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Summary 

 

 

The Water Framework Directive (WFD) 2000/60/EC is set to overhaul the management 

of the water environment within the EU. Following its enforcement in 2015, changes 

are expected to the current water related regulations and water intensive industries, 

including steelworks, ought to prepare themselves for changes. 

 

In 2007 Corus Group was taken over by Tata Steel, now one of the World’s top 10 steel 

producers with its production of 31 MTPA (million tonnes per annum of crude steel). 

Tata Steel Port Talbot Integrated Steelworks is one of Tata Steel’s main sites, currently 

producing some 4.33 MTPA (in 2007) of crude steel (slab) and is a major user of water 

with its 8 production facilities and supporting functions. 

 

From 2007 to 2011 the author worked as a core member of the World Steel Association 

Water Management Project. The project included development of a survey to gather 

water-related data from the World’s steelworks. 29 steelworks took part in the survey 

and using the data, an extensive assessment of water related performance in steelworks 

around the World has been carried out.  The findings show that water performance 

related figures, including water use and effluent generation, vary from under 1 to near 

150 m
3
/ts. The average consumption figure being 28.4 m

3
/ts with once-through cooling 

using an average 82% of this water. The average effluent discharge figure is 25.4 m
3
/ts. 

For Port Talbot Steelworks these figures are 33.8 m
3
/ts and 28.8 m

3
/ts respectively. 

 

An investigation into effluent treatment technologies and efficiencies included carrying 

out chemical precipitation and co-precipitation titration experiments, especially looking 

at zinc, in order to better understand the behaviour of relevant metals during hydroxide 

precipitation reactions. The experimental results were compared against PHREEQCi 

theoretical geomodelling precipitation prediction data and PHREEQCi 2 indicated 

minimum zinc solubility is received at pH 9.5. Laboratory experiments support this. 

Iron enhances zinc precipitation strongly via co-precipitation.  A similar effect, although 

to a lesser extent, is achieved for zinc co-precipitation with nickel and lead. 

 

The author’s study of the Port Talbot water systems established that the chemical 

precipitation processes in operation leads to the generation of voluminious sludge that is 

hard to dewater further. This prompted the initiation of an investigation into the 

suitability of the High Density Sludge (HDS) process in treating high volume, non-

acidic low metal concentration effluents, such as steelworks final effluent. Prior to this 

research the HDS process has been used mainly for the treatment of mine effluents and 

its suitability in treating non-acidic, low metal concentration effluent has not been fully 

explored. During the trial, a 10 L/h influent feed rate was aimed for with a half hour 

retention time at the first two reactors. The flocculant feed rate was around 2.5-3 mg/l of 

treated effluent throughout the trial. At the end of the trial the sludge concentrations 

exceeded 17% (w/w), while the treatment efficiencies of zinc and other metals stabilised 

and improved. Furthermore, the sludge was behaving as HDS sludge achieving high 

settling rates in excess of 22 m/h at 5% (w/v). Solids concentrations and sludge 

filterability had improved with the specific cake resistance reducing from the ‘single 

pass’ precipitation sludge near 35,000 Gm/kg to the 777 Gm/kg after 2 weeks of trial to 

a mere 169 Gm/kg at the end of the HDS trial. 
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1 INTRODUCTION 

 

In 2007 Corus Group was taken over by Tata Steel which lifted Tata Steel into the top 

10 steel producers in the World and is currently (2010) the World’s 7th biggest steel 

producer, with its production of 31 MTPA (million tonnes per annum of crude steel).  

Tata owns two integrated steelworks in Europe, one being Tata Port Talbot Steelworks 

and the other being Tata Ijmuiden Steelworks.  Within the Port Talbot Steelworks, the 

steel is made via the BOS production route via seven different facilities into high grade 

strip steel as will be explained in Chapter 2 which provides background to this study.   

 

Due to freshwater scarcity, new paradigms in water resources management are 

implemented within steelworks around the World.  Furthermore, with water high on the 

agenda for governments and local authorities alike, additional pressure to reduce water 

abstraction and tighten discharge consent limits are being enforced via legislation.  In 

order to get an understanding of the current and future legislative demands, Chapter 2 

outlines legislation that sets guidelines and consents for water and effluent discharge 

amongst other things.  The chapter also gives an update on developments to the Water 

Framework Directive (WFD), the newest water legislation to regulate industry.  Chapter 

2 also provides a short background to effluent treatment options generally available for 

industrial water treatment. 

 

Tata Port Talbot Steelworks is a complex integrated steelworks with a large area and 

several water intensive processes and wastewater discharge flows and points.  Chapter 3 

provides a critical assessment of the Port Talbot Steelworks water and effluent systems, 

whilst also providing results on the performance of the effluent systems and the final 

effluent treatment system. 

 

Water is an important utility for the iron and steel making process, where water is used 

for several things including equipment cooling and material processing.  Water 

consumption within steelworks ranges from approximately 1 m
3
/tonne of steel (ts) to 

above 150 m
3
/ts and these figures vary from location to location depending on several 

factors.  In some cases, with very little fresh water availability, the cooling water used in 
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steelworks is running in a closed circuit cooling system. This leads to reduced water 

consumption, sometimes reaching less than 5 m
3
/t steel as will be explained in Chapter 

4, which also gives information on Worldsteel Association’s (former International Iron 

and Steel Institute) Water Management Project, its members and survey development 

for gathering data and results on benchmarking of the World’s steelworks. 

 

Disposal of wastewater is the least favorable option for its management purposes, but 

no matter how much wastewater is reused and recycled, there will always be some 

wastewater that will need to be treated.  Within steelworks several difficult effluents 

arise  during production that require their own treatment and the final effluent should be 

treated to a sufficient quality prior to discharge to the environment.  Effluent treatment 

is not generally seen as an important factor for the development of water management 

activities within steelworks around the World as explained in Chapter 4.  Within Tata 

Port Talbot Steelworks however, the final effluent treatment and the sludge generated 

during the treatment has a great importance due to tightening legislation on effluent 

discharge consent limits and sludge landfilling requirements which is outlined in 

Chapter 3. 

 

’Conventional chemical precipitation’ remains the most common industrial effluent 

treatment method to date.  In order to understand the behaviour of this type of treatment, 

Chapter 5 gives details on hydroxide precipitation to establish how metals behave 

during precipitation and co-precipitation and give information on what the right pH is 

for removal of relevant metals during individual and co-precipitation. Results on 

precipitation and co-precipitation experiments and their comparison against theoretical 

results from PHREEQC will also be presented in Chapter 5.  

 

The conventional chemical precipitation achieves good treatment efficiencies with little 

capital expenditure and moderate operational expenditure, depending on the alkali in 

use, but the sludge generated during operation is voluminous with typically maximum 

settled sludge solid concentration of between 1% and 5% solids and the sludge is 

difficult to dewater further. The disposal of this sludge generated during conventional 

precipitation can be costly and long-term storage can cause issues due to metals being 

leached out and released under certain conditions.  This has lead to the development of 
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the High Density Sludge (HDS) process, which although essentially a chemical 

precipitation process, produces sludge with different physical and chemical 

characteristics. These include improved solid crystallization and increased solids 

concentrations of between 15% and 35%.  Due to the changed sludge properties, the 

sludge settlement characteristics and dewaterability is greatly improved. 

 

The use of High Density Sludge (HDS) process on steelworks final effluent will be 

outlined in Chapter 6, which will give information on the process, including the 

important process parametres, its applications and benefits.  The chapter will outline 

results on a staged HDS process pilot experiment that used feed mimicking steelworks 

effluent and showcase the findings on the use of HDS process for final effluent 

treatment at steelworks.  Furthermore, the chapter will discuss how conventional 

precipitation and HDS process sludge dewatering capabilities were tested using 

filtration.  The chapter will finish by giving results on filter-pressing experiments. 

 

Finally, Chapter 7 concludes the previous chapters of the dissertation. 
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2 BACKGROUND 

2.1 UK Water Related Legislation 

 

Water related issues have been under a great deal of focus in the European Union during 

recent years and a number of new pieces of legislation relating to water have been 

integrated into national legislative framework.  This has and will be putting industrial 

facilities under pressure to meet continually tightening regulations and become more 

sustainable with water-related matters.  

 

United Kingdom environmental policy has undergone a revolution since the 

introduction of the 1990 Environment Protection Act and is still evolving, driven by the 

legislation from the European Union in the form of EU directives.  The formation of the 

Environment Agency brought together for the first time, the different regulatory 

authorities responsible for atmospheric, solid and wastewater discharges.  

 

At present, there is a wide range of European legislation covering several different 

aspects of water management.  This is widely acknowledged as a patchy and 

inconsistent approach.  Cashman (2006) states that, several water companies and even 

the Government has acknowledged, through the establishment of the Better Regulation 

Task Force, that there might be room for improvement in the present water regulations.   

 

The management of the water environment within the EU is set to be overhauled by the 

Water Framework Directive (WFD) 2000/60/EC, which is due to be fully enforced 

within the UK by 2015.  Following the implementation of the WFD, changes are 

expected to the current water related regulations and water intensive steel industries 

should prepare themselves for changes early on. 

 

2.1.1 Environment Agency 

 

The Environment Agency (EA) was established in 1996 by merging the National Rivers 

Authority (NRA) and Her Majesty’s Inspectorate of Pollution (HMIP) and The Waste 

Regulation Authority (Gray, 2000).  In England and Wales the Environment Agency is 
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responsible for maintaining or improving the quality of so called ‘controlled waters’, 

which are defined in section 78A(9) of the Environment Protention Act 1990 (HM 

Government, 1990) by referencing Part III (Section 104) of the Water Resources Act 

1991 (HM Government, 1991) to include fresh inland, territorial marine, underground 

water and coastal waters.  The Environment Agency enforces its responsibilities to 

industry through environmental regulations.  

 

The following topics will introduce the main parts and pieces of legislation that have an 

impact on the water related activities of integrated steelworks within the UK. 

 

2.1.2 Environmental Protection Act 1990 

 

The Environmental Protection Act (EPA) 1990 was introduced in order to control the 

amount of dangerous substances entering the environment.  Part I of the EPA 1990 

introduced a regime known as Integrated Pollution Control (IPC) and it covers releases 

to air, water and land.   

 

IPC controls the most polluting industrial processes, which are set out in the 

Environmental Protection (Prescribed Processes and Substances) Regulations 1991, 

which also lists the dangerous substances in its Schedule 5.  The Water Resources Act 

1991, controls discharges direct to controlled waters, except for those that are covered 

under IPC.  Controlled under Part I of the EPA 1990 in addition to the regulation of 

prescribed processes, are the substances within the ‘red list’ (introduced in 1989) 

(Crathorne et al., 2001), which is outlined in Environmental Protection (Prescriped 

Processes and Substances) Regulations 1991.  According to Argent et al. (2004), the 

substances on the red list are considered to be so toxic, persistent or liable to bio-

accumulation within the environment that steps should be taken to fully eliminate their 

discharge to water.   

 

2.1.3 Dangerous Substances Directive 1976 

 

The Dangerous Substances Directive (76/464/EEC) was adopted in 1976 to provide a 

framework for eliminating or reducing pollution of inland waters.  Chemicals are placed 
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into two lists in this Directive; DS List I or ‘Black List’ or DS List II or ‘Grey List’ 

(Crathorne et al., 2001).  List I is considered to be the more important one of the two 

and has limit values and environmental quality standards agreed at Community level.  

List II chemicals are controlled using environmental quality objectives and quality 

standards agreed nationally. 

 

2.1.4 Integrated Pollution Prevention and Control 

 

The European Union’s Integrated Environmental Directive through the Integrated 

Pollution Prevention and Control (IPPC) Directive 96/61 regime updated the system of 

Integrated Pollution Control in 1996.  The aim of the IPPC Directive is the prevention 

or minimising of environmental pollution caused by industrial installations by means of 

source-targeted measures and therefore, the monitoring of process effluents and 

wastewater discharges is required under the Integrated Pollution Prevention and Control 

(IPPC) Regulations.  According to Kat (2005), the purpose of the IPPC was to create a 

European Union level playing field for industrial permitting. 

 

The IPPC Directive operates under The Pollution Prevention and Control Regulations 

and it is made effective by granting permits to industrial installations.  In order to gain a 

permit, the company has to demonstrate in its application, in a systematic way, that the 

techniques it is using, both represent the use of Best Available Techniques (BAT) 

taking account of relevant local factors, and meets other relevant statutory requirements 

(Environment Agency, 2004).  The Directive also introduces other new terms, including 

Best Reference Document (BREF) and Level Playing Field (imposing equal demands 

on like installation within the EU) (Kat, 2005). 

 

Tata Port Talbot Works IPPC Permit includes consent limits for wastewater flow as 

well as for several wastewater constituents for different discharge points as will be 

outlined in Chapter 3. 

 

As this study is concentrating on metals, Table 2.1 lists relevant metals that are included 

in the DS List I, IPPC and other legally driven priority lists, including the WFD 

Directive, which will explained in depth later in this Chapter. 
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Table 2.1 Relevant metals included in the UK law (Adopted from Crathorne et al., 2001) 

 

Substance DS List I DS List II UK prescribed  

substances 

IPPC WFD 

Cadmium X  X  X 

Copper  X   X 

Lead  X   X 

Nickel  X   X 

Mercury X  X   

Mercury 

compounds 

   X  

Zinc  X    

Iron  X    

 

2.1.5 Water Act 2003 

 

Governmental concerns regarding the responsible use of water are reflected in the Water 

Act 2003, which changed the UK water abstraction system.  Now the abstractions are 

regulated through licences, which were enforced by the Water Act 2003.  Anybody who 

abstracts more than 20 m
3
 of water per day from ground or surface waters in Wales or 

England must have an abstraction licence from the Environment Agency as stated in the 

Water Act 2003 Part 1.  There are costs involved in abstraction and the annual 

subsistence charge is payable by everyone who holds a license to abstract or impound 

water. 

 

The Environment Agency (2011a) states that the subsistence charge is calculated by 

multiplying the following factors together: 

- Volume – annual licensed volume (in ‘000 cubic metres), 

- Source – unsupported, supported or tidal, 

- Season – summer, winter or all year, 

- Loss – high, medium, low or very low and 

- Standard unit charge (SUC) – location-specific multiplier for the abstraction point. 

