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Summary

In the first part of this research we find an improvement to Huxley and
Konyagin’s current lower bound for the number of circles passing through
five integer points. The improved lower bound is the conjectured asymptotic
formula for the number of circles passing through five integer points. We
generalise the result to circles passing through more than five integer points,
giving the main theorem.

Theorem. Let m ≥ 4 be a fixed integer. Let Wm(R) be the number of cyclic
polygons with m integer point vertices centred in the unit square with radius
r ≤ R. There exists a polynomial w(x) such that

Wm(R) ≥
4m

m!
R2 w(logR)(1 + o(1))

where w(x) is an explicit polynomial of degree 2m−1 − 1.

In the second part of the research we consider questions linked to the
distribution of different configurations of integer points of the circle passing
through the unit square. We show that different configurations of points are
distributed uniformly throughout the unit square for circles of fixed radius.
Results are obtained by looking at the distribution of the crossing points of
circles, where the circles form the boundaries of domains. The domain of a
configuration is the set of possible positions of the centre of the circle within
the configuration. We choose a rectangle within the unit square and then
count the number of regions of the rectangle which are formed by domain
boundaries.

Theorem. The number of domains which meet a given rectangle with side
lengths α and β is

4πR2αβ +O
(

Rκ+1(logR)λ
)

,

where κ = 131/208 and λ = 18627/8320.
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Part I

Counting the number of cyclic

polygons with five or more

integer point vertices
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Chapter 1

Introducing cyclic polygons and

the function r(n)

1.1 History of the problem

The key work in the history of the problem considered in the first part of this

project is that of Ramanujan concerning “the representation of a number as

the sum of s squares, s being any positive integer” [32]. Ramanujan set s = 2

and looked at the sum of two squares problem, a problem dating back to the

work of Gauss [9]. In [31] Ramanujan gave formulae concerned with both

the sum of squares function and the divisor function. However, Ramanujan

did not give proofs of these formulae as he believed they did not “involve the

use of any new ideas”. Both of Ramanujan’s papers [31, 32] are reproduced

in the collection of his papers [33].

B.M. Wilson [42], in a paper entitled “Proofs of some formulae enunci-

ated by Ramanujan”, proved many of the formulae given by Ramanujan.

Wilson’s paper was mainly concerned with moments of the divisor function,

and it proved in full Ramanujan’s results on the divisor function. Wilson also

outlined proofs of Ramanujan’s other results. The most interesting aspect

of Wilson’s paper in terms of this research project is Wilson’s prediction

of the existence of results for powers of the function r(n) analogous to the

results proved by Wilson for the divisor function. The function r(n) is the

arithmetic function counting the number of integer solutions of x2 + y2 = n,

where x > 0 and y ≥ 0.

Ramanujan used the standard notation of ζ(s) for the Riemann zeta

function; γ for Euler’s constant; and ǫ for any small positive number. The
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main result of Ramanujan’s that we are interested in is his expression for the

sum between 1 and n of r2(n).

Result (Ramanujan’s result). If

(

1

2
+ q + q4 + q9 + q16 + . . .

)2

=

∞
∑

1

r(n)qn

so that

ζ(s)η(s) =

∞
∑

1

r(n)n−s,

where

η(s) = 1−s − 3−s + 5−s − 7−s + . . . ,

then
ζ2(s)η2(s)

(1 + 2−s)ζ(2s)
= 1−sr2(1) + 2−sr2(2) + 3−sr2(3) + . . . ,

and

r2(1) + r2(2) + r2(3) + . . .+ r2(n) =
n

4
(log n+ c) +O

(

n3/5+ǫ
)

,

where

c = 4γ − 1 +
1

3
log 2− log π + 4 log Γ

(

3

4

)

− 12

π2
ζ ′(2).

The order of magnitude term O(n3/5+ǫ) has been subsequently improved.

The best known order of magnitude term is currently that of Huxley, which

gives O(n131/208+ǫ), proved in [17]. The conjectured order of magnitude term

is O(n1/2+ǫ) [11].

Wilson states that

∞
∑

n=1

n−sr(n) = 4k
(

1− 2−s
)2(k−1)−1 {ζ(s)η(s)}2(k−1)

φ(s),

where η(s) is as before; φ(s) is absolutely convergent for Re(s) = σ > 1/2;

and k denotes a positive integer.

This can be reformulated, as in the work of Huxley and Konyagin [20],

to give

Wilson’s Proposition. For each integer m ≥ 1, there are constants bm,
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bm = 2m−1 − 1, and cm, such that as N → ∞, we have

∑

n≤N

rm(n) = (cm + o(1))N(logN)bm .

The work of Huxley and Konyagin [20] considers the question “Among

the circles drawn through three distinct integer points in the plane, are circles

which pass through four or more points rare?” This arose from the investi-

gation by Huxley and Žunić [22,25] of the configurations of integer points in

convex plane sets. Huxley and Konyagin [20] study families of circles passing

through three, four and five integer points finding upper and lower bounds.

Using the notation of [20], let Pm(R) denote the number of sets of m

distinct integer points lying on a circle of radius r with r ≤ R. For sufficiently

large R, Huxley and Konyagin have bounded Pm(R) for m = 3, 4, 5.

P3(R) = π2R4 +O(R2+κ(logR)λ),

where κ = 131/208 and λ = 18627/8320. We will use these values of κ and

λ throughout this research.

P4(R) =
32(3 +

√
2)

21ζ(3)
ζ

(

3

2

)

L

(

3

2
, χ

)

R3 +O(R76/29+ǫ),

where ǫ > 0 and L(s, χ) is the Dirichlet L-function formed with the non-

trivial character mod 4. For P5(R) with ǫ > 0, the current bounds are

cR2 logR ≤ P5(R) ≤ C(5, ǫ)R76/29+ǫ.

We begin this research with an improvement to Huxley and Konyagin’s

current lower bound for the number of circles passing through five integer

points, which is identically the lower bound for the number of circles in

which cyclic polygons with five integer point vertices can be inscribed. The

improved lower bound is the conjectured asymptotic formula for the number

of circles passing through five integer points. We also generalise our results

to circles passing through more than five integer points.

The first result found was a more precise form of Wilson’s Proposition

for m ≥ 3. We then established the conjectured asymptotic formula for

the number of cyclic polygons with m integer vertices, for each m ≥ 3,

which have circumcentre at the origin and circumradius at most
√
N . Next,
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we restricted this result to r∗(n, q), the arithmetic function that counts the

number of integer solutions of x2 + y2 = n with x > 0, y ≥ 0 and highest

common factor (x, y, q) = 1.

Our next result was a lemma giving a way of establishing a lower bound

for the number of cyclic polygons with five or more integer point vertices.

We then restricted the size of the circumradius in this lemma to be less than

or equal to R and thus we obtained a theorem giving a lower bound for the

number of m-sided cyclic polygons with radius up to size R. This is the

conjectured asymptotic formula for the number of circles passing through

five or more integer points.

1.2 Notation

We use the standard notation s = σ + it where σ = Re(s) and t = Im(s).

This is associated with our use of the Riemann zeta function ζ(s) where

ζ(s) =

∞
∑

n=1

1

ns
=
∏

p prime

1

1− p−s
.

We define L(s, χ) as the Dirichlet L-function formed with the non-trivial

character mod 4. We also use the Dedekind zeta function Z(s), which is

a product of the Riemann zeta function and Dirichlet L-function, so that

Z(s) = ζ(s)L(s, χ). When the constants κ and λ appear, they take the

values κ = 131/208 and λ = 18627/8320, values obtained by Huxley in [17].

When there is an exponent of ǫ in an order of magnitude term, the expo-

nent ǫ may be taken arbitrarily small and positive, but the constant implied

in the O-symbol will depend on ǫ. The Vinogradov symbol f(x) ≪ g(x) as

x → ∞ means f(x) = O(g(x)) as x → ∞, where g(x) is positive for all

large x. Similarly f(x) ≫ g(x) as x → ∞ means that g(x) = O(f(x)) as

x → ∞, where f(x) and g(x) are positive for all large x. The symbol ≍
means asymptotically equal to, that is A ≪ B ≪ A, with implied constant

ǫ again.
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Chapter 2

Sums of powers of the function

r(n) and asymptotic formulae

for the number of cyclic

polygons of fixed radius with m

integer point vertices

2.1 Theorem 1 on the sums of powers of the

function r(n)

Theorem 1. Let m ≥ 3 be a fixed integer, and r(n) be the arithmetic function

counting the number of integer solutions of x2+y2 = n, with x > 0 and y ≥ 0,

then, as N → ∞,

∑

n≤N

rm(n) = N Pm(logN) +O(NΦ+ǫ), (2.1)

where Pm(x) is a polynomial of degree b = 2m−1 − 1, and Φ is an exponent

less than 1. The exponent ǫ and the constant implied in the O symbol follow

the conventions given in Section 1.2.

To define the exponent Φ in the error term of Theorem 1 we need to

introduce the exponent φ. The exponent φ is known for the size of the
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Riemann zeta function [37],

ζ

(

1

2
+ it

)

= O
(

tφ+η
)

for all η > 0 as t → +∞. By Huxley’s estimate [18], we take φ = 32/205.

The exponent Φ is then given by

Φ =
(4b− 4)φ+ 1

(4b− 4)φ+ 2
, (2.2)

where b = 2m−1 − 1 is the degree of the polynomial Pm(x).

2.2 Proof of Theorem 1 on sums of powers of

the function r(n)

We begin our proof by writing the Dirichlet series F (s) for rm(n) as an Euler

product,

F (s) =

∞
∑

n=1

rm(n)

ns
=

∏

p prime

(

1 +
rm(p)

ps
+
rm(p2)

p2s
+ · · ·

)

. (2.3)

We consider values of r(n) for n = pk, with p prime. We have

r(pk) =































1 p = 2

k + 1 p ≡ 1 mod 4,

1 p ≡ 3 mod 4, k even,

0 p ≡ 3 mod 4, k odd.

Then, for m a positive integer, we have

rm(pk) =































1 p = 2

(k + 1)m p ≡ 1 mod 4,

1 p ≡ 3 mod 4, k even,

0 p ≡ 3 mod 4, k odd.

(2.4)

We recall that r(n) is the arithmetic function counting the number of

integer solutions of x2 + y2 = n, with x > 0 and y ≥ 0, and we show that
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r(n) is multiplicative. We define χ(d) for d > 0 as χ(d) = 0 when 2|d and

χ(d) = (−1)(d−1)/2 when 2 ∤ d, and write

r(n) =
∑

d|n

χ(d).

Since χ(d) is multiplicative [13], r(n) will also be multiplicative. The multi-

plicative property of r(n) means we can substitute the values from (2.4) into

(2.3) to find

F (s) = G

(

1

2s

)

∏

p≡1 mod 4

H

(

1

ps

)

∏

p≡3 mod 4

G

(

1

p2s

)

. (2.5)

Here G(x) and H(x) are infinite series that can be expressed as rational

functions,

G(x) = 1 + x+ x2 + · · · = 1

1− x
,

H(x) = 1 + 2mx+ 3mx2 + 4mx3 + · · · = 1

(1− x)m+1

m
∑

k=1

A(m, k)xk−1, (2.6)

the defining property of the Eulerian numbers A(m, k) given in (2.47).

The Dirichlet series for rm(n) can be written in terms of the Dedekind

zeta function Z(s) = ζ(s)L(s, χ), the product of the Riemann zeta function

and Dirichlet L-function, so that

F (s) =

∞
∑

n=1

rm(n)

ns
= Zb+1(s)E(s). (2.7)

We then equate (2.5) and (2.7), our two expressions for the Dirichlet series

of rm(n), to obtain

E(s) =

(

1− 1

2s

)b
∏

p≡3 mod 4

(

1− 1

p2s

)b

∏

p≡1 mod 4

(

1− 1

ps

)A(m,2) m
∑

k=1

A(m, k)ps(1−k). (2.8)

The product E in (2.46) is E(1) in the notation (2.8).

We need to find an analytic continuation of E(s). We do this by compar-
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ing E(s) to ζ(2s) and L(2s, χ) as infinite products of primes. We write

E(s) =
J(s)

ζj1(2s)Lj2(2s, χ)
, (2.9)

where the exponents j1 and j2 are found from b = 2m−1 − 1 and

d = 2m−1(2m + 1)− 3m, (2.10)

with

j1 =
d+ b

2
= 2m−1(2m−1 + 1)− 1

2
(3m + 1),

j2 =
d− b

2
= 22(m−1) +

1

2
(1− 3m).

The residual factor J(s) of the expression for E(s) given in (2.9) is

J(s) = A(2)
∏

p≡1 mod 4

B(p)
∏

p≡3 mod 4

C(p),

where A(2) is a rational function in 1/2s, with poles on Re(s) = 0, and for

calculable constants β, and γ,

B(p) = 1 +
β

p3s
+ · · · , C(p) = 1 +

γ

p3s
+ · · · .

The Dirichlet series for log J(s) converges absolutely for σ > 1/3 by com-

parison with the series ζ(3σ). However, at s = 1/2, ζ(2s) has a pole, whilst

the series for L(2s, χ) converges for σ > 0. Hence E(s) can be continued

analytically to σ > 1/2.

We now consider the size of E(s),

|E(s)| = |J(s)|
|ζ(2s)|j1 |L(2s, χ)|j2 .

The series log J(s), and thus |J(s)|, is uniformly bounded for σ ≥ 1/2, with

|J(s)| < J̃ , for some constant J̃ . We estimate |1/ζ(2s)| and 1/|L(2s, χ)|.
Using the Möbius function, µ(n), we find

1

|ζ(2s)| =
∣

∣

∣

∣

∣

∞
∑

n=1

µ(n)

n2s

∣

∣

∣

∣

∣

≤
∞
∑

n=1

1

|n2s| =
∞
∑

n=1

1

n2σ
= ζ(2σ),

9



and similarly

1

|L(2s, χ)| =
∣

∣

∣

∣

∣

∞
∑

n=1

µ(n)χ(n)

n2s

∣

∣

∣

∣

∣

≤
∞
∑

n=1

1

|n2s| =
∞
∑

n=1

1

n2σ
= ζ(2σ).

Hence, for σ > 1/2, we have the inequalities

1

|ζ(2s)| ≤ ζ(2σ),
1

|L(2s, χ)| ≤ ζ(2σ),

and

|E(s)| = |J(s)|
|ζ(2s)|j1 |L(2s, χ)|j2 ≤ J̃ (ζ(2σ))j1+j2 = J̃ζd(2σ),

in the notation (2.10). We need several lemmas to continue the proof of

Theorem 1.

2.3 Truncating the Mellin transform

We explain the standard method of truncating the contour integral which

defines the Mellin transform for a single term of a Dirichlet series. A variant

of our method can be found in Montgomery and Vaughan (chapter 5, [30]).

Lemma 2.1. Let η > 0 be given, then

1

2πi

∫ 1+η+iT

1+η−iT

(x

n

)s ds

s
=



















1 +O

(

(x

n

)1+η 1

T log(x/n)

)

if n < x,

O

(

(x

n

)1+η 1

T log(n/x)

)

if n > x.

Proof. Let C be a closed contour, then

1

2πi

∮

C

f(s) ds =







1 if the origin is inside C,

0 if the origin is outside C.

Let f(s) = ys/s, with y = x/n, and y > 0. Then f(s) has a pole at s = 0

with residue y0 = 1.

We consider the integral along the line segment C1, which runs from

1 + η + iT to 1 + η − iT ,

1

2πi

∫

C1

f(s) ds =
1

2πi

∫ 1+η+iT

1+η−iT

f(s) ds.
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Figure 2.1: Contour for y < 1
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In order to have a closed contour C, we add line segments C2, C3 and C4

to the line segment C1. We have two cases to consider, y > 1 or y < 1,

which influence our choice of line segments C2, C3 and C4. For y > 1, as

σ = Re(s) → −∞, ys → 0. For y < 1, as σ → +∞, ys → 0.

For y < 1, we set u > 1 + η, then C2 is the line segment running from

1 + η − iT to u− iT . C3 is the line segment running from u− iT to u+ iT ,

and C4 is the line segment running from u + iT to 1 + η + iT . Figure 2.1

shows the contour used for y < 1, with

∫

C1

f(s) ds =

∫

C2

f(s) ds+

∫

C3

f(s) ds+

∫

C4

f(s) ds. (2.11)

For y > 1, set v < 0, and then C2 is the line segment running from

1 + η + iT to v + iT . C3 is the line segment running from v + iT to v − iT ,

and C4 is the line segment running from v − iT to 1 + η − iT . Figure 2.2

shows the contour for y > 1, with

1

2πi

∮

C1+C2+C3+C4

f(s) ds = 1. (2.12)

In both of our cases we find that |1/s|, ys, and the function f(s) = ys/s

are small along C3. We also have T > 0, so that |1/s| ≤ 1/T along C2 and

C4, with |ys| decreasing away from C1 in both of our cases.

We begin with the case y < 1, equivalent to n < x. Along C2, we have

11



Figure 2.2: Contour for y > 1

u

u

u

u

b

|
|

C3

v σ

C2

C4

C1

iT

−iT

t

1 + ηPole

the estimate of |f(s)|,

|f(s)| =
∣

∣

∣

∣

ys

s

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

e(σ − iT ) log y

σ − iT

∣

∣

∣

∣

∣

≤ eσ log y

T
=
yσ

T
,

and we use the range of values of σ along C2, 1 + η ≤ σ ≤ u, to get

∣

∣

∣

∣

1

2πi

∫

C2

f(s) ds

∣

∣

∣

∣

≤
∫ u

1+η

yσ

T
≤ y1+η

T log(1/y)
. (2.13)

Similarly along C4, we estimate |f(s)| ≤ yσ/T , and our estimate for the

integral along C4 is

∣

∣

∣

∣

1

2πi

∫

C4

f(s) ds

∣

∣

∣

∣

≤ y1+η

T log(1/y)
. (2.14)

Along C3, we have an interval of length 2T , and we can estimate |f(s)|
as |f(s)| ≤ yu/u. We find

∣

∣

∣

∣

1

2πi

∫

C3

f(s) ds

∣

∣

∣

∣

≤ 2T
yu

u
≤ 0, (2.15)

since for y < 1, as u→ +∞, 1/u→ 0, and yu → 0 as well.

We use the triangle inequality on (2.11) and the results of (2.13), (2.14)

12



and (2.15) to obtain

∣

∣

∣

∣

∫

C1

∣

∣

∣

∣

≤ y1+η

T log(1/y)
+ 0 +

y1+η

T log(1/y)
,

and hence
∣

∣

∣

∣

1

2πi

∫

C1

f(s) ds

∣

∣

∣

∣

= O

(

y1+η

T log(1/y)

)

. (2.16)

This corresponds to the result in the Lemma with n > x, by substituting

y = x/n and f(s) = ys/s.

We now consider the case of y > 1, which corresponds to x < n in the

Lemma. We use (2.12), the properties of the modulus, and the triangle

inequality to get

∣

∣

∣

∣

1

2πi

∫

C1

f(s) ds

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

1

2πi

∫

C2+C3+C4

f(s) ds

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

∫

C2

f(s) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

C3

f(s) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

C4

f(s) ds

∣

∣

∣

∣

. (2.17)

We consider each of the integrals along C2, C3 and C4 separately.

We begin with the integral along C2. We have |f(s)| ≤ yσ/T again, and

v ≤ σ ≤ 1 + η. Thus

∣

∣

∣

∣

∫

C2

f(s) ds

∣

∣

∣

∣

=

∫ 1+η

v

yσ

T
dσ =

(y1+η − yv)

T log y
.

Due to the sizes of y and v respectively, we have y1+η − yv ≤ y1+η, so that

∣

∣

∣

∣

∫

C2

f(s) ds

∣

∣

∣

∣

≤ y1+η

T log y
. (2.18)

Likewise for the integral along C4, we have |f(s)| ≤ yσ/T , and

∣

∣

∣

∣

∫

C4

f(s) ds

∣

∣

∣

∣

≤ y1+η

T log y
. (2.19)

We now look at what happens to the integral along C3. We have

|f(s)| =
∣

∣

∣

∣

∣

e(v + it) log y

v + it

∣

∣

∣

∣

∣

=
ev log y√
v2 + t2

≤ −1

v
ev log y = −1

v
yv;

where the coefficient −1/v is positive, since v < 0. The length of the inte-

13



grand is 2T so we have

∣

∣

∣

∣

∫

C3

f(s) ds

∣

∣

∣

∣

≤ 2T

v
yv ≤ 0, (2.20)

since for y > 1, as v → −∞, −2T/v → 0, and yv → 0.

From (2.17), with the results of (2.18), (2.19) and (2.20), we obtain

∣

∣

∣

∣

1

2πi

∫

C1

f(s) ds

∣

∣

∣

∣

= 1 +O

(

y1+η

T log y

)

. (2.21)

This corresponds to the result in the Lemma with n < x, by substituting

y = x/n and f(s) = ys/s.

2.4 Truncating the integral

We apply the truncation of Section 2.3 to the series F (s) term-by-term.

Lemma 2.2. Let

F (s) =
∞
∑

n=1

rm(n)

ns
.

Let N be a positive integer. Set x = N + 1/2 and η = 2/ log x. Then

∑

n≤N

rm(n) =
1

2πi

∫ 1+η+iT

1+η−iT

F (s)
xs

s
ds +O

(

x1+ǫ log x

T

)

,

using our conventions on exponents ǫ, and remainder terms.

Proof. We start by expressing the sum over rm(n) as an integral in terms of

F (s),
∑

n≤N

rm(n) =
1

2πi

∫ 1+η+i∞

1+η−i∞

F (s)
xs

s
ds.

By Lemma 2.1, the error produced by truncating the integral at heights ±T
is E1 + E2, where from (2.24),

E1 =
1

T

∑

n<x

rm(n)
(x

n

)1+η 1

log(x/n)
,

14



and, from (2.19),

E2 =
1

T

∑

n>x

rm(n)
(x

n

)1+η 1

log(n/x)
.

