
CARDIFF SCHOOL OF ENGINEERING, CARDIFF UNIVERSITY, CF24 3AA, WALES, UK

An Intelligent System for Facility
Management

Michael James Dibley

A thesis in support of the application for the award of a PhD degree from Cardiff University, Wales, UK.

October 2011

iii

Summary

A software system has been developed that monitors and interprets temporally changing

(internal) building environments and generates related knowledge that can assist in facility

management (FM) decision making. The use of the multi agent paradigm renders a system that

delivers demonstrable rationality and is robust within the dynamic environment that it

operates. Agent behaviour directed at working toward goals is rendered intelligent with

semantic web technologies. The capture of semantics though formal expression to model the

environment, adds a richness that the agents exploit to intelligently determine behaviours to

satisfy goals that are flexible and adaptable. The agent goals are to generate knowledge about

building space usage as well as environmental conditions by elaborating and combining near

real time sensor data and information from conventional building models. Additionally further

inferences are facilitated including those about wasted resources such as unnecessary lighting

and heating for example. In contrast, current FM tools, lacking automatic synchronisation with

the domain and rich semantic modelling, are limited to the simpler querying of manually

maintained models

iv

v

Declaration and Statements

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

Signed (candidate) Date

This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD.

Signed (candidate) Date

This thesis is the result of my own independent work / investigation, except where otherwise

stated. Other sources are acknowledged by explicit references.

Signed (candidate) Date

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-

library loan, and for the title and summary to be made available to outside organisations.

Signed (candidate) Date

vii

Other Works

The author has published / submitted the following related works:

 Published

[1] M.J. Dibley, H. Li, J.C. Miles, and Y. Rezgui, "Towards Intelligent Agent Based Software for

Building Related Decision Support," Advanced Engineering Informatics, vol. 25, no. 2, pp.

311–329, Dec. 2011.

[2] M. J. Dibley, H. Li, J. C. Miles, and Y Rezgui, "A Semantic Model Provision for the Digital

Building," in Computing in Engineering EG-ICE Conference 2009, vol. 1, Berlin, 2009, pp. 83-

90.

[3] M. J. Dibley, H. Li, J. C. Miles, and Y. Rezgui, "Towards a Synchronized Semantic Model to

Support Aspects of Building Management," in Proceedings of the 7th IEEE International

Conference on Industrial Informatics, Cardiff, U.K., 2009, pp. 307-312.

[4] M. J. Dibley, H. Li, J. C. Miles, and Y. Rezgui, "The Application of Intelligent Agency in a

Software Model for Buildings," in Proceedings of the International Conference of Computing

in Civil and Building Engineering, Nottingham, UK, 2010, pp. 205-212.

 Pending Publication

[5] M.J. Dibley, H. Li, J.C. Miles, and Y. Rezgui, "Cost Effective Intelligent Sensor System Design for

Real Time Building Monitoring," International Journal of Innovative Computing Information

and Control, submitted for publication.

[6] M.J. Dibley, H. Li, J.C. Miles, and Y. Rezgui, "Ontology Development Supporting Intelligent

Sensor Systems for Building Monitoring," Automation in Construction, submitted for

publication.

[7] M.J. Dibley, H. Li, J.C. Miles, and Y. Rezgui, "Ontology Evaluation and System Testing for Smart

Building Monitoring," Advanced Engineering Informatics, to be submitted.

[8] H. Li, M.J. Dibley, J.C. Miles, and Y. Rezgui, "A Systematic BIM Software Implementation

Framework applied in Building Facility Management," Advanced Engineering Informatics,

submitted for publication.

[9] H. Li, P. de Wilde, Y. Rafiq, and M.J. Dibley, "Improving Building Performance Simulation using

High Power Computing," Advanced Engineering Informatics, to be submitted.

ix

Contents

Summary ... iii

Declaration and Statements .. v

Other Works ... vii

Contents .. ix

Table of Figures .. xvii

Table of Tables .. xix

1 Introduction .. 1

1.1 Aims and Objectives of the Research ... 3

1.1.1 Hypotheses, Aims and Objectives ... 3

1.2 Dependant Disciplines .. 5

1.3 High Level System Overview ... 5

1.4 Thesis Structure .. 8

2 Knowledge Engineering and its Application in the Construction Sector 11

2.1 Informal Knowledge Representations .. 12

2.1.1 Product Modelling in the Construction Sector ... 13

2.1.2 Industry Foundation Classes ... 15

2.1.3 Application of the Industry Foundation Classes ... 17

2.2 Formal Knowledge Representations ... 19

2.2.1 Description Logics ... 19

2.2.1.1 Combining Description Logics with Rule Support ... 21

2.2.2 Ontology .. 22

2.2.3 Web Ontology Language ... 23

2.2.3.1 Mapping from UML ... 24

2.2.3.2 Other Mappings and Translation .. 25

2.2.3.3 The Semantic Web .. 25

2.2.3.4 Ontology Interaction ... 26

2.2.4 Inference and Reasoner Support for OWL .. 26

x

2.2.4.1 General Features ... 27

2.2.4.2 A Common Application Programming Interface ... 27

2.2.4.3 The Pellet Reasoner ... 28

2.2.4.4 The RACER Reasoner ... 29

2.2.4.5 Other Reasoners .. 29

2.2.5 OWL Tools .. 29

2.2.6 Ontology Engineering .. 30

2.2.6.1 Ontology Development Methodologies Overview .. 31

2.2.7 Ontological Resources for the IFMS Domain ... 33

2.2.8 Application of Shared Ontologies and Semantics ... 35

2.3 Summary .. 39

3 The Multi Agent System Paradigm and its Application in the Construction Sector 41

3.1 Multi Agent Systems .. 41

3.1.1 Multi Agents Systems and Rational Agency .. 41

3.1.2 The Belief Desire Intention Model... 43

3.1.3 Logical Formulation ... 46

3.1.4 Implementable Systems .. 49

3.2 Agent Messaging ... 51

3.2.1 Message Content ... 53

3.2.1.1 SL as Message Content .. 53

3.2.1.2 OWL as Message Content .. 55

3.3 Agent Development Methodologies ... 56

3.4 Applications of the Multi Agent Paradigm in the Construction Sector 59

3.4.1 Intelligent Buildings and Agency ... 60

3.5 Alternatives to Deliver Aspects of Agency ... 62

3.6 Summary .. 63

4 System Development... 67

4.1 The Suitability of the BDI Agent Model to the IFMS ... 67

4.2 The Suitability of Ontology Modelling ... 69

xi

4.3 Methodology ... 69

4.3.1 Conventional Software Development Methodology .. 70

4.3.2 Agent Development Methodology ... 70

4.3.3 Ontology Development Methodology .. 74

4.4 Framework Selection and Application .. 74

4.4.1 Architecture and Implementation Languages .. 75

4.4.2 Ontology Interaction Support Library Choices .. 75

4.4.3 Agent Framework Selection and Features .. 76

4.4.3.1 JADEX Framework Application .. 77

4.4.3.2 Agent Messaging and Content .. 78

4.4.4 Other Supporting Technologies, Libraries and Software 79

4.4.4.1 Building Information Model .. 79

4.4.4.2 Sensor Systems ... 80

4.5 Summary ... 81

5 General Principles of Implementation .. 83

5.1 System Wide ... 83

5.1.1 Propagation of Events and Time References .. 83

5.1.2 Interconnection between Virtual Platforms ... 84

5.2 Implementation of the Multiagent Layer ... 85

5.2.1 Application of JADE and JADEX ... 85

5.2.1.1 Agent Packaging, Distribution and Lifecycle Control 85

5.2.1.2 Internal mechanisms ... 85

5.2.1.3 Deliberation and Means-End Reasoning ... 86

5.2.1.4 Goal / Plan structuring .. 88

5.2.1.5 Messaging ... 88

5.2.1.6 Agent Collaboration .. 89

5.2.1.7 Learning ... 90

5.2.1.8 General .. 91

5.2.2 BDI Model Custom Application ... 92

xii

5.2.2.1 Commitment .. 92

5.2.2.2 Role of Audit .. 93

5.3 Ontology Support .. 94

5.3.1 Ontology Models ... 95

5.3.2 Ontology Querying .. 97

5.4 IFC Building Model Support ... 98

5.4.1 Usage of IFC Building Model Support .. 98

5.4.2 Utilisation of IFC Building Model Support ... 99

5.4.3 IFC General Processing .. 100

5.4.4 IFC Geometry Processing ... 101

5.5 Summary .. 102

6 Detailed Development and Implementation ... 105

6.1 Development of the Infrastructure Layer.. 105

6.1.1 Database Support .. 109

6.1.2 Wired Sensor Support ... 109

6.1.3 The Wireless Sensor Network Implementation .. 110

6.1.3.1 Wireless Hardware Design ... 115

6.2 Agent Development and Implementation Specifics .. 118

6.2.1 Zone Agent Development and Implementation Specifics 120

6.2.1.1 The Zone Agent’s Ontology Use .. 123

6.2.1.2 Illustrative Goal Implementation Detail - Evaluate Occupancy 124

6.2.1.2.1 Deliberation and Means-End Reasoning for Occupancy Evaluation 127

6.2.1.2.2 Determine Occupancy ... 132

6.2.1.2.3 Count Occupancy ... 133

6.2.1.2.3.1 The Entry / Exit Tracker Class ... 134

6.2.1.2.4 Opening Checker ... 135

6.2.1.2.5 Continuous motion occupancy detection/count 136

6.2.1.2.6 Evaluate Occupancy without Motion Detection 136

6.2.2 Sensor Node Agent Development and Implementation Specifics 137

xiii

6.2.2.1 Application of Ontologies Summary ... 138

6.2.2.2 Service Provision ... 139

6.2.2.3 Device Leases .. 139

6.2.2.4 Device Management ... 140

6.3 Ontology Development ... 141

6.3.1 Introduction .. 141

6.3.2 Overview ... 142

6.3.3 Common Design Principles ... 143

6.3.4 Supporting Ontology Development .. 146

6.3.5 The Sensor Ontology Development .. 147

6.3.6 The Building Ontology Development .. 150

6.4 Summary ... 157

6.4.1 Infrastructure Development Summary ... 157

6.4.2 Multiagent Layer Implementation Summary .. 158

6.4.3 Ontology Development ... 158

6.4.4 Hardware Development Summary ... 160

7 Testing, Verification and Evaluation ... 161

7.1 System Deployments .. 161

7.1.1 Domestic Flat Deployment for Testing ... 162

7.1.2 University Building Deployment for Testing ... 163

7.2 Preliminary Tests ... 168

7.2.1 Ontologies ... 169

7.2.2 Infrastructure .. 173

7.2.2.1 ZigBee Network Interface ... 173

7.2.2.2 Sensor Node, Digital Input / Output and Thermometer Modules 174

7.2.3 Agent Layer ... 175

7.2.4 Preliminary Test Summary .. 176

7.2.4.1 Performance Related .. 177

7.2.4.2 Integrity and Efficiency ... 180

xiv

7.2.4.3 Sensor Role Assignment .. 183

7.2.4.4 BDI Related .. 184

7.3 Late Integration Tests and Results .. 184

7.3.1 Zone Agent Type Testing ... 186

7.3.2 Sensor Node Agent Type Testing ... 190

7.3.3 Realisation and Validation of Test Cases ... 192

7.3.4 Evaluation of Results and Corrections ... 192

7.3.4.1 BDI Agent Related .. 192

7.3.4.2 Occupancy Counting .. 197

7.3.4.3 Sensor Role Allocation ... 199

7.4 Final Deployed System Testing and Results .. 199

7.5 Summary .. 201

8 Future Work ... 203

8.1 Ontology Related ... 203

8.1.1 Structured Learning ... 207

8.2 Agent Related .. 208

8.2.1 Potential Further Improvements of Agents’ Rationality 208

8.2.2 Resource Control ... 209

8.2.3 Enhancement of the Utility Agent Type .. 210

8.3 Wireless Network Related Improvements .. 211

8.3.1 Motion Sensor Additions ... 213

8.4 Deployment Related .. 214

8.4.1 Ease of Use .. 214

8.4.2 Extended Application ... 215

8.5 Integration with Simulation Tools ... 216

8.6 Summary .. 216

9 Summary and Conclusion .. 217

9.1 Summary .. 217

9.2 Conclusion ... 219

xv

9.2.1 BDI Agent Model ... 219

9.2.2 Semantic Model Support .. 221

9.2.3 Hardware Synchronisation .. 223

9.3 Usability .. 223

9.4 Contribution .. 224

Acknowledgements ... 225

Bibliography .. 227

A. Hardware Design Details ... 245

B. Supplementary Illustration ... 247

C. Testing Results Overview .. 249

C.1. Zone Agent Type Testing ... 249

C.1.1 Building Ontology Creation ... 249

C.1.2 Deliberation .. 249

C.1.3 Count Occupancy – Sample Tracker Configuration .. 253

C.2. Sensor Node Agent Type Testing .. 254

C.2.1 Lease Message Request and Zigbee Host Management 254

C.2.2 Routine Sensor Node Management (Power Mode) ... 255

D. Systems Result Samples .. 257

D.1. Sample Occupancy Monitoring Beliefs ... 257

D.1.1 Occupancy Beliefs of Zone Agent for w.1.35 .. 257

D.1.2 Occupancy Beliefs of Zone Agent for Forum Room .. 258

D.2. Sample Environment Monitoring .. 261

D.2.1 Forum Room Environment Monitoring Sample .. 261

D.2.2 Room w.1.35 Environment Monitoring Sample ... 264

xvii

Table of Figures

Figure 1.1 - Layered IFMS architecture illustration showing the primary data flows 7

Figure 1.2 - Simplified framework topology. The lines show the utilisation of services or

resources by the various entities. The ultimate aim is the support of decision making tools,

while informatory / data inputs are ontologies, a building model and live sensor data.............. 8

Figure 2.1 – IFC Interoperability Pyramid [25] .. 17

Figure 2.2 - Different conceptualisations of an entity (based on Ogden and Richards in [44]) . 23

Figure 4.1 - IFMS agent development methodology .. 72

Figure 5.1 - SPARQL query to assign a sensor role .. 98

Figure 5.2 – SPARQL query to determine if a sensor is attached to mains power 98

Figure 6.1 - High level interfaces and components in the infrastructure 106

Figure 6.2 - Some of the IFMS infrastructure executables. The blue arrows represent

communication channels and indicate the direction of the flow of data. The text in the displays

is solely for diagnostics. The 4 channel thermometer and digital I/O hardware interfaces

describe some recent sensor readings/status. Similarly the ZigBee network interface displays

recent sensor readings as well as a few node status values and also offers some simple controls

to activate diagnostics. The sensor node display summarises registered sensor status and

recent readings. .. 107

Figure 6.3 - Deployment of the wired IFMS infrastructure .. 110

Figure 6.4 - Deployment of the IFMS wireless infrastructure ... 111

Figure 6.5 - Selected ZigBee network interface class hierarchy - commands. 113

Figure 6.6 - Selected ZigBee network interface class hierarchies are the node behaviours, node

proxies and node interface ... 114

Figure 6.7 - ZigBee sensor host schematic showing the ZigBee module (EM35x), sensor

attachements and auxiliary channels ... 116

Figure 6.8 - ZigBee sensor units, PCB before population, first PCB prototype (top left), and the

demonstration units ... 117

Figure 6.9 - A (typically) ceiling deployed ZigBee sensor host .. 118

Figure 6.10 - The IFMS agent layer deployment ... 120

Figure 6.11 - Occupancy deliberation in the zone agent type .. 128

Figure 6.12 - Occupancy deliberation in the zone agent type (cont'd) 129

Figure 6.13 - Determine occupancy state machine .. 133

Figure 6.14 - Entry / exit tracker state machine ... 134

Figure 6.15 - IFMS ontologies, interrelationships and dependencies 143

Figure 6.16 - Excerpt of the sensors ontology .. 149

file:///C:/share/Dropbox/michael's%20data/intelligent%20system%20for%20facility%20management%20-%20thesis_final.docx%23_Toc320649426
file:///C:/share/Dropbox/michael's%20data/intelligent%20system%20for%20facility%20management%20-%20thesis_final.docx%23_Toc320649427
file:///C:/share/Dropbox/michael's%20data/intelligent%20system%20for%20facility%20management%20-%20thesis_final.docx%23_Toc320649429
file:///C:/share/Dropbox/michael's%20data/intelligent%20system%20for%20facility%20management%20-%20thesis_final.docx%23_Toc320649430

xviii

Figure 7.1 - Rendering of the minimal IFC model of the domestic flat deployment 163

Figure 7.2 - The core elements of the university site deployment. The sensor hardware is not

shown .. 164

Figure 7.3 - Excerpt from IFC model render focussed on Forum area. Selected elements have

been removed to improve visibility ... 165

Figure 7.4 - The agent execution environment at the university site. The user interface is part

of the JADEX framework .. 168

Figure 7.5 - Protégé 4.1's rendering excerpt of an explanation (Forum zone as ‘determinable

occupancy’) .. 172

Figure 7.6 - Simplified representation of sensor lease management (refined from the original

design). Tasks involving reasoning are shown with a lighter graduated background (green) .. 179

Figure 7.7 - Simplified load buildings KB goal activity. Goals are shown in rectangles and tasks

involving reasoning have graduated backgrounds (green) ... 182

Figure 7.8 - Relationship 'quantisation' illustration. Depending on the techniques and shape

representations used to evaluate separation between entities undesired relationships could be

established. .. 184

Figure 7.9 - The building ontology's definition for an occupancy countable zone 193

Figure 7.10 - Simplified zone agent activity - count occupancy. Two 'early exit' scenarios are

highlighted: the red (leftmost at start) path illustrates activity detection during waiting for

unoccupied, and the yellow path illustrates the case where ambiguous counting is reached 196

Figure B.1 - Illustration of sensor locations in the ‘Forum’ room, with photo inset.............. 247

Figure C.1 - A zone agent's typical buildings ontology A box metrics................................... 249

Figure C.2 - Protégé editor with a Forum agent's ontology snapshot loaded. Inferrences

are shown with a yellow background..

251

xix

Table of Tables

Table 2.1 - Summary of common modelling languages and their presence in the AEC/FM

domain .. 13

Table 2.2 – DL Constructors Notation covering OWL DL & Lite .. 21

Table 2.3 - Defining characteristics of selected ontology development methodologies 31

Table 2.4 - Applications of ontology in AEC/FM outside of product model sharing 38

Table 3.1 - Possible axiomisation of / rules for knowledge (or belief) in a BDI model 47

Table 3.2 - Selected MAS development methodologies ... 57

Table 5.1 - IFMS MAS ontology models .. 95

Table 5.2 - Selected high level IFC / building ontology mappings .. 99

Table 6.1 - ZigBee Node behaviour characteristics ... 112

Table 6.2 – Summary of the IFMS agent types ... 119

Table 6.3 - Zone agent goals summary ... 121

Table 6.4 - Evaluate occupancy sub goal summary .. 125

Table 6.5 - Sensor node high level agent goals summary ... 137

Table 6.6 - Selected competency questions for the IFMS's use of the sensor ontology 148

Table 6.7 - High level competency questions for the buildings ontology 151

Table 6.8 - Selected building ontology classes .. 154

Table 6.9 - Selected building ontology object properties ... 155

Table 7.1 - Domestic flat sensor hardware outline ... 163

Table 7.2 - Hardware summary and associated best zone sensing capability 166

Table 7.3 - Sensor deployment specification and rationale at the university site 167

Table 7.4 - Zone agent type tests .. 186

Table 7.5 - Sensor node agent type tests .. 190

Table 8.1 - Refactoring and addition of ontologies, and the benefits gained. 203

Table A.1 - ZigBee sensor unit parts list.. 245

file:///C:/share/Dropbox/michael's%20data/intelligent%20system%20for%20facility%20management%20-%20thesis_final.docx%23_Toc320649458

1

Chapter 1

1 Introduction

Introduction

The International Facility Management Association [1] define facility management (FM) as “....

a profession that encompasses multiple disciplines to ensure functionality of the built

environment by integrating people, place, process and technology”. Definitions of FM also

refer to the associated activities, including: building use analysis, identification of efficiency

and improvement of space use, safety conformance, maintenance, security and crime

prevention. This research targets space usage reporting and the provision of a framework for

the identification of unnecessary energy use.

The requirement for effective FM tools arises from the inherent complexity of buildings such

as large offices, schools and hospitals, and their associated systems. Buildings are complex in

terms of the number of components, technologies, structure and service provision, all of which

need to be carefully managed to obtain the best benefit. New ‘green’ initiatives and

operational cost incentives produce a motivation to bring about reductions in wasted energy.

In the UK, the total energy used by buildings accounts for around 40% of CO2 emissions [2],

and one way of reducing this (as well as the associated financial costs), apart from those

efforts that target insulation, draft reduction and thermal efficiency, is through more effective

FM and specifically better efficiency in space usage delivered by improvements in its functional

management. A target for improvements is the operation of current building stock, but the

feedback of operational performance into strategic planning could also deliver benefits.

Existing FM tools deliver useful functionality through the use of data that is manually entered

or imported in CSV or XML format, or DXF in the case of simple geometric data. The data

though is only loosely described, at best, so lacks semantic definition. Information sources can

include the following:

 Floor plans (2D).

 Asset registers / asset tracking packages.

 Information generated by a helpdesk or building maintenance systems for work

orders.

 Human resources (HR) systems that allocate staff to desks / areas etc.

2

Such software systems e.g. CAFM Explorer [3] deliver some tactical and strategic decision

making assistance, but there remain a number of areas where improvements can be made.

Some characteristics of FM tools and related shortcomings are outlined next.

A large volume of useful information is generated throughout the whole building lifecycle but

FM tools rarely utilise the architecture, engineering and construction (AEC) domain

information from other building lifecycle stages, with the exception of simple representations

of perhaps floor plans. That situation is a result of the historical fragmentation of the

construction industry in terms of time, space and technology [4]. The problem is compounded

by often differing terminology and semantics at different building lifecycle stages. As a result

errors, inconsistencies and time and cost implications are introduced when information is

regenerated or imported and exported between different representations. Specifically at the

building handover and commencement of FM operations, even where mechanisms are

sometimes in place to ensure the transfer of building information, that information’s usability

is often low due to paper documents remaining in storage, as well as issues related to any

electronic sources including format differences, media storage management, search-ability

and accessibility difficulties [5]. Regarding the operational information generated over the

relatively long time span of a building’s operational phase, that information specifically is

typically not fed back into earlier lifecycle related activity, resulting in a loss of opportunity to

learn from previous projects. Such information that could even be fed back to conceptual and

detailed design [6], could support the following activities:

 Evaluation (long term performance) of specific building construction components e.g.

glazing, wall construction (in-situ thermal properties), door hinges, etc. The in-situ

performance of different types of plant and other assets could also be evaluated.

 Evaluation of any variation in building configuration.

 Long term energy management and optimisation.

Citing the future ability of FM tools to supply information to other systems in the enterprise,

Nelson et al. [7] state that “... some systems claim to have this capability but there was little

evidence available of its utilization”. The ifc-mBomb project [8] is an uncommon exception

though, in that it addresses interoperability between the design, construction and FM of

buildings, propagating information to the FM tools using a shared IFC product model.

In connection with integration between related (same lifecycle stage) FM systems, Nelson, et

al. [7] further report “there are still limitations in the level of communication between

different subsystems of an FM system and between the helpdesk and building management

systems” as well as “inadequate links between FM and decision analysis tools”. Similarly very

3

limited integration exists between FM tools and hardware for monitoring and control. A highly

desirable feature of any FM tool is to determine exactly how spaces are being used, and if they

could be used more effectively, as typified by, for example [9]. Such a provision that does not

require manual intervention by users to repeatedly report the environmental state is

impossible without synchronisation with the data from sensors. The general requirement is

expressed by Shen, et al. [10] who state “one major challenge ... is to integrate a wireless

sensor system (as a real-time data collection system) into real-time decision support systems

to help construction engineers and facility managers to make the right decisions in a timely

manner thereby improving productivity and efficiency”. Moreover to fully exploit that data

without human intervention, intelligent machine interpretation is required. While from a

functional perspective, assuming that deployed sensors are static, the wireless property is

irrelevant, but regarding the cost of installation, the saving is significant when compared to

wired devices.

The aims and objectives of this research are discussed next. Following that a high level

overview of the system developed is provided, followed by an overview of the thesis structure.

1.1 Aims and Objectives of the Research

A software framework with accompanying hardware sensors is sought that targets the

particular domain of FM, delivering richer decision making assistance than is currently

available within that domain by addressing some of the salient weaknesses of existing FM

tools. More specifically the deliverable is a system that provisions environmental data and

elaborates it for the purpose of generating high level knowledge, about the internal conditions

in the building and about how spaces are being used. That knowledge should allow the

identification of how well matched the internal environmental conditions are to its usage, and

should provide opportunities to reduce wasted resources such as unnecessary heating and

lighting. The system’s intelligence is to be delivered in the form of the ability to perform

deductive inference, which as well as facilitating knowledge generation, will contribute

towards rendering the system to be autonomous and almost self configuring. Furthermore the

system has the specific aims to minimise its internal resource usage, i.e. sensor provision, so

that the demands on hardware power are minimised which in turn permits a cheap (wireless)

sensor network that can be powered from batteries and thus easily installed.

The hypothesis, aims and objectives of the research are presented in the next subsection.

1.1.1 Hypotheses, Aims and Objectives

The hypothesis that this thesis addresses is as follows:

4

To show that the application of software agency based on the belief-desire-intention

formalism, supported with semantic knowledge bases that are synchronised in near

real time to the environment, delivers several benefits in the realisation of an

intelligent software framework. Specifically that framework can usefully support some

fundamental knowledge requirements in the discipline of facility management.

The aims of the research are summarised as:

 To create a software system that elaborates (raw) data from a range of sources using

inference to generate useful knowledge to support decision making in the discipline of

FM. The data should represent the current dynamic state of the environment, and

(easily available) conventional building models should be the original source of

additional information.

 To realise a system that has transparent and structured rationality and is largely pro-

active and autonomous. The former (rationality) allows predictable behaviour in

complex systems while the latter supports intelligent behaviour with minimal / no

configuration and user input.

 To realise a level of intelligence in the system using semantic reasoning for the

purpose of directing the above autonomous behaviour.

 To intelligently manage the supporting sensor infrastructure, so that the monitoring

capability of the system can be delivered by easily deployed (battery powered

wireless) hardware.

The objectives of the research are:

 To devise a software architecture that is flexible, scalable, can handle missing

information, is robust and almost self configuring and that generates knowledge that is

easily consumed by external tools. Additionally factors affecting practical operation

should be identified and addressed.

 Identify the useful knowledge related aspects that contribute towards the process of

facility management and realise the deliverance of the associated knowledge

generation mechanisms.

 After identifying the role and benefit of external formal knowledge models to the

framework, select a semantic knowledge representation and using that, create models

of the employed sensor systems and their capabilities, and of the building

environments to which those systems are deployed. Then exploit those developed

resources in the framework.

5

 Select or create, then apply suitable software modelling methodology / methodologies

to create the software implementations.

 Develop suitable hardware.

1.2 Dependant Disciplines

In order to deliver high quality useful information the system relies on accepted theories and

formal principles and utilises a range of proven software frameworks, extending them where

appropriate. The contributing disciplines are knowledge engineering and the (software) agency

paradigm.

Knowledge engineering principles cover knowledge system development including modelling

and the processes and mechanisms used during operation to exploit those sources. In the case

of semantic resources, these include the provision of inference mechanisms for the delivery of

non explicit information contained therein. In its application in the system developed, referred

to hereafter as the Intelligent Facility Management System (IFMS), semantic web technologies

are used to model the domains of interest. The semantics are based on sub-sets of first order

logic. The following chapter describes the essential knowledge engineering fundamentals and

techniques used in the system development.

The other main discipline contributing to the work completed is that of software agency, a

paradigm that extends object oriented programming with further properties rendering an

entity that is more capable of acting without user interaction, and that when equipped with

some level of intelligence achieves a level of rationality. Such agents can then behave

predictably under changing and unexpected conditions. The principles, practices and resources

in the field of software agency are the subject of chapter 3.

1.3 High Level System Overview

The IFMS consists of both hardware and software. An informal representation of its layered

architecture is shown in Figure 1.1, while Figure 1.2 shows a simplified illustration of its

topology. The system is divided into the infrastructure and the agent layer (Figure 1.1). The

infrastructure can be further divided into layers that comprise of the hardware and interfaces

to that hardware. The information layer contains the sensor node executables which provides

access to (near) real time data captured form sensors deployed in buildings, together with

building information models expressed in the IFC format and several ontologies. The agent

layer in turn delivers support for external applications. The stick figures in Figure 1.1 represent

agent types (in some case using communication) realising collaboration, resource

6

management, negotiation and proxy roles for tool support. A core set of agent types

collaborate, using the infrastructure services and artefacts in the infrastructure, to pursue

goals to build knowledge for the support of those external tools. The semantic models and

knowledge base (KB) ‘machinery’ play a central role in interpreting actively requested low level

data about the environment for the pursuit of goals. The primary domains about which

knowledge is modelled is the building environment and sensors. The nominally buildings

ontology models building entities and relations to capture topology, system membership and

other properties. Specifically the concepts are primarily spaces, rooms, openings, doorways,

windows, furniture, fittings and plant such as HVAC. The sensors ontology captures domain

knowledge about the physical characteristics of the sensing devices, the detection processes

and the sensed phenomena. Thus detailed descriptions can be created that define sensor

contexts so that sensing capabilities within the building can be inferred, taking account of

complex building configurations and sensor locations etc.

7

Figure 1.1 - Layered IFMS architecture illustration showing the primary data flows

8

Figure 1.2 - Simplified framework topology. The lines show the utilisation of services or

resources by the various entities. The ultimate aim is the support of decision making tools,

while informatory / data inputs are ontologies, a building model and live sensor data.

The IFMS has general applicability in the scope of monitoring the internal environment of

buildings for the purpose of generating building oriented knowledge. One of the core high

level functionalities of the agent layer has the objective of identifying wasted resources. This in

turn relies on knowledge generation about occupancy. Another example is the monitoring of

the internal environmental conditions within the context of other knowledge.

The software agent architecture facilitates easy integration of very flexible new goal seeking

entities. The existing hardware can monitor temperature, ambient light level, motion and

proximity e.g. door and window states, but additional devices can be added easily at several

levels of abstraction. The system has been deployed with both wired and wireless sensors.

1.4 Thesis Structure

Following the introduction, literature review sections present relevant theory and significant

contributions in the areas of knowledge engineering and software design. The author’s work is

presented next where the system implementation is described. Following that is a description

9

of results. A section describing proposed further work follows that. Finally a conclusion is

presented.

11

Chapter 2

2 Knowledge Engineering and its Application in the Construction Sector

Knowledge Engineering and its Application in the

Construction Sector

To address the aims of the Intelligent Facility Management System (IFMS), this chapter reviews

two main areas, namely semantic web based knowledge modelling techniques and existing

information representation in the construction domain.

In the system developed, knowledge engineered artefacts and machinery, direct intelligent

behaviour and support knowledge generation through the ability to perform deductive

inference on modelled domain knowledge. The knowledge generated is for the intended

purpose of automating some aspects of FM or at least assisting the Facility Managers’ decision

making. The emerging semantic web provides a range of freely available tools for authoring

knowledge modelled artefacts and for the run time support of software systems requiring the

services of knowledge bases. The nature of those semantic web technologies is well suited to

meeting the knowledge needs of the IFMS.

Information exchange allows existing construction domain knowledge to be incorporated into

an application such as the IFMS and thus exploited. Industry sanctioned or de-facto ‘electronic’

information representation standards facilitate the exchange of information between software

tools. Tools typically internally store information in a specific way that best meets their

specialised informational needs so a transformation to the common format is typically

performed.

The first two sub sections in this chapter cover information / knowledge representation

divided according to the formality of its underlying semantics. Informal knowledge

representations (KRs), with which the majority of information exchange in the architecture,

engineering and construction/facility management (AEC/FM) domain is completed, is

presented first. The motivation for the existence of ‘electronic’ information standards is

described together with their scope and some technical details. Next the discussion of formal

KRs firstly covers semantic web based technologies and some related background theory. Still

within the scope of formal KRs, an overview is then presented of the currently available

software tools and programming interfaces that support the run time use of semantic

knowledge bases. Following that, the practices used to generate and maintain semantic

12

knowledge resources are briefly discussed, including development methodologies. The IFMS

relies on a rich model of its context, so the derivation of an adequate model is fundamental to

its success. Next a review of some general semantic resources i.e. those that are not

specifically targeted at the AEC/FM domain, but that are relevant to the knowledge modelling

effort in the IFMS, are presented, together with some associated background theory. Finally,

some published works on the application of ontologies in the AEC/FM domain are reported.

2.1 Informal Knowledge Representations

The complex nature of the ACE/FM industry and the increasing use of computational resources

within the related disciplines have raised the drive for information and knowledge exchange

over a number of recent years. Resources such as standards and schemas which allow accurate

exchange of information over the building’s lifecycle have emerged, and those resources are a

key facilitator for the IFMS to gain context information.

The AEC/FM industry is typified by complex, unique projects that involve many diverse

commercial enterprises, many individuals with varying skills and disciplines, competence

levels, languages and cultures, potentially working in geographically distributed, short term

collaborations or sometimes in virtual business organisations (in the sense of a collective

comprising of several independent businesses that work together to achieve objectives,

interacting electronically). The fragmentation of the industry has occurred over recent years as

a “result of the complexity (in time, space and technology) of construction products” [4].

Historically there was much less division [11], but this increasing fragmentation requires

progressively more coordination. The application of computer assistance has in the past been

confined to supporting engineers executing specific activities, which lead to the so called

‘islands of automation’. The presence of these ‘islands’ leads to little flow of information

between the many lifecycle stages of the construction activity. Errors, inconsistencies, time

and cost implications are introduced when information is regenerated or imported and

exported between different representations. Standards, schemas and other efforts aim to

improve the situation. Currently such resources are primarily informal representations, in the

sense of lacking mathematical formulation.

Shared information models are the first step in addressing the requirement of data sharing and

interoperability, the requirement for which has existed to some extent for more than 30 years

[12]. Work in the area ranges from the specification of schema for products and building

related activity, to the additional layering of (traditionally implicit) semantics and process

specifications. This is currently achieved to various extents through the use, of varying

combinations and levels of sophistication, of models and frameworks. Native use of product

13

models by applications and users to realise interoperability is a first step and is described first.

Additional mechanisms that build on the product model such as model views and process

descriptions are then discussed.

The distinction between knowledge and information is that of context, readiness for direct

consumption by humans or intelligent agents, and the inclusion of references to more abstract

concepts as well as concrete ones. Similarly in comparing data to information, data is less rich,

lacks context, and has less perceived value.

2.1.1 Product Modelling in the Construction Sector

A product model in the scope of AEC/FM, or a Building Information Modelling (BIM) schema

instance, is a data model representing the entities relating to buildings such as geometric data,

schedules, geographic and material specification, which is generated during all stages of a

building’s lifecycle. Ideally the BIM captures design rationale and meta data such as

provenance. Isikdag, et al. [13] state “BIMs are promising to be the facilitators of integration,

interoperability and collaboration”. The model can reside in a single shared database,

numerous federated databases or data sharing can be facilitated by web services [13]. In

addition to the capture of building related entities, such schemas are ideally able to represent

related information such as design rationale and meta data e.g. provenance.

A summary of the knowledge modelling notations that are in use or that have potential

application for modelling in the AEC/FM domain are shown in Table 2.1. A fundamental

discriminator in KR is expressiveness of the notation used to capture knowledge.

Consequential inter-related properties of the language are: efficiency, flexibility, conciseness,

and a limit to the complexity of what can be captured (as well as decidability in formal

languages, discussed in section 2.2). The languages listed in the table are all of a similar

expressivity. The expressivity is a function of the language constructs. Statements can often be

mapped from one language to another, while preserving the intended semantics, potentially

by using a compound of constructs where expressivity is lower.

Table 2.1 - Summary of common modelling languages and their presence in the AEC/FM domain

Notation Features Usage / maturity Scope / example uses

and/or standards

EXPRESS

/

EXPRESS-

G / STEP

STEP (Standard for the Exchange

of Product model data) [14] is an

ISO standard for the exchange

and archiving of product data.

Successful but not

extensively

understood

Wide, used in range of

industries / IFC (see

section 2.1.2), CIMSteel

[15] structural steel

14

There are parts that cover

construction specifically as well

as lifecycle. Both rich in

constructs; EXPRESS is a lexical

modelling language and EXPRESS-

G provides graphic

representations of an EXPRESS

subset.

product definition

Entity-

Relation

Data modelling: concept and

relation constructs; succinct

graphical representation

Widely used in

database

modelling, well

understood and

very mature

Databases (relational).

Numerous traditional

applications

IDEF0 to

IDEF14

Wide range of models supported.

Selected methods: IDEF0 function

modelling, IDEF1 information

modelling, IDEF1x data modelling,

IDEF4 object-oriented design,

IDEF5 ontology description, IDEF6

design rationale capture. [16]

Rich modelling and

collectively

provides wide

coverage.

Generally mature

but not extensively

used

Widely applicable. E.g.

whole lifecycle

application scope in the

Integrated Building

Process Model (IBPM)

[17]

UML +

OCL

Small set of constructs, extension

for constraints but supports wide

range of model types (13 types of

diagram). No formal semantics

Easy to understand

and familiar to

users, scales well

to more rigorous

application. No

implicit

specification.

Widely supported

by tools.

Mostly software

engineering, variants

used for systems and

data warehouse

modelling. Popular.

Lends itself to mapping

to formal

representations (see

section 2.2.3.1)

XML Distinction between mark-up and

content being described. Simple

syntax

Commonly used,

describes data

structures,

extensive tool

support

Very wide, not

restricted to internet

applications / ifcXML

(see section 2.1.2)

15

2.1.2 Industry Foundation Classes

The Industry Foundation Classes (IFC) are an open data schema having a taxonomic structure

that has the fundamental purpose to facilitate information exchange in the construction

sector. It is a priori (independent of experience) agreement of concepts that has evolved over

a number of years and systems adopt or translate to this representation. The IFC captures

information relating to the design construction and management of buildings, over their

lifecycle up to demolition. Specifically the IFC can be divided into constructs for modelling

products, processes (information about the processes to design, construct and manage the

project), resources (resources consumed by the process), and controls (constraints, which are

key to establishing model integrity). It has matured over more than ten years. IFC uses the

EXPRESS schema language and STEP (Standard for the Exchange of Product model data) (ISO

10303) [14] physical file format, and is “increasingly accepted” in that form [18] but more

recently has attracted interest represented as XML in the form of ifcXML, consistent with the

extensive use of XML for the sharing of business data. XML is widely used and understood with

wide support with tools for editing and integrity checking. A small but significant advantage of

the XML version of IFC, compared to the EXPRESS format, is that it can be divided into separate

physical storage, which affects issues such as ownership and responsibility for maintenance.

16

The IFC has been selected as a standard by several organisations worldwide, in Norway, by the

General Services Administration in USA, and for use in official government documents in China

[19] and enjoys government and industry support in Finland [20]. In the context of native use

by applications, its use is mainly restricted to CAD data exchange [21]. Howard, et al. [12] less

positively generally report “widespread ignorance and little use of IFC”, except for example in

Finland where there has been “a major commitment by the public sector and large

construction process stakeholders to IFC usage”. A technical criticism by Howard and Bjork of

IFC is its complexity and its dependence on a limited number of experts, but they state that

there could now be renewed interest due to several factors including an increasing

understanding of benefits of BIM by property owners [12]. They state one viewpoint that its

development over ten years has been regarded as too slow by some individuals and that it has

lacked of adequate resources [10]. However, the recently achieved feasibility of using BIM on

desktop computers counters the negative criticism about development time to some extent

[10]. Hiding this complexity from users and applications is desirable and some approaches are

discussed in the following subsections. Cerovsek [22] reports more recently in 2011 that

although still standards including IFC “... have succeeded in making only partial progress in

supporting interoperability ... (that) progress is very important and its impact will be evident

years from now”.

Standards such as IFC help to imply semantics of the entities through taxonomy, generic

naming (terminology) and properties of entities constituting the data model, but do not

explicitly state those semantics. A factor in the effectiveness of integration “.... depends on the

degree of support for standardisation efforts by industry and academia” [23]. There are some

barriers that make the development of a common conceptual model difficult though, including

different semantic definitions of products, as well as varying scope and levels of abstraction of

the definitions. The varying views of the data models are due to diverse applications in the

construction industry and its fragmentation makes consensus difficult especially for a

posteriori (dependant on experience) models [23]. Katranuschkov, et al. [21] agree, stating

that “recent practice has shown that establishing comprehensive, standardised product data

models proves to be a long and complicated process”. IFC reside at the base of the

interoperability dependency, shown in Figure 2.1.

Amor, et al. [24] have analysed the preservation of the integrity of the semantics of IFC data

representation as it was imported and exported between tools such as CAD and states that the

integrity is rarely preserved. They have also applied some simple metrics to the various

versions of IFC (such as the number of classes, average depth of inheritance tree, average

number of associations per class together with others) which demonstrate “significant

17

increases in complexity” and state

“while some aspects of this

complexity are understandable in a

mature model, there are measures of

the schema indicating complexity

which is not necessary”. [25]

2.1.3 Application of the Industry Foundation Classes

Work that builds on the fundamental product model and the advantages realised are

described next. The Building Lifecycle Interoperable Software (BLIS) project builds on IFC to

promote the whole building lifecycle application of IFC. IFC has extensions to support FM and

domain specific entities targeted at for example electrical, HVAC and structural engineering

domains. BLIS specifies, with the extended IFC, the distributed software infrastructure for

collaboration throughout the building lifecycle, supported by a common shared database

schema. A specific aim of the BLIS project is to capture design rationale throughout the

lifecycle. It addresses its objectives through specifying a core set of use cases (“compelling

enough to end users that they will purchase applications that support them” [26]) and

corresponding IFC models to realise those, thereby focusing industry software providers and

users. Views, of the IFC model supporting the various use cases ensure consistent

representations for sharing. These views constitute layer two of interoperability dependency,

see Figure 2.1.

Despite its maturity, Hietanen and Lehtinen [27] state that the IFC are not widely used in

industry due to “missing a clear focus and suffering from quality problems”. Where

implementation resources are limited, they suggest focussing the scope to allow the

improvement of quality, which should then drive the demand for wider scope. Even within a

narrow scope though, the advantages of IFC are clear. For example, relating to design products

where data exchange is focussed on geometry. While both approaches of employing DWG and

IFC formats for data exchange will suffice, the use of IFC by virtue of its domain model is a

superior solution. For example, in the delivery of presentation options an application, the use

of IFC entity properties is a much more flexible approach than an alternative involving layering

Figure 2.1 – IFC Interoperability Pyramid [25]

process
map

exchange
requirements

IFC implementation

IFC model view definitions

IFC model specification

18

[27]. The Information Delivery Manual (IDM) [28] (described next) and supporting

specifications address the identification of exchange scenarios.

Supplementing the IFC specification, the IDM and Model View Definitions (MVD) are

concerned with modelling the relationship between processes and applications respectively.

Those model instances are captured using respectively, the IFC process (generating process

maps, Figure 2.1) and constraint schemas. While IFC “defines the format for information

exchange”, the IDM defines “which information to exchange and when”, and a further

specification, the International Framework for Dictionaries (IFD) [29] allows the definition of

how to “interpret the information exchanged” [19]. Similar to aspects of a process model, the

IDM specifies the scope and timing of information exchange while the IFD details explicitly the

entities described by IFC. The IDM typically confirms that information exchanged for a

particular process is complete, while the IFD provides a vocabulary and definition of entities to

promote unambiguous understanding of the model. Historically the dictionaries SINTEF/BARBi

(Norway) and STABU/Lexicon (Netherlands) which have evolved over several years have

influenced the development of the IFD. A web service application programming interface (API)

promotes wide access to IFD, and its data model is captured in the EXPRESS notation,

supported by object oriented database management products. IFD, as well as a project called

the Simple Access to the Building Lifecycle Exchange (SABLE) [30], address the upper two

layers of interoperability dependency (Figure 2.1).

Extending the lifecycle support provision by IFC, the SABLE project adds a set of high level

domain specific Application Programming Interfaces (APIs), specification of a communication

protocol and query language for product information servers. These APIs, combined with

product model servers, provide a framework for common agreements on data sharing. Shared

semantics are implied in the framework so clients must translate to this representation.

Limited support for versioning and partial model exchange in IFC is enhanced in SABLE.

Structuring domain processes through its domain specific interfaces, SABLE addresses the

upper two layers of the interoperability pyramid.

A recent version of IFCs, 2x3g, has entities containing globally unique identifiers, allowing

referencing to a nominated library containing lookup information such as material

specification and text strings in different languages. These identifiers can map ontologies or

other semantic information, and material specifications could be part of the international

standard [19]. While the specifications alone do not explicitly specify the semantics of entities

or provide detailed descriptions of them, or define any type of process model (instance), it

19

does provide the constructs to enable support for “real semantic interoperability and dialogue

among actors exchanging information” [31] to be created.

2.2 Formal Knowledge Representations

This subsection discusses some background theory of formal knowledge representations (KRs),

together with some related construction domain specific published work. The formality refers

to the logical formulation of the underlying semantics, typically based on first order predicate

calculus. In contrast to those representations discussed in the previous subsection, the

underlying semantics are thus explicit, allowing reasoning to be delivered through the

verification of logical consequence [32]. Supporting resources are mentioned and applications

discussed.

2.2.1 Description Logics

Description Logics (DLs) are “a family of logical formalisms for the representation of and

reasoning about conceptual knowledge” [33]. DL provide a means to state relationships

between concepts far beyond the IS-A type and others provided by notations such as UML.

Typical are the provision of the universal qualifier that constrains the type of objects involved

in roles, and the existential qualifier that asserts the relation holds for at least one object of

the target domain. Further characteristics, in contrast to notations such as entity relationship

modelling for databases, are an infinite domain and the open world assumption (OWA) (most

databases interpret the opposite, where information not asserted to be true is false, and that

information given is complete). Additionally humans and databases assume distinct names

refer to different objects; the unique names assumption. Statements can be added in the DL

knowledge base (KB) though to render closed world and unique names assumptions if

required. The basic reasoning of DL is the deduction of subsumption and satisfiability. The

latter determines whether a concept expression yields an empty set while the former

identifies presence of ‘is-a’ relations. Different combinations of language constructs give rise to

varying computational complexity of the reasoning. By limiting the combinations of constructs

the language becomes less expressive, but reasoning becomes more manageable. The

selection of constructs is therefore a trade-off.

Entailment (logical implication) is another reasoning problem, which in complex KBs can be

demanding [32]. The decidability of a KB is a key factor related to the constructs used in its

contained statements. If that system is undecidable, then the reasoning procedure may never

terminate when attempting to prove that another statement is not entailed by the KB.

Propositional logic is decidable (using the truth table approach in proofs), while first order logic

20

is, in general, not decidable. Entailment is therefore termed semi-decidable. A reasoning

(proof) technique is said to be complete if it can prove all entailed statements (a statement

follows from the premise according to the defined semantics of the system), are in fact

entailed. Reasoning, and reasoner support for the Web Ontology Language (OWL) in particular,

are described in more detail in section 2.2.4. Formally, language semantics are defined with an

interpretation I consisting of a non empty set ∆I and a function that maps atomic concepts A

to members of ∆I and atomic roles R to a binary relation of the product of ∆I. Inductive

definitions then state the semantics of the language constructs constituting the language.

Commonly a DL knowledge base consists of two parts, one describing the concepts and the

other describing individuals, referred to the T and A box respectively. The T box contains

concept definitions which define new concepts as equivalent to others (that eventually refer to

atomic concepts) using the language constructs. This concise equivalence which characterises

DL KBs states necessary and sufficient, in contrast to other types of knowledge capture which

commonly state just necessary conditions [32]. Additionally in DL KBs, concepts are usually

stated without allowing self references or statement in terms of other concepts referring back

to them (acyclic), and only a single concept definition exists [32].

 The A box consists of membership assertions of concepts and roles, but assertions of role

constructed from combinations of others are typically only found in very expressive languages.

Here, in contrast to T box reasoning mentioned above, the main reasoning process comprises

of determining memberships of individuals in a given concept. Other processes are based on

this process though such as checking KB consistency i.e. that all concepts contain at least one

individual, as well as realisation and retrieval which for an individual finds the least abstract

concept containing it and which finds all individuals contained by a given concept respectively

[32]. A (and T) box reasoning is provided by reasoning engines such as RACER described in

section 2.2.4.

 Many logics are possible with the use and combination of different constructs; that

expressivity is described with a notation part of which is shown in Table 2.2 for logic

SHOIN(D), the logic corresponding to OWL-DL (see section 2.2.3). The appended (D)

denotes a set of concrete domains, nominally datatypes, that includes string, boolean, float, a

URI type and support for a number of integer ranges and dates and times among others.

Concrete domains such as this, together with the provision of pre defined operators allow the

definition of concepts more elegantly than creating abstract concept expressions to capture

the same.

21

Table 2.2 – DL Constructors Notation covering OWL DL & Lite

Extensions to DLs provide

constructs for non-montonic KR

(opposite to systems where

learning a new piece of

knowledge cannot reduce the

set of what is known), epistemic

(concerning the nature and

scope of knowledge) and

temporal, as well as constructs

for representing belief, uncertain

and vague knowledge. The latter

has been approached through

the application of probabilistic

and fuzzy logics. Rule extensions

in particular enhance

expressivity and are discussed

below.

2.2.1.1 Combining Description Logics with Rule Support

This sub section covers the addition of rules to DL, the augmentation of OWL in particular is

described below in section 2.2.3.

 Several researchers have investigated augmenting DL KB systems with rule support typically

realised with the Datalog language and its extensions. Datalog is a language supporting

(specification of queries, rules and facts) deductive databases. Rosati [34] states that such

integration leads to systems that are undecidable in reasoning but that that can be addressed

with the introduction of “safeness” conditions that constrain the interaction between the DL

and Datalog rule systems (by limiting the use of variables in the rules), but with the

consequence of significant reduction in expressiveness. He presents a framework for certain

DL and datalog variants that reduces the constraints regaining expressiveness. The main

semantic difficulties are related to the co-existence of knowledge interpreted using open and

closed world assumptions of the DL KB and non-monotonic Datalog rules [34]. Rosati further

states that additional work will address more expressive logics such as that of OWL. Other

approaches are possible besides ‘full’ integration such as the support of rules distinctly

separated from DLs.

Abbreviation Description

AL Attributive Language: Atomic negation,

concept intersection, universal

restrictions, limited existential

quantification

C Complex concept negation

D ‘Datatypes’

F Functional properties

H Role hierarchy

O Nominals (singleton class)

I Inverse properties

N Cardinality restrictions

S AL + transitive C

22

 Conversely, the augmentation of rules with information from ontologies has been developed

in several works, including that presented by Mei, et al. [35]. They present a set of languages

composed of the “Datalog rules parameterised by DL languages ranging from ALC to SHIQ”.

Their (hybrid in contrast to homogenous) approach interprets separately DL predicates and

rule predicates (only occurring in rules) using appropriate open and closed world semantics

respectively. The popular DL reasoner RACER (described in section2.2.4) is utilised together

with the rule engine OO jDREW [36].

In the context of the semantic web, the Semantic Web Rule Language (SWRL) is a rule

implementation that complements OWL and OWL2, and is described in section 2.2.3.

2.2.2 Ontology

The well known early, computer science based definition of an ontology by Gruber is “an

explicit specification of a conceptualization” [37]. He elaborates the definitions and states the

conceptualization refers to “concepts, relationships, and other distinctions that are relevant

for modelling a domain”, while the “specification takes the form definitions of representational

vocabulary (classes, relations, and so forth), which provide meanings for the vocabulary and

formal constraints on its coherent use” [38]. Boorst introduced mutual and machine

processable (formal) attributes in his definition of an ontology as “a formal specification of a

shared conceptualisation” [39]. In a general context the purpose is to facilitate information

sharing and reuse, while preserving some appropriate semantics, so is an embodiment of

ontological commitments [40]. Moreover the same domain can be modelled differently,

perhaps for different purposes and using different representations (Figure 2.2). Another

definition of ontology which is also computer science based is “ontologies are meta data,

providing a controlled vocabulary of terms, each with an explicitly defined and machine

process able semantics. By defining shared and common domain theories, ontologies help

both people and machines to communicate more effectively” [41]. In the more general context

of the web, ontologies typically “.... have taxonomy and a set of inference rules” [42]. The

literature in general does not constrain ontologies to a formal basis, lightweight ontologies

being those without.

An ontology characteriser presented by Guarino that can describe quality is ontological

precision, where the precision progressively increases from representations by a “catalogue”,

taxonomy, object oriented design, up to axiomatic theory [43]. He also adds ontology coverage

as a quality indicator. Although it may not be explicitly stated, every software design, database

or knowledge base is based on some form of conceptualisation [40]. [44]

23

For purposes including

those to characterise

ontologies, Yudelson, et al.

[45] have developed a meta

ontology. The top level

discriminators include

“how”, “what”, “why” and

“who”. They also present an

ontology classification,

itself at the upper layer a

taxonomy, then a

partonomy below, that covers the well known classifiers such as taxonomy and partonomy,

but adds others including “genealogy”, “function”, “causative”, “associative” and “attributive”

[45]. Although not an explicit (meta) ontology, rather a process, OntoClean [46] attaches

defined meta properties based on philosophical concepts, to properties in taxonomies, for the

purpose of analysis in order to eliminate incorrect subclass relationships [39].

2.2.3 Web Ontology Language

OWL is a DL based ontology language recommended by the World Wide Web Consortium

(W3C) for use with the Semantic Web. Its semantics derive from that of DL, overviewed in

section 2.2.1. OWL has three variants: OWL-Lite, DL and full. OWL-DL provides the

expressiveness of SHOIN(D) (a ‘very expressive’ DL) while Lite with fewer constructs,

including not allowing unions and compliments, restricting the type of intersections, limiting

cardinality to zero and one, together with some other constraints, corresponds to SHIF(D).

The Lite version, through its lower expressiveness, is simpler for reasoners to process, and

presents fewer difficulties for tool authors of products such as editors to provide software

support [32]. Although there are significantly more restrictions in the syntax of OWL-Lite, “the

expressiveness is very close to that of OWL DL” [47]. Unlike OWL-Lite and DL, OWL-Full does

not impose any restrictions on the use of the underlying RDF and RDFS notation but a major

disadvantage is that OWL-Full is undecidable as the restrictions applied to maintain

decidability in the other variants are removed.

The provision of rule specification i.e. if A then B, within OWL was recently proposed to add

expressivity that cannot be captured by the DL. An often quoted general example is the

relationship such as “someone’s uncle is the brother of their parent“. SWRL is one solution

that has been implemented. It adds rule support to OWL-DL and Lite with the addition of Horn

Figure 2.2 - Different conceptualisations of an entity (based on Ogden

and Richards in [44])

24

like rules but allowing the head (consequent) and the body (antecedent) to contain any OWL

class, property or individual. In Horn rules the head contains a single atomic formula and the

body contains a conjunction of atomic formulas. However, “the key inference tasks (e.g.

satisfiability and entailment) are in general undecidable for SWRL” [47]. Certain restrictions

though can be added to the rules to render them ‘safe’, which is that every variable must at

least appear in a non-DL atom in the condition of the rule. So facts have to be added for those

variables, essentially restricting the rule to known individuals [48]. Consistent with OWL, SWRL

should be formulated to uphold the OWA and support monotonic inference (should not

counter existing information in the ontology).

2.2.3.1 Mapping from UML

The mapping of language constructs has application in ontology development for the purpose

of reusing existing resources described by UML (making implicit semantics explicit).

Additionally, the provision of a graphical representation for OWL and taking advantage of

common and widely used “industrial strength” UML tools, are further motivations. All these

motivations are relevant in the context of the development of the IFMS. Object oriented

design and ontology development of course share their central concern for modelling.

Brockmans, et al. [49] present a UML notation for OWL. They state that the “.... necessity of a

visual syntax for KR languages has been argued frequently in the past”. Statements are

otherwise expressed using just text based syntax. Their ontology definition meta model

(ODM), is intended to provide an intuitive mapping to the syntax and semantics of OWL-DL.

Additionally, the ODM enables, for example, the use of the Eclipse Modelling Framework (e.g.

[50]) to derive a Java API from OWL. Alternative approaches by other authors, that were later

merged, realise a very rich meta model to capture many KRs, cf. the single one, but the

disadvantage is the consequent complex mappings compared to many simpler meta models

for the different KRs. All solutions are necessarily defined using OMG’s Meta Object Facility

(MOF) [51]. While practically, UML representations can be a very useful way of maintaining

ontologies, in a report comparing OWL and UML, Hart, et al. [52] state that for some

constructs there are alternatives for mapping from UML to OWL, and that the best choice can

depend on the context. While some mappings are intuitive to some degree “there are many

features that can only be expressed in an ontology language ... e.g. transitive and symmetric

properties in OWL” [49]. UML is particularly suited to illustrating certain ontology features,

most obviously taxonomy (hierarchal) and partonomy relationships.

25

2.2.3.2 Other Mappings and Translation

The representation of ontologies directly in an object oriented programming language, instead

of manipulating primitive objects from an ontology programming interface, generally simplifies

programming. The framework Jastor [53] is such a provision that “... supports most features of

OWL-Lite and OWL-DL” in a Java environment.