 

The abstraction charges for 2011/2012 throughout England and Wales are as listed in 

Table 2.2. 
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Table 2.2 Abstraction charges for 2011/2012 in Wales and England (Environment Agency, 2011a) 

 

Region SUC (£/1000 m
3
) 

Anglian 24.51 

Midlands  14.95 

Northumbria 25.98 

North West 12.57 

South West (including Wessex)  19.71 

Southern 19.23 

Thames 13.84 

Yorkshire 11.63 

EA Wales 13.89
1
 

 

 

2.1.6 Water Framework Directive 

 

The Water Framework Directive establishes a framework for the Community action in 

the field of water policy (European Union, 2010).  WFD is the most substantial piece of 

EC water legislation to date.  It requires all inland and coastal waters to reach "good 

status" by 2015.  It will do this by establishing a river basin district structure within 

which demanding environmental objectives will be set, including ecological targets for 

surface waters (Defra and WAG, 2006).  Any organisation with an abstraction licence 

or discharge to the water environment will be affected. 

 

The Water Framework Directive aims at: 

- Expanding the scope of water protection to all waters, surface waters and 

groundwater,  

- Achieving "good status" for all waters by a set deadline,  

- Water management based on river basins,  

- Using a combined approach of emission limit values and quality standards and  

- Streamlining legislation. 

By rationalising and updating the current water legislation, a number of existing 

European directives will be replaced by the WFD.  Examples of these can be seen 

below. 

 

                                            
1
 Up from 12.85 in 2007/2008 
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Replaced by the end of 2007 (European Union, 2008): 

- Surface Water Abstraction Directive – 78/659/EEC 

- Surface Water Abstraction Measurement / Analysis Directive – 79/869/EEC 

- Replaced by the end of 2013: 

- Groundwater Directive – 80/68/EEC 

- Discharge of Dangerous Substances Directive – 76/464/EEC 

 

As seen above, the WFD incorporates the Discharge of Dangerous Substances Directive 

76/464/EEC, which requires member states to reduce or eliminate discharges of several 

metals to the environment. 

 

Successful implementation of the Water Framework Directive will go a long way in 

protecting all elements of the water cycle and enhancing the quality of groundwaters, 

rivers, lakes, estuaries and seas and it should be noted that due to this Directive, the 

Environment Agency will be enforcing an ever tightening approach to water and 

wastewater related issues that will have an appreciable effect especially in industrial 

facilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 West Wales River Basin District (Environment Agency, 2009) 
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2.1.6.1 River Basin Management Plans 

 

The Water Framework Directive will introduce the concept of integrated river basin 

management based on each of the 11 River Basin Districts in England and Wales.  The 

Port Talbot area belongs to the West Wales district, which can be seen in Figure 2.1.  

Each River Basin District will be treated as its own entity and, as mentioned before, the 

aim is that every District will achieve ‘good ecological status’ by 2015.  

 

2.1.6.1.1 Classification of River Basin Management Districts 

 

The WFD requires looking at the water environment as a whole, integrating water 

quality, quantity and physical habitat with ecological indicators.  The WFD assesses the 

status of waters by looking at ecological, chemical and physical elements using new and 

updated classification systems.  As can be seen in Figure 2.2 surface water bodies will 

be assigned to one of five ecological status classes of ‘high’, ‘good’, ‘moderate’, ‘poor’ 

or ‘bad’.  The status will be determined by the element, which received the worst 

classes’.  Further to the ecological status, two chemical status classes of ‘good’ and ‘not 

good’ will further classify the status of the water body.  In order to achieve the overall 

aim of ‘good status’, surface water will have to be at least ‘good’ for ecological and 

chemical status (Defra and WAG, 2006). 

 

According to Environment Agency (2006), the Directive requires to ‘aim to achieve’ 

good status for surface and ground waters (or, in some cases, good ecological potential) 

by 2015.  However, it should be noted that the Directive recognises that there may be 

conditions under which achievement of good status by 2015 may not be possible.  It 

therefore includes a system for agreeing extensions to the deadline for achieving good 

status and/or setting lower environmental objectives over a continuous series of 

management cycles.  After the first cycle to be completed by 2015, each subsequent 

cycle will take six years, from 2016 to 2021, 2022 to 2027 and so on.  Long-term 

approach is endorsed by the Environment Agency, but as many improvements as 

possible are wished to happen within the earlier cycles. 
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Figure 2.2 Classification of surface water  

bodies (Environment Agency, 2006) 

 

 

 

2.1.6.1.2 Timescale for the River Basin Management Plans 

 

It is impossible to create a better water environment overnight.  The Water Framework 

Directive timetable is a long-term programme of environmental improvement.  The 

timeline of the first River Basin Management Plans  (RBMP) can be seen in Figure 2.3.   

 

The most important dates for the implementation of the WFD include (Defra and WAG, 

2006): 

- 2008 (22
nd

 Dec-June 2009) Consult on draft RBMP, which includes overview of 

status and programmes of measures. 

- 2009 (Dec) first RBMP, including the setting of environmental objectives for each 

body of water and summaries of programmes and measures. 

- 2012 the management plans for all of the river basins to be operational. 

- 2015 meet Directive objectives for the first RBMP. 

Key: 

Annex VIII = Annex VIII of the WFS 

Annex X = Annex X of the WFD 

DSD = Dangerous Substances 

Directive 

EQR = Environmental Quality Rating 

EQS = Environmental Quality Standard 
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Figure 2.3 Overview of the first RBMPs timeline (Defra and WAG, 2006) 
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2.1.6.1.3 Priority Substances 

 

The Water Framework Directive is expanded further by two ‘daughter’ directives, one 

aimed at protecting groundwater (Directive 2006/118/EC), the second at reducing 

pollution of surface water (rivers, lakes, estuaries and coastal waters) by pollutants on a 

list of priority substances.   

 

The biggest impact that the Water Framework Directive is expected to have on 

industrial facilities is tightening of consent limits on discharges.  The Annex X of the 

Water Framework Directive (WFD) 2000/60/EC outlines the original list of 33 priority 

substances (or groups of substances) identified.  11 of these were so-called priority 

hazardous substances, 14 are priority hazardous substances that are under review and 8 

are priority substances (European Parliament and Council, 2000).  Decision 

2455/2001/EC amended the list of priority substances and the Directive on Priority 

Substances 2008/105/EC amended and subsequently repealed Council Directives 

82/176/EEC, 83/513/EEC, 84/156/EEC, 84/419/EEC, 86/280/EEC and amended 

Directive 2000/60/EC in relation to priority substances (European Union, 2008). 

 

The list of 33 priority substances includes selected existing chemicals, plant protection 

products, biocides, metals, including cadmium, lead, mercury and nickel and their 

associated compounds and other groups like polycyclicaromatic hydrocarbons (PAH).  

In line with the list of priority substances, the Water Framework Directive aims at 

(European Parliament and Council, 2000): 

- Progressive reduction of discharges, emissions and losses of priority substances to 

surface water bodies via limits and 

- Cessation or phasing-out of discharges, emissions and losses of priority hazardous 

substances to surface water bodies by 2025. 

 

The WFD establishes EU-wide limits for the substances in surface waters.  These limits 

must be met by 2015 and discharges of priority hazardous substances will be checked in 

2018 (Hebstreit, 2010).   The list of priority substances is reviewed regularly using 

ecological monitoring data with the first review likely to take place at the end of the first 

River Basin Planning cycle in 2015 (Environment Agency, 2011b). 
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2.1.6.2 Current Status of the Waters in Western Wales District 

 

According to Environment Agency (2009), there is a formal target of achieving 31% of 

surface waters in good ecological status or potential by 2015 across England and Wales. 

 

Figure 2.4 Ecological status or potential for estuarine and coastal waters (Environment Agency, 

2009) 
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Within the Western Wales district, the ecological statuses of the lakes and ditches and 

the ecological status or potential for rivers, canals and surface water transfers bodies are 

all good or higher throughout Wales, as is the chemical statuses for all the water bodies 

(Environment Agency, 2009).  This is not however the case for the ecological status of 

the surface water bodies as can be seen in Figure 2.4.  The map for the predicted 

ecological status and potential for surface water bodies in 2015 reveals that the Swansea 

Bay area, where the Port Talbot Steelworks is located, is estimated to have a ‘bad’ 

ecological status and potential.  The ecological status of all the Western Wales water 

bodies (Figure 2.4), apart from Swansea Bay is either moderate or good, which is likely 

to tighten the concent limit regime imposed by the Environment Agency on the 

industrial facilities located in the area. 

 

2.2 Tata Steel Europe Port Talbot Steelworks 

 

On the 2
nd

 of April 2007 Corus Group was taken over by Tata Steel, established in 

1907, which is Asia’s first and India’s largest private sector steel company.  As well as 

the Corus plants in the UK and the Netherlands, Tata Steel has several steel plants 

across India and South-East Asia (Figure 2.5), with a manufacturing network of eight 

markets in South East Asia and Pacific Rim countries.  In the UK, Tata Steel Europe is 

a major manufacturer with operations in Port Talbot, Scunthorpe, Newport, Corby, 

Redcar, York, Deeside, Wolverhampton and Rotherham.  The takeover lifted Tata Steel 

to the list of top 10 steel producers in the World, with its production of approximately 

31 MTPA (million tonnes per annum).  

Figure 2.5 Tata Steel production plants (Corus World, 2007) 
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Port Talbot Integrated Steelworks is one of Tata Steel’s main sites currently producing 

some 4.33 MTPA (in 2007) of crude steel (slab).  The site covers an area of over a 

thousand hectares with 100 km of roads and has a deep-sea harbour for importing 

purposes.  The site includes coke ovens, sinter plant, blast furnaces, basic oxygen steel-

making (BOS) plant, continuous casting plant, hot strip mill, cold rolling mill and a 

continuous annealing line.  

 

2.2.1 Port Talbot Steelworks Integrated Steel-making Process 

 

Four routes are currently used for production of steel: The classic blast furnace/basic 

oxygen furnace route, direct scrap melting or electric arc furnace, smelting reduction 

and direct reduction (Figure 2.6).  Within Port Talbot Steelworks the steel is produced 

using the integrated or so-called BOS production route, outlined on the left. 

 

 

Figure 2.6 Crude steel production routes (EIPPCB, 2001a) 
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Figure 2.7 Aerial view of Port Talbot Steelworks 
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The World’s steelworks can be categorised into three types of facilities: 

- Integrated steelworks, which use ore, coke, limestone, energy and water to produce 

multiple products,  

- Minimills, which use scrap steel to make limited types of products for multiple 

markets and 

- Finishing mills, which use intermediate steel products to make products only for 

focused markets (Johnson, 2003). 

 

Integrated steelworks are large industrial complexes, often located near coasts and 

covering areas of several square kilometres.  Integrated steelworks are characterised by 

networks of interdependent material and energy flows between various production units, 

which can be divided into 4 different processing steps of iron-making, steel-making, 

rolling and finishing.  In Port Talbot Steelworks, 8 industrial facilities are used for the 

production of high quality strip steel, namely coke-ovens, sinter plant, blast furnaces, 

BOS plant, continuous casting plant, hot mill, cold mill and continuous annealing plant. 

Most of these plants can be seen in the Figure 2.7 that outlines the 28 square kilometre-

sized Port Talbot Steelworks. 

 

 

Figure 2.8 Flowchart of principal operations in integrated steelworks (Adapted from Yoon-Gih 

Ahn, 2006) 
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The purpose of iron-making process is to produce pig iron which, as can be seen in 

Figure 2.8, will be achieved through three separate steps of: 

Coke-making – coal is converted into coke prior to being used in the blast furnace. 

Sintering - the iron ore is roasted and agglomerated in preparation for converting to 

iron. 

Blast furnace - the sintered ore, limestone, coke and other fuels are chemically reacted 

to reduce the iron ore to a crude metal called pig iron, which contains approximately 4% 

carbon (DTI, 2006).  The blast furnace, where primary reduction of oxide ores takes 

place, is the main operational unit of the iron-making process.  The coke-ovens and 

sinter plant merely serve a purpose of preparing the raw materials for use in the blast 

furnaces (Yoon-Gih Ahn, 2006).   

 

As seen in Figure 2.8, the conversion of iron to crude steel slabs is carried out by two 

proccesses called basic oxygen steel making (BOS) and continuous casting: 

BOS Plant - carbon level of iron is reduced to approximately 1% to create steel. This 

requires the use of high temperature furnaces and oxygen injection (DTI, 2006). 

Continuous Casting – molten metal is continuously cast via a tundish into a water-

cooled copper mould causing a thin shell to solidify.  This ‘strand’ is then withdrawn 

through a set of guiding rolls and further cooled by spraying with a fine water mist. 

When the strand is fully solidified, it is cut into desired lengths or so called ‘slabs’.   

 

A simplified schematic view of the main material inputs and outputs of each stage of the 

process route for iron- and steel-making can be seen in Figure 2.9. 

 

In order to turn the crude slab steel into actual product ready for market, the slabs go 

through two further steps of rolling and finishing.  In Port Talbot Steelworks two 

different kinds of rolling are carried out: 

Hot Mill: the principal effects of hot rolling are the elimination of the cast ingot 

structure defects and obtaining the size, shape and metallurgical properties required for 

further processing (EIPPC, 2001b) 

Cold Mill: further rolling of the strip to create thin, strong and ductile strip with a 

surface capable of the highest quality of paint finish (Corus Strip Products UK, 2009). 
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Figure 2.9 Process flow for iron and steelmaking (Environment Agency, 2004) 
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The last step in the integrated steelmaking is finishing, which in the Port Talbot 

Steelworks includes a Continuous Annealing Plant (CAPL): 

CAPL : a heat treatment of the steel at a designated temperature, followed by cooling in 

order to increase ductility of the steel.  Different annealing processes use different 

annealing temperatures, holding times and cooling rates to achieve the final 

microstructure and properties required (Steeluniversity Website). 

 

2.3 Water in Integrated Steelworks 

 

All steelworks, especially integrated ones, use great amounts of water for production of 

steel, whether it’s long, flat or stainless steel that is being produced, with considerable 

quantities being required for equipment cooling, material processing and waste 

treatment amongst other things.  The water management in integrated steelworks 

primarily depends on the local conditions and above all on the availability of fresh 

water and on legal requirements.   