We use η = 2/ log x to give us x1+η = O(x) in our expressions for E1 and

E2. Hardy and Wright (chapter 18, [11]) showed that for each δ > 0, there

exists a constant A(δ) such that r(n) ≤ A(δ)nδ. For fixed m, we let δ = ǫ/m

for ǫ > 0 so that rm(n) = O(nǫ). We then divide each of the errors E1 and

E2 into two parts, so that E1 = E11 + E12, where

E11 = O





1

T

∑

n<x/2

x

n1+η−ǫ

1

log(x/n)



 ,

E12 = O





1

T

∑

x/2<n<x

x

n1+η−ǫ

1

log(x/n)



 ,

and E2 = E21 + E22, where

E21 = O





1

T

∑

x<n<3x/2

rm(n)
x

n1+η−ǫ

1

log(n/x)



 ,

E22 = O





1

T

∑

n>3x/2

rm(n)
x

n1+η−ǫ

1

log(n/x)



 .

We consider E11 where x/n > 2, so that log(x/n) > log 2 > 2/3, which

gives 1/ log(x/n) < 3/2. Then we consider the sum

∑

n<x/2

1

n1+η−ǫ
<

∫ x/2

0

1

y1+η−ǫ
dy <

xǫ

(η − ǫ)xη
< xǫ,

which gives us the order of magnitude term

E11 = O

(

x1+ǫ

T

)

. (2.22)

For E12, we have x/n < 2, so that

x

n1+η−ǫ
< 2

1

nη−ǫ
= O(xǫ).

15



Hence

E12 = O





xǫ

T

∑

x/2<n<x

1

log(x/n)



 .

We estimate the 1/ log(x/n) factor by using the identity n ≡ x(1−u), to get

log
(x

n

)

= log

(

1

1− u

)

= u+
u2

2
+ · · · > u,

which means 1/ log(x/n) < 1/u = x/(x− n).

We sum x/(x − n) over x/2 < n < x. For some positive integer v, with

N −v+1 ≤ n ≤ N , we consider the sequence of possible values of x/(x−n),

2x,
2x

3
,
2x

5
, . . . ,

2x

2v − 1
. (2.23)

We now sum the sequence of possible values of x/(x−n) given in (2.23) over

values of v between 1 and V , so that 2V − 1 ≤ x < 2V + 1. The sum of the

sequence of possible values of x/(x−n) is less than or equal to 2x(log(x)+1),

so that
∑

x/2<n<x

1

log(x/n)
< 2x(log(x) + 1),

and hence

E12 = O

(

x1+ǫ log x

T

)

. (2.24)

We combine our results for E11 in (2.22) and E12 in (2.24) to get

E1 = E11 + E12 = O

(

x1+ǫ

T

)

+O

(

x1+ǫ log x

T

)

= O

(

x1+ǫ log x

T

)

. (2.25)

Similarly for E21, we have x < n < 3x/2, so that x/n < 1, and

x

n1+η−ǫ
<

1

nη−ǫ
= O(xǫ).

We estimate the 1/ log(n/x) term of E21 by setting µ = (n − x)/x, so that

log(n/x) = log(1 + µ). We have, for the set of values of µ given by x/n < 1,

log(1 + µ) = µ− 1

2
µ2 +

1

3
µ3 − . . . ≥ 3µ

4
. (2.26)

Let n = N+r, with n, N and r all positive integers. Since x = N+1/2 is

stated in the Lemma, we can express µ in terms of r and x, µ = (2r−1)/2x.
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We substitute this for µ in the inequality of (2.26), hence

1

log(n/x)
≤ 8x

3(2r − 1)
.

We estimate the sum over the 1/ log(n/x) term by replacing the range of

summation x < n < 3x/2 with 1/2 < r < N/2 + 3/4, using n = N + r and

x = N + 1/2. Since r is an integer our values of r are between 1 and N/2,

for N even, and our values of r are between 1 and N/2+ 1/2 for N odd. We

need

∑

1/2<r<N/2+3/4

1

2r − 1
=











1 + 1
3
+ 1

5
+ . . .+ 1

N−1
N even,

1 + 1
3
+ 1

5
+ . . .+ 1

N
N odd.

This sum will be less than log x+ 1, regardless of whether N is even or odd.

Hence

∑

x<n<3x/2

1

log(n/x)
≤ 8x

3

∑

x<n<3x/2

1

2r − 1
≤ 8x

3
(log x+ 1),

and

E21 = O

(

x1+ǫ log x

T

)

. (2.27)

We now consider E22 with n > 3x/2. We find log(n/x) > log(3/2) > 2/5,

so that 1/ log(n/x) < 5/2. We estimate

∑

n>3x/2

1

n1+η−ǫ
<

∫ ∞

3x/2−1

1

y1+η−ǫ
dy <

1

(η − ǫ)xη−ǫ
< xǫ,

and therefore obtain

E22 = O

(

x1+ǫ

T

)

. (2.28)

We now use the results for E21 in (2.27) and E22 in (2.28) to express E2 as

an order of magnitude term,

E2 = E21 + E22 = O

(

x1+ǫ log x

T

)

+O

(

x1+ǫ

T

)

= O

(

x1+ǫ log x

T

)

. (2.29)

Thus, overall, if we truncate at 1 + η± iT , we do so with the error E1 +E2,

which from the results of (2.25) and (2.29) gives us the order of magnitude

17



term

O

(

x1+ǫ log x

T

)

, (2.30)

and Lemma 2.2 is proved.

2.5 An estimate for the contour integral and

calculation of the residue

We use Huxley’s upper bound for the zeta function, given in [18], which takes

the form

ζ

(

1

2
+ it

)

≪ T φ(log T )γ,

with φ = 32/205 and γ = 4157/2050, and we estimate the contour integral.

Lemma 2.3. In Lemma 2.2, we can choose T ≥ 10 so that, for large x,

1

2πi

∫ 1+η+iT

1+η−iT

F (s)
xs

s
ds = Res

s=1
F (s)

xs

s
+O

(

xΦ+ǫ
)

, (2.31)

where T = x1−Φ, in the notation (2.2) for Φ, and we use our convention on

exponents ǫ.

Proof. Cauchy’s Residue Theorem states that

1

2πi

∮

D

F (s)
xs

s
ds = Res

s=1

[

F (s)
xs

s

]

,

where D is a bounded closed contour, depicted in Figure 2.3, and s = 1 is the

pole of the integrand. Let α = 1/2 + 1/ log x. Let T ≥ 10 be a parameter;

T will be chosen in such a way that T will be a fractional power of x. The

contour D = C1+D1+D2+D3 is constructed once a second parameter U in

T/2 ≤ U ≤ T has been chosen. Then C1 is the line segment from 1+ η+ iU

to 1 + η − iU , D1 is the line segment from 1 + η + iU to α + iU , D2 is the

line segment from α+ iU to α− iU , and D3 is the line segment from α− iU

to 1 + η − iU .

Therefore, using Cauchy’s Residue Theorem on the closed contour D, the

18



Figure 2.3: Contour D

u

u

u

u

b

|
|

α

D2

Re(s)

D1

D3

C1

iT

−iT

Im(s)

1 + η

integral along C1 is

1

2πi

∫

C1

F (s)
xs

s
ds = Res

s=1

[

F (s)
xs

s

]

− 1

2πi

∫

D1

F (s)
xs

s
ds (2.32)

− 1

2πi

∫

D2

F (s)
xs

s
ds− 1

2πi

∫

D3

F (s)
xs

s
ds.

To estimate the integrals along the contours D1, D2, and D3, we use the

identity F (s) = Zb+1(s)E(s). Firstly we consider the integral along D2.

Along D2 we have σ = α so that E(s) ≤ J̃ζd(2α). Now 2α = 1+2/ logx,

and ζ(1 + δ) ≤ 1 + 1/δ, which means that ζ(2α) ≤ 1 + (log x)/2 ≤ log x,

provided that x ≥ e2, where here e is Napier’s constant. Hence for x ≥ e2,

we have E(s) ≤ J̃(log x)d.

For 1 ≤ τ ≤ T and 1/2 ≤ α ≤ 3/4,

∫ τ

1

|ζ (α + it)|4 dt≪ τ(log τ)4 (2.33)

≪ T (log T )4,

[Titchmarsh, [37] chapter 7], so that

∫ T

−T

|ζ(α+ it)|4
|α+ it| dt≪ (log T )5. (2.34)
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The proof in [18] of Huxley’s estimate

ζ

(

1

2
+ it

)

≪ tφ(log t)γ ,

with φ = 32/205 and γ = 4157/2050 and 10 ≤ |t| ≤ T can be adapted

by standard methods [Huxley [15], Huxley and Watt [21]] to show that for

σ ≥ 1/2, 10 ≤ |t| ≤ T ,

ζ(σ + it) ≪ |t|2φ(1−σ)(log |t|)γ ≪ T 2φ(1−σ)(log T )γ ≪ T φ(log T )γ, (2.35)

and

L(σ + it, χ) ≪ |t|2φ(1−σ)(log |t|)γ ≪ T 2φ(1−σ)(log T )γ ≪ T φ(log T )γ. (2.36)

We use (2.35) and (2.36) to obtain

∫ T

−T

|ζ(α+ it)|b+1|L(α + it, χ)|b+1

|α+ it| dt≪ (log T )5(T φ(log T )γ)2(b−1). (2.37)

Hence,

∫

D2

|F (s)| |x|s
|s| | ds| ≪

∫ T

−T

|xs| |E(s)| |ζ(s)|
b+1|L(s, χ)|b+1

|s| dt

≪
(

T 2φ(1−α)(log T )γ
)2b−2

xα(log x)d
∫ T

−T

|ζ(α+ it)|4
|α+ it| dt

≪
√
xT (2b−2)φ(log T )(2b−2)γ+5(log x)d, (2.38)

using |E(s)| ≪ (log x)d and xα = ex1/2.

We now estimate the integrals along D1 and D3. Along D1 and D3 we

have α ≤ σ ≤ 1 + η, |xs| = xσ, and

|E(s)| ≤ J̃ζd(2σ) ≪ 1

(2σ − 1)d
≪ 1

(2α− 1)d
≪ (log x)d.

The integral along D1 is found by averaging over U , T/2 ≤ U ≤ T ,

∣

∣

∣

∣

1

2πi

∫

D1

F (s)
xs

s
ds

∣

∣

∣

∣

≤ 1

T/2

∫ T

T/2

∫ 1+η

α

|F (s)| |xs|
|s| | ds| dt

=
2

T

∫ 1+η

α

xσ
(
∫ T

T/2

|Zb+1(s)E(s)|
|s| dt

)

dσ. (2.39)
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We use the bounds of equations (2.33), (2.35) and (2.36) to estimate

∫ T

T/2

|Zb+1(s)E(s)|
|s| dt

≪ (log x)d
∫ T

T/2

|ζ(σ + it)|b+1|L(σ + it, χ)|b+1

|σ + it| dt

≪ (log x)d T (log T )4 (max {|ζ(σ + it)|})b−3 (max {|L(σ + it, χ)|})b+1

min {|σ + it|}

≪ (log x)d T (log T )4
(

T 2φ(1−σ)(log T )γ
)b−3 (

T 2φ(1−σ)(log T )γ
)b+1

T/2

≪ (log x)d T 2φ(1−σ)(2b−2)(log T )γ(2b−2)+4. (2.40)

We substitute (2.40) into (2.39) to obtain

∣

∣

∣

∣

1

2πi

∫

D1

F (s)
xs

s
ds

∣

∣

∣

∣

≪ (log x)d(log T )γ(2b−2)+4

T

∫ 1+η

α

xσT 2φ(1−σ)(2b−2) dσ

≪ (log x)d(log T )γ(2b−2)+4

T
max

α≤σ≤1+η

{

xσT 2φ(1−σ)(2b−2)
}

≪ (log x)d(log T )γ(2b−2)+4

T

(√
xT (2b−2)φ + x

)

. (2.41)

We get the same estimate for the integral along D3.

We choose T so that T (4b−4)φ ≪ x, which gives log T ≪ log x. We can

now modify the estimate (2.41) to be

1

2πi

∫

D1

F (s)
xs

s
ds≪ x(log x)(2b−2)γ+d+4

T
,

and similarly we modify the estimate (2.38) for the integral along D3. The

estimate becomes

1

2πi

∫

D2

F (s)
xs

s
ds≪

√
xT (2b−2)φ(log x)(2b−2)γ+d+5.

We need to choose T to balance the terms found by estimating the inte-

grals along D1, D2 and D3, that is, we need to choose T such that

x(log x)(2b−2)γ+d + 4

T
≍ x1/2(log x)(2b−2)γ+d+5T (2b−2)φ.
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Rearranging, we see that we have chosen T so that

T ≍ x1/((4b−4)φ+2) (log x)−((2b−2)φ+1) . (2.42)

Thus

√
xT (2b−2)φ(log x)(2b−2)γ+d+5 ≍ x(log x)(2b−2)γ+d+4

T
≍ xΦ(log x)A,

with Φ as in (2.2), and A = (2b−2)γ+ d+4. The powers of log x contribute

to the factor of the form xǫ.

We now calculate the residue given in our contour integral estimation.

Lemma 2.4. The residue in the statement of Lemma 2.3 can be written as

Res
s=1

[

F (s)
xs

s

]

= xPm(log x),

where Pm(z) is a polynomial in z of degree b = 2m−1 − 1.

Proof. The function F (s) can be written as Zb+1(s)E(s), where Z(s) is the

Dedekind zeta function with a simple pole at s = 1, and E(s) is the Eu-

ler product of (2.8), regular at s = 1. We express the coefficients of the

polynomial Pm(z) in terms of the derivatives of the function

V (s) =
(s− 1)b+1F (s)

s
, (2.43)

which is regular at s = 1. Hence V (s) is analytic and single-valued at s = 1,

so V (s) can be expanded as a power series on a neighbourhood of s = 1,

V (s) =
∞
∑

n=0

V (n)(1)

n!
(s− 1)n.

From (2.43) we can express

F (s)
xs

s
=

V (s)xs

(s− 1)b+1
,

and we use this to write the residue as a limit,

Res
s=1

[

F (s)
xs

s

]

= Res
s=1

[

V (s)xs

(s− 1)b+1

]

= lim
s→1

[

1

b!

(

d

ds

)b

V (s)
xs

s

]

.
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The result of the Lemma follows by the usual rules of differentiation, since

lim
s→1

[

1

b!

(

d

ds

)b

V (s)
xs

s

]

=
1

b!

b
∑

j=0

bCjV
(b−j)(1)x(log x)j,

where V (b−j)(s) denotes the (b − j)th derivative of V (s) with respect to s,

and V (0)(s) = V (s), and we write

Pm(z) =
1

b!

b
∑

j=0

bCjV
(b−j)(1)zj .

2.6 Remainder of the proof of Theorem 1

Concatenating the results of Lemmas 2.2, 2.3, and 2.4, we have

∑

n≤N

rm(n) = xPm(log x) +O
(

xΦ+ǫ
)

+O

(

x1+ǫ log x

T

)

. (2.44)

By the choice of T in Lemma 2.3 the error terms combine in the formO
(

xΦ+ǫ
)

under our convention on exponents ǫ. The result of Theorem 1 is expressed

in terms of N = x− 1/2, so that

x = N

(

1 +O

(

1

N

))

, log x = logN +O

(

1

N

)

,

and we pass easily from the expression (2.44) in terms of x to the statement

(2.1) of Theorem 1 in terms of N .

2.7 The leading coefficient of the polynomial

Pm(x)

The leading coefficient c of the polynomial Pm(x) of Theorem 1 is V (1)/b!.

Since V (s) is regular at s = 1 we know it takes a single value at s = 1. We

have

V (1) =
E(1)

1

(

lim
s→1

(s− 1)Z(s)
)b+1

,
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and as s tends to 1, (s− 1)Z(s) = (s− 1)ζ(s)L(s, χ) tends to L(1, χ) = π/4.

Thus the leading coefficient of Pm(x) is

c =
(π

4

)b+1 E

b!
; (2.45)

where E is the Euler product

E =

(

1

2

)b
∏

p≡1 mod 4

(

1− 1

p

)A(m,2) m
∑

k=1

A(m, k)p(1−k)
∏

p≡3 mod 4

(

1− 1

p2

)b

,

(2.46)

and A(m, k) denotes the Eulerian number [2],

A(m, k) =
k
∑

j=0

(−1)j m+1Cj(k − j)m, (2.47)

with A(m, 2) = 2m − m − 1. We find E = E(1) given in (2.46) from (2.8)

with s = 1.

2.8 Asymptotic formulae for the number of

cyclic polygons with m integer vertices

We can now establish asymptotic formulae for the number of cyclic polygons

withm integer vertices, for eachm ≥ 3, which have circumcentre at the origin

and circumradius at most
√
N as a direct result of our work in Theorem 1.

Theorem 2. Let m ≥ 3 be a fixed integer. Let Xm(N) denote the number

of cyclic polygons with circumcentre at the origin, m integer vertices, and

circumradius at most
√
N . Then

Xm(N) =
N

m!

(

m
∑

j=1

4js(m, j)Pj(logN)

)

+O
(

NΦ+ǫ
)

.

The polynomials Pj(x) and the exponent Φ are as in Theorem 1, where b in

(2.2) is the degree of Pm(x).

Proof. We recall that Xm(N) denotes the number of cyclic polygons with m

integer vertices, centre at the origin, and circumradius at most
√
N . The

radius squared is an integer n. Let Ym(n) be the number of such polygons
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inscribed in the circle x2+ y2 = n. Then Ym(n) = rCm, where r = 4r(n) and

Ym(n) can be expanded in terms of s(m, j), the signed Stirling numbers of

the first kind [4], to give

Ym(n) =
1

m!

m
∑

j=1

s(m, j) (4r(n))j .

Hence

Xm(N) =
∑

n≤N

Ym(n)

=
∑

n≤N

1

m!

m
∑

j=1

s(m, j) (4r(n))j

=
1

m!

m
∑

j=1

4js(m, j)
∑

n≤N

rj(n). (2.48)

Theorem 2 follows at once when we substitute the asymptotic expansion (2.1)

of Theorem 1. The error exponent Φ in (2.2) is a function of b = 2j−1−1 in our

present notation, and has its largest value when j = m, so the error exponent

Φ in (2.48) is formally the same as that of (2.2) with b = 2m−1 − 1.
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Chapter 3

Results for the function r∗(n, q)

3.1 Lemmas involving the function r∗(n, q)

We now consider an arithmetic function r∗(n, q) related to the arithmetic

function r(n). Let q be a fixed positive integer, then r∗(n, q) is the arithmetic

function which counts the integer solutions of x2 + y2 = n with x > 0, y ≥ 0

and highest common factor (x, y, q) = 1. The aim is to produce a Theorem

for powers of r∗(n, q) analogous to Theorem 1. Before we can do this, we need

to know more about the properties of r∗(n, q). We express the properties of

r∗(n, q) that we need in the form of several lemmas.

Lemma 3.1. The arithmetic function r∗(n, q) can be written in terms of

r(n), the number of integer solutions of x2 + y2 = n with x > 0 and y ≥ 0,

and µ(d), the Möbius function, as follows:

r∗(n, q) =
∑

d|q
d2|n

µ(d)r
( n

d2

)

. (3.1)

Proof. From the definition of r∗(n, q) as the number of integer solutions of

x2 + y2 = n with x > 0, y ≥ 0, and (x, y, q) = 1, we can express r∗(n, q) in

terms of the Möbius function µ(d),

r∗(n, q) =
∑

x>0

∑

y≥0

x2+y2=n

∑

d|x

d|y

d|q

µ(d).
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Let x = ds and y = dt with d > 0, s > 0 and t ≥ 0 then this becomes

r∗(n, q) =
∑

ds>0

∑

dt≥0

(ds)2+(dt)2=n

∑

d|q

d2|n

µ(d),

which rearranges to give

r∗(n, q) =
∑

d|q

d2|n

µ(d)
∑

s

∑

t
s2+t2= n

d2

1 =
∑

d|q

d2|n

µ(d)r
( n

d2

)

.

We now show that r∗(n, q) is a multiplicative function, although r∗(n, q)

is not completely multiplicative. A function f is multiplicative if, when

(m,n) = 1, we have f(mn) = f(m)f(n). It is completely multiplicative if

we can remove the coprimality condition (m,n) = 1.

Lemma 3.2. For fixed q, r∗(n, q) is a multiplicative function.

Proof. We use the definition of r∗(n, q) from Lemma 3.1. It is widely known

that µ(n) is multiplicative, see chapter 4, Hardy and Wright [13], for a proof.

We explained in the proof of Theorem 1 that r(n) is multiplicative.

Let (m,n) = 1, then we show that r∗(mn, q) = r∗(m, q)r∗(n, q). By the

definition in (3.1),

r∗(mn, q) =
∑

d|q

d2|mn

µ(d)r
(mn

d2

)

.

Let d = ab with (a, b) = 1, then since d|q, it is clear that a|q and b|q. As

d2|mn means that (ab)2|mn, we can choose a and b in such a way that a2|m
and b2|n since both of the highest common factors (a, b) and (m,n) are equal

to 1. If d2|m, then d2 = a2 and b = 1, and similarly if d2|n, then d2 = b2 and

a = 1. Hence

r∗(mn, q) =
∑

ab|q

(ab)2 |mn

µ(ab)r
(mn

a2b2

)

=
∑

a|q
a2|m

∑

b|q
b2|m

µ(a)µ(b)r
(m

a2

)

r
( n

b2

)

, (3.2)
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using the multiplicativity of µ(d) and r(n). We rearrange (3.2) to obtain

r∗(mn, q) =
∑

a|q

a2|m

µ(a)r
(m

a2

)

∑

b|q

b2|n

µ(b)r
( n

b2

)

= r∗(m, q)r∗(n, q).