Translating from an XML (syntax centric) representation has similar advantages to translating

from UML in that existing resources captured in that format can have the implicit semantics

made explicit, lending itself to further reasoning. A standard and well supported (with tools)

process is the translation technique involving an XSLT (extensible style sheet language

transformation) processor. The translation involves the processor reading and processing a

style sheet written in XSLT (a language employing a combination of procedural and declarative

statements) to generate the transformed output expressed in RDF (itself XML based). Several

XSLT style sheets that translate XML schemas into OWL has been published, e.g. [54]. Such

style sheets incorporate strategies to handle complications such as the different topologies of

XML Schema and RDF Schema / OWL. XML schemas are trees while RDF Schema / OWL are

typically directed graphs that can be cyclic.

2.2.3.3 The Semantic Web

A leading motivation for the development and application of DL and specifically OWL is the

Semantic Web, which is described in this subsection. The Semantic Web is an open standard,

layered, distributed infrastructure presented by the W3C [55]. It builds on the existing Web

and is an environment where machines will automatically process published knowledge on

behalf of users to meet desired goals. Applied to this context, the agent paradigm is that

where software modules, on behalf of users, retrieve and reason with KRs published on web

sites to satisfy goals. Agents can use the services of other agents as well as utilise knowledge

contained in the KB accompanying human readable representations at web sites. The

combination of ontologies, a common language representation for expressing those ontologies

and as well as for formulating queries and representing results, and the support of the existing

Web, are the foundations of the Semantic Web [42]. Although in the Semantic Web where

agents are able to interpret content, they do not ‘understand’ it in the same sense that

humans do, but they are able to process the knowledge in formally defined ways [42].The IFMS

and the Semantic Web share the reliance on KR and inference. Moreover the Semantic Web

adopts proof and trust functionality in its upper (stack) layers, and similar concerns could be of

importance in realising the integrity of the IFMS, particularly if it dynamically elicits knowledge

from an ‘open’ and distributed (web) sources.

26

Proof is realised by the explanation of how inferences are reached and can be published for

later checking; the advantage is that proofs can be checked quicker than they can be derived.

In order to realise trust in the Semantic Web, entities such as ontologies and proofs can be

digitally signed by their authors. Digital signing such as the use of XML signatures (a standard

schema for authenticating any, but typically, XML entities) spans the data representation,

ontology, logic and proof layers of the Semantic Web architecture. A so called ‘web of trust’ is

expected to emerge through transitive trust prorogation. One approach for the provision of

proof could be via the use of the Pellet reasoner’s explanations (see section 2.2.4.3).

2.2.3.4 Ontology Interaction

An ontology API allows the manipulation of an ontology and its statements using the familiar

object oriented programming paradigm. Classes are provided for reading and writing

ontologies to/from serialised storage as XML (sometimes using a range of (standard) syntax

rendering options), and to add, remove and edit (ontology) concepts, properties and

individuals (typically as fairly primitive representations mapping the ontology constructs). The

object classes allow reading and setting of the properties of the constructs for which they are

proxies. Ontology query can therefore be realised by programmatic exploration of the

ontology via class instance and/or individual instance processing but for complex queries that

can be inefficient and complex. Typically APIs provide a query interface supporting the popular

SPARQL Protocol and RDF Query Language (SPARQL is a recursive definition of SPARQL

Protocol and RDF Query Language) [56]. Other query languages have been developed with

various properties, which can be more or less suited to the nature of knowledge base being

queried. Popular APIs for OWL and RDF are OWL API [57] and Jena [58]. The APIs can be

coupled to a reasoner/s using either propriety interface or via a generic interface, typically DIG

(see section 2.2.4.2).

2.2.4 Inference and Reasoner Support for OWL

In this subsection, after a general description of reasoners a common API for reasoners: the DL

Implementation Group (DIG) Description Logic interface is briefly outlined. Next, a popular

reasoner supporting OWL, the Pellet reasoner [59] is described in more detail, followed by an

outline of some features of another called RACER (Renamed A box and Concept Expression

Reasoner) [60]. Finally, the support for less expressive reasoning delivered by Jena is briefly

described.

27

2.2.4.1 General Features

A Reasoner provides inference services for ontologies. Most reasoner engines support the

same main services from the categories of inference of new conclusions and for verification of

consistency. The consistency check involves verifying that there is no contradiction between

any (asserted and inferred) ontology statements, as well as verifying concept satisfiability,

where it is verified that every class can have A box instances i.e. class definitions are not empty

by implication. Common inference services generate all the logical consequences from the

axioms in the ontology, including the inferred class hierarchy cf. asserted hierarchy, where for

named classes for example, necessary and sufficient conditions add inferred class

relationships. Inference also involves realisation which is the evaluation, from ontology

axioms, of which classes A box individuals are members. Typically in connection with reasoning

with concrete domain entities, natural numbers, integers, reals, complex numbers and strings

are supported.

Reasoner engines typically have similar components, consisting of a parser, interface modules,

query engine, as well as a core reasoner. Reasoning is achieved using a variety of algorithms

depending on the constituent DL constructs present. In order to be useful in practical

applications, reasoners need to be sound and complete. Soundness refers to the reasoner, or

strictly the decision procedure which it employs, not delivering any incorrect results by

applying valid inferences with asserted true premises, while completeness refers to finding all

of the correct and valid results [61].

2.2.4.2 A Common Application Programming Interface

To provide a general API that provides easier integration with current programming languages

than previously offered (typically in the style of Lisp syntax), the DIG interface has been

developed. It (specifically version 1.1) provides ask (& answer)/tell functionality, and KB

management, with an HTTP based protocol defined by an XLM schema [62]. A protocol such as

SOAP was not used due to its object centric nature; in contrast the emphasis for DIG is on

message passing [62]. The current specification defines a minimum subset of functionality

without synchronisation for multiple clients for example, but later versions “...will address

stateful connections, transactions, reasoner preferences and so on” [62]. The concept

language is based on a logic that is rich enough to support OWL well as other DL but with some

constraints for concrete domains, such as no support for linear inequalities or named concrete

objects [62].

28

2.2.4.3 The Pellet Reasoner

The Pellet Reasoner is an OWL-DL reasoner with “extensive support for reasoning with

individuals (including nominal support and conjunctive query), user-defined data types, and

debugging support for ontologies” [63]. All reasoning requests are satisfied by reduction to

consistency checking which is processed by a (pluggable) tableaux reasoner; the default can be

substituted to process OWL-DL extensions [63]. Pellet includes several ‘novel’ optimisations

including that for handling nominals and individuals and reusing query answers [63]. A box

(conjunctive) queries are supported using the (RDF) SPARQL query language. SWRL rules, with

some constraints, are supported; OWL and native SWRL data types are permitted in the head

of rule definitions (the combination of DL and rules is discussed in section 2.2.1.1).

In particular Pellet provides its own improved A box query engine for SPARQL support that is

tailored for that application (where the query is related to the T box, the default Jena query

engine is invoked). Another feature, although only supported through the OWL API is

incremental reasoning that can assist the programmer to deliver high performance. Extending

the standard libraries, Pellet provides support for spatial reasoning based on RCC-8 calculus in

a version of the library known as PelletSpatial [64]. Another facility in Pellet is the provision to

enable the closed world assumption by supplementing the DL ALC with the K operator i.e. K

applies syntactically, and is restricted to the language ALC. Application of the closed world

assumption to OWL-DL can be either via a T box rule, or the operator can be applied in queries

to classes and properties [65]. In contrast to the OWA that is suited to situations where the

modelled knowledge is incomplete, the closed world assumption sometimes better suites the

context. Examples are default reasoning and querying data structures where an ontology has

been generated from a general schema. Axioms, for example, can be added to classes in OWL

to render closure at ontology design time, but the required inference may vary according to

context, so stating closure at design time is not possible using that method.

Another feature of Pellet is that it provides an explanation facility, which is an account of how

inferences are reached i.e. the set of ontology statements that entail the inference. No

statement is made about whether the explanation is minimal (concise) in the general case.

Such a facility has an application for debugging ontologies, justifying conclusions at run time

and could contribute in establishing trust, or at least reduce its overhead regarding

computation.

Finally Pellet is well supported, freely available and is open source.

29

2.2.4.4 The RACER Reasoner

The RACER Reasoner includes support for OWL and RDF. It provides, as well as a DIG interface,

a lower level TCP socket based interface providing extended query facilities. RACER supports

the usual interference services for T and A boxes. In particular it addresses the synchronisation

of multiple clients (such as thread safety, read/write locking) with the introduction of the

‘Racer Proxy’ between the clients and the reasoning engine. Another feature is that for A box

queries, an asynchronism facility is provided for clients to register a call back, for notification

when the answer of a given query changes due to changes in the A box. The direct

implementation of several common query formulations e.g. reporting of children and parents

of a given concept, report the concepts of which a given instance has membership, report role

fillers for a given instance, that can otherwise be executed using a query language, have

become less important.

Even though a licence is available for educational use, it is time limited and closed source in

that configuration. For non research deployments, it is costly. Thus, while RACER has and some

attractive and unique technical features, the licensing makes it less attractive for use in the

IFMS.

2.2.4.5 Other Reasoners

In contrast to the above mentioned reasoners, the ontology API Jena provides reasoning but

with some limitations, but such reasoning is still useful in practice for example for computing

hierarchies, and can be very efficient so reduces computation demand. The limitation is in

terms of the scope of support provided. Several RDFS based options are available, as well as

support for just the OWL-Lite variant. Various configurations are available ranging from the

support of almost complete RDFS inference to a simpler option providing primarily transitive

support, honouring sub class and sub property implication, transitive and symmetric properties

of those sub class and sub role relationships, and domain and range entailments in roles [58].

2.2.5 OWL Tools

Typically OWL ontologies are maintained with an editor in contrast to manipulating the

underlying text based representation, and editors offer, with the support of reasoners, the

ability to graphically indicate reasoning inferences. A popular ontology tool supporting RDFS

and OWL among others is Protégé [66]. Protégé offers inference services such as inconsistency

checking and inference visualisation via connection to a DIG compliant reasoner, as well as

well as editing wizards and general ontology visualisation. Pellet is also directly integrated in

recent versions.

30

2.2.6 Ontology Engineering

Sound software engineering techniques are needed to generate ontologies and to facilitate

their interoperation with existing (and expected large supply of semantic web based)

ontologies. Specific activities such as applying metrics and identifying characterisations such as

level of detail are important in that activity. This sub section describes aspects of ontology

engineering (the activity of developing, structuring and maintaining ontologies). The discussion

mentions some ontology development methodologies.

Ontologies, to varying degrees, focus on specific domains and are usually authored for specific

applications [40]. Regarding the authoring of ontologies, Gruber [40] describes five design

criteria for ontologies: “clarity (unambiguous, objective definitions independent of social or

computational context), coherent, extendible, minimal encoding bias and minimal ontological

commitment”. “Minimal encoding bias” promotes independence from the modelling language

used, avoiding the construction that is motivated by conveniences or elegances provides by

the language itself, while “minimal ontological commitment” describes that achieved by

constructing statements where implied assertions about supporting entities is no more than

that required, achieved by stating the “weakest theory” [40], and in contrast to typical product

modelling objectives [21]. Uschold, et al. [67] describe the steps in authoring as “knowledge

capture, coding, and integration with existing ontologies”, the latter being observed during the

previous two phases where appropriate, with an attempt to reach consensus with the wider

community.

Regarding the quality of ontologies, Joo, et al. [68] raise the simple criteria of how well an

ontology “mirrors the real world”. More specifically Burton-Jones, et al. [69] present ontology

quality metrics: “syntactic (richness and correctness), semantic (meaningfulness, consistency

and clarity), pragmatic (number of classes & properties, accuracy and relevance), and social

(extent of usage by other ontologies and number of times used)”. They describe how the

metrics are computed and how they should be combined for overall assessment.

In addition to ontology construction further related engineering efforts are those of ontology

alignment to allow interoperation and change tracking [70]. In order to facilitate reuse in an

environment with other ontologies, all must be in “mutual agreement”, realised if necessary

through an alignment process [70]. Discrepancies can arise due to differences in: expressivity,

level of abstraction, syntax as well as semantic and conceptual differences. Version and

configuration management support is important to accommodate the natural evolution of

deployed ontologies. The output of similarity comparison generates mappings between

entities such as “exact, approximate, superset and subset” [71].

31

There are many approaches for aligning ontologies, including syntax based (for where

ontologies are expressed with different languages), as well as semantic based. Within the

context of OWL, the ‘similarity’ based approach is “powerful and flexible” [72]. Similarity

comparison, completed by comparing the entities in the ontology, can be done in several

ways. Comparison can include: “terminological (comparison of entity names, including with

the support of a dictionary to identify equivalence, opposite and subsumption), internal

structure (range and cardinality of attributes), external structure (relationship comparison,

including cardinality, range, subsumption and supersumption)” [72] . So called semantic

comparison identifies the explicit and implicit interpretation of entities captured (the latter

facilitated by a reasoner), as well as lexical comparison of descriptions. Specifically the Falcon-

AO tool employs a combination of linguistic comparison and graph matching [73]. Linguistic

comparison involves (possible) lexical comparison of names and annotations, together with

statistical processing of ontology related text. Another algorithm realises graph matching by

examining the “structural similarity of the directed bipartite graphs generated to represent the

ontologies” [73].

2.2.6.1 Ontology Development Methodologies Overview

Several ontology development methodologies have been published and this sub section

summaries their salient defining characteristics. Those characteristics are listed in Table 2.3.

The motivation is to identify the most appropriate in the context of the IFMS, or to inform the

development of a custom methodology. The ontology development methodology adopted is

identified in section 4.3.3.

Table 2.3 - Defining characteristics of selected ontology development methodologies

Name Defining feature/s

Neon [74] Complete and detailed support (‘step by step’ guidance) for

reusing existing resources in 9 scenarios e.g. starting with

taxonomy, semantic, from ‘scratch’. Familiar alignment with

familiar software engineering paradigms. Various granularities of

reuse are supported: whole ontology reuse, ontology module

reuse, reuse of individual ontology statements, and reuse of

ontology design patterns. Supports ‘contextualised networked’

ontology development with the specification of Meta Object

Facility [51] based meta models, covering ontologies, rules,

mapping and modularisation.

Methontology [75] One of the most comprehensive and is typical in that it has distinct

32

phases aligned with software engineering methodologies. Those

phases are: specification, conceptualization and formalisation

(conversion of the conceptual model into a formal model [formal

up to the formality of the KR, not necessarily in a mathematical

sense]), implementation (transforming the formal model into a

representation with a KR language).

Cyc (in [39]) Customises and extends an existing, extensive high level ontology.

New ontologies are specialised from an extensive existing

ontology, with tool support.

SENSUS [76] Customises and extends an existing, extensive high level ontology

On-To-Knowledge

Methodology (OTKM)

[77]

After capture of requirements, a semi formal ontology is created

which is later formalised into a target ontology. Evaluation of that

ontology from different perspectives then follows. A maintenance

phase is specified. Refinement, evaluation and maintenance

phases can iterate.

Uschold and King [67] Employs process stages: purpose identification, building (capture,

coding, integrating), evaluation and documentation

Grüninger and Fox

methodology [78]

The Grüninger and Fox methodology introduce formality after the

scope of the ontology has been identified. The scope is derived

from informal usage scenarios and “competency questions”. “The

competency questions and their answers are then used to extract

the main concepts and their properties, relations and formal

axioms” [78].

On comparing the published methodologies, there is a variation in scope and level of

specification of the processes described. As expected the main focus of most is authoring, but

some also cover, to various extents, lifecycle management and development support activities

such as knowledge acquisition, evaluation, integration, merging and alignment, and

configuration management [39]. The methodologies also exhibit varying application

independence e.g. Cyc (application dependant), SENSUS (intermediate dependence), and On-

To-Knowledge Methodology (OTKM) (independent) [39].

Regarding Neon, a specific feature is its support for the development of contextualised

networked ontologies. Various Meta Object Facility [51] based meta models are defined

including those that allow the specification of ontology mapping and modularisation.

Specifically regarding modularisation, the OWL specification only provides limited support for

33

modularisation via its definitions of owl:imports semantics. Making no (meta level) distinction

between ‘native’ and imported entities, the nominated ontology is simply included as a whole.

Neon’s modularisation facility in contrast permits partial importing. Also facilitated by the

modularisation facility is an information hiding provision which, similarly to that in object

oriented (OO) engineering, allows the specification of reusable ‘interfaces’. The technique

allows, for example, parts of an ontology to be developed (evolve) ‘behind’ that interface

without requiring changes in the interface clients, thus leading to easier maintenance of

deployed systems. A benefit of partial importing is that its application could be an alternative

to ontology pruning for specific applications, for the purpose of attaining performance

improvements in ontology classification and realisation for example, again easing

maintenance.

Regarding ontology design, most methodologies include strategies to identify concepts and to

derive a taxonomy, and here the approach varies between top down, bottom up or middle out

[39]. With a top down strategy, where the most abstract entities are identified first, the level

of abstraction can be introduced in a consistent way but the structure may suffer from

unnecessary abstraction, and commonality may be dispersed if the abstraction of artificial

entities is too fine. The converse, bottom up, where the most concrete entities are identified

first results in very high detail in the taxonomy. Often many entity layers are not needed and

common characteristics can reside in multiple entities which can in turn lead to inconsistency.

A ‘middle out’ approach is a compromise; identifying the core entities first and then

abstracting and specialising them as needed leads to less redundancy and better structure.

A number of authors have presented comparison criteria for ontology methodology

comparison. Fernández López [79] presents nine criteria including the level of specification,

level of application dependence, concept identification techniques, comparison with the IEEE

standard for software lifecycle processes, link to any KR formalisms, as well as others. Gómez-

Pérez [39] elaborates on some of these categories.

2.2.7 Ontological Resources for the IFMS Domain

A wide range of resources containing high implicit or explicit semantic content exists that is

applicable to the IFMS. Resources include descriptions of high level abstract (common sense)

concepts, and domain descriptions in: engineering, mathematical, physical contexts, as well as

product and simple process models. The resources vary in type, amount of detail and level of

abstraction, and by virtue of the language used, vary in expressiveness (and “ontological

precision” [43]) and consequent succinctness. The ontological precision increases progressively

34

from knowledge captured in a “catalogue”, taxonomy, object oriented design to axiomatic

theory [43].

Commonly, the level of abstraction with respect to dependence on purpose and domain can

be aligned with one of three layers from: so called upper level, domain or application. The

upper layer captures the most general and reusable terms, including common sense concepts.

The lower levels specialise the concepts above. Layering facilitates interoperability by ensuring

consistency between domains.

The following paragraphs summarises a small selection of resources that have not already

been mentioned that could be selected for ontology development for, or directly used in the

IFMS. The design of the IFMS’s ontologies, including the selection of contributing resources is

described in section 6.3.

There are several well known upper ontologies and the Suggested Upper Merged Ontology

(SUMO [80]) is one example. SUMO describes fundamental concepts in first order logic, is

highly axiomised and includes 1000 terms, 4000 axioms, 750 rules. It is an IEEE initiative, an

open standard and is mapped to the WordNet lexicon [81]. A high level distinction in SUMO

entities object and process derived from physical entity can be aligned with the “endurants and

occurrents” classifications by Fielding, et al. [82]. Endurants and occurrents refer to the

temporal existence of an entity and the different types never form part of relationships with

each other. Fielding, et al. also define “dependent and independent” and “universals and

particulars” (see section 6.3.3)).

At the same upper layer of abstraction as SUMO are the Top Level Ontologies of Universals and

Particulars, developed by Guarino and Welty (in [39]). The Universals Ontology has been

derived from the philosophical considerations: rigidity, identity and dependency (meta

properties used in Ontoclean [46] (see section 6.3.3)). The formulation of the Individuals

Ontology is structured on the base concepts of abstract, concrete and relation [39].

The PhysSys [83] ontology set defines abstract reusable ontologies for: mereology, topology,

systems theory, component, physical and process. It utilises the EngMath ontology [84] for

mathematical KR, holistically realising “…. three conceptual viewpoints: technical components,

physical processes and mathematical relations” [83]. Specifically EngMath facilitates

ontological mathematical modelling in engineering using Ontolingua, providing “... conceptual

foundations for scalar, vector and tensor quantities as well as functions of quantities, and units

of measure” [39].

35

Finally in the domain of sensors, the schema SensorML captures “... geometric, dynamic, and

observational characteristics of sensors and sensor systems” [85]. Based on aspects of

SensorML, OntoSensor [86] is an OWL-DL ontology that includes a few concept-to-concept

links to SUMO. It was developed for the purpose of data fusion and the modelling effort

focuses on the sensor data rather than the associated processes [87].

2.2.8 Application of Shared Ontologies and Semantics

This section presents the application of ontologies within the AEC/FM sector. Most commonly

formal representations are used in order to preserve semantics between contexts and/or

application. The IFC is a popular central resource.

Specialist knowledge both of the domain and data model is required to interpret and use

(manage, manipulate and query) product models such as IFC for the purpose of achieving work

deliverables. The semantic elaboration of such models, with an (ideally consistent axiomatic)

ontology, leverages the utilisation of such resources. The rich specification of knowledge,

enhanced by formal representation that allows reasoning, provides the opportunity for higher

quality automation, in comparison to the data centric, rigid approach of conventional

software. Additionally, formal capture of accurate semantics can guarantee more consistency

and fewer errors. A common emerging utiliser of ontologies, not restricted to the AEC/FM

domain is the Semantic Web, mentioned above, where “... information is given well defined

meaning” [42].

To bring the IFC based BIM models into the arena of the Semantic Web, thereby enabling

interoperation in a distributed environment and promoting automatic processing of building

related knowledge, Schevers, et al. [88] describe a conversion (without any further semantics

than that implied in the IFC) of the IFC to OWL. The authors suggest some technical solutions

to handle differences in constructs but state that better solutions may be achieved by for

example by changing the building representation in the models to exploit the facilities offered

by OWL. As mentioned, this mapping does not add semantics beyond that implied by the IFC

taxonomy. Another representation of the IFC in OWL, used as a ‘domain ontology’ as part of

the InteliGrid project, is mentioned in Table 2.4.

Having similar motivation, Katranuschkov, et al. [21] propose an ontological framework that

adds unambiguous semantic high level definition interfaces for IFC data models. To use the

models, users and systems only need to maintain consistency with the ontology and do not

have to share the same views on the data, or process the data in predefined ways dictated by

the data representation. While the framework was aimed at not being influenced by any

36

product model, some generic high level IFC entities were considered appropriate. The

existence of different views is common in a working environment due to the varying task and

disciplines involved. While a complex ontology is more likely to be complete, light weight

representations promote easier use, so Katranuschkov, et al. further suggest quantifying

ontologies in terms of the number of concepts involved, and their ability to fully and accurately

model the domain. The framework implemented consists of an upper meta layer, lower

domain specific schemas, and ontologies which provide “flexibility and extensibility”. XML/S is

used to implement the framework although the authors acknowledge that the semantically

richer OWL would have been an alternative. The ontology layering can be aligned with the

Object Management Group’s (OMG) Meta Object Facility (by combing layers 2 & 3; profiles are

analogous to domain specific ontology extension schemas). The framework also uses software

design patterns documented by the so called ‘gang of four’ [89] beyond the context of

software engineering as documented by [90] [21]. These patterns are elegant solutions to

common software problems and address entity creation, structure and behaviour.

Beetz, et al. [18] present a formulation of an OWL ontology from IFC. Two approaches are

presented using IFC XML and EXPRESS schemas; the latter conversion is facilitated with the use

of a custom parser while the former uses a style sheet transformation (XSLT). This parser

generates an abstract syntax tree (a tree representation of a sentence, structured with nodes

corresponding to constructs from the vocabulary) which can then be ‘walked’ to generate

mapped OWL definitions. Although not taking advantage of available standard tools for the

transformation process, the conversion from EXPRESS retains information lost in the derivation

of the XML representation from the original IFC. XML is less expressive than EXPRESS. The

authors suggest possible translation into UML, that representation offering clearly defined

syntax but state that “some language constructs just cannot be translated” [18]. The authors

state that “most” of the EXPRESS constraints can be captured using SWRL (cardinality

constraints are covered with OWL- specific, maximum and minimum).

Efforts for providing an ontological resource in the AEC/FM arena have focussed on the IFC and

some of that work has been mentioned. Rezgui states however that other resources such as a

glossary or classification system could potentially be used [91]. He lists five resources including

BS6100 (Glossary of Building and Civil Engineering terms) and OmniClass Construction

Classification System (OCCS) [92] but with justification (see [91]), points to the suitability of a

taxonomy; the IFC can be regarded as that and additionally is the most recent [91].

Facilitating semantic interoperability between diverse and changing product information

definitions (ontologies) is important in an FM context and arises due to the presence of a

37

diverse range of building components and assets from different suppliers, which ideally are

supplied with accompanying electronic data. Mutis, et al. [23] propose an approach that

mediates at the low functional process level. At this level the “functional processes between

each one of the actors can be explicitly defined”. Mediation agents, working with a knowledge

base describing processes, work on demand to establish relationships and resolve conflicts to

support the interaction of the various actors to deliver the process outputs. Another approach

by [93], which additionally addresses product lifecycle evolution, presents a layered product

ontology structure to facilitate interoperation where there is no shared ontology. The authors

propose five axes of ontology architecture:

 syntactic based on OMG’s Model Driven Architecture (MDA)

 domain dependency

 constructive (specification of terms, facts, constraints, derivation rules used, and

determining the language expressiveness)

 theoretic meta layer (specification of the constructs)

 evolving (static, shared or both)

Mapping is defined in the meta layers thereby realising translation. See section 2.2.6 for more

details.

Some further applications of ontologies within the AEC/FM industry, outside that of primarily

supporting knowledge sharing/exchange, are tabulated below in Table 2.4.

38

Table 2.4 - Applications of ontology in AEC/FM outside of product model sharing

Application/Title Author/s Details

Support

reasoning in

early design

[94] Using a “lightweight KR” of a building structure with reasoning

support, the authors’ case study demonstrated support of early

stage design, specifically structuring rooms (size, layout). Their

ontology captures the “underlying structure of objects and

relationships of a building” [94], and maps to a small set of

entities from IFC for interoperability. The solution compensates

for missing details at the conceptual design stage.

Manage VO

processes

[95] Developed ‘ontology assisted’ user tools – VO grid

administrator management and end user task support e.g.

business process object manager that can view available

business processes within the environment and logically

execute selected processes.

Provenance data

management

[96] Provenance enhanced complex product model management

with IFC based ontology.

Facility

modelling for

Sydney Opera

House

[97] Facility management application realised by IFC and OWL for

improved information availability, accessibility and correlation.

Inter connection of existing databases and IFC via unique

identifiers, linked IFC to OWL ontology.

User

information

seeking

assistance

[98] Agent and hypermedia facilitated layer accesses a shared

ontology to distributed (partial) models that assists users in

navigating product information.

ifcOWL [99] A “domain extension” ontology for the Inteligrid project [100]

(“the purpose [of which] is not to develop conceptual domain

models but to provide capabilities for their more intelligent and

interoperable usage”) [99]. The InteliGrid Ontology Framework

project addresses semantic interoperability of dynamic VOs

within a grid environment. The mapping for IfcOWL is aimed at

addressing “practical data handling for building modelling

scenarios” [99] rather than optimising KR.

Knowledge

management

environment

[91] Knowledge management support for users; the domain

ontology based on the IFC provides a “semantic referential to

ensure relevance, accuracy, and completeness of information”,

39

used in conjunction with “user profiling and document

summarisation techniques” [91]. A process for document

summarisation is described, complimented with ontology

mapping. Critical factors for the success of any knowledge

management (KM) undertaking are devised.

Semantics Based

Monitoring of

Large Scale

Industrial

Systems

[101] Monitoring of large scale industrial systems, addressing the

scalability of reasoning with the introduction several co-

operating reasoning engines, constituting layer four in a five

layered architecture. The top layer provides task oriented

services, while layers three to one provide distributed storage,

semantic representation of sensor data (potentially using XSLT

– see section 2.2.8 for automatic translation), and the data

itself respectively. The KB spans the top four layers, and the

authors propose a standard ontological three layer structure of

upper, intermediate and specific (see also section 2.2.7) to

facilitate interoperability.

2.3 Summary

This section has reviewed some salient aspects of knowledge engineering theory, existing

AEC/FM domain resources both semantic and non semantic and knowledge engineering

principles in order to inform the development of the IFMS. The motivation is to facilitate the

perseverance of the intended resource semantics and to be able to fully exploit the content

through the provision of reasoning. The ultimate aim is to generate useful knowledge for FM,

but also to direct intelligent system behaviour in order to derive that knowledge.

It has been seen that the IFC is a rich and widely used resource in the AEC/FM arena. Apart

from its primary application for information sharing in its ‘raw’ form, work in the field has built

on the basic (IFC) product model, typically ‘externalising’ its semantics to enhance its role and

to extend its scope. Work has been described that covers knowledge management and

information retrieval applications, as well as information sharing and interoperability.

Regarding the latter the addition of semantics address problems encountered arising from the

interoperation of heterogeneous software systems.

The technical nature of semantic web based technologies was discussed so that appropriate

decisions can be made for its application in the context of the IFMS. Some details of OWL KR

40

were presented together with the use of rules to add expressivity. Technical features of the

languages e.g. OWA, and rules will guide authoring. OWL-Lite and DL are expressive but

decidable and a very good set of resources are readily available to implement KBs based on

those languages. Some open source frameworks that support OWL have been described.

Reasoning can be demanding computationally, so the selection of reasoning options should

take into account the exact requirement to maintain acceptable system performance. The

semantic web (layered) technologies above ontologies, such as proof and trust, could be an

issue for consideration depending on the nature of the system developed and the resources

utilised.

Finally the nature of engineering ontologies was briefly presented and some ontology

development methodologies reviewed so that an appropriate choice can be made for

developing a resource for the IFMS, or so that a custom methodology can draw on existing

best practices.

41

Chapter 3

3 The Multi Agent System Paradigm and its Application in the Construction

Sector

The Multi Agent System Paradigm and its Application

in the Construction Sector

This chapter initially describes the features of rational agency and shows that those features

are well matched to application in the Intelligent Facility Management System (IFMS).

Following that, the realisation of software agency is presented. Logical and philosophical

foundations are presented, leading to the development of implementable systems. Next some

published software frameworks that allow the implementation of multi agent systems (MASs)

are discussed so that suitable choices can be made for the implementation of the IFMS

software. Finally a review of the application of MAS in the architecture, engineering and

construction/facility management (AEC/FM) domain is presented.

Software agents constituting an MAS, relate to the subject of the previous chapter in the sense

that they expected to utilise knowledge bases (KBs) (encompassing domain and some general

knowledge in a formal representation, and inference ‘machinery’), in order to render

themselves intelligent. Specifically agents will use the services of KBs in order to direct their

behaviour for the purpose of pursuing their goals. The goals of ‘boundary’ agents i.e. those

close to the user, are to ultimately support knowledge generation for the purpose of facility

management (FM), but other agent types are required to specialise different areas of the

system in order to support the boundary agents through collaboration. The knowledge

requirement of the KBs content to support specialised behaviour is thus specific to agent

types.

3.1 Multi Agent Systems

3.1.1 Multi Agents Systems and Rational Agency

In general terms, agents can be characterised according to the following categories: reflex

(responses triggered directly by precepts), model based reflex (actions triggered by current

and past percepts or modelled states of the environment), goal based (work towards assigned

deliverables) and utility (the addition of other metrics to quantify the quality of meeting a goal)

[102]. All agents perceive the environment and act upon it in some way. A rational agent is

one that selects the best action within the constraints of its knowledge about its context, the

42

knowledge it collects, and the actions it is able to perform [102]. In order to state if rational

behaviour is reached, the metrics that indicate the level of success have to be clear. Bratman’s

definition of rational behaviour is similar but not as stringent: “(rational behaviour is) the

production of actions that further the goals of an agent, based upon her conception of the

world” [103]. Behaviour that is rational is considered intelligent.

Agents of all variants find useful application. The key aspect of agents is that they act

autonomously. Software agents perceive their environment through software interfaces and

act on it using other interfaces (the interface may be linked to hardware or other software) in

order to be useful, or at least act on their internal state. The percept sequence can be the

record of everything it has ever encountered. The reactional aspect of an agent’s behaviour is

determined by its mapping of percept sequences to actions. If the agent is goal based its

overall behaviour should be strategically consistent with goals. In general the behaviour of any

agent type improves with the addition of learning. In an environment with multiple agents,

individual agents can interact with each other as well as external entities such as humans,

hardware, databases etc. The interaction between agents can be of a collaborative or

competitive nature, and organisational structures such as hierarchy can be configured.

Interaction can extend to discussion, argument and negotiation, and can involve arbitration

and contracts.

The application of multiple agents, each complimented with social ability, collectively

accommodates many diverse and simultaneous objectives, some of which may oppose each

other. Each agent type can have multiple objectives but like objects in object oriented system,

good design suggests cohesiveness in terms of utility. Social ability includes, given a common

language and social ‘norms’, the ability to cooperate as well as the potential to participate in

negotiation. As agents are self interested and specialise in a particular utility, the collective

utility of the system can be higher than the ‘sum of the parts’.

The goal directed characteristic delivers a level of flexibility and hence more rational behaviour

in a dynamic environment. Adaptability to the system’s environment and context is realised

through a mechanism that allows those entities to be assigned, and work towards,

(declarative) high level descriptions of what to do, instead of explicitly describing sequences of

static actions. In that way the system (or more specifically the entities in it) behaves more

rationally, driven by the dynamics of the environment and other influencing factors, to choose

the most appropriate behaviour. One mechanism of realising goal directed behaviour is a

formulation referred to as practical reasoning involving the two distinct stages of: deliberation

and means-end reasoning, primarily attributable to Bratman [103]. Means-end reasoning is the

43

procedure of deciding how, using the agent’s means or capabilities, to reach the state of affairs

that have been decided (intention/s) [104]. In contrast to purely theoretical reasoning

concerned with reasoning about beliefs [104], practical reasoning resembles most human

reasoning that is directed towards actions. Reasoning is restricted to deductive in this scope.

A useful grouping of agent characteristics is that of the weak and strong notion of agency

[105]. The former includes autonomy, perception and appropriate reaction to the

environment, and an ability to communicate using a common high level language. The strong

notion of agency uses appropriate human like mentalistic attributes e.g. belief, desire and

intention, choice, capability, obligation, commitment [106] [105], to model the behaviour of

complex systems. Attitudes can be identified as either an informational attitude, or a pro-

attitude which influences an agent’s action. Mentalistic agents are attributed with at least one

attitude from each category. The use of such attitudes is most useful, typically where internal

mechanisms are not well understood or, due to their complex nature, are not easily captured

using conventional techniques [106].

3.1.2 The Belief Desire Intention Model

A model of practical reasoning, applicable where deliberation is subject to limited resources in

terms of processing power, is that developed by Bratman based on the mental attitudes of

belief, desire and intention (BDI) [104]. Beliefs capture a perspective of a domain in the world

that is both incomplete and narrow. Goals are the embodiment of desire and capture the

motivation for a certain behaviour and strategy. Lastly intentions are some future “.... state of

affairs that an agent has chosen and committed to that tend to lead to action” [104], and in

practical terms are commonly captured by plans. Plans are typically static and ‘pre prepared’,

supplied by a so called plan library but can be dynamically evaluated, possibly ‘from scratch’.

Goals, beliefs and intentions/plans capture the agents’ motivational, informational and

deliberative attitudes.

In [107], Bratman develops a theory of intention, describing properties and relations to other

attitudes. Intentions characterise behaviour, and have the following properties [107] [104]:

 Contribute toward motivation. A “conduct controlling” pro-attitude, in comparison to

a desire that just influences an outcome [107].

 Have persistence.

 Involve commitment. There are two aspects to the commitment, one is a relationship

to action “volitional commitment” and the other is a role in the interval between the

44

intention adoption and its execution “reasoning centred commitment” [107]

(described next).

 Constrain further re-deliberation in the current context, so generate “stability /

inertia” [107]. Related and further incompatible options can be ignored in current

deliberation and for consistency, current deliberation should be compatible. The

impact is that computational resource is released and so practical implementation is

more feasible, although the trade off is a possible lack of response in a rapidly

changing environment.

 Form a basis for further intentions, as a reasoning basis for both further intentions at

the same abstraction level, and as a basis for more detailed intentions that are aimed

at actioning that intention [103].

 Can be changed or cancelled. However, where that intention influences deliberation,

without specific propagation mechanisms, changed or withdrawn intentions in that

scope may persist until the next deliberation, thus an element of commitment persists.

 Are entailed by plans. Those “... plans play a crucial role in coordination and in

extending the influence of deliberation over time” [107].

 In relation to beliefs, intentions play a complementary role in some contexts in the

sense that the assumption is formed that at some point, the intention will be executed

and the entailed beliefs will be adopted i.e. specific beliefs will be brought about.

 Enable the behaviour of others to be predicted.

The primary justification for beliefs is stated in [108]: “beliefs are essential because the world

is dynamic (past events need therefore to be remembered)”. The integration of beliefs with

other attitudes is several fold, for example, as well as central to plan execution and control,

beliefs influence deliberation, constituting assumptions that are “... part of the cognitive

background” [109]. In contrast to their utilisation in algorithms, beliefs have a wider scope and

play a more fundamental role, so their semantic expression, especially if grounded in an upper

(‘common sense’) ontology, becomes more useful. It is an expectation that in deliberation, an

agent might need to take significant information “for granted”. Moreover in the context of

deliberation, beliefs should be taken with an appropriate “degree of acceptance” [109]. For

example, taking a belief for granted in a particular context may be more appropriate than in

another. The cognitive background gives the agent an improved ability to deal with incomplete

and vague knowledge. Belief utilisation should of course be consistent with their formulation

e.g. with the application of the open / closed world assumption.

Regarding the relationship between beliefs and intentions, several properties relating to

consistency and completeness between the two, affect rationality. To be rational, an agent

45

should believe that an intention may lead to a given state of affairs being realised i.e. not

believe that it will not be the case, but that that state of affairs will not necessarily come about

(as other factors beyond its knowledge may prevent it). The former describes consistency

between intention and belief while the latter describes completeness between the two [104]

[107]. However, as outlined above, the agent has the expectation (belief) that the intention

will come about, so the related reasoning centred commitment plays a role in deliberation

[107].

An effect on agents’ behaviour and an agent characteriser captures the nature of dropping

commitments. The characteriser is one of three discreet tags: a ‘blindly committed’ BDI agent

disallows changes to beliefs and desires that would render inconsistency with current

intentions, a single-minded commitment one ‘will consider’ changes, and an open minded

agent will adopt changes resulting in modified intentions [110]. In a BDI agent there is no

commitment policy towards beliefs and goals [110]. The commitment is to both means (the

plan/s – how it will achieve what it has decided to do) and the end (the goal – what it wants to

achieve) [104].

Different dynamic agent behaviour results from variations in the balance between deliberation

and plan execution in the context of commitments to ends. Long intervals between

reconsideration of intentions can lead to them becoming irrelevant while long intervals of

deliberation can result in intentions never being completed. The implementation of suitable

(meta-level) control to allow some reconsideration of goals and plans results in an appropriate

commitment strategy. The strategy should allow time for adequate deliberation execution

while balancing that with time to achieve acceptable advancement in executing intentions. The

variation in commitment strategy is illustrated by the extremes. Without any commitment an

agent can be unstable, while the opposite leads to inflexibility.

Regarding commitment to means, the agent’s (typically plan) implementation determines its

characterisation: a blindly committed agent will not drop an intention until it is believed that it

has been achieved, a single minded agent will not drop intentions until the intention is

believed to have been reached or that it is not now possible to achieve it and a open minded

one will only drop an intention when it is no longer believed to be viable [104].

The agent model formulation based on belief, desire and intention has been the focus of the

discussion; several other combinations of attitudes however have been argued in the

literature, and the selection of specific mentalistic or other attributes to realise an intentional

stance/model is contentious [110]. However, the attitudes of belief, desire and intention are

the most widely adopted due to its basis on “a respectable philosophical model of human

46

practical reasoning” [108]. Regarding the ‘stance’, in addition to the intentional, others are, for

example, the design stance, where understanding of purpose is a sufficient perspective for

model formulation, and the physical, where the laws of physics adequately and simply explain

behaviour [111].

3.1.3 Logical Formulation

Logical formulations in the domain of agency find several applications including for the

specification of semantics for models such as BDI, without which “... it is never clear exactly

what is happening or why it works” [112]. Other uses are the direct execution of a formalism

by agents, i.e. direct execution of a specification, and as a role in analysis and verification of

MASs. Even though a formal implementation was not anticipated for the IMFS, the area is

briefly reviewed here so that perhaps partial implementation of the model, for example, for an

agent’s beliefs, can be considered.

For modelling of MASs, the application of a modal logic (with possible worlds semantics) is one

approach that can be used to reason with statements that include opaque contexts. Such

statements are created from notional statements about propositions or first order logic

statements, for example, believes(facilityMgr, zoneUse(zone1, thoroughfare) (adapted from

[113]).

From Bratman’s theory, Rao and Georgeff [110] formulated a BDI model of agency. Their

formularisation (of BDI logic) uses a branching time analysis within possible worlds for belief,

desire and intention. Capturing semantics with formal BDI logic enables desired behaviour to

be proved. Typically, practical implementations are not direct executions of such a model, and

in those cases that model or sub elements of it can be used as a specification. In that work the

authors also present a transformation of their model to derive an abstract architecture that, by

making some “simplifying assumptions and sacrificing some of the expressive power of the

theoretical framework”, is practically implementable [110] (see section 3.1.4). In general there

is no computational interpretation for possible worlds semantics so direct execution of such a

model is not feasible without such steps [114].

In [115], Cohen and Levesque describe their formulation using a multi-modal logic for similarly

reasoning about agents, but in terms of the two attitudes of goals and beliefs. Their theory (of

intention) presents intentions formulated in terms of goal and beliefs, and gives attention to

future based beliefs and how they affect desires and intentions [105]. The semantics are

defined using possible worlds where the worlds capture different linear sequences of events

extending forward and backwards. Modal operators are defined for goals and beliefs (as well

47

as happens and done capturing an event to occur next and one completed). Attached to those

operators are accessibility relations (the binary relation between epistemic alternatives

(possible worlds)) with properties defined by the systems KD and KD45 respectively, as in

normal modal logic. Possible worlds are thus be related with the belief and goal operators,

observing the appropriate semantics.

Formal BDI logics require appropriate axiomisation for the purpose of reasoning about mental

attitudes in order to deliver a rational system [104]. Appropriate deduction mechanisms are

achieved by appropriate axiomisation of the different attitudes. The distinction between

knowledge and belief can be illustrated by a simple example, as is detailed in Table 3.1

together with some other possible axiomisations of knowledge (or belief). Other axioms

contribute appropriate further semantics.

Table 3.1 - Possible axiomisation of / rules for knowledge (or belief) in a BDI model

Name /

Nomenclature /

Accessibility

relation

property

Notation Explanation Application

Knowledge

axiom / T /

Reflexive

 If an agent knows

something then it

is true, so cannot

know something

that is false,

although that can

be believed

This axiom should be included

in knowledge reasoning

mechanisms but not those for

belief reasoning. For example

an agent can believe a fact

that is incorrect or different in

truth value to other agents

Positive

introspection

axiom / 4 /

Transitive

 An agent i, knows

what it knows or

believes [113]

More efficient deliberation

and means-end reasoning, and

assists coordination within an

MAS. Regarding its own

knowledge, an agent would

know, for example, what

information to seek.

Practically “it is generally

accepted that positive

introspection is a less

48

demanding property

than negative introspection,

and is thus a more reasonable

property for resource

bounded reasoners” [105].

Negative

introspection

axiom / 5 /

Euclidean

 An agent i, knows

what it does not

know

As above

Non

contradictory

axiom / D /

Serial

 An agent knowing

a fact does not

know the inverse

of the fact

Non contradictory.

Distribution

axiom / K

An agent’s

knowledge is

closed under

implication

All modal logics include this

axiom, but with the

necessitation rule leads to

logical omniscience (see

below).

Necessitation

rule / N

An agent i “knows

all valid formulae”

[104]

All modal logics include this

rule. It states that an agent

knows all universal truths of

which there are an infinite

number, so is not intuitive

[104]

A modal logic (and the derived epistemic logic) system relates to standard logic such as that

employed by OWL reasoners as follows: from propositional logic, a weak (Kripke) modal logic is

generated with the addition of, as in the former mentioned modal systems, the K

(distribution) axiom and the necessitation rule:

If A is a theorem of the new logic, then so is □ A.

In the derived epistemic logic □ is read as [116]. Axiom D above follows from the dual of

 , namely = ~ .

49

The axiomisation of the modal systems using KD45 and KT5 respectively for belief and

knowledge is typical [104]. For other attitudes, for example in [110] Rao & Georgeff use the D

and K modal systems for desires as well as intentions, to respectively satisfy consistency (non-

contradiction) and to provide closure under implication. Some attitudes can be formally

modelled in isolation, but for others that are closely integrated with other attitudes, those

relationships also have to be modelled. For example, as outlined in section 3.1.2, intentions

have several properties that are closely integrated with those of other attitudes. In the

axiomisation of BDI systems, regarding the capture of those relationships between the

attitudes, Rao & Georgeff [110] state they “... do not believe that there need be a unique and

correct axiomisation that covers all BDI agents ...” and that the customisation should be guided

by the properties required e.g. to achieve belief – goal consistency and goal - intention

compatibility etc.

In the formulation and realisation of agent architectures in general however there are well

documented difficulties with adopting the above epistemic and other modal logics. In

knowledge / belief, logical omniscience is one of the main difficulties; it is a result of closure of

knowledge / belief under implication and the necessitation rule. Closure under implication of

belief for example i.e. the agent knows all the consequences of statements in its belief base,

leads to difficulties because it demands that agents are able to perform potentially unlimited

reasoning requiring unlimited processing power. Therefore, that is an unrealistic

implementation objective. The dropping of specific rules and axioms and the adoption of

modified semantics are used by some solutions to address the difficulties, while in others the

difficulties are changed or removed, due to the nature of their indirect (BDI) formularisation in

the implementable system. A further problem relates to consistency, if an agent believes for

example all valid formulae in its belief base, then for its belief base to be consistent a very

stringent condition is enforced. Konolige states that the less demanding property of non

contradiction is more appropriate (in [105]).

3.1.4 Implementable Systems

As mentioned above an initial step towards an implementable framework is Rao & Georgeff’s

development of their BDI logical system into a BDI abstract architecture, based on logically

closed attitudes (fully representing Bratman’s model). This is still not practical though due to

the problematic aspects of modal systems described above and other run time related

computational issues [110]. They therefore developed a system known as the Procedural

Reasoning System which contains some further changes that constrain expressivity in the

formularisation, but which permits more realistic reasoning.

50

Based on the Procedural Reasoning System, but with some slight variations, is the JADEX

framework [117]. In JADEX (goal) deliberation is provisioned with meta level specifications for

goals and the relationships between them, such as the statement of conditions under which a

goal may be dropped, expression of applicable context (conditions under which a goal can be

activated i.e. a desire), and statement of cardinality to control simultaneous activation. The

goal dropping mechanism is central in contributing towards achieving rationality as it is not

rational for an agent to keep pursuing a goal that has become un-achievable in the context of

its beliefs. The drop criteria ideally take account of some expression of commitment as

outlined below [115]. Goal declaration and explicit deliberation in the JADEX implementation

allows close correspondence between design and implementation to be maintained, without

the need for transformations or mapping. The support provided for consistency checking (of

desires) during deliberation is not found in many other frameworks [118].

However there are variations between the JADEX realisation of BDI agency in comparison to its

formal foundations. One such variation is that the definition of intentions is not explicit. Plans

embody intentions and goal deliberation is not influenced by those non explicit intentions. The

agent has no model of related intentional properties as defined in the theoretical formulisation

so cannot force compliance to ensure rationality. Plans implemented by a high level language

coding (in Java) embody further non-explicit complex modal relationships between beliefs that

are similarly not captured formally. A further difference is that unlike the general BDI model,

instead of dynamically generating plans, JADEX’s plans already exist (having been implemented

at design time) and are selected at run time from a plan collection. Plans still implement

means–end reasoning through algorithmic implementation and use of sub goals. A plan can

therefore be fairly abstract, containing only sub-goals, concrete, containing only algorithmic

code, or a combination of both. Finding a plan match for a goal is performed by checking

preconditions and a meta level reasoning mechanism can be configured to handle the case

where there are multiple matches. Plans satisfying a given goal, in general, entail different

intentions and typically lead to actions. The goal lifecycle can additionally be controlled

programmatically in the plan implementation.

The role of beliefs in JADEX conforms to their expected role as in the BDI formulation in that

while capturing the agent’s limited view of the world, they also affect goal deliberation and

plan execution. The belief base implementation just provides support for the addition and

removal of Java objects and some associated notification mechanisms, and so is fairly open.

Thus a default implementation using these mechanisms does not force any formal semantics.

Moreover there is no provision for agents to reason about their own beliefs or those of others,

a feature that can add further levels of rationality. In summary, implementation by the

51

programmer using the JADEX framework is easy and intuitive but adherence to the formal BDI

features is not directly provable.

A BDI framework that explicitly implements some modal foundations of the theoretical model,

in contrast to JADEX, is the PRACTIcal reasONIng sySTem (PRACTIONIST) [119]. Unlike JADEX

where appropriate belief semantics is the responsibility of the programmer, the PRACTIONIST

framework realises modal KD45 belief semantics through the use of a Prolog implementation.

Another feature of PRACTIONIST is its handling of goals according to BDI semantics.

Implemented agents reason about goals and their relations including, nominally “...

inconsistence, entailment, precondition, and dependence” [120] and behave appropriately, to

guarantee related BDI model conformity. In PRACTIONIST the support for intentions is more

transparent compared to JADEX (where intentions are implicitly captured by plans) in that

abstract goals capturing desires are promoted to intentions under appropriate circumstances

after reasoning by the goal model support mechanism. Clear distinctions between deliberation

and means end reasoning is thus facilitated. Additionally closer correspondence to BDI

semantics can be explicitly reached through the completion of further reasoning about the

interaction of attitudes, if the provision for declarative plan description is used. The

mechanisms in the PRACTIONIST framework make adherence to (some) BDI semantics explicit

and so rationality is more transparent.

The two frameworks outlined above show varying levels of correspondence of practical

implementations to the BDI logical model. A very close correspondence between the model

and implementation is realised by Fisher’s hybrid system which performs direct execution of a

formal specification, derived from BDI theory [121]. It applies modal axiomisations for BDI,

similar to that outlined above, to executable (agent) specifications in the language system

Concurrent METATEM [122].The latter is a framework that provides an asynchronous run-time

environment for programs / agents whose behaviour is defined by execution of temporal logic

statements in the high level language. The programs can communicate by exchanging

messages. In contrast to possible words semantics, the models on which the temporal logic of

the Concurrent METATEM language is based is relatively simple and has “... an obvious and

intuitive computational interpretation” [114].

3.2 Agent Messaging

In an MAS, a key feature is social ability, realised through the ability to communicate, which

typically takes the form of message exchange. Collaboration is needed so that an agent can

move closer to those goals that it is not able to carry out alone, or where it can gain other

benefits from cooperation such as achieving higher efficiency. Typically, agents request

52

information, action or services from other agents. Even if the system is not open, compliance

to a standard still has several advantages, including formally defined syntax and (possibly)

semantics as well as the possible availability of supporting software libraries.

The Foundation for Intelligent Physical Agents (FIPA) - Agent Communication Language (ACL)

[123] is a standard language that has semantics based on speech act theory. The theory of

speech acts models communication as actions that lead to a change in the state of the

participants in the form of, for example, a change of beliefs or a request to perform some

action. The theory separates message semantics from that of the content allowing that

content to be flexible, although some performatives incorporate another speech act in the

content e.g. request-when (see below). The main message features are its precondition and its

rational effect; the latter should be consistent with the performative (the ‘communicative act’)

e.g. inform, request, and which captures the objective of the sender. The precondition can

include modal statements about attitudes and action conditions relating to itself, as well as

about those agents it is communicating with. Consistent with the agent paradigm, the rational

effect does not have to be actioned, just the precondition should be observed. The standard

defines 18 composite and macro performatives, derived from inform, request, confirm and

disconfirm [124]. Expressed using the formal semantic language (SL), the standard describes

(with an SL formula) the semantics for the rational effect and precondition for each

performative. The SL captures the modalities: belief, uncertain belief and intention together

with action expressions done etc. The modal operators in SL are defined in similar way to those

in section 3.1.3 using Kripke possible world semantics, e.g. the belief modal operator satisfies

the KD45 model, while the uncertain(ty) operator adds probabilistic definitions to the possible

world’s accessibility (relation).

There are two approaches that can be used to realise conformance to the FIPA standard,

either agents can formulate messages in terms of the formal specification, or can alternatively

adopt the use of appropriately constructed protocols. While the use of protocols leads to

simpler message content, agents are only able to handle a given perlocutionary act in a fixed

way, and handling for alternative expressions has to be explicitly coded.

The FIPA-ACL specification includes meta data to describe the content such as the ontology

used, and the language, as well as message properties including destination and sender, and a

unique message identifier if applicable.

53

3.2.1 Message Content

The content (field) of an ACL message contains the informational part of the message, in

contrast to the performative as outlined above (whose semantics and syntax are defined by SL

in terms of pre conditions and rational effect). The FIPA specification states that the content

can be a string or a sequence of bytes, so the encoding mechanism is not constrained.

Technical aspects and related work using the semantic knowledge representations OWL and SL

for message content are outlined below together with the use of a basic ontology

representation constructed using Java objects. In contrast, non semantic encodings for content

could be generated by serialising Java objects or could simply be ad-hoc strings.

3.2.1.1 SL as Message Content

The SL has been mentioned above in the context of message semantics definition but it is a

general purpose language and can also be used to also capture message content. Specifically

FIPA-SL [125] has three ‘profiles’ nominally SL/0, SL/1 and SL/2 capturing increasingly

expressive statements, up to in SL/2 grammar, allowing the use of first order predicate and

modal logic and action operators but with some restrictions to remain decidable [125]. As an

application example, modal statements such as “agent i believes that X can be brought about”,

are useful for high level dialogue about goals. The FIPA-ACL specification includes a content

reference model that describes a schema for the construction of message content. The

reference model is a class taxonomy consisting of, among others, the classes: predicate,

concept and agent action, which in an implementation are typically further elaborated by

ontological descriptions. For the purpose of creating grounded and ungrounded expressions

describing single or multiple entities, including identifying referential expressions and

aggregates, the schema also defines a number of term specialisations (agent action is a type of

base message content as well as a term).

As part of its support for MAS development, the Java Agent DEvelopment Framework (JADE)

framework [126] supports FIPA-ACL messaging both in terms of message ‘envelope’ creation

and content construction with various languages as well as message delivery (JADE is described

in more detail in section 4.4.3). The framework supplies libraries to create and parse

expressions based on the FIPA-ACL reference model, from which message content, including SL

and others, can be serialised or de-serialised using so called codecs. The message content is

generated in conjunction with an ontology specification (in Java). That ontology (that is

accessible to participating agents) is created by extending JADE library classes either manually,

or with the use of third party tools to generate it from OWL for example (with certain

constraints – see section 4.4.3.2). The codecs support the encoding and decoding of the

54

reference model based statements into SL and XML, as well as a platform independent binary

format known as LEAP, a JADE ‘add-on’.

Although the creation and parsing of SL language content is well supported, there are no

known reasoners for SL so an ad-hoc solution would be needed to perform validation and

inference of message content. A further requirement is that in order to maintain the

decidability of the SL statement, the programmer has to ensure that statements conform to

one of the profiles. Whether such validation and inference services are needed is dependent

on the nature of the MAS. Flexibility in message handling gained from such a provision is likely

to be most beneficial where the MAS is ‘open’ and agents have not been specifically designed

to work together. Another slight drawback is that the Java ontology has to be regenerated if

any ontology on which it depends changes.

The JADE Semantics Addin framework (JSA) [127] provides a further abstraction for the

implementation of SL based messaging, removing the need for the programmer to implement

at least some inference in SL. JSA provides supporting libraries to interpret SL messages and to

initiate them (compose and send), as well as interpret more general events perceived by the

agent through the use of rule sets called semantic interpretation principles. By formulating the

message in terms of the FIPA SL specification the semantics of the message are fully captured,

enabling the recipient to infer the intent instead of relying on protocols. Although those

protocols can capture the semantics of the message (typically with the use of a state

machine/s), the fixed interpretation/s means that agents are constrained to interact in fixed

ways. As noted above however, in the context of a closed system, the benefits from such

flexible messaging are unlikely to be as beneficial as its application in an open system. In JSA,

several semantic interpretation principles are pre defined including those to support intention

conveyance, belief transfer (add or remove facts while preserving belief base integrity),

together with more general rules to interpret ‘raw’ messages. Regarding the latter, the rules

support the generation of semantic representations of the precondition and rational effect,

which are processed by the former (default) and other semantic interpretation principles. The

inclusion of an internal agent architecture (integral interpretation engine and belief base

mechanism etc) means that the framework is already aware of the agent’s relevant attitudes

for handing outgoing and incoming messages regarding its pre and post conditions (the

framework necessarily uses ACL semantics as expressed in the specification, and the use of an

integrated belief base means that appropriate message semantics can be ensured). However

the BDI formulation on which JSA agents are based is one proposed by Sadek (in [128], not the

formulation by Rao and Georgeff (described above). Sadek’s formulation (also used to define

the semantics of FIPA-ACL), models an agent’s mental state using modal operators for belief

55

and uncertainty (whose semantics are defined as noted above), together with an operators

capturing intentions and further variants of intention. Those variants include “choice,

achievement goal (agent i does not believe that p holds), persistent goal (agent i will drop

her/his goal p (when) it is satisfied or s/he comes to believe it is unachievable)” [128].

