont 

 indifferent 
  

Feeding type grazers/scrapers 

 miners 
 xylophagous taxa 

 shredders 
 gatherers/collectors 

 active filter feeders 

 passive filter feeders 
 predators 

 parasites  
 other 

  
Respiration tegument 

 gill 

 plastron 
 spiracle (aerial) 

 hydrostatic vesicle (aerial)  
 tapping of air stores of aquatic plants 

 extension/excursion to surface 

  
Locomotion type swimming/skating 

 swimming/diving 
 burrowing/boring 

 sprawling/walking 

  (semi) sessile  
 other 

  
Dispersal capacity low 

 high 
 unknown 

   

Dissemination strategy aquatic passive 
 aquatic active 

 aerial passive 
 aerial active 
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Table 2 continued. 

 

Trait Categories 

  
Life duration ≤1 year 

 >1 year 

 

 

  

Reproduction ovoviviparous 
 free isolated eggs 

 cemented isolated eggs 
 fixed clutches 

 free clutches 

 clutches in vegetation 
 terrestrial clutches 

 asexual 
 parasitic 

  

Reproductive life cycles per year semivoltine 
 univoltine 

 bivoltine  
 trivoltine 

 multivoltine 
 flexible 

 

 

  

r- K- strategy r-strategist 
 K-strategist 

  
Resistance form eggs, statoblasts 

 cocoons 

 housings against desiccation 
 diapause or dormancy 

 quiescense 
 none 
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Table 6. Spearman’s rank correlation coefficients (rs) between the representation of trait 

categories and sample rank (n=151) in the maximally packed matrix. Significant 

correlations at the P value corrected for the number of trait categories are shown in 

bold.  

 

Trait Categories rs P 

    
Microhabitat/substrate preference silt, loam, clay -0.098 0.234 

 sand  -0.195 0.017 

 fine to medium-sized gravel 0.093 0.260 
 coarse gravel to hand-sized cobbles  0.280 <0.001 

 stones, boulders, bedrock 0.186 0.023 
 algae -0.270 <0.001 

 macrophytes -0.196 0.016 

 particulate organic matter -0.106 0.195 
 woody debris -0.286 <0.001 

    
Feeding type grazers/scrapers 0.101 0.216 

 miners -0.419 <0.001 
 xylophagous taxa -0.431 <0.001 

 shredders 0.048 0.560 

 gatherers/collectors 0.032 0.700 
 active filter feeders -0.327 <0.001 

 passive filter feeders -0.270 <0.001 
 predators -0.432 <0.001 

 parasites  -0.408 <0.001 

    

 

Table 7. Relationships between macro-invertebrates and the number of patches, number 

of habitats and habitat diversity within 10 m river sections. Only significant fixed 

effects are shown. 

 

Model Fixed effects 

Coefficient 

(± 95% confidence 

interval) 

F P DF 

      
Taxonomic diversity NS - - - - 

Richness NS - - - - 
Log(abundance) Number of habitats 0.104±0.09 5.69 0.030 1, 151 

Trait diversity NS - - - - 
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Sampling locations 
(white squares) within 
each 10m river section 

3 x 10 m river sections 
at each site (black 

circles above) 

 

Figure 1. Sampling design showing 0.25 x 0.25 m sampling locations (white squares) 

within 10 m river sections nested within sites (black circles) within the catchments of 

the Rivers Wye and Usk (shown in bold). 
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Figure 2. Predicted sample-based rarefaction curves among habitats. Bedrock = ,        

silt = , sand = , gravel = ○, pebbles = , cobbles = □, boulder = ◊, leaf litter = +,        

tree roots = x, macrophytes = ■ and moss = ●. For clarity confidence intervals are not 

shown. 
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Figure 3. Matrix of samples x taxa packed to maximise nestedness (i.e. minimise 

unexpected presences and absences). Black squares represent presence.  
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Chapter 6 General Discussion 

 

6.1. Synthesis 

 

Despite evidence that more structured habitats support greater biodiversity in some 

terrestrial and aquatic ecosystems (Bell et al., 1991; Tews et al., 2004), previous studies 

investigating habitat structure in rivers have reported mixed effects with increased 

complexity and heterogeneity sometimes giving rise to increased species richness but 

sometimes not (e.g. Downes et al., 1995; Beisel et al., 2000). Whilst such conflicting 

results call into question basic ecological theory about the effects of habitat structure on 

organisms and ecological processes, a simpler explanation is that habitat structure is 

difficult to quantify, which has also been a major obstacle to making general 

conclusions regarding its effects. These ideas formed the wider context for this thesis, 

which quantified basic aspects of the relationship between benthic habitat structure and 

macro-invertebrates using a combination of field surveys and a field experiment. It also 

provided one of the first studies attempting explicitly to identify, and then separate as 

far as possible, potential confounding effects on macro-invertebrates from other sources 

of variation among habitats of contrasting physical structure. 