Hence r∗(n, q) is multiplicative.

We find expressions for r∗(n, q) related to the primes p, which will allow

us to calculate the value of r∗(n, q) for any integer n, because of the mul-

tiplicative property of r∗(n, q). We distinguish between the primes p which

divide q and the primes p which do not divide q. We call a prime p good if

p ∤ q, and we call a prime p bad if p | q.

Lemma 3.3. Let n = pk, where p ≥ 2 is a prime, and k ≥ 1 is an integer.

Then

r∗(n, q) =











































r(n) for all primes when k = 1,

r(n) for good primes p, when k ≥ 2,

0 for p = 2 bad, when k ≥ 2,

2 for bad p ≡ 1 mod 4,

0 for bad p ≡ 3 mod 4.

Proof. When k = 1 we have r∗(n, q) = r∗(p, q) which we express in terms of

r(n) and µ(d),

r∗(p, q) =
∑

d|q
d2|p

µ(d)r
( p

d2

)

= µ(1)r
( p

12

)

= r(p).

This is since the only divisor d of a prime p which satisfies d2|p is d = 1.

Using n = pk gives us r∗(n, q) = r∗(pk, q), where

r∗(pk, q) =
∑

d|q

d2|pk

µ(d)r

(

pk

d2

)

.

When d2|pk then d is potentially equal to 1, p, p2, . . ., and d ≤ pk/2. However

d|q as well, and since p is good, p ∤ q, the only possible divisor d satisfying

d|q, p ∤ q and d2|pk is d = 1, so that r∗(pk, q) = r(pk). If p is bad then
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p | q, and the only divisors d of pk that we need to consider are those divisors

which are square-free, since if d is not square-free, µ(d) = 0. Hence we only

consider d = 1 and d = p. We have k ≥ 2, so that r∗(n, q) = r∗(pk, q) =

r(pk) − r(pk−2). For p = 2, this equals 0. For p ≡ 1 mod 4, r(pk) = k + 1

and r(pk−2) = k − 1 so r∗(pk, q) equals 2.

We consider p ≡ 3 mod 4 separately. A prime p ≡ 3 mod 4 can only be

expressed as the sum of two squares when it is taken to an even power. Thus

n = p2k, satisfying x2 + y2 = p2k. The solutions of this equation are either

x = pk and y = 0, or x = 0 and y = pk. Neither of these solutions will give

(x, y, q) = 1, so they do not count towards the quantity r∗(n, q) and thus

r∗(pk, q) = 0 when p ≡ 3 mod 4.

3.2 Theorem 3 on sums of m-th powers of the

function r∗(n, q)

Theorem 3. Let m ≥ 3 and q ≥ 1 be fixed integers. Let r∗(n, q) be the

arithmetic function which counts integer solutions of x2+y2 = n with x > 0,

y ≥ 0 and highest common factor (x, y, q) = 1, then for Re(s) = σ > 1/2, as

N → ∞,
∑

n≤N

(r∗(n, q))m

ns
= N Pm,q(logN) +O(qǫNΦ+ǫ), (3.3)

where Pm,q(z) is a polynomial of degree b = 2m−1−1 whose coefficients depend

on q, and Φ < 1 is the same exponent as in (2.2) of Theorem 1. The leading

coefficient cq of Pm,q(x) can be expressed as

cq =
1

b!

(π

4

)b+1

E(q, 1), (3.4)

where E(q, 1) = EΨ(q, 1), for E as in (2.46) of Theorem 1, and Ψ(q, 1) is a

certain convergent Euler product defined in (3.14) below.

3.3 Proof of Theorem 3

We write the Dirichlet series F (q, s) for (r∗(n, q))m as an Euler product

F (q, s) =

∞
∑

n=1

(r∗(n, q))m

ns
=

∏

p prime

φp(q, s).
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For good primes p ∤ q the Euler factors are those in (2.5),

φp(q, s) = φp(s) =







































G

(

1

2s

)

for p = 2,

H

(

1

ps

)

for p ≡ 1 mod 4,

G

(

1

p2s

)

for p ≡ 3 mod 4.

For bad primes p | q the Euler factors become

φp(q, s) = θp(s) =































1 +
1

2s
for p = 2,

1 +
2m

ps − 1
for p ≡ 1 mod 4,

1 for p ≡ 3 mod 4.

We want a factorisation

F (q, s) = Zb+1(s)E(q, s) = Zb+1(s)E(s)Ψ(q, s),

where Ψ(q, s) is a finite Euler product,

Ψ(q, s) =
∏

p|q

ψp(s), (3.5)

and ψp(s) = θp(s)/φp(s), so that

ψp(s) =















1− 1

p2s
for p 6≡ 1 mod 4,

1 + 2m/(ps − 1)

H (1/ps)
for p ≡ 1 mod 4.

(3.6)

The most difficult case we consider is when p ≡ 1 mod 4. Instead of the

Euler factor at good primes

H

(

1

ps

)

= 1 +
2m

ps
+

3m

p2s
+

4m

p3s
+ . . . ,

we have

1 +
2m

ps − 1
= 1 +

2m

ps
+

2m

p2s
+

2m

p3s
+ . . . .
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Taking out the factor Zb+1(s) = (ζ(s)L(s, χ))b+1 = (ζ(s)L(s, χ))2
m−1

makes

the Euler factor more complicated. At good primes the Euler factor becomes

(

1− 1

ps

)2m (

1 +
2m

ps
+

3m

p2s
+

4m

p3s
+ . . .

)

= 1− d

p2s
+
d3
p3s

− d4
p4s

+ . . . , (3.7)

where d = 2m−1(2m + 1)− 3m as in (2.10), d3 = 4m − 6m + (8m − 2m)/3, and

the coefficients d4 onwards can be calculated.

At bad primes the Euler factor becomes

(

1− 1

ps

)2m (

1 +
2m

ps − 1

)

= 1− e2
p2s

+
e3
p3s

+ . . .− e2m

p2ms
, (3.8)

where e2 = 2m−1(2m − 1), e3 = (8m + 2m+1)/3 − 4m, and the coefficients e4

to e2m can be calculated.

We need to consider the convergence and the size of E(q, s). The finite

Euler product Ψ(q, s) does not affect the convergence of the product E(q, s) =

E(s)Ψ(q, s), which is convergent for Re(s) ≥ 1/2, since E(s) is convergent

in this region, as are the expressions in (3.6), (3.7) and (3.8). Poles at

points s where some factor H(1/ps) vanishes are removable in the product

E(s)Ψ(q, s).

With respect to the size of E(q, s), we express this factor in a manner

analogous to that of (2.9) as

E(q, s) =
J(q, s)

ζj1(2s)Lj2(s, χ)
,

where j1 = (d+ b)/2 and j2 = (d− b)/2.

We take out the correct Euler factor (1 − 1/p2s)d for the good primes

p ≡ 1 mod 4. At bad primes p ≡ 1 mod 4 we have a partially cancelled Euler

factor
1− e

p2s
+
e3
p3s

− e4
p4s

+ . . .

(

1− 1

p2s

)d
. (3.9)

Our minimum value of σ is 1/2 + 1/ log x, which gives |p−2s| ≤ 1/p. The
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modulus of the expression in (3.9) is less than or equal to

1 +
e

p
+

e3
p3/2

+ . . .

(

1− 1

p

)d
≤

(

1 +
1√
p

)2m (

1 +
2m√
p− 1

)

(

1− 1

p

)d
,

when σ ≥ 1/2.

To estimate this we split the primes p|q, p ≡ 1 mod 4, into two ranges,

p < (2m + 1)2 and p ≥ (2m + 1)2. We have

1 +
2m√
p− 1

≤







2 for p ≥ (2m + 1)2, p ≡ 1 mod 4

2m for p < (2m + 1)2, p ≡ 1 mod 4.

We know the size of E(s), and since E(q, s) = E(s)Ψ(q, s) we need only

consider the product Ψ(q, s) over bad primes in our size estimate.

We find

∏

p|q
p≡1 mod 4

(

1 +
2m√
p− 1

)

≤
∏

p|q
p≡1 mod 4
p<(2m+1)2

2m
∏

p|q
p≡1 mod 4
p≥(2m+1)2

2

≤ (2m)(2
2m−1+2m)d(q)

= O(qǫ).

Also

∏

p|q
p≡1 mod 4

(

1 +
1√
p

)2m

(

1− 1

p

)d
≤ (B(ǫ))ω qǫ,

where ω is the number of distinct prime factors of q and B(ǫ) is a constant

depending on ǫ. We use B(ǫ) = 2B2(ǫ) and 2ω(q) ≤ d(q) to obtain

(B(ǫ))ω qǫ =
(

2B2(ǫ)
)ω
qǫ ≤ (d(q))B2(ǫ) qǫ = O(qǫ),

following our conventions on exponents ǫ. Also we find the factor

∏

p|q
p 6≡1 mod 4

(

1− 1

p2s

)

≤
∏

p|q
p 6≡1 mod 4

(

1− 1

p

)

= O(qǫ).
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Thus the size of E(q, s) is the size of E(s) multiplied by the size of Ψ(q, s)

giving, for σ ≥ 1/2,

E(q, s) ≪ qǫ logd x. (3.10)

We now truncate our contour integrals. The standard method of trun-

cating the contour integral which defines the Mellin transform for a single

term of a Dirichlet series is given in Lemma 2.1 of Section 2.3. We use this

to produce an analogous result to that of Lemma 2.2 by applying the trun-

cation to the series F (q, s) term-by-term, so that for N a positive integer,

with x = N + 1/2 and η = 2/ log x, as N → ∞,

∑

n≤N

(r∗(n, q))m =
1

2πi

∫ 1+η+iT

1+η−iT

F (q, s)
xs

s
ds +O

(

x1+ǫ log x

T

)

, (3.11)

using our conventions on exponents ǫ, and remainder terms.

This result is proved similarly to Lemma 2.2. When we truncate at heights

±T , we replace the errors E1 and E2 with the errors E∗
1 and E∗

2 , giving an

overall error of E∗
1 + E∗

2 . We find E∗
1 and E∗

2 from the equations (2.16) and

(2.21) of Lemma 2.1, with η = 2/ log x and x1+η = O(x), so that we have

E∗
1 =O

(

∑

n<x

(r∗(n, q))m
x

n1+η

1

T log(x/n)

)

E∗
2 =O

(

∑

n>x

(r∗(n, q))m
x

n1+η

1

T log(n/x)

)

By definition, r∗(n, q) counts all integer solutions of x2 + y2 = n for

x > 0, y ≥ 0 with (x, y, q) = 1, whereas r(n) counts all integer solutions

of x2 + y2 = n for x > 0, y ≥ 0. It is clear that therefore r∗(n, q) is at

most equal to r(n) as it counts the size of a subset of the solutions to the

equation x2 + y2 = n for x > 0, y ≥ 0. Thus, using the work of Hardy and

Wright in chapter 19 of [13], there exists a constant A(δ) with δ > 0, with

r∗(n, q) ≤ r(n) ≤ A(δ)nδ.

We now have the same situation as in Lemma 2.2, and we find the order

of magnitude term

E∗
1 + E∗

2 = O

(

x1+ǫ log x

T

)

,

matching that of (2.30), and so we get the result of (3.11).

We estimate the contour integral in similar fashion to Lemma 2.3 in
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Section 2.5.

Lemma 3.4. In our result (3.11), we choose T ≥ 10, so that, for large x,

1

2πi

∫ 1+η+iT

1+η−iT

F (q, s)
xs

s
ds = Res

s=1

[

F (q, s)
xs

s

]

+O
(

qǫxΦ+ǫ
)

, (3.12)

where T = x1−Φ in the notation of (2.2) for Φ, and we observe our conven-

tions on exponents ǫ.

Proof. We use the contour D of Figure 2.3 with α = 1/2 + 1/ log(x). We

want to find

1

2πi

∫ 1+η+iT

1+η−iT

F (q, s)
xs

s
ds =

1

2πi

∫

C1

F (q, s)
xs

s
ds.

We change F (s) to F (q, s) in (2.32) to get

1

2πi

∫

C1

F (q, s)
xs

s
ds = Res

s=1

[

F (q, s)
xs

s

]

− 1

2πi

∫

D1

F (q, s)
xs

s
ds

− 1

2πi

∫

D2

F (q, s)
xs

s
ds− 1

2πi

∫

D3

F (q, s)
xs

s
ds.

We estimate the integrals along D1, D2, and D3 by means of the identity

F (q, s) = Zb+1(s)E(q, s), where Z(s) = ζ(s)L(s, χ) is the Dedekind zeta

function. We use also that |E(q, s)| ≪ qǫ(log x)d as in (3.10), for σ > 1/2,

where d = 2m−1(2m + 1)− 3m as in (2.10).

We begin with the integral along D2. We use the results of (2.37) and

(2.38) to estimate

∫ T

−T

|xs| |E(q, s)|
|s| |ζ(s)|b+1|L(s, χ)|b+1 dt

≪ xαqǫ(log x)d
(

T 2φ(1−α) (log T )γ
)2b−2

∫ T

−T

|ζ(α+ it)|
|α+ it| dt.

Now xα = ex1/2, which, along with the result of (2.34), enables us to conclude

that the estimate of the integral along D2 is

∣

∣

∣

∣

1

2πi

∫

D2

F (q, s)
xs

s
ds

∣

∣

∣

∣

≪ qǫ
√
xT (2b−2)φ (log T )(2b−2)γ+5 (log x)d .

We now estimate the integrals along D1 and D3. On D1 and D3 we have

α ≤ σ ≤ 1 + η, |xs| = xσ, and |E(q, s)| ≤ qǫ(log x)d. We find the integral
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along D1 by averaging over U , T/2 ≤ U ≤ T , so that

∣

∣

∣

∣

1

2πi

∫

D1

F (q, s)
xs

s
ds

∣

∣

∣

∣

≤ 2

T

∫ 1+η

α

xσ
(
∫ T

T/2

|Zb+1(s)E(q, s)|
|s| dt

)

dσ.

We adapt (2.40) to give

∫ T

T/2

|Zb+1(s)E(q, s)|
|s| dt ≪ qǫ(log x)dT 2φ(1−σ)(2b−2)(log T )γ(2b−2)+4,

and we obtain, using the method of (2.41)

∣

∣

∣

∣

1

2πi

∫

D1

F (q, s)
xs

s
ds

∣

∣

∣

∣

≪ qǫ(log x)d(log T )γ(2b−2)+4

T

(√
xT (2b−2)φ + x

)

.

We get the same estimate for the integral along D3.

We again choose T ≥ 10 with T (4b−4)φ ≪ x, and balance the terms found

by estimating the integrals along D1, D2 and D3 to get T as in (2.42),

T ≍ x1/((4b−4)φ+2) (log x)−((2b−2)φ+1) .

Hence

qǫ
√
xT (2b−2)φ(log x)(2b−2)γ+d+5 ≍ qǫx(log x)(2b−2)γ+d+4

T
≍ qǫxΦ(log x)A,

with Φ as in (2.2), and A = (2b−2)γ+ d+4. The powers of log x contribute

to the factor of the form xǫ.

We calculate the residue of (3.12) in the same way as we did for the

residue in the proof of Theorem 1.

Lemma 3.5. The residue of (3.12) can be written as

Res
s=1

[

F (q, s)
xs

s

]

= xPm,q(log x),

where Pm,q(z) is a polynomial in z of degree b = 2m−1 − 1.

Proof. The function F (q, s) can be written as Zb+1(s)E(q, s) where Z(s) is

the Dedekind zeta function with a simple pole at s = 1, and E(q, s) is an

Euler product regular at s = 1. We express the coefficients of the polynomial
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Pm,q(z) in terms of the derivatives of the function

V (q, s) =
(s− 1)b+1F (q, s)

s
,

which is regular at s = 1. Hence V (q, s) can be expanded as a power series

on a neighbourhood of s = 1,

V (q, s) =
∞
∑

n=0

V (n)(q, 1)

n!
(s− 1)n.

Then
F (q, s)xs

s
=

V (q, s)xs

(s− 1)b+1
,

and we use this to express the residue as a limit,

Res
s=1

[

F (q, s)
xs

s

]

= Res
s=1

[

V (q, s)xs

(s− 1)b+1

]

= lim
s→1

[

1

b!

(

d

ds

)b

V (q, s)
xs

s

]

.

The result of the Lemma follows by the usual rules of differentiation, since

lim
s→1

[

1

b!

(

d

ds

)b

V (q, s)
xs

s

]

=
1

b!

b
∑

j=0

bCjV
(b−j)(q, 1)x(log x)j ,

where V (b−j)(q, s) denotes the (b− j)th derivative of V (q, s) with respect to

s, and V (0)(q, s) = V (q, s), and we write

Pm,q(z) =
1

b!

b
∑

j=0

bCjV
(b−j)(q, 1)zj .

Concatenating the results of equations (3.11) and (3.12) we find

∑

n≤N

(r∗(n, q))m = Res
s=1

[

F (q, s)
xs

s

]

+O
(

qǫxΦ+ǫ
)

+O

(

x1+ǫ log x

T

)

. (3.13)

By the choice of T in (2.42) the error terms combine in the form O
(

qǫxΦ+ǫ
)

under our convention on exponents ǫ. The result of Theorem 3 is expressed
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in terms of N = x− 1/2, so that

x = N

(

1 +O

(

1

N

))

, log x = logN +O

(

1

N

)

,

and we pass easily from the expression (3.13) in terms of x to the statement

(3.3) of Theorem 3 in terms of N .

The leading coefficient of Pm,q(log x) is cq = V (q, 1)/b!. We have

V (q, 1) =
E(q, 1)

1

(

lim
s→1

(s− 1)Z(s)
)b+1

,

and as s tends to 1, (s− 1)Z(s) = (s− 1)ζ(s)L(s, χ) tends to L(1, χ) = π/4.

We therefore have

V (q, 1) = E(q, 1)
(π

4

)b+1

,

and hence the leading coefficient cq of Pm,q(x) can be expressed as in (3.4)

in the statement of the Theorem,

cq =
1

b!

(π

4

)b+1

E(q, 1).

Thus we need to find an expression for E(q, 1). Since E(q, s) = E(s)Ψ(q, s),

we have E(q, 1) = EΨ(q, 1) for E is as in (2.46) of Theorem 1, and Ψ(q, 1) is

a certain convergent Euler product, found from (3.5) and (3.6). We obtain

Ψ(q, 1) =
∏

p|q
p 6≡1 mod 4

(

1− 1

p2

)

∏

p|q
p≡1 mod 4

(

1 + 2m/(p− 1)

H (1/p)

)

,

which contributes to (3.4) of Theorem 3 and our proof is complete.

3.4 The upper bound of the coefficients of the

polynomial Pm,q(z)

We now find an upper bound for the coefficients of the polynomial Pm,q(z),

and show that it depends only on log q and the number of distinct prime

factors of q. We need an upper bound for the coefficients of the polyno-

mial Pm,q(z) in chapter 4, when we are estimating a sum over q where the

summand includes the polynomial Pm,q(z).
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Lemma 3.6. The upper bound for the coefficients

1

b!

b
∑

j=0

bCjV
(b−j)(q, 1),

of the polynomial Pm,q(z) is dependent only on log q and ω = ω(q), the

number of distinct prime factors of q.

Proof. We have

Pm,q(z) =
1

b!

b
∑

j=0

bCjV
(b−j)(q, 1)zj ,

where V (q, s) = Ψ(q, s)V (s) and V (b−j)(q, 1) denotes the (b−j)-th derivative

of V (q, s) evaluated at s = 1, and

Ψ(q, s) =
∏

p|q
p 6≡1 mod 4

(

1− 1

p2s

)

∏

p|q
p≡1 mod 4

(

1− e2
p2s

+
e3
p3s

+ . . .− e2m

p2ms

)

.

(3.14)

We consider the derivatives V (b−j)(q, s) where

V (b−j)(q, s) =

(

d

ds

)b−j

Ψ(q, s)V (s)

=

b−j
∑

k=0

b−jCkΨ
(k)(q, s)V (b−j−k)(s).

This means we can rewrite Pm,q(z) as

Pm,q(z) =
b
∑

j=0

1

b!
bCj

b−j
∑

k=0

b−jCkΨ
(k)(q, 1)V (b−j−k)(1)zj

=
b
∑

j=0

b−j
∑

k=0

Ψ(k)(q, 1)V (b−j−k)(1)zj

j!k!(b− j − k)!

=
∑

j

∑

k
j+k≤b

Ψ(k)(q, 1)V (b−j−k)(1)zj

j!k!(b− j − k)!

=
∑

k

Ψ(k)(q, 1)

k!

∑

j
j+k≤b

V (b−j−k)(1)zj

j!(b− j − k)!
. (3.15)

Since the definition of V(s) in (2.43) does not contain q, the second sum
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of (3.15) does not contain q and therefore the coefficient of zj in Pm,q(z) is

given by the sum
∑

j≤b−k

V (b−j−k)(1)zj

j!(b− j − k)!
,

which is independent of q, multiplied by the Dirichlet polynomial

∑

k≤b

Ψ(k)(q, 1)

k!
,

where j+k ≤ b. Thus we now only have Ψ(k)(q, 1) dependent on q. We need

to estimate Ψ(k)(q, s) at s = 1.

The value of Ψ(q, s) does not depend on what power of p divides q, only

on whether p divides q. Only those primes p which appear in the prime

factorisation of q appear in Ψ(q, s). Let q = q1 . . . qω and qa = praa for

a = 1, . . . , ω. Then

Ψ(q, s) =

ω
∏

a=1

ψ(qa, s) =

ω
∏

a=1

ψ(pa, s).