A property in the context of dialogue based on mentalistic agents’ attitudes e.g. belief

expressions in messages, is that modal contexts in general create referential opacity so

contexts cannot be substituted without violating the intended semantics. JSA removes the

need for concern by the programmer in many cases, although in practice the handling of such

messages (without JSA) may be relatively simple.

3.2.1.2 OWL as Message Content

As an alternative to FIPA-SL as a content language, the use of OWL has been reported by a few

authors. Schiemann, et al. [129] describe the use of a codec and related libraries to provide

OWL-DL based messaging and associated knowledge base for agents within the JADE

framework. Message inference and validation is delivered with the use of the RACER reasoner

via the DIG interface (see section 2.2.4). However the framework only captures propositions

and referential expressions and not modal expressions in messages, due to the lower

expressivity of OWL compared to SL. The framework does not support all the speech acts,

specifically those where the semantics can’t ‘easily’ be separated e.g. the request-when

performative has content that contains a further speech act in its content field (an action to

perform when the statement condition becomes true), so separation is not attempted and

therefore not supported by the framework [129]. With the absence of any message semantics

in the content, the framework necessarily relies on protocol based messaging handling. In that

approach agent interactions are captured with a state machine “... and (the) speech acts’

meaning is specified in terms of the responses that are allowed at each stage of a

conversation” [130]. The knowledge base aspect of the framework does provide automatic

handling of query messages and consistency checked updating of the A box via inform

messages [129].

Another similar provision to the above is AgentOWL [131]. It also provides OWL ACL content

messaging and an integrated OWL belief base, and additionally describes a development

methodology. The authors state the suitability for knowledge management applications. No

details about how the unsupported ACL messages noted above are given.

56

3.3 Agent Development Methodologies

Several conventional MAS development methodologies have been presented over recent years

showing various characteristics including their lifecycle coverage, level of guidance detail,

provision of guidelines and heuristics, pattern provision, resemblance to conventional software

engineering methodologies, availability of supporting tool and any provision or re-use of

existing notation.

The nature of development methodologies for formal (in a mathematical sense) MASs where

the system specification captured in a logical representation can often be directly executed, is

different to that for conventional systems. In such systems agents are typically theorem

provers, where goals and beliefs etc. are derived from the logical representation of the

specification. Little or no refinement, as seen in the analysis and design phases in traditional

software engineering is therefore needed. The evolution of formal development approaches

has been independent of conventional approaches, and without clear definition to providing

any overlapping assistance.

Methodologies for MAS take primarily one of two forms, either adapting objected oriented or

knowledge engineering methodologies [132]. Each has its advantages. Using object oriented

methodologies as a basis has the advantage of familiarity for programmers and the potential

to reuse a range of notations (with modified semantics where necessary) and tools. Although

there are major distinctions between agents and objects, some commonalities can be drawn.

Agents can be regarded as objects that are loosely coupled and ‘active’ [106], that

communicate asynchronously using a high level language. The challenge in adapting existing

object methodologies is to conceptually model the autonomous / non-passive nature of

agents, and as in the IFMS, also capture the specialisation of the BDI abstraction. Interactions

and collaboration should also be addressed [132]. Like objects, agents have a stable identity

and are cohesive, but their environment and collaboration involvement (even in closed

systems) is dynamic, which is not usually the case with object systems.

Alternatively, knowledge engineering methodologies have been used as a starting point. As

agents are often knowledge utilisers, knowledge engineering practices assist with that aspect.

However, any basis for modelling the behavioural aspects of agents as autonomous entities

(with motivational, means-end solving etc characteristics), or their distribution, is beyond the

scope of knowledge engineering methodologies. Several researchers have reported the use of

the European standard knowledge engineering methodology CommonKADS [133].

57

Some methodologies are presented in Table 3.2. The list is limited to conventional

methodologies as the IFMS is expected to be a non-formal implementation and formal

techniques do not typically provide any potential assistance.

Table 3.2 - Selected MAS development methodologies

Name Notable features Summary

Multiagent

Systems

Engineering

Methodology

(MaSE) [134]

Targets closed, static (agent

lifecycle and inter-relationships)

systems having 10 or less agent

types. A goal hierarchy diagram

captures the system specification.

Wide use of UML diagramming

(but sometimes different

semantics e.g. class relationships

represents high level

communication) and automatic

code generation with an

accompanying tool. BDI

supported in the last phase of

agent architecture selection.

Analysis consist of goal and use case

identification, and generation of

sequence diagrams, then role

identification and allocation to parallel

tasks (tasks detail how goals are

reached). In design agent types are

generated from roles with regard to

concurrency, interactions are detailed

and agent architecture devised. From

agent types and their interactions

deployment diagrams are produced.

Gaia [135] Targets “coarse grained

computational” agents”, that

have static/predictable inter-

relationships and service

provision. Suites systems types

that aim to improve some

collective utility cf. guarantee the

best solution. Covers analysis

and design. Central is the

identification of roles and related

“... responsibilities, permissions,

activities, and protocols” and

their (roles) interaction [135]

Analysis and design phases generate a

range of models. For the former: roles

and interactions models, and agent

(types), services and acquaintance

(communication between agents)

models for the latter.

‘Nikraz’ [136] Design phase specifically supports

JADE. Testing not covered. Simple

structure diagrams that show

Primarily analysis, design and

implementation/testing phase. Analysis

identifies candidate agent types,

58

goal composition are prepared

during analysis, later elaborated

in implementation

(parameterised for re-use, and

structured for appropriate

commitment), and again used

later in the lifecycle to drive plan

implementation.

allocates responsibilities to the types,

identifies collaborators, elaborates

details and identifies deployment

environment for each type. In design

the agent types reviewed with a view to

deployment (messaging overhead etc)

and interactions are elaborated. Next

non agent interactions are detailed

together with the supporting ontology.

JADE infrastructure resources are

integrated

Prometheus

[137]

Detailed guidance at each phase,

comprehensive coverage from

specification to detailed design,

and some support from a freely

available tool. Supports agents

based on “goals and plans” [137].

Three phase methodology. System

specification identifies system goals

and use cases, architectural design

identifies agent types and use case

scenarios are elaborated into agent

interactions, detailed design elaborates

the agent types internal architecture

[137]

Tropos [138] Mental attitudes (including BDI)

supported from analysis onwards.

Development support for

requirements to implementation.

UML class uses with a meta

model definition. Pattern

application in (macro)

architectural design.

Six phases: early and late requirements

analysis, (macro) architectural design,

detailed design, implementation.

The reviewed methodologies resemble conventional software development methodologies in

their structuring into analysis and development phases, and to some extent in some of the

content of those phases. The agent (micro) architecture and societal architecture development

is supported by varying degrees. The BDI model is directly supported by most and while it is

supported from the outset by Tropos, any overall advantage remains to be quantified. The use

of UML notation is common. Some methodologies are more suited to particular MAS

characteristics, while other distinguishing factors are the integration of tools and direct

59

support for existing run-time frameworks at the implementation stage. Aspects of a particular

methodology could easily be modified in most cases if more suitable techniques were

identified. No research on comparison metrics for MAS development methodologies has been

found.

3.4 Applications of the Multi Agent Paradigm in the Construction

Sector

The widest application of agency in the AEC/FM domain is for the support of collaborative

processes including concurrent engineering, management of supply chains, project scheduling

and control, and e-commerce [139]. These processes exist in AEC/FM, and require support, as

a result of the distributed and disjointed nature of the AEC/FM sector in terms of organisation,

project execution, decentralised control, authority and information and heterogeneous tools,

working practices and information representations e.g. [140]. The scope of the support

includes the application of standards and legal requirements, information retrieval and

accommodation of time differences or preferences for different working hours (as proxy for

the ‘missing’ participant).

In mechanical engineering, an area that may overlap with AEC in the use of agents, is the

application of agents for parametric design. In [141] the authors report the use of several

agents to determine parameters, where each agent has a different perspective. For each

parameter, the agents concerned negotiate to find a value for the given parameter (the

solution). The problems “... have many constraints (present), and perhaps tangled

dependencies between parameters” [141].

Examples in the area of concurrent engineering are the realisation of collaborative design

frameworks such as, for example, for assisting the activity of fire protection engineering and

for facilitating collaborative concurrent structural design processes. To support collaborative

working in concurrent structural design, Bilek, et al. [142] utilise a multi-agent collaborative

framework (constituting a middle ‘tier’) that mediates between the individuals involved in the

project effort and the resources on which the project depends. The resources with which the

agents interact include product models as well as software tools, databases and other

supporting resources. Agents are grouped according to the facility they provide such as

workflow and coordination agents, product model agents, expertise agents, software wrapper

agents. Workflow agents and coordination agents for example use resources in the layer below

such as Petri nets (to model resource sharing, concurrency and time dependant activities) to

achieve their goals.

60

Similarly, the nature of fire protection engineering is complex due to many individuals,

organisations, and disciplines working together with complex products and processes. In ref

[143], in a (distributed) environment including architectural, structural, and fire protection

models, an agent works on behalf of the fire protection engineer to ensure conformity to fire

protection rules of the evolving designs, and maintains a best fit fire protection plan. The agent

utilises a rule-based expert system in order to achieve its goal. Adequate or better fire

protection is achieved by ensuring conformance immediately the design process starts. Their

framework is a multi-agent system, some agents act as ‘proxies’ for human participants

responding to requests for information on behalf of the individual, while other agents in the

framework are responsible for transferring information between agents. Information is

transferred by ‘mobile agents’ whose goals are set by other agents to retrieve or set

information. The advantage gained by mobility is that the quantity of data transmitted can be

less by processing, before transmission, at the location where it resides by migrating the agent

there instead of moving the data to the agent.

Another application of agent frameworks is modelling the social behaviour of humans in

building egress [144]. The authors of that research state their belief that such systems are

“particularly suitable for simulating individual cognitive processes and behaviour and for

exploring emergent phenomena such as social or collective behaviours“. Typifying the agent

paradigm, the agents represent humans and are able to perceive their environment (doors,

exit signs, other people, obstacles such as furniture), have ability to make choices and exhibit

social behaviour, and are able to perform actions (walk, run, turn). In a simulation of the

agents exiting from a building in an emergency situation, the authors report: “competitive

behaviour, queuing behaviour and herding behaviour (is modelled) through simulating the

behaviour of human agents at microscopic level”. The results assist in facility design and

management and checking conformance to regulations.

Further examples in AEC/FM where agency has been exploited include monitoring and

planning for construction sites [145], and a sensor based security system for intelligent

buildings [146]. Research relating to agency in intelligent building in general is discussed in the

next subsection.

3.4.1 Intelligent Buildings and Agency

In the scope of intelligent buildings, the MavHome (Managing an intelligent Versatile Home)

project, [147] realises intelligent agency in its core infrastructure whose goal is to optimise the

comfort and productivity of the occupants while minimising running costs. The authors have

developed a layered architecture with intelligent agents operating at the higher layers. There

61

are four layers comprising decision making agents in the top layer that use the information in

the layer below, an information layer that collects coherent information, a communications

layer facilitating information flow between the agents, and a physical layer interfacing to

hardware. The structure is dynamically re-configurable depending on the hardware available

and allows the simple integration of new technologies. Similar functionally layered hierarchical

structures are seen in other efforts by Joo, et al. [68] and Helal, et al. [148] which are both built

on the OSGi framework (see section 3.5). The objectives of both are similar in minimising user

interaction, while the latter is specifically aimed at assisting the elderly and disabled, with a

novel “cognitive assistant” that guides the user with routine tasks using audio and video hints.

These two architectures both utilise an ontology based knowledge layer while the MavHome

project focuses on prediction algorithms. The MavHome uses three algorithms each with

specific known advantages. A final algorithm has ultimate control for prediction of activity; it

establishes confidence values for the others taking into account meta data about them such as

the history used and the context, selecting the most suitable. While quoting current high

success rates, the MavHome project is aiming future development at more complex

environments and support for multiple inhabitants, identified from their device interaction.

Performance is not quantified for the other frameworks and comparison would be difficult

without normalising the test scenarios.

In their research Joo, et al. [68] develop a framework that automates services through the

inference of users’ intentions to minimise manual interaction. The framework consists of

several management and coordination modules. A device coordinator manages all the devices

via device handlers in order to realise the home services that are offered by the service

coordinator. The various entities in the architecture have corresponding instance concepts in

the ontology allowing the user agents in the framework to reason about user contexts. An

example given is reasoning the deemed appropriate action of switching off devices such as

lighting and media when an occupier is recognised as having fallen asleep while watching

television. Rules specify actions to be executed when certain inferences are meet although the

technical nature and integration of the rules is not described. A key component of the system

is the context manager, which maintains the ontology including changing the representation to

reflect the continually changing context of the building. It also allows services and user agents

to register the contexts of interests so that when the registered context is recognised, call-

backs can be invoked. The authors identified five key ontology concepts in this setting: device,

service, environment, place, and user. Knowledge management of data is important in the

architecture of Helal, et al. as well, rendering knowledge from the lower level data collected

62

and the ability to abstract and reason with the knowledge to make decisions facilitated by the

ontology provision.

In the AEC/FM domain, the literature only reports the use of the weak notion of agency,

typically limited to applying the agency properties of autonomy and reactivity. The

characteristics of the weaker notion of agency are however well matched to those of the

AEC/FM domain in several aspects. Additionally general MAS agent interaction protocols

readily support collaboration, negotiation and contracting. The stronger notion of agency,

exemplified by the BDI abstraction, leverages the features of the weaker notion. The suitability

of the BDI characteristics to the IFMS application is outlined in section 4.1.

3.5 Alternatives to Deliver Aspects of Agency

The support of a MAS relies on many types of service provision including for societal support:

agent lifecycle control, transport provision for messaging, location services, as well as an for

internal architectural support: an event model, signalling, threading and thread

synchronisation facilities. The latter services are provided by primitives in any programming

language while variants of or ‘building blocks’ for former are delivered by several middleware

frameworks. MAS middleware typically provides the societal features in a way that conforms

to typically FIPA standards. For internal agent architecture support, some abstract agent

model, e.g. reactive, BDI, etc. is typically provided with a high level configuration /

programming facility but with the programming language still accessible to the implementer if

required.

Regarding middleware that could be used to implement some features of an MAS framework,

the Common Object Request Broker (CORBA) specification [149] is a standard that describes

support for distributed objects across heterogeneous platforms. The specification includes

lifecycle control, object location, remote method invocation using a variety of call semantics

(synchronous/asynchronous, uni/bi-directional, pass by value / reference) and quality of

service definition as well as support for dynamic determination of remote objects interfaces

and their invocation. Implementations provide language bindings for many popular

programming languages including Java, Ruby, Python and C++. The interface definition

language (IDL) captures object interface definitions. The CORBA Component Model (CCM)

extends the CORBA object model and provides services for event notification, state

persistence, security and transactions. The component provision simplifies the complexity of

CORBA thereby easing development (with the services provision implementation itself as well

as ease of use through pattern application) and deployment through the provision of hosted

containers that manage system services. Components are described with an extension to IDL,

63

known as Component Implementation Definition Language (CIDL) that describes the offered

and required interfaces, produced and consumed events, among other meta data. Comparable

object models are provided by Microsoft’s .NET framework and SUN’s language specific

Enterprise Java Beans (EJB).

The Open Service Gateway Initiative (OSGi) [150] framework utilised in some of the intelligent

building software architectures is similar to service oriented architecture (SOA). SOA is a

common paradigm where information and processing facilities are grouped to support specific

business processes (such an architecture can be implemented with ‘web services’). However

OSGi differs from SOA in that the former excludes transport provision, the speed is much

higher but the system is constrained to the local platform. OSGi is platform independent by

virtue of its Java runtime execution environment.

The use of Prolog for the support of a belief base has already been mentioned but it (Prolog)

could be potentially used for other purposes in some abstract agent models determined by the

internal representations and features. A popular Prolog environment implementation is SWI-

Prolog [151]. Alternatively a more primitive provision employing a rule engine implementation

directly may be appropriate, for example, a backward chaining rule provision could be used for

dynamic planning. Rule engine implementations typically use the popular Rete algorithm [152]

for efficient pattern matching. A BDI abstract model implementation could employ a forward

chaining rule engine for example, but in a framework such as JADEX, those details are hidden

from the programmer.

3.6 Summary

This chapter started with a review of the agent paradigm and the attribution of agents with

mental attitudes, a useful abstraction mechanism. Particular attention was given to the BDI

model. The properties and interaction of attitudes to uphold rationality were then described.

Moreover it was seen that some attitudes e.g. beliefs play a much richer role than they would

if used as algorithm control criteria in a conventional implementation.

Some aspects of the logical formulation of agency were presented next and aspects of it

highlighted in implemented frameworks. Formal models are useful to capture semantics even

though a formal implementation is not anticipated for the IFMS. One particular framework

that explicitly conforms to some formal semantics was described as it could be utilised in the

implementation. It was seen that the choice of axiomisation is dependent on the application

and the deductions required. It was also seen that some attitudes can be modelled more

64

simply than others. The discussion then covered the difficulties in implementing formal

systems.

Some practical MAS frameworks supporting BDI were then presented, relating the discussion

to the philosophical foundations and formal semantics where applicable. While frameworks

should address the requirements, flexibility in the implementation remains so the programmer

should be aware of the impact of implementation decisions. Some technical aspects of existing

frameworks were detailed in order that the best suited for this application can be identified. In

particular the discussion highlighted some attitudes that are not explicit in some practical

implementations e.g. intentions. The role of commitments was also covered.

A core characteristic of agency is social ability to facilitate collaboration and that was covered

next. Collaboration is provisioned with the ability to communicate and so discussion of agent

messaging was included, reviewing SL and OWL as semantic content candidates as well as the

definition of speech act semantics. The nature of the MAS influences the type of messaging

required and so relevant factors have been highlighted in the discussion. While OWL as

message content seems to fit well with OWL based agents, the higher expressivity of SL enable

richer dialog. Additionally the details of some library ‘plug-ins’ supporting messaging were

discussed in detail so that both functionality gains are identified and so that those gains can be

balanced with any overhead, redundancy, and overlap or clashes with other resources.

Many methodologies for the disciplined application of best practices for the development of

agent systems have been published and some selected ones were reviewed next. It was seen

that there is variety in several characteristics, and so the review will facilitate either selection

of the most suitable, or it can be used to inform the development of a custom methodology,

borrowing preferred aspects from existing work.

Next some examples of the application of the agency paradigm in the AEC/FM domain was

presented. The discussion concluded that only the weaker notion of agency has been applied

but that it has well suited properties.

Finally a brief overview of some supporting technologies that could potentially contribute

towards realising an implementation infrastructure in place of an MAS framework was given.

That discussion gives insight into the technical foundations of existing agent framework

provisions, and highlights the abstractions made and consequent benefits gained in ease of

implementation in using an MAS framework.

In overall summary, the availability of frameworks, tools, and methodologies make the

realisation of BDI agent behaviour and the implementation of an MAS feasible without the

65

need to implement from ‘scratch’. The literature review allows an informed implementation to

be developed and implementation decisions justified. The development of the MAS aspect of

the IFMS system is described in section 4.4.3.

67

Chapter 4

4 System Development

System Development

The section describes the technologies and frameworks used to support the IFMS

implementation together with the techniques used to apply them. The main foundations of

the system are presented in turn, outlining their suitability. Next methodologies for system

development using those technologies are described. Following that, the selection and

features of frameworks used in the system’s realisation are presented, providing some

rationale for the selections made.

A brief overview of the IFMS is presented in section 1.3. The main defining feature of the

system is its support of goal directed software entities that interact with the sensor data

sources and building related information sources available. That behaviour is realised with a

society of belief-desire-intention (BDI) agents. A further feature is the application of semantic

modelling from which appropriate inferences guide those agents’ behaviour. This is delivered

by a number of ontologies and knowledge bases (KBs). Justification for the application of the

agency paradigm and for the use of semantic modelling are described next.

4.1 The Suitability of the BDI Agent Model to the IFMS

The primary requirement of the IFMS is to ultimately generate useful knowledge about

buildings for the purpose of contributing towards improvements in facility management (FM).

The following summarises the nature of the domain and factors influencing that requirement:

 In order to build knowledge many different tasks have to be executed. The tasks are

inter-related and asynchronous, and share some common knowledge and beliefs.

 Detailed building related knowledge is desirable and is naturally aligned to sub areas,

typically rooms or functional areas, so the pursuit of knowledge elaboration within the

same scope is appropriate. The division allows specialisation and detailed context

focussed knowledge generation.

 In order to facilitate collaboration of entities aligned with the functional sub division

and specialisation identified during analysis, a messaging provision is needed. Abstract

and asynchronous messaging facilitates high levels of decoupling and cohesion.

68

 Tasks to be completed to elaborate knowledge have similar abstract characteristics but

are context dependant. The context is dictated by the building geometry, sensor

provision, and (dynamic) sensor availability.

 The environment about which knowledge is to be generated is complex and constantly

changing. The complexity arises from the combination of systems (building and plant),

and dynamic influences driven by a changing environment and sensing capability, and

people interacting with that environment.

 Each sensor’s capabilities is influenced by its context.

 Software entities consuming sensor data have an incomplete ‘view of the world’

through limited sensing ability and potentially missing building model detail.

The software agent paradigm and its extension with the BDI model are particularly well suited

to the characteristics of the IFMS described above in several aspects. The fundamental agent

paradigm supports the requirements for independent software entities that can collaborate.

The system analysis identified several areas of specialisation, and for the purpose of flexibility

the development methodology aligns that with independent entity types, while the need for

communication arises to enable cooperation and collaboration among those specialist entity

types. The ability to collaborate is critical to allow the specialised (cohesive) entities to pursue

activities that, due to their specialism, cannot perform independently. The BDI abstraction

realises pro-activeness, where abstract strategies are assigned and the entities evaluate and

pursue the mechanisms that best suit the (dynamic) context. That contrasts to an algorithmic

approach where typically a fairly rigid strategy is only implicitly captured. The BDI formalism is

better able to adapt to changes in the environment by knowing its abstract strategy explicitly,

for which it can usually select a different plan to reach an explicit goal or sub goals. Moreover

the separation of attitudes and model theory formulation includes, with other inter-

relationships of attitudes, the taking account of current and past goal outcomes (manifested as

beliefs) and their dynamic feasibility to deliver rational behaviour (see section 3.1). In summary

the BDI abstraction utilised in the IFMS environment adds the potential for increased

robustness through flexibility delivered by the capture of, from a high level perspective, the

agents’ direction and purpose. In contrast traditional algorithmic systems perform well with

static knowledge that is well defined within its application context.

The flexibility of BDI agents is gained by the deliberation about the most appropriate goals to

follow, together with reasoning about how to achieve them. Although in a conventional

system, behaviour can of course be controlled with the evaluation of conditions (pre

conditions and object states) to direct flow, and exception handling can catch errors and

unexpected scenarios, in a non-trivial application, in contrast to a BDI implementation, the

69

behaviour is more complex to predict and the implementation more difficult to maintain [104].

As behaviour is more difficult to predict, the rationality is less easily demonstrated.

4.2 The Suitability of Ontology Modelling

The application of ontology to the IFMS offers several benefits to the system. Some of these

are listed below:

 The use of ontology allows the reuse of domain dependant and independent

knowledge.

 The externalisation and formality of knowledge means that exchanged statements can

be accurately defined (typically the semantics of the representation has a logical

mathematical basis). That delivers benefits internally within the agent layer but is

particularly useful for interfacing to intelligent external tools.

 The capture of knowledge of the complex domains can be represented very concisely

(partially enabled by relatively high knowledge representation (KR) expressivity) such

that a large proportion is inferred. Thus the body of knowledge is easier to understand

and maintain.

 The semantics of the OWL knowledge representation (KR) used allows complex

knowledge modelling but without necessarily ‘full’ definitions, for example role

restrictions define some facts about relationships but lack detail about the types and

numbers of the fillers. That modelling suits the nature of the complex domain where

such complete knowledge is not known at modelling design time, or it can change.

Moreover the statements, appropriately formulated, remain consistent.

 The formal representation allows consistency checking, which in a complex model is

very beneficial in the identification of model authoring errors, or at run time during KB

updating.

 Due to the emergence of the semantic web, the support for semantic KBs is good,

particularly using the OWL KR [153] [154]. Support is provided by editing tools and

reasoners. Additionally a range of work on ontology development methodologies has

been published [39].

 Avoidance of many ad-hoc queries of the informal non-explicit model alternative, as

well as the use of a structured query language.

4.3 Methodology

This sub section describes salient methodologies used in the development of the IFMS. For

completeness some aspects of the conventional software engineering methodology used in

70

the development of the infrastructure are mentioned, but as the techniques used are fairly

conventional the discussion is kept very brief. Next, the methodologies for the development of

the MAS and for the system ontologies are described in more detail.

4.3.1 Conventional Software Development Methodology

The development of the infrastructure layer and to some extent the agent layer were

developed by following conventional object oriented development, using selected Unified

Process workflows. The process is characterised by use case driven, iterative and incremental

development as well as “architecture centric” [155]. The iterative and incremental nature

allowed in particular the dynamic system behaviour to be investigated and evaluated,

principally from a realistic system deployment, from which observations were feed back into

analysis and design. A case tool, namely Visual Paradigm was central to the development,

especially the early iterations. The case tool provides code generation and class diagram

creation but no C# ‘round trip’ engineering in the version used, which hindered, in the case of

infrastructure development, the ease of maintaining the model in the later development

stages.

4.3.2 Agent Development Methodology

After reviewing several published multi agent development methodologies, including the

Multiagent Systems Engineering Methodology [134], Tropos [138], Gaia [135], Prometheus

[137], it was seen that none were ideally suited in their entirety for use in the development of

the IFMS agent layer. Of the methodologies reviewed, each shows different characteristics

with respect to lifecycle coverage, level of detail, provision of guidelines and heuristics,

similarity to conventional software engineering, availability of tool support and provision or

recommendations of notation. Therefore a methodology was devised that borrows preferred

aspects from a number of existing published methodologies. The motivation is to incorporate

into the custom methodology aspects of the well evolved and mature processes already

developed. It is additionally recognised that many methodologies do emphasise flexibility so

some customisation is expected anyway. In the limited context of the IFMS, the specific

requirements of the custom methodology are to:

 Remove unnecessary stages, and to select the simplest processes.

 Support the concepts of the selected agent formalism (goal, plan, etc.) and to

integrate the preferred process artefacts at each phase.

 Similarly to above, map to the chosen agent framework and specify the generation of

supporting artefacts.

71

 Use the Unified Modelling Language (UML) diagramming and supporting tools where

feasible.

An overview of the methodology used is shown in Figure 4.1 using the Business Process Model

Notation (BPMN). The BPMN has been used because it captures activity and sub activity,

input/output artefacts, major decision points and sequences.

72

Figure 4.1 - IFMS agent development methodology

73

The custom methodology’s development was in general influenced by the conventional use

case driven software development lifecycle, exemplified by the Unified Process, accompanied

with UML notation, while the specialisation of agent entities borrows heavily from several

published methodologies which are described next. The main inspiration for the analysis phase

was the methodology described by Nikras [136], attractive due to its compact nature. An

addition was the use of simple structure diagrams that show goal composition which are

prepared during analysis, later elaborated in implementation (parameterised for re-use, and

structured for appropriate commitment characteristics), and again used later in the lifecycle to

drive plan implementation. Some assumptions that results in the custom methodology being

simpler compared to those reviewed are that goals are not shared, all agents conform to

society norms that uphold MAS integrity, and agents are benevolent e.g. participate in

cooperation when requested.

The custom methodology specifies the generation of competency questions (see section 4.3.3)

to support the knowledge requirements of (agent type) roles. These competency questions are

a main feature of the ontology development methodology, thus the two methodologies are

dependant. The link is a mutual dependency in that the ontology development activity may

also modify the competency questions from a technical or conceptual perspective, which could

lead to changes in agent design or implementation. Competency questions are later

elaborated during agent implementation to satisfy the detailed knowledge requirements of

plans.

Evaluation of the implemented system consists of two sub processes that seek to verify correct

operation as well as to check for adequate performance in realistic deployments. Test

scenarios are devised from the system use cases and from the deployment specifications in the

form of UML deployment diagrams and IFC building models. For performance evaluation and

verification, those scenarios are then logged during execution using the comprehensive logging

framework log4j [156] with appropriate configurations. For the verification of deliberation and

means-end reasoning, the agents are configured to write KB content snapshots to disk. Agent

message recording could also be activated but typically is not needed, as much of that content

is covered by the logs. As the system is closed, verification of conformance to standards such

as the semantics defined for FIPA messaging is not a central concern.

The checking of traceability (“the ability to describe and follow the life of a requirement, in

both a forwards and backwards direction” [157] [158]) and completeness (“... the activity of

identifying missing elements in documents generated during different phases of the

development life-cycle ... [158]“) is not currently explicitly supported. Such lack of intrinsic

74

demonstrable traceability and completeness is typical in refinement based methodologies such

as this, where the process integrity relies solely on the application of good software

implementation practices.

Where necessary, findings from the application of the development process motivated

modifications to the methodology, typically the refinement of small details. Regarding the

coverage delivered by the methodology, the delivery of a working solution is a practical

demonstration. The similarity of the custom methodology to familiar conventional software

development, availability of several ‘donor’ methodologies and the fact that a specialised

methodology was required cf. one of wider scope meant that delivering adequate coverage

was not problematic.

4.3.3 Ontology Development Methodology

For the purpose of identifying a methodology for developing ontologies for the IFMS, several

published methodologies were reviewed (see section 2.2.6.1). From that review the NeOn

ontology development methodology [74] was selected for the following reasons:

 It is the most complete in terms of level of specification and scope, covering nine

scenarios including development “from scratch”, and reusing existing ontological and

non ontological resources. Moreover its coverage exceeds that required for the

development of ontologies in the IFMS.

 Like several other methodologies, Neon employs ‘competency questions’ which are

informally stated natural language queries that the ontology is expected to answer.

Competency questions do not embody ontological commitments but are used to elicit

those captured by the ontology [78].

Specifically regarding ontology editing, some general patterns emerged and these are

described in section 6.3. The discussion includes the consideration and application of aspects

of the OntoClean methodology and other factors that influenced the ontology design and

development. The workflow followed for ontology editing involved initially editing the

taxonomy, which is well provisioned by the use of Protégé tool and its visualisation.

4.4 Framework Selection and Application

This sub section outlines the frameworks that were selected for use in the IFMS in order to

support the designed functionality. Some primary features of the selected resources are

outlined in the discussion.

75

4.4.1 Architecture and Implementation Languages

After the design of the system architecture was completed, the decisions for implementation

languages were made. Primarily those decisions were derived from any constraints for

compatibility with the APIs and implementation languages of selected frameworks, together

with a legacy constraint stated by a sponsor at the project outset that the infrastructure

should be implemented with Microsoft products. The constraint was so that any

implementation would be directly compatible with the sponsor’s existing products.

Fortunately that was favourable regarding the interfacing to some hardware, especially the

National Instruments USB device interfaces, as the interface library provision is only available

on the Microsoft .Net platform. The decision to implement the upper agent layer using Java

was determined by the very good support for both MAS and OWL ontology interfacing and KB

support (specifically reasoners) by that language. Moreover the provisions are only available in

that language. To facilitate communication between the two different language based virtual

machine types hosted by the layers, an interface provision was thus required. The open source

project IIOP.Net [159] is a Remoting channel implementation that is customised to use the IIOP

protocol, it hosts a CORBA Object request broker (ORB), and performs translation between the

.Net and CORBA type systems. Using Java’s RMI/IIOP facility, an object based interface can

thus be realised. Additionally the library also supplies an executable to process the meta data

contained in .Net assemblies in order to generate Interface Definition Language (IDL) files. The

IDL files can then be used with the Java IDL compiler (‘idlj’) to generate Java language bindings

(see section 5.1.2).

Regarding the use of Java libraries in the .Net environment, the free software IKVM [160]

offers the potential ability to translate Java byte code into the .Net Intermediate Language (IL).

Jena was successfully converted but the relatively high number of dependencies of the Jena

framework meant that a high overhead in terms of configuration and run time support was

required.

4.4.2 Ontology Interaction Support Library Choices

Jena [58] is an ontology application programming interface (API). The API presents Java classes

representing the ontology language constructs, together with classes to facilitate model

reading and specification, thus allowing object oriented program development supporting

OWL ontology manipulation. It was selected due to its support for OWL (and OWL2 with some

extensions, see section 5.4.3 for a description of its application), its support for the query

language SPARQL, and its integration with the Pellet reasoner providing abstract interfaces.

Additionally, Jena has a number of built-in reasoners capable of delivering RDFS inference

76

among others, which found useful application. Another popular API, namely the Manchester

OWLAPI [57] has a number of advantages including its support of a range of syntaxes, its

integration with a number of reasoners, and its interfaces for explanations,. However it does

not currently support SPARQL queries.

The Pellet reasoner was adopted for its support of OWL2 reasoning, SPARQL query support,

comprehensive SWRL rule support (when combined with Jena’s ARQ query engine), and its

support of explanations. An anticipated application of rules was, for example, as a convenient

way to apply temporal constraints. The Pellet reasoner provides coverage of nearly all the

SWRL operators (‘built-ins’) that support manipulation of a range of Extensible Mark-up

Language (XML) schema data types in rules, and that coverage is adequate for the expected

potential scope of use.

4.4.3 Agent Framework Selection and Features

In the context of the IFMS, the following were identified as the main requirements of an MAS

framework:

 An architecture that is practically implementable and deployable in ‘real’ applications,

with a good degree of framework support. MAS support including transport, hosting

and lifecycle control.

 An internal agent architecture to support the realisation of pro-active rational agents

including a motivational aspect, deliberative aspect and a procedural action element.

Typically most solutions are close to the intuitive theories of BDI.

 Viable integration with the OWL knowledge sources.

 Publically available framework implementation.

The JADE MAS infrastructure framework is widely reported as forming the basis of many

published work in the domain, and meets all the requirements of the IFMS. The framework

provides support for agent infrastructure implementation incorporating FIPA messaging, agent

hosting, lifecycle control, and other infrastructure services such as agent location. Library

support for FIPA-agent communication language (ACL) conformant messaging is provided for

message construction and transport, but no semantics are forced. Depending on the

application the programmer can implement the level of compliance that is appropriate.

The two most favoured internal architecture solutions, both JADE based, were JADEX and

PRACTIONIST. Both support deliberation and means-end reasoning roles derived from theories

of practical reasoning, both are publically available and well documented. The PRACTIONIST

framework though is published as a ‘release candidate’ with the statement that it has not been

77

extensively tested. The PRACTIONIST framework is attractive however due to its goal centric

implementation and some support for reasoning about various attitudes, incorporating the

modal representation of beliefs. However in the IFMS, most of the agents’ knowledge of the

world is captured in OWL ontologies or is closely integrated, and consist of fairly complex

representations, and so for a meaningful exploitation of PRACTIONIST’s internal mechanisms, a

fairly extensive mapping effort would be required. Thus although the rationality of a

PRACTIONIST agent is more transparent, in a practical application, JADEX was preferred due to

its fairly open plan mechanism that allowed the addition of some customisations that add

further transparent rationality. Those customisations are outlined in section 5.2.2.

The decision was made to utilise the same internal architecture for all the main agent types in

the IFMS. However future agents that are integrated into the IFMS may favour a different

architecture choice. Potentially finer grained agent types that do not use OWL KBs would be

better suited to PRACTIONIST implementations, but a more complete evaluation is left to

further work.

4.4.3.1 JADEX Framework Application

In JADEX agent behaviour is defined with the specification of belief conditions, preconditions

on sub goals and plans, and postconditions (the postcondition is the intention in the case of

plans). Behaviour can be further defined with other facilities including activation and inhibit

conditions formulated as Java statements and belief states, event triggering, retry goal criteria,

plan exclusion criteria, and goal and plan failure actions. Agent behaviour can thus potentially

be achieved in a number of different ways and hence early in the implementation stage of the

methodology, the implementation principles described in chapter 5 are applied where

possible. Additionally JADEX provides a number of modularised capabilities which encapsulate

agent behaviour (fully configured cohesive goals, plans etc. targeting well known scenarios)

such as commonly used functionality e.g. registering an agent with yellow pages facility and

protocol implementations such as contract-net.

The implementation of agents in JADEX comprises definitions in a configuration file having a

framework provided universal schema to help maintain static agent configuration integrity,

together with supporting plan implementations written in Java. The implementation task in

the methodology outlined in section 4.3.2 targets the identification and definition of agent

specific goals, sub goals, plans and all associated parameters including trigger conditions such

as events and belief states. Contrasting a JADEX implemented agent with that implemented in

JADE directly, JADEX combines its rule engine and the aforementioned agent definition to

78

substitute a JADE ‘behaviour’. The (forward chaining) rule engine uses an efficient pattern

matching algorithm, to realise both means-end reasoning and (goal) deliberation.

4.4.3.2 Agent Messaging and Content

Regarding agent communication, the JADE Semantics Addin (JSA) framework was not adopted,

primarily because as the IFMS system is closed, dialogue is uniform and therefore does not

require the flexibility delivered by that framework implementation. Moreover conformance to

protocols that deal with more uniform dialogue does not require much coding overhead in

JADEX, and as a result, message content is simplified (see section 3.2). While the support of

different sub systems in agents is feasible, the use of JSA would add complexity which is not

required in a closed system. The architecture of JSA is closely integrated with semantics of

speech acts, so no technical integration issues would have been expected.

The semantic language SL was selected for use in agents’ message content for the following

reasons:

 A library is available for construction and parsing of SL statements.

 The schema allows the capture of nested and up to very expressive statements (the

expressivity of a statement is the (semantic) ‘power’ / richness captured, dependant

on the constructs that it uses e.g. propositional forms are less expressive than first

order predicate and modal logic forms). Complex grounded and ungrounded

expressions (specifically ContentElement instances) can be created describing objects

and sets of objects (using single first order predicates or identifying referential

expressions), and formulas can be combined, modified or quantified in those

expressions using the defined connectives and modifiers (and, equiv, implies, not

(unary operator), exists, forall). Formulas can also be combined with modal operators

capturing attitudes: believes, uncertain, intends and action operators.

 The use of SL as a contents language is a FIPA standard in contrast to for example

OWL. Although that consideration is less relevant for internal agent dialog, SL

expressions can be readily consumed by external tools.

From the FIPA ACL content reference model, the classes predicate, concept and occasionally

agent action were elaborated with Java based ontologies by constructs that typically map

corresponding IFMS ontology constructs (including reification in the case of object or data

properties), to capture a (simplified) sub-set of those ontologies that is adequate for dialog,

and to capture the required agent actions. Specifically the simplified classes contain a

reference to the corresponding ontology class URI. The requirement for the creation of the

79

Java based ontology described could be considered a disadvantage due to the (limited)

redundancy rendered, but without the FIPA SL schema a similar model would have been

required, probably expressed in an OWL ontology. While a restricted subset of the SL

vocabulary’s semantics for the IFMS application could have been selected and defined in such

an ontology, custom implementation would still have been needed to process the statements

in messages. The selected semantics supported would necessarily be restricted by the lower

expressivity of OWL, as well as just providing support for those semantics required for the

immediate application. Moreover it was considered undesirable to require all agents to be

OWL based.

The Java ontology defined for the purpose of SL message content (and for some limited belief

base components, typically for the purpose of buffering mechanisms - see section 5.2.1.8) has

a narrow scope and limited expressivity. The content of dialog and buffered content is thus

constrained but that is not problematic as that matches the nature of context specific dialog

and design time buffering. While most OWL constructs can be mapped to the object oriented

domain such as Java, the ontology was restricted to a few constructs so that the re-expression

of knowledge remains holistically relatively straight forward. The Jastor project libraries [53]

can be used to generate Java ontologies from OWL in the form of Java Beans classes, and while

there are fundamental differences between semantics of the OWL KR and its corresponding

Java representation, the agents’ usage does not impinge on those areas. An example is the

difference in the semantics of the definition of necessary and sufficient conditions including a

role restriction for example, where in OWL any individual with a definition that satisfies the

necessary and sufficient conditions will be inferred to be a member of that class, in contrast to

a typical mapped Java implementation (including Jastor’s), where the Java implementation just

upholds the constraint corresponding to the role restriction [161].

4.4.4 Other Supporting Technologies, Libraries and Software

This sub section presents a brief overview of the remaining supporting technologies and

software provision used in the IFMS, and the rationale for their selection where appropriate.

4.4.4.1 Building Information Model

Due to the complexity of generating and maintaining a realistic ontological building

representation, and moreover for the frameworks’ application as a user friendly tool, the use

of a manually generated building representation was not considered feasible. Thus a

requirement for agents to interpret a building model was added. An increasingly well

supported (by modelling tools) open standard is the IFC schema as described above in section

2.1.2, and a comprehensive and popular modelling tool supporting that schema via export and

80

import is Autodesk Revit Architecture. Thus good building modelling integration in the IFMS

was rendered by its adoption of the IFC as the primary ‘import’ format for building models.

The library OpenIfcJavaToolbox [162] is a facility that allows programmatic access to IFC

models. The library allows the reading and writing of STEP (Standard for the Exchange of

Product model data) [163] physical files containing IFC schemas, via an object oriented

representation of IFC entities, as well as providing some data management functionality. The

Java classes are a close mapping of the basic EXPRESS entities and attributes of the IFC

schema, so the programmer requires experience of the IFC in order to use the library. The tool

kit captures a binding between the EXPRESS schema language [164] and Java which has less

expressivity and different constructs, so a simple complete mapping is not always possible. For

example EXPRESS includes local (to entities) and global rules, and derived attributes. However

it was found in practice that no information was missing when working with

OpenIfcJavaToolbox, so the difficulties in the mapping do not currently affect the

representation, at least in this instance. An alternative to the tool box library is the direct use

of the STEP SDAI (Standard Data Access Interface), but the former is significantly simpler for

the programmer to use

4.4.4.2 Sensor Systems

A number of building related communication protocols exist for the integration of building

systems that include sensors, some of which are open standards. However while the IFMS

software architecture will easily accommodate the connection of suitable adaptors to standard

protocols, for the small set of wired network devices connected, no standards conformance

was required. Regarding the wireless devices, while not specifically building related, host

devices conforming to the ZigBee standard were selected. ZigBee is a wireless protocol that

implements mesh networks specifically for hosting sensors and actuators. Consequently

properties of the ZigBee standard are very low power consumption and low data throughput

rate, which match the requirements of easy installation, allowing the use of battery power

sources. Further characterises are low cost and high reliability and security. Most ZigBee

device host offerings are supplied with a firmware stack implementation that offer the user an

API at the application layer in the OSI 7 layer model, providing node network configuration,

data send and receive, and message routing, as well as other non network related

functionalities (see section 6.1.3.1).

81

4.5 Summary

This chapter has discussed the selection of the main technologies and software frameworks

that are used to realise the IFMS implementation. Where alternative options were presented

in a particular domain in the previous chapters, the rationales for choices have been

presented. The application of the selected resources is discussed in the next chapter.

83

Chapter 5

5 General Principles of Implementation

General Principles of Implementation

This section discusses the general principles of the detailed design and development of the

Intelligent Facility Management System (IFMS). An overview of the system is presented in

section 1.3.

After a brief presentation of general architectural layer independent and intra-layer

considerations, the development of the mufti agent layer software is described next. The

development of the infrastructure layers is fairly conventional so is not discussed from an

abstract perspective in this chapter, but some salient details are presented in section 6.1. The

agents’ implementation captures behaviour as a combination of BDI formalisms which relies

extensively on knowledge bases for the support of deliberation and means end-reasoning.

Those knowledge provisions in knowledge bases by ontologies, as well as other provisions by

building domain IFC models are described next. The discussion includes a description of the

(domain) scope of the knowledge sources together with overviews of the mechanisms used by

the software agents to access and exploit that knowledge.

5.1 System Wide

5.1.1 Propagation of Events and Time References

The propagation of events through the system uses a variety of mechanisms, governed by the

requirements for timeliness and simplicity in implementation where possible. Time stamping is

critical for accurate data capture and data is time stamped as close to its reading as possible,

avoiding for example ‘round robin’ polling that could introduce errors. Accurate timestamps

are required for aligning and comparing event sequences in the analysis of physical event

driven sensing such as motion detection.

The infrastructure interface modules read sensors typically via interrupt driven mechanisms or

by a relatively fast polls (5 Hz), and notify the sensors node over the .Net Remoting channels at

a lower rate (1 Hz). This is sufficient to provide recent data availability to the agent layer. The

sensor node is then polled at 2 Hz by the associated agent. That way the implementation is not

over complex, while data accuracy is preserved. The infrastructure sensor manager retains

object-relational mapping (ORM) derived (log) classes for each subscribed sensor and

84

synchronises the database on a periodic basis but retains sensor data in memory for several

hours. Queries to the sensor manager initially attempt to retrieve requested history from

those memory based histories but force a database synchronisation if the data ranges are

outside those held in memory. Typically in practice, a database synchronisation to the ORM

layer is rarely needed. That architecture renders good overall run-time performance even

where large database tables are involved.

Time stamping, and time references is a central concern in the system. The main issue in the

agent layer as a consequence of the event propagation described above is that events arrive in

the agent layer in discrete time ‘blocks’ i.e. while event time stamps are accurate, they may be

separated due to the propagation characteristics. However that is not a problem as in general

event times are not directly compared to local time references. For example event driven state

machines derive time references from events, even when those events do not trigger

transitions. Where timeout values are required, the typical update rate is taken into account.

In any case, primarily for logging and diagnostics where the local time is used, Windows

platforms hosting IFMS executables are synchronised using the internet time synchronisation

facility.

5.1.2 Interconnection between Virtual Platforms

In order to support object based communication between the infrastructure sensor node type

(a C# .Net assembly running in the Microsoft Common Language Runtime environment) and

the corresponding agent type (running in a Java virtual machine) in the agent layer, a

customisation of .Net Remoting was utilised. The infrastructure uses the remoting facility so its

extension to allow communication between C# and Java virtual platforms fitted well.

Integrated was achieved by using .Net Remoting’s customisable protocol provision and Java’s

RMI/IIOP provision. A library provision called IIOP.Net [159] was used in the implementation.

That library provides a tool to generate IDL from .Net assemblies’ meta data together with

stub and skeleton generation (CORBA language bindings for C#). Only the stubs are needed

and they were added to a custom communications library for use by C# executables. The

commands to generate the IDL and stubs were implemented as custom build commands in the

C# development but were removed once the interfaces were stable in order to reduce build

time. Java language bindings were generated using the ‘idlj’ compiler supplied with the Java

J2SE platform. The generated classes together with the ORB shipped with J2SE were added to

the Java builds.

85

5.2 Implementation of the Multiagent Layer

This section describes the general principles used to implement the software agent layer,

covering the internal and external (society) architecture.

5.2.1 Application of JADE and JADEX

This section describes the realisation of BDI agents using the JADEX framework and its host

framework JADE. JADE provides an infrastructure for FIPA compliant agents, while JADEX

targets agents’ internal architecture.

The JADEX framework allows very flexible BDI agent implementations. In some cases the

mechanisms provided were not well suited e.g. for performance related concerns, so other

general application patterns were devised and are described along with the standard

mechanisms applied. Some more defined customisations, some of which build on the BDI

model are described next.

5.2.1.1 Agent Packaging, Distribution and Lifecycle Control

Agent types are compiled into an ‘executable’ Java archive file and instances are typically

launched with a pre-configured shortcut, passing an index that refers to a configuration in a

file for the agent type. The start-up creates an agent controller and by default creates a

container for the agent at the specified host. A separate controller for each agent allows

platform independent agent lifecycle control. The settings file allows support for deploying the

agent behind a router by specification of address details that, if present, is set in the message

meta data at agent dialog initialisation.

5.2.1.2 Internal mechanisms

Although the implementation uses almost all of the techniques supporting BDI agent

behaviour, a prevalent mechanism is the triggering of goals and in some case plans directly,

from belief base changes. The mechanism realises belief base consistency, agent consistency

and agent rationality as a whole. Additionally regarding the implementation, the triggering

mechanism allows plan decoupling and cohesion to be maintained.

The internal agent architecture, by its nature, in general, removed the concern for

programmer implementation of threading, synchronisation and notification mechanisms. In

the framework “one plan step is executed at a time” [165] thus implementation is simple in

comparison to that of the infrastructure, for example.

86

Another pattern that emerged relates to the two alternative goal / plan formulation

characterisations in respect of lifecycle. Triggered by the agent’s fine grained attitudes, one

alternative is the short lived (repeated) goal activation and plan execution, where

commitments or other beliefs persist the agents’ strategy. In an alternative approach some

goals remain adopted cf. complete or dropped and plans switch between the active and other

non active states with the call to ‘waitFor’ on a condition or event. Both implementations are

used but the second more widely as the implementations are generally simpler. The short lived

approach has the overhead of possibly saving extensive state information but, in its support,

the technique makes the state of intentions more explicit. Similarly, to some extent, the

formulation of commitments (see section 5.2.2.1), realised by beliefs achieves the same

objective, and adds structure to the capture of intention states. In that case the plan

periodically verifies its belief state to determine if it is still committed to an intention.

Regarding the JADEX mechanism involving the triggering of goals from belief base changes or

conditions introduced above, while it does not allow the specification of context with

parameters, the nature of those goals is typically close to the mental state of the agent, so the

context is readily determined. Where context is specified for goals, the nature of these are

usually more removed from the attitudes and their purpose is to carry out intermediate

processing or externally directed actions.

Many belief base implementations involve complex Java types or collections in the belief base.

The JADEX framework provides support for the configuration of Java Beans event notification

mechanisms. However in some cases it was necessary to ‘throttle’ the notifications. The

technique used is described in section 7.2.4.4.

Meta goals were initially implemented to realise some deliberation (for the scenario to select

plans to activate where multiple candidate plans exist, as the plan selection criteria for a given

goal is not conclusive). That provision in the framework involves the configuration in the agent

definition file (ADF) of a range of triggers and other settings. While its advantage is the ability

to activate multiple plans, the implementation is not as simple as an alternative of using a

conventional top level goal to implement the deliberation and in the corresponding plan

creating and configuring goals using the provided Java APIs. Additionally, the latter technique

avoids the use of Java expressions in the ADF that are not compiled at design / edit time.

5.2.1.3 Deliberation and Means-End Reasoning

The invocation of deliberation in the IFMS agents takes into account the ‘expense’ of

deliberation in terms of resource (processor usage) and execution time and the rate at which

the environment changes. A large proportion of implemented deliberation involves inference

87

which has relatively large overhead so the frequency is relatively low, for example in some

cases as slow as once every 5 minutes. Deliberation realises where practical, the theories

outlined in section 3.1.2, including carrying out the evaluation of practical feasibility of goals,

constraint of deliberation by current (explicit) commitments as well as reconsidering current

commitments. Evaluation of practical feasibility, like other deliberation aspects, is typically

semantic based. In the implementation, the constraint of deliberation by commitments (a

theoretical characteristic identified above) is realised by algorithmic processing of relevant

explicit commitment objects (see section 5.2.2.1). Where relevant existing commitments exist,

the implementation then realises reconsideration by evaluation of adequate evidence to drop

the associated goal and essentially start deliberation from scratch on the next deliberation

cycle. A simplification in the implementation is that beliefs are ‘fully believed’.

As implied procedural commitment is rendered in the deliberation mechanism that takes

account of that knowledge captured by the relevant instances of the explicit commitment class

and the associated audits. Moreover (procedural) commitment is implicit in the rate of

deliberation. That type of commitment is currently not captured by the class instances that

capture the more intention related commitment. Additionally other commitment information

has to be derived. Typically plan classes are populated with meta data, implemented as statics,

that capture intention related durations, representing plan state durations and timeouts, for

example, thus are readily available for inclusion in deliberation when taken in the context of

the associated log, to determine the current state of intentions.

The deliberation implementations also introduce the notion of choice, a mental attitude,

where available. Choice is typically realised by the predefined ordering of subclasses of an

abstract or enumerated type. Those classes can be ontology classes or simple Java constructs.

An illustrative example of deliberation and means-end reasoning realisation is in the zone

agent type implementation, and is outlined in section 6.2.1.2.1. That example aligns

deliberation with ‘feasibility’ evaluation and selection, and means-end reasoning with practical

evaluation together with other algorithmic implementations (that lead to actions). The feasible

options are inferred from ‘ideal’ conditions from the agent’s perspective in terms of the

availability of dependencies etc.. Part of means-end reasoning is the identification of

alternative practical solutions through inference based on requested and verified hardware

dependency via secured leases, thus reflecting the run-time status of dependencies

(alternative solutions arise where different resources including alternative hardware is

available in order to reach given ‘ends’ / intentions). Those dependencies include the existence

of suitable cooperating agents that are appropriately committed a well as further

88

dependencies affecting cooperating agents such as hardware availability and appropriate

environmental factors. Alternatively an outcome of means-end reasoning could be the

conclusion that there are no practical solutions, in which case other mechanisms apply, namely

the auditing of plan outcome and the removal of current intentions i.e. plan ‘failure’ and goal

drop. The role of the audit class is described in section 5.2.2.2.

5.2.1.4 Goal / Plan structuring

Some plan derived class hierarchies have been implemented to structure and reuse

implemented functionality for hardware clients, including functionality relating to lease

request, verification and management. Typically plans that utilise device resources follow a

two phase scenario and this is captured in the abstract classes. Typically such plan

implementations initially determine the preferred resources and request appropriate leases.

Granted leases are then verified. In the lease specification, the agent determines acceptable

alternative resources, and later during verification the actual leases granted are analysed and

roles assigned to the actual leases. If the verification fails, the reason for the constraints not

being met are analysed and an error code is returned. Descendant classes override the

relevant abstract methods to specialise behaviour for lease specification and verification.

Instead of statically assigning roles to granted sensor resources, most plans query the ontology

for a second time, which is first synchronised to the ‘as is’ state of available resources to assign

roles (selection of devices uses the ‘as given’ ontology). That way extra resources, in addition

to that minimum set requested are utilised.

A variety of goal and sub goal dispatch mechanisms have been implemented allowing

appropriate synchronisation i.e. synchronous, asynchronous, behaviour and lifecycle control

(top level goals for example remain active after the dispatching plan or parent goal has

completed). Exception handling was implemented such that, after appropriate logger

interaction, a plan lifecycle control virtual method override is typically invoked (see section

5.2.2.2).

5.2.1.5 Messaging

The implementation pattern for message listening by agents is division by (Java based)

ontology, where each ontology has a corresponding plan handler. Thus listening plans are

implemented for device, zone and the most general event based messaging. The

implementation is a fairly wide category approach to reduce the overhead of defining multiple

finely grained message handling events, while also deriving some structuring from the ability

of the JADEX’s internal search / match implementation for Agent Communication Language

(ACL) message processing. The framework uses search matching on ACL meta data, and here

89

with suitable plan implementation, the ontology identifier is an adequate discriminator. The

relevant plan then further discriminates on the semantic language SL content in most cases,

typically using run time class checking after de-serialising the SL statement. Specifically in the

case of an Identifying Referential Expressions or action expressions for example, the agents

determine the type of the received message act depending on the run time class of the

extracted primary predicate (in practice the predicate name is a constant so is checked instead

in some cases).

The message handling plan is responsible for message interpretation and propagation, which

typically involves the request for an action, belief or intentional attitudes (externalised

intentions, in the form of commitments, describe goal entailed resource use and duration for

example), or for the updating of beliefs. All action requests are honoured and all notifications

are trusted. Most (about 85%) message encoding uses the SL, but where the expressivity of SL

is not necessary, some implementations (for ease of implementation) use a custom binary

encoding based on standard Java serialisation.

 Most message content cross-references ontology URIs and typically, new concepts introduced

by the (Java based) communications ontologies are reifications of relationships made by the

agent, adding further properties about its beliefs. For example a concept called zone

characterisation adds a timestamp value and the agent’s identifier.

The JADEX framework provides implementations of several FIPA defined interaction protocols

such as contract net and auction variants. However the IFMS interaction, while observing FIPA

messaging semantics, remains relatively simple, so no such provision is utilised.

The setting of timeout values for messaging related activity had to consider the dynamic

behaviour of agents. Synchronous queries involving reasoning can take several seconds so

relatively large timeouts are required. Further refinements of settings were completed during

deployment testing (see section 7.3).

5.2.1.6 Agent Collaboration

The role of agent collaboration is primarily used for the purpose of verification and for

improvements in efficiency, or in a few scenarios to support behaviour that would not be

possible without collaboration e.g. to support the pursuit of a goal that requires a statement

that can only be asserted by another agent. For efficiency, an agent can use knowledge of a

shared resource, such as an opening or an assertion about its zone, from another agent, if the

latter has accumulated the knowledge over a longer period.

90

Regarding the exchange of information between zone agent instances, some information

exchange is supported by subscribe and notify mechanisms, while other information is

requested when needed. Typically occupancy change triggers notification of beliefs, while

deliberation, where changes are instigated, triggers the notification of commitments e.g. zone

determination mode. Received information is typically handled by an addition to the receiver’s

knowledge base/s, followed by ontology consistency checking. If the ontology is rendered

inconsistent, then all the added knowledge is removed and ignored. Conflict resolution is out

of the scope of the current implementation, but a useful application would be to just remove

that which causes inconsistency, or better, ignore that which does not improve the general

knowledge of the agent (within the IFMS, all exchanged messages are trusted).