 

There are huge differences in water consumption between different integrated 

steelworks in the World.  The main reason for this is the amount of once-through 

cooling systems within the different production units of the integrated steelworks.  As 

an example, if many once-through cooling systems are in place within the steelworks, 

the water consumption can exceed  250 m
3
/t steel, whereas in sites with very little fresh 

water available, the cooling water is recycled in a closed circuit cooling system and 

combined with other water saving measures, the specific water consumption can be less 

than 5 m
3
/t steel (EIPPCB, 2001a). Average water consumption figures within 

steelworks are approximately 30 m
3
/t of steel (Suvio et al., 2010a) as will be explained 

later in Chapter 4. 

 

Although water use patterns vary considerably between different steelworks, freshwater 

is an essential input for the production of crude steel and also brackish and sea water is 

used.  Most of the water is used for once-through cooling purposes.  According to 

Worldsteel (2011), the primary iron- and steelmaking processes require raw materials to 

be heated beyond the melting point of iron, whereas the hot rolling operations require 

heating to enable certain metallurgical equipment.  The equipments used in these heat 
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processes are often protected by a combination of refractory lining or equipment shells 

and water-cooling.  In most cases, the water used for cooling purposes is cooled and 

treated, either for reuse within the plant or in order to enable return to its original 

source. 

 

Water is also used for (Johnson, 2003):  

- Material conditioning (water is used for dust control in sinter feeds, slurrying or 

quenching dust and slag in blast furnaces, mill scale removal in hot rolling 

operations, solvent for acid in pickling operations, or for rinsing in other rolling 

operations), 

- Air pollution control (primary operations, particularly in integrated mills, use water 

in wet scrubbers for air pollution abatement and  

- Acid control in pickling operations and for wet scrubbers in coating operations that 

have caustic washing operations. 

 

2.3.1 Effluent from Steelworks 

 

When great amounts of water are being used in production, great amounts of effluent 

water are born with an average effluent production per tonne of steel being 25 m
3
 

(Suvio et al., 2010a).  Due to ever intensifying water scarcity and evolution of water-

related legislation, it’s crucial to manage the treatment and disposal of this waste water 

properly.  One of the actions steelworks are taking to manage their effluent is 

monitoring the quality and quantity of their water emissions to prevent compliance 

limits being exceeded and taking corrective actions if they are exceeded (worldsteel, 

2008). 

 

Under present and forthcoming EU-wide legislative demands, every production unit 

within European-based integrated steelworks ought to have their own water treatment 

plants with primary treatment processes and some facilities with secondary treatment 

processes.  The level of the treatment ultimately decides whether the treated wastewater 

can be recycled back for reuse, or whether it needs to be discharged.   

 



Water in Steelworks  P. Suvio 

 

 
23 

 

 

The two most complex type of effluent arisen from the operation of the steelworks two 

pyrometallurgical processes; coke-oven and blast furnaces.  The effluent arisen in both 

cases is gas cleaning effluent, which contains contaminants released and formed during 

the operations of the pyro processes.  The effluent arisen in these processes is further 

explained in depth Chapter 3. 

 

The individual facilities asides, large volumes of generic low metal-concentration 

effluent containing  mainly low concentrations of metals and other suspended solids 

(SS) is arisen during the operation of steelworks, including effluent from: 

- Indirect cooling, including BF hearth cooling, etc,  

- Direct heat treatment, where water is applied straight to the product e.g. in rolling to 

achieve right metallurgical properties, 

- Equipment cooling and 

- Final effluent, which consists of a combination of effluents from the different 

facilities that are mixed together for discharge or final effluent treatment. 

 

This type of effluent forms in many cases >95% of the total wastewater arisen at the 

steelworks and possess great potential if sufficiently treated and reused back to the 

process. 

 

2.3.2 Sustainable Water Management (SWM) in Steelworks 

 

Steelworks are located in many regions of the world and the issues regarding freshwater 

are equally diverse; in some cases the availability of water is the issue, while in other 

cases the quality of water released back into natural water systems is the prevailing 

issue.  The global steel industry is able to meet these challenges by providing solutions 

that at times even result in an increase in the quantity and quality of the locally available 

freshwater supply.  In situations where there is a need for steel production in areas of 

limited freshwater availability, SWM efforts have made it possible to maintain 

freshwater intake at a relatively low level, with some facilities achieving a freshwater 

recirculation rate of nearly 100%, therefore creating a ‘zero-effluent site’ (Johnson, 

2003).  SWM plays a critical role in the viability of steel plants, especially in regions of 
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water scarcity, while increasing demands for water resources will make continued 

recycling of water a business imperative in the steel industry. 

 

Steelworks have evolved over time, together with their water and effluent networks. 

This often leads to complex pipe networks, pre and effluent treatment systems and 

quality testing in order to ensure legal compliance.  Sometimes there is no clear picture 

of the types or volumes of water running in some of the pipes.  This should be the 

starting point of sustainable water and effluent management and can be solved by 

carrying out a pipe inventory and installing a comprehensive metering, monitoring and 

targeting system, which can help to manage the effluent and water systems properly and 

even reduce water consumption and effluent discharge volumes considerably. 

 

One of the technical challenges standing in the way of SWM of the steel industry 

includes the choice of final effluent treatment.  In many cases a basic chemical 

sediment/clarification system combined with flocculant treatment can give high enough 

effluent water quality to meet legislative effluent discharge targets, but sludge born as a 

side product of this type of treatment is voluminous, settles slowly and can prove hard 

to handle.  This leads to the need for additional sludge handling by either filter-pressing 

or centrifuges and raised landfilling costs.  The problem with the sludge can be 

overcome by using sludge-reducing water treatment, such as High Density Sludge 

(HDS) process, which was studied as a part of the project described in the thesis in 

Chapter 6. 

 

One prevailing technology, which has been used increasingly in the recent years in 

steelworks are membrane processes.  Membrane technologies come in various different 

formats, including ultrafiltration (UF), reverse osmosis (RO), electrodialysis (ED) and 

electrodialysis reversal (EDR).  Membrane technologies can potentially provide a 

solution to practically any water treatment problem, but can’t unfortunately be used 

alone as the effluent water entering any membrane process treatment should be 

relatively free from colloidal particulates, such as silt and iron and manganese oxides 

(GE, 2007).  Unfortunately the need for combined treatment for large volumes of final 

effluent treatment can prove to be expensive and beyond the budgets of some 

steelworks. 
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2.4 Introduction into Industrial Effluent Treatment 

 

Effluents can be characterised according to their physical, chemical, and micro-

biological characteristics and almost all of these characteristics can act as pollutants.  

Within Steelworks the unwanted effluent characteristics can include dissolved or 

suspended solids, metals, nonmetal ions, hightened biochemical (BOD) and chemical 

oxygen demand (COD), organic carbon, oil and grease and deviated pH and 

temperature.  Looking beyond the unwanted characteristics present in steelworks 

effluent, Eckenfelder (2000) lists several undesirable wastewater constituents that may 

have to be removed before discharging the water.  These include:  

- Soluble organics, 

- Suspended solids, 

- Priority pollutants such as phenol and other organics, 

- Toxic organics, 

- Metals,  

- Cyanide, 

- Nitrogen and phosphorus, 

- Refractory substances resistant to biodegradation, 

- Oil and gloating material, 

- Colour, 

- Turbidity, 

- Volatile materials and 

- Aquatic toxicity. 

 

In terms of effluent treatment, this study particularly concentrates in the operation and 

efficiency of the current conventional precipitation effluent treatment system in place at 

the Tata Port Talbot Steelworks as explained in Chapter 3, and further studies the HDS 

Sludge process that would provide a very beneficial upgrate the existing system as 

explained in Chapter 6.  However, in order to get an undestanding of what types of 

effluent treatment methods are available for industry, a short introduction to existing 

techniques will be provided here. 
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2.4.1 Treatment technologies 

 

Multiple effluent treatment methods have been developed for treatment of different 

unwanted characteristics and constituents in the effluent water.  The choice of water 

treatment technique depends on the quality and variability of the effluent source and 

treatment objectives, which may vary from one industrial facility and process to 

another.  Overall, all the effluent treatment technologies can be divided into 3 different 

groups of pre and primary, secondary and tertiary treatment, depending on where within 

the treatment process chain the technology is used. 

 

2.4.1.1 Pre- and Primary Treatment 

 

A wastewater treatment plant that only incorporates sedimentation as the major 

treatment operation is often referred to as a primary treatment plant.  The objective of 

pre- and primary treatment is to render the wastewater suitable for subsequent 

treatment.  Pre and Primary treatment tackles settleable and floatable solids and its main 

aim is to reduce the suspended solids content of the water (Fish, 1992).  Sometimes pre- 

and primary treatment alone is used for effluent treatment.  A simplied process flow of 

most common pre- and primary treatment technologies are shown in Figure 2.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Pretreatment technologies (Eckenfelder, 2000) 
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2.4.1.2 Secondary Treatment 

 

After the pre and primary treatment, effluent can be either discharged or further 

processed in a secondary treatment or tertiary treatment step.  The secondary treatment 

step entails provision of biological treatment and it is used when there is a high 

biological load within the effluent to be treated.  The purpose of the secondary treatment 

is to reduce BOD by replicating micro-organisms-mediated degradation of organic 

matter.  Manahan (2005) states that in order to achieve this, waste is oxidised 

biologically under conditions controlled for optimum bacterial growth.  Within 

steelworks biological treatment is commonly applied for coke-oven gas washing 

effluent treatment.  Generally only pretreatment, and in some cases tertiary treatment 

technologies are applied to steelworks metal containing effluents. 

 

2.4.1.3 Tertiary or Advanced Treatment 

 

More advanced effluent treatment techniques are also called tertiary effluent treatment.  

Advanced treatments systems often include advanced filtration (e.g. sand filters), 

adsorprtion, ion-exchange or membrane technology. The reverse osmosis (RO) is part 

of membrane treatment technologies and is most suitable for the removal of different 

contaminants.  When it comes to dissolved metals, precipitation is however, often the 

cheapest option and, especially with dissolved metals, often the best. 

 

2.4.1.4 Low Metal-Concentration Effluent Treatment 

 

Wastewater born in steelworks has high volumes with low concentrations of dissolved 

metals.  Several methods have been developed for the removal of metals from solution, 

which include chemical precpitation and oxidation, which are often more efficient by 

using further coagulation or flocculation that improve the sedimentation of the sludge 

arisen when metals ‘drop’ out of solution.  Other treatments that have been succesfully 

used for the treatment of metal-containing effluents include tertiary treatment methods, 

such as flotation, filtration, adsoprtion, ion exchange and membrane technology.  The 

choice of technology often depends on the required level of metal removal.  Tertiary 

treatment can achieve very low metal concentrations, but often has higher capital costs 
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and requires a pretreatment step or operational costs of the treatment will rise 

significantly. 

 

The research project that forms the basis for this thesis concentrated especially on 

treating low metal-concentration effluent with two individual effluent treatment 

technologies.  The first of these is being chemical precipitation, where chemical 

reageants often including a hydroxyl anion (OH
-
) are used to raise the pH react with the 

metal cations, therefore creating conditions, where metals become unsoluble as 

explained in more detail in Chapter 5.  Chemical precipitation is often combined with a 

flocculent sedimentation, which by exposing the water to quiescent conditions, will 

allow settleable solids to be removed by the force of gravity.  Chemical precipitation 

and settlement system, using type II (flocculent) settling (Gray, 2005) is the treatment 

currently being used for the final effluent treatment plant of Port Talbot Steelworks.   

 

The problem associated with chemical precipitation followed by sedimentation is that 

the voluminuous sludge accumulated in the tanks needs to be often dewatered and 

disposed via landfill (Droste, 1997).  It is possible to dewater sludge by using simple 

concrete dewatering bunds or similar but according to Eckendfelder (2000) common 

dewatering techniques used for metal-containing sludge include gravity tickening, 

flotation, filtration (including filter-presses, etc.), drying and centrifugation.  Following 

dewatering sludge is often sent to land disposal or incineration. 

 

The main treatment that has been the focus of this study is High Density Sludge (HDS) 

process, which is a modified precipitation process, where sludge that accumulated in the 

process is recycled back to the beginning of the treatment process.  HDS specifically 

targets the volumes of sludge being born as a side-product of the treatment, by creating 

sludge that is easy to handle, settles fast, requires little or no dewatering and has low 

volumes. 

 

2.5 Conclusion 

 

Water related issues have been under a great deal of focus in the UK during recent years 

and the Water Framework Directive (WFD) 2000/60/EC is set to overhaul the 
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management of the water environment within the EU, by requiring all inland and 

coastal waters to reach "good status" by 2015, placing pressure on large industrial 

facilities, including steelworks. 

Tata Steel Port Talbot Integrated Steelworks produces some 4.33 MTPA (in 2007) of 

crude steel (slab) and is a major user of water with its 8 production facilities and 

supporting functions. 

 

Freshwater is essential for the production of steel and it is used in several processes 

within a steelworks.  The most common use for water is cooling, which can be 

indirectly and most often used for equipment or gas cleaning or directly to the product 

to enable certain metallugical characteristics.  The most complex effluents arisen from 

the steelworks operation include coke-oven and blast furnace effluents, in both cases as 

a consequence of gas cleaning following a pyro process.  

 

Sustainable water management (SWM) is important within steelworks and SWM efforts 

have enabled some facilities to achieve freshwater recircualtion rates of nearly 100%, 

therefore creating a ‘zero-effluent site’.   

 

Effluents can be characterised according to their physical, chemical and microbiological 

characteristics, which can all act as pollutants. Several effluent treatment techniques are 

available for industrial effluent treatment and they are commonly divided into pre or 

primary, secondary and tertiary treatment. 
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3 CRITICAL ANALYSIS OF THE PORT TALBOT 

STEELWORKS WATER SYSTEMS 

3.1 Introduction 

 

Water is an essential resource for the iron and steel making processes, with considerable 

quantities being required for product and equipment cooling, material processing and 

waste treatment, amongst other things.  Water constraints in Port Talbot Steelworks are 

already putting pressure on production with any new production process adding further 

constraint.  Port Talbot Steelworks have recently experienced a number of periods of 

water shortages including the summers of 1984, 1995, 2004 (Energy Department, 2005) 

and the latest in 2009, posing a threat to the satisfactory operation of the Steelworks’ 

production facilities.  The Port Talbot site is facing problems with water supply as the 

water abstraction sources currently used are fully exploited and past summer droughts 

have resulted in reduced water volumes and quality.  Further, ever intensifying climate 

change will be placing extra pressure on the existing water sources with increased 

temperatures and therefore decreased water availability and quality. 