We find the k-th derivative of Ψ(q, s) in terms of ψ(pa, s),

Ψ(k)(q, s) =

(

d

ds

)k ω
∏

a=1

ψ(pa, s)

=
∑

k1

. . .
∑

kω
k1+...+kω=k

ω
∏

a=1

(

d

ds

)k

ψ(pa, s). (3.16)

We now need to find the k-th derivative of ψ(p, s), replacing the prime

pa with the prime p for ease of notation. We have

ψ(p, s) =



















P1

(

1

ps

)

for p ≡ 1 mod 4,

P2

(

1

ps

)

for p 6≡ 1 mod 4,
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where we let M = 2m, and

P1

(

1

ps

)

=

(

1− 1

ps

)M−1(

1 +
M − 1

ps

)

,

P2

(

1

ps

)

= 1− 1

p2s
.

The polynomial P1 (1/p
s) of degree M = 2m can be expressed as a finite

sum

P1

(

1

ps

)

= 1 +

M
∑

t=1

(−1)t

pts
(M−1Ct − (M − 1)M−1Ct−1)

= 1 +
M
∑

t=1

(−1)t−1(t− 1)MCt

pts
. (3.17)

To find the k-th derivative of P1 (1/p
s), we differentiate the form of

P1 (1/p
s) given in (3.17) to obtain

(

d

ds

)k

P1

(

1

ps

)

=

(

d

ds

)k
(

1 +
M
∑

t=1

(−1)t−1(t− 1)MCt

pts

)

=
M
∑

t=1

(

d

ds

)k (
(−1)t−1(t− 1)MCt

pts

)

= (− log p)k
M
∑

t=1

(−1)t−1tk(t− 1)MCt

pts

= (− log p)kP3

(

1

ps

)

. (3.18)

We have

P3

(

1

ps

)

=

M
∑

t=1

(−1)t−1tk(t− 1)MCt

pts

= −2k
e2
p2s

+ 3k
e3
p3s

+ . . .−Mk eM
pMs

.

Next we find the k-th derivative of P2

(

1

ps

)

,

(

d

ds

)k

P2

(

1

ps

)

=

(

d

ds

)k (

1− 1

p2s

)

= −(−2 log p)k

p2s
. (3.19)

40



We then estimate the absolute values of the derivatives of (3.18) and (3.19)

at s = 1. We find

∣

∣

∣

∣

∣

(

d

ds

)k

P1

(

1

ps

)

∣

∣

∣

∣

∣

s=1

=

∣

∣

∣

∣

(− log p)kP3

(

1

ps

)∣

∣

∣

∣

s=1

= (log p)k
∣

∣

∣

∣

P3

(

1

p

)∣

∣

∣

∣

.

We find that

∣

∣

∣

∣

P3

(

1

p

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

t=1

(−1)t−1tk(t− 1)MCt

pt

∣

∣

∣

∣

∣

≤
M
∑

t=1

tk(t− 1)MCt

pt
.

Now as p ≡ 1 mod 4, we have p ≥ 5, so that 1/p ≤ 1/5 and 1/pt ≤ 1/5t,

which means that

M
∑

t=1

tk(t− 1)MCt

pt
≤

M
∑

t=1

tk(t− 1)MCt

5t
,

and thus

∣

∣

∣

∣

∣

(

d

ds

)k

P1

(

1

ps

)

∣

∣

∣

∣

∣

s=1

≤ (log p)k
M
∑

t=1

tk(t− 1)MCt

5t
. (3.20)

By the definition of P2 (1/p
s), we have p 6≡ 1 mod 4 so that p2 ≥ 4 and

1/p2 ≤ 1/4, and hence

∣

∣

∣

∣

∣

(

d

ds

)k

P2

(

1

ps

)

∣

∣

∣

∣

∣

s=1

=
(2 log p)k

p2
≤ 2k−2(log p)k. (3.21)

We now establish which of the estimates (3.20) and (3.21) is largest. We

compare 2k−2 with

M
∑

t=1

tk(t− 1)MCt

5t
=

2k MC2

52
+

2 3k MC3

53
+ . . .+

Mk(M − 1)

5M
.

The first term
2k MC2

52
=

2k+m−1(2m − 1)

52
,
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is already larger than 2k−2 for m ≥ 3.

Hence, let B be the sum

B =
M
∑

t=1

tk(t− 1)MCt

5t
,

so that

∣

∣

∣

∣

∣

(

d

ds

)k

P1

(

1

p

)

∣

∣

∣

∣

∣

≤ B(log p)k,

∣

∣

∣

∣

∣

(

d

ds

)k

P2

(

1

p

)

∣

∣

∣

∣

∣

≤ B(log p)k,

and therefore

|ψ(k)(p, 1)| ≤ B(log p)k.

We use this with p = pa and s = 1 in (3.16) to find

Ψ(k)(q, 1) =
∑

k1

. . .
∑

kω
k1+...+kω=k

ω
∏

a=1

(

d

ds

)k

ψ(pa, 1)

≤
∑

k1

. . .
∑

kω
k1+...+kω=k

ω
∏

a=1

∣

∣

∣

∣

∣

(

d

ds

)k

ψ(pa, 1)

∣

∣

∣

∣

∣

≤
∑

k1

. . .
∑

kω
k1+...+kω=k

ω
∏

a=1

B(log pa)
k

≤ Bω(log p1 + . . .+ log pω)
k

= Bω (log(p1 . . .+ pω))
k

= Bω(log q)k. (3.22)
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We use the estimate Ψ(k)(q, 1) ≤ Bω(log q)k of (3.22) in (3.15) to find

Pm,q(z) =
1

b!

b
∑

j=0

bCjV
(b−j)(q, 1)zj

≤
∑

k

Bω(log q)k

k!

∑

j
j+k≤b

V (b−j−k)(1)zj

j!(b− j − k)!

= Bω
∑

j

∑

k

j+k≤b

V (b−j−k)(1)(log q)k

k!j!(b− j − k)!
zj ,

which is dependent only on log q and ω = ω(q), the number of distinct prime

factors of q, as required.
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Chapter 4

Cyclic polygons with m integer

point vertices

In this chapter we consider cyclic polygons with m integer point vertices

which have circumcentres away from the origin, although restricted to the

unit square. Firstly we consider those cyclic polygons with m integer point

vertices of fixed radius r.

4.1 Lemma bounding the number of cyclic

polygons with m integer point vertices

which have fixed radius r

Lemma 4. Let m ≥ 3 and q ≥ 1 be fixed integers. Let n be a positive integer

such that q2 < n. Let f(q) be the arithmetic function

f(q) = q2
∏

p|q

(

1− 1

p2

)

(4.1)

which counts pairs of residue classes a mod q, b mod q, with highest common

factor (a, b, q) = 1.

Let r∗ = 4r∗(n, q) denote the number of integer points (x, y) on the

circle x2 + y2 = n, with highest common factor (x, y, q) = 1. Let Vm(n, q)

be the number of cyclic polygons with m integer point vertices, with radius

r =
√
n/q, centred at the point (a/q, b/q) in the unit square, where 0 ≤ a < q,
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0 ≤ b < q and the highest common factor (a, b, q) = 1. Then

Vm(n, q) ≥ f(q) lCm, (4.2)

where l = [r∗/f(q)], the integer part of r∗/f(q), and lCm is interpreted as 0

for l ≤ m− 1.

4.2 Proof of Lemma 4

Let (x, y) be an integer point. Suppose that (x, y) ≡ (a, b) mod q, with

0 ≤ a < q, 0 ≤ b < q, so that there exist integers (x1, y1) with x = qx1 − a

and y = qy1 − b. The point (x, y) lies on the circle x2 + y2 = n if and only if

the point (x1, y1) lies on the circle

(

x− a

q

)2

+

(

y − b

q

)2

=
n

q2
.

We call the integer points (x, y) on the circle x2 + y2 = n with highest

common factor (x, y, q) = 1 the primitive points. Recalling that r∗ is the

number of integer points on the circle x2 + y2 = n with highest common

factor (x, y, q) = 1, we have that r∗ is the total number of primitive points.

Let
∑

a

∑

b

′

denote the sum over pairs of integers (a, b), where 0 ≤ a < q, 0 ≤ b < q

and highest common factor (a, b, q) = 1. Let r∗ab count the primitive points

(x, y) ≡ (a, b) mod q, and since r∗ is the total number of primitive points, we

have

r∗ =
∑

a

∑

b

′ r∗ab.

Let the residue class (a, b) mod q be called good if r∗ab ≥ m, otherwise,

for r∗ab ≤ m−1, let the residue class (a, b) mod q be called bad. Let B be the

number of bad residue classes, and let A be the total number of primitive

points in the bad residue classes. Then A ≤ (m−1)B ≤ (m−1)f(q) < r∗, for

f(q) defined in equation (4.1). Let G be the number of good residue classes,

and let K be the total number of primitive points in the good residue classes.

Then there are G = f(q) − B good residue classes containing K = r∗ − A

primitive points.
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Let

C(x) = xCm =
x

m!
(x− 1) . . . (x−m+ 1).

From each good residue class we can pick primitive points in C(r∗ab) ways.

The total number of cyclic polygons withm integer point vertices constructed

in this way is
∑

a

∑

b

′

(a,b) good

C(r∗ab).

To determine a lower bound for this sum we need to use Jensen’s inequality

(see Hardy, Littlewood and Pólya, chapter 2 [12] or Mitrinović [29]).

Jensen’s Inequality. Let ϕ(x) be a real convex upwards function satisfying

ϕ′′(x) ≥ 0 on a closed interval [a, b]. Then for x1, . . . , xn on [a, b], we have

n
∑

i=1

ϕ(xi) ≥ nϕ

(

1

n

n
∑

i=1

xi

)

.

The zeros of C(x) lie in the closed interval [0, m−1], so the zeros of C ′(x)

and C ′′(x) lie in the open interval (0, m− 1). The interval for x will be the

closed interval [m−1, r∗], and bad residue classes occur when r∗ab ∈ [0, m−2],

giving C(r∗ab) = 0 and r∗ab 6∈ [m− 1, r∗].

We cannot apply Jensen’s inequality immediately because of the presence

of bad residue classes, which we need to address. The results of Schinzel [35]

enable us to continue since they tell us that there must exist some residue

class containing x = r∗ab points, with x ≥ r∗/f(q).

Let r∗ ≥ (m− 1)f(q)(f(q) + 1), so that

r∗

(B + 1)f(q)
≥ r∗

f(q)(f(q) + 1)
≥ m− 1.

Then we have the following inequality for C(x),

C(x) ≥ (B + 1) P

(

x

B + 1

)

=
x

m!

(

x

B + 1
− 1

)

. . .

(

x

B + 1
−m+ 1

)

.

We replace the B values of x = r∗ab, corresponding to bad residue classes,

and the one value for which C(x) = 0, corresponding to the residue class

with no primitive points, with B + 1 values all equal to (r∗ab)/(B + 1). For
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the other residue classes we do not need to replace any values. We make

these changes and return to the sum

∑

a

∑

b

′

(a,b) good

C(r∗ab).

We now apply Jensen’s inequality to this sum to obtain

∑

a

∑

b

′

(a,b) good

C(r∗ab) ≥
(

∑

a mod q

∑

b mod q

1

)

C









∑

a mod q

∑

b mod q

r∗ab

∑

a mod q

∑

b mod q

1









= GC

(

K

G

)

.

The worst case we have to consider has the K primitive points belonging

to the good residue classes (a, b) split evenly between all of the residue classes

(a, b), that is, between all of the f(q) residue classes (a, b). This means that

each residue class will be good, gives K = r∗ and G = f(q) so that we obtain

Vm(n, q) =
∑

a

∑

b

′

(a,b) good

C(r∗ab) ≥ f(q)C

(

r∗

f(q)

)

≥ f(q)lCm,

with l = [r∗/f(q)], the integer part of r∗/f(q). In the worst case when

the number of primitive points are split evenly between the residue classes,

r∗/f(q) is an integer, and l = r∗/f(q).

Hence we have shown that Vm(n, q) ≥ f(q) lCm, and we are done.

4.3 Bounding the number of cyclic polygons

with m integer point vertices with radius

r ≤ R

The result of Theorem 2 gives asymptotic formulae for the number of cyclic

polygons with m integer point vertices which have circumcentre at the origin

and circumradius at most
√
N . We use the result of Lemma 4 to produce a

Theorem which gives a lower bound for the number of cyclic polygons with

m integer point vertices with radius r ≤ R.
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There exists a relationship between the number of cyclic polygons with m

integer point vertices centred in the unit square with fixed radius r =
√
n/q

and the number of cyclic polygons with m integer point vertices centred in

the unit square with radius r ≤ R, which we now explain.

Lemma 4.1. Let Vm(n, q) be the number of cyclic polygons with m integer

point vertices centred in the unit square with fixed radius r =
√
n/q, and

centre of the form (a/q, b/q), where the highest common factor (a, b, q) = 1.

Let Wm(R) be the number of cyclic polygons with m integer point vertices

centred in the unit square with radius r ≤ R. Then

Wm(R) =
∑

q

∑

n

Vm(n, q), (4.3)

with q ≤ 6(R + 1)2 and n ≤ q2R2.

Proof. We have Wm(R) counting all cyclic polygons with m integer point

vertices centred in the unit square with radius r ≤ R, and Vm(n, q) counting

the cyclic polygons with m integer point vertices centred in the unit square

with radius fixed at r =
√
n/q. Hence Wm(R) is counting all of Vm(n, q)

where the fixed radii r =
√
n/q have size up to radius R. Thus to find

Wm(R) we sum Vm(n, q) over n and q. We need limits for our summation.

We find a limit on the size of q by considering the location of the centre

of the circle. The centre of the polygons counted by Vm(n, q) is (a/q, b/q). In

general, the centre of the circle which passes through three or more integer

points (ui, vi), i ≥ 3, has coordinates of the form (u/D, v/D). Thus the

centre (a/q, b/q) corresponds to (u/D, v/D), so that q|D. The denominator

D is given by the determinant

D =

∣

∣

∣

∣

∣

∣

∣

u1 v1 1

u2 v2 1

u3 v3 1

∣

∣

∣

∣

∣

∣

∣

.

The coordinates of the centre of the circle are found by constructing two

chords, one chord between the points (u1, v1) and (u2, v2), and another chord

between the points (u2, v2) and (u3, v3). The perpendicular bisector of the

chord of a circle passes through the centre of the circle, so the intersection

of the perpendicular bisector of each of the two chords we constructed will

be the centre of the circle.
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In Wm(R) each circle has radius at most R, therefore the points (ui, vi)

satisfy

−R ≤ ui < R + 1, −R ≤ vi < R + 1.

When we evaluate the determinant D, we get

D = u1v2 − u1v3 − v1u2 + v1u3 + u2v3 − u3v2,

which tells us that D ≤ 6(R + 1)2. As q|D, we also have q ≤ 6(R + 1)2.

We find a limit for n by considering the radius. For Vm(n, q) the radius

for our polygons is fixed at
√
n/q, whereas for Wm(R) the radius is less than

or equal to R, so that we have
√
n/q < R, which gives n ≤ q2R2. Thus, as

in (4.3), Wm(R) is the sum over Vm(n, q) with n ≤ q2R2 and q ≤ 6(R + 1)2,

where these bounds are independent of m.

In Lemma 4.1 we have q ≤ 6(R+ 1)2. However, large values of q compli-

cate our summation of Vm(n, q) over q, so we prefer to have very small values

of q. We know from the result of Lemma 4 that Vm(n, q) ≥ f(q)lCm, where

l = [r∗/f(q)] is an integer, r∗ = 4r∗(n, q), and f(q) is defined in (4.1).

We recall the definition of r∗(n, q), where r∗(n, q) is the arithmetic func-

tion which counts integer solutions of x2+y2 = n with x > 0, y ≥ 0 and high-

est common factor (x, y, q) = 1. We need r∗/f(q) to tend towards infinity as

R tends towards infinity. We choose q such that f(q) < r∗ = 4r∗(n, q). Since

the maximum value of f(q) is q2, this means we choose q2 < r∗ = 4r∗(n, q).

Therefore to choose q, we need to consider the size of r∗(n, q).

Lemma 4.2. The root mean square size estimate for r∗(n, q) is bounded for

n ≤ N , that is
√

1

N

∑

n≤N

(r∗(n, q))2 ≤
√
logN

2
.

Proof. The results of Section 3.1 tell us that r∗(n, q) ≤ r(n) for any value of

q, so r∗(n, q) ≤ r(n) uniformly in q. Hence,

∑

n≤N

(r∗(n, q))2 ≤
∑

n≤N

r2(n).

Ramanujan’s estimate [33] gives us

∑

n≤N

r2(n) =
N

4
logN +O

(

N3/5+ǫ
)

.
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Thus our square estimate is

∑

n≤N

(r∗(n, q))2 ≤ N

4
logN +O

(

N3/5+ǫ
)

.

We divide both sides of the inequality by N to find the mean square estimate,

1

N

∑

n≤N

(r∗(n, q))2 ≤ 1

4
logN +O

(

N−2/5+ǫ
)

.

Finally we take the square root of both sides of the inequality to obtain the

root mean square size estimate for r∗(n, q),

√

1

N

∑

n≤N

(r∗(n, q))2 ≤ 1

2

√

logN +O
(√

N−2/5+ǫ
)

.

We conclude that, in root mean square, r∗(n, q) ≤
√
logN/2, ignoring the

order of magnitude term O
(√

N−2/5+ǫ
)

, which is o(1).

We use our result on the root mean square size of r∗(n, q) to work out

what values q must be restricted to in order to give q2 < r∗ = 4r∗(n, q). We

have radius r ≤ R and we replace N from Lemma 4.2 with R2 to give

q2 ≤ 4r∗(n, q) ≤ 4

√

logR2

2
= 2

√
2
√

logR = (8 logR)1/2.

This restriction on q2 is independent of m, the number of integer point ver-

tices of our cyclic polygon. Thus we restrict to small values of q,

q ≤ (8 logR)1/4 < 2(logR)1/4 = Q.

We can restrict to these small values of q, q < Q = 2(logR)1/4, since we

are calculating a lower bound. We expect that large values of q are extremely

rare and can be ignored when we compare q to the root mean square size

estimate of r∗(n, q).

We are now ready for the main Theorem of this chapter, concerning the

lower bound for the number of cyclic polygons with m integer point vertices

centred in the unit square with radius at most R, counted by Wm(R).
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4.4 Bounding the number of cyclic polygons

with four or more integer point vertices

Theorem 5. Let m ≥ 4 be a fixed integer. Let Wm(R) be the number of

cyclic polygons with m integer point vertices centred in the unit square with

radius r ≤ R. There exists a polynomial w(x) such that

Wm(R) ≥
4m

m!
R2 w(logR)(1 + o(1)).

where w(x) is an explicit polynomial of degree b = 2m−1 − 1.

Proof. By Lemma 4.1, we have

Wm(R) =
∑

q<6(R+1)2

∑

n≤q2R2

Vm(n, q),

and we restrict q to small values q < Q = 2(logR)1/4, giving a bound of

Wm(R) ≥
∑

q<Q

∑

n≤q2R2

Vm(n, q).

By (4.2) this is equivalent to

Wm(R) ≥
∑

q<Q

∑

n≤q2R2

f(q) lCm,

with f(q) defined in (4.1), and l = [r∗/f(q)], the integer part of r∗/f(q).

In our proof of Lemma 4 we had

Vm(n, q) ≥ f(q)C

(

r∗

f(q)

)

,

and then we bounded this below in terms of l, the integer part of r∗/f(q).

Instead let l1 = r∗/f(q), and then

Wm(R) ≥
∑

q<Q

∑

n≤q2R2

f(q)C(l1). (4.4)

We expand C(l1), a binomial coefficient, as a function of l1 to obtain

C(l1) ≥
lm1
m!

−O(lm−1
1 ).
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We substitute this into (4.4) to get

Wm(R) ≥
∑

q<Q

∑

n≤q2R2

f(q)
lm1
m!

− O





∑

q<Q

∑

n≤q2R2

f(q)lm−1
1



 . (4.5)

We consider the first sum in the inequality of (4.5),

∑

q<Q

∑

n≤q2R2

f(q)
lm1
m!

=
∑

q<Q

∑

n≤q2R2

f(q)

m!

(

r∗

f(q)

)m

=
1

m!

∑

q<Q

∑

n≤q2R2

f(q)

(

4r∗(n, q)

f(q)

)m

=
4m

m!

∑

q<Q

∑

n≤q2R2

(r∗(n, q))m

(f(q))m−1 .

Therefore we have

Wm(R) ≥
4m

m!

∑

q<Q

∑

n≤q2R2

(r∗(n, q))m

(f(q))m−1 −O





∑

q<Q

∑

n≤q2R2

f(q)lm−1
1



 ,

and since f(q) ≤ q2, we have

Wm(R) ≥
4m

m!

∑

q<Q

1

q2m−2

∑

n≤q2R2

(r∗(n, q))m−O





∑

q<Q

∑

n≤q2R2

f(q)lm−1
1



 . (4.6)

We now omit the constant factor 4m/m! for ease of notation, and consider

the term from (4.6),

∑

q<Q

1

q2m−2

∑

n≤q2R2

(r∗(n, q))m (4.7)

We found in Theorem 3 that for large N , as N → ∞,

∑

n≤N

(r∗(n, q))m = N Pm,q(logN) +O(qǫNΦ+ǫ), (4.8)

where Pm,q(x) is a polynomial of degree b = 2m−1 − 1, whose coefficients

depend on q, and Φ is an exponent less than 1, given in (2.2) of Theorem 1.

In (4.7) we have N = q2R2 and we use the expression for the sum over n ≤ N
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of (r∗(n, q))m in (4.8) to replace the sum of (4.7) with

∑

q<Q

q2R2 Pm,q(2 log qR)

q2m−2
+O

(

∑

q<Q

qǫ (qR)2Φ+2ǫ

q2m−2

)

=R2
∑

q<Q

Pm,q(2 log qR)

q2m−4
+O

(

R2Φ+2ǫ
∑

q<Q

q2Φ+3ǫ

q2m−2

)

=R2A+ B. (4.9)

We have Φ < 1 and we can assume that ǫ has been chosen so that

2Φ + 3ǫ ≤ 2 in B. The sum within the order of magnitude term in B is of

the same size as the sum
∑

1/qβ, with β = 2m− 4, which converges over q

with m ≥ 4. Hence B = O
(

R2Φ+2ǫ
)

.