Lock scenarios (deadlock and live lock) are avoided in the agent infrastructure due to the

rational behaviour of agents and the nature of the agents’ internal architecture. Regarding

deadlock, the agent’s BDI architecture makes such a scenario unlikely, but timeouts and

deliberation realise appropriate behaviour to handle it. Livelock is also unlikely due to the

different agents’ contexts, but in the rare event of such a scenario, timeouts and deliberation

would again modify behaviour appropriately.

5.2.1.7 Learning

The IFMS agents, as part of their standard behaviour, build and continually update beliefs

about the world, thereby realising a type of learning. Such evolving beliefs are used to improve

behaviour as well as to inform the generation of knowledge. Agents also review existing beliefs

with respect to new knowledge in some cases. For example when a zone agent reaches the

conclusion of an occupancy that is inconsistent with existing beliefs, it will iterate back through

previous beliefs and remove those that are considered to be erroneous, given that the current

knowledge is reliable (see section 9.2.1). Knowledge derivations for such actions are based on

robust scenarios. Thus the agent accumulates and also reviews its beliefs. As well as triggered

by new knowledge in an appropriate context, the review of selected beliefs is time triggered.

As expected, in order to learn generally useful facts, an agent has to identify the context of

those facts, which may involve the pursuit of further goals, to fully define the context of the

new facts if they are not already known, or there may be only certain agent states where new

assertions can be made. For example a primary context variable relating to characterising the

lighting levels for a zone is the distinction between whether the zone is in use or not (typically

mapping to occupied or unoccupied). Thus the monitor key parameters goal (see Table 6.3) is

triggered at occupancy change and it will only continue to assert beliefs about lighting levels

while the current occupancy belief is defined (the goal does not trigger occupancy evaluation

91

goals itself due to the associated lead time and relatively high resource usage). Specifically the

aims of the goal include the accumulation of the ranges of ambient lighting values for the zone

when it is being used and when it is not (being used). Without the support of numerical

lighting models, the resolution of details such as the influence of combinations of artificial and

natural lighting, shadows, window shading, sensor orientation etc is currently beyond the

scope of the zone agent type.

In addition to straightforward belief base assertions and the associated statements of context,

further learning is realised through relatively simple KB class assertions, but not yet extending

to more complex semantic statements. Section 8.1.1 elaborates on learning improvements

and section 8.1 describes the proposed use of additional ontologies such as human / building

interaction modelling that could contribute toward the exploitation of learned facts.

Once (even simple) facts are learned, they can be reused in inference or in the currently

implemented simple rule based learning plans. For example, with the earlier example, a sharp

ambient light level change could lead to an inference of occupancy change, once other

variables have been eliminated. While the previous example shows an alternative mechanism

to potentially reach a conclusion of occupancy available through the pursuit of other goals, the

use of rules to evaluate occupancy under specific conditions e.g. count up/down from zero or

occupancy determination, is much more efficient than the use of sensor monitoring, and the

conclusion is immediately available.

5.2.1.8 General

For performance considerations, in some plans buffering is occasionally used. The buffering is

of some infrastructure related knowledge, e.g. location information, and some ontology

derived knowledge. However the use of buffering was only used where strictly necessary, due

to the synchronisation requirement and overhead in maintenance introduced. Buffering of

semi-static and short lived data, such as conclusions from complex ontology queries and

infrastructure related knowledge, did significantly improve performance in specific situations,

particularly location finding related interactions with the Yellow Pages agent. Those situations

typically involve agent’s participation in inter-agent dialog. Implementations were usually the

result of unit or integration testing conclusions, and some examples are described in section

7.2.4.1.

In contrast to the development of the infrastructure, the application of patterns in the design

of agents was very limited. The implementation of agents using the predefined internal agent

architecture, and integration with JADE MAS framework, meant that design and

92

implementation is typically at a higher level of abstraction than infrastructure design and it is

at the more fundamental level that those patterns find application.

5.2.2 BDI Model Custom Application

While most BDI derived behaviour was realised through the JADEX framework outlined in the

previous section, some aspects of the IFMS design is not directly supported. The following sub

sections describe the main two main contributions in realising the design.

5.2.2.1 Commitment

The JAEDEX framework does not provide any mechanism, apart from run time interrogation of

active goals, to represent explicitly the agents’ commitments and their entailments (for use of

active goal derived information some modelling and inference mechanism would be needed,

approaching a formal system). Commitments manifest themselves in several ways, but for the

purposes of the IFMS based agents, some properties include the interval of validity together

with an abstract description of the plan, while entailment can include the resources needed to

complete the associated intentions. The IFMS implementation adds an abstract class

Commitment and sub classes to describe such commitments. Properties such as the valid

interval in the abstract class are typically assigned as a result of deliberation, and elaborated

during means-end reasoning and other plan execution. There is a direct mapping between

plans and the commitment class, and the instances of the class externalise and structure the

properties and entailments of intentions, capturing, as well, loyalty to both ends and means

[104]. Ideally such constructs would be included in an agent ontology so that it (the agent)

could reason about its attitudes (and that of others) to realise a step towards a more formal

agent model. That however has not yet been modelled (see sections 3.1.3 and 8.2.1).

Primarily the role of the commitment class is to contribute towards stability through the

persistence of previous deliberation outcomes. Implicit in deliberation implementation are

strategy mechanisms regarding the agents’ goals. Thus with appropriate deliberation

implementation incorporating the audit implementation (see 5.2.2.2) and other mechanisms,

and applying the knowledge captured in the commitment derived classes, the appropriate

level of agent commitment (pro attitude) can be realised. Moreover commitments are used by

active plans to synchronise with the agent’s deliberation, typically using a super class plan

method to check if ‘still committed’. Additionally the externalisation of commitments improves

rationality in others ways, for example, as the agent is able to discern the resources used by

different active plans, it is able to reuse, for example, existing resources already leased.

93

As well as internal use, instances of the commitment class are used to facilitate cooperation

where agents exchange attitudes, in addition to beliefs. Agents share commitments, for

example, in collaborative occupancy determinations where knowledge about neighbours’

occupancy evaluation mode is needed. The occupancy evaluation mode (that manifests as a

particular set of goals) adopted (and committed to), if any, by a (candidate) cooperating

neighbour agent is in practice one of a range of options from those that are feasible. The agent

instigating potential cooperation is able to determine itself before entering into dialog, the

feasible modes of the candidate, and so the dialog essentially resolves the choices made by the

candidate. Another factor is the valid interval of the neighbour’s intention (also captured by a

commitment instance), as ideally one that is soon to expire is considered in deliberation to be

not worthwhile for use as a dependency. However a complexity is that the implementation

lacks the distinction between current (which after deliberation is refreshed, typically extending

its valid until date) commitments and strategic ones. Therefore an agent will attempt to use

another’s commitment as a basis for cooperation as long as it is currently valid. The

implementation of strategic commitments to supplement the current is an area of further

work.

The typical creation and updating of commitment objects has been mentioned. Moreover the

implementation realises complete commitment management and lifecycle synchronisation

with agent state i.e. its significant goals. Regarding maintenance, in general commitments vary

during plan execution and their synchronisation is exemplified by the explicitly implemented

state machine based plans, where commitment to means includes leases. Regarding lifecycle

control, as an illustration, plan failure, as well as deliberation (after ‘reconsideration’), can

withdraw commitments under appropriate circumstance. The implementation is integrated

with the JADEX framework using plan method overrides, where the audit maintenance

mechanisms are also implemented.

The commitment instances objects are stored in belief base for convenience although their

semantics are subtly different to belief attitudes in that they closely related to intentions (pro-

attitudes) and differ from beliefs in that they do not represent the agents’ view of the world.

5.2.2.2 Role of Audit

The role of the implemented audit mechanism is primarily to support deliberation.

Deliberation uses the log to assess the success of previous goal executions. As expected the

JADEX framework provides the ability to configure in the ADF the settings to retry a failed plan,

for example, but there is no provision for the agent to ‘learn’ from earlier behaviour or to set

the number of retries.

94

As mentioned in section above, the audit mechanism is integrated with the BDI framework

using the relevant plan method overrides. The semantics of the audit are close to the agents’

belief attitudes but are self focussed.

The audit class records the enumerated plan lifecycle states and outcomes, e.g. succeeded,

failed, dropped, extended etc. The log is updated each time a commitment changes and at

plan lifecycle changes. All audit activity is time stamped.

5.3 Ontology Support

This section describes the ontology provision implemented to support the agents. Most of the

techniques for interaction used in the IFMS are not agent specific but, in common with other

systems, ontology interaction in an MAS raises requirements for timely response to queries as

well as delivering correct inferences services. These issues are discussed in the following sub

sections. The ontology artefacts, and the development of these artefacts, are described in

section 6.3.

A general consideration with the agents’ processing of ontology derived knowledge is the

nature of its modelling assumption. In contrast to OWL’s default open world assumption

(OWA), Java algorithm implementations can render either the closed world assumption (CWA)

through negation by failure, or render the OWA by strong negation, so appropriate Java

implementations are required. For example, while processing lists returned from querying the

IFC models (using a simple get type method) the lack of an entity implies it does not exist in

that context, so algorithms can validly render the CWA through negation by failure. That is

appropriate as the IFC model contains complete information within its context, analogous to a

database. In contrast when dealing with ontology knowledge in Java, processing of that

knowledge must be consistent with the OWA of the knowledge’s origin.

The IFMS agents use the Jena API and the Pellet reasoner (see section 2.2.3.4). The majority of

the implemented queries use the SPARQL query language in conjunction with Pellet’s query

engine via Jena’s interfaces. A few ontology interactions use object oriented manipulation

using the Jena mapped ontology construct classes. Occasionally the low level Pellet interface is

used for example to force classification and realisation, but in most cases that and other fine

grained reasoner control, is only rarely needed as KB changes atomically trigger those reasoner

services. However the (Jena InfModel.) rebind method, which forces the inference model to

check for changes, is always invoked after ‘incremental’ updates to the building ontology, as

these changes are not detected. The layered construction of the models accounts for the lack

95

of automatic triggering i.e. the inference model does not detect changes below it

automatically. The models and their assembly are discussed in section 5.3.1.

5.3.1 Ontology Models

The IFMS agents configure multiple ontology models. The models are created from shared file

based ontologies which contain mostly T box content except for the sensors ontology, which

includes, in addition, A box descriptions of sensors and ZigBee network instances. The model

creation is detailed in Table 5.1. While agents extensively populate at run time the A boxes of

the created models and a few T box statements, the models are not ‘written back’ to where

they are loaded from, thus KB assertions are not shared.

Table 5.1 - IFMS MAS ontology models

Name and assembly Used

by type

Configuration Application

sensorOntologyModel Sensor

agent

RDFS

entailment

Simple query and

where very fast

response required

sensorOntologyModelPellet <-

sensorOntologyModel

Sensor

agent

‘full’ Pellet OWL

inference

general

nonInfSensorOntologyModel Zone

agent

No inference

sensorOntologyModel Zone

agent

‘full’ Pellet OWL

inference

Faster query, used

when query is sensor

domain only

nonInfBuildingOntologyModel Zone

agent

No inference Fast update, loaded at

start-up

buildingOntologyModel <-

nonInfBuildingOntologyModel

Zone

agent

‘full’ Pellet OWL

inference

Used for feasibility

assessment ‘s given’,

asIsNonInfIsBuildingOntologyModel Zone

agent

No inference Fast update, loaded /

updated on demand to

sync with environment

asIsBuildingOntologyModel <-

asIsNonInfIsBuildingOntologyModel

Zone

agent

‘full’ Pellet OWL

inference

General ‘as is’ building

and sensors in situ

96

The rationale for each agent creating its own KBs is that it facilitates agent centric deliberation,

means-end reasoning and belief support. While some agent type KBs will have commonalities

in terms of the individuals and axioms present, particularly relating to knowledge derived from

the IFC model, each agent adds and maintains assertions for very specific purposes, depending

on its behaviour i.e. its active goals. Moreover the ontologies support all agent types as well as

different deployments.

The different KB roles are listed in Table 5.1. While the ‘full’ Pellet inference model would

support all of the inference requirements, the RDFS inference models provide a significant

improvement to the time taken to deliver a response query and can be used where query

results only rely on simple RDFS entailment. For example, specific aspects of lease

management by the sensor node agent can be completed using only RDFS inference. In other

scenarios, no reasoner is needed such as the updating of the A box with many individuals,

where the ontology realisation is not required after each update, but just after the last. An

attached reasoner is triggered when the ontology changes in order to ensure consistency and

complete realisation, and for scenarios such as loading a large number of individuals derived

from IFC based models the processing overhead and time delays is very undesirable, especially

with the ‘full’ Pellet reasoner. Thus KBs are created with several layered models with

appropriate reasoners attached as described in Table 5.1, and manual model synchronisation

is invoked as described above when the update below the model of interest is completed. As

well as for updating, a non inference model is useful for non semantic queries. In some limited

cases agents retrieve very simple asserted facts such as data properties where no inference is

required e.g. to lookup a ZigBee host address, retrieve zone by name etc.

While perhaps a set of shared KBs per agent type and per deployment, with the addition of

reification, could have been an alternative design to that adopted, additional implementation

and run time overhead of shared resource management (synchronisation and preventing

concurrent updates etc) between agents would be incurred.

The agents retain some meta data about their KBs, specifically relating to building ontologies

to describe which goal update modes have been invoked to load particular categories of IFC

derived data. For example the zone agent type has a goal to create and load IFC derived

individuals where a mode parameter specifies the type of data to (re)load. In the scenario to

synchronise the KB with active leases to model actual sensor availability, it is not always

necessary to load semi static data such as building geometry and ancillaries such as furniture

and plant.

97

5.3.2 Ontology Querying

Two techniques were used to query ontologies, the first involves the use of an object oriented

API (Jena) to manipulate mapped ontology constructs directly in Java, while the second

involves the use of a query language. Typical queries using the object based approach involve

retrieving a class or individual by its URI, then processing its assertions or inferences (including

anonymous classes) returned in lists by various API interface methods.

In contrast to the object based approach however, the SPARQL query facility was preferred

due to its easier implementation and maintenance. In order to enable the inclusion of OWL

constructs in queries, in addition to SPARQL constructs, the mixed configuration for query

support was used that invokes both ARQ (the Jena SPARQL query engine supporting standard

queries) and Pellet query engines. Typically queries used the SELECT construct but a few use

ASK which extract values or provides a true/false response respectively. The performance

difference between those SPARQL query formulations and between the SPARQL and object

query mechanism has not been generally quantified but good performance was achieved, in

some cases after reformulation. Regarding the formulation of SPARQL queries, a simple

technique that improved performance was the removal of superfluous binding/s as mentioned

in section 7.2.4.1.

Two simple sample SPARQL queries are shown below. The first query in Figure 5.1 is part of a

sensor role assignment sequence where specific sensor characterisations and context

assertions are sought. The query in Figure 5.2 determines if a given individual sensor has a

class (asserted or inferred) that states that it is connected to a (mains electrical) outlet,

involving T box querying and well as A box. The code samples omit some ‘preamble’, for

clarity, that defines the namespaces etc. For query execution, the appropriate ontology model

is passed to the query engine together with the query itself. In most cases the agents pass

their ‘full inference’ Pellet configured KBs. Typically the queries use extensive inference in the

evaluations of queries. Thus relatively simple queries exploit expressive semantics to deliver

the result.

98

Regarding the general requirement to classify and realise ontologies after any change, the

most significant improvement was gained through the pruning of the SUMO ontology

(imported by both the sensor and building ontologies). Early stage testing revealed the impact

of the unnecessary classification of a large portion of the SUMO ontology (see section 7.2.1).

5.4 IFC Building Model Support

This section describes the supporting techniques and software implemented in order to equip

agents with the ability to derive a semantic building representation, by extracting appropriate

information from a IFC format building model. The motivation is described first, followed by

the steps carried out to prepare a suitable model. The mapping captured by the

implementation, consistent with the ontology design, is then described. Following that, the key

aspects of manipulating IFC entities for ontology A box loading is described.

5.4.1 Usage of IFC Building Model Support

The reading of IFC and associated processing is performed primarily to generate an ontological

representation of buildings, and particularly of zones inside those buildings with which an

SELECT DISTINCT ?sensorExt ?sensorInt

WHERE

{

space building:spaceId \<zoneId>\.

{ ?sensorInt rdf:type sensor:Motion }

UNION { ?sensorInt rdf:type sensor:BinaryProximity } .

?sensorExt rdf:type sensor:Motion .

?space building:directlyConnectsWithZoneWithOpening

?directlyConnectedSpace .

?space building:spaceContainsSensor ?sensorInt .

?directlyConnectedSpace building:spaceContainsSensor

?sensorExt .

?sensorInt sensor:observes building:<forStructureId> .

?sensorExt sensor:inProximityOf building:<forStructureId> .

}

ASK

WHERE

{

 sensor: <sensorId> sensor:functionalPart ?component .

 ?component rdf:type ?componentClass .

 ?role rdf:type owl:Restriction .

 ?role owl:onProperty sensor:electricallyConnects .

 ?role owl:someValuesFrom sensor:Outlet

}

Figure 5.1 - SPARQL query to assign a sensor role

Figure 5.2 – SPARQL query to determine if a sensor is attached to mains power

99

agent associates itself, and is then responsible for monitoring and generating related

knowledge. The different usage of ontologies, including the IFC derived ones is described in

section 5.3.1.

5.4.2 Utilisation of IFC Building Model Support

The tool used for model preparation was Autodesk Revit Architecture [166] that has the facility

to export building models in the IFC format. In order to facilitate simple ‘drag and drop’ for a

user to define the sensors deployment within Revit, the tool’s ‘families’ facility was utilised. In

fact a simple Revit compatible manufacturer’s item definition was found and adapted for the

purpose of representing a generic sensor / ZigBee host / cluster. The representation is a simple

disk but the visual rendering is not critical. A number of family individuals were created to

represent individual wired and wireless sensors, sensor clusters, ZigBee host, and a host and

cluster, but the use of these is only to improve the integrity in the Revit drawing. The family

has various properties that can be set but the only critical property is the unique identifier that

cross references an entity in the sensors ontology. The cluster type makes it simpler for the

user to place devices in the drawing, but those devices connected to ZigBee hosted units via

the Molex connectors which can be positioned independently of the host, still need to be

modelled separately.

Some selected mappings between theories and primary classes in the building ontology and

the source IFC entities are outlined in Table 5.2. Details about the building ontology design

rationale are described in section 6.3.6.

Table 5.2 - Selected high level IFC / building ontology mappings

Description Source Notes

Boundary

topology

and

mereology

IfcRelVoidElement,

IfcRelFillsElement (derived from

IfcRelConnects) and

IfcRelSpaceBoundary and

IfcRelContainedInSpatialStructure

Boundary composition. The IFC

constructs derived from IfcRelConnects

links wall, opening and door. The relating

entity IfcRelSpaceBoundary relates the

wall and door to spaces. The relating

entity IfcRelContainedInSpatialStructure

relates the wall and door (but not

opening) to a building storey

Space

topology
IfcRelSpaceBoundary

Adjacent neighbour identified from

shared walls (physical or virtual) using

connection geometry as wall that span

100

multiple spaces still have the IFC relation

i.e. some are not neighbours in the

defined semantic sense, while the

adjacent with opening is derived from

shared openings captures adjacency in

the sense that people can move between

those spaces

Building

entities
IfcSpace, IfcWallStandardCase,
IfcCurtainWall, IfcWindow,
IfcDoor, IfcOpeningElement,
IfcFlowTerminal

Main mapped IfcBuildingElement

derived building entities

Sensors
IfcBuildingProxy

Minimal semantic capture in the IFC

model, primarily location, relative to

building floor so appropriate coordinate

transforms are applied to evaluate

spatial relationships. Geometric

algorithms tests for containment inside

polygons representing the floor plan.

Processes PSet for further information

Plant
IfcBuildingProxy

Geometric algorithms tests for

containment inside polygons

representing the floor plan Processes

PSet for further information.

Furniture
IfcFurnishingElement

As above Processes PSet and object type

for further information. Located relative

to floor so appropriate coordinate

transforms used when determining

context

5.4.3 IFC General Processing

The software implementations to realise the agents’ reading of IFC STEP/EXPRESS models are

implemented in agent plans and utilise the third party library OpenIfcJavaToolbox described in

section 4.4.4.1. Most of the implemented classes are written using v0.9 of OpenIfcJavaToolbox

which did not set inverse relationships, requiring the use of ‘reverse’ searches to retrieve the

required role filter. However a recent update to the framework assigns the inverses which

made later implementations more compact.

101

While the EXPRESS schema allows specification of a range of collections e.g. array, list, set,

bag, a notable feature of the IFC schema is uniform objectification of building entity

relationships. The IfcRelationship base class captures relationships, with the ability to add

properties to those relationships, and specialisation of those relationships in sub classes.

Navigation is specified in the form of related and relating attributes. The related role uses the

set collection semantics for the general case of support a one-to-many relationship.

The algorithmic implementation of the supporting library is of course consistent with the

modelling captured in the ontologies, and thus manifests the theories captured in those

ontologies. The classes constituting the library implementation are essentially zone focussed

and provide methods to create the A box instantiations from the space outwards. The

methods create individuals representing the space boundary, and then elaborate the boundary

creating the corresponding topology and mereology and so on. Further methods

implementations generate inter-zone relationships and establish the semantic relationships of

the sensors to the building. Additionally a few derived properties are evaluated e.g. aspect

ratio for spaces and inserted into the KBs.

Typically, the library methods implemented to support IFC interaction follow the pattern of

initially retrieving a collection of typed entities e.g. building entity, relationship etc, from the

IFC model, locating the required object, and then using the Jena ontology object mapped API

and following the encapsulated building ontology semantics, create the corresponding

ontology property or individual and establish the ontology relationships. The use of run time

type checking and casting in the manipulation of IFC objects is extensive, due to the

widespread use of abstract types and inheritance hierarchies in the IFC schema. Some testing

was necessary to verify that all abstract class incarnations for at least Revit’s IFC export were

handled.

The Jena framework used was found to support all the OWL constructs (vocabulary) required

except for that to assert qualified cardinality constraints Q (the building ontology expressivity

is SROIQ(d)). However the framework allows creation of additional vocabulary through the

use of the resource factory interface, using the appropriate ‘donor’ OWL2 namespace and

construct string (the Pellet reasoner of course supports reasoning with the ‘full’ OWL2

expressivity).

5.4.4 IFC Geometry Processing

Geometry plays a significant role in evaluating relationships from the IFC model for the capture

of semantics in the ontologies. Therefore a custom library class was implemented to allow

102

basic geometric manipulation of geometric entities. As well as for evaluation of ontological

relationships, agents occasionally use the functions to resolve semantic ambiguities as the

ontology does not attempt to capture extensive geometric modelling.

One of the requirements was to derive spatial separations and the implemented methods to

take into account both the different coordinate systems used as well as in general the complex

representation of building entities. The spatial separations are used for some ontology object

properties whose semantics are partially numerically derived. In order to approximate

appropriate reference points of different entities, the implementation supports the range of

shape representations used for building entities. The Revit IFC export was found to use the

STEP derived swept solid type shape representation (a concrete shape representation of the

IfcShapeRepresentation class), with extruded representations captured by

IfcArbitraryClosedProfileDef instances (in turn represented by a polyline), and the simpler

IfcRectangleProfileDef (in turn a rectangle), thus algorithmic support was implemented for

those shapes. In general, the implemented methods find the centroid of the 2D floor plan

representation of the building entity. In the IFC model, each entity has one or more abstract

IfcShapeRepresentations, placed within its local coordinate system with a IfcObjectPlacement

instance. The object placement class instances specify the location of the local origin and the

orientation of the Cartesian axis. The coordinate system is located, via an arbitrary number of

other IfcObjectPlacement instances and via the floor’s origin, to a world coordinate system.

The library uses the floor’s origin as a common reference point for most geometric operations.

In order to support arbitrary translations and rotations of coordinate systems (specified by

IfcObjectPlacement instances), a set of matrix based transform methods were implemented in

order to transpose representations between coordinate systems, or typically to the floor’s

coordinate system as mentioned. A third party matrix library implementation was used in the

transform methods. Further geometric functions such as testing for containment inside a

polyline, utilise the Java Abstract Window Toolkit.

5.5 Summary

This chapter initially outlines some system wide implementation issues such as the

propagation of events through the IFMS and described how communication between the

different layers and virtual machines is realised. The implementation ensures fairly precise

time stamping of events to preserve the quality of environmental observations. Some

implementation techniques to maintain relatively straightforward implementation can

introduce some latency in data propagation but the consumers of low level data are

implemented to uphold accurate environmental modelling.

103

Next the general principles of application of the chosen MAS framework were discussed and

the customisations and additions described. The application patterns and the basis for the

extensions to the framework are based on the BDI abstraction formation described in section

3.1.2. The JADEX framework is fairly flexible and so it does not force in implementation the

exploitation of the formal basis of the BDI model in all cases. The motivation for close

conformance to the BDI formulations is to deliver better levels of rationality.

The support of agents by ontologies is then described in general terms. The discussion covered

the use of different reasoning ability and the different roles it suits, and the structuring of KBs.

Finally the exploitation of a primary information source in the IFMS, the IFC building models,

are described. The description includes details of some salient processing that are

implemented for execution by agents.

The next chapter discusses the detailed application of the patterns presented in this chapter

105

Chapter 6

6 Detailed Development and Implementation

Detailed Development and Implementation

This chapter discusses the detailed development and implementation of the IFMS. The

development of the infrastructure layer that provides sensor data from observations of

internal building environments is covered first. Next, the detailed development and

implementation of the agent layer and the use of ontologies are described, where the

principles of implementation described in the previous chapter are applied. The methodology

identified in section 4.3 was used to develop the ontology artefacts.

6.1 Development of the Infrastructure Layer

The infrastructure layer comprises of interface software for a range of deployed sensors and

devices, as well as management nodes responsible for data logging and simple services such as

registration. The wired sensor and device interfaces are realised with a number of executables

reading digital or analogue data from USB or RS232 ports and configured with an .xml file. On

start-up, each interface locates and registers its attached sensors and devices with a sensor

node executable and periodically, or according to pre-configured criteria, updates the sensor

node with the contents of the local buffer and further supporting information. Similarly the

wireless network interfaces registers its hosted devices with the sensor node.

The main high level interfaces and components of the infrastructure are shown in Figure 6.1

and the deployment details are elaborated in the following subsections. The user interfaces for

the executables are shown in Figure 6.2. However the interfaces offer very little user control as

the main purpose is to facilitate simple high level diagnostics such as to simply ascertain the

propagation of data. Currently all sensor interfaces and sensor nodes are implemented with C#

running on Windows platforms. Class based communication is realised using the Microsoft

.Net Remoting framework. The remoting channels, in order to support distribution at the

platform level, are configured to use the TCP protocol (except for the web monitor channel

that is configured to use HTTP), and the performance has been found to be very good using

the default formatter for serialisation. Other configurations of inter-process primitives and

formatters e.g. named pipe etc., could be used if only inter-process communication on the

same platform was required, and if performance or other factors such as security were found

to be a concern.

106

Regarding flexibility, sensors on any platform running Java can be integrated by using .Net

Remoting’s customisable protocol and Java’s RMI/IIOP (a technique that is used by the MAS

layer agents to access infrastructure data). Sensors from building management systems could

be integrated with interface software that decodes the associated (standard) protocol/s e.g.

BACnet. Similarly adaptors for other data sources such as RSS weather data could be added.

Figure 6.1 - High level interfaces and components in the infrastructure

107

Figure 6.2 - Some of the IFMS infrastructure executables. The blue arrows represent communication channels and indicate the direction of the flow of data. The text in the displays

is solely for diagnostics. The 4 channel thermometer and digital I/O hardware interfaces describe some recent sensor readings/status. Similarly the ZigBee network interface

displays recent sensor readings as well as a few node status values and also offers some simple controls to activate diagnostics. The sensor node display summarises registered

sensor status and recent readings.

108

The sensor manager interface implemented for registration and updating by device interfaces

typically realise the application of the facade pattern [89], exemplified by a restricted set of

high level methods using types supported by the IDL to Java mappings. While the IIOP.Net

libraries allow the custom specification of language construct mappings, the primitive built-in

types were adequate for use in the facade definition e.g. substitution of simple array for

complex collection types used internally. A simple type used in the facade for which custom

implementation was required was the date type, which handles daylight saving time and time

zone. Regarding the call semantics across the remoting channels, the original implementation

was kept as simple as possible by using a combination of pass by value and reference, and the

use of uni-directional implementations where possible, avoiding the requirement for the client

to register a listener sink for call-back implementations. The sensor manager specifically, apart

from the facade interface, hosts other interfaces suitable for use within the infrastructure

layer and for an ASP based web monitor.

The range of sensors currently connected include temperature, motion detection (PIR),

proximity switches on doors and windows, and ambient light. Most sensors and actuators are

hosted by ZigBee wireless platforms. The ZigBee interface is described in detail in section 6.1.3.

Actuators are supported both in hardware and software but currently are only used to control

sensor power.

The classes capturing sensor history, which realise persistence, were generated from a case

tool and employ the NHibernate [167] object relation mapping framework, so therefore

benefit from database performance enhancement delivered by those libraries.

As well as the use of the facade pattern, the infrastructure layer employs further design

patterns [89] including: subject / observer, state, singleton, factory, proxy and smart pointer.

Due to the early development of the infrastructure layer, before development of the client

(agent) layer and before any ontology development, some sensor and actuator hardware

interface implementations use an XML configuration file. The situation allowed some easy

immediate testing implemented in local procedures. While the configurations only contain a

very minimal description of connected hardware, the information is replicated in the sensors

ontology. Currently the sensor node agent is able to read the configuration from the sensor

manager interface (hosted by the sensor node executable with which devices register) and

partially verify consistency with the sensor ontology from that. The issue arises from the

relatively simple XML configuration file content which is adequate to describe connected wired

sensors, but is inadequate to fully describe the wireless sensor network, nor would the latter

be desirable. Thus currently consistency between the XML files and the ontology has to be

109

manually checked. A readily implemented solution is for any (trusted) client agent to write the

configuration subset extracted from the sensors ontology to the infrastructure sensor node

which would then update its XML based persistent configuration. A preferred solution would

be to give the infrastructure elements the ability to read configurations from the sensor

ontology but lack of a readily available suitable API for C# prevents that (a possible approach is

the use of the tool IKVM, mentioned in section 4.4.1). For the same reason the infrastructure

also contains some (class) modelling of sensor and actuator devices which creates a small

degree of redundancy with the sensors ontology. The sensor and actuator classes however

remain fairly abstract.

6.1.1 Database Support

The object-relational mapping (ORM) framework NHibernate was used for database support

with the sensor node module. ORM classes were readily generated using the Visual Paradigm

case tool used for modelling much of the infrastructure, especially the early stage design. The

classes generated provide support for features including lazy collection and association

loading. For improved efficiency in selection, some SQL queries were integrated, using

mechanisms provided by the framework. In summary, even using the defaults for the

framework generated by the case tool, the use of ORM adds a significant maintenance

overhead and for the relatively simple and small number of persistent objects used to date,

the benefits gained from ORM are not overwhelmingly beneficial.

6.1.2 Wired Sensor Support

This section briefly describes the hardware interfaces that supplies near real time data to the

framework.

The wired hardware consists of a number of cheap sensors for motion detection, temperature

and the detection of the open or closed state of door and windows using magnetic proximity

switches. However in the wired setup, the device selection is not subject to the constraints of

low power consumption and narrow voltage range operation as is the case with the wireless

platforms, so almost any signal level device, either digital or analogue, can be easily connected

to the USB interfaces used. The interface units used are from the National Instrument range,

specifically the 6501 and 6009 [168] devices have been used. The devices are supplied with

interface software that makes software integration in C# straight forward. Regarding the

interfacing of the serial thermometers connected to RS232 ports, the same .Net framework

serial library as that used for the ZigBee network interface was used. The wired infrastructure

deployment is shown in Figure 6.3.

110

Figure 6.3 - Deployment of the wired IFMS infrastructure

A primary concern in the implementation was thread safety, and that was addressed using the

extensive range of primitives provided by the Microsoft C# libraries. Primarily the Mutex

synchronisation class support was utilised with appropriate timeouts for mutual exclusion, or

the ReaderWriter primitive for scenarios involving exclusion between one writer and one or

more concurrent readers.

A difference between the wired and wireless sensor provisions is the monitoring of sensor

pulse lengths. It is set by the wired system but not by the wireless. As the majority of sensors

are wireless, pulse length is not currently utilised by agents, although it does have useful

potential if the sensors’ characteristics are fully modelled. The rationale for not supporting

pulse length is exemplified by the case of motion sensors. For such devices the generation of

pulses is unspecified if continued uninterrupted movement is observed, although during

testing it was casually noted that new pulses are usually generated in contrast to the extension

of an existing active state. Moreover the wireless hardware design is simplified by not

supporting pulse length as an extra interrupt channel configured to detect the ‘off’ transition

would probably be required.

6.1.3 The Wireless Sensor Network Implementation

The wireless interface module was implemented to deliver sensor data sampling, actuator

control, network control and wireless node management and configuration. The hardware

111

design is described in section 6.1.3.1. The ZigBee host device ETRX357x hosts a range of

sensors and communicates to a controller device, which is in turn connected to a host PC

either over USB or Ethernet (a deployment is shown in Figure 6.4). The software components

realised by the ZigbeeNetIntf (Figure 6.4) interface module provides a high degree of control

via its interfaces, the client of which is typically a dedicated software agent.

Figure 6.4 - Deployment of the IFMS wireless infrastructure

Selected class hierarchies in the ZigBee network interface software design are shown in the

next two figures. Figure 6.5 shows commands, while Figure 6.6 shows behaviours, node types

and the network interface. A number of behaviours for assignment to nodes are implemented

and their characteristics are outlined in Table 6.1 The state machine based behaviour manages

the issuing of sequences of commands, and maintains the long term state of remote nodes.

Those commands, implemented as a hierarchy of classes (Figure 6.5), carry out a range of

operations. The commands are issued to the network controller (a node type) which manages

the handshaking over the wireless network to the target device. Extensive use is made of a

REGEX compliant parser for the interpretation of commands. The commands, built from the

Telegesis AT command set [169], typically consist of reading and writing to the target node

registers to complete actions to realise the reading of data, invoking a node action, timer

112

based node action, network related action or the setting of configurations. In the command

and command control implementation, extensive use is made of C# delegates to implement

call-backs, with mechanisms to wait for responses for the target host and to implement time-

outs. The ZigBee node microcontroller has resources such as timers and interrupts which the

commands use to achieve a range of actions (and which is partially modelled in the sensors

ontology). Nearly all commands provided by the interface are asynchronous to render simpler

the client implementation.

Table 6.1 - ZigBee Node behaviour characteristics

 Behaviour Usage

Low power Typical usage as ‘sleepy’ device. 1 sec network (firmware, part of the ZigBee

stack implementation) based polling for good performance

Standby Reduced network polling, sets attached devices to a disabled state to reduce

power consumption, removes listen etc.

Sleep-and-

listen

Deep sleep only woken by external event e.g. PIR activity. Very low power as

radio and polling, timers etc are deactivated. The agent will only use this

mode if there is hardware connected, it is feasible that an associated event

will occur and it is acceptable to have the node unavailable for an interval.

The agent adequately configures any devices used to detect the wake up

event. High level goals and historical leases are taken into account as well as

the wake up constraints before setting this behaviour. The agents typically

check for previous events and linked activity to assert that the node will

become available when pursuing such event based goals. By querying the

ontology events capable of generating wake up events can be counted.

Empty A behaviour that does nothing. The other behaviours repeat failed steps until

success, such as would occur due to transmission failure (NACK) or timeout

(not present), so the empty behaviour should be assigned to those nodes

that are not available, to eliminate unnecessary radio traffic.

Power

definable

Typically the agent could set ‘awake’ mode so that the node can act as a

router. Agents do not currently use this mode directly, but it is used as a

super class for other behaviours.

Onboard timer

power mode

control

An on board timer controlled power definable useful for USB connected host

that is power critical. Not currently used by agents but used for testing.

113

Figure 6.5 - Selected ZigBee network interface class hierarchy - commands.

114

Figure 6.6 - Selected ZigBee network interface class hierarchies are the node behaviours, node proxies

and node interface

Regarding the management of issuing commands by the controller, a handshaking mechanism

was required for some implementations, typically those that involved the issuing of several

ordered sub commands, where the integrity of the configuration is dependent on reliable

reception at the ZigBee node. Particularly sensitive are those scenarios where a sleep mode is

issued, and where correct node configuration is required to set-up a wake up trigger, until

which the controller is not able to communicate with the node. Handshaking is therefore used,

employing acknowledgements and other control sequences, including sequence indexes to

handle interleaved network interaction / responses. Such interleaving arises as node

behaviours are managed concurrently, so command issuing typically overlaps. The assignment

of behaviour and consequent issuing and maintenance of configuration command in the

sensor manger facade creates a new thread to manage each request, thereby realising

asynchronous method calls for client agents. The client can later verify successful

configuration.

115

Like other sensor interfaces in the infrastructure, the ZigBee network interface uses an XML

configuration for core settings although most domain modelling is captured by the sensor

ontology (see above). The configuration file includes the ability to specify a calibration

expression or lookup table entries for use in interpolation. In the case of an expression, a

parser library is used to support the string parsing of a wide range of expressions e.g.

logarithmic expression is used for ambient light sensors.

6.1.3.1 Wireless Hardware Design

The wireless devices used have been specifically developed with the requirements to be easily

deployable, have a small footprint, and be battery powered and wireless (partially derived

from the easily deployed requirement). The platforms utilise a ZigBee wireless host (node),

namely the Ember / Telegesis ETRX357x product range [170]. In order to maximise battery life

the attached sensors have been selected because of their very low current consumption, while

possessing sensing ranges for an indoor environment. The electrical schematic of a sensor unit

is shown in Figure 6.7. Some scaling and / or clipping of the sensor output levels were

necessary with additional discrete components to ensure that the inputs remain within the

specification of the microcontroller’s input devices. The ZigBee host has 24 channels which can

be configured as either input or output. Some can be configured as analogue inputs and one

can be configured as an analogue output. All of the ‘on board’ sensors are arranged to be

power controlled using a digital output directly, as the sensor power requirement is within the

current sourcing specification of channels configured as output. A similar set of sensor types

are mounted on the boards as the wired sensors mentioned above, although the motion

sensors are from a range of different capabilities e.g. ‘wide angle’, ‘spot’, general purpose.

During sensor selection, a number of devices and ZigBee hosts were evaluated using a

‘Veroboard’ (copper strip board) prototype to verify correct indoor operation, good sensitivity,

and proper connection circuitry.

116

Figure 6.7 - ZigBee sensor host schematic showing the ZigBee module (EM35x), sensor attachements and auxiliary channels

117

After initial evaluation with the Veroboard prototype, a printed circuit based prototype was

developed and is shown in the top left of Figure 6.8. Some small changes were made, mainly

layout changes to accommodate easy fixing to ceilings and 12 units were then produced

(Figure 6.8, right). A typically ceiling deployed unit is shown in situ in Figure 6.9. Each unit uses

two AA batteries (weight approximately 30g) as the power supply and measures approximately

60mm x 40mm. The (white ‘Molex’) connectors allow the connection of additional sensors and

actuators to the spare channels. More details are given in appendix A. A realistic estimate for

the total unit cost in a small production run is £35.

As well as low power consumption, a main consideration when selecting the ZigBee unit was

the provision of commands to allow fine grained control of the peripherals and input / output

channels attached to the wireless host, while offering good ‘ready to go’ wireless network

management, without the need to immediately perform embedded systems development. The

Telegesis range offered that, while still permitting custom development of the ZigBee stack

functions later if required (see section 8.3).

Figure 6.8 - ZigBee sensor units, PCB before population, first PCB prototype (top left), and the

demonstration units

118

Figure 6.9 - A (typically) ceiling deployed ZigBee sensor host

6.2 Agent Development and Implementation Specifics

After presenting a summary of the IFMS agent types in Table 6.2, the discussion in this section

focuses on the salient development and implementation details of two main agent types,

namely the zone and senor node agents. The other agent types such as the utility and facility

manager agents are not central to the framework so are only reported at an overview level of

detail. The IFMS agent layer deployment is shown in Figure 6.10.

119

Table 6.2 – Summary of the IFMS agent types

Agent type Summary

Zone Agent

Generates zone centric knowledge by building and elaborating its domain

beliefs

Sensor

Node Agent

Controls the (finite) provision of resources, reconfigures devices dynamically to

minimise power consumption while satisfying monitoring provision. May refuse

or substitute resource provision. Resource provision is sought from wired and

wireless sensor networks accessed via IIOP protocol endpoints

Yellow

Pages

Agent

A broker. Maintains agent type registry, and agent specific services e.g. sensor

node resisters sensor GUIDs. Responds to agent related service queries. Allows

other agents to find agent host given space id, selection criteria, find sensor

host. host a lookup service for agents and some agent meta data

Utility

Agent

Mainly used for testing the framework and for analysis of performance of goals

used by other agents e.g. leases mechanism. Also performs simple rule based

data logging

Facility

Manager

Agent

Issue goals. Retrieve selected beliefs from zone agents. Has application for

agent lifecycle control and configuration. Not deployed in testing

120

Figure 6.10 - The IFMS agent layer deployment

6.2.1 Zone Agent Development and Implementation Specifics

This sub section describes some details of the zone agent type’s implementation. Table 6.3 provides an

overview of the zone agent type’s goals. The scope of the table’s contents does not include deliberation.

Where the JADEX ADF configuration settings were adequate to realise deliberation, which was generally

the case, that mechanism was used. For more complex deliberation, while a meta goal mechanism is

available via the ADF, a slight variation was preferred and is described in section 5.2.1.2. An example of

more complex deliberation involving an intermediate (high level) goal is the deliberate occupancy

evaluation goal and is outlined in section 6.2.1.2.1.

121

Table 6.3 - Zone agent goals summary

Goal Responsibility Notes

Initialise Read configuration file Configure agent and zone identity, message

routing info

KB management Populate building ontology

KBs

From IFC model cluster and individual

sensors are extracted and those of interest

are elaborated into the KB

 Infer zone classification

 Infer monitoring capability

 Infer roles for sensors Allocate sensor roles

 Accumulate ‘experience’

Evaluate

occupancy

Determine / count

occupancy

Detect if the zone if occupied / unoccupied

or maintain a count of the persons

occupying the zone. A number of

alternatives goals can be dispatched. See

section 6.2.1.2

Identify wasted

resources

 Attempt to determine if lighting or heating

has been left activated. Primarily compares

current and previous environment summary

and evaluates for lighting level transitions.

Some assumptions for heating over longer

intervals are also used as criteria. Can also

use ‘learnt’ beliefs if available for a similar

earlier context.

Monitor key

parameters

Manage leases, update

internal environment

beliefs with added context

aligned with occupancy

change

Trigger at zone occupancy change. Sample

at regular interval e.g. 5 mins., temperature

and ambient light. On plan completion

generate some simple statistics. Use

inference to select ‘representative’ devices

Locate resources determine host using YP agent

Resource

management

Request leases Base plan class implements: lease creation

and formulation, message formulation,

interpretation of reply. Override specifies

devices to request leases for. Requested in

122

advance of activation where possible

 Verify leases / subscribe Override implements verification and

generation of ‘explanation’ code for failed

verification

Summarise zone Evaluate beliefs With comparisons to absolute values and

learned values for expected internal

environmental conditions, and occupancy,

formulate statements about unexpected

conditions

Verify occupancy SL message formulation,

dialog

Attempt to verify an occupancy change.

Verified if the occupancy change is confined

to the two zones sharing a given opening, so

involves determining if the occupancy of the

neighbour’s neighbours has changed in a

given interval

Collaborate

(client)

Find agents Using message dialog, find the host agent

for a given device, device type etc.

 Request data Formulate SL message and dispatch, process

reply

 Listen for subscribed

notifications

Process notifications for active leases,

create internal events to notify active plans

and provide short term buffer

 Verify occupancy/counting

with neighbour

Request occupancy/count

Collaborate

(server)

Register with YP ‘advertise’ self so that other zone agents

can initiate collaboration.

 Listen for requests Listen for (SL message or other) requests,

and formulate reply

 Subscribe collaborators

(sensor nodes, zone

agents)

Manage other agents request for

notification (subscribe) of occupancy count

and zone monitor occupancy mode

 Listen for notifications and

handle notifications

Listen for request for occupancy count, zone

monitor occupancy mode, commitments

and reply to request with appropriate

message formulation. Uses Java object

123

serialisation for commitments, otherwise

uses SL

Event handling Listen for events Process notifications (for held leases)

 Request leases Formulate leases, find device hosts, prepare

and dispatch SL message to appropriate

host

Evaluate

occupancy using

environmental

state and history

Correlate environmental

conditions with usage to

identify unnecessary

heating and lighting

Attempt to use existing beliefs, historical

beliefs and current observations to

determine occupancy. The plan checks for

several scenarios including a significant step

transition in lighting levels and temporally

‘close’ boundary activity. Another is the

check for no activated artificial lighting after

the hours of darkness that could indicate

that a zone is unoccupied. Assertions are

not made until other factors that increase

confidence such as previous similar

observations, characteristic Lux levels etc

have been ‘learned’. Conclusions are initially

tagged as ‘candidate’

The occupancy evaluation sub goals listed in Table 6.2 are described in more detail in section

6.2.1.2. Occupancy evaluation illustrates typical BDI agent behaviour and is central to the

agent’s main motivation to derive zone based knowledge. Occupancy evaluation is a central

goal because several other goals trigger from or consume its conclusions.

6.2.1.1 The Zone Agent’s Ontology Use

The use of ontologies is central to the zone agent type’s operation and is mentioned

throughout the following sections. In general though the agent maintains two types of KB

employing the buildings ontology, which imports the sensors ontology, reflecting ‘as given’ and

‘as is’ models of the environment. The former reflects the ‘designed’ or ideal state of the

environment where all the sensors specified are available and includes no learned knowledge

about zones, either about its own or about other zones learned from neighbours. The ‘as is’

model is synchronised with knowledge collected from the environment including sensor lease

states, asserted and inferred knowledge about its own zone, and about other’s zones. The

124

latter includes knowledge derived from requesting other agent’s beliefs and intentions such as

monitoring mode. Low level sensor events are not added to the A box for performance

reasons.

The development of ontologies for the support of deliberation and means end-reasoning for

the main agent types is described in section 6.3.

6.2.1.2 Illustrative Goal Implementation Detail - Evaluate Occupancy

The ability to evaluate occupancy is a central high level goal of the zone agent type. It is

described here in detail to illustrate the application of several of the common patterns used by

agents in goal solving. The realisation of deliberation for that goal is described first, followed

by description of a range of plan implementations. Those implementations realise means end

reasoning leading to actions in the plans in order to realise the (sub) goal. A summary of the

sub goals are present first in Table 6.4.

125

Table 6.4 - Evaluate occupancy sub goal summary

Description Goal Key features Hardware

requirement

Dec / unoccupied Inc / occupied Cause of unresolved

scenario/s

Determine

occupancy

retrospectively

triggered by barrier

sensor

Determine

Occupancy

Only works retrospectively,

working back from the BS

activity so appropriate historical

lease coverage is needed thus

suited to wired devices. Fairly

robust

IMS + BS. Optional

environment sensor

may increase

performance

Any BS activity

followed by asserted

lack of IMS ->

unoccupied

Any IMS activity ->

occupied

Propped opened door when

the BS is a proximity switch.

IMS/s inadequate internal

coverage of zone – use

standard or wide angle PIR

type to maximise coverage

Determine

occupancy by

monitoring

openings

Determine

Occupancy

Readily deployed ZigBee sensor

cluster i.e. avoids constraint for

barrier sensor

(OMSI* or OMSO*)

+ IMS. Optional

environment

sensors may

increase

performance

(OMSI or OMSO

activity) followed by

asserted none IMS ->

dec

(OMSO or OMSI

activity) followed by

IMS -> inc

A range of scenarios

connected with different

human activities are

accommodated but some are

not see section 6.2.1.2.2

Count occupancy by

monitoring

openings

Count

Occupancy

Desirable as hardware readily

deployed, particularly using two

motion sensors, and that suits

well virtual openings. Magnetic

sensor on door fairly robust in

role of OMSI or OMSO

(OMSI + OMSO*),

or (OMSI* +

OMSO)

OMSI activity

followed by (OMSO

activity or related

entry to neighbour ->

dec

OMSO activity

followed by (OMSI

activity or related exit

from neighbour -> inc

If more than one person

leaves or arrives at the same

time may mis-count

Potentially Check No sensor hardware required BS and adequately BS followed by entry BS followed by exit Multiple occupancy changes

126

determine or count

occupancy without

internal hardware

opening inside the zone. Adequately

committed (all) neighbours

determine which if either

determine or count is possible

committed (all)

neighbours

to neighbour when

no other occupancy

change of that

neighbour’s

neighbours -> dec

from neighbour when

no other occupancy

change of that

neighbour’s

neighbours -> inc

in related/active neighbour’s

neighbour/s, or inadequately

committed neighbour/s

Generates entry /

exit to / from c.f.

occupancy

Monitor

thoroughfare

Asserts unoccupied. Tracked

motion indicates occupancy

At least two IMSs Track ‘finalisation’ Track initiation –

retrospective (after

‘finalisation’)

Sensitive to non ideal human

behaviour e.g. pausing,

variation in walking speed.

The sensor roles are:

 Opening motion sensor inside (OMSI) – covers opening and may cover internal motion, OMSI* covers opening only. Nominal inside, can be outside the

zone but describes the first activation on exit detection.

 Opening motion sensor outside (OMSO) – covers opening and may cover internal motion, OMSO* covers opening only. Nominal outside, can be inside the

zone but describes the first activation on entry detection.

 Boundary sensor (BS) – covers door and excludes internal motion, e.g. door proximity switch, restricted view PIR (spot or shaded type). Such sensor

classifications can be asserted or inferred e.g. due to placement. Role can be filled by (OMSI* or OMSO*)

 Inside motion sensor (IMS) – detects motion inside the zone

127

The determine occupancy goal detects if a zone is occupied or unoccupied by persons, while

the counting goal attempts to count the number of persons inside the zone.

The roles are assigned when the goal starts. The agents will re evaluate the roles each time the

goal restarts, and so if the current assignment causes the goal to fail, the goal will be dropped

and restarted, at which point the roles are re evaluated. Neighbours are those directly

connected via any opening e.g. doorway. The multiple potential occupancy of zones is

assumed. The coverage role for internal PIR / external PIRs (OMSI and OMSO) is captured by

the ontology with the relations ‘inProximityOf’ and ‘observes’. Thus the OMSI* and OMSO*

roles can be assigned to sensors participating in ‘observes’. The ‘observes’ relationship is

assigned to sensors and openings based on a suitable semantic description of the sensor as

well as other geometric constraints.

A generalisation about the occupancy evaluation goals (and other goals that utilise sensors)

regarding sensor utilisation is that benefit is gained through the use of a range of sensors in

contrast to a single or smaller number of devices. The utilisations are matches of numerous

specific roles within the devices’ operational constraints including their sensing capabilities

and deployment. In contrast if a smaller number or a single sensor was used then the

suitability of the role matching would be more of a compromise.

6.2.1.2.1 Deliberation and Means-End Reasoning for Occupancy Evaluation

The implementation of deliberation for occupancy evaluation follows many of the aspects

outlined in the principles of implementation above. The zone agent type’s occupancy

deliberation is depicted in the UML activity diagram in Figure 6.11 and Figure 6.12 The diagram

does not capture the allocation of activities to sub goals and while still containing some flow

control, it is simplified to illustrate some salient scenarios. Initially the feasibility of options is

determined.

128

Figure 6.11 - Occupancy deliberation in the zone agent type

129

Figure 6.12 - Occupancy deliberation in the zone agent type (cont'd)

130

Occupancy deliberation starts by the collection of salient knowledge form neighbouring zone

agents. First the agent and zone identifiers of registered zone agents are requested from the

yellow pages agent (each zone agent resisters its agent and zone identifiers together with

other information). Then for those zones of interest, using the agent identifiers in turn, the

occupancy determination commitment from those neighbours are requested. The zone

identifiers of interest are inferred using the ‘as given’ ontology KB, and that information

returned by those neighbouring agents is synchronised with the same KB. The KB’s building

related information is maintained from agent start-up by parameterisation of the IFC ‘load’

goal so that semi static ontology content update is not repeated unless necessary. The next

feasible candidate occupancy monitoring mode alternatives are then compiled from the

inferred zone classifications for the zone of interest from the ‘as given’ KB.

Those modes are next ordered according to preference. The preference is derived from the

following considerations:

 Preferred quality of goal e.g. counting preferred to presence determination where

possible

 Hardware utilisation

 Characteristics of goals such as

o Lead time e.g. having to wait for non occupancy evidence

o Some goals take longer to evaluate conclusions e.g. assert that no motion has

occurred for an extended time

o Dynamic dependency on provision of knowledge by other agents (some

dependencies are captured in feasibility but for example ad-hoc collaboration

is not, and instead the agent relies on the audit mechanism to capture earlier

failures)

 Reliability and sensitivity to errors

 The probability of not running monitoring due to having to perform reset sequences

and other factors

Some of the characteristics above are interdependent. The capture of preference in the

implementation incorporating the contributing influences is implicit though and mostly static,

although some meta data is available from plans that describe state durations for example and

abstract descriptions of resources required can be retrieved (but it is only during means-end

reasoning that specific sensor roles are assigned). Regarding preference for occupancy

evaluation in isolation, the general order is: count <- determine <- check opening use <- no

occupancy determination. A few dynamic influences adjust the order and modify it e.g. the

131

removal of the counting goal during ‘out of office’ hours. Moreover from a dynamic

perspective, several of the influences listed significantly but indirectly affect the deliberation

outcome earlier during historical behaviour analysis.

Next in deliberation the historical performance of earlier behaviour is evaluated. Reviewing

the audit for similar behaviour to each option, the implementation filters out options by

applying some simple criteria defined by some constants that capture various ‘influence

durations’ and retry counts. The first of the ordered remaining occupancy modes then

becomes the occupancy determination deliberation outcome and any remaining others are

neglected.

The outcome of deliberation in general sets a number of plans but those plans are either of the

determine or count occupancy type i.e. goals can be mixed but share the same occupancy

evaluation type. The deliberation choices are mapped to zone inferences. The zone inferred

monitoring classes are defined in terms of statements relating to geometry, sensor provision

and other beliefs about the zone and about neighbours’ zones. Some statements derived from

collaboration, as well as those the agent makes itself, are dynamic and in some situations serve

to ‘elevate’ the occupancy evaluation capability type. For example a neighbour space may be

inferred to be a room containing plant that is rarely accessed, or there may be just adequate

hardware to detect activity at that opening, so the agent can for example count while that

opening has no associated activity.

After deliberation, means-end reasoning then attempts in plan implementations to identify

how the associated goal can be satisfied, typically with further reasoning and further action.

Inferences are again used, this time in the ‘as is’ buildings KB, to determine the practicality of

the occupancy monitoring goal (type) being perused by a given plan, and also for the

assignment of sensor roles. The inferences are deduced from assertions of sensor availability

derived from verified leases, as well as statements derived from neighbours’ beliefs and

commitments (via requests for their relevant attitudes, followed by synchronisation with the

‘as is’ KB). In the case that no inference is reached to indicate that the plan is practical, after

updating the audit with that fail status the plan exists.

In summary the occupancy evaluation algorithms show diversity in their capability and in their

implementation. Deliberation to select the most appropriate relies on the semantic analysis of

the context (building configuration, sensor types, sensor availability and sensor locations),

collaborative knowledge and its past performance. Appropriate repeated deliberation realises

appropriate agent behaviour within the dynamically changing environment.

132

6.2.1.2.2 Determine Occupancy

The determine occupancy plan implementation detects the presence or absence of people

inside a zone. The determination that a zone is unoccupied forms a key basis for the

determination of wasted resources. A characteristic of the plan is that it can be relatively

efficient in terms of resource utilisation at monitoring extended non occupancy, such as that

likely to occur ‘overnight’ in a typical office zone. Also good efficiency is achieved if occupancy

is asserted soon after the state change into the determine occupancy state, as then some

hardware resources (via leases) can be dropped. The addition of further sensor selection

criteria (in addition to role’s functional and context requirement) that considers immediacy of

device availability was considered, but the typical benefit was not clear without further

investigation (see section 7.3.4.3). The SPARQL query for the sensor role section is expressive

but compact and includes capability and type specification, as well as details of the host

provision, in addition to context related criteria definition. The commitments mechanism (see

section 5.2.2.1) facilitates the use of existing (active) devices leases in other plans / roles.

As well as for the assignment of sensor roles, the use of inference in the determine occupancy

plan includes the time based parameterisation of the algorithms in the plan. For flexibility

algorithms refer to relatively abstract classifications of opening and boundary sensors but

detailed configurations (specifically time related settings) are mapped to specific inferred

types to improve the plan operation e.g. the exit suppress event interval for a physical door.

The state machine design of the plan is shown in Figure 6.13. On entering a new state, the

appropriate resources are requested and verified using the pattern of implementation outlined

in section 5.2.1.4, with method overrides for each state that define the resources and the

verification implementations. After an appropriate interval of no occupancy change, the plan

reverts to the determine occupancy state to verify the current belief.