 

Within the Port Talbot Steelworks, the Energy Operations Department oversees the 

supply and distribution networks, treatment of water and effluent outside the borders of 

the individual facilities.  The effluent treatment activities under the Energy Operations 

Department, although overseen by Energy Operations Department, are carried out by 

Nalco Chemical Company.  The responsiblity between a specific facility and the Energy 

Operations Facility changes when the water enters or leaves the perimetre of a specific 

facility prior to it crossing the border between where the facility starts and the 

responsibility of the Energy Operations Department ends. 

 

In the past, water has been perceived as an abundant resource with very low direct cost 

in the Port Talbot Steelworks.  Until this work, no extensive studies on water supply 

systems, amount of water used and amount of effluent water produced have been carried 

out.  Some studies relating to the works’ effluent water systems have been carried out.  

The most important include the Engineering Doctorate studies of Swindley (1999) on 

how to control the effluent arising from the steel production on the plant and Jones 



Water in Steelworks  P. Suvio 

 

 
31 

 

 

(2005) on how to recover metal from wastewater.  These studies concentrated on 

effluent water but despite the above studies, there is a continuing need to improve the 

effluent water quality due to ever tightening legislative requirements, including the 

Water Framework Directive (WFD), which will be placing extra pressure on businesses 

to remove metals, particularly heavy metals from production-born effluent water prior 

to discharge.   

 

3.2 Water Supply Systems 

 

At Port Talbot Steelworks, water supply and distribution systems have evolved in 

parallel with the growth of the processing facilities, increasing quality requirements and 

progressive introduction of waste treatment and pollution control systems. 

 

The Energy Operations Department is in charge of the abstraction points and delivery of 

the water within the overall site.  This responsibility passes over to the specific 

production facilities once the water supply crosses the border of the facility. 

 

  

Figure 3.1 Water Abstraction Points at Tata Port Talbot Steelworks (Water Experts Team, 2006) 
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As can be seen in Figure 3.1, beside domestic water, the water used by the Port Talbot 

works comes from 6 different sources: The river Afan is used without pre-treatment in 

several processes and is also further pre-treated to soft and demineralised water at the 

several water treatment plants within the site prior to use in processes requiring higher 

water quality.  River Afan also supplies water to the Dock (Figure 3.2) and this, in turn, 

is used as cooling water for the western part of the site along with the Ffrwdwyllt river 

abstraction.  The water at the Dock is brackish as at times of low water flows, the Dock 

is topped-up by sea water.   

 

The Castle Stream and Kenfig River are used to supply water to Eglwys Nunydd 

Reservoir (Figure 3.2), which feeds the Main Pump House with the majority of the 

process water used within the site.  Most of the water pumped to the Main Pump House 

is further pumped to the Works Reservoir and becomes service water for the Steelworks 

processes. 

 

Figure 3.2 Main water reservoirs at the Port Talbot Steelworks 

 

3.2.1 Water Supply Flows 

 

Steel making processes use considerable quantities of water and Port Talbot Steelworks 

solely consumes over 400 million litres of water per day, totalling some 146,000,000 m
3
 

a year.  In 2007
2
 145,020,000 m

3
 of the supply water came through abstraction from 

                                            
2
 Year 2007, because the Port Talbot data  used for Chapter 4 is based on that specific year and prior to 

2010 it was the last year when the Port Talbot Steelworks was operating in full capacity 

Works Reservoir 

E.N. Reservoir 

Dock 
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natural water sources and some 800,000 m
3
 of potable water was provided by Welsh 

Water. 

 

Tata Strip Products UK Port Talbot Steelworks gets most of its water supply through 

natural sources, which have abstraction license limits set by the Environment Agency.  

Specific flows for the different abstraction points, together with the limits set by the 

Environment Agency, can be seen in Table 3.1.  As can be seen, the biggest water 

source is the Docks with a >88% fraction of the use.  The water abstracted form the 

Docks is brackish and is used mainly for the Blast Furnace hearth cooling. Out of the 

freshwater sources the Afan River is the largest with nearly a 6% share of all water 

abstracted and it is the source with best quality.   

 

Table 3.1 Abstraction figures and limits for 2007 with % abstracted and fraction of the use 

Abstraction Point Abstracted 

(m
3
/year) 

Limit 

(m
3
/year) 

Abstracted 

% 

Fraction 

of use % 

Afan 8,315,822 14,913,900 56 5.88 

Ffrwdwyllt 1,545,376 2,270,000 68 1.09 

Castle Stream + Kenfig 2,708,436 11,807,000 23 1.91 

Docks  124,893,865 206,343,00 62 88.30 

Point B 3,985,537 1,225,800 325 2.82 

 

The abstraction volumes generally stay within the abstraction limits, besides Point B, 

where the flows can’t be controlled and abstraction is imperative, especially in times of 

high rainfall, in order not to flood the moors located next to the Steelworks.  

  

All the natural water sources are subject to seasonal and climatic variation, meaning 

higher water levels in the winter and spring seasons associated with good water quality, 

neutral pH, low chlorides and low conductivity levels and the opposite in summer and 

autumn (Energy Department, 2005).   

 

3.2.2 Water Mass Balance 

 

‘The amount of water entering a site equals the amount of water leaving the site’.  This 

simple observation is called ‘water mass balance’.  Quantifying the components making 

up a site’s water mass balance is a powerful technique for identifying how much water 
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is wasted in the process (Envirowise, 2005).  In order to create an overall picture of 

present water usage and consumption levels, wastewater created against the steel 

produced, together with water wasted within the processes, a high-level water mass 

balance model (Figure 3.2) with water related input and output was built.  The year 

2007 was specifically selected as it represents the last year with full production capacity 

prior to the economic downturn. 

 

The incoming water balance was attained from: 

1. Raw water input from rivers, streams and the reservoir (metered), 

2. Raw water from the Dock (metered) and 

3. Flow estimates relying on pumping capacity for the remaining water sources. 

 

The outputs were attained from: 

1. Balance of the cooling water sent back to the Docks (careful estimation by energy 

department), 

2. Wastewater from the works to the Long Sea Outfall (metered) and 

3. Careful estimation of effluent pumped to the final effluent treatment plant 

(Nautilus). 

 

As can be seen in Figure 3.3, out of the total raw water abstracted, some 125,000,000 

m
3
 is abstracted from the Docks. Nearly 10,000,000 m

3
 of this disappears as evaporation 

through processes, while the remaining ~115,000,000 m
3
 is returned back to the Dock 

for re-use.  The ~10,000,000 m
3
 of water consumed within the process creates ~33% 

portion of the total 30,020,000 m
3
 of water that is consumed by the Steelworks 

annually.  Another important raw water abstraction source are the rivers Ffrwdwyllt and 

Afan, which total 9,860,000 m
3
 of water abstraction annually and create a portion of 

33% of water consumed annually.   
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Figure 3.3 Port Talbot water mass balance (2007) 
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Consumption of large volumes of water leads to a large volume of effluent being 

generated during operation. Figure 3.6 highlights that some 12,500,000 m
3
 (2007) 

effluent or 41% out of the consumption is discharged annually via the Long Sea Outfall.  

Out of this volume around 1/3 is treated by the Nautilus final effluent treatment plant, 

the rest is pumped straight to the final effluent receiving Sump No 2, prior to being 

discharged to the sea via the Long Sea Outfall.  On top of the effluent discharges, there 

is around 13,560,000 m
3
 of water lost per annum through unmetered losses, including 

sump overflow, cooling tower evaporation, losses to ground, storm water discharges 

and evaporation through processes. 

 

The so called service water used within the site enters the site through the Main Pump 

House (MPH), where the water used as a top-up for the recirculating cooling systems is 

pumped from several abstraction points, including the Castle Stream from where some 

1,860,000 m
3
 flows to Eglwys Nunydd (E.N) Reservoir, from which an additional 

3,550,000 m
3
 is added to the abstraction. This combined abstraction volume of 

5,410,000 m
3
 is then pumped to the MPH to be used as service water within the site.  

Another source for the MPH service water is ditches, from where the raw water flows to 

Point B and is pumped to the Main Pump House.  The final abstraction point for the 

MPH service water is the Kenfig River, which provides the remaining 850,000 m
3
 of 

the total 10,260,000 m
3
 service water arriving to the MPH via abstraction.  The service 

water abstraction totals the remaining 34% of the total water consumed by Steelworks 

annually.     

 

3.2.3 Supply Water Quality and Pretreatment 

 

As mentioned earlier, most of the water used within the site is so called service water.  

This water is used directly from the Works Reservoir, where it is stored prior to use.  A 

typical analysis of the service water can be seen in Table 3.2. 

 

The service water system is the most complicated individual water system within the 

steelworks providing water to most of the facilities, including production facilities via 

the Main Pump House as shown in Figure 3.4.  
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Table 3.2 Typical analysis of works reservoir water (Energy Department, 2005) 

 

Works Reservoir Water Analysis 

Total Alkalinity 80 mg/L as CaCO3 

Calcium Hardness 95 mg/L as CaCO3 

Total Iron (Fe) 2 ppm 

Soluble Iron 0.1 ppm
3
 

Suspended Solids (SS) 12 ppm 

Chloride 45 ppm 

pH 7.6 

Conductivity 380 µS/cm 

Oil 10 ppm 

 

High re-circulation of the water and the increasing chloride content of the raw water 

from the rivers have increased the overall chloride levels in the Works Reservoir and 

therefore the service water.  During drought periods, chloride levels are especially high 

which can cause problems in several processes, especially via increased corrosion rates 

in stainless steel equipment.  Generally, a water supply with chloride levels of less than 

200 ppm is required to prevent equipment damage.  However, the typical summer means 

chloride levels at the Service Water system are around 400 ppm (Energy Department, 

2002). 

 

Next to service water, an additional 5 raw water types are used within the Port Talbot 

Steelworks, including: River Afan, Ffrwdwyllt River, River Kenfig, Eglwys Nunydd 

Reservoir and the Docks water.  The biggest individual raw water source is the Afan 

River, which flows down Cwm Afan from the Rhigos mountain to the area of Port 

Talbot’s Docks.  There is a weir upstream of the river mouth and the abstraction point is 

upstream of the weir. 

 

A typical analysis of Afan River water is (Energy Department, 2003): 

- pH 7.2-8.3 

- Chloride 15-30 ppm 

- Conductivity 80-300 μS/cm 

- Suspended solids 50-170 ppm 

 

 

                                            
3
 ppm = mg/l at standard temperature and pressure density (kg/L) 
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Figure 3.4 Port Talbot Service Water Systems (Morris, 2009) 
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The Afan River is also the main supplier to all of the Steelworks pretreatment plants, 

which include: 

1. Abbey WTP (demin and soft) 

2. Cold Mill Lime Water Treatment Plant 

3. Margam C Demin Plant 

4. Margam Demin Plant 

 

Ffrwdwyllt River water is abstracted by a pump house at Taibach and is pumped to a 

system linked closely to the River Afan distribution system.  Next to being used for the 

No 4 Blast Furnace cooling system, Ffrwdwyllt River water is used as an emergency 

top-up to the de-mineralising and soft water treatment plants.  Typical analysis of 

Ffrwdwyllt River water is (Energy Department, 2003): 

- pH 7.5-9.2 (normally 7.5-8.3. High pH in drought conditions) 

- Chloride 20-50 ppm and 

- Conductivity 100-350 μS/cm. 

 

River Kenfig, Eglwys Nunydd and Ditch overflow all end up at the Works Reservoir, 

from where they are pumped to the site as service water, but it should be noted, that a 

typical analysis of Kenfig River is (Energy Department, 2003): 

- pH 7.3-7.5 

- Chloride <20 ppm and 

- Conductivity <100 μS/cm. 

 

However, in periods of drought the Kenfig River flow is reduced and the quality 

deteriorates.  Also, the Castle Stream has large seasonal variations in its flow and 

chemical quality.  As with Kenfig River, the winter months see high quality water with 

high flow and summer can provide a struggle to have any flow at all. 

 

As mentioned, the Docks water sometimes contains high levels of contaminants and this 

together with high water temperatures and levels can provide a real struggle especially 

during summer months.  Dock water is also brackish and leads to corrosion in the 

systems as, at times of lowered Afan River flows, the Dock is topped-up from the sea.  

This happened for the last time in summer 2009.  Typical analysis of Dock water is:  
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- pH 7.6 

- Chloride 110 ppm and 

- Conductivity 486 μS/cm. 

 

The quality of water deteriorates substantially in dry conditions, when typical analysis 

of Dock water is: 

- pH 7.6 

- Chloride 1060 ppm and 

- Conductivity 2840 μS/cm. 

 

3.3 Effluent Water Systems 

 

The majority of the wastewater from the various processes within the steelworks are 

collected in local satellite sumps and pumped to a central collection sump known as 

Sump No. 2, where the various wastewaters are mixed together before being discharged 

to sea through a 3 km Long Sea Outfall. Alternatively, effluent is treated at Nautilus 

prior to being pumped to Sump No. 2.  Figure 3.5 shows a simplified diagram of the 

wastewater system layout.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Tata Port Talbot Steelworks Wastewater System Layout  

 

The ‘No. 5 Sump’ collects the process water from the Basic Oxygen Steel-Making 

(BOS) process.  The No. 6 and 10 sumps are connected to the sites of the Coke Ovens 

and are further used for process water and drainage from roads and stockpiles in this 
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area.  The Cold Mill Sump contains effluent produced by the Cold Mill Pickling Lines, 

where the steel coils are taken through acid baths to remove impurities prior to coatings.  

The No. 1 Sump is collecting effluent from the west side of the plant including Blast 

Furnaces.  The No. 3, ‘Abbey Sump’, is collecting the drainage from the moors and 

overflows from various sumps.  The main wastewater sources together with their 

collecting sumps are detailed further in Table 3.3. 

 

Table 3.3 Main wastewater sources with their collection sumps 

 

Sump Wastewater Sources 

No. 1 (BF) 

No. 2 

No 3 

 

No. 5 (BOS) 

No. 6 (Morfa) 

No. 10 

Con Cast 

Cold Mill 

 

Deep Drain 

 

CAPL 

Gas scrubbing, slag quenching and water from blast furnaces 

Collection sump before discharge via long sea outfall 

Water from Arnallt Stream, storm water and emergency 

overflows 

Gas scrubbing water from BOS plant 

Morfa Coke Ovens wastewater 

Stormwater from the old Grange coke area and stockpiles 

Wastewater from continuous casting area 

Treated pickle liquor, rinse water, and rolling emulsion from 

Cold Mill 

Abbey treatment plant, overflows (Hot Mill), road drainage 

and filter backwashes 

Wastewater from the Continuous Annealing Plant 

 

Deep Drain is by far the largest wastewater collector and acts as a central reservoir for a 

number of sources of effluent from several processes including cooling water overflows, 

filter backwashes, de-mineralisation plant effluent and basement drainage. Deep Drain 

also acts as a collection point for most of the road drainage, a collection point for sump 

overflows and filter backwashes.  The pipe networks leading to the deep drain covers a 

vast area including the Cold Mill.   