 

On a more detailed point, this study was also among the first to quantify the complexity 

of natural river bed surfaces using fractal dimension which, despite some drawbacks 

(discussed below), provides a measure that is not habitat-specific and therefore permits 

comparison among studies and ecosystems. Although fractal dimension can provide an 

ecologically relevant assessment of habitat complexity in freshwaters, one of the main 

findings of Chapter 3 was that variations in surface complexity only had weak effects 

on macro-invertebrates, and only when habitat type was ignored. Effects were 

independent of surface area, but overall surface complexity was a minor determinant of 

variations in macro-invertebrate diversity, richness and abundance among habitat types 

indicating that other variations at this scale, for example in hydraulic conditions or 

resource distributions, must play an important role in determining the distribution of 

organisms. Whilst differences in macro-invertebrate assemblages among mineral 

habitats are long-established (e.g. Percival and Whitehead, 1929), many previous 

studies have either not assessed the contribution of habitat structure to variations in 
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assemblages among habitat types or not fully accounted for other factors that might 

confound structural effects in such variable environments as rivers. 

 

The second of these points became particularly apparent in the survey results from 

Chapter 3, where it appeared likely that the effects of habitat structure on macro-

invertebrates might be overridden by variations in local flow pattern. The importance of 

flow has long been established in rivers, for example being used to explain greater 

species diversity in substrates located in riffles (gravel/pebbles/cobbles) compared to 

those more typically found in glides and pools (sand/silt) (Hynes, 1970). Chapter 4 

therefore aimed to assess such a possibility experimentally - surprisingly one of the few 

experimental studies attempting to separate habitat structure and flow effects on macro-

invertebrates. Despite creating highly significant variations in surface complexity 

similar to those among natural substrates, the results were entirely consistent with field 

observations from Chapter 3. Instead, variations in flow appeared to explain differences 

in macro-invertebrate assemblages. The implication is that observed differences in 

assemblages among mineral habitats in rivers result from flow-related effects or 

processes rather than habitat structure per se. Selective filtering of organisms based on 

their body size appeared to be involved, consistent with the likely evolutionary effects 

of such a major aspect of river ecosystems. This does not mean that habitat structure has 

no importance to benthic organisms, but any such effects may be secondary to 

conditions, processes or resource distributions related to flow pattern among habitat 

types. 

 

In addition to the above themes, this thesis provided an assessment of how macro-

invertebrate assemblages in rivers are organised spatially. Chapter 5 provided evidence 

that macro-invertebrate assemblages may be highly nested among river habitat types, 

even when judged against a conservative null model for significance testing. In other 

words, the species found in the least rich habitat types in rivers, often those with mineral 

composition, appeared to be sub-sets of those found in the most species rich habitats, 

usually composed of organic materials such as macrophytes. This contrasts with 

previous studies, which have reported only weak nestedness, at best, despite being 

based on more liberal null models (Heino, 2009). The combination of nestedness and 

trait analysis also revealed that nested assemblages had reduced trait diversity and 

altered trait representation. Supported by evidence that taxonomic richness and trait 
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diversity was greater in organic habitats compared to some mineral habitats, in 

particular bedrock, these results indicate that the loss or modification of species-rich 

habitats in rivers is likely to be accompanied by altered or impaired ecological function.  

 

Despite variations in macro-invertebrate assemblages among habitat types, measures 

quantifying the composition and configuration of habitats consistently had no effect on 

macro-invertebrates at the patch (Chapter 3) or section (Chapter 5) scale. Direct 

evidence to support the widespread assumption that greater habitat heterogeneity 

supports greater biodiversity remains scarce and the results of this study highlight the 

need for further evaluation of the underlying theory (Palmer et al., 2010). Explanations 

for the absence of this relationship in rivers are generally unknown, but may reflect the 

fact that habitat heterogeneity is not measured in an ecologically relevant way or that 

larger scale factors are of greater importance (Heino, 2009). 