133

Figure 6.13 - Determine occupancy state machine

6.2.1.2.3 Count Occupancy

In the occupancy counting plan, in common with other plans, the sensor role selection is made

from semantic knowledge. For each opening in a given zone, the algorithm uses a number of

SPARQL queries that extract semantics about sensor relationships to the building (context),

and sensor domain knowledge. A number of queries are used to satisfy different scenarios,

and each query assigns orders of preferred alternatives, if any, to each role. In a few cases due

to ‘quantisation’ inherent in some of the object relationships, the algorithm may extract

geometric information from the IFC model in order to resolve any ambiguities (see section

7.2.4.3).

The counting plan is realised by a simple state machine which has an initial state to determine

that the zone is unoccupied, and thus can set counting to zero. A number of sub goals are used

for that purpose, including the plan which attempts to infer zero occupancy without using

motions sensors. If that fails then the agent uses another goal which assumes zero occupancy

after an extended interval of no detected motion. When a zero count has been established,

134

the plan instantiates for each opening in the associated zone, an object that determines the

direction of movement of persons through those openings. That class, the entry / exit tracker is

described in the next sub section.

6.2.1.2.3.1 The Entry / Exit Tracker Class

The entry / exit tracker class performs the task of interpreting (boundary related) events, and

determines from those, the direction of movement of persons through the associated opening.

The class implementation relies on a state machine (Figure 6.14) to realise its operation. In

order to handle the nature of event updating, where events can arrive in blocks, and the fact

that events associated with one episode (a delimited collection of events generated by a single

entry or exit) can be spread over more than one block, the class buffers events in collections

and analyses those collections. Aligned with the nature of motion events (see section 6.2.2),

the implementation primarily relies on the leading events associated with an episode but also

employs several other algorithms that were developed during deployment evaluation (see

section 7.3.4.2). The generated entry / exit events are defined from the episode start and an

approximate duration. In connection with the approximation for duration, agents apply a

tolerance window when negotiating over occupancy change involving such events.

Figure 6.14 - Entry / exit tracker state machine

135

The state machine creates the entry / exit event definitions on exit from the determine state as

shown. Those events are added to a buffer which the plan soon retrieves and updates its

occupancy beliefs appropriately. On recognition of ambiguity in counting, the plan aborts

rather than resets. Therefore control is shifted to deliberation to potentially reinstate

counting, or to revert to another plan. Additionally plan failure can result from lease

verification failure as well as other run time errors.

The class has several parameters that are configured using semantic information derived in the

configuration stage. Those settings improve the robustness of the class’s operation, and some

of those details are described in section 7.3.4.2. The count occupancy plan, like other plans

overrides base plan methods in order to realise lease management for the tracker instances,

and maintenance is carried out on a time triggered basis.

6.2.1.2.4 Opening Checker

The opening checker goal and plan implementation caters for the scenario where a zone has

inadequate hardware to adopt either the counting or determine occupancy goals, but is able

to check an opening for activity, typically with a single sensor. Under some conditions e.g. no

opening activity for an extended interval, the agent using this goal can make some occupancy

assertions about the zone. Via collaboration, these assertions can also reduce the sensitivity of

lack of some hardware to other agents’ goals. It is the least desirable goal however that an

agent will adopt under the evaluate occupancy top level goal. Other situations can cause this

goal to be adopted after appropriate deliberation has concluded that, for example, other goals

have failed due to for example unverified leases for hardware.

Regarding occupancy evaluation however, the plan is able to use a sub goal for collaborative

verification of occupancy, and thereby attempt occupancy determination or counting on a

more immediate and consistent basis than the scenario outlined above. First though, like the

other plans, a reference state is asserted using the same sub goals or overridden methods.

After the zero occupancy has been asserted, the verify occupancy sub goal can be invoked on

detection of boundary activity for the purpose of possible occupancy evaluation. That sub goal

requests from the neighbour that shares the ‘activated’ boundary, its current and recent

occupancy count change recent history (which also captures the determine occupancy goal

outcome in the form of ‘count greater than zero but not numerically defined’). The plan then

attempts to verify if any of the neighbours’ neighbours reported occupancy changes, and in

the scenario that that was not the case, then an appropriate occupancy change can be

evaluated for its own zone. The ability for counting or determination is dependent on the

136

neighbour’s occupancy evaluation mode. However the ‘own zone’ occupancy evaluation

aspect of this plan has not yet been tested in a deployed system.

6.2.1.2.5 Continuous motion occupancy detection/count

The continuous occupancy evaluation plan makes the assumption that, if it is occupied, then

persons inside the zone can be assumed to be in continuous motion. During deliberation, an

agent will adopt this goal based on a threshold aspect ratio (approximated to a containing

bounding rectangle) and the existence of more than one opening. Such zones, typically

thoroughfares, can also lack furniture containment but that is not used as an adoption criteria.

The occupancy beliefs of thoroughfares are potentially useful in supporting other agents in

collaboration.

The plan implementation involves the management of event collections (TrackerNode class)

for each motion sensor in the track between zone openings, realised by the MotionTracker

class. Estimates for the time of transit between the detection ‘points’ are estimated from the

sensor separation and typical walking speed. The algorithm then executes forward and

backwards searches, where the search attempts to find an event in the next TrackerNode

object inside a time interval generated from each candidate event using the time window

estimates. Any events are added to a newly created Track object. The search continues along

the track (an instance of TrackerPath) until no candidate fits the window criteria, or until the

nominal end / start TrackerNode object is reached, in which case a event is constructed

describing a nominal track ‘exit’ or ‘entry’. If the internal MotionTracker determines that

existing partial tracks have exceeded the last update (timed-out) then a standard entry or exit

to the path is deduced and a standard track instance is created. Such standard tracks typically

occur when a person leaves / enters the tracker path via a virtual boundary. The deployment

has only been evaluated in the domestic flat test deployment, primarily because the

deliberation has not yet been implemented to activate this plan in conjunction with others.

Variables which affect robustness are triggering characteristics of motion sensors and the

range of walking speeds accommodated, as well as behaviours of persons such as pausing to

activate light switches, and persons walking in groups.

The leases for the participating devices are managed by appropriate method overrides and

base plan functionality, similarly to the other occupancy evolution plans.

6.2.1.2.6 Evaluate Occupancy without Motion Detection

A goal, typically dispatched by an agent as a sub goal, has been implemented as an alternative

to the goal that uses the detected lack of motion over an extended interval to make the

assumption of zero occupancy. This goal instead attempts to assert zero occupancy without

137

the use of motion sensors, thereby delivering a potential conclusion with minimal resource

usage and in a short time interval. One premise is that a zone is unlikely to be occupied if it is

a working area or ‘living room’, with no activated artificial lighting after the hours of dark. The

evaluation depends on an adequate learned lighting level for such scenarios. Due to the pre-

conditions (of the algorithm cf. goal), the outcome of this plan in practice can be inconclusive.

6.2.2 Sensor Node Agent Development and Implementation Specifics

This section discusses some details of the sensor node agent implementation. The primary goal

of the agent is to deliver resource provision in terms of monitoring data to other agents that

request it, while managing efficiently that provision, especially in the case of finite resources.

The battery powered wireless sensor units managed by the sensor node agent have a finite

power source and the system (but primarily this agent and benevolent clients) aims to

maximise the interval between those battery replacements. The device lease class plays a

central role in dialog between agents relating to resource provision, and is described below.

The BDI model is exploited though the adherence to the pattern of application identified in

section 5.2.1. A summary of selected high level sensor node agent goals is given in Table 6.5.

Table 6.5 - Sensor node high level agent goals summary

Goal Responsibility Notes

Initialise Read configuration file Configure agent identity, message

routing info

Manage

infrastructure

node connections

Discover infrastructure nodes Periodically poll the known endpoints

for new resource availability. Maintain

‘active nodes’ list

 Extract sensor events Poll active endpoints for (infrastructure)

events

Advertise sensors Register services with YP

 Retrieve resource list

Manage clients Listen for subscriptions, sensor

lease requests, general

requests

Interpret SL message

 Subscribe client maintain lease subscriptions lookup

table

Collaboration Register with Yellow Pages

(YP), Advertise resources in YP

Register agent type, associated zone

identifier, hosted devices, with the YP

138

agent agent. Refresh on any change

 Describe resources/sensors Elaborate descriptions using the sensor

ontology for rapid data response from

clients. Triggered on addition of new

knowledge of devices

 Service requests Reply to data requests after verifying

lease status. Request data from

infrastructure (sensor read)

 Notify subscribers Formulate SL message and notify lease

holder of new data

Negotiation Manage sensor leases

Wireless network

management

Configure wireless nodes,

configure individual sensor

channels and manage power

settings

Serve sensor lease requests with

wireless sensor node availability,

minimise power consumption of nodes.

Manage networks (configure nodes and

sensors)

Manage wired

networks

Monitor sensor availability Grant leases for available devices

6.2.2.1 Application of Ontologies Summary

The sensor node agent type makes extensive use of the sensor node ontology to support

means-end reasoning and some deliberation. Similarly to the zone agent type, the sensor node

agent creates and configures a number of different KBs for use in different reasoning

applications. A non inference configuration is used for population of the A box. The use of

RDFS inference offers much shorter inference delivery for event identification, relying on

limited expressivity compared to the application of full OWL inference rules. A Pellet inference

supported KB is also configured and is widely used for general full expressivity reasoning.

Typical applications of inference are to analyse the connection of a given device in order to

determine the handling of lease requests, to evaluate the power mode for the host node, and

to elaborate sensor clusters to find connected channels and devices. Additionally the

connection topology is analysed for other characteristics such as connection to a mains

electrical outlet (thus not battery powered) and other queries involving the T box, or to

determine if a device is wired or wireless. The use of abstraction describing sensor type and

139

mesurand characteristics is not so extensively used as clients typically request specific sensor

individuals i.e. that role is usually completed by client agents.

6.2.2.2 Service Provision

In support of the sensor node agent type’s primary goal to deliver requested sensor provision,

the agent performs several other high level goals in support of that. Those goals involve finding

infrastructure resources, identifying the resources available (in order to ‘advertise’ to other

agents), as well as managing those resources efficiently. Although the infrastructure

components have default behaviour, the lack of intelligence in that layer means that the

sensor agent has a central role even when no resources are requested by clients, particularly

regarding the wireless hosted resources. The implementation of simple default behaviours in

the wireless network was a necessary design decision made in order to reduce redundancy and

possible conflict.

Effective sensor node agent behaviour relies on the sensor ontology KBs in order to direct

actions in the plans (means-end reasoning), as well as on the algorithmic implementation of

plans.

The dialog over resources is based on a sensor lease class as mentioned which facilitates

requests and allows verification of status. The lease class is described in section 6.2.2.3. The

lease lifecycle is dependent on the wireless network status and success of the sensor node

agent’s actions. In general node and device configurations are not actioned immediately. The

sensor node agent can modify the lease interval requested, and is able to select the device

that fulfils the lease from a number of alternative devices the requestor has nominated.

Alternative selections are granted depending on availability of the device and its host.

The agent manages some meta data relating to devices and their activation. For example a

device activation history is maintained that is used to implement signal conditioning to

suppress spurious transient signal generation that are characteristic of some sensor types

when they are first powered on, particularly PIR devices. For that purpose ‘suppress’ intervals

(derived from datasheets) are mapped to abstract types. Other meta data is managed for

wireless network nodes.

6.2.2.3 Device Leases

The device lease class when used as the content of SL expressions in inter-agent messages

plays a central role in realising resource negotiation and verification of status. The lease

resolutions and states are

140

 Resolutions: None, Initialised, Pending, Granted, Delayed, Denied – determined by

device availability

 States: Active, Inactive – set by the start and end times

In the case that a given requested device is attached to a node that is available in the network,

following successful node and device configuration of wireless devices, or without further

action for some wired devices, the requested lease will be assigned the granted resolution. If

the node is not available or the configuration fails for another reason, the lease is assigned as

delayed. The resolution is also assigned as delayed if meta data is held stating the node is

currently unavailable, and in that circumstance the configuration action is not attempted.

Those leases with a start time later than the current time are assigned the pending resolution.

If the host is not recognised, the lease is set to denied state.

Regarding the setting of the duration of leases requested, typically very short leases are used

to ‘sample’/ read a value, while longer durations are used to ‘subscribe’ to, and thus receive,

asynchronous notification of events such as motion and switch activation. Regarding the

timing of issuing lease requests, client agents that employ scheduled reading can request

leases in advance to allow lead time for activation. Another temporal consideration regarding

leases on a shorter time scale is that some sensors require an interval for circuit for

stabilisation as mentioned above in connection with signal conditioning. As an example a

device that has a relatively long stabilisation time is the ‘Napion’ motion sensor range at 30

seconds.

6.2.2.4 Device Management

In order to deliver the best timely responses to new leases, the sensor node agent attempts to

action newly requested pending leases immediately. Some leases can be granted without

further action as mentioned, such as those for wired devices, or those leases which are

requested for sub intervals of those already active. Next, if a compatible active lease exists the

agent extends it. If the lease requested is for a wireless hosted device then the agent then

initiates wireless network management.

Regarding the management of wireless networked resources, the agent has the role of

assigning behaviours defined in the infrastructure implementation to wireless nodes, and

configuring the devices attached to the hosts appropriately. Those devices are both actuators

and sensors; the actuators control the power to sensors. The node behaviours (see Table 6.1)

are mapped to certain sensor KB inferences and so when appropriate i.e. it is inferred that a

request for a new resource requires a different node behaviour to the existing one, that node

141

behaviour set command is issued before the device configurations are issued. Those node

behaviours assign configurations for ZigBee node devices such as its radio components, timers,

and timer activation of preset actions for example for network management, resulting in

characteristics such as power consumed, sensor availability, and sensor availability ‘lead time’.

The target host node availability is dependent on its current configuration (behaviour), or

there may be other reasons for its unavailability such as an expired power source.

From the range of node behaviours available, the sleep-and- listen mode is very desirable for

assignment to nodes that have no active leases for hosted devices, but it is not commonly

used. One reason for not using that mode extensively is due to lead times in availability,

particularly where there is little redundancy in device roles from the client agent perspective,

and given that typically clients assign and change roles in a very dynamic fashion. The purpose

of the device meta data though is to track the configuration of nodes, exemplified by the case

where a node is not available to retrieve its status. Another factor is that before activation of

the sleep- and-listen mode, the agent has to ensure that as well as a feasible electrical

configuration for waking the device is available, there is also a feasible physical scenario. An

undesirable situation is if a node was put into this power mode and the wake up scenario was

rarely encountered e.g. motion detection in a rarely assessed room.

In contrast to ‘on demand’ node management, the agent performs routine network

management where devices with associated expired leases are powered off, and host nodes

are put into a standby mode when possible. Several power settings are available and settings

are described in more detail in section 6.1.3. The power modes standby and low power are the

most commonly used modes.

6.3 Ontology Development

6.3.1 Introduction

This section describes the artefacts produced to realise the IFMS knowledge support, the latter

motivated by the factors outlined in section 4.2. Several ontologies were generated following

the workflows described in section 4.3.3, primarily guided by the Neon methodology. The

application of the methodology is straightforward so is not described in detail. Instead this sub

section, after describing the main features and scope of the domains, presents some detailed

design principles of the ontologies. Next the different ontology artefacts are described in

detail, covering the rationale for some of the design decisions. A focus of the discussion is the

application and exploitation of those knowledge resources by the IFMS.

142

6.3.2 Overview

Several ontologies support agent behaviour in the IFMS. The ontology set has been developed

to fulfil very specific roles in its specialisations, building on domain independent semantic

models and encapsulated theories.

The ontologies developed for use in the framework include:

 A building ontology capturing the building geometry and assembly. The origin of the

taxonomy was the IFC. Theories of topology and mereology have been integrated.

 The sensors ontology describes the sensor devices in terms of the phenomenon that

they capture, their detection capability and associated platform configurability. The

origin was an ontology called OntoSensor, which in turn is based on schemas in the

SensorML modelling language.

 A general purpose ontology, SUMO that captures domain independent concepts.

Although in the IFMS some central concepts inherit from SUMO entities, a large

proportion of the provision did not find useful application.

The system ontologies, their source resources, and their interrelationships in the sense of

referenced terms supporting modelling, are shown in Figure 6.15.

143

Figure 6.15 - IFMS ontologies, interrelationships and dependencies

The direction of the arrows in Figure 6.15 show the derivation of ontologies from various

resources. Typically OWL ontologies (green) were derived from the resources, and use the full

expressivity of the OWL language. However the dialog ontology’s main role is for use as a Java

based representation for the capture of agents’ message content. The ontology is a light

weight representation of the content of the other IFMS ontologies, allowing the agents to

exchange beliefs and other attitudes. The figure illustrates the relative sizes in terms of the

number of concepts, roles and other axioms. Overlapping areas are manifested by the linking

of concepts.

6.3.3 Common Design Principles

In the area of fundamental formulation, Fielding, et al. [82] identify the classifications of

“endurants and occurrents”, “dependent and independent” and “universals and particulars”.

In SUMO the separate high level entities object and process reflect the temporal distinction

captured by endurants and occurrents (defined in section 2.2.7) for example. The authors’

dependency classifications describe the necessity for existence of membership of a whole e.g.

the concept of door function relies on a door and other entities. The criteria of universalness

144

make the distinction between type or class and individual or instance. Those classifications and

associated properties were taken into account throughout the ontology implementation.

Another general ontology design consideration was that of semantic closure, arising as by

default OWL semantics adopt the open world assumption (OWA). The assumption though suits

the nature of the domain and the KR used to model it. The relatively high KR expressivity

allows rich semantic expression, so a complete model may be unnecessary, or it may be

impractical or impossible to capture. The application of the OWA means that incomplete

knowledge can still be consistent. However there are areas which in contrast are complete and

so explicit closure with appropriate axioms can give additional useful inference e.g. the sensor

ontology states that an enabled and fully functional passive infra red (PIR) sensor signal

indicates movement, so closure indicates no movement. However closure is not appropriate in

the relation between movement and occupancy i.e. a room can be occupied even if no

movement is detected. An alternative approach to implementation without using closure

statements is via Pellet’s integrity constraints where axioms can be nominated as having closed

world assumption (CWA) based semantics and thus interpreted as such by the reasoner, for

example using annotation.

A further consideration in modelling OWL ontologies is the lack of the unique names

assumption (UNA). While Pellet has an option to assert the UNA via the API, for compatibility

with Protégé tools and general reasoner compatibility, design time and run time ontology

updating by agents add owl:differentFrom properties (or the construct owl:AllDifferent for a

set of pair wise different) for appropriate individuals. Missing statements relating to UNA and

OWA have a significant negative impact on the ontologies, particularly where modelling

involves statements with universal role restrictions. However other model statements can lead

to the desired intermediate (different from) inferences, e.g. individuals can be inferred as

different through their inclusion in roles having functional properties.

Similarly to software design patterns, ontology design patterns, and specifically logical, content

and architectural patterns have useful application and some were applied, or at least

influenced the ontology implementation. The Neon deliverable [171] describes a catalogue of

patterns. Among the less trivial of the logical patterns are those for modelling: N-ary relation,

exhaustive class (mutually disjoint sub classes), and collections of nominal values. Content

patterns include the participation (modelling the involvement of entities in events) and part-

whole patterns. Rector [172] also describes representing values using “value partition” and

“value sets”, which was applied for example in the description of ZigBee hosts. Additionally

‘anti-patterns’, the application of patterns that result in degrading the quality of an ontology in

145

this context e.g. a naming pattern where the names of descendant classes are not less

abstract, provide useful guidance.

Further ontology authoring considerations, relating to classes were:

 The primary structuring of the ontology’s taxonomy is based on the subclass relation

construct. The hierarchy should not model composition relationships, and OntoClean’s

essence meta-property is a useful discriminator. Essential properties are those that

must be upheld, and they persist down the hierarchy.

 In order to bring about inferred class membership, i.e. infer new classifications for

individuals, adequate definition of necessary and sufficient conditions for that class is

required.

 Creating and naming classes for 'convenience' improves readability and eases

debugging. Such classes are created from the combination of named classes and

anonymous classes (created from intersection, complement, union, restrictions etc)

such as the 'MonitoredSpaceBoundary' in the buildings ontology, where intermediate

inferences are useful to debug the ontology. Inheritance from the convenience classes

is not expected.

 The application of multiple class inheritance was mainly run time assertion/s. As

expected the design time asserted class has the rigid meta property (from OntoClean’s

definition, rigidity extends essence in that the property must be upheld in every

situation), while the run time assertions have anti-rigid properties (not essential to all

situations).

 A combination of top down and bottom up processes were used to elicit class entities,

depending on familiarity with the area of the domain being modelled. Middle concepts

were elaborated as appropriate.

Further ontology authoring considerations, relating to classes were:

 The universal role restriction requires a relatively high count of axioms to support it,

due to the OWA. Closure restrictions and maintenance of the disjoint axioms are

needed. So alternative modelling is preferable if possible. Similarly, in general, the

UNA requires maintenance of different from axioms, in practice the construct

owl:AllDifferent find useful application (see above).

 Some constructs when applied to complex properties are nonsensical and / or not

supported. For example, functional or inverse functional properties on transitive roles,

and cardinality restrictions on transitive roles.

146

 Typically sub properties were added in order to specify domains and range (the

specification play a role in inference, not constraint), and ‘base’ object properties

retained owl:Thing for the domain and ranges. The motivation was to reduce the

number of undesired and incorrect inferences.

6.3.4 Supporting Ontology Development

The IFMS sensor and building ontologies import a number of common ontologies that capture

domain independent theories and constructs. In particular mereology and topology are

uniformly supported by single artefacts, and in addition further universal concepts and

relations are captured by a nominally upper layer ontology. The upper layer ontology utilised is

a translation of the Suggested Upper Merged Ontology (SUMO) [80]. The OWL translation by

Hendren [173] was used here (a translation was needed as SUMO was developed in a different

KR). The common ontologies promote interoperation between lower domain dependant

ontologies. In practice links are established between concepts in domain ontologies and the

more abstract ones.

A small ontology was created in order to model theories of metrology to capture the

composition of entities. The modelling focussed on physical quantities (components), where

the whole is referred to as a complex in the literature, in contrast to the other wholes of

collections and masses, where the wholes are composed of respectively members and

quantities [32]. A complete ontology of the extensively reported field of mereology was not

required for practical application, so the implemented resource represents a good working

approximation. In the mereology ontology, one base object property is part from classical

mereology that has the transitive characteristic. An elaboration is the distinction of proper part

that captures the exclusion of the whole, hence a sub property properPart was added with the

characteristic of irreflexive. Inverses were also created for those properties. A further sub-

property of part, subcomponent was added with a similar irreflexive property as properPart, but

with the additional specification of asymmetric to capture the sense of super / sub assembly

composition. The irreflexive object property (together with reflexive and asymmetric) is part of

the SROIQ expressivity of OWL2.

An initial implementation for supporting topological theory within the IFMS ontology provision

involved the application of an RCC8 spatial reasoning support. The support was delivered by a

dedicated implementation of Pellet known as PelletSpatial [64] which treats some predefined

spatial relation roles as special cases. These roles capture the topology semantics of the Region

Connection Calculus (RCC), specifically RCC-8 (described in [174]). However it emerged that the

application of the rich semantics of spatial relations could be simplified by using a different

147

design approach, which also released the constraint to use the dedicated reasoner. The

decision was taken that the agent would interrogate the rich and comprehensive geometry in

the IFC for very specific numerical data instead of attempting to capture that for qualitative

reasoning. The topology requirements were adequately scoped to capture connections

between entities such as physically touching and electrical connection. Regarding physical

connection in the context of buildings, the most appropriate was mechanical attachment for

functional purpose. In the context of electrical systems, the ontology captures electrical

connection / link i.e. a power or signal propagation path. A set of object properties were thus

created with appropriate characteristics covering reflexive and direct (non reflexive)

connection together with appropriate inverses.

6.3.5 The Sensor Ontology Development

The requirement for a sensors ontology was the need to semantically model knowledge about

the phenomena sensed by the devices, the electrical and physical characteristics of the sensing

devices and of the supporting infrastructure (including wireless host platforms, interfaces,

connection, power supply), and possibly the some details of the detection processes. Following

Neon’s recommendations and support for developing ontologies from existing resources,

several potential resources were considered for reuse. With approximately 60% of the

concepts identified in the ontology specification for sensors, and due to its OWL formulation

and linking to some SUMO concepts, the ontology OntoSensor [86] was chosen as the basis of

the sensor ontology for the IFMS. OntoSensor is an OWL translation of SensorML [175].

Moreover good documentation is available for SensorML so the rationale for aspects of

OntoSensor can be traced.

Further development of the sensor ontology included the addition of new concepts and some

extra concept linking to SUMO. Straight forward linking is facilitated by compatible structural

characteristics seen in the SensorML specification and SUMO. The main additional modelling

was related to capturing the electrical topology of the ZigBee sensor unit assembly and the

ZigBee host itself such as its built-in peripherals including the analogue to digital converters

etc. The modelling of topology and mereology integrated in domain independent ontologies is

appropriately incorporated by property inheritance. The use of both theories is exemplified by

the resolving of location. While topology assertions / inferences may indicate that a particular

device shares the location of the ZigBee hosted platform, mereology shows that a device

attached via a connector is not part of the unit, so the agent has to determine its position

using another mechanism, typically by interrogating the IFC model.

148

Selected competency questions used in the development of the sensor ontology, in the

context of the IMS, are described in Table 6.6.

Table 6.6 - Selected competency questions for the IFMS's use of the sensor ontology

Competency Question Example application

Find the devices able to detect <phenomena_type> Sensor role selection

Does a given sensor have abstract characteristics given by

<abstract class> and/or abstract <property>

Sensor role selection

Find the sensors hosted by a ZigBee unit given <unique id? Retrieve device details

Find the other sensors that are hosted by the same host as

<sensor id>

Remove duplicate

coverage

What type of network hosts <sensor id> Network management

Is <sensor id> in a wireless network Node management, lease

management

Is <sensor id> battery powered? Node management, lease

management

Are all currently powered devices interrupt driven? Node power mode

Find the channel that connects <sensor id> to the host Node management

Elaborate a cluster Populate the KB ‘A’ box

Find ZigBee unit, given the <unique id> or <network address> Node management

The sensors ontology alone is primarily used by the sensor node agent for dynamically

configuring the ZigBee nodes and attached sensors in the wireless networks, as well as

generally locating resources in order to supply clients with requested data. Constructs to place

the sensors (or other entities) into a context are the scope of the buildings ontology, and for

modelling that context the sensors ontology is imported into the buildings ontology.

A small excerpt of the sensors ontology is shown in Figure 6.16. The figure captures a subset of

the asserted model i.e. no inferences are shown, showing sensor devices and some aspects of

the supporting infrastructures.

149

Figure 6.16 - Excerpt of the sensors ontology

150

6.3.6 The Building Ontology Development

The principal role of the building ontology is to support the behaviour of zone agents in pursuit

of their primary goal of building monitoring. Part of the requirement is, combined with the

sensors ontology, to allow the determination of the type of monitoring that can be carried out

and the selection of the most suitable hardware to accomplish that. The building ontology

adds salient context information to sensors deployed in a building. The building unit for

monitoring is a zone which represents some physical or virtually delimited space, typically

having dedicated function/s. In general zones are delimited by walls or some other

demarcations, and accessed by doorways. Therefore the ontology is able to model zone

boundaries, the ‘makeup’ of those boundaries (topology and mereology of those s well as

other constituent building entities), and the internal environment of zones. Additionally zone

relationships to other zones are captured for the purpose of potential collaboration. Ultimately

the ontology provides sufficient context information for sensor devices, so that the agent can

assign roles to sensors for the pursuit of the different types of monitoring for all the zones of

interest.

The main high level competency questions that emerged from analysis are listed in Table 6.7.

151

Table 6.7 - High level competency questions for the buildings ontology

Competency Question Example application

What types of occupancy monitoring can be performed assuming

all the deployed sensors are available. Monitoring types include

occupancy, temperature, ambient light levels

Deliberation

What type of occupancy monitoring can be performed assuming a

subset of the deployed sensors are available

Deliberation

Find sensor/s with given relationship to building entities (virtual

openings, doorway openings) for <zone id>

Sensor role allocation

What type of zone is rendered by the current sensor provision and

cooperative beliefs about neighbours zone characterisation

Deliberation

Get the boundary sensors for <zone name> / <opening id> Occupancy evaluation

Get the zone characterisation Deliberation,

verification

Find the characterisations for openings of <abstract type> for

<zone id>

Deliberation

Find the sensors inside the zone <zone name>, (<abstract type>) Resource management,

environment monitoring

Find a zone’s openings given <zone name> Occupancy evaluation

Find zone given <zone name> general

Find a zone’s boundaries given <zone name> Occupancy evaluation

Find a zone’s neighbours (sharing an opening) given <zone name> Collaboration

Find a zone’s neighbour given <opening id> Collaboration

The concepts that emerge from the competency questions are primarily spaces, rooms,

doorways, windows and plant such as HVAC. Again following the Neon methodology’s

recommendation for existing resource reuse, the Industry Foundation Classes (IFC) (see section

2.1.2) was identified as a highly suitable. Additionally other resources such as those identified

in section 2.2.8 could be used but due to the higher structure of a taxonomic classification

system, mature status and most comprehensive coverage of the building domain, the IFC was

selected for this work. The IFC has the ability to model building related products and their

assembly, processes (information about the processes to design, construct and manage the

project), resources (resources consumed by the process), and controls (constraints are key to

establishing model integrity).

152

A conversion of the IFC schema to OWL was completed, with the intention of using the

generated ontology as the basis for the building ontology. In addition to its original STEP

representation, the IFC schema has been translated and released in an XML schema language

(specifically XML Schema Definition (XSD)). That translated release, ifcXML [176], has thus

been used in a conversion using the standard technique of style sheet translation. In that

technique, a commonly available XSLT (extensible style sheet language transformation)

processor reads a style sheet written in XSLT (a combination of procedural and declarative

statements), and processes the instructions therein to generate the transformed output.

Several XSLT style sheets that transform XML schemas into OWL have been published and the

one by Gil et al. [54] gave good results, within the expected constraints of the translation. Such

style sheets need strategies to deal with complications including the different topologies of

XML Schema and RDF Schema / OWL. The former schema is a tree while the later is in general

a directed graph that can be cyclic. The ontology generated has DL expressivity ALUHN(D),

but most notably missing, as expected, when compared to OWL DL, inverse properties. Missing

also from the translation is full existential quantification E (complex transitive concept

negation C is equivalent to UE, S is an abbreviation for ACL with transitive roles) and

nominals o), but the impact of that missing expressivity has not been investigated.

The translated ontology in general, has rich content despite some missing constructs

(particularly inverse), in the scope of immediate interest those entities have limited semantics,

and some manual editing was still required to satisfy the expected usage. Specifically extra

mappings are needed to specify semantics beyond that of the named roles and (hierarchical)

objectified relationships (that derive from class IfcRelationship), rendered from the original

taxonomy. Such mappings are required for: mereology, topology, and systems theory. One

approach would involve replacing or mapping relevant IfcRelationship classes, or derived

classes, and their ‘connecting roles’ with / to new roles. Those new roles are linked to further

appropriate roles capturing the required semantics. Regarding the use of the XML schema

source, the extent of capture of the constraints in the form of rules in the original IFC EXPRESS

schema has not been assessed. While some knowledge capture is easily translated, the

transfer of more expressive rules may be more challenging. Moreover for adequate automatic

translation into OWL, the XSLT style sheet should provide sufficient support to preserve

knowledge propagation.

Primarily due to the additional work required to map the objectified relationships to theories

of mereology and topology, and due to the fact that only a small proportion of the building

entities having been identified as required would be used from the IFC generated ontology, the

use of the converted ontology was abandoned. However the IFC schema still played a

153

significant role in influencing the development of the building ontology. While the IFC inspired

the classes in the buildings ontology, the ontology did not aim to duplicate the justified

redundancy designed into the IFC model. The redundancy indeed made navigation of the IFC

model easier, but the role of inference to some extent replaces the need for such constructs.

However regarding objectified relationships, clear correspondences between mereology and

topology were found in the IFC in the forms of super classes capturing decomposes and

connects relationships respectively.

The following Table 6.8 and Table 6.9 give a brief overview of some selected building ontology

constructs.

154

Table 6.8 - Selected building ontology classes

Class Description

SpaceOpening The super class for doorways and virtual boundary. A void through

which people can pass for normal building use, excluding windows etc.

and excluding for the purposes of emergency evacuation

MonitoredOpening Sub class of SpaceOpening , an opening that cna be monitored in

terms of detection the directions of persons passing through

CheckableOpening Similar to MonitoredOpening but can only detect passage and not

direction of persons moving through

Zone Definition of zone in terms of a minimum of 3 walls cf. wall assemblies

is adequate. A zone is consider a closed area with typically openings

such as doors and windows and virtual boundaries

Space An internal region of a building

SpaceBoundary Demarks a space. In the IFC a given wall can span several spaces. In

the ontology SpaceBoundary instances map to the wall connection

geometry in the IFC, participate in the space topology and can

participate in a further wall assembly

WallWithOpenings,

SolidWall

Subclass of SpaceBoundary. Opening may or may not be ‘filled’ with

door/s, using the topology

VirtualBoundary Subclass of SpaceBoundary. Revit does not set IfcVirtualElement as a

boundary although it does set some related connection geometry, and

the virtual flag is set in the objectified relating object. The ontology

considers virtual boundaries as openings (passable through by people)

Door Physical barrier. Door is not part of opening, as it would no longer be

an opening (when the door is closed), although it is topologically

related to the opening

155

Table 6.9 - Selected building ontology object properties

Role Description

observes Captures a sensor’s monitoring ability of a building entity by a

sensor e.g. opening by motion sensor. Asymmetric, inherits

from inProximityOf

inProximityOf Relationship between things to capture a sense of ‘fairly

close’, typically within 1.5 m. Symmetric

directTangentialProperPartOf Not transitive sub property of spatial:tangentialProperPartOf

(which is transitive, and has the inverse

spatial:hasTangentialProperPart), and asymmetric. E.g. door

touches the opening frame along its edge (a component of

the wall) but does not touch the wall

constainsInsideAlongFloor Sub property of spatial: hasTangentialProperPart, range

WallOpening. Conveys a sense of touching at the edge, e.g.

opening touches wall along the floor plate

boundsSpace Non transitive sub properly of spatial:tangentialProperPartOf

indicates directly touches the edge, and is contained

connectsWithZone Sub property of spatial:externallyConneted, transitive and

symmetric, domain is Zone. Conveys sense of contact

externally

directlyConnectsWithZone Symmetric and irrelfexive, sub property of connectsWithZone

directlyConnectsWith-

ZoneWithOpening

Symmetric and irrelfexive, sub property of

directlyConnectsWithZone

engineeringSubcomponent Mereology. Asymmetric

containedBySpace Topology, internally connected, transitive range is Space. Sun

property of spatial:nonTangentialProperPart. E.g. zone and

sensors

hasOpening Sub property of spatial:hasTangentialProperPart. Has range of

opening

spaceHasOpening Sub property of hasOpening, not transitive, domain and range

are respectively Space and Opening

containsStructuralElement ‘boundary assembly’ mereology, derived from

parts:properPart, domain is SpaceBoudnary

functionalPart Derived from parts:properPart, transitive

electricalPart Derived from parts:properPart, transitive, has inverse

156

hasElectricalPart. Similar constructs for wireless mereology.

The building mereologies are built in an order starting with IfcSpace entities with which the IFC

schema structure is conducive. In the case of the bounding space elements, the corresponding

topology is also created e.g. space connects wall, wall connects opening, opening connects

door and window types. Thus via transitive relations, it is a trivial inference in the ontology to

determine if a space has openings.

Summarising the realisation of the above in the building ontology, openings and doors are

engineeringSubcomponents of boundary (mereology), the WallOpening class has the

relationship containsInsidelongFloor (a specialised sub property of hasTangentialProperPart,

the topology does not imply component despite its ‘part’ name) to the wall type, and the door

relates topologically to the opening type by a directTangentialProperPartOf relationship. The

Opening class can approximate to a doorframe component, which is a physical opening in a

boundary but which can also contain an open-able barrier in the form of a door i.e. not

necessarily permanently open. Additionally virtual boundaries are also opening types.

Regarding mereology, for example for the boundaries, the model is constructed in terms of

barrier function, so wall opening and door are part of the barrier, and parts of those entities

e.g. bricks are also part of the barrier (transitive). Door is not part of the opening but has a

topographical relationship, and is part of the barrier (function) as mentioned. Application of

the connection relationships from the topology ontology (referred to with the namespace

spatial in Table 6.9) thus add semantics to the nature of connections.

The topology and mereology constructs are applied throughout the buildings (as well as in the

and sensors ontology). A further example for the application of topology is the modelling of

zone connections.

Regarding the assertion of virtual boundaries in the ontology, the processing of IFC connection

geometry simplifies its representation and capture (in the ontology). In that way the sensor

relationships to such openings can be created in a uniform way to other openings, and to

those openings with door ‘fillers’.

Location information is not stored in the ontology as the meaning of location is very wide and

application specific. Instead for building entities, the ontology stores the identifier of the

closest geometrically representative IFC object. Thus a geometric representation can be

retrieved from the IFC model and its geometry processed according to the requirements of the

application. However there is not always a semantically consistent mapping and so an object

157

identifier is not always set, and under such circumstance the agent has to find an alternative,

e.g. by elaborating a mereology. For example, sensor individuals that are physically mounted

on a ZigBee unit (the sensors ontology is one of several imported ontologies), share the ZigBee

units’ location, so as mereology captures that knowledge, the agent ultimately uses the ZigBee

unit’s cross-referenced IfcBuildingElementProxy object’s identifier to find the sensor location.

An alternative example where a semantically consistent but indirect reference is used, in

connection with the virtual boundary mentioned above, that ontology entity has no

corresponding IFC element, but it can be described by connection geometry to IFC space

objects, so that is used as the cross-referenced object. The lack of geometric modelling in the

building ontology does create a degree of coupling between the ontology and the IFC, but the

elimination of that coupling would have required extensive modelling to fully capture the

semantics without significant benefit.

The scope of the buildings ontology (and others) matches the required usage. Although

additional (high level) statements such as ‘the only way for persons to enter a zone is through

openings’ could be added for completeness, any additional entailments would not currently

find application. The addition of such further domain modelling, as well as the addition of

further domain independent theories beyond that already added, could however facilitate

more useful abstract and fundamental reasoning in wider scope, and some related aspects are

described in section 8.1. Regarding integrity, a degree of general buildings A box ontology

integrity for example is derived from the IFC knowledge source, and ultimately from the toll

that generated it, at least when populated by agents after complete processing of an IFC

model.

6.4 Summary

The following summarises the detailed IFMS implementation covered in this chapter, divided

into the distinct areas.

6.4.1 Infrastructure Development Summary

Several executables were implemented in order to interface directly to both wired and

wireless hardware via USB and serial ports. The interfaces allow the reading of sensor data,

and the control primarily of wireless sensor networks. A data storage provision uses an SQL

database. While it is a fairly conventional design, the implementation required attention to

threading and synchronisation. The implementation is distributable across execution hosts and

is scalable. The resources are accessed by clients via IIOP endpoints.

158

6.4.2 Multiagent Layer Implementation Summary

The IFMS agent implementation realises rational behaviour by application of the BDI

abstraction, supported by the JADEX framework with some customisations and extensions.

The agents are supported by an MAS infrastructure delivered by the JADE framework.

The BDI abstraction is well supported by JADEX with significant behaviour configured via

property settings in an agent configuration file (ADF). Other implementation in Java (with

underlying support from JADE) shifts the programmer away from low level implementation

concerns such as those relating to synchronisation, threading and communication transport

primitives.

However few mechanisms were added to further structure the agents’ internal architecture.

The commitment class externalises agents’ intentions thereby facilitating improved rationality

and enabling the exchange of those attitudes. The exchange of commitments as well as belief

attitudes improves collaboration. Additionally, the custom implementation of the agents’

auditing mechanism adds structure to the recording of the outcomes of goal / plans, for later

use in deliberation. A limitation though is that commitments and logs are not semantically

described, so agents can’t reason about the entailments of intentions (plans) and their success

in the deliberation phase. Commitments and logs however play a significant role in

deliberation in algorithmic processing. The implementation is a practical step towards higher

integration of BDI attitudes but without formalisation in terms of modal logics.

For the request, status evaluation and general management of hardware resources the device

lease class plays a central role in the IFMS. A degree of benevolence is still required though by

resource consumers but as the system is closed, that is not problematic. A more ‘aggressive’

protocol implementation however may render better efficiency of finite resource usage and is

an area for potential further work (see section 8.2.2).

The IFMS agent layer as a whole combines knowledge support through the use of ontologies

and reasoners, but still retains significant behaviour (and implicit rules) captured in Java

algorithmic implementations. The formal knowledge capture in the form of ontologies

contributes significantly towards deliberation and means end reasoning.

6.4.3 Ontology Development

Several modularised and cohesive ontologies were developed following the selected Neon

methodology. The methodology includes the descriptions of patterns of which some were

applied. For editing the Protégé tool was found adequate.

159

During development the ontology set has undergone several fairly extensive evolutions, but

very little software needed to be altered to accommodate these changes, while the

programmatic exploitation of the improved model was achieved with the simple addition of

Java code. While accurate and philosophically sound modelling was a main concern in the

authoring of ontologies, the need for practical simplicity and appropriate reasoner output was

recognised. The scope of semantic expression did not include numerically based domains e.g.

geometry that would have delivered little or no benefit by capture in an ontology. Instead,

alternative mechanisms are used where appropriate so for example in the case of building

geometry, some ontology entities cross-reference a semantically compatible representation in

contained in the IFC model, and that representation is processed numerically.

In the IFMS ontologies, the statement of concise and minimal modelling statements, facilitated

by relatively high expressivity in the formal logic based KR, lessens the burden on maintenance

as a significant proportion of knowledge is inferred instead of asserted. The formal

representation of the domain and supporting theories means that consistency checking is

possible which proved to be useful both during authoring as well as at run time. Similarly the

querying of domain knowledge is made concise through semantic expression. In the case of IFC

derived knowledge the buildings ontology A box is algorithmically updated in a relatively

simple way, using a fixed navigation of the IFC schema. In the KB, the knowledge is then query-

able from different perspectives, thus avoiding complex ad-hoc IFC schema navigation that

would typically require extensive run-time type checking and casting (the objectification of

relationships add further intricacy to the implementations).

The use of the SPARQL query facility was seen to provide significantly easier implementation

than the alternative of manipulating the ontologies through the object oriented mapped

ontology construct approach. The expressive ontology representation also allows very

compact queries in SPARQL to be constructed that are simple to maintain and debug.

The authoring of the (OWL) ontologies requires consideration to the OWA. Correct semantics

can be realised by assertion with additional statements directly or possibly through the

elaboration of existing assertions so that the desired semantics are entailed. Regarding the use

of ontology rules, the building ontology, primarily in the early iterations, contained several

SWRL rules. However alternative expression of the captured semantics were found so the use

of rules has been eliminated. The removal of those rules had no appreciable effect on

performance but made maintenance with the Protégé editor easier.

160

6.4.4 Hardware Development Summary

The sensor hardware was developed in order to deliver the required building environment

sensing. Both wired and wireless hardware was developed. However the wireless devices were

developed as the main demonstration of feasibility for practical systems. The design objectives

included easy deployment and low power consumption so that battery power gave good

operational duration. A very compact and cheap set of units were produced which meet the

operational requirements very well.

161

Chapter 7

7 Testing, Verification and Evaluation

Testing, Verification and Evaluation

This section describes the testing and evaluation of the iterative development of the system as

a whole, after a preliminary system was implemented from the design. The changes to the

system are mainly concerned with software and are driven by either errors in implementation,

improvement in knowledge of the domain or inadequate performance. The latter was a major

concern as the reasoner execution can be particularly demanding.

The nature of the hardware and its much lower level of complexity at the modular level meant

that although some testing and evaluation cycles were completed, they were much shorter

and more stable compared to the software iterations.

This chapter first describes the two deployments that were used for the various stages of

testing. Next some initial findings from the preliminary unit and integration testing are

described. Building on the early tests, the testing of larger assemblies and the results are then

described. The descriptions include an outline of the modifications identified to address issues

found, feeding back into design and analysis as part of the iterative development process.

Finally in section 7.4 some final stage system testing results from a realistic deployment are

presented. That deployment involves several agents that monitor rooms in a university

building that have a variety of uses. Due to lack of space, that section references results that

are presented in more detail in appendices C and D. The system at the time of writing is in a

working state and performs well but areas remain where improvements can be made. These

are identified and described.

7.1 System Deployments

This section describes the deployments used to test and evaluate the software. It details the

rationale for the choice of building and the test zones and outlines the approximate

placements of sensors in those zones.

Two deployments were used to test and evaluate the system. The first is in a small domestic

flat. This was primarily used for initial development and early testing, while the second

deployment is a large meeting area for students in a university building, together with several

adjacent offices. The first deployment uses up to 5 wireless nodes and a few wired devices. In

162

the second deployment, there are 10 wireless units and a small set of wired sensors. The type

of sensors attached to the wireless devices varies but includes ambient light level sensing, one

or two motion sensors and a temperature sensor. In addition some platforms host proximity

sensors attached to doors.

The rationale for each testing environment differed. The first, the domestic flat, was used for

initial development and was a location where hardware could be temporarily fitted if

necessary without concern for appearance. The second, a more realistic and large scale

deployment, the university set of offices and rooms, was used for later stage evaluation. The

objectives of the second deployment were to provide a more complex and challenging testing

environment (in terms of building geometry, sensor deployment and space usage), make

further iterations in development to improve performance, check flexibility and evaluate

robustness. The deployment was kept to a realistic level avoiding an artificially high density of

sensors. The exact (fine) positioning of sensors and wireless host platforms is not critical but

regarding general positioning, adequate provision is made to allow for all the testing scenarios

required, and the details are given in the sections below. Most motion sensors are used in

multiple simultaneous roles, especially where there are adjacent zones with associated agents.

The greatest variation in zone agent type behaviour arises due to the evaluation of occupancy

goals, ranging from asserting that a door or opening has not been used to occupancy detection

and counting. The deployments therefore aim to test a range of building geometries for that

purpose, as well as to test some of the other zone agent type capabilities. In the larger

deployment, a number of different types of room were selected, from those with simple

geometry, to more challenging spaces such as the ‘Forum’ room. The latter has numerous and

different types of openings and occupancy patterns. Details of each facility follow, together

with the hardware and software deployments used.

7.1.1 Domestic Flat Deployment for Testing

The domestic flat testing hardware uses a single PC host to host the infrastructure modules,

agent platform and agent executables. A National Instruments digital input/output unit and a

ZigBee network controller are connected via USB. The sensor hardware deployment is outlined

in Table 7.1. An excerpt for the rendered IFC model is shown in Figure 7.1. The red disks in the

ceiling region represent sensors, sensor clusters or a wireless node with sensors attached.

Table 7.1 provides an overview of the sensor provision and the richest types of knowledge

generation goal that that deployment supports.

163

Table 7.1 - Domestic flat sensor hardware outline

Room Sensor deployment explanation ‘highest’ sensing

capabilities

kitchen Wireless unit providing coverage of the living_room /

kitchen doorway and interior, temp and lux

monitoring

Opening monitor

counting, environment

living_room Wireless unit providing coverage of the living_room /

hallway entrance and interior, temp and lux

monitoring

Opening monitor

counting, environment

hallway Two wired motion sensors Continuous motion

Figure 7.1 - Rendering of the minimal IFC model of the domestic flat deployment

7.1.2 University Building Deployment for Testing

The following figures and tables describe the university building deployment. Firstly Figure 7.2

is an instance level deployment showing the main computer hosts, executables, the primary

resources and hardware (excluding the sensor devices). Next Figure 7.3 is an annotated

164

excerpt from the rendered IFC model (a further illustration is given in appendix B). Table 7.2

provides details of the testing capability of the various rooms, while after that in Table 7.3

more details of the sensor hardware are provided. Finally, using a JADEX framework tool, a

snapshot of agent execution at the university site is shown in Figure 7.4. The figure illustrates

agent messaging amongst three deployed zone agents, a sensor node agent and other

infrastructure agents including a yellow pages agent (directory facilitator df). Specifically dialog

between the sensor node agent and zone agents is captured together with that between two

zone agents and between zone agents and the yellow pages.

Figure 7.2 - The core elements of the university site deployment. The sensor hardware is not shown

165

Figure 7.3 - Excerpt from IFC model render focussed on Forum area. Selected elements have been removed to improve visibility

166

Aside from the sensor hardware, at the instance level the university building deployment

comprises of two host PCs. The first, a Pentium 4 hosts the wired and wireless infrastructure

modules, an agent platform and a sensor node agent. A National Instruments digital and

analogue interface unit is connected to host the wired network while an Ethernet to ZigBee

module is connected via Ethernet. A second PC, a dual core Intel PC, hosts an agent platform

and zone agents for the forum, w.1.35 and w.1.33 rooms. Table 7.2 describes the sensor

deployment and the richest types of knowledge generation goal supported.

Table 7.2 - Hardware summary and associated best zone sensing capability

Room Sensor deployment explanation Best (‘highest’) sensing capabilities

w.1.35 Wireless unit monitoring the w.1.35 /

forum doorway, temp and lux monitoring

of the ‘interior’

Opening monitor person counting,

environment monitor

forum Wireless units providing coverage of the

numerous opening and interior, temp and

lux monitoring. Opening types are virtual to

a corridor, locked doors to offices, propped

open doors

Opening monitor person counting,

environment monitor. Inference of

‘ignore’ unmonitored doors

(maintenance room, infrequently

used lab)

forum Tracker Implemented for completeness but

not extensively tested at the time of

writing

w.1.33 Minimal external opening monitor

hardware. No internal hardware

Plant

room

No internal or external hardware Inferred infrequently accessed

w.1.36a No internal or external hardware Infrequently used (user asserted

assumption)

The hardware deployment at the university site and the rationale is detailed in Table 7.3.

167

Table 7.3 - Sensor deployment specification and rationale at the university site

Sensor

unit id

Attached

sensors

Capability and rationale

m2.8 Spot pir, temp,

lux, aux spot pir

Observes a virtual opening from corridor into Forum, person

counting capable and environment monitoring

m2.3 Magnetic door

switch, temp

Activity monitoring of the door between Forum and w.1.33,

assumed no internal access to w.1.33 so allows the Forum agent

to still perform person counting under some established

conditions thus demonstrating practical flexibility

m2.5 Spot pir, temp,

lux, aux general

purpose pir

Environment monitoring, participate in zero (person) occupancy

detection with the general purpose aux pir, and can participate

in tracking (2 nodes)

m2.4 Spot pir, temp,

lux, aux general

purpose pir

As above but has central location so enhances the role of zero

occupancy detection

m2.1 Spot pir, temp,

lux, aux wide

angle pir

Environment monitoring, and participation in zero (person)

occupancy detection with the wide angle aux device which is

centrally located

m2.6 Spot pir, temp,

lux, aux wide

angle pir

As above

m2.9 Spot pir, temp,

lux, aux spot pir

Observes double doors giving access into Forum which are often

propped open, person counting capable and environment

monitoring

m2.10 Spot pir, temp,

lux

Observes double doors giving access into Forum which are often

propped open, in conjunction with 2.2 can perform person

counting. Additionally environment monitoring. Very easily

deployed configuration without aux wired devices

m2.2 Spot pir, temp,

lux

As above

m2.? Spot pir, lux Observes spring loaded door. Person counting capable in

conjunction with magnetic switch in c1. Also ambient light

monitoring

c1 Magnetic door

switch, temp

Detects opening of door between Forum and w.1.35. Also

temperature monitoring

168

c2 General purpose

pir, temp

In w.1.35 for environment monitoring, person occupancy

determination and can participate in zero (person) occupancy

detection with the general purpose pir. Also temperature

monitoring

c3 General purpose

pir, temp

As above

Figure 7.4 - The agent execution environment at the university site. The user interface is part of the

JADEX framework

7.2 Preliminary Tests

A bottom up ‘glass box’ approach where detailed knowledge of the implementation is used to

derive test plans from execution paths was the approach generally taken in preliminary unit

and early integration testing. The smallest test units are those software entities that are

defined by class boundaries. These units, together with assemblies of units including a

common façade, could be tested without too much overhead to write test harness code to

create input and realistic contexts. Where the creation of test harnesses was not considered

worthwhile, and especially if combinations of units could readily be debugged after

169

integration, small assemblies were tested and evaluated together, typically by ‘hard coding’

some of the supporting units to give predictable responses.

The unit and early integration tests identified implementation errors and indicated the

performance characteristics of the units and unit assemblies. Integration testing in general

gave more insight into the system as a whole and made a larger contribution to the later

stages of the software development lifecycle. The integration tests covered functionality

including general start up and initialisation of the infrastructure and agents, location functions,

registration (yellow pages and other inter-agent), message exchange, and ontology interaction

(updating and querying) with the ‘in memory’ knowledge bases.

As well as testing the infrastructure and agent layer software, the testing necessarily

incorporated the supporting artefacts including the ontologies and the IFC models. Tests were

configured for typical and worst case loading in order to confirm adequate system

performance.

In particular, integration testing identified where performance was inadequate. Workarounds

took the form of adjusting timeouts or buffering information. The latter implementations

either involved buffering of inferred knowledge from the ontologies, or buffering of external

events while the reasoner executes. Integration tests also gave insight into realistic

deployment contexts (testing with various IFC models), which is particularly relevant to the

choice of KB inference used. Significant reduction in reasoning time was achieved as expected

by using the less expressive e.g. reflexive RDFS inference, for simple subsumption queries, but

its scope of application was severely constrained. All the library functions implemented allow

the passing of an ontology model that is appropriate to the context, so the appropriate models

were reconfigured where necessary. Typically agents retain in their belief base a handle to

several ontology models with various attached reasoners.

Specific preliminary testing of the different constituent ‘technologies’ within the IFMS are

described next. As with a typical software development lifecycle, testing was performed at all

stages for a range of purposes including analysis, design and verification. The following

comments are not specific to any lifecycle stage.

7.2.1 Ontologies

Regarding ontology usage, a total of 34 SPARQL queries and many other simpler queries such

as testing for membership of a defined class, together with a few object based manipulations

are used in the IFMS by agents. The SPARQL queries were tested and corrected in a test utility

which for that purpose created a typical context (type of inference and parameters) that is

170

representative of the deployed usage. The input ontology depended on the test but was either

the ontology shared by agents, or a snapshot run time ontology generated by an earlier agent

execution. An option in agents is to write their various KBs to disk for diagnostic and

verification purposes. Errors are logged at a high level (‘ERROR’ level) and the logs were

regularly checked in agent deployments.

In the area of ontology A box population, related implementations were easily verified again

by using a small test utility that replicates the operation of the agents in that scope. Moreover

many functions are implemented in custom libraries for supporting agents’ utilisation of the

general, sensor and building ontologies. A primary example of custom library support is the

population of the building ontology from an IFC model. For that role, an appropriate context

includes a non inference reasoner engine configuration for KB updating.

A number of different editor tools and reasoner versions were used in testing and in the

deployment during the course of development. It was however verified that the ontology

development tools delivered the same inferences as those produced by the reasoner

implementation used by the agents. The motivation for using a range of tools and reasoners

was that some tools provide extra development and debugging support, while in some

situations, some reasoners performed faster. Particularly with early iteration stage ontologies,

the FACT++ reasoner showed better performance with the visual editor. A later version of

Protégé for example offers support for explanations and other features.

Beyond the scope of static testing is potential rendering of ontology inconsistency at run time.

In the system during ontology population, the most likely scenarios are the addition of

‘closure’ assertions that render inconsistency through mismatches, and the assertion of

individuals as members of multiple classes which are disjoint. Those errors were eliminated

during integration testing. The former were due to algorithmic errors, typically where a plan

added further information without revision of all the existing closure axioms, while the latter

highlighted modelling errors. Those modelling errors typically arose from refactoring the

ontology hierarchy without attention to associated axioms.

Early testing cycles highlighted poor reasoner performance in terms of the time to classify and

realise the ontologies that imported the (‘full’) SUMO ontology. A significant proportion of the

SUMO ontology was not being utilised i.e. not entailed by application domain inferences, and

so it (the SUMO ontology) was ‘pruned’ and modularised. Two sub ontologies were extracted

namely sumo_parts and sumo_misc, capturing mereology and miscellaneous concepts and

relations respectively.

171

The use of explanations, and particularly the support for these in Protégé v4.1, was found

useful for performing diagnostics when unexpected inferences were found. As an illustration

the Protégé rendering of explanation for (in this case expected) inferences for a zone is shown

in Figure 7.5.

172

Figure 7.5 - Protégé 4.1's rendering excerpt of an explanation (Forum zone as ‘determinable occupancy’)

173

The test cases for the unit testing of ontologies were derived from the competency questions

for the ontologies described in 4.3.3. The context information was derived from the

deployments which cover a range of building zone geometries, sensor types and sensor

positions. A number of agents have been deployed to evaluate and verify the operation.

Regarding ontology usage by agents and thus a forming a primary part of testing contexts, the

sensor node agent type utilises only the sensor ontology (and its imports), while the zone

agent type primarily utilises the building ontology which imports the sensor ontology and

other supporting ontologies. There are cases where the zone agent type can use the sensor

ontology directly though to gain performance improvements.

7.2.2 Infrastructure

The following subsections briefly describe the preliminary testing (procedures and those

outcomes that are noteworthy or not part of normal development progress) of the

infrastructure elements.