 

In order to remove oil from the effluent, oil skimmers are used in most of the sumps 

prior to pumping the water to the Nautilus or Sump No. 2 and to Long Sea Outfall. 
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The Energy Operations Department oversees the overall effluent network, its operations 

and maintenance, while since 2011 Nalco has been in charge of the Steelworks effluent 

treatment operations.  Until 2011, Nalco was in charge of the Steelworks heavy-end 

facilities water treatment and GE Water & Process Technologies take care of the light-

end facilities water treatment as well as run the Nautilus final effluent treatment plant. 

 

3.3.1 Effluent Water Flows 

 

The total volume of effluent water discharged from the Port Talbot Steelworks is 

approximately 1500 m
3
/h or ~13 million m

3
/annum (2008).  In order to understand the 

effluent flow volumes, meters have been previously installed to pipes entering or 

leaving the sumps.  This data was used to get an understanding of the effluent flows 

within the Works and based on this, Figure 3.6 shows the division of approximate 

volumes for wastewater flows into different sumps in 2008.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Wastewater flows into sump No. 2 (m
3
h) in 2008 

 

2008 was the first year when the sump flows were metered comprehensively and 

although the production capacity was dropped in the last querter of the year, the meter 

readings give a good general idea of the wastewater flows to specific sumps. 

 

As demonstrated in Figure 3.6, the Deep Drain is receiving by far the greatest amount of 

effluent, at 460 m
3
/h, which equals to approximately 30% of all the effluent produced, 
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the second biggest share consists of Sump No 3 and BOS stormwater with an 

approximate 15% share.  The biggest individual wastewater producing facility is the 

Blast Furnaces, which produce on average 227 m
3
 of effluent water per hour, which is a 

15% share of the total effluent production flows.  Other big effluent producers include 

the BOS Plant with a 11% share, Coke-Ovens and Continuous Casting Plants with a 9 

% share each.  Coal Stock Yard and Cold Mill are some of the smaller effluent 

producers, both with a 5% share, while CAPL is the smallest effluent producer with its 

mere 9 m
3
/h or 1% of the total annual effluent production.  What should be noted is that 

the Dock water return is not included in this Figure. 

 

3.3.2 Nautilus Final Effluent Water Treatment System 

 

After being treated at the site-specific wastewater treatment plants, all the final effluent 

arising within the site is either collected to Sump No. 2 or is pumped to Nautilus for 

further treatment. Nautilus is a set of sedimentation channels, built by Quasar 

Chemicals Ltd, which were taken into use in 1999 to reduce suspended solids, 

especially zinc and oil, in the effluent discharged from the Port Talbot Steelworks prior 

to it entering the sea via the Long Sea Outfall. 

 

There are several possible effluent input streams to the Nautilus water treatment system, 

including: Cold Mill Effluent Plant, BOS Plant (RHK TB Degasser), Deep Drain, 

Clarification Plant effluent from MPH as well as Sumps No. 1 (Margam Blast Furnace 

Effluent), No. 3, No. 5 (BOS Plant effluent), No. 6 (Morfa Coke- Ovens effluent) and 

No. 10 (stormwater).  Since a series of breaches in zinc consent limits at the Long Sea 

Outfall discharge point in 2005, the most zinc-containing effluents have consistently 

been run through the Nautilus sedimentation channels.  Some of the most zinc-

containing effluent streams include Sump No. 5 (BOS Plant effluent), which contains 

high concentrations of insoluble zinc and Sump No. 1 (Blast Furnace effluent), which 

contains high insoluble concentrations of zinc and lead.  At any given time, there are 3-4 

different flows to both channels and these can be manually altered.  As an example, 

when in full working order, due to the high amount of solids present in the flows, 

Nautilus could include to East channel: CAPL, Sump No. 3 and No. 1 and West 

channel: Sump No. 5, No. 6 and 10. 
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As the wastewaster enters the Nautilus treatment system, the metals are in a stable, 

dissolved aqueous form and therefore are unable to form solids.  In order to enable 

flocculant settling, the effluent entering the Nautilus is mixed with sodium hydroxide 

(NaOH) and flocculant in a mixing chamber (Figure 3.7).   

 

 

 

Figure 3.7 Picture of the Nautilus water 

treatment system from the top (Google 

Maps Website) 

 

 

 

 

 

The goal of the rapid mixing operation is to first raise the pH of the wastewater to form 

metal hydroxide particles, followed by enhancing the polymer attachment to the metal 

solid particles.  As a consequence, the small metal hydroxide particles become 

entangled in the these polymers, causing the particle size to increase (form flocs), which 

promotes the settling process.  Once the particles become enmeshed in the polymer, they 

become heavier than water and settle to the bottom of the Nautilus sedimentation 

channels.  

 

 

 

Figure 3.8 Horizontal 

cross-section of the 

Nautilus sedimentation 

channels (Drawing Office, 

2007) 

 

 

Nautilus consists of two, 43.2 metres long, 7.4 metres wide and 5.15 metres deep 

sedimentation channels, where dissolved solids are dropped out of solution and solids, 

especially suspended solids sedimentate to the bottom with the help of alkali and 

flocculant.  The bottom of the Nautilus is V-shaped (Figure 3.8), so that the residue 
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sludge settling to the bottom is then sucked away with a hose that moves up and down 

the sedimentation channels with a help of a ‘bridge’ (crane) as can be seen in Figure 3.9. 

 

 

 

 

 

Figure 3.9 Picture of one of the Nautilus  

sedimentation channels and the crane 

 

 

 

 

During the Nautilus water treatment system operations, the clean water overflows to a 

clean water corridor, next to the sedimentation channels, from where it travels to a weir 

at the end of the sedimentation channels.  From the weir, the clean water is gravity fed 

to the Steelworks final effluent receiving Sump No. 2.  The sludge settling to the bottom 

of Nautilus is sucked to a sludge channel located in the middle of the two sedimentation 

channels.  From the sludge channel the sludge is gravity fed to 4 m x 4 m sludge bunds 

(Figure 3.7)  that are located next to the Nautilus plant.  The purpose of the bunds is to 

drain out (dewater) the sludge. 

 

Prior to introducing the filter press in the Steelworks site in autumn of 2007, there were 

issues with landfilling the sludge generated in Nautilus as the oil and moisture content 

were too high for the sludge to be landfilled under the Landfill Directive (2005).  There 

was no facility to store the sludge on the site either, so Nautilus was taken out of use in 

01/10/2006 until 07/08/2007.  There is also a reccurring problem with large solids of 

Mill and ConCast scale building up to the bottom of the settling tanks and blocking the 

chambers.  Manual sludge removal by the Energy Department is then required to 

remove the sludge build up. 

 

3.4 Steelworks Wastewater Constituents 

 

Due to the nature of steelwork activities, several impurities are present in discharge 

waters.  The National Center for Manufacturing Sciences (2004) conclude that 

wastewater emissions from coke oven plants, blast furnaces and BOS furnaces are the 
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most relevant emissions to water from steelworks.  According to Yoon-Gih Ahn (2006) 

the key constituents from a steel-making facilities are listed in Table 3.4 

 

Table 3.4 Unwanted constituents arisen during steelworks operations 

 

Facility Consitituents 

Coke Ovens Phenol, cyanide, ammonia, oil and grease, suspended solids 

Sintering Plant Suspended solids 

Steel Melting Suspended solids 

Blast Furnace Suspended solids, cyanide 

Rolling Mill Oil and grease, acids 

 

As can be seen in Table 3.4, coke oven effluents have the most complex constituents, 

including phenol, cyanide, ammonia, oil and grease and suspended solids.  Overall 

suspended solids, which include mostly different metals, is the most commonly found 

constituent in the steelworks effluent. 

 

3.4.1 Discharge Consent Limits 

 

There are altogether 5 different points for discharge at the Port Talbot Works.  These, 

with their receiving waters, are listed in Table 3.5.  

 

Table 3.5 Port Talbot Steelworks discharge points (Environment Agency, 2004) 

 

Name Discharge Point 

Long Sea Outfall  Swansea Bay 
Site run off and treated site effluent  Arnallt Culvert 
River Arnallt and floodwater surface drainage Swansea Bay 
Iron ore stockyard  Afan Estuary 
Cooling water discharge   Port Talbot Dock 

 

Out of the 5 discharge points, Long Sea Outfall (LSO) plays the most important role as 

seen in Figure 3.3 before and is the only one governed by the Environment Agency as 

explained next. 

 

Port Talbot Works is subject to consent limits for discharges to the aqueous 

environment.  These are set within the Integrated Pollution Prevention and Control 

(IPPC) Permit by the Environment Agency.  These consent limits have traditionally 

been either in terms of concentration (e.g. mg/L) or daily mass limits, but in the most 
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recent permit there are now limits for both. The Environment Agency sets these consent 

limits for Long Sea Outfall as seen in Table 3.6 below. 

 

Table 3.6 Long Sea Outfall effluent discharge consent limits from 2006 onwards 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Wastewater Constituents against Consent Limits at the Long Sea Outfall 

 

Daily water samples and meter readings are taken from the Long Sea Outfall prior to 

discharge in order to get an understanding on how LSO effluent compares against the 

consent limits and to prevent a breach of consent limits.  The information gathered from 

the LSO or the individual sumps has never, however, been analysed.  The graphs that 

now follow show the daily discharge values in relation to the current consent limit. 
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Firstly, when looking at the averaged values for daily flows from LSO per month in 

2007 against the limit value of 70,000 m
3
, it can be seen that the discharges are well 

within consent (Figure 3.10).  In fact, the highest flow value for the year is only 65,120 

m
3
 on 14

th
 May 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 LSO daily average flows in 2007 

 

Similarly the daily discharge values for pH fall easily between the consent limit of 6-10 

as can be seen in Figure 3.11.  In fact, the individual LSO daily pH values did not 

breach the concent limit once during 2007. 

 

One of the major constituents present in Steelworks’ effluent water is suspended solids 

i.e. un-dissolved matter, which often includes inorganics such as metals.  As can be seen 

in Table 3.6, Port Talbot’s daily consent limit for suspended solids is 150 mg/L and as 

can be seen in Figure 3.12, the daily values for suspended solids in LSO are often 

around the mark of 50 ppm.  Despite the good average values of suspended solids, the 

daily consent limit (Table 3.6) of suspended solids was breached 3 times during 2007.  

Once in January the value was 168 mg/L, in June values of 188 mg/L and 165 mg/L 

were recorded, as can be seen in Figure 3.12.   
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Figure 3.11 LSO daily average pH in 2007 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 LSO Daily average suspended solids concentration in 2007 

 

In recent years there have been several breaches of zinc concentration in the Port Talbot 

Steelworks discharges and therefore there’s a special interest in the zinc levels of the 

LSO discharge.  As can be seen in Figure 3.13, in 2007 there are a few breaches in the 

daily soluble zinc concentration. 
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Figure 3.13 LSO daily average soluble zinc concentration in 2007 

 

The concentrations of soluble lead and chromium on the other hand are well within 

consent limits in the LSO discharge water.  Another constituent with occational 

breaches is oil as seen in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 LSO Daily average oil concentration in 2007 
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3.4.3 Wastewater Constituents against Consent Limits at the Facilities 

 

Even more interesting than looking at the individual concentrations in the Long Sea 

Outfall, is to try to understand where the specific pollutants have entered the final 

effluent. The following graphs present constituents in individual sumps within the Port 

Talbot Steelworks.  The Blast Furnace and the BOS Plant have been found to be the 

main sources of the insoluble metals, whereas the Cold Mill (CM) was found to be the 

major source for soluble metals (Swindley et al., 1998), where as Rees (1996) identified 

the Cold Mill and Deep Drain as the areas where the wastewater streams are more likely 

to contain oil. 

 

The sump with the largest range of constituents and often one of the highest constituent 

concentrations is Sump No. 6, which is the Morfa Coke-Ovens sump.  The zinc and 

suspended solids concentration that are on occation breached at the Long Sea Outfall 

are however generated during the operations of the other facilities and the Steelworks 

overall operations as will be explained now. 

 

The sumps with the highest concentrations of suspended solids in their effluent water 

include Cold Mill (Figure 3.15), CAPL (Figure 3.16), BOS Plant (Figure 3.17) and 

Continuous Casters Sump (Figure 3.18).  Out of these, the Cold Mill and CAPL have by 

far the most consistently high concentrations. 

 

Figure 3.15 Cold Mill effluent sump daily suspended solids Concentrations in 2007 
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When looking at Figure 3.15, it is clear that the CM effluent suspended solids 

concentration is rarely lower than the 150 ppm consent limit.  Based on calculations 

using daily values, the average concentration of suspended solids at this Sump in 2007 

was in fact 1008 ppm. 

Figure 3.16 CAPL effluent sump daily suspended solids concentrations in 2007 

 

Despite the high concentrations of suspended solids at the Cold Mill (Figure 3.15) and 

CAPL (Figure 3.16) operations, the volumes of these effluents are low in relation to the 

total flows (Figure 3.6) and by the time these effluents arrive to the Long Sea Outfall 

final discharge point, the suspended solids concentrations have been diluted down by 

some of the streams with higher volumes, but lower suspended solids concentrations. 

Figure 3.17 BOS Plant effluent sump daily suspended Solids Concentrations in 2007 
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Though, to a lesser extent, the BOS (Figure 3.17) and ConCast (Figure 3.18) effluents 

also contain high concentrations of suspended solids of an average 174 ppm and 134 

ppm respectively.  More importantly, these two facilities generate effluent at higher 

volumes and therefore also contribute significantly to the total concentrations of 

suspended solids at the Long Sea Outfall. 