We consider the sum in the main term, given by A in (4.9), with 2m− 4

replaced by β. We write this sum as follows:

∑

q<Q

Pm,q(2 log qR)

qβ
=

∞
∑

q=1

Pm,q(2 log qR)

qβ
+O

(

∑

q≥Q

Pm,q(2 log qR)

qβ

)

. (4.10)

The polynomial Pm,q of degree b has numerical coefficients dependent

on both m and q. However, using Lemma 3.6, we found that the upper

bound for the coefficients of the polynomial Pm,q(z) depends only on log q

and ω = ω(q), the number of distinct prime factors of q. Since q < Q, ω(q)

is bounded and there exists an absolute constant C with

Pm,q(2 log qR) ≤ C(log q + logR)b,

for every q such that 1 ≤ q ≤ Q and R ≥ 10. Since m ≥ 4, the exponent β

has β = 2m−4 ≥ 4. Hence, by the Integral Test [41], the order of magnitude

term from (4.10) becomes

O

(

∑

q≥Q

Pm,q(2 log qR)

qβ

)

= O

(
∫ ∞

Q−1

(log q + logR)b

qβ
dq

)

= O

(

logbR

Qβ−1

)

. (4.11)
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We consider the main sum of (4.10), which is

∞
∑

q=1

Pm,q(2 log qR)

qβ
. (4.12)

The leading term of the polynomial Pm,q(2 log qR) is

1

b!
V (q, 1)(2 log qR)b =

2b

b!
V (1)Ψ(q, 1)(log q + logR)b,

where Ψ(q, 1) comes from the expression for Ψ(q, s) evaluated at s = 1. We

recall that M = 2m, and we have

Ψ(q, s) =
∏

p|q
p 6≡1 mod 4

(

1− 1

p2s

)

∏

p|q
p≡1 mod 4

(

1− 1

p2s

)M (

1 +
M

ps − 1

)

=

∞
∑

d=1
p|d⇒p|q

e(d)

ds
.

In the summation form of Ψ(q, s), e(d) = 0 unless d is powerful. This series

absolutely converges at s = 1. The coefficients e(d) are integers, possibly

negative, with e(pr) bounded and e(1) = 1. For p ≡ 1 mod 4, e(p) = 0,

e(pr) = (−)1r−1(r − 1)MCr for r = 2, . . . ,M , and e(pr) = 0 for r ≥ M + 1.

For p 6≡ 1 mod 4, e(p) = 0, e(p2) = −1, and e(pr) = 0 for r ≥ 3.

Thus the main sum of (4.10) given in (4.12) is

∞
∑

q=1

2b

b!

V (1)Ψ(q, 1)

qβ
(log q + logR)b

plus the sum over q of lower order terms of Pm,q(2 log qR), which is greater

than or equal to

2b V (1)

b!

∞
∑

q=1

Ψ(q, 1)

qβ
(log q + logR)b.
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This is a polynomial in logR of degree b,

2b V (1)

b!

∞
∑

q=1

Ψ(q, 1)

qβ
(log q + logR)b

=
2b V (1)

b!

∞
∑

q=1

Ψ(q, 1)

qβ

b
∑

i=0

bCi logi q logb−iR

=
2b V (1)

b!

b
∑

i=0

bCi logb−iR

∞
∑

q=1

Ψ(q, 1) logi q

qβ
. (4.13)

Now
d

dβ

(

1

qβ

)

=
− log q

qβ
,

and
(

− d

dβ

)

1

qβ
=

log q

qβ
.

Hence (4.13) becomes

2b V (1)

b!

b
∑

i=0

bCi logb−iR
∞
∑

q=1

Ψ(q, 1)

(

− d

dβ

)i
1

qβ

=
2b V (1)

b!

b
∑

i=0

bCi logb−iR

(

− d

dβ

)i ∞
∑

q=1

Ψ(q, 1)

qβ
. (4.14)

We have 0 < Ψ(q, 1) < Υd(q) where

Υ =
∏

p|q
p≡1 mod 4
p≤M−1

(

1 +
M − 1

p

)

,

and d(q) is the divisor function counting the positive divisors of q. Hence

∞
∑

q=1

Ψ(q, 1)

qβ
< Υ

∞
∑

q=1

d(q)

qβ
,
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and in (4.14)

(

− d

dβ

)i ∞
∑

q=1

Ψ(q, 1)

qβ
<

(

− d

dβ

)i

Υ

∞
∑

q=1

d(q)

qβ

= Υ

∣

∣

∣

∣

∣

(

d

ds

)i

ζ2(s)

∣

∣

∣

∣

∣

s=β

. (4.15)

The sum over q in (4.14) is bounded by the result of (4.15), and since

Ψ(q, 1) =

∞
∑

d=1
p|d⇒p|q

e(d)

d

forms a convergent series of positive terms, Ψ(q, 1) converges to a positive

constant. The constant will involve the i-th derivative of ζ2(β) and we denote

it by Ki(β). We therefore have

∞
∑

q=1

Pm,q(2 log qR)

qβ
≥ w(logR) =

2b V (1)

b!

b
∑

i=0

bCi Ki(β) logb−iR, (4.16)

where the polynomial w(logR) is of degree b.

We have shown using (4.11) and (4.16) that the main sum in (4.10) sat-

isfies

A =
∑

q<Q

P ∗
m(2 log qR)

qβ
≥ w(logR) +O

(

log bR

Qβ−1

)

.

Returning to the expression in (4.9), we have

R2A+ B ≥ R2 w(logR) +R2O

(

log bR

Qβ−1

)

+O
(

R2Φ+2ǫ
)

.

Since 2Φ + 2ǫ < 2Φ + 3ǫ ≤ 2, we find 2Φ + 2ǫ < 2 which makes our error

term O
(

R2Φ+2ǫ
)

= o(1). As the polynomials Pm,q(x) and w(x) have positive

numerical leading coefficients,

O

(

logbR

Qβ−1

)

= O

(

w(logR)

Qβ−1

)

= w(logR)O

(

1

Qβ−1

)

,

and

O

(

1

Qβ−1

)

= o(1),
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for our choice of β = 2m− 4 with m ≥ 4. We therefore have

R2A+ B ≥ R2 w(logR) (1 + o(1)) + o(1) = R2 w(logR) (1 + o(1)) . (4.17)

We now need to consider the order of magnitude term from (4.5) involving

the sum over lm−1
1 , which is

O





∑

q<Q

∑

n≤q2R2

f(q)lm−1
1





= O





∑

q<Q

1

(f(q))3

∑

n≤q2R2

(r∗(n, q))m−1





= O

(

∑

q<Q

1

(f(q))m−2

(

q2R2 Pm−1,q(2 log qR) +O
(

qǫ(qR)2Φ+2ǫ
))

)

. (4.18)

Now
1

(f(q))m−2
= O

(

1

q2m−2

)

,

and since we are already in an order of magnitude term, we ignore the

O
(

qǫ(qR)2Φ+2ǫ
)

term of (4.18) to get

O

(

R2
∑

q<Q

q2

q2m−2
Pm−1,q(2 log qR)

)

.

This is of the same form as A in (4.9). Thus we have

O

(

R2
∑

q<Q

Pm−1,q(2 log qR)

q2m−4

)

= O (w1(logR)(1 + o(1))) , (4.19)

where here w1(logR) is a polynomial in logR of degree bm−1 = 2m−2−1. We

conclude that

Wm(R) ≥
∑

q<Q

∑

n<q2R2

Vm(n, q)

≥ 4m

m!
R2 w(logR)(1 + o(1)),

since the order of magnitude term from (4.19) will be dominated by the order

of magnitude term from (4.17), and we are done.
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Part II

The distribution of domains

and different configurations of

the circle
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Chapter 5

Definitions and History of

Domains and Configurations

We now consider questions linked to the distribution of different configura-

tions of the integer points of the circle passing through the unit square. We

examine whether different configurations of points are distributed uniformly

throughout the unit square for circles of fixed radius. Results are obtained

by looking at the distribution of the crossing points of circles, which form

the boundaries of domains.

5.1 Definition of Configuration and Domain

We begin by defining configurations and domains of configurations for a

general oval, S. Let S be a closed convex plane shape, called an oval, with

a sufficiently smooth boundary curve C, and area A. The oval S has a

designated centre at the origin. An S-oval S(r, P ) is formed by magnifying

S by a factor r and then translating the centre from the origin to the point

P .

Definition. The configuration J(r, P ) is the set of integer points inside the

set S(r, P ), J(r, P ) = {(m,n) ∈ S(r, P )}, where (m,n) are points of the

integer lattice.

A configuration is called a screen image when considering problems asso-

ciated with machine vision. The pixels of a computer screen are treated as

the points (m,n) of the integer lattice. The two configurations J(r, P ) of the

S-oval S(r, P ) and J(r′, P ′) of the S-oval S(r′, P ′) are equivalent if J(r′, P ′)
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is a translation of J(r, P ) by an integer vector. The size of the configuration

J(r, P ) is N(r, P ), the number of integer points in J(r, P ).

Definition. The domain D(J) of the configuration J(r, P ) is the set of possi-

ble positions of the centre of the oval S(r, P ) within the configuration J(r, P )

such that N(r, P ) and J(r, P ) remain the same.

We fix our shape S to be a circle, where S(R, (u, v)) denotes the position

of the circle S in the plane such that the centre of S is (u, v), not necessarily

a lattice point, and the radius of S is R, with R sufficiently large enough

to ensure that S(R, (u, v)) always contains at least one point (m,n) of the

integer lattice. The boundary curve of S(R, (u, v)) will be denoted as C(u, v).

We want to find the size of the configurations of a circle as for a domain to

be defined we need to know the number of integer points in a configuration.

5.2 History of the Circle Problem

The method of counting squares for estimating the area of a closed curve

begins with placing a piece of transparent squared paper over the curve to

allow for the count, with each square a lattice unit apart. We count a square

when its lower left corner lies within or on the circle. These are the crossing

points of the lattice contained within the curve. For the circle of radius R,

when R is an r-digit number, the estimate for the area of the circle will have

about 2r decimal digits. The Circle Problem asks how many of these digits

are significant. The main stages in the history of this problem are as follows.

1. Counting squares inside the circle, to an accuracy of the number of

squares cut by the circle. The number of integer points inside or on

the circle of radius R centred at the origin is N(R, (0, 0)) = πR2 +

D(R, (0, 0)), where D = D(R, (0, 0)) is the discrepancy between the

area of the circle πR2 and the actual number of points N(R, (0, 0)). A

basic estimate for D is O(R+1), used by Gauss in “De nexu inter mul-

titudinem classium, in quas formae binariae secundi gradus distribu-

untur, earumque determinantem” [8] that gives his name to the Gauss

circle problem. This method shows that about r digits are significant.

2. Diophantine Approximation, approximating the circle by a polygon

whose sides have rational gradients, as in the work of Voronöı [39] and

Sierpiński [36]. This shows that about 4r/3 digits are significant.
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The polygon has vertices P1, P2, . . ., Pk, Pk+1 = P1, where Pi = (mi, ni)

and the gradient of the side PiPi+1 is the rational ai/qi such that

ai
qi

=
ni+1 − ni

mi+1 −mi
.

In an undergraduate research project, Bayer [1], was asked to count

configurations of circles with small fixed radius. As part of the project,

Bayer looked at approximating the circle by a polygon. Bayer consid-

ered a side PiPi+1 of a polygon where the line equation f(x) of the side

was f(x) = (aix + bi)/qi. Bayer found that the number of points Ni

under the side PiPi+1 of a polygon was

Ni =
ai
qi

mi+1−1
∑

n=mi

n+ (Pi+1 − Pi + 1)

(

2bi − qi
2qi

+ t
1

2

)

.

The total number of integer points under the polygon is found by

adding and subtracting Ni for i = 1, . . . , k + 1 as appropriate.

3. Fourier series and exponential sums. Van der Corput [38] was the first

to use Fourier series correctly, again showing that about 4r/3 digits are

significant. Van der Corput went on to give an extremely complicated

iterative method, which gives about (2 − κ)r digits of significance for

various values of κ < 2/3. The simplest form of this iteration has been

optimised, but the general form is a branched iteration, so complicated

that most results claimed from using it are disputed [10]. This method

was generally only applied to simple explicit cases like the circle.

4. The Bombieri-Iwaniec-Mozzochi method, which combines ideas 2 and

3 with many technical tricks, and uses a general ‘large sieve’ inequality

to bound error terms in mean fourth power. The method was devel-

oped by Iwaniec and Mozzochi [26], based on the work of Bombieri

and Iwaniec [3] on exponential sums. It is advantageous because it

introduces number-theoretic ideas to the problem.

Iwaniec and Mozzochi’s method was equivalent to approximating the

circle (or hyperbola) by a polygon whose sides had rational gradient,

as Voronöı [39] and Sierpiński [36] had done, and then estimating expo-

nential sums, one sum for each side of the polygon, in the mean fourth

power. This method showed that about 15r/11 digits are significant.
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The Bombieri-Iwaniec-Mozzochi method was the most successful so

far, avoiding some of the shortcomings associated with the individual

methods. The problem with the Fourier series method is estimating

often complicated exponential sums and the problem with Diophantine

Approximation is the restriction to rational gradients for the sides of

the polygons. However, the Bombieri-Iwaniec-Mozzochi method does

possess both these problems, and elegant new ideas had to be brought

in.

The Bombieri-Iwaniec-Mozzochi method was first simplified, and then

elaborated, by Huxley in order to obtain slightly sharper results. Hux-

ley adapted the method to treat general oval curves and made small

improvements to show that about (2− κ)r digit are significant for cer-

tain values of κ < 7/11.

We quote Huxley’s most recent version of the bound (Theorem 2 of [17])

using the notation for a circular disc given by Huxley in [24], where

B(R, (a, b)) is the circular disc centred at (a, b) with radius R.

Theorem 5.1. The number of integer points inside a disc B(R, (a, b))

can be estimated as

N(R, (a, b)) = πR2 +O(Rκ(logR)λ). (5.1)

with κ = 131/208 and λ = 18627/8320.

5. Kendall [27] considered the effect of moving the circle, B(R, (a, b)) in

the notation used for Theorem 5.1, or oval, relative to the square lat-

tice of integer points. There is a variable discrepancy or error term

D(R, (a, b)). The discrepancy is a function D(u, v) of position, peri-

odic in u and v with period 1, so that D(R, (a, b)) has a Fourier series.

Kendall found the Fourier series in x and y for D(R, (x, y)), and de-

duced that about 3r/2 digits were significant for almost all positions

(x, y). Using Kendall’s displacement Fourier series [27], it turns out

that the Fourier coefficient for the circle works out exactly as a Bessel

integral function, and gives the Voronöı- Hardy-Landau formula. Thus

D = R

∞
∑

n=1

r(n)√
n
J1(2πR

√
n),
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where r(n) is the number of representations of the integer n as the sum

of two squares.

5.3 Results on configurations

When counting squares, Žunić asked for the actual sets of squares counted,

how they changed under translation, and how to use these patterns in com-

puter vision and film animation. Eventually, results were forthcoming in

collaboration with Huxley ( [19, 22–25]). A digital disc is the binary picture

or digitisation of a circle. A digital disc for Žunić is the union of the squares

counted, but for Huxley it is the set of integer points indexing these squares,

that is, the set of all integer points inside the circle. We use Huxley’s concept

that a digital disc is the set of all integer points inside the circle.

Huxley and Žunić collaborated in [23] to find a theorem which counts the

number of different digitisations of discs having radius R.

Theorem 5.2. (Huxley and Žunić [23])

There are 4πR2 +O(Rκ+1(logR)λ) different (up to translation) digitisations

of discs having radius R.

Huxley and Žunić additionally consider the number of different digital

discs containing N points, and their main result in [24] counts these discs.

Theorem 5.3. (Huxley and Žunić [24]) The number of different (up to

translation) digital discs consisting of N integer points satisfies

DN ≤ 4N +O(N (κ+1)/2(logN)λ). (5.2)

The study of configurations was further developed by Huxley and Žunić

in [22, 25]. Let K(R) be the number of equivalence classes of configurations

with r = R fixed, let L(n) be the number of equivalence classes of configu-

rations with N(r, P ) = n fixed, and let M(N) be the number of equivalence

classes of configurations with 1 ≤ N(r, P ) ≤ N . The screen size N(r, P ) is

asymptotic to Ar2 as r → ∞, where A is the area of S. Huxley and Žunić

found estimates of L(n), M(N), and K(r) for a closed convex shape S in the

plane with smooth boundary curve C and area A under different conditions,

which we now state.
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Smoothness Condition. The boundary C is made up of c0 pieces, on

each of which there is a radius of curvature ρ, continuously differentiable

with respect to the direction ψ of the tangent, with

c1 ≤ ρ ≤ c2,

∣

∣

∣

∣

dρ

dψ

∣

∣

∣

∣

≤ c3,

where c0, c1, c2 and c3 are constants with c0 a positive integer, 0 < c1 ≤ 1,

and c2 ≥ 1.

Triangle Condition (for a particular r). There is no point P where

the boundary curve C(r, P ) of S(r, P ) passes through three or more integer

points.

Quadrangle Condition. There is no size r and no point P where

C(r, P ) passes through four or more integer points.

Theorem 5.1 also holds for an S-oval satisfying the Smoothness Condition,

with the constant π for circles replaced by the area constant A. The result

of Huxley and Žunić in [25] bounds K(r), with an area constant B.

Theorem 5.4. (Huxley and Žunić [25]) Let S be strictly convex. Then

as r → ∞,

K(r) ≤ Br2 +O(r). (5.3)

If S satisfies the Triangle Condition, then

K(r) = Br2 +O(r). (5.4)

If S satisfies the Smoothness Condition, then (5.3) holds with an error term

of the same form as in (5.1), and so does (5.4) if S satisfies both conditions.

Huxley and Žunić then gave bounds for L(n) and M(N) in [22].

Theorem 5.5. (Huxley and Žunić [22]) Let S be convex. Then for all

n ≥ 1, N ≥ 1, L(n) ≤ 2n−1 and M(N) ≤ N2. If S satisfies the Quadrangle

Condition, then L(n) = 2n− 1 and M(N) = N2.

Huxley and Žunić found that in the general case where L(n) = 2n − 1,

M(N) = N2, K(r) + 1 is the screen size of T (r, O), where T is the Brunn-

Minkowski difference set of S, and O is the origin. Thus K(r) was found to

be asymptotic to Br2, where B is the area of T .

64



Huxley and Žunić then worked with Kolountzakis in [19], and the results

of Huxley, Žunić and Kolountzakis are more general. Huxley, Kolountzakis

and Žunić in [19] investigate the special cases where there are fewer config-

urations of domains, which makes K(r), L(n) and M(N) are smaller. They

answer the question of what conditions on the boundary curve C of S enable

an estimate of the number of configurations. They prefer local conditions

which can be verified to non-local conditions such as the Triangle and Quad-

rangle condition. The local conditions give some overall results, and this

approach enables improvement of the upper bound in (5.3) of Theorem 5.4

from O(r) to O(rκ(log r)λ). Huxley, Kolountzakis and Žunić then introduce

the Level 4 Smoothness Condition which leads to the main result of [19].

Level 4 Smoothness Condition. The boundary curve C has a radius

of curvature ρ, twice continuously differentiable with respect to the direction

ψ of the tangent, with the Smoothness Condition holding, and also

∣

∣

∣

∣

d2ρ

dψ2

∣

∣

∣

∣

≤ c4,

for some constant c4.

Theorem 5.6. (Huxley, Kolountzakis and Žunić [19]) Let S satisfy

the Level 4 Smoothness Condition. If θ is a real number such that

K(r) = Br2 +O(rθ)

holds as r → ∞, then θ ≥ 1/2.

Huxley, Kolountzakis and Žunić then consider examples which satisfy

some of the conditions we have discussed but not all conditions, or which fail

to satisfy the conditions for certain values of r, which are the square roots of

rational numbers. The most familiar example which fails to satisfy certain

conditions is the circle. We know that there exist circles passing through five

or more integer points, so the circle does not satisfy the quadrangle condition,

and the triangle condition also fails, for some values of r. The bounds of Part

I show that circles passing through five or more integer points are rare.

We want to find the size of the configurations of a circle. We have an

estimate, due to Huxley and Žunić, for how many different configurations

there are. Domains can be shifted to the unit square using equivalent config-

urations which translate the circle’s centre by an integer vector. The config-
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urations are the same modulo the integer lattice. The position of the integer

points relative to each other distinguishes the configuration, not the position

of the points themselves on the lattice. It is possible that a domain can

become disconnected as the radius R increases when two opposite boundary

arcs, concave with respect to the domain, expand to touch and cross, but

this is extremely rare.

5.4 Domain diagrams and the distribution of

domains

In order to be able to examine the distribution of domains, we need to in-

troduce the domain diagram. Domains are bounded by the arcs of circles of

radius R with centres at various integer points. A domain diagram shows

where these arcs of circles meet the unit square. We give examples of domain

diagrams in Figure 5.1. These are not typical because they show multiple

intersections, but a typical example has domains too small to see on a printed

page.

Figure 5.1: Examples of Domain Diagrams
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(a) Domain Diagram for R = 2.5
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(b) Domain Diagram for R = 2.75

The domain D(J) of a configuration J is a bounded set. We drop the

radius from our notation as we consider a fixed radius in our main discussion.

The average area of domains is approximately 1/(4πR2), so most domains

are smaller than this, and clearly all domains are small. We find an upper

bound for the size of a domain, of O
(

1/
√
R
)

.

The theory of uniform distribution modulo 1 was introduced by Weyl [40].