7.2.2.1 ZigBee Network Interface

During development of the ZigBee network interface, some unit testing was carried out by

hard coding a few dialogs (replies to some implemented commands) to substitute the serial

interface. After integration to the serial library, a terminal program into which responses were

manually typed was then used initially before testing with the ZigBee serial hardware

interface. However timing constraints, and the level of detail required to formulate meaningful

responses, limited the practical usefulness of the terminal program to simple scenarios. The

user interface for the ZigBee network interface (shown in Figure 6.2) is primarily for status

display but a facility to assign ‘behaviours’ to sensor nodes was implemented for testing

purposes. Those behaviours consist of some configuration commands and the issuing of some

write commands that enabled visual diagnostics (the development kit units have l.e.d. status

indicators on some of the channels). For the next integration stage, a utility agent was

developed to, in a controlled and predictable way, request leases, read and log data. Thus

testing included integration with and the testing of other system components (see section 0).

Regarding the ZigBee interface’s operation with the rest of the infrastructure, including the

registration of its sensors and the updating of data, the same interfaces as those used as by

the wired network are employed and such testing of the associated functionally was covered

there (see section 7.2.2.2), so no further testing was required in that area, apart from the

simple testing of additional façades in some cases.

174

The ZigBee interface’s implementation is primarily event driven and includes several multi

threaded mechanisms for processing serial data, issuing commands and synchronising wireless

node proxy objects. The mechanisms interact and so during testing, the settings for various

triggering mechanisms, timeouts for synchronisation objects and for other behaviours such as

the default activation of the timeout invocation for the handling of error states were revised to

give the desired overall behaviour under different scenarios. The scenarios included verifying

adequate behaviour under the highest expected wireless network traffic throughput, as

detailed in section 7.2.4.1 that was conducted in later testing phases.

7.2.2.2 Sensor Node, Digital Input / Output and Thermometer Modules

The unit and integration testing of the wired network supporting modules together with the

sensor node executable, was completed using routine software engineering practices. The

testing involved debugging software implementations employing the NHibernate object

relational mapping libraries in conjunction with an SQL database, Microsoft .Net Remoting

technologies, National Instruments USB driver libraries and a RS232 serial library.

Test cases were derived from the use cases for the system. After the initial debugging, the

testing effort focussed on ensuring the delivery of good performance in terms of preserving all

detected environment events while still delivering low processor usage. Where asynchronous

notification of new data was not available, polling was required, but the overhead is very

modest and as data through puts are also modest, no specific difficulties were encountered in

that area. The implementation of pulse timing of the (wired) devices connected to the National

Instruments interfaces, for example, was easily realised. That implementation includes ‘light

weight’ mechanisms to detect changes at a relatively fast polling rate (a 500 millisecond

interval), and upon detecting changes, the interfaces are then queried to resolve those devices

having new states and their associated values.

The initial testing revealed that the customised settings for the configuration of the .Net

Remoting channels were adequate. Primarily those customisations relate to the ‘lifetime’

specification of server side objects, typically activated as singletons that realise the primary

interfaces

Further testing relating to the sensor node executable revealed some degradation in update

performance of an early implementation when tables grew to include a relatively large (> 5k)

number of entries. The sensor node design includes object-relational mapping (ORM, see

section 6.1.1) derived classes to implement the data histories and originally those objects were

manipulated directly in synchronous client .Net Remoting associated threads. As a solution the

sensor histories were buffered and the ORM objects synchronised with the database in a

175

separate thread. A 3 hour buffer for historical data for each device allowed fast update from

sensor interfaces and fast query from agents. In practice data is only rarely requested from

outside that time interval, but for the servicing of requests where older data is required, some

custom SQL statements were added within the NHibernate framework to further improve

performance over the default (framework’s) implementation.

7.2.3 Agent Layer

The artefacts involved in preliminary testing of the agent layer, moving from the narrowest

scope to the widest were:

 Methods, typically implemented as common stateless methods manifested as static

methods of ‘utility’ classes for use by any agent type. They primarily realised

miscellaneous functionality such as the custom object serialisation for use in a few

messages (cf. the semantic language SL), sunset / sunrise time related functionality

etc. Such functionality was easily tested using test ‘harnesses’ for unit testing.

 Classes. The agents’ plan implementations and common classes are implemented

following the object oriented paradigm. Typical classes support IFC model interaction,

sensor and building ontology manipulation and update, and the motion and entry exit

tracker implementations. Again testing at this scope was easily completed with the

creation of test harnesses. The testing of plans holistically is covered in the following

scopes.

 Simple goal and corresponding single (candidate) plan implementation which can be

triggered by the BDI architecture based mechanisms e.g. due to events (user defined

and message events), and belief changes. Testing at this scope additionally includes

plans that are triggered by a simple trigger match for sub goals dispatched in plan

implementations. The motivation for implementation of the latter as goals cf. methods

is the lifecycle control support by virtue of its hierarchy, as well as the other BDI

manifestation ‘flags’ that allow the specification of goal behaviour. Testing was

typically completed by ‘hard coding’ the dispatch of those goals to be tested after the

creation of an appropriate context.

 Goal / plan implementations involving BDI manifestations that include (non simple)

trigger and preconditions specifications in Java, belief state and belief change

triggering, goal retry criteria, context and drop conditions, and the JADEX support for

goal deliberation such as cardinality control and inhibit specification. Some of that

testing required the hard coding of some of the conditions to create appropriate

contexts while other scenarios were created with support from other assemblies.

176

Examples are the sensor node agent type’s management of its infrastructure

connections as well as its management of sensor leases and ZigBee nodes.

 Goals involving more complex deliberation such as the zone agent type’s evaluate

occupancy high level goal. The test deployment at the domestic flat was a convenient

environment for the purpose of initial testing, involving in some cases the hard coding

of contexts and goal dispatch.

 Complete agent types, the primary types being the zone and sensor node agent types.

The testing at this scope was completed in the same way as immediately above.

The software units mentioned above could typically be meaningfully tested using a single

stepping debugger, unlike the more complex assemblies involving BDI manifested behaviour

and asynchronous messaging. The assemblies were tested using scenarios derived from the

agent responsibilities (see for example Table 6.3 for the zone agent type and Table 6.5 for the

sensor node agent type). The utility agent mentioned above in section 7.2.2.1 was also used to

test modules of other agents’ functionality before integration into the target agent type/s. One

such test involved the evaluation of the zone agent type’s lease management facility which

was extended in later tests to include the subscription to sensors and the reading of values,

incorporating the later integration testing of the infrastructure. The ‘hard wiring’ during testing

in order to create controlled contexts included the fixing of any deliberation to ‘force’ the

desired scenario (thus removing temporally some aspects of pro-activeness of the agent for

the predictable and convenient activation of scenarios). Message exchange scenarios such as

the request and reply of some agent attitudes including beliefs, e.g. zone characterisations,

were tested in isolation before integration into assemblies.

The objective of preliminary testing, in addition to identifying and eliminating implementation

errors, was to simulate and evaluate worst case ‘loading’, and to investigate suitable settings

for timeouts. Additionally, the testing confirmed operation of supporting third party

frameworks, and resolved any unclear functionality of those resources. As well as BDI agent

behaviour, the scope of the agent related tests necessarily incorporated ontology querying,

ontology updating, the processing of a range of simple and complex geometries for KB

population (see also 7.2.1), and message based dialog.

7.2.4 Preliminary Test Summary

The following issues were discovered during early unit and integration system testing and the

findings were fed back into the analysis and design phases.

177

7.2.4.1 Performance Related

The preliminary integration testing revealed the need for performance related improvement in

several areas. The problems manifested themselves in several plan timeouts linked primarily to

reasoning and message exchange, which typically triggered further reasoning. These errors

were addressed with the following:

 Buffering of semi-static information in time critical scenarios. Typically buffering is only

used where the overhead for synchronisation is low such as short lived plans.

Examples are the buffering of host agents for sensors. The nature of the buffered

information is in some cases ontology derived but only where the scope of the query /

reply is invariant.

 In order to distribute demand over a longer interval, as well as to retain better control

and management of failed messages, requests to the sensor node agent were divided

into sequences. For example the requestor divides requests into smaller time intervals

or according to type.

 Revision of the use of type of inference engine used in time critical evaluation, using

less expressive inference where possible. For example in a few cases transitive class

hierarchy inference, delivered by the appropriate configuration of the built-in Jena

inference engine, could efficiently service very simple queries of that nature. However

in practice its application was limited.

 Use of the smaller sensor ontology cf. building when just sensor information is

required. The sensor node agent universally uses sensor ontology based KBs and in

some cases where the query is limited to that scope the zone agent can also use such a

KB.

In scenarios where leases are requested for ZigBee hosted devices, each lease requires

reasoning about the corresponding host configuration to be completed by the sensor node

agent, as well as mechanisms in that agent to deal with latencies associated with the issuing of

such commands to the infrastructure sensor node executable. Regarding latencies, a ZigBee

host for example, may need to be reconfigured before the subsequent configuration of

sensors, and the desired outcome of such commands are not delivered instantaneously. In the

IFMS, zone and other agent types can potentially request numerous leases starting at a given

date / time after deliberation to adopt new plans, or in active plans on transition into new plan

states. As well as requiring potentially many leases per plan, multiple plans which each

generate separate lease specifications can be triggered. For example, the forum zone has

about 40 sensors hosted by 10 nodes, and an agent could legitimately request leases for one

178

or more sensors hosted by each available node. The IFMS deployments are characterised by

potentially many zone and other agent types that can request resource leases from a single

sensor node. While the simultaneous requesting of leases by different agents is possible, and it

is accommodated by the solution, it is unlikely.

Thus, in order to deliver in a timely fashion of the delivery of granted lease states of requested

sensor leases in scenarios where many leases can be simultaneously requested, the original

design for lease management was refined as part of the development process to that shown

in Figure 7.6. The refined implementation was then evaluated. The figure is a simplified

representation of the agent type’s activity and excludes details about its implementation using

the BDI architecture. The main features of the design are the throttling of requests, the

merging of new leases with existing ones where possible and the subsequent node centric

processing and management and issuing of commands incorporating the use of buffered data

about the node properties. Additionally the solution includes some of the approaches outlined

above such as appropriate use of ontology and KB, and some buffering. The implemented

mechanisms were tested with the utility agent as a client and the performance was later

checked in the university deployment, primarily in conjunction with the forum room zone

agent as the client. The implementation was found to perform adequately under ‘worse case’

scenarios when the client pursed resource intensive goals such as occupancy counting and

others. Some of the features in the final design were missing in the original which exhibited

inadequate performance, primarily resulting in lease requests not being fulfilled when

hardware was available. Requests typically timed out while the sensor node agent was

performing reasoning for earlier requests.

179

Figure 7.6 - Simplified representation of sensor lease management (refined from the original design). Tasks involving reasoning are shown with a lighter graduated background

(green)

180

Regarding the throughput of data from the sensor networks, the sensors that supply event

driven data, currently the motion and proximity detectors, can generate the highest traffic but

the device characteristics, and nature of the installation limit the data rates to modest levels.

The motion detection data rate is the highest at up to a few events per second per device. In

the scope of the agent layer, the implementations for the handling of data from the network

and its distribution to subscribed agents did not present any significant challenges, and

remained relatively simple.

However, in the infrastructure layer and in the ZigBee interface in particular, the application

originally used a synchronous subject / observer implementation to trigger notification of new

data arriving from the wireless network. Improvements were made by adding some

asynchronous notifications, and in some cases such as for the update of the user interface, the

observer was removed and updated on a timer instead, thereby throttling the refresh.

7.2.4.2 Integrity and Efficiency

In general, the integrity of goals and plans is dependent on ensuring that no events from

leased sensors are dropped i.e. every domain event is propagated from the source to the

consumer. A particularly sensitive scenario is where the evaluation of an environment event is

dependent on a single event type, among others. An example is where an agent has assigned

to a sensor role a magnetic proximity sensor fixed to a door, instead of assigning a motion

sensor to that role. In that case, although several events from a range of sensors are required

for the determination of a person passing through the door, a missing magnetic switch event

leads to failure in the detection mechanism. The use of a magnetic switch contrasts to the

more robust use of a motion sensor in that role which can generate many events for the

corresponding activity (although the latter can still lead to failure in the determination when a

single event is dropped). To avoid the dropping of events and thereby deliver robustness, a

buffering mechanism was therefore added to event ‘listening’ plans, realised by an appropriate

mechanism in a base plan. The dropping of events typically occurred when plans were

executing plan steps that take an extended time to execute, which as mentioned above

included reasoning or other extended processing. The original implementation that waited for,

and triggered on, internal events carrying the new data (that in turn is generated by another

plan triggered by an agent communication language (ACL) messages, and which interprets

those ACL messages) used in the original implementation was retained, but some

modifications were made. Firstly the listening plan was modified to add to a buffer its recent

interpretations of ACL messages, and secondly, the consumer plan implementations were

changed to extract any new interpreted events from the buffer before waiting for new events

181

if no buffered events are present. The latter mechanism was realised in a base plan

implementation.

For the support of plan efficiency, the values of timeouts initially set in design were reviewed

during early integration. Overall efficiency is affected by timeouts by virtue of avoiding

excessive waits if there is a low probability of success after a given interval, balanced with the

overhead for the agent to recover from a possible ‘error’ condition. For example a reset may

lead to the entire goal being aborted, whereas a slightly longer timeout avoids that in a

realistic deployment. In particular the cases reviewed were those where ‘cumulative’ actions

are triggered by agents internally (goal hierarchy), as well as externally involving other agents,

any of which actions could trigger reasoning. Typically if goal A has sub goal B, and B includes

an operation that takes an extended time to execute, goal A’s timeout should be greater than

the expected execution time of that task in plan B and preferably longer than its timeout, in

addition to any expected successful execution duration in A. An illustrative example shown in

Figure 7.7 is the goal to synchronise a KB with the environment. The activity diagram shows a

scenario that creates semantic descriptions from an IFC model and the loads those constructs

in to the KB, followed by the semantic elaboration and loading of sensor descriptions subject

to their availability (described by lease states). The load building KB goal involves the dispatch

of sub goals, some dialog with other agents, and reasoning by the plan itself as well as by other

agents during dialog (any such reasoning could take a relatively long time interval to execute).

Therefore, where agents dispatch the load building KB goal synchronously (and several other

characteristically similar ones), the wait interval associated with the dispatch should be of

appropriate duration to prevent the goal being dropped before it has had a realistic interval to

complete. In the agent implementations in general, some timeout settings were assigned as

(public) statics in plans to facilitate consistent propagation through the access and totalling of

cumulative values. However such use adds a degree of coupling so the use of such a technique

was limited, and constrained to simple and narrow scopes. Enhanced dialog between agents

could capture abstract descriptions of such settings, and would allow clients to set goal

timeouts appropriately.

182

Figure 7.7 - Simplified load buildings KB goal activity. Goals are shown in rectangles and tasks involving reasoning have graduated backgrounds (green)

183

7.2.4.3 Sensor Role Assignment

The testing with the university deployment, where the density of sensors was necessarily high

in some regions (but still realistic for a ‘real’ deployment), highlighted the need for further

preference ordering in plans that assign sensor roles where multiple alternatives are available.

Such a situation for example is found in that region of the Forum zone (at the university

deployment) illustrated in Figure 7.8. The figure captures a corridor, in the proximity of a

virtual opening to the Forum zone, where an office entrance is located in close proximity.

Primarily due to the ‘quantisation’ in ontology constructs (specifically object properties that

relate sensors to building entities) that include a notion of distance ranges, without the

preferential ordering of role assignments, role allocations that are less favourable can occur,

leading to potentially poor functional performance. The solution was, instead of using a single

general query, to create a number of queries ordered according to preferences that

incorporate more specific SPARQL bindings. The more specific queries take account of, for

example, the type of sensors, and identify preference for sensors participating in specific

relationships to building entities e.g. the observes ontology object property that captures

detailed functional roles. Additionally, where multiple role fillers emerge for a given query, the

implementation was modified to resolve the choices by interrogating the geometry in the IFC

model. The custom method approximateSeparation derives estimates for the distance

between entities to allow accurate discrimination. The method determines approximate shape

representations for participating entities (that implementation is simplified by querying the

ontology to determine an appropriate reference location from the context, instead of detailed

complex further processing of the IFC), and then produces a value for the approximate

separation. The method handles the necessary transformations from the local coordinate

system of the building entity concerned (sensors are represented by the

IfcBuildingElementProxy entity which is located relative to the floor) using other custom

geometry methods. The same approximateSeparation method, in combination with other

algorithmic implementations, was originally used to evaluate the relationships such as the

observes properly, but in the majority of cases those roles are used in inference without

further IFC model interaction.

Thus the solution targets more specific sensor arrangements to determine a preferred order

for assignment of sensor roles. The preferred result is probably that which motivated the

hardware deployment. The situation comes about to some extent by the uniform specification

of the core ZigBee sensor units i.e. the ‘default set of sensors attached, as well as the non

numerical semantic relationships outlined above. For example in the situation shown in Figure

7.8, the deployment rationale is such that the PIR device near the door is not intended to be

184

used. In that case the user could have disabled it but that would require more configuration, as

well as rendering the device unavailable for use in secondary or ‘fall back’ selections.

Figure 7.8 - Relationship 'quantisation' illustration. Depending on the techniques and shape

representations used to evaluate separation between entities undesired relationships could be

established.

7.2.4.4 BDI Related

It was found that the JADEX mechanism of notifying changes in the belief base was not well

suited to some applications. Typically where belief changes trigger plan activation, when those

beliefs are numerous and rapidly changing, the triggering of many separate plan handlers is

undesirable. In those cases a timer based observer (a ‘reoccurring’ perform goal) was added

that monitors the beliefs and implements the desired throttling mechanism. As an example, in

the sensor node agent, the leases collection belief set change notification was implemented in

that way to trigger lease management.

7.3 Late Integration Tests and Results

The following sub sections describe some selected agent centric late integration test cases.

The tests are derived from high level goals that exclude knowledge of the detailed system

implementation but use knowledge of high level concepts such as agent, goal, ontology etc to

185

structure the tests. Correct and timely operation of the agent functionality relies on proper

operation of the underlying infrastructure layer, thus these tests check the operation of those

dependencies. Summaries of the tests are tabulated and a statement is given about the

outcome. In some cases further details are included in appendices. Specifically appendix C

contains some detailed results from the late integration testing. All outcomes from those tests

were necessarily positive in order to support the system deployment. Appendix D details

results from the system deployment at the university site and is also cross referenced in one of

the tables, but the deployment results from a system scope is primarily the subject of

discussion in section 7.4.

186

7.3.1 Zone Agent Type Testing

The following Table 7.4 details some comments about selected tests. The reporting is abstract in nature but in some cases reference is made to more detailed

notes in appendices.

Table 7.4 - Zone agent type tests

Functionality High level details Test case/s – selected illustrative example/s Result / see also

Construct a KB that is

synchronised with the

current environment

state (sensor

availability)

Populate the building ontology A box

representing the building and sensor

Domestic flat and university floor region Working as expected, see

appendix C.1.1

Choose the type of

occupancy monitoring

to adopt and activate

appropriate goal/s

Evaluate feasibility using the available

hardware, historical logs of earlier goal

success, preferences and other meta data

influencing choice

Simple space geometries – office w.1.35 (see

Figure 7.3).

Working as expected

Complex geometries – forum, see Figure 7.3. Working as expected, see

appendix C.1.2

Inadequate resources of cooperative assertions

for any occupancy monitoring (inadequate

hardware, unavailable lessee/s)

Working as expected, agent re-

deliberates on a fixed time basis

Assert zero occupancy

without use of motion

 Wait for zero. Simulate different conditions

occupancy / lighting level

Not yet fully evaluated

187

detectors

Maintain leases

(request for renew)

Request resources for identified task – find a

suitable host, request resource/s using a

lease/s. Verify that requested leases were

granted.

General operation Working as expected

Count occupancy

Select hardware and configure entry/exit

tracker. Selection of preferred resource

depending on plan state (assert unoccupied,

counting). Hardware leases secured with

functionality/goals above

Simple geometry of typical low occupancy (up to

6 people) office w.1.35 (see Figure 7.3) and

satisfied with single goal activation for a range of

single opening (door). Complex geometry of

forum involving the configuration and

management of several trackers.

Working as expected, see

appendix C.1.3

As above but with multiple configuration of

trackers with various opening types and

various associated hardware. Multiple goal

activation for a range of boundaries. Selection

of preferred resource depends on plan state.

Forum has openings: virtual opening, doors and

doors that are typically ‘propped open’. Various

controlled and observed building interactions and

behaviours

Working as expected, see

appendix C.1.3

Count occupancy with

reduced hardware

As above but replacing a tracker with an

assertion from another agent (illustrates

cooperation).

Forum and w.1.36 agents (see Figure 7.3 for the

associated zones). Disable ‘proximity of’ sensor

role with w.1.36 door (spot type PIR) to force

w.1.36 agent to adopt check opening use plan and

Assertion in w.1.33a’s ontology,

and exchange of zone

characterisation tested and

inference verified but complete

188

after 2h assert infrequently used opening test not yet checked in situ.

Determine occupancy Dynamic selection of preferred resource

depending on plan state. Hardware leases

secured with functionality/goals above.

Various controlled and observed building

interactions and behaviours.

Messaging log and activity log

Check opening use Maintain characterisation assertion about

zone

w.1.33a agent. Withhold hardware availability to

force adoption of appropriate goal.

Verified with activity log and

ontology snapshots.

Determine occupancy

from continuous

motion

 Hallway in domestic flat Working as expected but no

configuration where a neighbour

agent would utilise occupancy

changes in a cooperative role has

been tested

Participate in dialog

with other agents and

cooperate with

requests

Listen and reply to SL messages requesting zone characterisation and intentions (occupancy

monitoring commitments), occupancy exchange

Working as expected

Respond to deliberation Re evaluate environment and change

behaviour after failed count occupancy goals

Change of commitment resulting in the adoption

of new goals for occupancy monitoring.

Working as expected, see

appendix C.1.2

Deliberation maintains occupancy mode -

remove dependant resource

No change in commitments but in order to sustain

current intentions leases have to be renewed

Working as expected

189

Recognise loss of integrity in counting/

determine revise count after a mis-count

 Working as expected

Learn lighting levels Tagging of asserted lighting on/off at occupancy

change

Data collected / beliefs updated

Report last interval

environment monitor

 Selection of deployed agents. Summary generated

when agent evaluates an occupancy change

Working as expected in most

cases but with a few ‘nil’

temperatures and ambient light

levels read, see appendix D.2

Report conclusion

about wasted resource

 As above Not yet fully evaluated

190

7.3.2 Sensor Node Agent Type Testing

The details of selected tests for the sensor node agent type are shown in Table 7.5. The number of scenarios for each test for the sensor node type testing were

less numerous in comparisons to the zone agent. Testing with the senor node agent in the university deployment handled higher data throughput so that agent

was used in order to derive conclusive results for tests.

Table 7.5 - Sensor node agent type tests

Functionality High level details Test case/s – selected

illustrative example/s

Result / see also

Locate infrastructure services and maintain

connections (infrastructure sensor nodes and ZigBee

network interfaces)

Periodically poll IIOP endpoints for new resource

provision

Standard operation. Shut down

infrastructure elements and

check for reconnection after

restarting

Working as

expected

Advertise resources

advertise’ resources provided via infrastructure,

maintain associated resource provision

DF agent registry Working as

expected

Monitor infrastructure Extract new events from the infrastructure.

Condition events as appropriate. Notify lease

holders of new events and service requests for

reading devices ‘on demand’

Standard operation

Listen, action and reply to requests As above. Requests trigger setting of goals and

behaviour to typically retrieve data from the

Reception of requests from zone

agents

Working as

expected.

191

infrastructure, deliberate about and action lease

requests

Manage leases, resolve supplier of resource (device,

device cluster etc). efficient re-use of leases,

modifying existing where feasible (eliminate

unnecessary node reconfiguration)

Requests by client agents. The nature of

requested the leases includes requests for new

leases, those that can extend existing ones, and

requests for unavailable devices

Activity log Working as

expected. See

appendix C.2.1 for

main results

Manage ZigBee nodes’ power state, evaluate

configuration, issues configuration commands,

maintain nodes

Target node available As above Working as

expected, see

appendix C.2.2

Target node unavailable but becomes available

(temporarily power off some nodes)

Log showing leave state

transitions

Working as

expected, see

appendix C.2.2

Node becomes unavailable then available,

hosting resources with active leases

As above

Manage power states of sensors As above As above Working as

expected, see

appendix C.2.2

192

7.3.3 Realisation and Validation of Test Cases

The late integration testing was performed from several formulations. Initially controlled

testing took the form of ‘staging’ scenarios where a person moved between different rooms

with different building interactions e.g. unlocking a door, pausing before opening the door,

activating a light switch to render a slow exit, perform an uninterrupted exit etc. Controlled

behaviour varied from entering an office and taking different routes to desks / seating causing

the activation of different sensors. Additionally scenarios such as initiating internal movement

while another person exited the room were tested. Permutations using various openings

where they existed and activity were formulated and tested. Test were formulated on a ‘glass

box’ basis in order to identify worst case scenarios e.g. activity near an opening while a person

entered or exited through that opening. In contrast uncontrolled test cases where the

environment was observed and recorded were also carried out. Recording consisted of

marking on paper the tracks of persons through the observed zones with approximate

timestamps. Most effort to date has been on the former controlled test scenarios.

In all cases the agent activity logs were inspected to determine the success or otherwise of the

test. Message logs could be created but as agents log that content, the message logging facility

was not required. The maximum detail ‘trace’ logging level was used for the initial testing

phase.

7.3.4 Evaluation of Results and Corrections

The following sub sections briefly describe the reworking of software after analysis of results

from the larger scale deployment integration testing at the university site.

7.3.4.1 BDI Agent Related

A review of the run time behaviours of BDI agents in the realistic deployment at the university

site, when considered with respect to the characteristics of different goals, plans and BDI

related configuration, allowed the identification of some opportunities for improvement.

Specifically the in the case of the zone agent type, after reviewing the characteristics of the

goals and plans relating to the high level goal to evaluate occupancy, the settings for agent

deliberation in that scope were modified to deliver improved overall performance.

The occupancy count goal and corresponding plan execution was seen to be generally less

reliable in general operation than occupancy determination, primarily due to the nature of

operation of the tracker class (see section 6.2.1.2.3.1) in some sensor configurations. Some

tracker class detection scenarios can lead to unresolved occupancy change conclusions (see

section 7.3.4.2), and in situations where an agent uses a high number of tracker instances to

193

monitor its zone, the general reliability is decreased. That scenario is illustrated in the UML

activity diagram shown Figure 7.10 with the yellow activity path. The figure does not capture

the allocation of activity to goals or the BDI based mechanism, and while still containing some

flow control, it is simplified to illustrate a particular set of scenarios discussed here.

Regarding reliability of the occupancy count goal, the counting plan has additionally to

establish that its zone is unoccupied before it is able to commence counting. If another goal

evaluate occupancy using environmental state and history (see Table 6.3) is not able to assert

that the zone is unoccupied, the counting plan makes the assumption that the zone is

unoccupied by monitoring it for a given interval (typically 30 minutes when some ‘internal’

motion sensors are available – see below) without detecting any motion. The building

ontology’s definition for a countable occupancy zone is shown in Figure 7.9. Thus to be

inferred as countable, a zone is not required to necessarily contain any motion sensors that

would be the primary choice for the role of detecting motion inside the zone i.e. sensors

having central locations and providing a high (collective) coverage, delivered by, for example,

several wide angle devices or combinations of others.

Figure 7.9 - The building ontology's definition for an occupancy countable zone

194

 As shown in the definition in the figure, the necessary and sufficient conditions (equivalent

classes) for a countable zone only depends on boundary opening entry / exit ‘counting’

classifications (among others that exclude hardware monitoring). During the zero occupancy

detect state, barrier activity detection is also performed, and where there are no ‘internal’

motion sensors available, the agent uses a longer interval of 90 minutes for the basis of its

assumption of no occupancy, which reflects a typical (maximum) time an individual is likely to

remain in a zone. The interval used when internal motion sensors are available for the no

occupancy assumption (30 minutes) is a compromise between that which allows a conclusion

to be reached as soon as possible, while upholding subsequent counting integrity. Typically in

practical deployments, by selecting appropriate sensors based on their semantic descriptions,

agents can achieve at least a reasonable level of motion detection coverage, if not 100% (see

section 7.3.4.2). Moreover the agent type is able to recognise its subsequent loss of counting

integrity and it can take action to recover from that.

Returning to the occupancy counting plan reliability, if it is initiated during busy times, any

detected motion (or barrier activity) during that initial activity leads to failure to assert the

unoccupied status, illustrated by the red activity line in Figure 7.10. While the zone remains

busy, the plan is unlikely to be able to commence counting even after repeated attempts to

establish the zero state. Another unfavourable scenario relating to the plan start-up interval

occurs where, during a relatively ‘quiet’ time, motion causing the plan to exit, is detected only

towards the end of a no motion wait period. For that interval, the agent has not delivered any

occupancy evaluation (the objective of the related goal).

In contrast the determine occupancy goal, which just distinguishes between occupied (one or

more persons present) and unoccupied, is able to interpret events in its implementation in a

much more reliable way. Additionally the determine occupancy plan does not have the start-

up overhead that the counting plan has in its requirement to establish a zero count.

Thus the zone agent type’s occupancy deliberation was modified so that tighter constraints are

placed on the decision to restart occupancy counting after earlier unsuccessful attempts

during busy (high motion detection) times, so that it more readily changes to another (feasible)

occupancy evaluation goal instead, typically occupancy determination. The zone agent type’s

occupancy deliberation is depicted in the UML activity diagram shown in Figure 6.11. Some

simple criterion applied during deliberation in the evaluation of past behaviour, specifically in

the filter by experience activity (Figure 6.11), is the use of a lower plan fail count threshold and

longer ‘influencing interval’ during assumed office hours. The criterion respectively directs the

agent to abandon a particular mode sooner, and decreases it’s desire to (re-)adopt it. However

195

during busy times the count plan will reach the failed state in a relatively short time interval, so

the fail count threshold was reduced to a compromise value of 2 retries and 2 hour ‘influence’

compared to the out of working hours values of 4 retries and 1 hour. A useful enhancement

would be that the agent predicts when occupancy counting is desired and establishes the

unoccupied status during an expected (from experience) ‘quiet’ preceding interval.

196

Figure 7.10 - Simplified zone agent activity - count occupancy. Two 'early exit' scenarios are highlighted:

the red (leftmost at start) path illustrates activity detection during waiting for unoccupied, and the

yellow path illustrates the case where ambiguous counting is reached

197

The occupancy goals also differ in other characteristics such as the timing of the delivery of

conclusions which can impact on cooperation. For example the detection of occupancy plan

can only deliver a conclusion, in the worst case, after its no motion assertion interval for zero

occupancy assumption has expired. That characteristic supports the above changes to

deliberation. The sharing of commitments facilitates agents deliberating more effectively in

collaboration scenarios, but lack of time has prevented extensive development of this area.

7.3.4.2 Occupancy Counting

During the late integration tests, the occupancy counting goal / plan implementation was

identified as one of the main aspects that degraded robustness. The following paragraphs

detail some reworking of that plan implementation.

Occupancy counting relies on the establishment of a zero count on start-up. When the agent is

unable to make such assertion from another goal outcome as mentioned above, it has to

establish the unoccupied state through the assertion of lack of motion. The choice of the

duration used for a reliable non occupancy assumption has been outlined above where some

temporal characteristics of the counting plan that influences deliberation settings where

presented. The selection of devices for the role of establishing that zero count already

identifies preferred devices as e.g. wide angle or general purpose motion sensors and removes

any non preferred devices in the same vicinity. A further mechanism that allows agents to

reduce the interval based on the actual motion detectors selected, involving an estimation of

the motion sensing coverage, was partially implemented but has not been evaluated. The

technique uses some metrics readily available in the IFC model in the form of property sets

(PSet) generated by Revit e.g. perimeter, area, as well as sensor location data and information

from the sensors ontology.

For the purpose of counting persons passing through openings (virtual boundaries and

doorways), the entry/exit tracker class (see 6.2.1.2.3.1) is instantiated and configured for each

of those openings. It determines the direction of motion through an opening, and generates a

corresponding entry or exit event. To improve functional performance several changes were

made to the original implementation, including the addition of a check for identical

timestamps from different devices. The most prevalent source of error due to this scenario are

where two motion sensors are located close together (<300mm), and in the test cases both

sensors were hosted by the same host. Although timestamp resolution on the Windows

platform is apparently relatively high, its true accuracy has not been determined, and in any

case would be expected to vary between hardware. In addition quantisation (in time stamping)

is introduced by the ZigBee host interface. There are also several further potential sources of

198

propagation delays at the millisecond level. Regarding the entry/exit tracker and in general,

the use of absolute time differences to the millisecond are currently avoided, just the order of

events at the 1/10th second level is taken into account. Therefore attempting to improve the

performance of time stamping in the infrastructure was not pursued. Instead though the

further work chapter describes possible time stamping closer to the source, with the added

requirement for synchronisation (see section 8.3). As the current MAS infrastructure

implementation does not guarantee, during propagation, to preserve events in the order

received at the hardware interface (that could be used to disambiguate apparent same time

stamps, subject to some constraints – see section 8.3), the updated counting implementation

treats identically time stamped events as ambiguous, and in general resets any related

algorithm states. The availability of higher accuracy and precision in time stamping of events

may allow for some improvement in robustness, although with the modifications outlined the

issues are not problematic.

A further addition to the entry/exit tracker was to handle the situation where it is configured

for a door to an office, in order to deal with the scenario where a person knocks on the door,

an office occupant walks towards the door to answer, and both persons enter the office

causing a ‘dual trigger’. A detection algorithm was implemented to identify such a scenario. In

addition the algorithm can deal with the scenario where two motion sensors are configured to

observe a virtual opening, and a person entering or exiting ‘doubles back’ (the door answer

scenario essentially includes the office occupant ‘doubling back’). That algorithm counts the

non trigger events in the ‘episode’ before the first trigger time and after the last trigger time.

Additionally an ‘ignore window’ is applied after the last trigger to deal with residual events

generation due to such activity as unlocking the door, light switch activation etc. The event

counts are compared and a value above a predetermined ‘similarity’ threshold indicates an

ambiguous ‘entryExit’ event. The agent will usually reset its counting state in such a condition.

Testing revealed good success rates with the virtual boundary setup but less success with the

office setup with some false ‘entryExit’ event generation. The poor performance was due to

the imprecise coverage and motion event generation by the motion sensor, and the difficulty

in finding suitable parameters for the similarity threshold and activation window when used

with a physical door. A configuration where good performance was found involved two

identical spot type PIRs located in identical geometric surroundings (a corridor), connected to

the same host. It was also expected that in a situation where related sensor roles are filled by

differently hosted sensors e.g. one wired and another wireless, that different propagation

delays could have a detrimental effect, without very precise algorithm parameter setting.

Ideally the agent could apply learning to establish parameters, with the actual outcome during

199

learning being derived from collaboration with neighbour agents to identify the actual

occupancy change. The dynamic adjustment of motion sensor sensitivity also suggested in the

further work section could also improve the performance in this scenario. Currently the agent,

using knowledge from the building ontology, only applies the dual trigger algorithm where a

virtual boundary is observed by identical sensors. The ‘same’ criteria is one where individuals

have matching concrete classes i.e. leaf class, in the hierarchy graph.

7.3.4.3 Sensor Role Allocation

In order to improve the operation in terms of the effectiveness of (resource utilising) plans to

deliver its designed result, the selection of sensor role allocation was re-evaluated, and extra

selection criteria were added where possible. More specifically, where multiple leases are

requested, which is typical, the ordering of those requested were reviewed to identify any

benefits from early availability of specific device roles. For example, in the determine

occupancy plan, the capture of the motion of persons moving away from zone entrances

immediately following entry, can deliver early plan sub conclusions. In that example, such

detection capability is delivered by motion sensors near boundaries. The order of lease request

would not affect the immediacy of sensor availability but other factors can. However, the

evaluation of preference can incur additional overhead. For example, wired device leases are

always actioned by the sensor node agent immediately, due to their typically always active

configuration. However, the determination of whether a given device is connected to an

electrical outlet (thus not battery powered), either by the sensor node or zone agent types,

involves fairly expressive A and T box querying. The overall net benefit of added sensor

selection criteria is therefore not clear without further investigation. Another example relates

to wireless network devices. Those leases for sensors that are hosted by nodes already in a

suitable configuration are advanced to the ‘granted’ state almost immediately. In order to

avoid the scenario where an agent may wait for a particular lease / role to become active

instead of employing an alternative sensor in that role that would be ready almost

immediately, it can use the existing lease query dialog to identify ‘ready’ potential alternatives.

7.4 Final Deployed System Testing and Results

For final testing of the IFMS from a high level functional perspective, the university site facility

described in section 7.1.2 was used. An infrastructure to support the sensor deployment

described in Table 7.3 was configured, and is shown in Figure 7.2. Zone agents were run to

monitor each of the zones detailed in Table 7.2. Additionally a sensor node agent was

activated as well as other agents, including primarily a yellow pages agent. This section reports

on some of the results of the testing.

200

Appendix D contains a number of samples of system output from final testing of a deployed

IFMS. The output is a sample of the agents’ generated beliefs for a few days from 5th to 7th

August 2011. The excerpts demonstrate the preparation of environment related beliefs by the

agents that can be made available for consumption by an external tool for analysis and

visualisation.

The results illustrate the occupancy counting by agents during office hours, and occupancy

determination outside of office hours (including weekend hours). The agents’ occupancy

beliefs contain detailed data such as the identification of which opening through which an

entry / exit caused a count change. It can be seen that for example the Forum zone agent was

not able to start occupancy counting until the early afternoon on the 5th August, which

followed the interval necessary to establish confidence of an unoccupied zone and consequent

zero count. The agent’s environmental belief data is aligned with occupancy to within a few

tens of seconds. The slight differences arise due to the fact that goals are independent and an

appropriate timestamp creation depends on the nature of the plan implementation.

A general observation about the hardware performance is that for the deployed period to date

of 22 weeks, all the units in the network have always been available except for one unit that

was located in an area that appears to be difficult for radio frequency reception. That unit was

sometimes unavailable (estimated 5% unavailable), but after moving it 600mm away from a

wall, it has shown no further problems. The same set of batteries has been used with all units.

The utilisation of the network is probably higher than would be typical, as it has been used for

load testing. Battery voltage readings taken from all 10 units show no significant drop in

voltage level. However expected battery performance characteristics have not been

investigated so no assertions are made about the expected battery life.

The scope of system testing (and late integration testing) builds on the early integration testing

that was used to confirm correct behaviour with varying hardware availability, including

removal of dependencies during associated plan execution. Hardware becoming unavailable

for example has a consequence where zone agents are forced to withdraw commitments, and

when involved in collaboration, that triggers the notification of the state of affairs to other

agents. The tests examine the timeliness and propagation of any associated shared intentions /

commitments in the agent society. The testing included ‘failover’ tests (where agents

automatically substitute failed resources, compensate for the withdrawal of collaborating

agents etc), and includes similar examination of behaviours from a temporal perspective.

However, the high stability of the deployed system means that practically no variation in

sensor availability was seen during the evaluation period, so assessment of integrated tests of

201

that nature could not be readily carried out. Instead those more complex failover scenarios

will need to be simulated and that is left as an area of further work. However some simple

failover testing was conducted where it could be easily simulated and the associated

mechanisms were seen to function as expected.

Regarding uncontrolled scenario verification, some analysis was completed by searching

activity logs for a specific contexts and verifying that expected behaviour was exhibited. In

some cases the relevant agent generated ontology snapshot contributed context information.

That type of verification was used to check agent deliberation, accurate use of the audit

mechanism in deliberation, and accurate and timely generation of environment related beliefs

and summaries

In general, the system as a whole performs well under the maximum data throughput with no

performance degradation. However, at times, the modestly specified host PC (a Pentium 4

based machine) running the infrastructure and sensor node agent does show high processor

activity. The system, by design, is highly distributable and for the support of larger wireless

networks may benefit from deployment over more PC hosts or multi-core processors.

Regarding occupancy determination, extended evaluation indicates that counting performs

well for small offices. For larger rooms the agent often reverts to occupancy determination

after encountering scenarios which lead to loss of integrity in counting. However even after

such regression useful knowledge for facility management purposes is still available.

7.5 Summary

This chapter has described the system testing and some validation in two different

environments. The deployments exercise a wide range of functionality of the IFMS. The

university deployment is very typical of a real deployment and has highlighted errors that were

fixed iteratively. The university deployment generates typical (of a real deployment) data

throughputs under which the system performs well.

Several aspects to address agent performance, particularly during reasoning with ontologies

have delivered good results. After unit and early integration tests revealed more fundamental

errors, later iterations focussed on addressing deployed context related issues.

Regarding maturity, some aspects of the framework have been deployed and operational for

up to two years (primarily the wired infrastructure), while other aspects have been developed

fairly recently.

202

Regarding the development process, due to the relatively diverse range and number of

frameworks involved and frequent updating of those frameworks over the development

lifecycle, as well as fairly extensive custom source code implementations, some automation

and structuring of regression testing (mostly performance related) would have been beneficial

203

Chapter 8

8 Future Work

Future Work

This chapter describes some potential areas of further work, grouped by the type of work

involved. The first subsection outlines the addition or enhancement of ontologies and the

benefits that would be delivered. Included in this subsection are some suggestions to add

more structure to the learning mechanisms used by agents. Next, work is presented that aims

to improve the rationality of agents in general, but which would initially be applied to zone

agents, followed by suggested improvements to the sensor node agents’ control of resources.

Some work to increase the efficiency of the wireless network operation is covered next,

followed by a description of an area for investigation that could improve the hardware. Finally

some deployment related aspects are described covering how the system could be extended

to other domains and some implementation details that would ease deployment. Lastly a

summary is presented.

8.1 Ontology Related

The elaboration and modularisation of the existing ontologies and the creation of new ones

that could be considered for application in the IFMS are detailed in Table 8.1. The table

describes the nature of the addition/elaboration and the benefits derived. Most of the

domains listed are already modelled to some extent, so the work would involve modularising

and elaborating those domain models. The new domain is that of human behaviour, including

the capture of how humans interact with the building environment.

Table 8.1 - Refactoring and addition of ontologies, and the benefits gained.

Domain Utilisation and motivation

Temporal The existing approach for temporal information capture in the IFMS ontologies is

simple but functional. XML typed data properties are used to represent dates,

times and durations, and constraints are defined with SWRL rules. Thus temporal

expressions are evaluated at a low level, lacking rich, uniform and abstract

constructs with associated semantics. Among the simpler temporal relationships

potentially sought are before, after, overlapping, ‘inside’ range. Several temporal

ontologies have been published with varying sophistication and associated

204

characteristics e.g. compactness, ease of integration etc. The benefits in the

context of the IFMS of the different approaches remain an area for further

investigation.

Agent Simple agent modelling is included in the IFMS ontology provision but is not

currently being used to any extent. One objective of the agent ontology would be

to support more complete reasoning about attitudes as described in section

8.2.1. The associated competency questions would limit the scope of the

ontology to a relatively narrow one in comparison to a complete BDI

formalisation as discussed in section 3.1.3.

As well as capturing simple aspects of BDI behaviour, the ontology could provide

a basis for semantic plans (with appropriate formulation of intentions and

commitments) and possibly goal descriptions. The semantic description of plans

i.e. a description of the algorithmic steps incorporated, together with a

restructuring of plans to give higher granularity, would lead to higher efficiency.

Currently in some cases some semantic knowledge is captured about plans, but

that is captured in the deliberation mechanisms, where the agent also reviews

the outcome of previous plan execution via the audit.

Human This ontology should primarily capture human abilities e.g. move around, sit (and

remain seated) at desk, and activate lighting, pause motion to activate lighting on

entry / exit to a room. Some behavioural characteristics such as those derived

from the modelling social behaviours in different environments may also lead to

useful inferences. For example in the context of human egress Pan, et al. [144]

describe competitive behaviour, queuing and herding (see section 3.4).

Additionally, the ontology, while modelling that people have preferences, would

be able to act as the basis for a framework for learning those preferences e.g.

environmental settings, and habits. Further areas in the discipline of Human

Factors Engineering in the scope of how humans interact with the building

environment could contribute extra insight.

A specialised agent type introduced into the agent infrastructure would be the

likely utiliser of the new ontology. The agent type may represent a single

anonymous individual or where occupancy counting is not feasible to that

granularity would represent collections of people, but in both cases realistic

(social) behaviours would be captured to some extent. Other than social

behaviour, during movement the human agent could negotiate with zone agents

to explore feasibility that entry to that zone occurred. In some contexts it might

205

be possible to attach (a person’s) identity to those agents, either by matching

preferences for environmental controls, integration with a computer log-in etc,

or by other information such as the single occupancy of an office allocated to an

individual. Confidence levels in assertions would be improved by the combination

of different ‘evidence’.

Extend

building

Extension to the building ontology could include safety, security, sustainability,

and enforcement of building regulations. Specialised agents introduced into the

agent society would be the utilisers of the new ontologies. These agents could

potentially perform accident prevention and management, initiated by spotting

dangerous behaviour or conditions and either generate warnings and alarms or

action safety / preventative measures. An example is the provision of assistance

in emergencies such as (high) lighting exit routes. In the context of safety, an

agent may be able to detect falls for example, by drawing on other ontologies

and through negotiation with appropriate other agents. With appropriate

modelling, for fall detection as well as well as for further goals, other information

in addition to motion data could contribute towards useful inference. Such

information includes an understanding of the room types, the usual activities

carried out in that area, and temporal relationships between inferences of earlier

activity.

Extend

sensors

Sensor devices have been adequately modelled as well as some of the aspects of

the ETRX357 device (topology of microcontroller and peripherals etc) but the

ZigBee network has not been extensively modelled. More efficient mesh network

configuration (routing) might be possible from inferences about zone topology,

building topology and mereology with respect to the locations of sensor nodes.

Using an enhanced network model in conjunction with the ZigBee platform

model, further improvements in operational efficiency such as reduced wireless

traffic and minimum transmit powers could be gained by higher grained

configuration adjustment.

In connection with ontology utilisation, there are further techniques that could be usefully

applied by agents. Explanations describe how inferences are reached. A specific type of

explanation is the justification which is “... a minimal set of axioms that is sufficient for a given

entailment to hold”. Pellet provides an explanation service as outlined in section 2.2.4.3. One

way the service could be used, is to examine the explanation for details of the dependant

resources that support the inference so that the agent can then request the provision of those

206

resources. Currently, in that scenario, given a particular inference, agents search for the

corresponding resources which can involve several queries and associated dialog, so if this

were modified as suggested, an efficiency gain would be achieved. Further utilisation of

explanations could be used in difference comparison. In such an application, agents would

dynamically compare an inference representing an actual circumstance with a target

circumstance, in order to determine what actions have to be carried out in order to reach the

target. However such a scenario relies on detailed ontology support and adequate

programmatic analysis, so any benefit would have to be balanced with the added support

needed.

A further area that could add extra flexibility to agents is the use of XQuery and XPath [177]

facilities applied to the dynamic analysis of ontologies. XQuery is a query language for XML

while XPath is a syntax for specifying a path to a set of nodes in an XML tree structure.

Therefore the facility could be usefully employed to query OWL ontologies where such

functionality is not supported by SPARQL. A specific example for use in the IFMS could be for

examining routes between zones when analysing the movement of people in buildings.

Similarly in the analysis of the ZigBee network mesh, for example, counting ‘hops’ between an

end device and a controller would be a useful application. A Java API supporting XQuery and

XPath is the Java XQuery API (XQJ) specification of which there are several implementations

available.

In connection with IFC building models, due to the expressivity of EXPRESS, it is feasible that

information could be represented in slightly different ways, especially if different building

modelling tools are used to create the model and where the model is then exported as IFC

compliant. An initial motivation for generating an IFC ontology from the schema was to add

flexibility in the agents’ interpretation of EXPRESS models and this may be worth re-visiting.

Agents currently have to downcast Java class types and test the results, and test for the

existence of possible relationships etc, in order to navigate the model. Only scenarios to

support the expression of models found in the selection of EXPRESS models used for testing

have been implemented to process EXPRESS models. While the current implementation is

adequate for the range of Revit models encountered, the possible variations in IFC compliant

representation could justify the implementation of a more semantic based interpretation, in

order to generate the building ontology’s A box. The XQuery facility as well as SPARQL would

be useful in extracting model data.

The IFMS ontologies focus on supporting the largely domain focussed competency questions.

Some domain independent theories and concepts play a significant role but, as expected,

207

much more semantic elaboration could be completed, which could support more abstract

reasoning. In a more generic building ontology for example, such inference may be possible if

statements such as the ‘boundary mereology surrounding a zone forms a continuous

boundary’. The ontological commitment could define it in the sense that without openings

there would be no means of persons to enter, or it could be further defined in terms of the

descriptions of passage of other physical phenomena. Such modelling may be able to

contribute towards more fundamental or cross domain reasoning, particularly if other

ontologies such as that modelling human / building behaviour were to be integrated.

Regarding the integration with numerical modelling of physical phenomena, while logically

based knowledge representation modelling would not replace a numerical approach, it may be

desirable to capture applicability criteria or interrelationships between numerical models.

8.1.1 Structured Learning

Learning in the IFMS currently involves updating beliefs under known conditions in a fairly

restricted way. The form of learned data currently is either the addition of new individuals to

the agent’s A box, the setting of existing (known) properties of individuals in the A box or the

more basic updating of raw belief base data. The latter is only minimally described

ontologically (with Java based ontologies) or is just plain Java data types.

An area of future work could be learning through the updating of an agent’s T box. It is

expected that the main benefit would be in the enablement of further inferences by the

ontology in contrast to the intrinsic informational value in the learned statements themselves.

The creation of temporal relationships between ontologically described events that the agent

generates is a starting point, but others may be relevant depending on the context. Another

learning scenario is detecting changes in inference due to the addition of new individuals. So it

may be the case, for example, that an ontology update triggers a more specific inference for a

zone individual. A change listener could be configured, via the Jena API, to listen for all triples

added or removed so this is one approach that could be used, with filtering for those related to

individuals of interest. An agent’s context, primarily the state of its attitudes, is a rich source of

information that could be used for the elaboration of concepts and relationships.

Reification of learned constructs added to any A box is central to maintaining ontology

integrity. Alternatively, learned constructs could be added with a probabilistic justification,

which could be adjusted as the agent evolves. A version of Pellet known as Pronto [178]

supports reasoning with such probabilistic constructs as quantifying the probability of class

membership or subclass relationships. The Pronto reasoning process generates probabilistic

entailment and also provides explanations.

208

Regarding the interpretation of learned constructs, there are several possible approaches. One

approach could involve the agent adding known (existing) concepts and with the relationships

it finds, while another approach is where it could add new anonymous concepts which it later

elaborates. The use of the latter would likely follow a two step process where, after an

adequate level of confidence or repeatability was reached (through the use of collected meta

data or probabilistic quantification in OWL), some ontology alignment could be performed to

find an ‘interpretation’ or close alignment. This interpretation would be useful for humans, and

for the agents’ ultimate role of generating useful knowledge.

The general nature of learned content is expected to be derived from common sense or

domain independent knowledge sources. For example, when the opening of a door is sensed,

followed by the determination that an associated space occupancy has changed from

unoccupied to occupied, and the activation of artificial lighting is detected, that sequence is

most likely due to the actions of a person who has the capability to move around and interact

with the building. Thus an ontology modelling humans would provide the main resources for

the ‘interpretation’ in that scenario. That domain independent knowledge was expected to be

contained in upper ontologies such as SUMO. However while the OWL translation of SUMO

currently used has delivered useful domain independent abstract concepts and roles from

which domain specific constructs were derived, more complete statements and theories were

not found in the translation used. Other high level ontologies or translation techniques should

therefore be reviewed.

Whether entities could be adequately disambiguated and identified from alignment with

source ontologies would need to be determined. The method of refining simple constructs into

a more useful expression would also need to be investigated. The creation of ontologies from

language based sources is widely reported and so this application may be able to utilise similar

techniques.

The main value as mentioned is expected to be in the support of further inferences rather than

the creation of perhaps trivial statements themselves, thus enriching the original ontology in

application (micro, agent centric) specific ways.

8.2 Agent Related

8.2.1 Potential Further Improvements of Agents’ Rationality

The potential implementation of a framework to allow agents to reason about each other’s

attitudes in a general sense would enable the use of collaboration to be considered much

more commonly, and widen its scope beyond specific implementations for particular

209

scenarios. The exchange of some agents’ attitudes currently plays a role but in a task centric

way, for example, for the goal of occupancy evaluation. In addition for the ability to request

other agent’s attitudes in the first instance and also to communicate them, the framework

would include modelling of goal and plans and allow inference about entailment. From the

agents’ internal perspective some of that type of knowledge is already captured implicitly in

the BDI agent design. A rudimentary agent has been ontologically described but as mentioned

is not being currently used to any extent. The scope of elaboration of such a model would

remain relatively simple to support the required inferences for the proposed framework, in

contrast to aiming to capture a more complete BDI formalisation as discussed in section 3.1.3,

which would not be feasible given the expressivity of OWL, even if it was desired. Intentions

are not currently explicit, although the agents can already currently exchange commitments

and some beliefs. Goals could be readily integrated into the framework.

While the current IFMS implementation addresses some areas targeted by the proposed

framework, it may bring about improvements in the following areas:

 Allow the removal of duplicated effort subject to the constraints imposed by an

agent’s local, specialised perspective (captured by its attitudes).

 Promote better sharing of resources.

 Perhaps permit efficient discovery of justification to attempt previous goals that had

earlier failed (possibly combined with the semantic description of error codes).

Even without conveying intentions, an agent knowing another’s active goals (desires) could

infer the range of possible behaviours of the agent and thus determine if ongoing

collaboration is feasible, if the other agent cannot answer requests immediately using its

beliefs. Although to some extent similar scenarios have been considered and partially

implemented using commitments (see section 5.2.2.1).

8.2.2 Resource Control

The current sensor provision is based on the objective of minimising the power consumed by

the network nodes as a whole, so the sensor node agent type will seek to share active nodes

and sensors to reduce duplication of powered sensors, as well as minimising the overhead of

powering and managing wireless node hosts. Requests and allocations for the supply of data

are made using sensor leases describing a list of alternative devices, duration of the provision

etc. The sensor node agent may dynamically reconfigure the network as appropriate to

provide the agreed leases. The requesting agents currently do not have any concept of the

varying ‘expense’ of requested leases, nor any concept of the finite limit of resources, although

210

granting of one of the alternative resources specified in the lease reflects some of the

management criteria mentioned.

Further work therefore will involve the implementation of a framework to externalise the

‘cost’ of resources. By making the cost more transparent, resource consumers can make more

informed decisions in their selection of resources, instead of having the service provision

abstractly reconfigured for them according to more restrictive resource management criteria.

The cost for each resource, re-evaluated on a short time basis, will be determined by the

existing leases’ descriptions (economy of sharing), historical sensor requests, expected

remaining battery life (derived from logged use and real time voltage level reading), and the

ease of sensor node servicing (the ‘cost’ of replacing a battery is affected by the ease of

physical access to the host ZigBee device for example). A slight complexity is that the initial

requestor will ‘pay’ a higher price than subsequent requestors so the implemented mechanism

will offer some form of ‘compensation’ to appropriate agents. Additionally the cost will vary

over a requested interval, as agents can request any duration and the requests are not

synchronised, and so the implementation should address that. A potential approach for

implementation could involve the analogous payment of ‘money’ on application that is valid

for a short interval. The amount issued would be shared equally between all applicants. The

use of ‘offers’ or ‘promotions’ that take account of the current network state would capture

the sensor node agents’ short term strategy. The overall motivation for implementation of the

new framework is to control access to ZigBee network resources more appropriately thus

ensuring availability of hardware for the planned system deployment.

An alternative approach would be where agents requesting resources take the current

resource utilisation by other agents into account in determining their own behaviour. A

motivating scenario is one where collaborative working leads to lower resource use, so agents

could choose a collaborative plan to realise that economy. By understanding the goals and

intentions of others, agents could potentially request others to change to collaborative

behaviour where it is consistent with their goals. This approach though shifts the emphasis of

resource economy into ‘social norms’, instead of that responsibility residing with the resource

provider.

8.2.3 Enhancement of the Utility Agent Type

The implementation of a wireless networks status checking agent would add robustness to the

IFMS by identifying sensors which may have failed (so that alternatives could be substituted)

and by generating alerts for maintenance. The network monitoring would include the reading

of battery levels (that can be read from nodes, as well as several other status values),

211

identifying those for replacement that are approaching the end of their life as well as possibly

leading to the suggestion to shift the general utilisation among devices. Such an agent would

also perform diagnostics to check hardware operation, following goals that create test

scenarios and analyse the results. The tests could compare alike devices in similar contexts,

and compare the historical performance of devices. The test scenario conclusion, if

appropriate, would be reported to the host sensor node agent that would then utilise other

resources in preference where possible when fielding requests, until the situation was

reported as rectified. As mentioned, requests would also be generated to action maintenance

to rectify problems, or to request the completion of further investigation. The functionality

described is in some part an automated extension, and further enhancement of that

implemented in the utility agent type (see Table 6.2) for the purpose of system testing.