 

Figure 3.18 ConCast effluent sump daily suspended solids concentrations in 2007 

Figure 3.19 Sump No 10 effluent sump daily suspended solids concentrations in 2007 

 

The old Grange Coke-Ovens effluent water receiving sump number 10 currently 

receives most of the road drainage from the Works.  As can be seen in Figure 3.19, in 
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relation to the 150 ppm consent limit of the LSO, the road drainage water has, on 

occasion, a very high concencentration of suspended solids.  This is expected to happen 

during heavy rainfall, when the rain water flushes the dust from the roads and transports 

it to Sump number 10. 

 

Sumps with lesser concentrations of suspended solids include the Blast Furnaces Sump 

No. 1 as can be seen in Figure 3.20 below.   

 

Figure 3.20 Blast Furnaces effluent sump daily suspended solids concentrations in 2007 

 

Looking specifically at the concentrations of suspended solids within the effluent sumps 

of the individual facilities, it becomes evident that overall higher concentrations of 

suspended solids than the 150 ppm concent limit at the LSO are generally found.  

However, the average concentrations of the suspended solids at the LSO throughout the 

year 2007 were 40 ppm.  The low concentration can be explained by the efficiency of 

the Nautilus final effluent treatment plant and perhaps low concentrations of suspended 

solids at the Deep Drain, which has high flows, but from where, unfortunately,  no data 

is available. 

 

Despite not having an especially high amount of suspended solids present in its effluent 

water, Blast Furnace effluent Sump No. 1 is the one with by far the highest soluble zinc 

concentrations highlighted in Figure 3.21.  Taken that the Blast Furnace also generates 

large volumes of effluent (Figure 3.6) in relation to most of the other facilities, it is the 
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main source of soluble zinc in the effluent within the Steelworks. The average soluble 

zinc concentrations at Blast Furnace Sump no 1 throughout the year 2007 was 4 ppm.   

 

As seen in Figure 3.21, there are a few clear soluble zinc spikes present at the Blast 

Furnace effluent soluble zinc concentrations. When comparing these spikes to the 

concentrations of soluble zinc at the LSO (Figure 3.13) it becomes clear that there is a 

direct link between the high concentrations of zinc at the Blast Furnace effluent and the 

effluent at the Long Sea Outfall.  In order to find out what causes the high 

concentrations, more research into the Blast Furnace operations and effluent generation 

is required. 

 

Figure 3.21 Blast Furnaces effluent sump daily soluble zinc concentrations in 2007 

 

Another sump with high soluble zinc concentrations is the Continous Casters Sump 

(Figure 3.22).  The BOS Plant effluent Sump No. 5 (Figure 3.23) has also hightened, 

albeit lower than Blast Furnace and Continuous Casters, effluent soluble zinc 

concentrations.  The concentration present at the above sumps in relation to LSO 

consent limits follows. 
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Figure 3.22 ConCast Plant effluent sump daily soluble zinc concentrations in 2007 

 

Figure 3.23 BOS Plant effluent sump daily soluble zinc Concentrations in 2007 

 

3.4.4 Nautilus Final Effluent Treatment System Performance Results 

 

Nautilus influent and effluent waste water streams have been analysed in order to get an 

understanding on how this final effluent treatment system performs in removing 

suspended solids from the waste water.  When the Nautilus treatment system is in use it 

is performing well as can be seen in Figure 3.24.  The red bar outlines the combined 

concentration of suspended solids in influent entering the West and East channels,  
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Figure 3.24 Nautilus water treatment system weekly combined influent versus effluent in 2005-2007 
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where as the blue bars outline the combined concentration of suspended solids leaving 

the treatment system in effluent.  Daily water samples of water are taken from the inlet 

pipes to Nautilus and the clean water wier, but until here no analysis of this data has 

been carried out. 

 

In order to look at the removal efficiency of the Nautilus treatment system during the 

years 2005 to 2008, the total concentration of suspended solids entering the treatment 

system within were compared against the total concentrations leaving the system within 

the same year.  As can be seen in Figure 3.25, in 2005, the treatment system removed 

38055 ppm of suspended solids out of the 43033 ppm entering the system. Thus, leaving 

an effluent concentration of 4978 ppm, equalling to a removal efficiency of 88%.  From 

2006-2008, the removal efficiences were 74%, 81% and 75% respectively. 

Figure 3.25 Nautilus water treatment system performance in 2005-2008 

 

Unfortunately, there have been consistency issues with the Nautilus water treatment 

system.  In fact, during 2005-2007, the treatment system was in operation only for some 

100 days, as can be seen in Figure 3.24. 

 

The disruptions in using the treatment system were due to having issues with storing the 

generated sludge and the sludge pumps not working, in both cases leading to solids 

accumulating to the bottom of the Nautilus sedimentation channels.  Until the end of 
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summer 2007 there was no effective system to remove solids from the bottom of the 

sedimentation channel and therefore the treatment system was out of use between 

16/09/2006 and 07/08/2007.  In autumn 2007 a filter press was taken into use in order to 

dewater and remove the oil from the sludge faster and more effectively,  so the sludge 

could be landfilled.  After July 2009 no landfilling of sludge was allowed due to the 

implementation of the new Landfill Directive. 

 

3.4.5 Nautilus Effluent Treatment System Performance Experiment 

 

In order to get a better understanding on what was happening in the Nautilus effluent 

treatment system, the author instigated an experiment looking into the specific treatment 

efficiency of the Nautilus East and West Channels.  During the experiment, GE was 

taking daily effluent treatment samples from the mixing chamber, where all the 

incoming effluent is mixed together and from the clean water weir.  These samples were 

then transported by the GE to the Chemical Laboratories of the Port Talbot Steelworks, 

who carried out the analysis.  Due to the alkali present at the mixing chamber, the pH of 

the samples was first dropped to 1 using hydroclorid acid (HCl) prior to carrying out the 

analysis using Inductively Coupled Plasma mass spectrometry (ICP-MS). 

 

It has been estimated by the Energy Department that when in operation, 1/3 of all the 

Port Talbot Steelworks final effluent is treated at the Nautilus water treatment system.  

More than 60% of this volume is treated at the West Channel.  However, the streams 

with more and higher concentrations of unwanted constituents, especially zinc are 

treated at the at the East Channel.   

 

The most important results of the Nautilus effluent treatment experiments will now be 

outlined. 

 

3.4.6 Nautilus Effluent Treatment System Performance Experiment Results 

 

Both the West and East Sedimentation Channels have fairly consistent and efficient 

solids removing capacity, as can be seen in Figure 3.26 and 3.27, although it is evident 

that there are effluent streams with higher suspended solids and zinc concentrations 



Water in Steelworks  P. Suvio 

 

 
60 

 

 

treated via the East Channel than the West Channel.  The solid and zinc concentration 

peaks at the East Channel are overall higher and there are several more peaks at over 

1000 ppm in the East Channel flows.  

 

When comparing the Nautilus treatment efficiency against the Long Sea Outfall 150 

ppm suspended solids consent limit (Figure 3.26), it appears that both the Nautilus East 

and West Sedimentation Channels are able to achieve a removal efficiency of suspended 

solids that is better than the consent, no matter how high the initial influent suspended 

solids concentrations. 

Figure 3.26 Nautilus East and West Channel removal efficiency of suspended solids 

 

When analysing the treatment efficiency of the Nautilus final effluent treatment system 

against the soluble zinc 2.5 ppm consent limit (Figure 3.27), it can be seen that on 

occation the zinc concentrations at the effluent leaving the Nautilus West Sedimentation 

Channel treatment system are higher than the consent limit at the LSO outfall. 

 

When comparing the peaks within Figures 3.26 and 3.27, it appears that the high 

concentrations of the suspended solids and zinc occur simultaneously.  The peaks 

detected have been investigated and they have been linked to clarifier cleaning activities 

within the site.  During the cleaning, the sludge generated at the bottom of the clarifier is 

~1200 

ppm 
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dredged which results in the mixing of the clean water and the sludge and results in a 

peak at the effluent treatment.  

 

Figure 3.27 Nautilus East and West Channel removal efficiency of zinc 

 

3.5 Facility-Specific Water Systems 

 

Next to the Energy Operations Department overseeing supply and effluent water 

systems described above, each of the eight Port Talbot Steelworks facilities have their 

own individual water and wastewater systems.   A full water mass balance for all the 

major facilities and processes within Port Talbot Steelworks can be seen in Figure 3.28.   

 

The full water mass balance was initially developed by the Energy Operations 

Department in 2005.  Following the work carried out for Figure 3.3 and in order to 

attain information required for the water benchmarking survey outlined in Chapter 4, the 

author updated the full water mass balance with water flow information for 2007.  The 

Figure 3.28 outlines all the major water sources and water treatment plants in their own 

colour giving a better picture on what the biggest water sources are and where a specific 

type of water is being used within the Works.  Water consumption and effluent 

generation in different facilities will be explained in more detail later in this chapter. 
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Figure 3.28 Port Talbot Steelworks full water mass balance (adapted from Energy Department, 

2005)  
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The work carried out in order to understand the water and effluent systems entailed 

visiting the individual facility on several occasions and spending days interviewing 

relevant people and walking the water and effluent systems.  Prior to gaining access to 

an individual facility, health and safety training had to be first carried out.  The work to 

understand the site-specific water and effluent systems took approximately 18 months. 

 

3.5.1 Water and Effluent Performance 

 

Table 3.7 gives a summary of water and effluent performance within all the Port Talbot 

Steelworks’ 8 facilities in m
3
/tonne of the product in question.  

 

Table 3.7 Water related performance of Port Talbot Steelworks’ facilities 

 

Facility tonnes 

product / 

year 

Water 

intake / m
3 

/annum 

Water 

discharge 

m
3
 /annum 

Water 

intake / t 

of product 

Water 

discharge / t 

of product 

Cokemaking 990 392 2,462,000 1,147,500 2.48 1.16 

Sintering 3 875 060 315,000 0 (negligible) 0.08 0 

Blast 

Furnace 

3 853 757 8,500,000 1,988,500 2.20 0.26 

BOS 4 413 900 1,700,000 1,401,600 0.39 0.32 

Casting 4 276 765 4,400,000 1,138,800 1.03 0.27 

Hot Rolling 

 

3 051 801 

 

3,504,000 

(67,802,400) 

0 

(64,824,000) 

1.15 

22.22 

0 

21.24 

Cold Rolling 1 085 833 1,289,000 604,440 1.19 0.56 

CAPL 741 657 257,000 78,840 0.35 0.11 

 

A detailed description of the water and effluent systems of some of the most important 

individual facilities, including Coke-Ovens (Section 3.5.2), Sinter Plant and Material 

Handling (Section 3.5.3), Blast Furnaces (Section 3.5.4), BOS Plant (Section 3.5.5), 

Continuous Casting Plant (Section 3.5.6) and Hot Mill (Section 3.5.7) now follows. 

 

3.5.2 Coke-Ovens Water Systems 

 

Large quantities of water is used at the Morfa Coke-Ovens for the quenching of hot 

coke, for cooling and for the washing of the gas produced from the battery ovens.  
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Water is also used for fire hydrants, cooling on the batteries and for cooling in the 

cascade coolers and re-circulating cooling towers.  Water is further used at the coal 

stockyard for dust suppression (Energy Department, 2002).   

 

During quenching some 22 tonnes of water is dropped onto to every coke batch and out 

of this, about 10 tonnes is recovered as hot water back to the settling ponds, where the 

coke breeze material drops out.  Contaminant-free water must be used for quenching, as 

any contaminants would be spread to the environment by the quench plume, which has a 

very high thermal buoyancy (EIPPCB, 2001a). The factors to be taken account in 

quenching include: 

- The use of process-water with significant organic load (like raw coke oven 

wastewater, wastewater with high content of hydrocarbons, etc.) as quenching water 

is to be avoided  (EIPPCB, 2001a) and 

- The amount of water used for quenching combined with the quenching time 

(including design and efficiency of the quench tower and coke car) should be 

optimal. 

 

The main effluent from coke-ovens is born during cooling and washing of the coke-

oven gas, which is generated during the operation of the by-product plant,  removing the 

impurities of the coke-oven gas by stripping.  The coke-oven gas washing effluent has a 

temperature of 30-35 °C and following impurities: phenol. Cyanide, ammonia, benzene, 

PAHs, SS, etc. 

 

The required gas washing effluent treatment requires several steps, including: 

- Wastewater pretreatment by: 

• Efficient ammonia stripping, using alkalis. Stripping efficiency should be related 

to subsequent wastewater treatment. Stripper effluent NH3 concentrations of 20 

mg/l are achievable
 
and 

• Tar removal (EIPPCB, 2001a). 

- Wastewater treatment by (EIPPCB, 2011a): 

• Biological wastewater treatment with integrated nitrification/denitrification 

achieving:   
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• COD
4
 removal:         >95%, corresponding to 150 mg/l  

• BOD
5
:      <20 mg/l 

• sulphite            <0.1 mg/l  

• PAH
6
:     <0.02 mg/l  

• SCN
-
:     <4 mg/l 

• CN
-
:                  <0.1 mg/l  

• phenols:            <0.5 mg/l  

• sum of NH4
+
, NO3

-
 and NO2-:  <30 mg/l     

• suspended solids:      <40 mg/l  

The above concentrations are based on the specific wastewater flow of 0.4 m
3
/t of coke. 

 

3.5.2.1 Coke-Ovens Water Supply and Consumption 

 

Presently, the Morfa Coke-Ovens water supply system is insufficiently metered and 

therefore a water mass balance has been built based on estimates from the cooling 

towers, heat exchangers and quenchers.  As can be seen in the water mass balance 

Figure 3.29, the Morfa Coke-Ovens uses some 281 m
3
/hour or 2,461.560 m

3
/annum.  

 

This service water is abstracted from the Works Reservoir (Figure 3.29) and the main 

users of the water in the Coke-Ovens include: 

- Battery quencher ~54 m
3
/h – evaporated, 

- Benzole Plant direct cooling water ~134 m
3
/h, 

- Recirculating cooling system ~93 m
3
/h – 71 m

3
/hour is evaporated and 

- Coal Yards dust suppression ~4 m
3
/h. 

                                            
4
 Chemical Oxygen Demand 

5
 Biological Oxygen Demand 

6
 Polyaromatic Hydrocarbons 
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Figure 3.29 Morfa Coke-Ovens water mass balance (adapted from Denley, 2007) 

 

3.5.2.2 Coke-Oven Effluent Water and Effluent Pollutants 

 

There are two basic types of effluent water produced during the carbonisation and 

classification of fuel: 

- Waste formed during cooling and washing the gas and 

- Waste formed during the purification of by-products (Ghose, 2001). 