 

6.2. Limitations and caveats 

 

Despite similarities between the surveys and experiment in the apparent responses of 

macro-invertebrates to habitat structure at the patch and section scale, like all studies 

there were limitations with the approach taken that require brief discussion. Whilst the 

combination of field surveys and an experiment provided both realism in measurements 

from actual benthic habitats (survey) and control of some factors (experiment), caveats 

include: i) the time-scale over which studies could be undertaken, ii) variations that 

were beyond experimental control, iii) limitations in measurements and sampling 

strategy, iv) experimental artefacts and v) limitations in scaling-up from the work done 

(patch to section) to the scales emphasised in management (reach to catchment).  

 

6.2.1. Timescales 

 

Patterns in the distribution of organisms in rivers develop over periods ranging from 

very short (< days) to very long (seasons, years, decades or much longer) and the 

processes involved are equally short- to long-term. Seasonal variations in the 

distinctiveness of habitats and the distribution of habitat patches, as well as factors such 

as the availability of food resources, will also affect organisms. The results from 

Chapters 3 and 5 represent only a snapshot of the habitat structure available to 
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organisms, and of their distributions within it. Particular difficulties in this study were 

also weather related, with exceptionally high summer flows in 2008 delaying initial 

fieldwork until September. Since many insects have univoltine life cycles and summer 

emergence periods some species may have emerged as adults by this time (Hynes, 

1970).  

 

6.2.2. Uncontrollable variations 

 

There are likely to be uncontrolled variations in environmental conditions even in the 

best-designed ecological experiment, and this generates variations among experimental 

units and restricts the extent to which results can be extrapolated. One specific issue 

also arose in the field survey. Following a survey of a tributary of the River Wye in 

2008, a second survey was conducted on the neighbouring River Usk catchment to 

increase the natural range of habitats and habitat heterogeneity encountered. Despite the 

selection of tributaries of similar geology, water chemistry and land use, this inevitably 

introduced additional variation in macro-invertebrate assemblages, most clearly seen in 

assemblage composition among sites and catchments in Chapter 3. However, unlike the 

majority of previous studies, this thesis considered whether habitat structure was 

significant after variation among sites was taken into account.  

 

6.2.3. Measurement and sampling limitations   

 

As discussed above, a general limitation of studies investigating habitat structure arises 

from the fact that it is difficult to quantify. The main drawback of the methods used in 

Chapters 3 and 4 is that surface complexity and area were derived from two-

dimensional profiles, whilst organisms and their habitats are distinctly three- 

dimensional. As discussed in Chapters 3 and 4, profiles are unable to capture overhangs 

or the three dimensional shape of crevices or interstitial spaces and may not be 

representative of the surface as a whole (Sanson et al., 1995). In the field survey, there 

were also difficulties obtaining profiles from fine substrates such as silt. As an index, 

fractal dimension also suffers from the disadvantage that surfaces with the same value 

may provide a different number of crevices or spaces of different sizes (Sanson et al., 

1995). Furthermore, the sampling strategy adopted resulted in a varying and in some 
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cases low number of samples among habitats, which may have reduced the sensitivity 

of the analyses used in Chapters 3 and 4 and restricted possible analyses in Chapter 5.   

 

6.2.4. Experimental artefacts 

 

Caveats associated with the experiment, including those discussed above, were 

discussed in Chapter 4, and care is needed in transferring the results to real field 

circumstances because they are limited in both spatial and temporal extent. Time 

constraints resulted in the survey being conducted during late summer, which as 

discussed above is likely to have affected assemblage composition as well as body size 

distribution (Hynes, 1970). Limited colonisation time did however not appear to result 

in the absence of taxa found at the study site during a similar period in the previous year 

(Chapter 3). Furthermore, generated variations in fractal dimension and surface area 

were similar to those among natural substrates. 

 

6.2.5. Issues of scaling-up   

 

This is another widespread limitation in ecological research, which is typically carried 

out at small extents (< metres) and small timescales (days to months) whilst ecological 

management and restoration must address larger and longer-term factors. In this study, 

habitat structure was investigated at the patch and section scale to improve 

understanding at the scale of individual organisms, but also to inform river management 

and restoration at the reach scale. As discussed in Chapter 5, caution is required in 

extrapolating the results to the reach scale as they are based on patch scale samples. 