8.3 Wireless Network Related Improvements

At the core of the wireless sensor module unit is the ETRX357x ZigBee radio transceiver and

microcontroller supporting the wireless networking functionality. As described in earlier

chapters, the sensor node agent type is responsible for managing the wireless network to

which it is connected, balancing demand for sensor provision with the desire to maximise the

battery life of all the devices in the network. Devices are reconfigured dynamically based on

decisions made by the sensor node agent type. The infrastructure wireless network interface

software (IWNI) actions the sensor node agent type’s configuration (or other) commands, in

general, by issuing a sequence of further command implementations. Those commands, in

turn, utilise the (‘over the air’) command set for the ERTX357x, realised in firmware. The

firmware commands mainly support configuration, network management, and interrogate

actions, but further custom (firmware) commands could be added to better support the

management and sampling of the sensors attached to the ETRX357x modules. Moreover the

IWNI typically issues several commands to complete the requested action, and in general

applies rigorous handshaking, including verification of sent messages, to ensure that the target

device is configured coherently. Some benefit could be gained by implementing the equivalent

of the sequence in a single command, similar to a macro. Network traffic would be reduced,

and an improvement in performance would be achieved in terms of configuration time,

especially where the node is several ‘hops’ away.

However, most functional benefit from customised firmware commands would be gained

where those commands support more autonomous operation of the sensor nodes in terms of

data sampling. Under certain conditions, predefined action sequences would be desirable e.g.

on detecting motion, wake up and keep sending motion events, until a 30 second interval of

212

no activity has passed. Currently the host has to manage that functionally at a fairly low level

of granularity i.e. configure to wake up on activity, configure to send data on motion detection,

monitor activity, then issue a command to reconfigure on no activity followed by a sleep

command. Moreover with appropriate firmware commands the ETRX357x can interface to I2C

bus based devices. The I2C supports a simple serial protocol over two hardware connections,

with which a feature-rich control of connected devices can be achieved with device specific

commands. A wide selection of (sensor) chips are available.

The ETRX357x single chip device incorporates a microcontroller and peripherals [179]. The

microcontroller runs the Telegesis R3xx firmware stack [170], extending the EmberZNet4.x

stack, an implementation of the ZigBee specification for the wireless network support.

Comprehensive tools supporting C language development and debugging are available for the

Ember chip and stack e.g. the Ember InSight Toolchain. Such tools would be used for the

development of the custom commands described, complementing the existing firmware

commands.

A very desirable hardware provision would be the situation where the wireless sensor nodes

were self sustaining in terms of power provision. Suitably sized solar power cell assemblies

that are designed for indoor use are available. However under a typical utilisation of a sensor

node, it was estimated that the power supplied is a factor of approximately ten too low in the

worst case. However under certain network / room configurations, with some redundancy and

with some small updates to the sensor ontology, the sensor node agent could manage some

such device configurations. Although more nodes would probably be required in a given area,

the overall number of battery powered units could be reduced, with perhaps other

considerations making the option favourable, for example the devices needing battery

replacement could be those that were located in easily accessible places. Alternatively nodes

could be equipped with more solar cells and potentially a small rechargeable battery and

simple charge management circuitry.

Relating to potential wireless node power saving, an enhancement, implemented with or

without some custom firmware commands, could be the identification and use of lower node

transmit powers. The transmit power is definable, so a procedure orchestrated by the sensor

node agent type could, over extended observation intervals, incrementally decrease the

transmit power level of node devices while reliable operation was upheld. A node timer

triggered command would be required to regress to the previous setting for the purpose of

recovery when communications were lost. Thus once a reliable setting is established, the node

would operate at that power.

213

Regarding the time stamping of data from the wireless sensor networks, while the current

implementation performs adequately, there are some areas where potential improvements

can be made to the current technique of adding a timestamp in the sensor node infrastructure

executable, as discussed in section 7.3.4.2. The potential provision of higher accuracy and

possibly precision in data timestamps would simplify some implementations that consume

events, and may add some extra robustness. To those ends, one option is to attach

timestamps at the ZigBee nodes, but that technique involves the requirement for time

synchronisation across each entire wireless network, and between networks, if multiple

networks are present. Alternatively a much simpler approach, at the infrastructure sensor

node, is the addition to sensor data of a sequence index, for the purposes of resolving the

order of identically time stamped data. The use of sequence indexes would have some

applications, but the technique is generally less useful than the use of absolute timestamps, as

for example, it can’t resolve data sequences from different networks (of the same or different

types). All approaches except time stamping at each node could be affected by propagation

delays, compounded by routing. To partially address this, the infrastructure software

implementation or sensor node agent type could tag data with meta data derived from

network topology, so that clients can easily decide whether to make direct comparisons of

sequence numbers or absolute timestamps if present. In many cases related events typically

originate from the same wireless node, so propagation times will be the same and direct

comparisons of temporal references are feasible. Finally, an aspect in the current provision

that has not yet been implemented is the synchronisation of time references in infrastructure

sensor node executables. The requirement is raised for deployments that support multiple

networks, where the sensor node executables hosting network interfaces (both for wireless

and wired) are deployed on different PCs, and the comparison of data from both networks is

required.

8.3.1 Motion Sensor Additions

Within the scope of passive infrared (PIR) motion sensors, while semantic descriptions of the

range of PIRs allow specific types in terms of sensing capability to be selected and assigned to

roles by agents in the current implementation, added flexibility would be gained through the

use of an aggregated PIR device mounted to the ZigBee wireless sensor platforms. Currently

each unit hosts one or two PIR sensors, of a type from a set of four variants. Each sensor type

has different sensing characteristics, summarised as ‘spot’ and wide angle detection, high

sensitivity and general purpose, that is suited to different roles. In place of the current devices,

an array of 2 * 3 surface mounted devices is proposed, hosted by each ZigBee unit, with the

ability to enable / disable each device individually. Using device types such as e.g. Murata’s

214

IRS-B series [180], which has dimensions of 4.7 x 4.7 x 2.4 mm, a compact array could be

created directly on the ZigBee PCB, at a low cost. A number of Fresnel lenses are available and

some experimentation would be needed to determine the best suited. The object is to achieve

a highly customisable and dynamically controllable field of view that can be configured to suit

the roles in which it is to be used. The roles, specifically sensor roles in agents’ plan

implementations, have various sensing requirements, closely related to the local geometry at

the deployment location. Thus using the actuator hardware and software provision, in the

same way that has already been implemented for the control of other devices on the units, the

field of view (its shape and area of coverage) could be dynamically controlled. Using the

customisable features, preferred setting/s could be inferred, and / or a range of configurations

could be automatically evaluated in situ to establish the best settings for particular role

instances.

8.4 Deployment Related

In its current form, the IFMS is seen as an ‘add-in’ for FM user oriented tools in that it

generates knowledge in terms of formal sentences. Currently the user interface is limited to a

few simple commands issued by the facility manager agent type and the reporting of

generated knowledge and diagnostics via printed messages to the console. However tools can

easily subscribe for knowledge generation by establishing a communications channel to that

agent. Maximum benefit of the current system is expected when the system is scaled to

perhaps hundreds of units, to give a ‘whole picture’ view of large buildings.

The next subsection describes some areas involving minor changes that would ease the

system’s application in its current form. The sub section following that describes some

alternative uses that the IFMS can be extended or adapted to.

8.4.1 Ease of Use

This section briefly mentions two areas that could be investigated in order to primarily assist

the deployment of the system. However the practical benefit is more dependent on the

system’s specific application than some of the above areas of further work.

The IFMS requires an IFC BIM model from which it creates a rich semantic representation of

the building environment. In some cases it is likely that such a building model will already exist,

or that the creation of one representing the as built building can be easily created from

existing 2D drawings and supporting documentation. However where that is not the case, a

way to alleviate the requirement for an accurate building model would be to expand the

building ontology to enable agents to deal with very minimal / conceptual building

215

representations and un-checked models. The research would establish the sensitivities of

modelling and identify suitable thresholds required to retain an adequate level of definition

and accuracy needed in IFC models for its utilisation in the IFMS.

Regarding the location of sensor host nodes, they currently need to be specified in the (IFC)

building model. Triangulation may be possible as signal strength (received signal strength

indicator (RSSI)) data can be retrieved from the network controller or routers. Although the

effects of building materials would attenuate the signals differently, estimates could be made

from calculated paths using the building model. Whether unknowns such as antenna

orientation for example would make such an effort impractical remains to be determined.

Some ZigBee hosts would still need to be located manually though in order to act as bases for

triangulation. So the practical benefit may be negligible.

8.4.2 Extended Application

Further applications of the system are envisioned, with the elaboration of ontology support

and the addition of further agent types. Those extra agent types would typically consume the

knowledge generated by the existing IFMS agents. Some of those applications are detailed

below:

 Monitoring of the elderly in their homes. Such an application would deliver non-

intrusive monitoring in order to learn characteristic behaviour for the purpose of

identifying anomalies, and for the detection of possible falls, which could highlight the

need for assistance. Ontology support would be delivered by domestic related

extensions to the building ontology, as well as descriptions covering how people

interact with the internal building environment and appliances for example. Cheap

electrical mains sensors are available and could be easily added to the ZigBee sensor

units. Additionally as the sensor units are very compact and mobile, they could

potentially be ‘worn’ or carried and could provide a simple alarm button, or a 3D

accelerometer could be added to detect trips. The system would be a highly cost

effective step in helping to deliver safety and security in independent living support, or

contribute a role in an assisted living provision.

 Home energy monitoring. This application is primarily the same as small facility

management for the home user where the system’s primary focus is to identify wasted

resources by highlighting heating and lighting use that is inconsistent with the various

uses of different home zones. Cheap domestic mains electrical power sensors are

available which could easily be connected to a wireless node.

216

 Extended AEC/FM functionality. Several areas of functionality exist that could be

added to the existing IFMS. For example agents could be added that check

conformance to safety / building regulations. Other examples as outlined above

include ensuring that stairs lighting / emergency lighting is functional, and verifying

thoroughfares are not blocked by verifying regular use. Another use is the possibly to

feedback building use information to design stage e.g. thermal performance of

products. An understanding of the conditions under which data is logged is essential to

normalising that performance data.

8.5 Integration with Simulation Tools

The integration of agent goals with simulation tools e.g. EnergyPlus [181] should be considered

as useful functionally may be gained. Domains of interest are heating, cooling, airflow and

lighting. One possibility is the use of parameterised simulations to resolve detail in domain

behaviours. That could involve invoking the simulation tool with configurations that describe

the possible scenarios, and then align actual observations with the results of the simulation

results. Depending on the nature of the behaviour being tested, it may be possible to add

some assertions to the building ontology, thus refining the semantic model and not requiring

repeated interaction with the simulation tool, at least in that context. The sensors employed in

the IFMS are relatively accurate, but the system does not currently exploit highly detailed

absolute data values in general. Instead it employs relative changes for the purpose of goal

pursuit, although of course absolute values are used in reports and summary generation. For

example the ambient light sensors mounted on the ZigBee platforms are very sensitive to

shadows, even in bright conditions, and are sensitive to sensor orientation etc. Thus the use of

numerical models may be useful to exploit the availability of relatively accurate data. However

the level of configuration required and the availability of interfaces would need to be

investigated. The integration of any open source algorithms that model those domains may

also find useful application.

8.6 Summary

This section has reviewed some areas of further work. The work content ranges from research

to simple further implementation. The potential benefits of delivered work in some cases is

unknown while in others it depends on the specific application of the system.

217

Chapter 9

9 Summary and Conclusion

Summary and Conclusion

This chapter first reviews the features of the deliverable and then highlights the main findings

from the research and development process. Following that, the conclusions are presented,

identifying how the hypothesis is demonstrated through the satisfaction of the distilled

practical aims of the research.

9.1 Summary

The following observations were made from the research and development activity for the

IFMS (some of the details are elaborated in the following subsections)

 A number of options exist that could potentially realise the different aims in terms of

technologies, theories, and available frameworks, and the combination thereof.

 Knowledge modelling in a number of domains, as well as domain independent theories

is exploited in order for the system to meet its objectives.

 The use of a formal knowledge representation (KR) allows defined semantics,

‘externalisation’ of knowledge and its re-use, simplified querying of complex

knowledge compared to informal systems, checkable consistency, easier maintenance,

controlled expressivity, compact statements and queries. Even within the restricted

scope where information could alternatively be captured in non semantic forms, its

maintenance and querying using a formal KR and supporting knowledge base (KB)

machinery, as in the IFMS, is typically much less demanding, even with simple sub-

class and inverse constructs.

 The use of SPARQL queries was central to making the ontology interaction practical cf.

manipulating with java objects which, while possible, can become difficult to develop

and maintain.

 The open world assumption (OWA) is well matched to the application but needs

attention during ontology authoring. The unique names assumption (UNA) does not

find useful application in this context.

 The application domain is quite complex due to the asynchronous nature of events,

finite and extended execution times associated with reasoning, and the distributed

nature. In the scope of MASs, the JADEX BDI framework however is well suited though

218

due to the nature of its internal execution model and event driven architecture, while

the JADE framework delivers a complete infrastructure middleware implementation.

 A wired sensor system, even of modest size, would be undesirable, primarily due to

cost of cabling and installation, even if devices were arranged in clusters. Without the

use of a bus system / multiplexing, multi core cable is needed. Any cables are difficult

to route and expensive to install, especially across room boundaries. However they

may be more attractive for fitting during construction, but would still remain relatively

expensive.

A brief summary of the high level characteristics of the implemented system are listed below:

 The upholding of rationality by the intelligent pro-active agents in the upper layer in a

way that is transparent and explicit is a key feature. Additionally the solution needed

to be practically executable and meet realistic performance constraints

 Agents’ behaviour is closely integrated with their beliefs and those beliefs include

historical records about the outcomes of past behaviour (as well as others about the

environment). Those beliefs, realising experience, contribute towards directing future

behaviour. Specifically deliberation takes account of past behavioural outcomes so, for

example, where options exist, earlier action that failed is not continually repeated.

 The application of inferences to support BDI agent behaviour is wide, a few examples:

o Agent deliberation - goal feasibly, goal selection

o Means / end reasoning - sensor assignment, identification of sets of

alternatives sensor roles and preference, configuration of hardware, control of

hardware.

 The requirement to minimise resource utilisation adds significant complexity in terms

of algorithmic plan implementation cf. always ‘on’ data mining approach, but the

application of intelligent management gives the advantage of more sustainable

hardware units that are easily deployed.

 The system derives significant behaviour from executing reasoning with semantic

knowledge but some behaviour remains captured implicitly in algorithmic

implementations in plans. The system also still contains some constants for use as

defaults for setting parameters such as timeouts and thresholds.

Regarding maturity, while some aspects of the framework have been in operation for up to

two years at the time of writing, some parts of the software are less mature but have still been

run for at least several months. The elements of the system, even within the same layers are

highly decoupled so partial incremental development and testing is easily completed, as is the

219

introduction of new functionality. The project has highlighted many further areas and

opportunities where the effectiveness of knowledge elaboration could be improved from both

the knowledge modelling and the agent implementations and those have been described

above.

9.2 Conclusion

It has been demonstrated that the use of semantic modelling, together with the application of

the BDI model of agency and the implementation of an infrastructure incorporating sensor

hardware has enabled the aims of the system to be met. The implementation is flexible and

robust and generates useful working knowledge for FM, including knowledge that describes

space usage. The system is almost self configuring and does not require user interaction after

deployment. The high level nature of the generated knowledge means that it can be readily

used for decision making by humans, while its formal ontological basis allows potential

consumption (and further automatic inference) by other FM tools, as well as those at other

lifecycle stages, without loss of intended meaning. Although such tools were not available, the

accurate reuse of the content of ontological based statements in inference, conveyed between

agents illustrate the scenario, given that referenced ontologies would be exposed to external

tools. Information generation about occupancy is a central focus. Additionally it supports

further information and knowledge generation by agents in the form of summaries of zone

based environmental conditions, space utilisation report production, and potential

identification of unnecessary energy use in terms of heating and lighting.

The following subsections outline how the key aspects of the implementation meet the aims.

9.2.1 BDI Agent Model

The fundamental agent paradigm for software delivers the architecture for loosely coupled

autonomous and pro-active software entities that can pursue independent and targeted

behaviours. The IFMS, which is partially characterised by self-interested entities having diverse

objectives that work individually or collaboratively to achieve the collective utility of the

system, aligns well with the agent paradigm. A high level (inter-agent message) language

specification provides the ability to communicate, that in turn helps to facilitate the agents’

collaboration. Rich message definition is realised by formulation with a highly expressive

semantic language (SL) and the use of a dedicated ontology.

The autonomous and proactive agent behaviour is realised by the BDI natural ‘human like’

abstraction, which further elaborates the agent paradigm. The BDI model, not previously used

elsewhere in AEC/FM, is well suited to modelling complex systems to render rational

220

behaviour by formulating inter-relationships between the various mental attitudes formulated

in the model. By virtue of the general specification of goals to be reached, rather than explicit

algorithmic definition, agents are better able to deal with changes in the environment,

unanticipated scenarios and missing information. Agent types in the IFMS have highly

specialised sets of goals and each agent instance has a highly specific context. The agent

paradigm formalism renders the independence, while the BDI model allows the pursuit of

goals and consequent behaviour specific to its context. The agent works to understand its

context and build knowledge both for the deliverable of the systems and to improve its own

performance. Moreover the environment is continually changing so the abstract statement of

goals, the agents’ continual re-evaluation of its context, the identification of suitable actions

and consequent behaviours are ideally suited. In the IFMS, the environment changes in terms

of sensor availability, environmental characteristics, building usage and the interactions of

people with the building. The pro-active agents in the IFMS accumulate knowledge and are

intimately guided by the state of their beliefs in the BDI model, which adds a subjective

perspective to the more objective base knowledge (within the scope of the agent society)

derived from the shared ontologies.

The BDI agents’ practical reasoning mechanism (deliberation and means end reasoning), as

well as plan execution realises its behaviour. The deliberation and means end reasoning in the

IFMS is enhanced by the agents’ ability to deductively reason with knowledge about the

environment, provided by ontologies and knowledge base (KB) support described in the next

section. The addition of custom implementations for BDI support, not explicitly supported by

the framework, adds further conformity to the BDI formalism. One of those additions, the

specification of explicit commitments adds stability, internal coordination and plays a useful

role in collaboration. Another custom addition, the audit mechanism, is primarily used in

deliberation to modify behaviour based on the history of past activity, thus realising a learning

element. The audit mechanism is closely integrated with plan states and is typically updated at

significant plan state changes and in exception handling.

Rational behaviour manifests itself as good coordination between attitudes and the selection

of appropriate behaviour in a timely manner, given what is known about the (changing)

context. An illustrative behavioural example combines choice and assessment of past activity

and belief states so that, if a more demanding goal fails, the agent chooses a less demanding

one in order to still provide (base) goal satisfaction. An example in the IFMS is the occupancy

evaluation goal, where an agent can change plans if certain hardware is unavailable, if plan

execution fails or plan execution leads to ambiguous belief states. Later re-evaluation and

221

agent preferences can allow it to revert back to the originally preferred sub-goal / plan under

appropriate circumstances.

As well as maintaining their belief base to reflect the current state of affairs, the agents revise

any beliefs that have a historical record, typically also auditing that update, if it gains

information that deems such a condition. For example, specifically regarding occupancy

counting, if counting becomes ambiguous, a sub goal will remove historical assertions, working

back from the occupancy belief of the suspect state back to a previous assertion of zero

occupancy that by its nature is a reliable assertion. Thus integrity is improved through revision.

In contrast to a BDI based agent approach, while complex algorithmic based numerical models

focussing on very detailed applications can deliver precise results, they can be relatively

inflexible and require expert users for both configuration and for the interpretation of results.

9.2.2 Semantic Model Support

Some of the aims of the IFMS led to the semantic modelling of relevant domains, driven by the

competency questions to support deliberation and means-end reasoning in the zone and

sensor node agent types. The primary domains modelled were to describe sensor capability

and characteristics and building structure and ‘make-up’.

As exemplified by the IFMS ontologies, the fairly expressive KR used and reliance on inferred

knowledge by a reasoner leads to the concise assertion of statements, thus simplifying

maintenance and visualisation.

One general pattern of ontology use in the IFMS is that where object oriented (OO) code (in

agent plan implementations) is used to populate the KB’s A boxes using the simplest and most

predictable navigation of an information source by processing lists, searching for known

relationships and including some ‘back searching’ for given objects in relationships etc.. These

implementations, through the creation of A box statements involving the objects, extend /

ontologically commit their semantics, as exemplified by the processing of objects extracted

from the IFC model. The knowledge contained in the ‘rendered’ KB can then be queried using

semantically rich formulations relying on inference, leveraging the semantics already captured

in the ontology. The alternative direct querying of an IFC model for building related queries

would be ‘ad-hoc’ and involve numerous searches, run time class type checking, and class

hierarchy navigation. That process is necessarily executed once as described, does not have to

be repeated to support variations of the query. Thus extensive code implementations which

could be potentially cumbersome to implement and maintain in Java are avoided. Moreover,

with the semantic KB, the use of the SPARQL query language and a suitable query engine

222

further ease the querying of knowledge. Relying on potentially complex inferences, queries in

SPARQL remain very compact. Regarding querying in general, even simple inferences such as

subsumption and entailments of reflexive object properties are useful.

Moreover the semantics captured in the ontologies in the IFMS are shared and reused

consistently both internally within agents and for well defined communications between

agents. Additionally explicit semantic definitions addresses one of the aims of the system,

namely to facilitate well defined communication between agents and external tools.

Moreover, that knowledge can be readily consumed by tools in different disciplines and even

at different lifecycle stages, where terminology and semantics could vary. Furthermore the

ontological knowledge sources in the IFMS have been typically derived from existing published

consensus of knowledge, ensuring high quality. The main resources used are the OntoSensor

ontology (in turn is derived from the SensorML schema) which formed the basis of the sensors

ontology, and the IFC schema inspired the building ontology. At a domain independent level,

theories of mereology and topology have been incorporated into further smaller system

ontologies for common usage. The formal KR additionally brings, as mentioned above, the

benefit of consistency checking in the models, both at design time and in the dynamic

assertion of individuals (T and A box consistency) at run time.

The open world assumption (OWA) that is a key feature of the semantics of the OWL KR used

is very well suited to modelling the complex domains for the IFMS. Its use with relatively

expressive constructs such as role restrictions allows a model to be constructed that ,while

remaining semantically consistent, does not necessarily (and typically) fully capture the

complete details of the domain of concern. Such a complete model may be unnecessary, or it

might be undesirable or impossible to capture.

In summary, the knowledge models and associated KBs have been shown to support the

domain knowledge related requirement of the different agent types’ intelligent behaviours.

Operational data captured from sensors together with that from IFC building models are

semantically elaborated to provide a central foundation on which the system builds knowledge

through appropriate goal seeking behaviour. Specifically in the case of the zone agent type, the

models identify monitoring capabilities and are used to assign roles to sensor hardware in the

pursuit of those goals. In the case of the sensor node agent type, the sensor ontology is used

to intelligently manage the resources and the provision of data to clients.

223

9.2.3 Hardware Synchronisation

The provision and utilisation in the system of near real time sensor data plays a central role.

The timeliness of the data is such that it adequately tracks the dynamic state of the

environment and through semantic elaboration, its general nature supports the knowledge

generation aims of the system. In the case of the wireless sensor units developed, the

hardware design, combined with the intelligent management of those networks, enables long

service from the battery power supplies. Moreover the very low unit cost makes the

deployment of large numbers of units very realistic.

9.3 Usability

The knowledge generation capability of the IFMS has been demonstrated and while that

knowledge could be used directly by a facility manager, it would be more usefully utilised in a

practical deployment as part of a suite of FM tools, supporting conventional tools while

addressing the areas identified in chapter 1. The knowledge generated can be used during

building operation by facility managers to assist decision making about the building or

potentially at other building lifecycle stages. Where feasible, integration of the IFMS with

building controls would be desirable, either at the knowledge level with building automation

systems, or with some small extensions to the software, at the hardware actuator interface

level (actuators are currently used to control the power states of sensors).

Facilitated by the agent and BDI architecture, the IFMS can be easily extended or modified.

Regarding current agent types, the role of the FM agent is to act as the interface to the user or

to other tools and to coordinate user / external requests. Those requests would propagate as

parameters to selected goals of the zone agent type, allowing customisation of the default

behaviour of those agents. Additionally alternative agent types can be readily introduced. The

IFMS is scalable both in terms of the software and its wireless hardware. The software is fully

distributable in that all the components (sensor executable, sensor nodes, databases, central

ontology resources and every agent) can be executed on processors without location

constraints. The wireless hardware is very compact and easy to deploy, is configured and

controlled by the IFMS software and is cheap. The software, by its nature, is robust and

hardware can be simply added to create redundancy. The maximum benefit is to be gained

when it is scaled in such a way that perhaps hundreds of sensor nodes are deployed across

several floors of a large building, providing valuable information of the ‘whole picture’.

224

The architecture, flexibility and core functionality of the system mean that it could be easily

adapted to other purposes including extended FM functionality and the monitoring of the

elderly in their homes (see section 8.4.2).

9.4 Contribution

A summary of the contribution is present below:

 The use of the BDI model of agency in an AEC/FM application. BDI based agents pro-

actively generate FM knowledge from near real time sensor data (with appropriate

dynamic behaviour including that to accommodate the characteristics of semantic

reasoning), intelligently control sensor networks so that among other features, devices

can be sustained with batteries for extended intervals, and render a system that is

almost self configuring.

 Improved transparent rationality over the standard BDI framework implementation

realised with the inclusion of commitments and plan auditing. The existing framework

has no support for such formulations and mechanisms.

 The linking of an FM tool to real-time space monitoring (intelligent data utilisation),

including the development of production ready, very cheap and easily installed

wireless sensor hardware.

 Semantic elaboration of the IFC model and utilisation in machine reasoning for

practical benefit. Several theories have been added and made formally explicit in

ontologies, building on the implied semantics already existing in some places in the

IFC. Inferences are used extensively by agents to direct their behaviour, realising

deliberation and means-end reasoning.

 From the plethora of available resources available, those being the best practically ‘fit

for purpose’ have been selected and combined to realise a knowledge generating

framework and target it at supporting FM. Resources include complex theories for

realisation in ontologies, software frameworks and AEC modelling resources.

 The methodology and work flows clearly identify the processes to realise a practical

and deployable framework, combining best practices of knowledge engineering and

software engineering.

225

Acknowledgements

The author gratefully acknowledges the help, support and guidance of his supervisors Dr

Haijiang Li and Professor John Miles. The research was funded by the EPSRC.

227

Bibliography

[1] International Facility Management Association, “IFMA,” International Facility

Management Association, July 2008. [Online]. Available:

http://www.ifma.org/index.cfm. [Accessed 28 July 2008].

[2] Carbon Trust, “Carbon Trust - Buildings,” 2010. [Online]. Available:

http://www.carbontrust.co.uk/emerging-technologies/technology-

directory/buildings/pages/buildings.aspx. [Accessed 03 06 2010].

[3] FMx Ltd, “CAFM Explorer 2012,” 2011. [Online]. Available:

http://www.cafmexplorer.com/. [Accessed 24 09 2011].

[4] Z. Turk, B.-C. Björk and K. Karstilla, “Towards a Generic Process Model for Architecture,

Engineering and Construction (AEC),” in Computing in Civil Engineering, Reston, Virginia,

USA, 1998. pp. 518-521.

[5] E. W. East and J. G. Kirby, “Evolving a Building Information Model,” in Joint International

Conference on Computing and Decision Making in Civil and Building Engineering,

Montréal, Canada, 2006. pp. 2302-2310.

[6] T. Williams, Intofrmation Technology for Constructiuon Managers, Arhitects, and

Engineers, Clifton Park, NY: Thompson Delmar Learning, 2007.

[7] M.-M. Nelson, C. Anumba and Z. Aziz, “Towards Next Generation Facilities Management

Systems,” in Joint International Conference on Computing and Decision Making in Civil

and Building Engineering, Montréal, Canada, 2006. pp. 906-917.

[8] Department of Trade and Industry, UK, “Ifc-mBomb Ifc 2x IAI IFC,” Department of Trade

and Industry, UK, 2004. [Online]. Available: http://cig.bre.co.uk/iai_uk/iai_projects/ifc-

mbomb/. [Accessed 30 July 2008].

[9] Activeplan Ltd., “Activeplan - Market Sectors: Offices,” 2011. [Online]. Available:

http://www.activeplan.com/offices.asp. [Accessed 15 07 2011].

[10] W. Shen, Q. Hao, H. Mak, J. Neelamkavil, H. Xie, J. Dickinson, R. Thomas, A. Pardasani

and H. Xue, “Systems Integration and Collaboration in Architecture, Engineering,

228

Construction, and Facilities Management: A review,” Advanced Engineering Informatics,

vol. 24, no. 2, p. 196–207, 2010.

[11] R. Morton, Construction UK - Introduction to the industry, Blackwell Publishing

Company, 2002.

[12] R. Howard and B.-C. Bjork, “Building Information Models - Experts' Views on BIM/IFC

Developments,” in Bringing ITC Knowledge to Work, Maribor, Slovenia, 2007. pp. 271-

280.

[13] U. Isikdag, G. Aouad, J. Underwood and S. Wu, “Building Information Models: A Review

on Storage and Exchange Mechanisms,” in Bringing ITC Knowledge to Work, Maribor,

Slovenia, 2007.

[14] SCRA, “Step Application Handbook ISO 10303 v3,” SCRA, 30 June 2006. [Online].

Available: http://www.tc184-

sc4.org/SC4_Open/SC4_Standards_Developers_Info/Files/STEP_application_handbook_

63006.pdf. [Accessed 30 July 2008].

[15] Eureka project EU130, “CIMsteel Project Homepage,” Eureka project EU130, 1998.

[Online]. Available:

http://www.engineering.leeds.ac.uk/civil/research/cae/past/cimsteel/cimsteel.htm.

[Accessed 30 July 2008].

[16] Knowledge Based Systems, Inc., “IDEF Family of Methods,” Knowledge Based Systems,

Inc., 2006. [Online]. Available: http://www.idef.com/Home.htm. [Accessed 30 July

2008].

[17] V. E. Sanvido, “An Integrated Building Process Model,” Pennsylvania State University,

Pennsylvania, USA, 1990.

[18] J. Beetz, J. v. Leeuwen and B. de Vries, “An Ontology Web Language Notation of the

Industry Foundation Classes,” in Proceedings of the 22nd CIB W78 Conference on

Information Technology in Construction, Dresden, Germany, 2005. pp. 193-198.

[19] H. Bell and L. Bjørkhaug, “A buildingSMART ontology,” SINTEF Building & Infrastructure,

Oslo, Norway, 2006.

229

[20] J. Pagni, “Vera breaks down the walls for IAI,” 2004. [Online]. Available:

http://www.tekes.fi/eng/news/uutis_tiedot.asp?id=129. [Accessed 08 08 2008].

[21] P. Katranuschkov, A. Gehre and R. J. Scherer, “An Ontology Framework to Access IFC

Model Data,” ITcon, pp. 413-437, 2003.

[22] T. Cerovsek, “A review and outlook for a 'Building Information Model' (BIM): A multi-

standpoint framework for technological development,” Advanced Engineering

Informatics, vol. 25, no. 2, pp. 224-244, April 2011.

[23] I. Mutis, R. R. Issa and I. Flood, “Semantic Schemas for Specification Processes in the

AEC Domain,” in Proceedings of the 2005 ASCE International Conference on Computing

in Civil Engineering, Cancun, Mexico, 2005. pp. 153-153.

[24] R. Amor, Y. Jiang and X. Chen, “BIM in 2007 - Are We There Yet?,” in Bringing ITC

Knowledge to Work, Maribor, Slovenia, 2007. pp. 159-162.

[25] J. Hietanen, “IFC Model View Definition Format v1.0,” International Alliance for

Interoperability, 2006.

[26] Building Lifecycle Interoperable Software, “Project Brief,” 09 August 2002. [Online].

Available: http://www.blis-project.org/index2.html. [Accessed 16 July 2008].

[27] J. Hietanen and S. Lehtinen, “The Useful Minimum,” Tampere University of Technology,

Tampere, 2006.

[28] K. Espedokken, “The Information Delivery Manual,” 11 Jan 2008 . [Online]. Available:

http://idm.buildingsmart.no/confluence/display/IDM/Home;jsessionid=755D0AAA55FA

6DE638FFBF2AB7C62642. [Accessed 30 July 2008].

[29] buildingSMART, “The IFD Specification,” 2008. [Online]. Available: http://www.iai-

tech.org/products/related-specifications/ifd_specification. [Accessed 30 July 2008].

[30] BLIS-Project , “SABLE - Simple Access to the Building Lifecycle Exchange,” BLIS-Project ,

2005. [Online]. Available: http://www.blis-project.org/~sable/. [Accessed 30 July 2008].

[31] M. Pfitzner, P. Benning, J. Tulke, N. Outters, O. Nummelin and B. Fies, “D29: Barriers

and Opportunities - Future ICT and Organisational Requirements,” 2010.

230

[32] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider, The

Description Logic Handbook: Theory, Implementation and Applications, Cambridge, UK:

Cambridge University Press, 2007.

[33] J. Z. Pan and I. Horrocks, “Web Ontology Reasoning with Datatype Groups,” in The

SemanticWeb - ISWC 2003, Berlin / Heidelberg, Springer, 2003, pp. 47-63.

[34] R. Rosati, “DL+log: Tight Integration of Description Logics and Disjunctive Datalog,” in

Proceedings of the Tenth International Conference on Principles of Knowledge

Representation and Reasoning, Lake District, UK, 2006. pp. 68-78.

[35] J. Mei, Z. Lin, H. Botley, J. Li and V. C. Bhavsar, “The DatalogDL Combination of

Deduction Rules and Description Logics,” Computational Intelligence, vol. 23, no. 3, pp.

356-372, 2007.

[36] M. Ball and B. Craig, “OO jDREW - Home,” Marcel Ball and Ben Craig, 24 July 2008.

[Online]. Available: http://www.jdrew.org/oojdrew/. [Accessed 25 July 2008].

[37] T. R. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowledge

Acquisition, pp. 199-220, 1993.

[38] T. Gruber, “Ontology,” 2011. [Online]. Available:

http://tomgruber.org/writing/ontology-definition-2007.htm. [Accessed 21 09 2011].

[39] A. Gómez-Pérez, M. Fernandez-Lopez and O. Corcho, Ontological Engineering: With

Examples from the Areas of Knowledge Management, E-Commerce and the Semantic

Web, Springer, 2004.

[40] T. R. Gruber, “Towards Principles for the Design of Ontologies Used for Knowledge

Sharing,” Int. Journal of Human-Computer Studies, vol. 43, pp. 907-928, 1993.

[41] The University of Manchester, “WonderWeb: Home,” 12 02 2003. [Online]. Available:

http://wonderweb.semanticweb.org/index.shtml. [Accessed 21 July 2008].

[42] T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web,” Scientific American, vol.

284, pp. 34-44, May 2001.

[43] N. Guarino, “Ontology and Terminology - how can formal ontology help concept

modeling and terminology?,” in EAFT-NordTerm Workshop on Terminology, Concept

231

Modeling and Ontology, Vaasa, Italy, 2006.

[44] P. Muntigl, “Introduction To Richards,” [Online]. Available:

http://www.limsi.fr/Individu/jbb/richards.html. [Accessed 09 2011].

[45] M. Yudelson, T. Gavrilova and a. P. Brusilovsky, “Towards User Modeling Meta-

Ontology,” in User Modeling 2005, Edinburgh, 2005. pp. 448-452.

[46] N. Guarino and C. A. Welty, “An Overview of OntoClean,” in Handbook on Ontologies,

International Handbooks on Information Systems, Springer Verlag, 2004, pp. 151-172.

[47] D. Fensel, H. Lausen, A. Polleres, J. d. Bruijn, M. Stollberg, D. Roman and J. Domingue,

Enabling Semantic Web Services, Heidelberg: Springer, 2006.

[48] P. Haase, P. Hitzler, M. Krötzsch, J. Angele and R. Studer, “Practical Reasoning with OWL

and DL-Safe Rules,” in European Semantic Web Conference, Budva, Montenegro, 2006.

[49] S. Brockmans, R. Volz, A. Eberhart and P. L¨offler, “Visual Modeling of OWL DL

Ontologies Using UML,” in 3rd International Semantic Web Conference, Berlin /

Heidelberg, 2004. pp. 198-213.

[50] The Eclipse Foundation, “Eclipse Galileo,” 2010. [Online]. Available:

http://www.eclipse.org/galileo/. [Accessed 10 2010].

[51] Object Management Group (OMG), “OMG's MetaObject Facility,” OMG, 03 02 2009.

[Online]. Available: http://www.omg.org/mof/. [Accessed 25 02 2009].

[52] L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye, E. Kendall

and M. Dutra, “OWL Full and UML 2.0 Compared,” AT&T, 2003.

[53] B. Szekely and J. Betz, “Jastor - Typesafe, Ontology Driven RDF Access from Java,” 2009.

[Online]. Available: http://jastor.sourceforge.net/. [Accessed 01 12 2009].

[54] R. Gil, R. García and J. Delgado, “ReDeFer Software Porject,” 2009. [Online]. Available:

http://rhizomik.net/html/redefer/. [Accessed 05 05 2010].

[55] I. Herman, “W3C Semantic Web Activity,” World Wide Web Consortium, 2008. [Online].

Available: http://www.w3.org/2001/sw/. [Accessed 08 August 2008].

232

[56] W3C, “SPARQL Query Language for RDF,” 2007. [Online]. Available:

http://www.w3.org/TR/rdf-sparql-query/. [Accessed 10 09 2010].

[57] University of Manchester, “The OWL API,” Source Forge, [Online]. Available:

http://owlapi.sourceforge.net/index.html. [Accessed 02 02 2011].

[58] SourceForge, “Jena Documentation,” 2009. [Online]. Available:

http://jena.sourceforge.net/documentation.html. [Accessed 09 June 2010].

[59] Clark & Parsia, LLC, “Pellet - The Open Source OWL DL Reasoner,” Clark & Parsia, LLC,

May 2008. [Online]. Available: http://pellet.owldl.com/. [Accessed 07 August 2008].

[60] R. F. Möller, “Racer,” 2008. [Online]. Available: http://www.sts.tu-

harburg.de/~r.f.moeller/racer/. [Accessed 07 August 2008].

[61] K. Clark, “Why Reasoning Matters: Explanations,” 06 2008. [Online]. Available:

http://weblog.clarkparsia.com/2008/06/23/why-reasoning-matters-explanations/.

[Accessed 02 02 2011].

[62] S. Bechhofer, R. Möller and P. Crowther, “The DIG Description Logic Interface,” in

Proceedings of International Workshop on Description Logics (DL2003), Rome, Italy,

2003.

[63] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz, “Pellet: A practical OWL-DL

reasoner,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5,

no. 2, p. 51–77, June 2007.

[64] M. Stocker and E. Sirin, “PelletSpatial: A Hybrid Region Connection Calculus RCC-8 and

RDF/OWL Reasoning and Query Engine,” in Proceedings of Web Ontology Language

(OWL): Experiences and Directions 2009 (OWLED 2009), Chantilly, Virginia, USA, 2009.

[65] Clark & Parsia, “Does Pellet support closed world reasoning?,” 2009. [Online]. Available:

http://clarkparsia.com/pellet/faq/closed-world/. [Accessed 30 04 2010].

[66] Stanford Center for Biomedical Informatics Research, “The Protégé Ontology Editor and

Knowledge Acquisition System,” Stanford Center for Biomedical Informatics Research,

2008. [Online]. Available: http://protege.stanford.edu/. [Accessed 29 July 2008].

[67] M. Uschold and M. King, “Towards a Methodology for Building Ontologies,” in

233

Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, Quebec,

Canada, 1995.

[68] I. Joo, J. Park and E. Paik, “Developing Ontology for Intelligent Home Service

Framework,” in Consumer Electronics, IEEE International Symposium on Consumer

Electronics, Dallas, Texas, USA, 2007. pp. 1 - 6.

[69] A. Burton-Jones, V. C. Storey, V. Sugumaran and P. Ahluwalia, “A Semiotic Metrics Suite

for Assessing the Quality of Ontologies,” Data & Knowledge Engineering, vol. 55, p. 84–

102, 2005.

[70] J. Davies, D. Fensel and F. v. Harmelen, Towards the Semantic Web, John Wiley & Sons,

Ltd, 2003.

[71] I. F. Cruz, W. Sunna and A. Chaudhry, “Ontology Alignment for Real-World

Applications∗,” in Proceedings of the 2004 Annual National Conference on Digital

Government Research, Seattle, WA, 2004. pp. 1-2.

[72] J. Euzenat and P. Valtchev, “Similarity-based Ontology Alignment in OWL-Lite,” in

European Conference on Artificial Intelligence ECAI-04, Valencia, Spain, 2004. pp. 333-

337.

[73] N. Jian, W. Hu, G. Cheng and Y. Qu, “FalconAO: Aligning Ontologies with Falcon,” in K-

CAP Integrating Ontologies Workshop, Banff, Alberta, Canada, 2005.

[74] NeOn Consortium, “D5.4.1. NeOn Methodology for Building Contextualized Ontology,”

IST Programme of the Commission of the European Communities, 2008.

[75] M. Fernandez-Lopez, A. Gomez-Perez and N. Juristo, “METHONTOLOGY: from

Ontological Art towards Ontological Engineering,” in Proceedings of the AAAI97 Spring

Symposium, Stanford, USA, 1997. pp. 33--40.

[76] B. Swartout, P. Ramesh, K. Knight and T. Russ, “Toward Distributed Use of Large-Scale

Ontologies,” in Proceedings of the AAAI Symposium on Ontological Engineering, 1997.

[77] Y. Sure, S. Staab and R. Studer, “On-To-Knowledge Methodology (OTKM),” in Handbook

on Ontologies, International Handbooks on Information Systems, Ontoprise Gmbh,

2004.

234

[78] M. Grüninger and M. S. Fox, “Methodology for the Design and Evaluation of

Ontologies,” in Proceedings of the Workshop on Basic Ontological Issues in Knowledge

Sharing held in conjunction with IJCAI-95, Montreal, Quebec, Canada, 1995. pp. 1390-

1396.

[79] M. Fernández López, “Overview Of Methodologies For Building Ontologies,” in

Proceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods

(KRR5), Stockholm, Sweden, 1999. pp. 4.1-4.13.

[80] A. Pease, “The Suggested Upper Merged Ontology (SUMO) - Ontology Portal,” 28 April

2008. [Online]. Available: http://www.ontologyportal.org/. [Accessed 04 August 2008].

[81] Princeton University, “WordNet - A Lexical Database for the English language,”

Princeton University, 2008. [Online]. Available: http://wordnet.princeton.edu/.

[Accessed 04 August 2008].

[82] J. M. Fielding, J. Simon, W. Ceusters and B. Smith, “Ontological Theory for Ontological

Engineering: Biomedical Systems Information Integration,” in Proceedings of the Ninth

International Conference on the Principles of Knowledge Representation and Reasoning

(KR2004), Whistler, BC, USA, 2004. pp. 114-120.

[83] W. Borst, “Construction of Engineering Ontologies for Knowledge Sharing and Reuse,”

University of Twente, Twente, The Netherlands, 1997.

[84] T. R. Gruber and G. R. Olsen, “An Ontology for Engineering Mathematics,” in Fourth

International Conference on Principles of Knowledge Representation and Reasoning,

Gustav Stresemann Institut, Bonn, Germany, 1994. pp. 258-269.

[85] Open Geospatial Consortium, Inc, “Welcome to the OGC Website,” Open Geospatial

Consortium, Inc., 2008. [Online]. Available: http://www.opengeospatial.org/. [Accessed

30 July 2008].

[86] D. Russomanno, C. Kothari and O. Thomas, “Building a Sensor Ontology: A Practical

Approach Leveraging ISO and Open Geospatial Consortium (OGC) Models,” in The 2005

International Conference on Artificial Intelligence, Las Vegas , NV, 2005. pp. 637-643.

[87] A. Preece, M. Gomez, G. d. Mel, W. Vasconcelos, D. Sleeman, S. Colley and T. L. Porta,

“An Ontology-Based Approach to Sensor-Mission Assignment,” in Proceedings of the

235

Annual Conference of Interntional Technology Alliance, Maryland, USA, 2007.

[88] H. Schevers and R. Drogemuller, “Converting the Industry Foundation Classes to the

Web Ontology Language,” in Proceedings of the First International Conference on

Semantics, Knowledge, and Grid, Washington, DC, 2005. pp. 73-75.

[89] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Reading, MA: Addison-Wesley, 1995.

[90] D. C. Hay and R. Barker, Data Model Patterns: Conventions of Thought, New York:

Dorset House Publishing Co., INC., 1996.

[91] Y. Rezgui, “Ontology-Centered Knowledge Management Using Information Retrieval

Techniques,” Journal of Computing in Civil Engineering , vol. 20, no. 4, pp. 261-270,

July/August 2006.

[92] OCCS Development Committee Secretariat, “OmniClass - A Strategy for Classifying the

Built Environment,” OCCS Development Committee Secretariat, 2008. [Online].

Available: http://www.omniclass.org/. [Accessed 08 August 2008].

[93] J. Lee, H. Chae, C.-H. Kim and K. Kim, “Design of product ontology architecture for

collaborative enterprises,” Expert Systems with Applications, vol. 36, no. 2, pp. 2300-

2309, 2009.

[94] H. Kim and F. Grobler, “Building Ontology To Support Reasoning In Early Design,”

Computing in Engineering , pp. 151-158, 2007.

[95] A. Gehre, P. Katranuschkov and R. J. Scherer, “Managing Virtual Organization Processes

by Semantic Web Ontologies,” in Proceedings of 24th W78 Conference, Maribor,

Slovenia, 2007.

[96] E. Petrinja, V. Stankovski and T. Žiga, “A Provenance Data Management System for

Improving the Product,” Automation in Construction, pp. 485-497, 2007.

[97] H. Schevers, J. Mitchell, P. Akhurst, D. Marchant, S. Bull, S. Bull, K. McDonald, R.

Drogemuller and C. Linning, “Towards Digital Facility Modelling for Sydney Opera House

Using IFC and Semantic Web Technology,” ITcon, pp. 347-362, 2007.

[98] K. Wender and R. Hübler, “Towards an Information Seeking Environment for Distributed

236

Building Related Data: introduction to a system concept based on a shared ontology,”

Computing in Engineering, pp. 127-134, 2007.

[99] A. Gehre, P. Katranuschkov, J. Wix and J. Beetz, “InteliGrid Deliverable D31: Ontology

Specification,” The InteliGrid Consortium, c/o University of Ljubljana, Ljubljana,

Slovenia, 2006.

[100] Information Society Technologies, “Interoperability of Virtual Organizations on a

Complex Semantic Grid,” Information Society Technologies, 27 July 2007. [Online].

Available: http://inteligrid.eu-project.info/. [Accessed 30 July 2008].

[101] F. Fuchs, S. Henrici, M. Pirker, M. Berger, G. Langer and C. Seitz, “Towards Semantics-

based Monitoring of Large-Scale Industrial Systems,” in Proceedings of the International

Conference on Computational Inteligence for Modelling Control and Automation and

International Conference on Intelligent Agents Web Technologies and International

Commerce, 2006. pp. 261-266.

[102] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Upper Saddle River,

New Jersey, USA: Prentice Hall, 2003.

[103] M. E. Bratman, D. J. Israel and M. E. Pollack, “Plans and Resource-Bounded Practical

Reasoning,” Computational Intelligence, vol. 4, no. 3, pp. 349-355, 1988.

[104] M. Wooldridge, An Introduction to MultiAgent Systems, Chichester, UK: Wiley, 2009.

[105] M. Wooldridge and N. Jennings, “Intelligent Agents: Theory and Practice,” Knowledge

Engineering Review, vol. 10, no. 2, pp. 115-152, June 1995.

[106] Y. Shoham, “Agent-Oriented Programming,” Journal of Artificial Intelligence, vol. 60, no.

1, pp. 51-92, 1993.

[107] M. E. Bratman, Intention, Plans, and Practical Reason, Cambridge, Massachusetts, USA:

Harvard University Press, 1987.

[108] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe and M. Wooldridge, “The Belief-Desire-

Intention Model of Agency,” in Proceedings of the 5th International Workshop on

Intelligent Agents V, Agent Theories, Architectures, and Languages, London, UK, 1998.

pp. 1 - 10.

237

[109] M. E. Bratman, “Practical Reasoning and Acceptance in a Context,” Mind, vol. 101, no.

401, pp. 1-16, 1992.

[110] A. Rao and M. Georgeff, “Belief, Desire, Intention (BDI) agents: From theory to

practice,” in Proceedings of the first international conference on Multiagent Systems,

San Francisco, California, USA, 1995. pp. 312-319.

[111] D. Dennett, “Intentional Systems Theory,” 2009. [Online]. Available:

http://philpapers.org/. [Accessed 18 02 2011].

[112] M. Wooldridge, “Liverpool University,” 06 2004. [Online]. Available:

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/. [Accessed 11 2009].

[113] M. J. Wooldridge and N. R. Jennings, “Agent Theories, Architectures and Languages: A

Survey,” in ECAI94 Workshop on Agent Theories Architectures and Languages,

Amsterdam, The Netherlands, 1994. pp. 1-32.

[114] N. R. Jennings and M. Wooldridge, “Agent-Oriented Software Engineering,” Artificial

Intelligence, vol. 117, pp. 277--296, 2000.

[115] P. R. Cohen and H. J. Levesque, “Intention is Choice with Commitment,” Artificial

Intelligence, vol. 42, pp. 213 - 261, 1990.

[116] E. N. Zalta, “Basic Concepts in Modal Logic,” Stanford University , 1995. [Online].

Available: http://mally.stanford.edu/notes.pdf. [Accessed 2011 09 17].

[117] L. Braubach, A. Pokahr, W. Lamersdorf and D. Moldt, “Goal Representation for Belief,

Desire, Intention (BDI) Agent Systems,” in Proceedings of Second International

Workshop on Programming Multiagent Systems: Languages and Tools, New York, USA,

2004. pp. 9 - 20.

[118] L. Braubach, A. Pokahr and W. Lamersdorf, “Jadex: A Short Overview,” in Proceedings of

Main Conference Net.ObjectDays 2004, Erfurt, Germany, 2004. pp. 195-207.

[119] V. Morreale, S. Bonura, F. Centineo, M. Cossentino and S. Gaglio, “Goal-oriented

development of Belief, Desire, Intention (BDI) agents: the PRACTIONIST approach,” in

Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent

Technology, Hong Kong, 2006. pp. 66-72.

238

[120] V. Morreale, G. Francaviglia, F. Centineo, M. Puccio and M. Cossentino, “Goal-oriented

Agent Patterns with the PRACTIONIST Framework,” in In Proceedings of the Forth

European Workshop on Multi-Agent Systems (EUMAS’06), Lisbon, Portugal, 2006. pp.

49-60.

[121] M. Fisher, “Implementing Belief, Desire, Intention (BDI)-like Systems by Direct

Execution,” in Proceedings of the 15th international joint conference on Artifical

intelligence - Volume 1, Nagoya, Japan, 1997. pp. 316-321.

[122] M. Fisher, “A Survey of Concurrent MetateM — The Language and its Applications,” in

Temporal Logic / Lecture Notes in Computer Science, Berlin / Heidelberg, Springer, 1994,

pp. 480-505.

[123] Foundation for Intelligent Physical Agents (FIPA), “FIPA Agent Communication Language

(ACL) Message Structure Specification,” FIPA, Geneva, Switzerland, 2002.

[124] Foundation for Intelligent Physical Agents (FIPA), “FIPA Communicative Act Library

Specification,” Foundation for Intelligent Physical Agents, Geneva, Switzerland, 2002.

[125] Foundation for Intelligent Physical Agents (FIPA), “FIPA SL Content Language

Specification,” Geneva, Switzerland, 2003.

[126] Telecom Italia SpA, “Jade - Java Agent Development Framework,” Telecom Italia SpA,

2008. [Online]. Available: http://jade.cselt.it/. [Accessed 25 July 2008].

[127] V. Pautret, “Java Agent Development Framework (JADE) Semantics Add-on

Programmer's Guide,” France Telecom, 2006.

[128] V. Louis and T. Martinez, “An Operational Model for the FIPA-ACL Semantics,” in Agent

Communication II, F. P. Dignum, R. M. Eijk and R. Flores, Eds., Berlin, Heidelberg,

Germany, Springer-Verlag, 2006.

[129] B. Schiemann and U. Schreiber, “OWL DL as a FIPA ACL content language,” in

Proceedings of the Workshop on Formal Ontologies for Communicating Agents, Malaga,

Spain, 2006. pp. 73-80.

[130] F. Guerin and J. Pitt, “A Semantic Framework for Specifying Agent Communication

Languages,” in Proceedings of the Fourth International Conference on Multi-Agent

239

Systems, Los Alamitos, California, USA, 2000. p. 395–396.

[131] M. Laclavık, Z. Balogh, M. Babık and L. Hluchy, “AgentOWL: Semantic Knowledge Model

and Agent Architecture,” Computing and Informatics, vol. 25, p. 419–437, 2006.

[132] C. A. Iglesias, M. Garijo and J. Centeno-González, “A Survey of Agent-Oriented

Methodologies,” in Proceedings of the 5th International Workshop on Intelligent Agents

V, Agent Theories, Architectures, and Languages, London, UK, 1999. pp. 317--330.

[133] G. Schreiber, B. Wielinga, R. d. Hoog, H. Akkermans and W. V. d. Velde, “CommonKADS:

A Comprehensive Methodology for KBS Development,” Intelligent Systems and Their

Applications, vol. 9, no. 6, pp. 28-37, 1994.

[134] M. F. Wood and S. A. DeLoach, “An Overview of the Multiagent Systems Engineering

Methodology,” in Agent-Oriented Software Engineering – Proceedings of the First

International Workshop on Agent-Oriented Software Engineering, Limerick, Ireland,

2000. pp. 207-221.

[135] M. Wooldridge, N. R. Jennings and D. Kinny, “The Gaia Methodology for Agent-Oriented

Analysis and Design,” Autonomous Agents and Multi-Agent Systems, vol. 3, no. 3, p.

285–312, 2000.

[136] M. Nikraz, G. Caire and P. A. Bahri, “A Methodology for the Analysis and Design of

Multi-Agent Systems using Java Agent Development Framework (JADE),” Telecom Italia

Lab, Turin, Italy, 2006.

[137] L. Padgham and M. Winikoff, “The Prometheus Methodology,” Royal Melbourne

Institute of Technology, Melbourne, 2004.

[138] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos, “Tropos: An Agent-

Oriented Software Development Methodology,” Autonomous Agents and Multi-Agent

Sytems, vol. 8, no. 3, p. 203–236, 2004.

[139] Z. Ren and C. Anumba, “Reveiw: Multi-Agent Systems in Construction–State of the Art

and Prospects,” Automation in Construction, vol. 13, p. 421– 434, 2004.

[140] U. Rueppel and M. Lange, “An Integrative Process Model For Cooperation,” Journal of

Information Technology in Construction, vol. 11, no. Special Issue: Process Modelling,

240

Process Management and Collaboration, pp. 509-528, 2006.

[141] D. L. Grecu and D. C. Brown, “Learning by Single Function Agents During Spring Design,”

in Artificial Intelligence in Design, Stanford, California, USA, 1996. pp. 409-428.

[142] J. Bilek and D. Hartmann, “Agent Based Collaborative Framework for Concurrent

Structural Design Processes,” in Joint International Conference on Computing and

Decision Making in Civil and Building Engineering, Montréal, Canada, 2006. pp. 918-929.

[143] U. F. Meissner, U. Rueppel, M. Theiss and M. Lange, “An Agent-based Model-Compound

For Fire Protection Engineering,” in Proceedings CD of the 2005 ASCE International

Conference on Computing in Civil Engineering, Cancun, Mexico, 2005.

[144] X. Pan, C. S. Han and K. H. Law, “A Multi-Agent Based Simulation Framework for the

Study of Human and Social Behavior in Egress Analysis,” in Proceedings of the 2005

International Conference - Computing in Civil Engineering, Cancun, Mexico, 2005.

[145] C. Zhang, A. Hammad and H. Bahnassi, “Collaborative Multi-Agent Systems for

Construction,” Journal of Information Technology in Construction, vol. 14, no. Special

Issue: Next Generation Construction IT: Technology Foresight, Future Studies,

Roadmapping, and Scenario Planning, pp. 204-228, 2009.

[146] R. Luo, S. Y. Lin and K. Su, “A Multiagent Multisensor Based Security System for

Intelligent Building,” in Proceedings of the IEEE Conference on Multisensor Fusion and

Integration for Intelligent Systems, Tokyo, Japan, 2003. pp. 311 - 316 .

[147] D. J. Cook, M. Youngblood and E. O. Heierman, “MavHome: An Agent-Based Smart

Home,” in Proceedings of the First IEEE International Conference on Pervasive

Computing and Communications (PerCom’03), Fort Worth, Texas, USA, 2003. pp. 521-

524.

[148] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura and E. Jansen, “The Gator Tech

Smart House: A Programmable Pervasive Space,” IEEE Computer, pp. 50-60, 2005.

[149] Object Management Group (OMG), “CORBA,” 2010. [Online]. Available:

http://www.corba.org/. [Accessed 04 06 2210].

[150] OSGi Alliance , “OSGi Alliance - Home,” OSGi Alliance, 2008. [Online]. Available:

241

http://www.osgi.org/Main/HomePage. [Accessed 30 July 2008].

[151] J. Wielemaker, T. Schrijvers, M. Triska and T. Lage, “SWI-Prolog,” Theory and Practice of

Logic Programming, vol. 12, no. 1-2, pp. 67-96, 01 2012.