 

In the Morfa Coke-Ovens approximately 131 m
3
/hour or 1,147,500 m

3
/annum of 

effluent water is generated with the main effluent producers being: 

- Recirculating cooling system blow down ~25 m
3
/hour and 

- Process cooling water (including biological effluent treatment plant) ~106 m
3
/hour. 

 

As can be seen in Figure 3.29, most of the effluent born in the Coke-Ovens is 

discharged to Sump No. 6.  The water that is used for dust suppression in the coal 

stockyards and haul roads in the Coke-Ovens area, in times of dry weather, together 

with any excess stormwater is collected to the Coalhandling Sump.  In the Coalhandling 

Sump, coal solids are removed from the effluent water, after which the water is sent to 

Sump No. 10 of the Steelworks’ effluent system. 
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The key water pollutants from the coke-oven operations include: phenol, cyanide, 

ammonia, oil and grease and suspended solids (Yoon-Gih Ahn, 2006).  The most 

heavily polluted effluent liquor from the coke-ovens is the effluent water from the 

ammonia stills of the by-product plant.  This is where the gas washing and virgin liquor 

from the gas coolers is processed through the ammonia stills.  The still effluent contains 

ammonia, phenol, cyanide and sulfide, which are toxic to aquatic life (Ghose, 2001).  

The still effluent that originates as a by-product when the coal is charged to the Coke-

Ovens is treated at the Biological Effluent Treatment (B.E.T) Plant.  The B.E.T Plant 

removes much of the organic components and cyanides.  After the B.E.T this water is 

sent to clarifiers from where it is sent to Sump No. 6 as seen in Figure 3.29.   

 

The B.E.T plant was commissioned in 1981 and it includes aerators that use an 

activated sludge process.  In 1986 a Vitox activated sludge system was added in order to 

reduce the energy consumption of the aeration tanks, but the original aerator system was 

taken back to use in 2002. 

 

3.5.3 Sinter Plant and Raw Material Handling Water Systems 

 

The operations of the Sinter Plant in Tata Port Talbot Steelworks consist of two main 

parts; the actual sinter plant and the ‘raw material handling’, which includes the harbour 

and the ore preparation plant.  In raw material handling, water is being used for cleaning 

the ships, adding weight to the ballast tanks as well as for dust suppression of material 

stockpiles and stockyard roads.  The total volume of water used at the raw materials 

handling area is small compared to other manufacturing areas on site.  This is also the 

case for the Port Talbot Sinter Plant, where most of the water is being consumed to 

control moisture levels in the raw mix feed. 

 

3.5.3.1 Sinter Plant and Raw Material Handling Water Supply and Consumption 

 

The average water consumption for a sinter plant is estimated to be some 0.01-0.35 m
3
/t 

of ready product (EIPPCB, 2001a).  Port Talbot Sinter Plant is producing 3,875,060 

tonnes of sinter per annum and therefore the annual water consumption could be 

anything from 38,751  m
3
 to 1,356,000 m

3
. 
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As can be seen in Figure 3.30 most of the water used at the Sinter Plant is service water 

from the Works Reservoir.   

 

 

 

 

 

 

 

Figure 3.30 Sinter Plant water mass balance 

 

At the present time, the Sinter Plant service water system is insufficiently metered; 

fortunately there are consumption figures available for the mixing drum, which is by far 

the main consumer of water at the site.  Based on the 2 hourly consumption figures, 

some 7.45 m
3
/h or 65,000 m

3
/annum is used in the mixing drum.  After the mixer, the 

moisture level of the sinter is some 5-5.8%.  Jenkins (2007) estimates that the raw water 

mixer covers some 90% of the total Sinter Plant water consumption, with the remaining 

~10% being used mainly for dust suppression at the conveyors.  Cooling water is used 

for the cooling of the ignition hood.  This cooling system is closed with the water being 

recycled back to use and requires only some 0.1 m
3
/h of make-up water.  There’s also 

an additional ~0.5 m
3
/hour loss on the systems, giving the Sinter Plant a total 

consumption of approximately 9 m
3
/h or ~80,000 m

3
/annum.   

 

The main water source to the raw material handling is the dock water.  Most of the dock 

water used in the steelworks is used for cooling purposes and after use the water is 

recycled back to the dock.  Most of the make-up water required for the dock is received 

from the Ffrwdwyllt River, but at times of low water flows in the river, water is 

abstracted from the River Afan mouth. The water at the River Afan mouth tends to have 

brackish water, which is why the docks water has sometimes increased salinity levels.  

 

Altogether, around 27 m
3
/h

 
or 236,500 m

3
/annum is being used at the raw material 

handling area (Figure 3.31).  The water used at the raw material handling includes: 

- ~1.8 m
3
/h or ~16,000 m

3
/annum on roads 
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- ~ 24 m
3
/h or ~210,000 m

3
/annum on ship unloading and 

- ~ 0.7 m
3
/h or ~4,000 m

3
/annum on stockpiles 

It should be noted that there have been problems with the leaks on the water mains 

running to the Port Talbot Sinter Plant and raw material handling due to the old supply 

pipe network.  The service water main has been recently renewed but this hasn’t 

removed all the problems (Maynard, 2008). 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.31 Raw Material Handling water mass balance 

 

3.5.3.2 Sinter Plant and Raw Material Handling Effluent Water and Pollutants 

 

Most of the water used in raw material handling will evaporate or remain within the raw 

materials, whilst any excess will go to soak ways and drains.  At this stage, some solids 

will be entrained (Jenkins, 2007).  Also, the dust suppression by water on the roads and 

premises etc. results in a run-off wastewater containing suspended solids (including 

heavy metals), which are the main pollutants from the sinter plant operation
 
(Yoon-Gih 

Ahn, 2006).  For a sinter plant producing some 11,000 tonnes of sinter per day, the 

rinsing water flow is ~460 m
3
/day (EIPPCB, 2001a).  With the average 12,000 tonnes 

production of Tata Port Talbot Sinter Plant per day, the usage of rinsing water can be 

expected to be some 500 m
3
/day or 20.8 m

3
/h.   

 

There are currently no specific on-source water treatments in place at the burdening 

section, but the wastewater is sent to the ‘Betsi Lagoon’ together with the Blast 

Furnaces slurry.  
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3.5.4 Blast Furnaces Water Systems 

 

Blast furnaces are water intensive in nature, but due to the possibility of using close-

circuit water systems and reusing effluent water, the difference in water consumption 

from one furnace to another can be considerable and the average consumption of water 

in blast furnaces within the EU is estimated to be between 0.8 and 50 m
3
/t pig iron 

(EIPPCB, 2001a).  The Port Talbot blast furnaces produced some 3.855 Mt of iron in 

2007 and therefore, the expected water consumption could be anything between 3.1 and 

192.8 million m
3
.  The water use at the Port Talbot blast furnaces area can be divided 

into main categories of: 

- Blast furnace cooling (No. 4 and 5) 

- Blast furnace gas washing (No. 4 and 5) and cooling 

- Slag granulation and 

- Slag quenching (Maynard, 2006). 

 

3.5.4.1 Blast Furnaces Water Supply and Consumption 

 

The blast furnace water systems are complex with a number of different types of water 

being consumed for several purposes.  Most of the water used in the blast furnaces is 

needed for several cooling purposes.  Rivers Afan and Ffrwdwyllt are both supplying 

water to the blast furnaces.  Both of the rivers feed the open circuit cooling (OCC) 

systems, the gas cleaning operations as well as slag quenching (Energy 2002 & 2005).  

The River Afan feeds 171 m
3
/h or 1.5 million m

3
 per annum, whereas the River 

Ffrwdwyllt feeds some 84 m
3
/h or some 735,000 m

3
/annum to the Blast Furnaces water 

systems.     

 

Dock water is supplied to Blast Furnace No. 4 via Margam ‘B’ Power Plant, which 

plays an important role in supplying water to the blast furnaces.  Dock water is used for 

several purposes including hearth cooling, gas washing and cooling, slag granulation 

and quenching and make-up for the OCC systems.  The Blast Furnaces overall Dock 

water consumption totals 685 m
3
/h or approximately 6 million m

3
 of water per annum, 

as can be seen in Figure 3.32.  Around 90% of the Dock water used is returned back to 

the Dock and the rest is lost via evaporation.  Margam ‘B’ also supplies water to the 
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water tower, which is used in case the Margam ‘B’ pumps fail (Cross, 2008).  The water 

in the water tower holds 30 minutes supply of water to allow for the blast furnaces to be 

shut down safely. 

 

 

 

 

 

 

Figure 3.32 Blast Furnaces Dock water mass balance 

 

In addition to the rivers and the Docks abstraction, approximately 25 m
3
/h or 219,000 

m
3
/annum of service water from the Works Reservoir is used at the blast furnaces for 

coal injection fire hydrants, compressor cooling and slag granulation (Energy 

Department, 2005).  Additionally, a small amount of soft and de-mineralised (demin) 

water is used on the blast furnace area.  The Abbey soft (from Afan River) water is used 

as a make-up for the closed cooling circuit at a rate of some 1 m
3
/hour per furnace 

equaling 175,000 m
3
/annum (Maynard, 2008).  Estimated de-mineralised water 

consumption is ~2 m
3
/day or some 730 m

3
/annum.  Based on the above, it can be 

concluded that the overall water consumption of the Port Talbot Steelworks Blast 

Furnaces totals approximately 968 m
3
/hour or 8.5 million m

3
/annum. 

 

The water cooling systems on both furnaces are almost identical although each furnace 

has its own dedicated pumps and cooling circuits.  There are two systems of Open 

Circuit Cooling system (OCC) and Closed Circuit Cooling system (CCC) employed on 

each furnace (Energy Department, 2002).  The OCC uses water from the Afan and 

Ffrwdwyllt rivers, feeding water to the tuyeres, the big coolers, the hearth and the cone 

sprays.  OCC water is also used as secondary cooling water for the stove heat 

exchangers as well as providing cooling and flushing water for the BLT gearboxes.  

Further, in an emergency situation, OCC water is used directly to cool stove Hot Blast 

Valves or Furnace CCC system coolers.  At Blast Furnace No.5 solely, OCC water is 

used as secondary water for cooling the CCC water in plate heat exchangers.  At No.4 

furnace, electrically driven fans carry out this function.  When required, OCC is also 

used for leak detection on the CCC system.  The CCC system cools the rest of the 
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furnace i.e. all the stacks and the bosh plate coolers, the tuyeres and the tapholes stave 

coolers as well as the underhearth cooling pipes (Energy Department, 2002).  The make-

up water for Blast Furnace number 4 OCC comes from the Afan and Ffrwdwyllt Rivers 

and the Docks, whereas number 5 OCC is fed preferentially only by the two rivers 

(Cross, 2008).     

 

After cooling, the water is sent back to the Energy Department, filtered and stored in the 

cooling towers until it is sent back to the blast furnace for re-use.  Soft water is used as a 

make-up for the CCC systems whereas river or dock water is the make-up for the OCC 

systems (Energy Department, 2002). 

 

3.5.4.2 Blast Furnaces Effluent Water and Effluent Water Pollutants 

 

Depending on the steelworks, estimated wastewater production for a blast furnace can 

vary between 0.1 and 3.3 m
3
/t of liquid iron, while the most important wastewater 

emission sources are effluent from the blast furnace gas scrubbing, wastewater from 

slag granulation and blow down from cooling water circuits (EIPPCB, 2001a). 

 

The gas scrubbing effluent contains suspended solid particulates, zinc and other volatile 

metals, such as lead (Table 3.8), which dissolves in the CO2 enriched water forming 

soluble compounds. 

 

Table 3.8 Blast furnace top gas scrubbing effluent parameters (EIPPCB, 2011a) 

 

Parameter Concentration (mg/l) 

CN 0.1-50 

Cl 73.6 

F 1.74 

SO4
2-

 42 

NH4 2-200 

S 0-5 

Pb 0.01-5 

Zn 0.1-29.36 

Fe 6.77 

Mn 0.48 

Phenols 0.1-5 
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Water from the blast furnace gas scrubbing is normally treated, cooled and recycled to 

the scrubber.  Treatment itself usually takes place in circular settling tanks.  The 

estimated water overflow of a gas scrubbing plant circuit is 0.1-3.5 m
3
/t pig iron 

depending on raw material quality/specification and water availability, which influences 

the measures available to optimise water recycling (EIPPCB, 2001a). 

 

The layout of the Blast Furnace Gas Scrubbing (gas washing) Plant can be seen in 

Figure 3.33.  The water from the gas washing system is carried to clarifiers where an 

anionic polymer is added to aid dust settling.  Around 50% of the original effluent is 

recycled back through the gas cleaning system, whilst the remainder is pumped to No. 1 

Sump (Swindley, 1999).  The settled slurry from the clarifiers is then pumped to the 

Betsi lagoon and the run off water from the slag quench pools is also pumped untreated 

to the satellite Sump No. 1. 

 

Figure 3.33 Layout of the Port Talbot Blast Furnace gas washing water treatment plant (Swindley, 

1999) 

 

The Betsi Lagoon has 3 sections to it.  At any given time one of the sections is 

accepting slurry, one of the sections is drying the excess water from the slurry and the 

last one is reclaimed.  The Sinter Plant uses the slurry after it has been dried at the Betsi 

Lagoon.  The excess water from the Lagoon flows into a reed bed that sits next to the 
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Lagoon (Energy Department, 2002). The overflow from slag granulation primarily 

depends on water availability and is estimated to be between 0.125-10 m
3
/t pig iron 

produced.  The most important pollutants in slag granulation overflow water include: 

Zn, Cu, Ni, Pb, Cr, COD and TOC (EIPPCB, 2001a). 

 

In the Port Talbot Steelworks Blast Furnaces, the water used in slag granulation is 

running on a closed loop and even though there is evaporation through steam generated 

in the process, there is no actual effluent discharged from it.  After usage in the slag 

granulation process, the water is run through a de-watering sump to a cooling tower to 

be re-used in the process (Cockins, 2008). 

 

The only effluent flow generated from the cooling circuits is the blow down, although 

there are heavy losses through evaporation within the open cooling water circuit.  After 

the cooling process, the remaining water from the open circuit cooling circuit is filtered 

and returned via the Margam ‘B’ Power Plant back to the blast furnace to be re-used in 

the process (Maynard, 2008). 