We state here the version of Weyl’s criterion given in [5], which says that a
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Figure 5.2: Rectangles
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necessary and sufficient condition for a sequence s1, s2, . . . of real numbers to

be uniformly distributed modulo 1, is that for each integer l 6= 0,

S(N) =
1

N

N
∑

n=1

e(l Sn) → 0,

as N → ∞, where e(l Sn) = exp(2πi l Sn). Weyl’s work proved that this

was equivalent to bounds for exponential sums formed from the sequence,

which showed that Diophantine approximation results were closely related

to the general problem of cancellation in exponential sums, which occurs

throughout analytic number theory in the bounding of error terms.

We investigate what happens to the distribution of domains in the unit

square. We look at how many domains meet in the rectangle contained

within the unit square, shown in Figure 5.3(a), where the rectangle has sides

of length α in the x direction and β in the y direction such that 0 < α < 1

and 0 < β < 1. Without loss of generality we can take the origin (0, 0) as a

corner of the rectangle, so that we have the rectangle with corner co-ordinates

of (0, 0), (α, 0), (α, β) and (0, β), depicted in Figure 5.3(b).

The distribution of domains in the general rectangle, G, of Figure 5.3,

which does not have the origin as a corner, can be found by considering other

rectangles which do have the origin as a corner and adding and subtracting

the number of domains in these rectangles, as demonstrated in Figure 5.4.

We count the vertices of domains where the arcs meet rather than count

the domains themselves. Counting corners of domains in a box is the same

as counting pairs of circles whose centres satisfy some relationship, so that

67



Figure 5.3: General rectangle
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we are counting integer points in some region in 4-dimensional space, as in

the work of Huxley and Žunić [23].

Let G(α, β) be the rectangle with the lower left corner at the origin and

with sides of length α in the x-direction, and β in the y-direction. Let

C(m,n) be the translation of C(R, (0, 0)) by the integer vector (m,n), and

let C(m′, n′) be the translation of C(R, (0, 0)) by the integer vector (m′, n′).

We are interested in the arcs C(m,n) and C(m′, n′), which pass within the

rectangle G(α, β). We find an analogue for the rectangle of Huxley and

Žunić’s Lemma 3.1, which counts the number of intersections of arcs C(m,n)

and C(m′, n′) according to multiplicity in the unit square. We then find the

number of regions of the rectangle G(α, β) which are formed by domain

boundaries, and show that they are uniformly distributed.
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Chapter 6

Domain calculations - bounding

domains and the critical strip

6.1 Bounding domains

Lemma 6.1. Domains have size at most O(1/
√
R) in any direction.

Proof. Let (u, v) and (u0, v0) be in the same domain D, so that the two

circles centred at P = (u, v) and P0 = (u0, v0), both with radius R, contain

the same set of integer points. Then all integer points are contained in the

intersection of the two circles, the lens S(R, (u, v))∩S(R, (u0, v0)), illustrated
in Figure 6.1. Thus there must be at least one integer point in the intersection

of the two circles since configurations are non-empty sets. Also the crescents

S(R, (u, v)) \ S(R, (u0, v0)) and S(R, (u0, v0)) \ S(R, (u, v)) will not contain
any integer points.

We now estimate the maximum width, δ, of the each of the two crescents

S(R, (u, v)) \S(R, (u0, v0)) and S(R, (u0, v0)) \S(R, (u, v)) in Figure 6.1. By

symmetry, the maximum width will be the same for both crescents. We

begin by drawing a circle through the two points A and B where the circles

intersect, which has diameter AB. Since AB is the common chord of two

circles of radius R, we know that the length of AB is at most 2R.

We examine the lattice line A′B′ closest to the diameter AB and take the

last integer point on this line lying inside the circle, and we call this point

N . We then move along the lattice line at right angles from A′B′ to the

last integer point inside the circle, and we call this point M . The points of

intersection of the circle with the lattice line that M lies on are denoted by
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Figure 6.1: The intersection of two domains
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P and Q, depicted in Figure 6.2. If there are no points on the lattice line

perpendicular to A′B′ that enable us to do this, then we move to the next

nearest lattice line perpendicular to A′B′ possessing such points, and apply

the method just described.

Figure 6.2: Circle with diameter AB
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The results of Huxley in [16] indicate that if a strip is placed around a

smooth curve, where the curve is not too steep, then for a “thick” enough

curve, there will be an integer point in the strip. We need to find out how
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farM is from the circumference of the circle to find out the strip’s maximum

width. We do this by calculating the length of the line OM and finding the

difference between the length OM and the radius of the circle. We initially

assume the strip contains a horizontal or vertical part of the circle, and then

we treat the case where this does not hold.

We want the maximum value for the diameter AB ≤ 2R, so we take

AB = 2R, to give the radius OQ = R. Now A′B′ is almost a diameter

with A′N < 1, so let A′B′
≏ 2R. We use Pythagoras’ Theorem to obtain

R2 = (OQ)2 = (OD)2 + (DQ)2 and (OM)2 = (OD)2 + (DM)2. These

rearrange to give (OM)2 = R2 + (DM)2 − (DQ)2. Since MQ < 1, we have

DQ = DM +O(1), giving DM = DQ− O(1), and thus

(OM)2 = R2 + (DQ− O(1))2 − (DQ)2 = R2 +O(DQ+ 1).

Now D is the midpoint of the line PQ, and by choice of N , DN < 1, so

(DQ)2 ≏ PN × NQ. By the intersecting chords theorem (Euclid, book 3,

prop. 35) [7], PN ×NQ = A′N ×NB′, and as A′N < 1 and NB′ < 2R we

have PN ×NQ < 2R. This gives (DQ)2 < 2R and hence DQ <
√
2R. Thus

we have

(OM)2 = R2 +O(
√
R) = R2

(

1 +O

(

1

R3/2

))

,

and so the length OM satisfies

OM = R +O

(

1√
R

)

.

The distance between the point M and the circumference of the circle is the

difference between the radius of the circle R and the length OM , which is

O(1/
√
R).

We now treat the case where a strip is taken around part of the circle

which does not include a vertical or horizontal part of the circumference.

We take a tangent to the circle in the middle third of the strip, where the

tangent has small rational height a/q in its lowest terms, giving tanα = a/q

as in Figure 6.3. The radius perpendicular to the tangent with direction

vector (a,−q) is then constructed. We consider the lattice lines parallel

to the tangent vector (q, a), which are at a distance 1/
√

a2 + q2 apart. We

approach the circumference of the circle towards the tangent along the radius

drawn from the centre of the circle O, and choose the last lattice line that
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Figure 6.3: Arc of circle and its tangent
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intersects the radius before we reach the circumference. We denote this

lattice line by the dotted line PQ in Figure 6.4. Lattice points on this line

are
√

a2 + q2 apart. We choose the last integer point before the lattice line

goes outside of the circle, and call this M as shown in Figure 6.4.

Figure 6.4: Circle corresponding to a strip round part of it
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In this case, we use the diameter AB itself and N , the midpoint of PQ.

Then PN = NQ so that (NQ)2 = AN ×NB. We have

R2 = (OQ)2 = (ON)2 + (NQ)2 and (OM)2 = (ON)2 + (NM)2.

By definition, we have NB < 1/
√

a2 + q2 and MQ <
√

a2 + q2. This gives

(NM)2 = (NQ−
√

a2 + q2)2

= (NQ)2 − 2
√

a2 + q2NQ + a2 + q2

= (NQ)2 +O(NM − 1).

We have AB = 2R, so that AN ≏ 2R, meaning (NQ)2 < 2R, and NQ <
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√
2R. As before, we find

(OM)2 = (ON)2 + (NM)2 = R2 − (NQ)2 + (NM)2 = R2 +O(
√
R).

Thus the distance of the point M from the circle will again be O(1/
√
R).

The number of integer points in the strip needs to be zero for the crescents

in Figure 6.1 to be empty of lattice points. We now know that there are

integer points within a distance O(1/
√
R) of the circumference of the circle

which has radius R. Therefore the distance between the circumferences of

two circles of radius R with centres P and P0 which form the crescents of

Figure 6.1 must be less than O(1/
√
R). The maximum width of the strip,

δ, is the same as the distance between the centres P and P0. Therefore the

distance between the centres P and P0 is at most O(1/
√
R), and domains

have size at most O(1/
√
R) in any direction.

6.2 Critical points and the critical strip: how

many domains meet the rectangle?

Domain boundaries are arcs of circles of radius R with centres at integer

points. The domain boundaries that meet the rectangle do not necessarily

have intersections with other domains inside the boundary of the rectangle.

Intersecting domains may intersect within the rectangle not at all; or inter-

secting domains may have intersection points either once or twice within the

rectangle, as demonstrated in Figure 6.5.

Figure 6.5: Ways that intersections of domains can intersect within the rect-
angle

C) TwiceB) OnceA) Not at all

Domain boundaries are arcs of circles of radius R with centres at integer
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points. These centres are at a distance exactly R from some point in the

rectangle since the arc of the circle passes through the rectangle, and they

are referred to as critical points. Hence a critical point is the integer point

which is at a distance exactly R from some point in the rectangle. The centres

that give domain boundaries in the rectangle are a subset of the centres that

give domain boundaries in the unit square.

Huxley and Žunić find a bound in [23] for the number of critical points

of the unit square of 8R + O(Rκ(logR)λ). Thus, there are a maximum of

8R+O(Rκ(logR)λ) circles used to draw domain boundaries and each of these

boundaries cuts the edge of the unit square. This also gives an upper bound

for the number of critical points of the rectangle.

Hence the number of circles used to draw domain boundaries in our rect-

angle G(α, β) is at most 8R+O(Rκ(logR)λ) = O(R). The number of circles

which cut the boundary of the rectangle is the same as the number of circles

used to draw domain boundaries and is thus also O(R). We can also think of

this as having O(R) edges of domains cutting the boundary of the rectangle,

or the boundary of the rectangle cutting O(R) domains.

The critical strip E is the area where the critical points for the rectangle

can be found. We find it by drawing four circles of radius R centred at the

points (0, 0), (α, 0), (α, β) and (0, β), which are the corners of our rectangle.

Let E1 be the area where all of these circles intersect i.e. the common area

shared by each of the four circles, bounded by four arcs. The first arc belongs

to the circle centred at (0, 0), drawn between the points

(
√

R2 − β2

4
,
β

2

)

and

(

α

2
,

√

R2 − α2

4

)

.

The second arc belongs to the circle centred at (α, 0), drawn between the

points
(

α

2
,

√

R2 − α2

4

)

and

(

α−
√

R2 − β2

4
,
β

2

)

.

The third arc belongs to the circle centred at (α, β), drawn between the

points
(

α−
√

R2 − β2

4
,
β

2

)

and

(

α

2
, β −

√

R2 − α2

4

)

,

and the fourth arc belongs to the circle centred at (0, β), drawn between the

75



points
(

α

2
, β −

√

R2 − α2

4

)

and

(
√

R2 − β2

4
,
β

2

)

.

Figure 6.6: The critical strip and its components
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(c) The critical strip E between the bold
lines

Let E2 be the area which contains the areas of all of the circles. E2 is

bounded by four lines and four arcs. The first line runs from (α + R, 0) to

(α+R, β), and the first arc runs from (α+R, β) to (α, β +R), belonging to

the circle centre (α, β). The second line runs from (α, β + R) to (0, β +R),

and the second arc runs from (0, β + R) to (−R, β), belonging to the circle

centre (0, β). The third line runs from (−R, β) to (−R, 0), and the third arc
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runs from (−R, 0) to (0,−R), belonging to the circle centre (0, 0). Lastly,

the fourth line runs from (0,−R) to (α,−R), and the fourth arc runs from

(α,−R) to (α+R, 0), belonging to the circle centre (α, 0). The critical strip

E is found by subtracting the area E1 from the area E2, giving E = E2\E1. All
three of the areas E1, E2 and E can be seen in Figure 6.6.

6.3 The area of the critical strip

Lemma 6. The area of the critical strip is 4R(α + β) +O(αβ).

Proof. The critical strip can be covered by four rectangles, where each rect-

angle has area αβ, and four curved strips, which are each bounded by two

quadrants of circles. Overlap occurs only in the bounded regions of the rect-

angles. The area of the critical strip is the sum of the area of the four curved

strips + O(αβ), where the order of magnitude term is obtained from the area

of the rectangles.

Figure 6.7: The curved strip in the first quadrant

(R, 0)

(0, R)

(α,R+ β)

(α +R, β)

We now find the area of one curved strip, the strip based in the first

quadrant with x and y positive (see Figure 6.7). This strip is found between

the arc of the circle centre (0, 0), radius R, drawn from (0, R) to (R, 0)

and the arc of the circle centre (α, β), radius R, drawn from (α + R, β) to

(α, β+R). The distance between the two arcs is
√

α2 + β2, and the straight

line distance between the two end points of an arc is R
√
2. In Figure 6.8, we
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show how we transform our curved strip into a parallelogram with sides of

length
√

α2 + β2 and R
√
2.

Figure 6.8: The curved strip transformed into a parallelogram

θ

R
√
2

√

α2 + β2

We use vector calculus to find the area of the parallelogram. Let a =

αi + βj and b = Ri + (β − R)j with an angle θ between the vectors a and

b, and we have |a| =
√

α2 + β2 and |b| = R
√
2. These vectors are shown

in Figure 6.9. The magnitude of −a × b is the same as the area of our

Figure 6.9: Vector diagram

q

a

a

-R

b

R

b
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parallelogram,

−a× b =

[

−α −β
R −R

]

= αR+ βR = R(α + β),

so that the area of our parallelogram is R(α + β). Hence the area of the

curved strip in the first quadrant is R(α + β). The area of the critical strip

is four times the area of the curved strip with error O(αβ), so that the area

of the critical strip is 4R(α+ β) +O(αβ).

We now state Proposition 2.1 of [23], which is a special case of Theorem

5 of [17], which we reproduced earlier in Theorem 5.1.

Proposition 6.1. Let S be a plane region bounded by c1 arcs with the follow-

ing smoothness property. There is a length scale R ≥ 2 and positive constants

c2, c3 and c4 such that on each arc, when we regard the radius of curvature

ρ as a function of the tangent angle ψ, then

c2R ≤ ρ ≤ c3R,

∣

∣

∣

∣

dρ

dψ

∣

∣

∣

∣

≤ c4R.

Then the number of integer points in S is

AR2 +O(c1R
κ(logR)λ)

where A is the area constant associated with S so that AR2 is the area

of S. The values of κ and λ are our standard values, κ = 131/208 and

λ = 18627/8320. The constant c1 in the O-notation is constructed from the

constants c2, c3 and c4.

Taking the set S in Proposition 6.1 to be S(R, (a, b)), the circle of radius R

centred at the point P = (a, b), we will have N(P ) = πR2+O(c1R
κ(logR)λ)

regardless of the position of P within the rectangle G(α, β). The straight

sections of the boundary of E can be replaced by circular arcs of radius R

without altering the set of integer points in E , so Proposition 6.1 combined

with Lemma 6 giving the area of the critical strip tells us that the number

of critical points for our rectangle G(α, β) is 4R(α + β) +O(Rκ(logR)λ).
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Chapter 7

Positions of arcs cutting the

rectangle

We are interested in finding analogues for the rectangle of Huxley and Žunić’s

Lemma and Theorem, which count the number of intersections of domains

in the unit square. In order to do this, we need to locate where the arcs

which form domain boundaries intersect with the rectangle, and estimate

their partial derivatives and radius of curvature as contour lines of a function.

7.1 Locating arcs which cut the rectangle

To locate the arcs which form domain boundaries intersecting with the rect-

angle, we begin by drawing the circle C(m,n) centred at (m,n) with radius

R, for each critical point (m,n). The arc C(m,n) will cut the boundary of the

rectangle at two points which we denote as A1(m,n) and A2(m,n). We esti-

mate the number of multiple crossings of the two arcs C(m,n) and C(m′, n′)

within the rectangle. In the rare case where the arcs C(m,n) and C(m′, n′)

cross twice in the rectangle G(α, β), the points A1(m,n) and A2(m,n) both

lie outside the arc C(m′, n′). This occurs when m′ = −m + O(α), n′ =

−n + O(β). The bound for the number of critical points for the rectangle

implies that there are O(R) pairs of arcs which cross twice. If C(m,n) and

C(m′, n′) cross once inside the rectangle G(α, β), then the points A1(m,n)

and A2(m,n) lie on opposite sides of the arc C(m′, n′).

Let E1(m,n) be the subset of the critical strip E consisting of those points
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Figure 7.1: The set E(x, y)

A  (x,y)1

α

y

β

(x,y)

x

C(x,y)

A  (x,y)

R

2

which lie inside the circle S(A1, (m,n)), and outside the circle S(A2, (m,n)),

E1(m,n) = E ∩ {S(A1, (m,n))\S(A2, (m,n))}.

Similarly, let E2(m,n) be the subset of the critical strip E consisting of

those points which lie inside the circle S(A2, (m,n)) and outside the circle

S(A1, (m,n)),

E2(m,n) = E ∩ (S(A2, (m,n))\S(A1, (m,n))).

When the arc C(m,n) crosses the arc C(m′, n′), then the point (m′, n′) lies

in E(m,n), where E(m,n) is the union of the sets E1(m,n) and E2(m,n),

so that E(m,n) = E1(m,n) ∪ E2(m,n).

For any point (x, y) in the critical strip E , not necessarily an integer

point, we consider the arc C(x, y), the set E(x, y), the point A1(x, y), and

the point A2(x, y), given by the same construction as used when (x, y) is a

critical point (m,n), illustrated in Figure 7.1. The set E(x, y) is bounded by

the dotted and dashed lines, which are the circumferences of two circles of

radius R whose centres are at a distance d(x, y) apart, where d(x, y) is the
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distance between the two points A1(x, y) and A2(x, y). Let e(x, y) be the

area of E(x, y). The area e(x, y) is the shaded region in Figure 7.1.

In the following discussion, we write d for d(x, y), A1 for A1(x, y) and so

on. When we fix d, there are still many possible positions for A1 and A2

on the perimeter of our rectangle. The more common cases are where the

points A1 and A2 are on adjacent sides of the rectangle, called corner cuts

(Figure 7.2); and where the points A1 and A2 are on opposite sides of the

rectangle, called side cuts (Figure 7.4). There is a rare case where both the

points A1 and A2 lie on the same side of the rectangle, called a same-side cut

(Figure 7.5). It is also possible, although extremely unlikely, for the domain

boundary to make a four-point cut, cutting the perimeter of the rectangle

four times (Figure 7.6).

Let θ < π/2 be the angle formed between the x-axis and the line A1A2.

The angle of inclination of the line A1A2 is measured anticlockwise from the

positive x-axis. When the angle of inclination is less than π/2, then θ and

the angle of inclination are the same. When the angle of inclination is greater

than π/2, then θ is the difference between π and the angle of inclination. We

use the angle θ to parameterise the contour lines of the area e(x, y). We wish

to estimate the partial derivatives and radius of curvature for the contour

lines of e(x, y) to use in our results of Chapter 8.

7.2 Arcs cutting adjacent sides of the rect-

angle

First we consider where the points A1 and A2 are on adjacent sides of the

rectangle, the corner cuts. So far we have not distinguished the points A1

and A2. For corner cuts we make the convention that A1 lies on a horizontal

side of the rectangle, and A2 lies on a vertical side. There are eight types of

corner cut when we take account of the orientation of the domain boundary.

There are four corners, and for each corner there are two possible orientations

for the arc A1A2 (Figure 7.2).

Lemma 7.1. The contour lines formed by arcs cutting adjacent sides of the

rectangle have radius of curvature ρ approximately R. Let the angle ψ, as

usual, denote the direction of the tangent vector, then also in all corner cut

cases we find that dρ/ dψ is O(R).
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Figure 7.2: Corner cuts
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Proof We take the cases in pairs, considering case i and case i + 4 to-

gether, 1 ≤ i ≤ 4. The same two points A1 and A2 on adjacent sides of the

rectangle come from two possible centres X and X ′ for the circular arc A1A2,

which lie on the perpendicular bisector of the line segment A1A2 (Figure 7.3).

The equation of the perpendicular bisector is

y − y0 =
−1

m
(x− x0), (7.1)

where (x0, y0) denotes the midpoint M of A1A2, and m denotes the gradient

of A1A2.

The angle φ = M̂XA1 is determined by sin φ = d/2R. To work backwards

from A1 and A2 to find the centres X and X ′, we draw the circle centre M

radius R cosφ to cut the perpendicular bisector of A1A2 at X and X ′.

We give the construction for cases 1 and 5, when A1 = (d cos θ, 0) and

A2 = (0, d sin θ), so that the midpoint M = (1/2 d cos θ, 1/2 d sin θ), and the

gradient of A1A2 is − tan θ. Hence we substitute into (7.1) to find

y = x cot θ +
d

2
sin θ − d

2
cos θ cot θ. (7.2)

The equation of the circle with centre M and radius R cosφ is

(

x− d

2
cos θ

)2

+

(

y − d

2
sin θ

)2

= (R cosφ)2. (7.3)
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Figure 7.3: Concepts
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We substitute (7.2) for y in (7.3) and use d = 2R sinφ, so that

x = ±R cosφ sin θ +
d

2
cos θ = ±R sin (θ ± φ) . (7.4)

We then substitute (7.4) into (7.2) to obtain y = ±R cos (θ ∓ φ). Hence the

two possible points X and X ′ have coordinates

(±R sin (θ ± φ) ,±R cos (θ ∓ φ)) , (7.5)

where the upper signs are taken together. Since d is fixed, the angle φ is

fixed, and the area e(x, y) is fixed. As the angle θ varies, the point (x, y)

moves along a contour line of the function e(x, y).