[152] C. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17-37, 09 1982.

[153] M. Bergman, “Listing of 185 Ontology Building Tools,” 23 08 2010. [Online]. Available:

http://www.mkbergman.com/904/listing-of-185-ontology-building-tools/. [Accessed 21

09 2011].

[154] W3C, “Implementations - Reasoners and Editors / Development Environments / APIs,”

2011. [Online]. Available: http://www.w3.org/2007/OWL/wiki/Implementations.

[Accessed 08 2011].

[155] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development Process, 1

ed., Addison-Wesley Professional, 1999.

[156] Apache Software Foundation, “log4j,” 30 03 2010. [Online]. Available:

http://logging.apache.org/log4j/1.2/. [Accessed 17 09 2011].

[157] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the Requirements Traceability

Problem,” in Proceedings of the First International Conference on Requirements

Engineering, Colorado Springs, CO , USA, 1994. pp. 94-101.

[158] G. Cysneiros and A. Zisman, “Traceability and Completeness Checking for Agent-

oriented Systems,” in Proceedings of the 2008 ACM symposium on Applied computing,

Fortaleza, Ceara, Brazil, 2008. pp. 71-77.

[159] Elca Informatique SA, “IIOP.NET,” 2004. [Online]. Available: http://iiop-

net.sourceforge.net/. [Accessed 17 09 2011].

[160] J. Frijters, “IKVM.NET Home Page,” 05 2011. [Online]. Available: http://www.ikvm.net/.

[Accessed 17 09 2011].

[161] A. Kalyanpur, D. J. Pastor, S. Battle and J. A. Padget, “Automatic Mapping of OWL

Ontologies into Java,” in n Proceedings of the 16th Int'l Conference on Software

Engineering & Knowledge Engineering, Banff, Alberta, Canada, 2004. pp. 98-103.

242

[162] J. Tulke and E. Tauscher, “Open Industry Foundation Classes (IFC) Tools,” 2009. [Online].

Available: http://www.openifctools.org/Open_IFC_Tools/Home.html. [Accessed 09 06

2010].

[163] South Carolina Research Authority (SCRA), “Step Application Handbook ISO 10303 v3,”

SCRA, 30 June 2006. [Online]. Available: http://www.tc184-

sc4.org/SC4_Open/SC4_Standards_Developers_Info/Files/STEP_application_handbook_

63006.pdf. [Accessed 30 July 2008].

[164] D. A. Schenck and P. R. Wilson, Information Modeling the EXPRESS Way, Oxford

University Press, USA, 1994.

[165] A. Pokahr and L. Braubach, “JADEX User Guide,” Hamburg, Germany, 2007.

[166] Autodesk, Inc, “Autodesk Revit Architecture,” 2011. [Online]. Available:

http://www.autodesk.co.uk/adsk/servlet/pc/index?siteID=452932&id=14645193.

[Accessed 09 2011].

[167] F. Maulo, “NHibernate for .NET,” Red Hat Middleware, LLC, 2006. [Online]. Available:

http://www.hibernate.org/343.html. [Accessed 18 March 2009].

[168] National Instruments, “Products and Services,” 2011. [Online]. Available:

http://www.ni.com/. [Accessed 18 04 2011].

[169] Telegesis (UK) Ltd, “AT Command Manual R305,” Telegesis (UK) Ltd, High Wycombe, UK,

2011.

[170] Telegesis Ltd, “Telegesis - ETRX357x Module,” 2011. [Online]. Available:

http://www.telegesis.com/product_range_overview/etrx3_zigbee_module.htm.

[Accessed 23 02 2011].

[171] M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez, J. Lehmann, H.

Lewen, V. Presutti and M. Sabou, “D 5.1.1 NeOn Modelling Components,” 2007.

[172] A. Rector, “Representing Specified Values in OWL: "value partitions" and "value sets",”

17 05 2005. [Online]. Available: http://www.w3.org/TR/swbp-specified-values/.

[Accessed 29 08 2011].

[173] S. Hendren, “Resource,” 2008. [Online]. Available: http://stuarthendren.net/resource.

243

[Accessed 2010 06 09].

[174] Y. Katz and B. C. Grau, “Representing Qualitative Spatial Information in OWL DL,” in

Proceedings of Web Ontology Language (OWL): Experiences and Directions Workshop,

Galway, Ireland, 2005.

[175] Open Geospatial Consortium, Inc., “Sensor Model Language (SensorML),” Open

Geospatial Consortium, Inc., 2009. [Online]. Available:

http://www.opengeospatial.org/standards/sensorml. [Accessed 20 March 2009].

[176] buildingSMART, “ifcXML2x3 Release Summary,” 2010. [Online]. Available:

http://www.iai-tech.org/products/ifc_specification/ifcxml-releases/ifcxml2x3-

release/summary. [Accessed 09 06 2010].

[177] W3C, “XQuery 1.0: An XML Query Language (Second Edition),” 14 12 2010. [Online].

Available: http://www.w3.org/TR/xquery/. [Accessed 26 02 2011].

[178] T. Lukasiewicz, “Probabilistic Description Logics for the Semantic Web,” Technische

Universitat Wien, Vienna, Austria, 2007.

[179] Ember Corporation, “Zigbee Chips,” 2011. [Online]. Available:

http://www.ember.com/products_zigbee_chips.html. [Accessed 23 02 2011].

[180] Murata Manufacturing Co. Ltd., “Surface Mount Pyroelectric Infrared Sensor,” Murata

Manufacturing Co. Ltd., 26 02 2010. [Online]. Available:

http://www.murata.com/new/news_release/2010/0226/index.html. [Accessed 19 07

2011].

[181] U.S. Department of Energy, “EnergyPlus Energy Simulation Software,” 08 03 2011.

[Online]. Available:

http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm. [Accessed

19 08 2011].

244

245

Appendix A

A. Hardware Design Details

Hardware Design Details

This section presents some brief supplementary details for the ZigBee wireless sensor unit. The

objective was to produce very low power wireless based sensor platforms that have a small

footprint. A brief overview of the wireless sensor hardware design is discussed in section

6.1.3.1. Table A.1 is a parts list for a wireless host unit.

Table A.1 – ZigBee sensor unit parts list

Item Part /

Supplier

Note

ZigBee module ETRXn /

telegesis

ETRX357HR-LRS / ETRX357-LRS

/ ETRX357. 1 per board

Antenna + connector Various /

telegesis

0 or 1 per board

Osram lux sensor Ambient light sensor

w/logoutput,SFH5711

654-9078 /

RS

1 per board

Temp sensor Temperature Sensor Analog

Serial 2-Wire TMP37FT9Z

709-2772 /

RS

1 per board

PIR sensor 5m Spot (truncated cone)

(white) / general purpose / wide angle /

high sensitivity

e.g 61-1510/

Rapid

1 per board

Battery box 2 *AA 2 X AA BATTERY

HOLDER KEYSTONE

18-3683 /

Rapid

1 per board

Zigbee module header 1.27mm straight

PCB header 40W

254-6312 /

RS

Zigbee antenna connector 1 per board

1.27/1.27 mm header 10 way Header

2x10way DIL VERT Pin

681-1193 /

RS

Split to multiples of 2 * 5. Total

120 pins. 80 pins -> 8 * 10 way

+ 1 spare = 11

Reset switch ROUND GREEN KEYBOARD

SWITCH / SQUARE YELLOW KEYBD.

SWITCH

78-0155 - 78-

0265 / Rapid

1 per board

246

Molex Header 2.5mm WTB,vert, friction

ramp, 3w

687-7213 /

RS

5 per board

Molex Header 2.5mm WTB,vert, friction

ramp, 2w

687-7219 /

RS

Resistor 32K4, 0805 0.1% 25PPM 0.1W 1575962 /

Farnell

Voltage divider – temperature

sensor – 1 per board

Resistor 48K7, 0805 0.1% 25PPM 0.1W 1575980 /

Farnell

Voltage divider – temperature

sensor – 1 per board

Resistor 24K, 0805, 0.1%, 0.125W 1670246 /

Farnell

Lux sensor load resistor – 1 per

board

Resistor 300K, 0805, 0.1%, 0.125W 1670260 /

Farnell

PIR load resistor – 0, 1 or 2 per

board

Resistor 0805, 5%, 1K00 1739229 /

Farnell

Reset – 1 per host

Capacitor 0603, X7R, 16V, 100NF 1833863 /

Farnell

Suppressor – 2 per board

http://uk.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=1575962
http://uk.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=1575980
http://uk.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=1670246
http://uk.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=1670260
http://uk.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=1739229
http://uk.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=1833863

247

Appendix B

B. Supplementary Illustration

Supplementary Illustration

Figure B.1 shows a selected view of the ‘Forum’ room from the IFC building model together

with a photo inset. The ZigBee wireless unit labelled m2.6 can be seen in both the IFC view and

the photo inset. A few further units are indicated with the blue arrows in the IFC view.

Figure B.1 - Illustration of sensor locations in the ‘Forum’ room, with photo inset

249

Appendix C

C. Testing Results Overview

Testing Results Overview

The following sub sections detail some of the late integration tests. All test outcomes were

necessarily positive in order to support the deployed systems. In some cases some iteration to

correct errors and solve performance issues were carried out.

C.1. Zone Agent Type Testing

The following sub sections give details of the tests completed.

C.1.1 Building Ontology Creation

The test’s scope is the construction of a knowledge base that is synchronised with the current

environment state (sensor availability). A dedicated goal is involved several times in different

mode to create the ontology A box comprising the following: building geometry, space

definitions and relations, sensor contexts, ancillaries (furniture and plant) and derived

geometric data such as space ratio. Individual related metrics for a typical building ontology

generated by the forum zone agent are shown in Figure C.1.

Figure C.1 - A zone agent's typical buildings ontology A box metrics

C.1.2 Deliberation

Figure C.2 shows a screen grab of the Protégé ontology editor that renders with its reasoner

support the inference made by the forum agent. The ontology is one saved by the agent during

250

execution, shown here for the purpose of occupancy type determination related deliberation.

Ontology models are held in memory and only saved to disk for diagnostics. The use of

inference is extensive but the screen grab shows inferences of zone characterisation that is

used in deliberation, along with other factors to select the type of occupancy monitoring to

perform (inferences are shown with a yellow background).

251

Figure C.2 - Protégé editor with a Forum agent's ontology snap shot loaded. Inferrences are shown with a yellow background.

252

In the following excerpt of the Forum room zone agent’s log, the agent decided to abandon the occupancy counting plan (09:56:32.078 04-08-11) due to motion

detected during the interval when it was attempting to establish the assumption that the zone is unoccupied. The agent’s occupancy deliberation has been

initiated and has logged some activity at 09:57:13.843 04-08-11 relating to its request for, receipt of and processing of its neighbours’ salient beliefs. Later, as it

had no related commitments (09:57:13.859 04-08-11), it initiated specific deliberation to decide ‘what to do next’. The inference of feasible occupancy monitoring

types takes into account beliefs and commitments etc of neighbours that are synchronised with its ‘as is’ building ontology. The resultant (candidate) occupancy

evaluation types are those mapped to the classifications of its zone class individual following realisation of the ontology (09:57:40.937 04-08-11). Three feasible

monitoring modes were inferred, from which one was decided upon after consideration of experience etc (also 09:57:40.937 04-08-11), that led to the adoption of

a new goal and associated commitment. Multiple log lines share the same time stamp due to the implementation of the log writing that reports a block of

execution, not reflecting the timing of fine grained algorithmic execution (which is not typically the case). The details of the goal that was activated corresponding

to the occupancy evaluation mode decided upon are shown (09:57:54.015 04-08-11), including the wall openings to be monitored. More details are provided in

section 6.2.1.2.1.

TRACE 09:56:32.078 04-08-11 zoneAgent.AbstractOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#4))] - extracted motion event:SpotPIR of most abstract

class: Thu Aug 04 09:56:24 BST 2011 0B8AC54B-821F-474d-A1D8-F141097CE3FA

TRACE 09:56:32.078 04-08-11 zoneAgent.AbstractOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#4))] - extracted motion event:NapionSpotPIR of most

abstract class: Thu Aug 04 09:56:24 BST 2011 67E876F1-6C91-4b5a-92D0-2F5B2B83D264

TRACE 09:56:32.078 04-08-11 zoneAgent.AbstractOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#4))] - extracted motion event:NapionSpotPIR of most

abstract class: Thu Aug 04 09:56:24 BST 2011 67E876F1-6C91-4b5a-92D0-2F5B2B83D264

DEBUG 09:56:32.078 04-08-11 zoneAgent.AbstractOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#4))] - motion detected while waiting to assert zero

occupancy - resetting wait, retry count 4

INFO 09:56:32.078 04-08-11 zoneAgent.AbstractOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#4))] - exceeded the wait for zero activity max retries of

4

WARN 09:56:32.078 04-08-11 zoneAgent.AbstractOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#4))] - plan failed

INFO 09:56:44.234 04-08-11 zoneAgent.SensorEventsNotificationPlan [PlanExecutionTask(RPlan(name=sensorEventsNotification#202))] - received events notification - event

count: 35

INFO 09:56:44.234 04-08-11 zoneAgent.SensorEventsNotificationPlan [PlanExecutionTask(RPlan(name=sensorEventsNotification#202))] -

2011-08-04 09.56.44.234 leased sensor - event/s notification (35 after filtering 6)

INFO 09:56:56.750 04-08-11 zoneAgent.SensorEventsNotificationPlan [PlanExecutionTask(RPlan(name=sensorEventsNotification#203))] - received events notification - event

count: 36

INFO 09:56:56.750 04-08-11 zoneAgent.SensorEventsNotificationPlan [PlanExecutionTask(RPlan(name=sensorEventsNotification#203))] -

2011-08-04 09.56.56.750 leased sensor - event/s notification (36 after filtering 1)

INFO 09:57:07.843 04-08-11 zoneAgent.SensorEventsNotificationPlan [PlanExecutionTask(RPlan(name=sensorEventsNotification#204))] - received events notification - event

count: 19

INFO 09:57:07.843 04-08-11 zoneAgent.SensorEventsNotificationPlan [PlanExecutionTask(RPlan(name=sensorEventsNotification#204))] -

2011-08-04 09.57.07.843 leased sensor - event/s notification (19 after filtering 0)

253

INFO 09:57:13.843 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - retrieved zone classifications from registered

neighbours, synchronising selected beliefs

INFO 09:57:13.859 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - no current ocupancy monitoring comitment

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - feasible occupancy monitoring types (3):

evaluateOccupancyOpenings determineOccupancy continuousMotionOccupancy

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - filtered non feasible type/s from choosen occupancy

monitor candidates, 3 choices, 2 of those deemed feasible

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - analysed 4 relevant commitments for persuit of

occupancy monitoring mode: evaluateOccupancyOpenings criterial used was - fail count limit: 4 age influence: from: Thu Aug 04 08:57:40 BST 2011 to: Thu Aug 04 09:57:40 BST

2011 no counter evidance for commitment goal persuit

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - analysed 1 relevant commitments for persuit of

occupancy monitoring mode: determineOccupancy criterial used was - fail count limit: 4 age influence: from: Thu Aug 04 08:57:40 BST 2011 to: Thu Aug 04 09:57:40 BST 2011 no

counter evidance for commitment goal persuit

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] -

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - decide next monitoring summary:

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - preferred choices -> occupancy monitoring types (3):

evaluateOccupancyOpenings determineOccupancy checkAcess

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - filtered feasible choices -> occupancy monitoring

types (2): evaluateOccupancyOpenings determineOccupancy

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - filtered by experience (removed if evidance to

support) -> occupancy monitoring types (2): evaluateOccupancyOpenings determineOccupancy

INFO 09:57:40.937 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - decide next monitoring outcome =>

evaluateOccupancyOpenings

TRACE 09:57:54.015 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - preparing goals for openings of inferred types of

http://www.maxey.org.uk/ontologies/building.owl#MonitorableOpening => [http://www.maxey.org.uk/ontologies/building.owl#WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-

132513-1_3NVHLAmQTEfAqQJOdtVsXW, http://www.maxey.org.uk/ontologies/building.owl#WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-1_3NVHLAmQTEfAqQJOdtVcep,

http://www.maxey.org.uk/ontologies/building.owl#virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID, http://www.maxey.org.uk/ontologies/building.owl#WallOpening_M_Double-Flush-

1600_x_1981mm-1600_x_1981mm-133746-1_3NVHLAmQTEfAqQJOdtVsUp, http://www.maxey.org.uk/ontologies/building.owl#WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198695-

1_3NVHLAmQTEfAqQJOdtVcNc]

INFO 09:57:54.015 04-08-11 zoneAgent.OccupancyDeliberationPlan [PlanExecutionTask(RPlan(name=decideOccupancy#28))] - activating 1 goals in response to deliberation

evaluateOccupancyOpenings and intention commitment class commitment.OcupancyMonitorCommitment:valid Thu Aug 04 09:57:13 BST 2011 -> Thu Aug 04 10:27:13 BST 2011, timestamp

[empty], name:decideOccupancy#28, audit size:1, changes:1

INFO 09:57:54.015 04-08-11 zoneAgent.OpeningsOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#5))] - started determine occupancy by monitoring openings

intention commitment class commitment.OcupancyMonitorCommitment:valid Thu Aug 04 09:57:13 BST 2011 -> Thu Aug 04 10:27:13 BST 2011, timestamp [empty],

name:decideOccupancy#28, audit size:2, changes:1 using plan monitorOccupancyOpenings#5

TRACE 09:57:55.031 04-08-11 zoneAgent.AbstractOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#5))] - intial internal motion sensor less preferred

sensors in preliminary selection (removed): [DFBA34CE-872C-4f25-A885-23C803D37046, 31F55E2A-E076-4abd-8D56-31FC1218DF14, D961AD9A-5D99-41c8-8BD0-D30508B9541D, 53DB3068-1469-

4362-A23F-396794CAAD6B]

DEBUG 09:57:55.031 04-08-11 zoneAgent.OpeningsOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#5))] - selected motion sensors for occupancy verification:

[5B4B0B71-1634-4376-BC71-986A2F4E3E7A, 0B8AC54B-821F-474d-A1D8-F141097CE3FA, 67E876F1-6C91-4b5a-92D0-2F5B2B83D264, 0D9149A7-F23E-4354-A000-C1F67B7CA0C6]

C.1.3 Count Occupancy – Sample Tracker Configuration

A sample tracker configuration used by the forum agent:

INFO 09:56:31.125 05-08-11 zoneAgent.OpeningsOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#3))] - tracker configuration summary: entry/exit tracker

configuration: for boundary WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-133746-1_3NVHLAmQTEfAqQJOdtVsUp inside sensor F557647F-208F-4c15-94BD-057DE3151531

(inside), outside sensor E0C86482-2BF0-464a-93FE-9856F0E38F0D (outsideTrigger), apply dueal trigger check: no, opening type none

254

INFO 09:56:32.921 05-08-11 zoneAgent.OpeningsOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#3))] - tracker configuration summary: entry/exit tracker

configuration: for boundary virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID inside sensor 4A77A18D-494F-48e4-B52D-102414D70734 (insideTrigger), outside sensor C74FB61B-7150-

4347-95BA-E88037F82049 (outsideTrigger), apply dueal trigger check: yes, opening type none

INFO 09:56:34.765 05-08-11 zoneAgent.OpeningsOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#3))] - tracker configuration summary: entry/exit tracker

configuration: for boundary WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-1_3NVHLAmQTEfAqQJOdtVcep inside sensor 10DD8844-F2CA-4805-96C4-D5B4C2DF28A9

(insideTrigger), outside sensor DC0645CB-C809-4577-A161-282823B65735 (outsideTrigger), apply dueal trigger check: yes, opening type none

INFO 09:56:36.406 05-08-11 zoneAgent.OpeningsOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#3))] - tracker configuration summary: entry/exit tracker

configuration: for boundary WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-1_3NVHLAmQTEfAqQJOdtVsXW inside sensor D12B81DE-CF90-46ff-9066-4472F57741CC

(insideTrigger), outside sensor 44077443-093E-4e9c-A450-96F8BE4C712B (outside), apply dueal trigger check: no, opening type none

INFO 09:56:37.750 05-08-11 zoneAgent.OpeningsOccupancyPlan [PlanExecutionTask(RPlan(name=monitorOccupancyOpenings#3))] - tracker configuration summary: entry/exit tracker

configuration: for boundary WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198695-1_3NVHLAmQTEfAqQJOdtVcNc inside sensor 0D9149A7-F23E-4354-A000-C1F67B7CA0C6

(inside), outside sensor A8E22922-BC63-4d41-A773-B6A2794FDE58 (outsideTrigger), apply dueal trigger check: yes, opening type none

C.2. Sensor Node Agent Type Testing

The following sub sections provide some details of testing.

C.2.1 Lease Message Request and Zigbee Host Management

The following log excerpts show the initial SL message reception of a request for a lease, the sensor node agent then deliberates its action and processes the lease.

Initially it is assigning it as pending, appropriate Zigbee node configuration is carried out and the lease is then set to granted status. The power mode of the Zigbee

host in this case was changed from the idle mode ‘standby’ to ‘low power’, a mode suitable for reading data.

DEBUG 07:26:52.046 04-08-11 sensorNode.SensorOntSLResponsePlan [PlanExecutionTask(RPlan(name=sensorOntSLResponse#2))] - received sensor ontology related SL request

(perfromative:16), message at Thu Aug 04 07:26:52 BST 2011 message content: ((action (agent-identifier :name zoneAgent_w135@maxey-eng :addresses (sequence

http://131.251.176.157:7778/acc)) (REQUEST_DEVICELEASES :DEVICELEASE (DEVICELEASE :REQUESTOR (agent-identifier :name zoneAgent_w135@maxey-eng :addresses (sequence

http://131.251.176.157:7778/acc)) :ALTERNATIVESENSORID0 A35DA7C0-DA29-4164-9902-D55056920015 :LEASESTART 20110804T062639375Z :LEASEEND 20110804T062839375Z :DEMAND 0

:RESOLUTION 0 :AVAILIBILITYIFOFFLINE 0 :ACCESSTYPE 0))))

INFO 07:26:52.468 04-08-11 sensorNode.ManageSensorLeasesPlan [PlanExecutionTask(RPlan(name=manageSensorLeases#2))] - received request for lease - resolution pending for

first resource A35DA7C0-DA29-4164-9902-D55056920015, requestor zoneAgent_w135@maxey-eng

INFO 07:26:52.468 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#3))] - perfroming zigbee node management (on demand)

DEBUG 07:26:52.468 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#3))] - considering actioning resources for 1 pending leases%n

DEBUG 07:26:52.468 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#3))] - 0 DeviceLease - for:A35DA7C0-DA29-4164-9902-

D55056920015 requested for:A35DA7C0-DA29-4164-9902-D55056920015 resolution:pending from:Thu Aug 04 07:26:39 BST 2011 to:Thu Aug 04 07:28:39 BST 2011 agent:[not

set] desc:null

INFO 07:26:55.156 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#3))] - managing power setting (changed) for: 000D6F0000D59949

existing value standby new value: low power

255

INFO 07:26:55.312 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#3))] - granted lease and managing power setting for: DeviceLease

- for:A35DA7C0-DA29-4164-9902-D55056920015 requested for:A35DA7C0-DA29-4164-9902-D55056920015 resolution:granted from:Thu Aug 04 07:26:39 BST 2011 to:Thu Aug 04

07:28:39 BST 2011 agent:[not set] desc:null

C.2.2 Routine Sensor Node Management (Power Mode)

The following log lines illustrate the routine maintenance of the power modes of Zigbee sensor node in the network. Regarding the first node listed, the agent has

determined that there are no active leases remaining for any devices hosted by that node so the device is set to a lower power consumption mode. The difference

in timestamp values between the first two lines account for the issuing of the configuration command to the infrastructure.

INFO 07:29:34.140 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - perfroming zigbee node management (routine)

INFO 07:29:37.093 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (changed) for: 000D6F0000D5A4D4

existing value low power new value: standby

INFO 07:29:37.109 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (no change) for: 000D6F0000D5D521

existing value low power new value: low power

INFO 07:29:37.125 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (no change) for: 000D6F0000D0F691

existing value standby new value: standby

INFO 07:29:37.140 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (no change) for: 000D6F0000D59F32

existing value low power new value: low power

INFO 07:29:37.156 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (no change) for: 000D6F0000D5A4D6

existing value low power new value: low power

INFO 07:29:37.171 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (no change) for: 000D6F0000D59947

existing value low power new value: low power

INFO 07:29:37.171 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (no change) for: 000D6F0000D5A507

existing value low power new value: low power

INFO 07:29:37.187 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (no change) for: 000D6F0000D5986B

existing value standby new value: standby

INFO 07:29:37.203 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (changed) for: 000D6F0000D59913

existing value standby new value: low power

INFO 07:29:37.218 04-08-11 sensorNode.ManageZigbeeNodesPlan [PlanExecutionTask(RPlan(name=manageZigbeeNodes#18))] - managing power setting (changed) for: 000D6F0000D59949

existing value low power new value: standby

257

Appendix D

D. Systems Result Samples

Systems Result Samples

This appendix contains a number of samples of agents beliefs about occupancy and the environmental conditions inside the zone. The results presented are

excerpts of those for the interval from 5th to 7th August 2011, using the university site deployment detailed in section 7.1.2. The results are reviewed in section

7.4.

D.1. Sample Occupancy Monitoring Beliefs

The following sub section show samples of the zone agents’ occupancy beliefs.

D.1.1 Occupancy Beliefs of Zone Agent for w.1.35

count: [unknown] zone: w.1.35 from 06:27:53 5-Aug to 06:27:53 5-Aug status: defined

count: [unknown] zone: w.1.35 from 06:52:40 5-Aug to 06:52:40 5-Aug status: defined

count: 0 zone: w.1.35 from 06:54:39 5-Aug to 09:25:04 5-Aug status: defined

count: 0 zone: w.1.35 from 09:26:07 5-Aug to 09:57:40 5-Aug status: defined

count: [unknown] zone: w.1.35 from 09:57:40 5-Aug to 09:57:20 5-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: some, count undefined zone: w.1.35 from 10:33:38 5-Aug to 11:23:43 5-Aug status: defined

count: 0 zone: w.1.35 from 11:00:11 5-Aug to 12:47:25 5-Aug status: defined

count: 1 zone: w.1.35 from 12:47:25 5-Aug to 13:01:32 5-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 0 zone: w.1.35 from 13:01:32 5-Aug to 13:15:35 5-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: [unknown] zone: w.1.35 from 13:15:35 5-Aug to 13:15:27 5-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 0 zone: w.1.35 from 13:22:45 5-Aug to 13:59:51 5-Aug status: defined

count: [unknown] zone: w.1.35 from 13:59:51 5-Aug to 13:59:55 5-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

258

count: 0 zone: w.1.35 from 14:07:35 5-Aug to 16:00:02 5-Aug status: defined

count: [unknown] zone: w.1.35 from 16:00:02 5-Aug to 16:00:15 5-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 0 zone: w.1.35 from 16:05:30 5-Aug to 17:47:55 5-Aug status: defined

count: some, count undefined zone: w.1.35 from 17:48:07 5-Aug to 17:53:46 5-Aug status: defined

count: 0 zone: w.1.35 from 17:54:03 5-Aug to 22:30:00 7-Aug status: defined

count: some, count undefined zone: w.1.35 from 22:30:25 7-Aug to 22:30:50 7-Aug status: defined

count: 0 zone: w.1.35 from 22:31:07 7-Aug to 06:02:11 8-Aug status: defined

count: [unknown] zone: w.1.35 from 06:39:15 8-Aug to 06:39:15 8-Aug status: defined

count: 0 zone: w.1.35 from 06:41:13 8-Aug to 09:21:16 8-Aug status: defined

count: 0 zone: w.1.35 from 09:27:51 8-Aug to 13:27:27 8-Aug status: defined

count: 1 zone: w.1.35 from 13:27:27 8-Aug to 13:31:18 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 2 zone: w.1.35 from 13:31:18 8-Aug to 13:31:53 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 1 zone: w.1.35 from 13:31:53 8-Aug to 16:14:12 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 2 zone: w.1.35 from 16:14:12 8-Aug to 16:20:18 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 1 zone: w.1.35 from 16:20:18 8-Aug to 16:20:56 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 2 zone: w.1.35 from 16:20:56 8-Aug to 16:22:15 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 1 zone: w.1.35 from 16:22:15 8-Aug to 16:47:21 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: 0 zone: w.1.35 from 16:47:21 8-Aug to 16:48:09 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: [unknown] zone: w.1.35 from 16:48:09 8-Aug to 16:48:10 8-Aug status: defined originator ref: WallOpening_M_Single-Flush-0800_x1981mm-0800_x1981mm-132513-

1_3NVHLAmQTEfAqQJOdtVsXW

count: some, count undefined zone: w.1.35 from 17:19:36 8-Aug to 22:36:05 8-Aug status: defined

count: 0 zone: w.1.35 from 22:36:22 8-Aug to 23:00:12 8-Aug status: defined

D.1.2 Occupancy Beliefs of Zone Agent for Forum Room

count: [unknown] zone: forum from 06:56:36 5-Aug to 06:56:36 5-Aug status: defined

count: 0 zone: forum from 06:58:55 5-Aug to 08:02:55 5-Aug status: defined

count: some, count undefined zone: forum from 08:19:17 5-Aug to 11:08:43 5-Aug status: defined

count: 0 zone: forum from 11:14:02 5-Aug to 11:39:02 5-Aug status: defined

count: some, count undefined zone: forum from 11:47:45 5-Aug to 14:11:54 5-Aug status: defined

count: 0 zone: forum from 14:02:54 5-Aug to 14:31:12 5-Aug status: defined

count: 1 zone: forum from 14:31:12 5-Aug to 14:32:19 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 2 zone: forum from 14:32:19 5-Aug to 14:32:58 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 1 zone: forum from 14:32:58 5-Aug to 14:32:32 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:32:58 5-Aug to 14:33:16 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 3 zone: forum from 14:33:16 5-Aug to 14:34:14 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:34:14 5-Aug to 14:35:38 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

259

count: 3 zone: forum from 14:35:38 5-Aug to 14:35:44 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:35:44 5-Aug to 14:37:34 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 1 zone: forum from 14:37:34 5-Aug to 14:37:34 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:37:34 5-Aug to 14:37:50 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198695-

1_3NVHLAmQTEfAqQJOdtVcNc

count: 3 zone: forum from 14:37:34 5-Aug to 14:38:33 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:38:33 5-Aug to 14:41:22 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 3 zone: forum from 14:41:22 5-Aug to 14:41:45 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:41:45 5-Aug to 14:43:45 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 3 zone: forum from 14:43:45 5-Aug to 14:45:59 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:45:59 5-Aug to 14:46:54 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 3 zone: forum from 14:46:54 5-Aug to 14:47:26 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:47:26 5-Aug to 14:47:31 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 1 zone: forum from 14:47:31 5-Aug to 14:49:45 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198642-

1_3NVHLAmQTEfAqQJOdtVcep

count: 2 zone: forum from 14:49:45 5-Aug to 14:50:26 5-Aug status: defined originator ref: WallOpening_M_Double-Flush-1600_x_1981mm-1600_x_1981mm-198695-

1_3NVHLAmQTEfAqQJOdtVcNc

count: 1 zone: forum from 14:50:26 5-Aug to 14:52:58 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 2 zone: forum from 14:52:58 5-Aug to 14:58:35 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 3 zone: forum from 14:58:35 5-Aug to 15:01:28 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 2 zone: forum from 15:01:28 5-Aug to 15:02:20 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 3 zone: forum from 15:02:20 5-Aug to 15:02:28 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 4 zone: forum from 15:02:28 5-Aug to 15:05:54 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 5 zone: forum from 15:05:54 5-Aug to 15:10:18 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 4 zone: forum from 15:10:18 5-Aug to 15:10:22 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 5 zone: forum from 15:10:22 5-Aug to 15:16:04 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 4 zone: forum from 15:16:04 5-Aug to 15:18:18 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 3 zone: forum from 15:18:18 5-Aug to 15:18:53 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 4 zone: forum from 15:18:53 5-Aug to 15:19:29 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 3 zone: forum from 15:19:29 5-Aug to 15:19:34 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 2 zone: forum from 15:19:34 5-Aug to 15:20:23 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 1 zone: forum from 15:20:23 5-Aug to 15:22:05 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 2 zone: forum from 15:22:05 5-Aug to 15:24:06 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 1 zone: forum from 15:24:06 5-Aug to 15:24:38 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: 2 zone: forum from 15:24:38 5-Aug to 15:29:11 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: [unknown] zone: forum from 15:29:11 5-Aug to 15:29:11 5-Aug status: defined originator ref: virtualSpaceBoundary_0GxXmtNOX4vROJiXPpawID

count: some, count undefined zone: forum from 16:09:27 5-Aug to 18:16:59 5-Aug status: defined

count: 0 zone: forum from 18:36:03 5-Aug to 19:04:23 5-Aug status: defined

count: some, count undefined zone: forum from 19:05:01 5-Aug to 19:56:28 5-Aug status: defined

count: 0 zone: forum from 19:57:38 5-Aug to 11:15:00 6-Aug status: defined

count: some, count undefined zone: forum from 11:15:00 6-Aug to 11:51:28 6-Aug status: defined

count: 0 zone: forum from 12:19:06 6-Aug to 13:24:41 6-Aug status: defined

count: some, count undefined zone: forum from 13:32:51 6-Aug to 14:00:47 6-Aug status: defined

260

count: 0 zone: forum from 14:03:58 6-Aug to 16:38:46 6-Aug status: defined

count: some, count undefined zone: forum from 16:53:39 6-Aug to 17:17:35 6-Aug status: defined

count: 0 zone: forum from 17:28:36 6-Aug to 18:51:04 6-Aug status: defined

count: some, count undefined zone: forum from 18:51:21 6-Aug to 18:51:51 6-Aug status: defined

count: 0 zone: forum from 18:52:07 6-Aug to 12:12:34 7-Aug status: defined

count: some, count undefined zone: forum from 12:13:35 7-Aug to 12:13:48 7-Aug status: defined

count: 0 zone: forum from 12:14:03 7-Aug to 15:28:52 7-Aug status: defined

count: some, count undefined zone: forum from 15:29:09 7-Aug to 15:31:14 7-Aug status: defined

count: 0 zone: forum from 15:32:37 7-Aug to 16:39:24 7-Aug status: defined

count: some, count undefined zone: forum from 16:39:42 7-Aug to 16:40:10 7-Aug status: defined

count: 0 zone: forum from 16:40:27 7-Aug to 17:17:06 7-Aug status: defined

count: some, count undefined zone: forum from 17:22:22 7-Aug to 17:36:53 7-Aug status: defined

count: 0 zone: forum from 17:37:04 7-Aug to 18:08:15 7-Aug status: defined

count: some, count undefined zone: forum from 18:08:31 7-Aug to 18:09:19 7-Aug status: defined

count: 0 zone: forum from 18:09:34 7-Aug to 18:43:16 7-Aug status: defined

count: some, count undefined zone: forum from 18:43:31 7-Aug to 18:44:19 7-Aug status: defined

count: 0 zone: forum from 18:44:35 7-Aug to 22:28:53 7-Aug status: defined

count: some, count undefined zone: forum from 22:32:55 7-Aug to 22:58:06 7-Aug status: defined

count: 0 zone: forum from 23:15:33 7-Aug to 00:24:14 8-Aug status: defined

count: some, count undefined zone: forum from 00:24:31 8-Aug to 01:28:56 8-Aug status: defined

count: 0 zone: forum from 01:28:56 8-Aug to 05:36:41 8-Aug status: defined

count: [unknown] zone: forum from 06:48:23 8-Aug to 06:48:23 8-Aug status: defined

count: 0 zone: forum from 06:50:39 8-Aug to 07:12:27 8-Aug status: defined

count: some, count undefined zone: forum from 07:12:44 8-Aug to 07:12:54 8-Aug status: defined

count: 0 zone: forum from 07:13:46 8-Aug to 08:24:43 8-Aug status: defined

count: some, count undefined zone: forum from 08:26:45 8-Aug to 18:36:04 8-Aug status: defined

count: 0 zone: forum from 18:36:23 8-Aug to 18:58:21 8-Aug status: defined

count: some, count undefined zone: forum from 18:58:38 8-Aug to 19:26:40 8-Aug status: defined

count: 0 zone: forum from 19:26:56 8-Aug to 19:51:51 8-Aug status: defined

count: some, count undefined zone: forum from 19:54:20 8-Aug to 19:59:41 8-Aug status: defined

count: 0 zone: forum from 20:02:52 8-Aug to 22:26:06 8-Aug status: defined

count: some, count undefined zone: forum from 22:33:55 8-Aug to 23:14:18 8-Aug status: defined

count: 0 zone: forum from 23:27:43 8-Aug to 01:12:09 9-Aug status: defined

count: some, count undefined zone: forum from 01:13:45 9-Aug to 01:27:46 9-Aug status: defined

count: 0 zone: forum from 01:28:04 9-Aug to 02:34:50 9-Aug status: defined

count: some, count undefined zone: forum from 02:37:00 9-Aug to 03:05:27 9-Aug status: defined

count: 0 zone: forum from 03:06:51 9-Aug to 03:31:36 9-Aug status: defined

261

D.2. Sample Environment Monitoring

The following sub sections details some environment beliefs formed by the Forum and w.1.35 room agents. The reason for the presence of [nil] in some reports

has not been ascertained.

D.2.1 Forum Room Environment Monitoring Sample

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - belief base environment montior summaries (46)

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=0zone id=forumilluminance=39.15 Lux,

min illuminance=34.87 Lux, max illuminance=42.45 Lux, temperature=23.44 C, min temperature=23.42 C, max temperature=23.45 C Cvalid from=06:58:55 5-Aug, valid to=07:20:30 5-

Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=some, count undefinedzone

id=forumilluminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=08:19:17

5-Aug, valid to=08:19:28 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=0zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=11:14:02 5-Aug, valid to=11:39:02 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=some, count undefinedzone

id=forumilluminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=11:47:45

5-Aug, valid to=11:57:02 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=0zone id=forumilluminance=505.00

Lux, min illuminance=116.48 Lux, max illuminance=5862.00 Lux, temperature=23.62 C, min temperature=23.58 C, max temperature=23.67 C Cvalid from=14:02:54 5-Aug, valid

to=14:30:33 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:32:58 5-Aug, valid to=14:32:40 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=356.18

Lux, min illuminance=356.18 Lux, max illuminance=356.18 Lux, temperature=23.61 C, min temperature=23.61 C, max temperature=23.62 C Cvalid from=14:32:58 5-Aug, valid

to=14:33:16 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=3zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:33:16 5-Aug, valid to=14:34:14 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=351.43

Lux, min illuminance=351.43 Lux, max illuminance=351.43 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:34:14 5-Aug, valid

to=14:34:52 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:35:44 5-Aug, valid to=14:35:50 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=2264.38

Lux, min illuminance=345.74 Lux, max illuminance=6095.00 Lux, temperature=23.61 C, min temperature=23.61 C, max temperature=23.62 C Cvalid from=14:35:44 5-Aug, valid

to=14:36:55 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=342.60

Lux, min illuminance=342.44 Lux, max illuminance=342.77 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:38:33 5-Aug, valid

to=14:38:58 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=343.76

Lux, min illuminance=343.43 Lux, max illuminance=344.09 Lux, temperature=23.64 C, min temperature=23.64 C, max temperature=23.65 C Cvalid from=14:38:33 5-Aug, valid

to=14:39:27 5-Aug

262

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=344.09

Lux, min illuminance=344.09 Lux, max illuminance=344.09 Lux, temperature=23.66 C, min temperature=23.66 C, max temperature=23.67 C Cvalid from=14:38:33 5-Aug, valid

to=14:40:28 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=337.87

Lux, min illuminance=337.87 Lux, max illuminance=337.87 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:41:45 5-Aug, valid

to=14:42:28 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=338.84

Lux, min illuminance=338.84 Lux, max illuminance=338.84 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:41:45 5-Aug, valid

to=14:42:28 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=3zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=23.67 C, min temperature=23.67 C, max temperature=23.67 C Cvalid from=14:43:45 5-Aug, valid to=14:44:55 5-

Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=339.82

Lux, min illuminance=339.82 Lux, max illuminance=339.82 Lux, temperature=23.65 C, min temperature=23.65 C, max temperature=23.65 C Cvalid from=14:47:31 5-Aug, valid

to=14:48:10 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=337.22

Lux, min illuminance=337.22 Lux, max illuminance=337.22 Lux, temperature=23.65 C, min temperature=23.64 C, max temperature=23.65 C Cvalid from=14:47:31 5-Aug, valid

to=14:48:25 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=342.99

Lux, min illuminance=341.45 Lux, max illuminance=343.76 Lux, temperature=23.65 C, min temperature=23.64 C, max temperature=23.65 C Cvalid from=14:47:31 5-Aug, valid

to=14:48:49 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=350.42

Lux, min illuminance=350.42 Lux, max illuminance=350.42 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:49:45 5-Aug, valid

to=14:50:26 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:50:26 5-Aug, valid to=14:50:16 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=23.63 C, min temperature=23.63 C, max temperature=23.63 C Cvalid from=14:50:26 5-Aug, valid to=14:52:42 5-

Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=23.61 C, min temperature=23.61 C, max temperature=23.61 C Cvalid from=14:52:58 5-Aug, valid to=14:54:26 5-

Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:52:58 5-Aug, valid to=14:56:40 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=3zone id=forumilluminance=338.19

Lux, min illuminance=338.19 Lux, max illuminance=338.19 Lux, temperature=23.63 C, min temperature=23.63 C, max temperature=23.63 C Cvalid from=14:58:35 5-Aug, valid

to=14:59:24 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=4zone id=forumilluminance=359.96

Lux, min illuminance=359.61 Lux, max illuminance=360.65 Lux, temperature=23.63 C, min temperature=23.63 C, max temperature=23.63 C Cvalid from=15:02:28 5-Aug, valid

to=15:03:23 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=4zone id=forumilluminance=362.73

Lux, min illuminance=362.73 Lux, max illuminance=362.73 Lux, temperature=23.64 C, min temperature=23.64 C, max temperature=23.64 C Cvalid from=15:02:28 5-Aug, valid

to=15:04:58 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=5zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=15:05:54 5-Aug, valid to=15:07:29 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=5zone id=forumilluminance=2292.67

Lux, min illuminance=364.82 Lux, max illuminance=6149.00 Lux, temperature=23.67 C, min temperature=23.67 C, max temperature=23.67 C Cvalid from=15:05:54 5-Aug, valid

to=15:09:01 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=5zone id=forumilluminance=150.78

Lux, min illuminance=150.34 Lux, max illuminance=151.21 Lux, temperature=23.68 C, min temperature=23.68 C, max temperature=23.68 C Cvalid from=15:10:22 5-Aug, valid

to=15:11:15 5-Aug

263

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=5zone id=forumilluminance=257.14

Lux, min illuminance=226.25 Lux, max illuminance=285.65 Lux, temperature=23.69 C, min temperature=23.69 C, max temperature=23.69 C Cvalid from=15:10:22 5-Aug, valid

to=15:12:05 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=4zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=23.70 C, min temperature=23.69 C, max temperature=23.70 C Cvalid from=15:16:04 5-Aug, valid to=15:16:54 5-

Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=4zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=15:18:53 5-Aug, valid to=15:18:50 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=371.18

Lux, min illuminance=371.18 Lux, max illuminance=371.18 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=15:20:23 5-Aug, valid

to=15:20:42 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=371.06

Lux, min illuminance=370.82 Lux, max illuminance=371.18 Lux, temperature=23.63 C, min temperature=23.63 C, max temperature=23.63 C Cvalid from=15:20:23 5-Aug, valid

to=15:21:06 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=371.27

Lux, min illuminance=371.18 Lux, max illuminance=371.54 Lux, temperature=23.63 C, min temperature=23.63 C, max temperature=23.63 C Cvalid from=15:20:23 5-Aug, valid

to=15:21:15 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=1zone id=forumilluminance=3271.66

Lux, min illuminance=373.32 Lux, max illuminance=6173.00 Lux, temperature=23.63 C, min temperature=23.63 C, max temperature=23.63 C Cvalid from=15:20:23 5-Aug, valid

to=15:22:05 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=377.28

Lux, min illuminance=377.28 Lux, max illuminance=377.28 Lux, temperature=23.67 C, min temperature=23.67 C, max temperature=23.67 C Cvalid from=15:24:38 5-Aug, valid

to=15:25:21 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=23.66 C, min temperature=23.66 C, max temperature=23.66 C Cvalid from=15:24:38 5-Aug, valid to=15:26:33 5-

Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=2zone id=forumilluminance=[nil] Lux,

min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=15:24:38 5-Aug, valid to=15:28:05 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=[unknown]zone

id=forumilluminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=15:29:11

5-Aug, valid to=15:29:11 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=some, count undefinedzone

id=forumilluminance=2074.99 Lux, min illuminance=242.43 Lux, max illuminance=5723.00 Lux, temperature=23.69 C, min temperature=23.68 C, max temperature=23.69 C Cvalid

from=16:09:27 5-Aug, valid to=16:11:57 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=0zone id=forumilluminance=124.69

Lux, min illuminance=109.12 Lux, max illuminance=130.82 Lux, temperature=23.97 C, min temperature=23.91 C, max temperature=24.02 C Cvalid from=18:36:03 5-Aug, valid

to=18:58:15 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=some, count undefinedzone

id=forumilluminance=121.97 Lux, min illuminance=121.97 Lux, max illuminance=121.97 Lux, temperature=24.00 C, min temperature=24.00 C, max temperature=24.00 C Cvalid

from=19:05:01 5-Aug, valid to=19:10:26 5-Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - Environment Summary: occupancy count=0zone id=forumilluminance=89.33 Lux,

min illuminance=81.67 Lux, max illuminance=95.77 Lux, temperature=24.05 C, min temperature=23.94 C, max temperature=24.10 C Cvalid from=19:57:38 5-Aug, valid to=20:22:29 5-

Aug

INFO 20:22:30.328 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#47))] - belief base occupancies (154)

264

D.2.2 Room w.1.35 Environment Monitoring Sample

DEBUG 16:01:54.812 05-08-11 zoneAgent.MonitorZoneEnvKeyParamsPlan [PlanExecutionTask(RPlan(name=monitorZoneEnvKeyParams#12))] - environement summary: Environment Summary:

occupancy count=[unknown]zone id=w.1.35illuminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max

temperature=[nil] Cvalid from=16:00:02 5-Aug, valid to=16:00:15 5-Aug

INFO 16:01:54.812 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - belief base environment montior summaries (12)

INFO 16:01:54.812 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=0zone id=w.1.35illuminance=6.56 Lux,

min illuminance=5.77 Lux, max illuminance=7.19 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=06:54:39 5-Aug, valid to=07:15:40 5-Aug

INFO 16:01:54.812 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=0zone id=w.1.35illuminance=12.82

Lux, min illuminance=10.51 Lux, max illuminance=17.34 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=09:26:07 5-Aug, valid to=09:53:42

5-Aug

INFO 16:01:54.812 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=[unknown]zone

id=w.1.35illuminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid

from=09:57:40 5-Aug, valid to=09:57:20 5-Aug

INFO 16:01:54.812 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=some, count undefinedzone

id=w.1.35illuminance=116.31 Lux, min illuminance=110.18 Lux, max illuminance=122.44 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid

from=10:33:38 5-Aug, valid to=10:34:35 5-Aug

INFO 16:01:54.812 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=0zone id=w.1.35illuminance=129.54

Lux, min illuminance=118.74 Lux, max illuminance=138.17 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=11:00:11 5-Aug, valid

to=11:27:14 5-Aug

INFO 16:01:54.828 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=1zone id=w.1.35illuminance=[nil]

Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=12:47:25 5-Aug, valid to=12:49:37

5-Aug

INFO 16:01:54.828 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=0zone id=w.1.35illuminance=165.33

Lux, min illuminance=163.74 Lux, max illuminance=166.92 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=13:01:32 5-Aug, valid

to=13:03:41 5-Aug

INFO 16:01:54.828 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=[unknown]zone

id=w.1.35illuminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid

from=13:15:35 5-Aug, valid to=13:15:27 5-Aug

INFO 16:01:54.828 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=0zone id=w.1.35illuminance=147.35

Lux, min illuminance=121.74 Lux, max illuminance=166.44 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=13:22:45 5-Aug, valid

to=13:52:21 5-Aug

INFO 16:01:54.828 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=[unknown]zone

id=w.1.35illuminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid

from=13:59:51 5-Aug, valid to=13:59:55 5-Aug

INFO 16:01:54.828 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=0zone id=w.1.35illuminance=174.15

Lux, min illuminance=160.48 Lux, max illuminance=198.38 Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid from=14:07:35 5-Aug, valid

to=14:37:19 5-Aug

INFO 16:01:54.828 05-08-11 zoneAgent.UpdateLogPlan [PlanExecutionTask(RPlan(name=updateLog#13))] - Environment Summary: occupancy count=[unknown]zone

id=w.1.35illuminance=[nil] Lux, min illuminance=[nil] Lux, max illuminance=[nil] Lux, temperature=[nil] C, min temperature=[nil] C, max temperature=[nil] Cvalid

from=16:00:02 5-Aug, valid to=16:00:15 5-Aug

	Summary
	Declaration and Statements
	Other Works
	Contents
	Table of Figures
	Table of Tables
	1 Introduction
	1.1 Aims and Objectives of the Research
	1.1.1 Hypotheses, Aims and Objectives

	1.2 Dependant Disciplines
	1.3 High Level System Overview
	1.4 Thesis Structure

	2 Knowledge Engineering and its Application in the Construction Sector
	2.1 Informal Knowledge Representations
	2.1.1 Product Modelling in the Construction Sector
	2.1.2 Industry Foundation Classes
	2.1.3 Application of the Industry Foundation Classes

	2.2 Formal Knowledge Representations
	2.2.1 Description Logics
	2.2.1.1 Combining Description Logics with Rule Support

	2.2.2 Ontology
	2.2.3 Web Ontology Language
	2.2.3.1 Mapping from UML
	2.2.3.2 Other Mappings and Translation
	2.2.3.3 The Semantic Web
	2.2.3.4 Ontology Interaction

	2.2.4 Inference and Reasoner Support for OWL
	2.2.4.1 General Features
	2.2.4.2 A Common Application Programming Interface
	2.2.4.3 The Pellet Reasoner
	2.2.4.4 The RACER Reasoner
	2.2.4.5 Other Reasoners

	2.2.5 OWL Tools
	2.2.6 Ontology Engineering
	2.2.6.1 Ontology Development Methodologies Overview

	2.2.7 Ontological Resources for the IFMS Domain
	2.2.8 Application of Shared Ontologies and Semantics

	2.3 Summary

	3 The Multi Agent System Paradigm and its Application in the Construction Sector
	3.1 Multi Agent Systems
	3.1.1 Multi Agents Systems and Rational Agency
	3.1.2 The Belief Desire Intention Model
	3.1.3 Logical Formulation
	3.1.4 Implementable Systems

	3.2 Agent Messaging
	3.2.1 Message Content
	3.2.1.1 SL as Message Content
	3.2.1.2 OWL as Message Content

	3.3 Agent Development Methodologies
	3.4 Applications of the Multi Agent Paradigm in the Construction Sector
	3.4.1 Intelligent Buildings and Agency

	3.5 Alternatives to Deliver Aspects of Agency
	3.6 Summary

	4 System Development
	4.1 The Suitability of the BDI Agent Model to the IFMS
	4.2 The Suitability of Ontology Modelling
	4.3 Methodology
	4.3.1 Conventional Software Development Methodology
	4.3.2 Agent Development Methodology
	4.3.3 Ontology Development Methodology

	4.4 Framework Selection and Application
	4.4.1 Architecture and Implementation Languages
	4.4.2 Ontology Interaction Support Library Choices
	4.4.3 Agent Framework Selection and Features
	4.4.3.1 JADEX Framework Application
	4.4.3.2 Agent Messaging and Content

	4.4.4 Other Supporting Technologies, Libraries and Software
	4.4.4.1 Building Information Model
	4.4.4.2 Sensor Systems

	4.5 Summary

	5 General Principles of Implementation
	5.1 System Wide
	5.1.1 Propagation of Events and Time References
	5.1.2 Interconnection between Virtual Platforms

	5.2 Implementation of the Multiagent Layer
	5.2.1 Application of JADE and JADEX
	5.2.1.1 Agent Packaging, Distribution and Lifecycle Control
	5.2.1.2 Internal mechanisms
	5.2.1.3 Deliberation and Means-End Reasoning
	5.2.1.4 Goal / Plan structuring
	5.2.1.5 Messaging
	5.2.1.6 Agent Collaboration
	5.2.1.7 Learning
	5.2.1.8 General

	5.2.2 BDI Model Custom Application
	5.2.2.1 Commitment
	5.2.2.2 Role of Audit

	5.3 Ontology Support
	5.3.1 Ontology Models
	5.3.2 Ontology Querying

	5.4 IFC Building Model Support
	5.4.1 Usage of IFC Building Model Support
	5.4.2 Utilisation of IFC Building Model Support
	5.4.3 IFC General Processing
	5.4.4 IFC Geometry Processing

	5.5 Summary

	6 Detailed Development and Implementation
	6.1 Development of the Infrastructure Layer
	6.1.1 Database Support
	6.1.2 Wired Sensor Support
	6.1.3 The Wireless Sensor Network Implementation
	6.1.3.1 Wireless Hardware Design

	6.2 Agent Development and Implementation Specifics
	6.2.1 Zone Agent Development and Implementation Specifics
	6.2.1.1 The Zone Agent’s Ontology Use
	6.2.1.2 Illustrative Goal Implementation Detail - Evaluate Occupancy
	6.2.1.2.1 Deliberation and Means-End Reasoning for Occupancy Evaluation
	6.2.1.2.2 Determine Occupancy
	6.2.1.2.3 Count Occupancy
	6.2.1.2.3.1 The Entry / Exit Tracker Class

	6.2.1.2.4 Opening Checker
	6.2.1.2.5 Continuous motion occupancy detection/count
	6.2.1.2.6 Evaluate Occupancy without Motion Detection

	6.2.2 Sensor Node Agent Development and Implementation Specifics
	6.2.2.1 Application of Ontologies Summary
	6.2.2.2 Service Provision
	6.2.2.3 Device Leases
	6.2.2.4 Device Management

	6.3 Ontology Development
	6.3.1 Introduction
	6.3.2 Overview
	6.3.3 Common Design Principles
	6.3.4 Supporting Ontology Development
	6.3.5 The Sensor Ontology Development
	6.3.6 The Building Ontology Development

	6.4 Summary
	6.4.1 Infrastructure Development Summary
	6.4.2 Multiagent Layer Implementation Summary
	6.4.3 Ontology Development
	6.4.4 Hardware Development Summary

	7 Testing, Verification and Evaluation
	7.1 System Deployments
	7.1.1 Domestic Flat Deployment for Testing
	7.1.2 University Building Deployment for Testing

	7.2 Preliminary Tests
	7.2.1 Ontologies
	7.2.2 Infrastructure
	7.2.2.1 ZigBee Network Interface
	7.2.2.2 Sensor Node, Digital Input / Output and Thermometer Modules

	7.2.3 Agent Layer
	7.2.4 Preliminary Test Summary
	7.2.4.1 Performance Related
	7.2.4.2 Integrity and Efficiency
	7.2.4.3 Sensor Role Assignment
	7.2.4.4 BDI Related

	7.3 Late Integration Tests and Results
	7.3.1 Zone Agent Type Testing
	7.3.2 Sensor Node Agent Type Testing
	7.3.3 Realisation and Validation of Test Cases
	7.3.4 Evaluation of Results and Corrections
	7.3.4.1 BDI Agent Related
	7.3.4.2 Occupancy Counting
	7.3.4.3 Sensor Role Allocation

	7.4 Final Deployed System Testing and Results
	7.5 Summary

	8 Future Work
	8.1 Ontology Related
	8.1.1 Structured Learning

	8.2 Agent Related
	8.2.1 Potential Further Improvements of Agents’ Rationality
	8.2.2 Resource Control
	8.2.3 Enhancement of the Utility Agent Type

	8.3 Wireless Network Related Improvements
	8.3.1 Motion Sensor Additions

	8.4 Deployment Related
	8.4.1 Ease of Use
	8.4.2 Extended Application

	8.5 Integration with Simulation Tools
	8.6 Summary

	9 Summary and Conclusion
	9.1 Summary
	9.2 Conclusion
	9.2.1 BDI Agent Model
	9.2.2 Semantic Model Support
	9.2.3 Hardware Synchronisation

	9.3 Usability
	9.4 Contribution

	Acknowledgements
	Bibliography
	A. Hardware Design Details
	B. Supplementary Illustration
	C. Testing Results Overview
	C.1. Zone Agent Type Testing
	C.1.1 Building Ontology Creation
	C.1.2 Deliberation
	C.1.3 Count Occupancy – Sample Tracker Configuration

	C.2. Sensor Node Agent Type Testing
	C.2.1 Lease Message Request and Zigbee Host Management
	C.2.2 Routine Sensor Node Management (Power Mode)

	D. Systems Result Samples
	D.1. Sample Occupancy Monitoring Beliefs
	D.1.1 Occupancy Beliefs of Zone Agent for w.1.35
	D.1.2 Occupancy Beliefs of Zone Agent for Forum Room

	D.2. Sample Environment Monitoring
	D.2.1 Forum Room Environment Monitoring Sample
	D.2.2 Room w.1.35 Environment Monitoring Sample