Furthermore, factors varying among sites and catchments, as well larger scale factors 

acting beyond the catchment, were not investigated.  

 

6.3. Implications for river management and conservation  

 

Notwithstanding the above limitations, the results of this thesis have several important 

implications for river management and conservation. Dominant themes are that: i) 

management or restoration of habitat heterogeneity might not guarantee increased 

biodiversity, ii) management to restore key habitat types might deliver biodiversity 
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gains and iii) flow types should be more fully integrated into management for 

hydromorphology. 

 

6.3.1. Management or restoration of habitat heterogeneity 

 

The absence of a clear link between habitat heterogeneity and biodiversity could be one 

of the most important and far-reaching implications of this work. Although this 

inference depends on being able to scale-up results from patch scale to reach scale or 

beyond, as well as from macro-invertebrates to other groups of organisms, it is 

supported by an increasing array of field studies and reviews that also suggest that 

habitat heterogeneity is not guaranteed to increase biodiversity (Palmer et al., 2010; 

Feld et al., 2011). Limitations in the way and scale at which previous studies have 

however quantified heterogeneity mean that improved field evaluations are likely to be 

required. Furthermore, these conclusions do not refute the suggestion that the physical 

structure of river systems per se, as encompassed by hydromorphology, is important for 

biodiversity. 

 

6.3.2. Management to deliver biodiversity gains 

 

In contrast to habitat heterogeneity, evidence from Chapter 5 suggests that certain 

organic habitat types support greater macro-invertebrate diversity, abundance and trait 

diversity, as well as disproportionately greater macro-invertebrate richness, than 

particular mineral habitats. Conserving or restoring the most species-rich habitats would 

therefore be expected to deliver biodiversity enhancement on a reach-to-reach basis and 

prevent a loss of trait diversity with possible consequences for ecological function. The 

results from Chapter 5 also indicate that maximising the area of species-rich habitats 

should be considered. Two important caveats before implementing this idea are that: i) 

further data are required from other locations and river types to confirm the generality 

of these conclusions and ii) the absence of perfect nestedness among habitats will mean 

that not all species will be supported by the most species-rich habitats, so that 

management should still maintain habitat variety. 
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6.3.3. Management for hydromorphology 

 

Evidence from both survey and experimental approaches of the apparent effects of flow 

type on macro-invertebrate assemblages illustrates the importance of velocity, near-bed 

hydraulics or related factors to benthic organisms. Whilst the Water Framework 

Directive (2000/60/EC) emphasises hydromorphology in supporting ‘good ecological 

status’, emphasis so far has been placed on structural aspects of rivers (European 

Commission, 2000). The results of this study support the view that management for 

flow pattern, for example through careful abstraction licensing and flow regulation, 

should be integrated into hydromorphology more fully when considering river 

management for organisms (Vaughan et al., 2009).   

 

6.4. Wider ecological implications   

 

The results reported in this thesis not only contribute to understanding of the importance 

of habitat structure in rivers but also have broader relevance because the basic theory 

being tested has significance for ecology in general. Rivers are among the most highly 

structured ecosystems making them a highly valuable system in which to examine the 

ecological effects of physical structure. Care is however needed in extrapolating the 

results from rivers to other ecosystems because heterogeneity is so marked. 

Notwithstanding these points, there are some important general implications. Firstly, as 

discussed in Chapter 1, research in other ecosystems might benefit from a 

standardisation of the definition and measurement of habitat structure, and the methods 

used here have some strengths and weaknesses. Secondly, variations in species and 

body size distributions cannot be assumed to result from variations in habitat structure 

unless other factors known to influence organisms among habitats are excluded. Factors 

that confound the effect of habitat structure are likely to occur also in other ecosystems 

and include variations in surface area. These, and other themes, will be developed 

further during the publication of the results from this thesis. 

 

6.5. Future research needs 

 

Future research needs identified above and in individual chapters can be broadly 

categorised as: i) methodological improvements and ii) improvements in study design. 
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6.5.1. Methodological improvements 

 

Characterisation of the three-dimensional structure available to organisms within a 

particular habitat would provide a much better understanding of the importance of 

habitat complexity. One approach would be to generate Digital Elevation Models of the 

river bed surface. Whilst this could be achieved using a greater density of pin profile 

data, more sophisticated methods are now being developed which can characterise 

three-dimensional habitat structure in fine detail. One of these is digital 

photogrammetry, which involves taking a pair of photographs at a set distance apart to 

provide a stereo image of the river bed surface. The feasibility of this approach has 

already been demonstrated for natural river beds and river bed casts although a complex 

correction is required for the effects of refraction at the water surface (Butler et al., 

2002). An alternative method is laser altimetry or Light Detection And Ranging 

(LiDAR), which directly measures three-dimensional topography (Lefsky et al., 2002). 