We must show that this part of the contour has radius of curvature ap-

proximately R. The points X and X ′ differ only by the sign in (7.5). We

consider case 1, for ease of notation, in which

(x, y) = (R sin(θ + φ), R cos(θ − φ)) .
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The tangent vector at this point is

(

dx

dθ
,
dy

dθ

)

= (R cos(θ + φ),−R sin(θ − φ)) , (7.6)

and the arc length s satisfies,

(

ds

dθ

)2

=

(

dx

dθ

)2

+

(

dy

dθ

)2

= R2
(

cos2(θ + φ) + sin2(θ − φ)
)

= R2 (1− sin 2φ sin 2θ) ,

which gives
ds

dθ
= R (1− sin 2φ sin 2θ)1/2 . (7.7)

Let the angle ψ, as usual, denote the direction of the tangent vector

in (7.6). Then

tanψ = − sin(θ − φ)

cos(θ + φ)
=

tanφ− tan θ

1− tanφ tan θ
,

and

tan θ + tanψ =
sin φ cos 2θ

cosφ cos(θ + φ)
. (7.8)

We calculate

tan(θ + ψ) =
tan θ + tanψ

1− tan θ tanψ
. (7.9)

In (7.8) we have an expression for the numerator of (7.9) in terms of θ and φ.

We now transform the denominator of (7.9),

1− tan θ tanψ = 1 +
sin(θ − φ) sin θ

cos(θ + φ) cos θ

=
cos(θ + φ) cos θ + sin(θ − φ) sin θ

cos(θ + φ) cos θ

=
cosφ− sinφ sin 2θ

cos(θ + φ) cos θ
. (7.10)

Our expressions in (7.8) and (7.10) now have the same denominator,

which will cancel when the expressions are substituted into (7.9), and thus

will give

tan(θ + ψ) =
sin φ cos 2θ

cosφ− sinφ sin 2θ
.
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Hence

ψ = −θ + tan−1

(

sinφ cos 2θ

cosφ− sinφ sin 2θ

)

, (7.11)

and

dψ

dθ
= −1 +

sin 2φ sin 2θ − 2 sin2 φ

sin 2φ sin 2θ − 1

=
2 cos2 φ− 1

sin 2φ sin 2θ − 1

=
− cos 2φ

1− sin 2φ sin 2θ
. (7.12)

We obtain the radius of curvature ρ from the results of (7.7) and (7.12),

ρ =

∣

∣

∣

∣

ds

dψ

∣

∣

∣

∣

=

∣

∣

∣

∣

ds/ dθ

dψ/ dθ

∣

∣

∣

∣

= R(1− sin 2φ sin 2θ)1/2
∣

∣

∣

∣

1− sin 2φ sin 2θ

− cos 2φ

∣

∣

∣

∣

= R
(1− sin 2φ sin 2θ)3/2

|cos 2φ| ,

which means that

ρ =
R (1− sin 2φ sin 2θ)3/2

|cos 2φ|

=
R (1− O(φ))3/2

1− O(φ)

= R +O(d)

≍ R. (7.13)

We need to check that the derivative

dρ

dψ
=

dρ/ dθ

dψ/ dθ
(7.14)

is continuous and has order of magnitude O(R) or smaller.

We already know the derivative of ψ with respect to θ, given in (7.12).

Since we have ρ expressed in terms of θ in (7.13) we can find the derivative

of ρ with respect to θ directly from this expression,

dρ

dθ
= −3R tan 2φ cos 2θ(1− sin 2φ sin 2θ)1/2. (7.15)
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We substitute (7.15) and (7.12) into (7.14) to obtain

dρ

dψ
= 3R tan 2φ sec 2φ cos 2θ(1− sin 2φ sin 2θ)3/2.

This is continuous except where cos 2φ = 0. Since R is supposed to be large,

and d ≤
√

α2 + β2 ≤
√
2, and sinφ = d/2R, then φ is a small angle and

cos 2φ is non-zero. The order of magnitude of this derivative is at most R,

the size suggested by dimensional analysis.

We performed these calculations and estimates for case 1 of the corner

cuts. The other seven cases will be similar, so that the radius of curvature in

all cases is approximately R. Case 5 differs from case 1 only by sign changes.

In cases 2 and 6, A1 = (α − d cos θ, 0) and A2 = (α, d sin θ), so that the

midpoint M = (α− 1/2 d cos θ, 1/2 d sin θ), and the two possible points X

and X ′ have coordinates

(±R sin (θ ∓ φ) + α,∓R cos (θ ± φ)) ,

where the upper signs are taken together. When we differentiate with respect

to θ to obtain the tangent vector, α disappears, and the tangent vector is

(±R cos (θ ∓ φ) ,±R sin (θ ± φ)) .

This tangent vector differs only by sign changes from that of case 1.

In cases 3 and 7, A1 = (α− d cos θ, β) and A2 = (α, β − d sin θ), and the

two possible points X and X ′ have coordinates

(±R sin (θ ± φ) + α,±R cos (θ ∓ φ) + β) ,

where the upper signs are taken together. In cases 4 and 8, A1 = (d cos θ, β)

and A2 = (0, β − d sin θ), so that the two possible points X and X ′ have

coordinates

(±R sin (θ ± φ) ,∓R cos (θ ∓ φ) + β) ,

where the upper signs are taken together.

In all of cases 3, 4, 7 and 8, we differentiate with respect to θ to obtain

the tangent vector. The tangent vector in cases 3 and 7 is the same as that of

(7.6) in cases 1 and 5, so the radius of curvature for the part of the contour in

cases 3 and 7 will be approximately R. The tangent vector in cases 4 and 8
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differs only by sign changes from the other cases, so this part of the contour

again has radius of curvature approximately R. Thus in all eight corner cut

cases we have ρ ≃ R, and dρ/ dψ is O(R).

7.3 Arcs cutting opposite sides of the rect-

angle

We now consider the cases of side cuts. There are four types of side cut when

we count the orientation of the domain boundary, shown in Figure 7.4. The

only difference between side cuts 1 and 3, and side cuts 2 and 4, is whether

the line segment A1A2 has positive or negative gradient.

Figure 7.4: Side cuts

Case 1

A2A1

Case 2

A1

A2

Case 3

A2A1
A

Case 4
1

A2

Lemma 7.2. The contour lines formed by arcs cutting opposite sides of the

rectangle have radius of curvature ρ approximately R. Also in all side cut

cases we find that dρ/ dψ is O(R).

Proof We consider side cuts 1 and 3 together, setting 0 < k < α and

0 < θ < π/2. In side cut 1, the line A1A2 has negative gradient with

A1 = (k + d cos θ, 0), A2 = (k, β). In side cut 3, the line A1A2 has positive

gradient with A1 = (k, 0), A2 = (k+d cos θ, β). The method used to find the

points X and X ′ is the same as that used for the corner cut cases, and we

find that in side cut 1, the two possible points X and X ′ have coordinates

(

±R sin (θ ± φ) + k,±R cosφ cos θ +
β

2

)

,

and in side cut 3, X and X ′ have coordinates

(

±R sin (θ ± φ) + k,∓R cosφ cos θ +
β

2

)

,
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where in both cases the upper signs are taken together.

To show that the radius of curvature for this part of the contour is approx-

imately R, we differentiate with respect to θ to obtain the tangent vectors.

The tangent vector in case 1 is

(

dx

dθ
,
dy

dθ

)

= (±R cos(θ ± φ),∓R cos φ sin θ) ,

and the tangent vector in case 3 is

(

dx

dθ
,
dy

dθ

)

= (±R cos(θ ± φ),±R cos φ sin θ) ,

with upper signs taken together in both cases. From the tangent vectors we

obtain
∣

∣

∣

∣

ds

dθ

∣

∣

∣

∣

= R

(

1− sin2 φ cos2 θ ∓ 1

2
sin 2φ sin 2θ

)1/2

. (7.16)

We find that

tanψ = ∓ cos φ sin θ

cos(θ ± φ)
,

where tanψ is negative in case 1 and positive in case 3. For case 1, we use

the identity of (7.9) to find tan(ψ + θ) = f , where

f = ∓ sin φ sin2 θ

cos φ∓ 1/2 sinφ sin 2θ
,

so that

ψ = −θ + tan−1 f.

For case 3, tanψ is the same as in case 1 but with opposite sign. This means

that ψ in case 3 is the negative of the ψ obtained in case 1 (possibly differing

by a factor of nπ, for integer n) and thus for case 3, the principal value of ψ

is θ − tan−1 f .

We now choose to use the case 1 version of ψ with negative f to obtain

dψ

dθ
=

sin2 φ sin2 θ − 1/2 sin 2φ sin 2θ

1− sin2 φ cos2 θ − 1/2 sin 2φ sin 2θ
. (7.17)

We obtain the radius of curvature ρ from the results of (7.16) and (7.17),

ρ =
R
(

1− sin2 φ cos2 θ − 1/2 sin 2φ sin 2θ
)3/2

sin2 φ sin2 θ − 1/2 sin 2φ sin 2θ
.

89



We approximate the radius of curvature as R, using the methods of (7.13).

Again we must establish that the derivative of ρ with respect to ψ is

continuous with order of magnitude O(R) or smaller. We already know the

derivative of ψ with respect to θ, given in (7.17). We need to calculate the

derivative of ρ with respect to θ. To make this calculation more accessible,

let

ρ = R
b3/2

c
,

where

b = b(θ) = 1− sin2 φ cos2 θ − 1/2 sin 2φ sin 2θ

and

c = c(θ) = sin2 φ sin2 θ − 1/2 sin 2φ sin 2θ.

Then
dρ

dθ
=
Rc1/2b′

b2

(

3

2
b− c

)

, (7.18)

where b′ is the derivative of b with respect to θ,

b′ = sin2 φ sin 2θ − sin 2φ cos 2θ.

We can also express the derivative of ψ with respect to θ in terms of b and c,

dψ

dθ
=
b

c
. (7.19)

We use (7.18) and (7.19) and the chain rule to get

dρ

dψ
=
Rc3/2b′

b3

(

3

2
b− c

)

.

This is continuous except where b3 = 0, which corresponds to θ = 0 and/or

θ = π/2. Since we defined 0 < θ < π/2, the denominator b3 will be non-zero.

The order of magnitude of this derivative is at most R. Calculations and

estimates for the remaining cases of side cuts 1 and 3 differ only by sign

changes, so that the radius of curvature in all of the cases of side cuts 1 and

3 is approximately R, and dρ/ dψ is O(R).

We now consider side cuts 2 and 4, where we set 0 < h < β and 0 < θ <

π/2. In side cut 2, A1 = (0, h+ d sin θ) and A2 = (α, h), where the line A1A2

has negative gradient. In side cut 4, A1 = (0, h) and A2 = (α, h + d sin θ),

where the line A1A2 has positive gradient. We find in side cut 2, that the
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two points X and X ′ have coordinates

(

±R cosφ cos θ +
α

2
, R (sinφ± cos φ) sin θ + h

)

,

and in side cut 4, the two points X and X ′ have coordinates

(x, y) =
(

±R cosφ cos θ +
α

2
, R (sin φ∓ cosφ) sin θ + h

)

,

where in all cases the upper signs are taken together.

We differentiate with respect to θ to obtain the tangent vector of side cut

2,

(∓R cosφ sin θ, R (sinφ± cos φ) cos θ) ,

and the tangent vector of side cut 4,

(∓R cosφ sin θ, R (sinφ∓ cos φ) cos θ) .

We use the tangent vectors to find ds/ dθ. For side cut 2

ds

dθ
= R

(

1− sin2 φ sin2 θ ± sin 2φ cos2 θ
)1/2

,

and for side cut 4,

ds

dθ
= R

(

1− sin2 φ sin2 θ ∓ sin 2φ cos2 θ
)1/2

.

We let t = 1− sin2 φ sin2 θ+sin 2φ cos2 θ, and we consider side cut 2 with

ds/ dθ = Rt1/2. We find

tanψ = − cot θ(tanφ+ 1),

and thus

ψ = −θ + tan−1
(u

v

)

,

with

u = −(cos 2θ + tanφ cos2 θ),

v =
1

2
(tanφ+ 2) sin 2θ.
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We find the derivative of ψ with respect to θ,

dψ

dθ
=
w(tanφ+ 2)− z

z
, (7.20)

where

w = 1 +
1

2
tanφ sin2 2θ + tanφ cos2 θ cos 2θ,

z = 1 + tanφ(tanφ+ 2) cos2 θ.

We have w = vu′ − uv′, where u′ is the derivative of u with respect to θ and

equals 2v, and v′ is the derivative of v with respect to θ,

v′ = (tanφ+ 2) cos 2θ.

We obtain the radius of curvature from ds/ dθ = Rt1/2 and the result of

(7.20),

ρ =
Rt1/2

z
(w(tanφ+ 2)− z) , (7.21)

which is approximately R.

Again we need the derivative of ρ with respect to ψ to be continuous with

order of magnitude O(R) or smaller. We already know the derivative of ψ

with respect to θ, given in (7.20). We need to calculate the derivative of ρ

with respect to θ. We use the form of ρ given in (7.21) and we find that

dρ

dθ
=
Rt1/2

z

d

dθ
(w(tanφ+ 2))− Rt1/2

z

dz

dθ

+
R

z2
(w(tanφ+ 2)− z)

(

z
dt1/2

dθ
− t1/2

dz

dθ

)

. (7.22)

Now
dz

dθ
= − tanφ(tanφ+ 2) sin 2θ = −2v tanφ,

and

d

dθ
(w(tanφ+ 2)) = (tanφ+ 2)

dw

dθ

= − tanφ(tanφ+ 2) sin 2θ

=
dz

dθ
.
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Thus the first part of dρ/ dθ in (7.22) cancels, and we are left with

dρ

dθ
=
R

z2
(w(tanφ+ 2)− z)

(

z
dt1/2

dθ
− t1/2

dz

dθ

)

.

We have already found the derivative of z with respect to θ, and now we find

dt1/2

dθ
=

1

2
t−1/2 dt

dθ
= −(sin2 φ+ sin 2φ)

2t1/2
sin 2θ.

Thus we have

dρ

dθ
=
R

z2
(w(tanφ+ 2)− z)

(

2t1/2v tanφ− z
(sin2 φ+ sin 2φ)

2t1/2
sin 2θ

)

.

(7.23)

We use (7.23) and (7.20) and the chain rule to get

dρ

dψ
=
R

z

(

2t1/2v tanφ− z
(sin2 φ+ sin 2φ)

2t1/2
sin 2θ

)

This is continuous except at values of φ that correspond to θ = 0 or θ = π/2.

Since we defined 0 < θ < π/2, dρ/ dψ is continuous everywhere for this

case. The derivative dρ/ dψ also has order of magnitude of O(R) or smaller.

Calculations and estimates for the remaining cases of side cuts 2 and 4 will

be similar, so that the radius of curvature in all cases of side cuts 2 and 4

will be approximately R.

7.4 Rare ways that arcs cut the rectangle

We now consider the rare cases where the straight line between the points A1

and A2 has angle of inclination equal to 0 or π/2. These cases occur when we

have opposite side cuts with A1 = (k, 0) and A2 = (k, β), or with A1 = (0, h)

and A2 = (α, h), or when we have same-side cuts, with the points A1 and A2

lying on the same side of the rectangle.

These short straight segments of lines can be approximated by the arc of

the circle of radius R that passes through the points A1 and A2 with negligible

corrections to the area and number of integer points in S(t). The difference

between the straight line and the arc in these cases cannot be illustrated

since they are so close together. We attempt to show the difference between

the straight line and the arc in Figure 7.5. The radius of the circle to which

93



Figure 7.5: Example of a same-side cut

the arc of Figure 7.5 belongs is small (about twice the size of the rectangle

base), and already the difference is barely discernible.

The last kind of rare case we need to consider are the four-point cuts.

Four-point cuts occur where our domain boundary meets the rectangle four

times. Four-point cuts can be treated as a combination of corner cuts, demon-

strated in Figure 7.6. Since the arcs in corner cuts have radius of curvature

approximately R, so will the arcs in four-point cuts.

=

+

Figure 7.6: Four-point cuts as a combination of arcs
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Chapter 8

Analogue of Huxley and

Žunić’s Lemma and Theorem

for intersections of domains

8.1 Number of intersections of domains

Lemma 8.1. Let L be the total number of intersections within the rect-

angle G(α, β) of ordered pairs of arcs C(m,n) and C(m′, n′), where (m,n)

and (m′, n′) are distinct critical points in the critical strip E . Then

L = 8πR2αβ +O
(

Rκ+1(logR)λ
)

. (8.1)

Proof. To calculate asymptotics, we use a continuous model of the discrete

integer lattice. We consider the set E(x, y), and the area e(x, y) of the set

E(x, y). The area e(x, y) is the shaded region in Figure 7.1, bounded by the

circumferences of two equal circles of radius R whose centres are a distance

d apart. Thus the area e(x, y) is the sum of the areas of these two equal

circles, with twice the area of their intersection subtracted.

As in chapter 7, let φ = φ(x, y) be the small angle with sin φ = d/2R.

The common chord of the two circles subtends an angle π− 2φ at the centre

of each circle. The area of the intersection of the two circles is calculated

using basic trigonometry as (π−2φ)R2−dR cosφ. The area of the two circles

in total is 2πR2 so we have the area e(x, y),

e(x, y) = 2πR2 − 2((π − 2φ)R2 − dR cosφ) = 4φR2 + 2dR cosφ.
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We use the power series expansions of cosφ and sinφ with the defining

identity sinφ = d/2R to give our approximations to φ and cosφ ,

φ =
d

2R
+O

(

d3

R3

)

=
d

2R
+O

(

1

R3

)

,

and

cosφ = 1− φ2

2
+O

(

1

R4

)

= 1−O

(

1

R2

)

,

which means that

e(x, y) = 4dR+O

(

1

R

)

. (8.2)

For each critical point (m,n) in E we want to count the number of arcs

C(m′, n′) that cross C(m,n) once only. By Proposition 6.1, the sum is

∑

(m,n)∈E

(

e(m,n) +O(Rκ(log R)λ)
)

=
∑

(m,n)∈E

e(m,n) + O(Rκ+1(logR)λ).

(8.3)

We want to replace the first term in (8.3) by

∫

E

∫

e(x, y) dx dy.

However, the function e(x, y) is zero on the boundary of the critical strip E ,
and has partial derivatives of size R, as shown in chapter 7. This means that

the integer lattice has too few points to be used for straightforward numerical

integration.

Let T be the maximum of e(x, y). For t ≤ e(x, y) ≤ T , let S(t) be the

subset of E on which e(x, y) ≥ t. Let χS(t)(x, y) be the characteristic function

of S(t), which equals 1 if (x, y) ∈ S(t), and 0 otherwise. We use the Riesz

interchange principle [34]. We have

e(x, y) =

∫ T

0

χS(t)(x, y) dt.
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Summing over critical points (m,n), we have

∑

(m,n)∈E

e(m,n) =
∑

(m,n)∈E

∫ T

0

χS(t)(m,n) dt

=

∫ T

0

∑

(m,n)∈E

χS(t)(m,n) dt

=

∫ T

0

∑

(m,n)∈S(t)

1 dt

=

∫ T

0

N(t) dt. (8.4)

The region S(t) is bounded by contour lines of the function e(x, y). The

contour lines are the locus of the points (x, y) for which the distance d be-

tween the points of intersection A1(x, y) and A2(x, y) is fixed. Given A1(x, y)

and A2(x, y), there are two possible positions for the point (x, y), which we

called X and X ′ in chapter 7. We saw that the critical strip E is bounded by

circular arcs of radius R, and that S(t) is bounded by contour lines whose

radius of curvature is approximately R.

Let f(t) be the area of S(t). From Proposition 6.1, we have

N(t) = f(t) +O
(

Rκ(logR)λ
)

.

We use this in (8.4) to obtain

∑

(m,n)∈E

e(m,n) =

∫ T

0

f(t) dt+O
(

Rκ+1(logR)λ
)

. (8.5)

We have used the fact that the maximum value T of e(x, y) is the area of the

critical strip E , which is O(R).

When the point (x, y) lies on the boundary of the critical strip E , we
have e(x, y) = 0. For t > 0 the contour lines of e(x, y) bounding S(t) lie

completely within the critical strip E . The area t is an increasing function of

the distance d. For d ≤ min{α, β}, the set S(t) forms a narrower strip within

the critical strip E , bounded by contour lines whose radius of curvature is

approximately R, which are of the form

(±R sin (θ ± φ) ,±R cos (θ ∓ φ)) , (8.6)
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where the upper signs are taken together.

For min{α, β} < d ≤
√

α2 + β2 the set S(t) consists of two disconnected

parts. The contour lines have long arcs of the type (8.6) which end at points

(x, y) where either A1(x, y) or A2(x, y) becomes a vertex of the rectangle

G(α, β). These curved arcs are joined by line segments equal and parallel to

one of the sides of the rectangle.

The set S(t) has the fourfold symmetry of the rectangle G(α, β). We

consider the ‘first quadrant’ of the set S(t), where the contour lines are

curves (8.6) with gradient increasing (anticlockwise) through negative values

from −∞ to 0. These contour lines are parameterised by

(

R cosφ sin θ +
d

2
cos θ, R cosφ cos θ +

d

2
sin θ

)

,

and
(

R cosφ sin θ − d

2
cos θ + α,R cosφ cos θ − d

2
sin θ + β

)

,

whose polar coordinates (r,Θ) satisfy

Θ =
π

2
− θ +O

(

1

R

)

with
dΘ

dθ
= −1 +O

(

1

R

)

, (8.7)

and

r = r1 +O

(

1

R

)

, r = r2 +O

(

1

R

)

on the lower and upper boundaries respectively (see Appendix 1 for details),

where

r1 = R +
d

2
sin 2θ, r2 = R + α sin θ + β cos θ − d

2
sin 2θ.

We want to find the area using these polar coordinates,

∫ π

2

0

∫ r2

r1

dr dΘ.

Using the result of (8.7), this is equivalent to

∫ π

2

0

∫ r2

r1

dr dθ +O

(

1

R

∣

∣

∣

∣

∣

∫ π

2

0

∫

dr dθ

∣

∣

∣

∣

∣

)

. (8.8)
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We begin by estimating the integral of the radial polar coordinate r in

the implicit first quadrant,

∫ r2

r1

r dr =
r22
2
− r21

2
,

which we estimate as

αR sin θ + βR cos θ − dR sin 2θ +O(1). (8.9)

We use this in the order of magnitude term from (8.8), and integrate with

respect to θ between 0 and π/2, so that the order of magnitude term in (8.8)

becomes O(1), and thus

∫ π

2

0

∫ r2

r1

dr dΘ =

∫ π

2

0

∫ r2

r1

dr dθ +O(1)

In order to obtain f(t), we multiply the term from (8.9) by 4 and factorise

to get 4R(α sin θ + β cos θ − d sin 2θ dθ) + O(1). We then express f(t) as an

integral of this term with respect to θ between 0 and π/2,

f(t) = 4R

∫ π

2

0

(α sin θ + β cos θ − d sin 2θ) dθ +O(1). (8.10)

Since the result of (8.2) gives us t = e(x, y) = 4dR +O(1) we have

d =
t

4R
+O

(

1

R

)

.

We use the substitution l = t/4R, giving d = l+O(1/R), so that the integral

in (8.5) is
∫ T

0

f(t) dt = 4R

∫ L

0

f(4Rl) dl. (8.11)

Consequently, the integral in (8.11) combines with (8.10) to give

16R2

∫ π/2

0

∫ L

0

(α sin θ + β cos θ − l sin 2θ) dl dθ +O(R). (8.12)

There are two cases we need to consider, 0 ≤ θ ≤ tan−1(β/α) and

tan−1(β/α) ≤ θ ≤ π/2. For θ ≤ tan−1(β/α), we have l ≤ α sec θ, and

for θ ≥ tan−1(β/α), we have l ≤ β cosec θ. The first case has L = α sec θ,
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and

∫ α sec θ

0

(α sin θ + β cos θ − l sin 2θ) dl

=

[

αl sin θ + βl cos θ − l2

2
sin 2θ

]α sec θ

0

=α2 tan θ + αβ − α2 tan θ

=αβ.

The second case has L = β cosec θ, and

∫ β cosec θ

0

α sin θ + β cos θ − l sin 2θ dl

=

[

αl sin θ + βl cos θ − l2

2
sin 2θ

]β cosec θ

0

=αβ + β2 cot θ − β2 cot θ

=αβ.

Hence

16R2

∫ tan−1(β/α)

0

∫ α sec θ

0

α sin θ + β cos θ − l sin 2θ dl dθ

=16R2

∫ tan−1(β/α)

0

αβ dθ,

and

16R2

∫ π/2

tan−1(β/α)

∫ β cosec θ

0

α sin θ + β cos θ − l sin 2θ dl dθ

=16R2

∫ π/2

tan−1(β/α)

αβ dθ,

so that (8.12) becomes

16R2

∫ tan−1(β/α)

0

αβ dθ + 16R2

∫ π/2

tan−1(β/α)

αβ dθ +O(R)

=16R2

∫ π/2

0

αβ dθ +O(R)

=8πR2αβ +O(R).
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This calculation evaluates the integral in (8.5), and gives the result of (8.1),

thereby completing our proof.

The result sketched by Huxley and Žunić in [23] was the case α = β = 1,

when the rectangle is the whole unit square.

8.2 Number of regions of rectangles given by

domain boundaries

Theorem 7. The number of domains which meet the rectangle G(α, β) is

4πR2αβ +O
(

Rκ+1(logR)λ
)

,

where κ = 131/208 and λ = 18627/8320.

Proof. To estimate the number of regions of the rectangle G(α, β) made by

the arcs C(m,n), we move from counting domains to counting vertices of

domains. For all but a discrete sequence of radii R, any circle of radius R

satisfies the Triangle Condition, so that the circle passes through at most

two integer points, and hence domains meet in fours, with no multiple inter-

sections of domain boundaries.

We form a graph from the perimeter of the rectangle and the arcs of

the circles that form domain boundaries within the rectangle, both directed

anticlockwise. In Section 6.2 we saw that O(R) domain boundaries enter

or leave the rectangle. The vertices are where domain boundaries meet one

another, or meet the perimeter of the rectangle.

When the Triangle Condition, stated in Section 5.3, holds, then vertices

inside the rectangle have four edges, two starting and two ending at that

vertex. Vertices on the perimeter of the rectangle have three or perhaps four

edges.

When the Triangle Condition fails for the radius R, there is an extra

complication. The point P is called a bad point if three or more arcs C(m,n)

meet at the point P . This means that there exist k (≥ 3) critical points

(m1, n1), . . . , (mk, nk) on the circle C(P ). The upper bound for k is k ≤ ∆

where ∆ is the maximum, taken over positive integers n ≤ 8D = 32R2(2R+

1)2, of the number of ways of writing n as a sum of two squares of integers,

so that as in [13], ∆ = O(Rη) for any η > 0. Therefore, for any bad point P
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in the rectangle G(α, β), the number of arcs C(m,n) through P is bounded

above by O (Rη).

Lemma 3.2 of [23] assures us that there are O (Rǫ) bad points P located

in the whole unit square, for any ǫ > 0. Hence there are O (Rǫ) bad points

P in the rectangle G(α, β).

Let F be the number of domains that meet the rectangle G(α, β). Let E

be the number of edges in the graph defined above, and let V be the number

of vertices. By Euler’s formula (F + 1) + V = E + 2.

First we suppose that the Triangle Condition holds. Lemma 8.1 counts

ordered pairs of arcs, so there are L/2 vertices at which two arcs C(m,n)

and C(m′, n′) meet, and O(R) other vertices on the perimeter. There are

four edges at each of these vertices, even if it is one of the O(R) vertices on

the perimeter. Hence

V =
L

2
+O(R), E = L+O(R),

and so

F =
L

2
+O(R).

When the Triangle Condition fails for the radius R, then there are O(Rǫ)

bad vertices, each counted with multiplicity at most ∆2 = O(R2η) in L.

Hence

V =
L

2
+O(R)− O

(

Rǫ+2η
)

E =
L

2
+O(R)− O

(

Rǫ+2η
)

.

When ǫ and η are taken sufficiently small, we still obtain

F =
L

2
+O(R).

Hence by (8.1), whether the Triangle Condition holds for the radius R or

not, we have

F = 4πR2αβ +O
(

Rκ+1(logR)λ
)

. (8.13)

Usually each of these F regions corresponds to a different domain. We

recall from Section 5.3 that a domain can become disconnected as the radius

R increases when two opposite boundary arcs, concave with respect to the

domain, expand to touch and cross. Lemma 2.4 of [25] on disconnected
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Figure 8.1: Reproduction of Figure 5.4
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domains tells us that this extremely unusual case occurs at most O(R) times.

So the number of distinct domains which meet the rectangle G(α, β) is F −
O(R), and the extra error term of size O(R) is absorbed by the existing error

term in (8.13).

8.3 Uniform distribution modulo the integer

lattice

The number of regions of the rectangle G(α, β) formed by domain boundaries

is 4πR2αβ up to an error term, which will be the same for the rectangle

G(β, α) by the commutativity of multiplication, so that the order of α and

β is unimportant in our result of Theorem 7.

In Chapter 5 we introduced the general rectangle, G, of Figure 5.3. The

general rectangle G did not have the origin as a corner, but its sides were

parallel to the axes. The number of domains in G could be found by consid-

ering rectangles with the origin as a corner and adding and subtracting the

number of domains in these rectangles, as demonstrated in Figure 5.4, which

we reproduce here for reference.
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We let the dimensions of G be a− c = α and b− d = β. Then, ignoring

error terms for ease of calculation, the number of regions of the rectangle G

formed by domain boundaries will be

4πR2ab− 4πR2bc− 4πR2ad+ 4πR2cd

=4πR2(ab− bc− ad− cd)

=4πR2(a− c)(b− d)

=4πR2αβ,

showing that our result for the rectangleG(α, β) is independent of its position

within the unit square, as long as its sides remain parallel to the axes.

Since the position of the rectangle G(α, β) within the unit square does

not matter, and nor does the order of α and β, there will be the same number

of domains within the rectangle regardless of the location of the rectangle,

and thus the domains are uniformly distributed modulo the integer lattice.

8.4 Sketching an alternative approach

Uniform distribution is usually proved indirectly using Weyl’s criterion. In

2 dimensions, Weyl’s criterion states that a set of points (xµ, yµ), where the

index µ runs through some infinite sequence, tends to uniform distribution

when the exponential sums

S(g, h) =
∑

µ

e (gxµ + hyµ) , (8.14)

taken over µ ∈ Q, a finite initial segment of the sequence, have smaller order

of magnitude than the number of terms in Q, as the initial segment Q tends

to infinity.

We have a set of domains rather than a set of points, but we have vertices

in the domain diagram which correspond to points. Thus a proof using Weyl’s

Criterion would show that this set of points, the vertices of the domain

diagram, is uniformly distributed. We would then be able to deduce the

uniform distribution of the domains themselves.

Kolountzakis [19] made the observation that the intersections of ordered

pairs of arcs C(m1, n1) and C(m2, n2) are parameterised by the integer vec-

tors (m1−m2, n1−n2) = (m,n) say. The point U of intersection corresponds
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to two points V1, V2 on the circle x2 + y2 = R2 with
−−→
V1V2 = (m,n). The

points V1 and V2 reduce to the same point V (m,n) =
(

x(m,n), y(m,n)

)

in the

unit square modulo the integer lattice. We would replace the index µ with

(x, y) in 8.14.

A quantitative version of Weyl’s criterion for uniform distribution module

one is given by the inequality of Erdős and Turàn [6]. This gives an estimate

for the discrepancy of a sequence of real numbers in terms of exponential

sums. Koksma extended the Erdős-Turàn inequality to two or more dimen-

sions, providing an upper bound for the discrepancy of large point sets, and

the result is known as the Erdős-Turàn-Koksma inequality [28].

The Erdős-Turàn-Koksma Inequality. Let x1, . . . , xN be points in Is,

the s-dimensional unit cube, and H be an arbitrary positive integer. Then

the discrepancy D∗
N (x1, . . . , xN ) satisfies

D∗
N(x1, . . . , xN) ≤

(

3

2

)s




2

H + 1
+

∑

0<‖h‖∞≤H

1

r(h)

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e2πi〈h,xn〉

∣

∣

∣

∣

∣



 ,

where

r(h) =
s
∏

i=1

max{1, |hi|}

for h = (h1, . . . , hs) ∈ Z
s.

The idea is to use the row-of-teeth function ρ(t) = [t]−t+1/2, where [t] is

the greatest integer n such that n ≤ t, to pick out a condition 0 ≤ x ≤ α. The

function ρ(t) can be approximated from above and below by finite Fourier

series. We sum the finite Fourier series term-by-term to get the sum over

intersection points (x, y) =
(

x(m,n), y(m,n)

)

.

The parameterising points lie in a circle of radius 2R. The circle of

radius 2R will be broken up into smaller regions. We have a two dimensional

Fourier series with two indices, so that Fourier coefficients are indexed by

the integer vectors in the plane. We want to divide the plane into regions

and use different methods in different regions. However, there is not a finite

number of regions so we will need to choose a cut off point. Regions will get

smaller and smaller approaching the cut off point, but the regions have to

form convex shapes. This is a geometrical complication. Also there is no clear

choice of cut off point for the regions, and indeed no clear choice of regions,

so this division of the exponential sums and change in coordinates is more
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complicated than the original method and will not be simpler. With much

hard work Huxley believes it should be possible to obtain some cancellation

in the outer sum over m, as well as in the inner sum over n.

In our approach we have counted integer points in regions of the critical

strip E bounded by contour lines. At the very outset we count the number

of integer points (m,n) in the critical strip E , a region composed of two

crescents, formed by the arcs of two circles. At this stage we only need an

upper bound of the right order of magnitude, which we have from using the

“area plus order of perimeter” estimate, AR2 +O(R).

We use a continuous variable of integration l to parameterise the contour

lines, giving a continuous family of lattice point problems. There are results

in the literature where a slightly better bound is found on average [14, 17]

for a family of lattice point problems. Our family of contour lines is not,

however, covered by these results, and it is not immediately obvious how to

proceed.

Thus both our approach and the Weyl criterion approach offer some pos-

sibility for improving the error estimate in Theorem 7, and thus obtaining a

finer uniform distribution result. Such improvements lie beyond the scope of

the current PhD project.

106



Bibliography

[1] S. Bayer. Lattice Points in Plane Areas. Unpublished undergraduate

project, 2006.

[2] M. Beck and S. Robins. Computing the Continuous Discretely: Integer-

Point Enumeration in Polyhedra. Springer, 2007.

[3] E. Bombieri and H. Iwaniec. Some mean-value theorems for exponential

sums. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13(3):473–486, 1986.

[4] L. Comtet. Advanced Combinatorics: The Art of Finite and Infinite

Expansions. Dordrecht, 1974.
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Appendix A

Polar coordinate calculations

In chapter 8 we have contour lines parameterised by

(

R cosφ sin θ +
d

2
cos θ, R cosφ cos θ +

d

2
sin θ

)

, (A.1)

and

(

R cosφ sin θ − d

2
cos θ + α,R cosφ cos θ − d

2
sin θ + β

)

, (A.2)

as θ varies, where φ is fixed, d = 2R sinφ and 0 < α ≤ 1, 0 < β ≤ 1. We

give here the details of how we found the polar coordinates (r,Θ) of these

contour lines, and how we estimated the area between the contour lines.

A.1 Finding the polar coordinates

We found in chapter 8 that the first set of polar coordinates have

r = R +
d

2
sin 2θ +O

(

1

R

)

, Θ =
π

2
− θ +O

(

1

R

)

.

From (A.1) we have

r2 =

(

R cos φ sin θ +
d

2
cos θ

)2

+

(

R cosφ cos θ +
d

2
sin θ

)2

= R2 cos2 φ+ dR cos φ sin 2θ +
d2

4

=

(

R cos φ+
d

2
sin 2θ

)2

+
d2

4
cos2 2θ.
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Thus

r =

(

R cosφ+
d

2
sin 2θ

)(

1 +O

(

d2

R2

))

.

Now we use the power series expansion of cosφ with the defining identity

sin φ = d/2R to give an approximation to cos φ,

cosφ = 1− φ2

2
+O

(

1

R4

)

= 1−O

(

1

R2

)

,

so that

r =

(

R

(

1− O

(

1

R2

))

+
d

2
sin 2θ

)(

1 +O

(

d2

R2

))

=

(

R +
d

2
sin 2θ − O

(

1

R2

))(

1 +O

(

d2

R2

))

= R +
d

2
sin 2θ +O

(

1

R2

)

.

We then consider tanΘ, using d = 2R sinφ to get

tanΘ =
R cosφ cos θ +R sinφ sin θ

R cosφ sin θ +R sinφ cos θ

=
cosφ sin (π/2− θ) + sinφ cos (π/2− θ)

cosφ cos (π/2− θ) + sinφ sin (π/2− θ)

=
sin (π/2− θ + φ)

cos (π/2− θ − φ)
.

We use the power series expansion of sin φ with the defining identity sinφ =

d/2R to give an approximations to φ,

φ =
d

2R
+O

(

d3

R3

)

= O

(

1

R

)

.

This means we have

tanΘ = tan

(

π

2
− θ +O

(

1

R

))

.

For θ in the first quadrant we have

Θ =
π

2
− θ +O

(

1

R

)

.
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Figure A.1: Polar coordinate diagram of vector sums

√

α2 + β2

B

A

O

d/2

π/2− θ

R cosφ

θ

C

The second set of polar coordinates we found were

r = R + α sin θ + β cos θ − d

2
sin 2θ +O

(

1

R

)

Θ =
π

2
− θ +O

(

1

R

)

.

We rewrite (A.2) as a vector sum,

−→
OC =

−→
OA+

−→
AB +

−−→
BC = R cosφ(sin θ, cos θ)− d

2
(cos θ, sin θ) + (α, β),

and we depict this in Figure A.1. The magnitude of the vector
−→
OC gives

the polar coordinate, r, and the direction of the vector
−→
OC gives the angular

polar coordinate, Θ. The distance of C from the line OA, with the line OA

extended through A if necessary, is Y , where

Y ≤ AB +BC =
d

2
+
√

α2 + β2 ≤ 3

2

√

α2 + β2 ≤ 3

2

√
2 = O(1).

The component of
−→
OC in the direction of OA is

OA−AB cos ÔAB +BC cos γ,

where γ is the angle between OA and BC (Figure A.2). The angle ÔAB =

2θ − π/2 so that

cos ÔAB = cos(2θ − π/2) = cos(π/2− 2θ) = sin(2θ).
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Figure A.2: Diagram of vectors, angles and components

θ

d/2
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O

R cos φ
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√

α2 + β2

γ

δ
θ

π/2− θ

The line BC has gradient β/α = tan δ, so that γ, the angle between OA and

BC is π/2− θ − δ, and

cos γ = cos(π/2− θ − δ) = sin(θ + δ).

Thus the component of
−→
OC in the direction of OA is

X = |OA| − |AB| sin 2θ + |BC| sin(θ + δ)

= R cosφ− d

2
sin 2θ +

√

α2 + β2 sin(θ + δ)

= R− d

2
sin 2θ +

√

α2 + β2 sin(θ + δ)−O

(

1

R

)

.

We expand the
√

α2 + β2 sin(θ + δ) term,

√

α2 + β2 sin(θ + δ) =
√

α2 + β2 (sin θ cos δ + cos θ sin δ).

Now tan δ = β/α, which means

sin δ =
β

√

α2 + β2
, cos δ =

α
√

α2 + β2
,

and thus
√

α2 + β2 sin(θ + δ) = α sin θ + β cos θ.
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Therefore

X = R− d

2
sin 2θ + α sin θ + β cos θ − O

(

1

R

)

.

We now want to find the length OC. We consider

|OC|2 = X2 + Y 2 = X2 +O(1) =

(

X +O

(

1

X

))2

,

so that

|OC| = X +O

(

1

X

)

= R− d

2
sin 2θ + α sin θ + β cos θ − O

(

1

R

)

.

This is our radial polar coordinate r. The direction of the vector OC is the

angle π/2− θ − γ, i.e.

Θ =
π

2
− θ − γ.

Now the maximum size of γ has

| sin γ| ≤ d

2R cosφ
= O

(

1

R

)

,

so therefore

γ = O

(

1

R

)

.

Hence we have

Θ =
π

2
− θ +O

(

1

R

)

.

A.2 Replacing Θ by θ

We saw in (8.7) of chapter 8 that

dΘ

dθ
= −1 +O

(

1

R

)

. (A.3)

This is found straightforwardly from our expression Θ = π/2 − θ + O(1/R)

but we check here using partial derivatives of (A.1). From (A.1) we have

r cosΘ = R cosφ sin θ +
d

2
cos θ

r sinΘ = R cosφ cos θ +
d

2
sin θ.
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We take the partial derivative of these expressions with respect to θ, to get

∂r

∂θ
cosΘ− r sinΘ

∂Θ

∂θ
= R cos φ cos θ − d

2
sin θ 1

∂r

∂θ
sinΘ + r cosΘ

∂Θ

∂θ
= −R cosφ sin θ +

d

2
cos θ. 2

Then 2 cosΘ− 1 sinΘ gives

r
∂Θ

∂θ
= −R cosφ sin θ cosΘ−R cosφ cos θ sinΘ

+
d

2
cos θ cosΘ +

d

2
sin θ sin Θ.

Since Θ = π/2− θ + O(1/R), we see that sin θ and cos θ are equal to cosΘ

and sinΘ respectively up to acceptable error terms. We have

r
∂Θ

∂θ
= −R cosφ sin2 θ − R cosφ cos2 θ +O(1)

+
d

2
cos θ sin θ +

d

2
sin θ cos θ +O(d/R)

= −R +
d

2
sin 2θ +O(1).

We then divide by r, and use r ≈ R so that

∂Θ

∂θ
= −R

r
+O

(

1

R

)

= −1 +O

(

1

R

)

.

Also 1 cosΘ + 2 sinΘ gives

∂r

∂θ
= R cosφ cos θ cosΘ− R cosφ sin θ sin Θ +

d

2
cos θ sinΘ− d

2
sin θ cosΘ

= −R cosφ cos(θ +Θ)− d

2
sin(θ −Θ).

Again we use Θ = π/2− θ +O(1/R), and then

∂r

∂θ
= R cosφ cos

(

π

2
+O

(

1

R

))

− d

2
sin

(

2θ − π

2
+O

(

1

R

))

= O

(

1

R

)

+
d

2
cos

(

2θ +O

(

1

R

))

= O(1).
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We therefore have a Jacobian determinant of

∣

∣

∣

∣

∣

∣

1 0

O(1) −1 +O

(

1

R

)

∣

∣

∣

∣

∣

∣

= −1 +O

(

1

R

)

.

We want to find the area using our polar coordinates. By our estimate for

the Jacobian, we can replace the differential of area r dr dΘ by

∫ ∫

r

(

−1 +O

(

1

R

))

dr dθ,

between appropriate limits. As Θ runs from 0 to π/2, so θ runs from π/2 to

0, so we have

∫ π

2

0

∫

r dr dΘ =

∫ 0

π

2

∫

r dr dθ

(

−1 +O

(

1

R

))

= −
∫ 0

π

2

∫

r dr dθ +O

(

1

R

∣

∣

∣

∣

∣

∫ 0

π

2

∫

r dr dθ

∣

∣

∣

∣

∣

)

=

∫ π

2

0

∫

r dr dθ +O

(

1

R

∣

∣

∣

∣

∣

∫ 0

π

2

∫

r dr dθ

∣

∣

∣

∣

∣

)

.

We then used our limits for r in chapter 8 to begin the integration and area

estimation, and to simplify the order of magnitude term to get

∫ π

2

0

∫

r dr dΘ =

∫ π

2

0

∫

r dr dθ +O(1).
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