Whilst terrestrial scanners typically have wavelengths of 900-1064 nm, green LiDAR 

(also known as bathymetric LiDAR) can measure elevations under shallow water using 

wavelengths near 532 nm, although there are issues such as irregular reflectance 

(Lefsky et al., 2002; Marcus and Fonstad, 2010). Whilst both approaches require 

specialist software, possible measurements of surface structure are subsequently 

limitless and include roughness measurements and surface fractal dimension (e.g. Sun et 

al., 2006). 

 

Developments in such remote sensing technologies over the last two decades mean that 

mapping spatial and temporal variations in river ecosystems at the reach and catchment 

scale are now possible (e.g. Marcus and Fonstad, 2010). Potential applications include 

measuring river bed elevation at the reach scale (e.g. Lane, 2000) and automated 

mapping of habitat distribution. Wider application of such approaches would greatly 

improve understanding of the dynamic contribution of different habitats and habitat 

heterogeneity to reach scale diversity. Furthermore, this could greatly improve 

understanding of the limitations of river restoration schemes, where larger scale factors 

may override any local improvements and the permanence of increases in habitat 

heterogeneity may be variable (Palmer et al., 2010).  
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6.5.2. Improvements in study design 

 

Few studies have assessed whether relationships between habitat structure and macro-

invertebrates determined by small scale, predominantly experimental, studies are 

replicable or have predictive capability at different locations or among river types (e.g. 

Downes et al., 2000). Future studies should consider the importance of multiple scale 

factors, as well as location within the spatial structure of the river network, in 

determining the distribution and diversity of organisms (Grant et al., 2007; Brown et al., 

2011). Manipulations of habitat heterogeneity at the reach scale would also provide an 

important advancement. 

 

Both alpha and beta diversity, and their contribution to gamma diversity, should be 

considered in river conservation (Heino, 2009; Clark et al., 2010). As identified in 

Chapter 5, further studies are required to determine the contribution of different habitats 

to diversity at the reach scale, as well as the contribution of reaches of different 

heterogeneity to catchment scale diversity. The partitioning of diversity across spatial 

scales, such that gamma diversity at one scale becomes alpha diversity at a larger scale, 

would enable such an assessment (Stendera and Johnson, 2005). Such an approach is 

highly amenable to studying the organisation of species diversity in rivers since they are 

hierarchically nested systems (Frissell et al., 1986; Clark et al., 2010). 

 

Finally, despite the potential of species traits to provide a mechanistic understanding of 

the response of organisms to habitat structure and an assessment of its importance to 

ecological function, studies in rivers have been dominated by a taxonomic approach. 

Further research is required to determine if habitat complexity per se has effects on 

species traits other than body size, and whether modification or enhancement of habitat 

heterogeneity has effects on trait representation and diversity at the reach scale. This 

may also provide a transferable understanding of the species at risk from habitat 

modification among geographic regions (Larsen and Ormerod, 2010). Given that river 

restoration may act as a disturbance, and that species in restored reaches may be filtered 

based on the possession of traits enabling persistence, a trait-based approach could also 

benefit the development of river restoration targets (Tullos et al., 2009).  
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6.6. Conclusions 

 

Despite quantifying variations in physical structure, habitat complexity and 

heterogeneity had consistently weak effects on macro-invertebrates at the scales studied 

and were only a minor determinant of variations in macro-invertebrates among mineral 

habitat types. Instead, flow type explained variations in macro-invertebrate richness, 

abundance and composition, and appeared to filter organisms based on their body size. 

Macro-invertebrate assemblages occurring in some mineral habitats, typically with 

lower macro-invertebrate diversity, richness, abundance and trait diversity, appeared to 

be nested sub-sets of those occurring in organic habitats. Nested assemblages also had 

reduced trait diversity and altered trait representation. Finally, this thesis demonstrates 

the benefits of combining field surveys and experiments to identify, and where possible 

separate, the ecological effects of confounding physical factors, and future 

improvements in methodology and study design will further benefit river management 

and conservation as well as ecology in general. 
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