 

The total effluent water generated during the blast furnace operations was 227 m
3
/h or 

1,988,500 m
3
/annum in 2008 (Figure 3.6).  Most of this effluent is generated during gas 

cleaning and slag quenching activities. 

 

3.5.5 BOS Plant Water Systems 

 

A Basic Oxygen Steelmaking plant requires an estimated 0.4-5 m
3
 of water per tonne of 

liquid steel
 
(EIPPCB, 2001a).  The Port Talbot BOS Plant produced some 4.1 Mt of 

liquid steel in 2006 and therefore the expected water consumption could be anything 

between 2 million m
3
 and 20.5 million m

3
 per year.  There are several water consumers 

in a basic oxygen steelmaking plant including: 

- Oxygen lance cooling – Often by re-circulating cooling water system. 

- Hood cooling – Usually cooled with water re-circulating through the hood panels. 

- Gas cooling and wet scrubbing system – This water is then sent to clarifier-

thickeners for sedimentation of the solids, and water can later be recycled or 

discharged (Nalco, 1988). 
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- Degasser vessel cooling – Water is used for cooling the flanges and lances (Energy 

Department, 2002). 

 

3.5.5.1 BOS Plant Water Supply and Consumption 

 

Not only does the BOS Plant of Port Talbot Steelworks use considerable amounts of 

water, it uses fairly large quantities of more expensive, pretreated soft and de-

mineralised water. In the BOS Plant, the hood and lance cooling and degasser vessel 

cooling systems use a combined ~45 m
3
/h or ~400,000 m

3
/annum of soft water as a top-

up. 

 

The hood and lance cooling closed re-circulating system uses soft water from the Abbey 

water treatment plant as the main top-up supply with a little service water being added 

to increase calcium levels at the system.  The service water acts as an emergency top-up 

supply in case there are problems with the soft water supply.  The soft water used in the 

cooling system is treated with inhibitors both to control the corrosion of the internal 

pipe infrastructure and the amount of bacterial activity. The hood and lance cooling 

system has an open cooling tower, which accounts for most of the losses together with 

the blown down water from the system
 
(Energy Department, 2002; Mainwaring, 2008). 

 

During the BOS converter blowing cycle, large quantities of dust laden fume is 

produced.  An induced draught fan extracts the fume through the gas cleaning plant, 

where the dust is separated from the gas using water sprays and venturi scrubbers (Chu, 

2008).  Clarification and filtration is used to remove the majority of solids and dusts 

from the system.  Large proportions of the dust collecting water is recycled back to the 

system after use (Chu, 2008), while some 2 x 24 m
3
/h of service water, equaling 

~420,000 m
3
 of water per annum, is added to the system as a make-up water (Energy 

Department, 2002 & Mainwaring, 2008).  Apart from gas cleaning and washing system, 

service water is used in several systems in BOS Plant, including as a bleed to cooling 

tower, as scrubber water, for the fan coolers, as a converter seals, under the demister, for 

dust collection and for the water tank (Water Experts Team, 2006).  Altogether an 

estimated 125.5 m
3
/h  or 1.1 million m

3
 of service water per annum is consumed at the 

BOS Plant 
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The degasser vessel cooling is used for cooling the flanges and lances at the BOS 

vessel.  The degasser vessel cooling water runs in a closed circuit system with cooling 

towers.  Approximately 200,000 m
3
 of soft water from the Abbey Water Treatment 

Plant is used as make-up water in order to top-up the closed system due to losses 

resulted via evaporation in the system and blowdown from the cooling tower.  The 

water used at the degasser vessel cooling is treated with inhibitors to minimise internal 

corrosion and bacterial activity (Energy Department 2002, Water Experts Team, 2006).   

 

3.5.5.2 BOS Plant Effluent and Effluent Water Pollutants 

 

The most important sources of wastewater in the BOS and continuous casting plants 

include scrubbing water from the BOS gas treatment and water from the direct cooling 

in continuous casting
 
(EIPPCB, 2001a). 

 

BOS gas effluent treatment is very often performed in two steps of separation of coarse 

particles (>200 µm grain size) followed by sedimentation in circular settling tanks.  

Flocculating agents are added to improve sedimentation.  The sludge is de-watered by 

means of rotary vacuum filters, chamber filter presses or centrifuges (EIPPCB, 2001a). 

 

In Port Talbot Steelworks’ BOS Plant, after the gas cleaning operation, the dust laden 

water is sent to the gas washing water treatment plant shown in Figure 3.34.  The dust 

collecting water from the gas cleaning plant is conveyed in a flume to the inlet of the 

water treatment plant.  The de-gritter settles heavy grit from the water and the settled 

grit from the bottom of the tank is removed by a chain driven scraper.  From there, the 

water flows into the clarifier via a splitter box where a flocculating polymer (poly-

electrolyte) is added.  The clarifier pond has a four arm rake that scrapes the settled 

sludge into the centre of the clarifier.  The sludge is then pumped to the filter press filter 

by using a diaphragm pump.  The rotary vacuum filter dewaters the sludge and 

discharges the filter cake onto a conveyer belt.  The clarifier then overflows to a 

pumping pool and some of the water, containing some solids, is blown to Sump No. 5 

and further from there to the steelworks’ effluent system (Energy Department, 2002 & 

Swindley, 1999). 
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Figure 3.34 Layout of the Port Talbot BOS gas washing water treatment plant (adapted from 

Swindley, 1999) 

 

There is also some effluent water born as blowdown from the cooling tower of the hood 

lance and sub-lance cooling systems and degasser vessel cooling system (Water Experts 

Team, 2006).   

 

The total volume of effluent generated during BOS Plant operations is approximately 

160 m
3
/h or 1.4 million m

3
/annum and most of it arises during the gas cleaning 

activities. 

 

3.5.6 Continuous Casting Water Systems 

 

Correct water treatment and distribution is critical to continuous casting.  In the process, 

steel that is leaving the BOS ladle at about 1550 C is poured into a tundish, from where 

the molten steel is distributed to form slabs in the mould.  The mould is a copper jacket, 

water-cooled in order to provide high heat exchange rates.  As the cast starts, the 

cooling effect of the water-jacketed mould (Figure 3.35) starts the formation of a metal 

skin. Proceeding through the length of the mould, the skin-contained metal is exposed to 

a series of direct-contact water sprays, which complete the job of solidifying the steel.  

The crucial point in this process is the copper water-cooled mould, which forms the 
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initial skin.  Unless the skin is formed quickly and uniformly, a breakout will occur, that 

will shut down the whole operation (Nalco, 1988). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 Cut view on cooling water application during continuous casting of slabs (Nalco, 1988) 

 

The main water consumers in a continuous casting plant include mould cooling, slab 

spray water and machine (roll) cooling water (Energy Department, 2003).  The most 

reliable cooling water program for the mould cooling uses the highest quality water 

available in a closed loop, as the hardness levels should never exceed 10 mg/L of 

minerals.  Since the system is closed, there is little loss and the best corrosion inhibitors 

and dispersants can be used.  Spray water that contacts the slab becomes contaminated 

with iron oxide particles as the hot metal is oxidised.  The water is processed in a 

filtration system for solids removal, recirculated through heat exchangers and recycled 

to the sprays.  The sprays must be kept from plugging at all times because the flow of 

water to the slab being cooled must be uniform at all points (Nalco, 1988). 

 

3.5.6.1  Continuous Casting Water Supply and Consumption 

 

A great amount of water is used for cooling at the continuous casting plant. Further, in 

order not to interfere with the high grade of steel slabs, cooling water used in some of 

the continuous casting processes, including coolant for moulds and rolls, needs to be 

pretreated de-mineralised or soft water.  The estimated overall water consumption of the 
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Continuous Casting Plants 1, 2 and 3 is a staggering 502 m3/h or 4.4 million m
3
/annum.   

Out of this, an estimated 1.0 million m
3
/annum of water used is pretreated de-

mineralised and soft water, 3.4 million m
3
/annum comes from the River Afan and 1.1 

million m
3
/annum from the Works Reservoir as service water. 

 

A high quality water system is required for the cooling of the moulds, rolls and bearings 

of the casting machines due to the high rates of heat transfer occurring at the process.  

The importance of a high standard cooling system is further stressed by the possibility 

of losing a whole caster of hot metal in the event of a breakdown failure (Energy 

Department, 2002). 

 

In all the 3 casting machines, the mould and machine cooling each have a dedicated 

‘semi-closed’ cooling primary circuit, while they’re all sharing a common secondary 

circuit that works as a back-up supply.  The primary systems circulate water from a 

closed concrete holding tank, through the machine or mould to a plate type heat 

exchanger, returning to the holding tank.  Each primary system has an emergency 

header tank, which has sufficient capacity to maintain supply in the event of the failure 

of the pumped circuit (Energy Department, 2002; Mainwaring, 2008).  The types of 

water used at the different casters for primary and secondary cooling systems with 

estimated figures for consumption are: 

Caster 1 systems 

- Primary mould: demin water     2 m
3
/h 

- Primary roll: demin water    4-10 m
3
/h 

- Secondary: soft water     29 m
3
/h 

Caster 2 systems 

- Primary mould: demin water    2 m
3
/h 

- Primary roll: soft, demin and Afan River water 25+ m
3
/h 

- Secondary: soft water     36 m
3
/h 

Caster 3 systems 

- Primary mould: demin Water    2-10 m
3
/h 

- Primary roll: soft water    2-10 m
3
/h 

- Secondary: soft water     36 m
3
/h             

(Water Experts Team, 2006; Mainwaring, 2008) 
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The softened (soft) and demineralised (demin) water used in the three casters as a make-

up to the cooling systems is provided by the Abbey Water Treatment Plant, alternatively 

clarified River Afan water is also used.  Caster 2 and 3 secondary cooling systems are 

open-cooling tower systems, circulating through the plate coolers and are subject to 

normal evaporation and blow down losses (Energy Department, 2002; Water Experts 

Team, 2006). 

 

Further to the mould and roll cooling, the continuous casting system requires water for 

spray cooling directly onto the surface of the rolls, the machine itself and the casting 

slabs.  In Port Talbot the spray cooling of caster 1 and 2 use Afan River water with 

service water as a back-up, where as Caster 3 uses service water as its main source of 

spray cooling water (Water Experts Team, 2006; Mainwaring, 2008).  The types of 

water used at the different casters by the spray cooling systems with estimated figures 

for consumption are (Water Experts Team, 2006): 

- Caster 1: Afan River water   140 m
3
/h, 

- Caster 2: Afan River water   150 m
3
/h and 

- Caster 3: Service water   125 m
3
/h. 

-  

Prior to use, the spray cooling water is pretreated.  The water runs through rotary 

screens to remove the organic debris followed by a clarifier that allows the flocculants 

of the suspended solids to form sludge.  The cleaned water then passes to a further 

holding/treatment tank, one for each of the continuous casting plants.  The clarified 

waters are then sent to top up the holding tank or the cooling tower cold well and then 

pumped to the cooling sprays (Water Experts Team, 2006; Mainwaring, 2008), from 

where there is a loss of 60 m
3
/hour through evaporation (Water Experts Team, 2006). 

The overflow from the clarifier is pumped into a bank of sand filters which remove fine 

solids, grease and some oil from the flow.  The sand filters are prone to progressive 

blinding, accelerated by the grease content, and require frequent back-washing to 

maintain performance.  Next to the cooling and spraying, considerable amounts of water 

is used in the Casters for backwashing the sand filters (Mainwaring, 2008 & 

Acqua/Baemar Howells, 2008). 
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3.5.6.2 Continuous Casting Effluent and Effluent Pollutants 

 

Within continuous casting, effluent is generated by the direct cooling system, especially 

the spray cooling system.  The discharge water born in the direct cooling process is 

contaminated with metal oxides (suspended solids) and with hydrocarbons (oil) 

(EIPPCB, 2001a). 

 

The effluent spray cooling water from Caster 1 is discharged 14,000 L/minute (840 

m
3
/h) into a ‘hydrocyclone’, which removes the coarse mill scale and other large 

suspended solids.  The scale-free water then flows over the weir into a sump before 

being pumped through sand filters before being returned to the sump.  The sand filters 

are then backwashed with water that removes all the sediment remaining after the 

effluent water treatment.  Water used for backwash is then pumped to the effluent 

plant’s clarifiers and from there, after treatment, to the Continuous Casters Sump.  The 

spray cooling water from Casters 1 and 3 is discharged to settling tanks to drop off the 

suspended solids, with the help of a coagulant from where it is discharged to the 

Continuous Caster Sump which is part of the Steelworks effluent system (Sullivan, 

2008). 

 

3.5.7 Hot Mill Water Systems 

 

There are a number of different water systems in use within the Hot Mill, each having a 

different quality (cleanliness) and pressure.  The three main types are called ‘service’ 

water, ‘descaling’ water and ‘roll coolant’ water system (Figure 3.36). 

 

All the water used within the Hot Mill originates from the Works Reservoir and is so 

called service water, but prior to use the descaling and roll coolant water is subjected to 

a single pass through sand filters.  The service water is not pretreated apart from being 

run through screens.  Roll coolant water is of the highest quality, followed by descaling 

water, with service water being the lowest quality water.  Water pressures for the three 

systems are typically 3.5 bar for service water, 8-10 bar for roll coolant water and 150-

180 bar for the descaling water (Morris, 2009). 
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Figure 3.36 Overview of the Hot Mill water systems (Morris, 2009) 

 

3.5.7.1 Hot Mill Water Supply and Consumption 

 

The total Hot Mill water usage includes 4460 m³/hr for the roll coolant, 2560 m³/hr for 

service water and 360 m³/hr for descaling or in proportions 60%, 35% and 5% for roll 

coolant, service and descaling water respectively (Morris, 2009). 

 

The Hot Mill itself is divided into 4 different sections of: 

- Furnaces and roughing, 

- Finishing mill and coiling, 

- Reheat furnaces system and 

- Run out table system. 

All the sections of the Mill use water in several applications, a simplified layout of the 

Hot Mill water systems gives an idea of what routes different types of water take and 

how they are treated (Figure 3.37). 
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Figure 3.37 Layout of the Hot Mill water system (Swindley, 1999) 

 

There are a number of water applications within the finishing mill.  On the coil entry 

side, there are scrubbers that spray high pressure service water directly onto the strip.  

There are also edge sprays on these first three stands’ entry guides on both top and 

bottom of the strip as the edge is shielded from the scrubbers’ water by the edge guides.  

On the exit there are interstand cooling headers that consist of headers with a transverse 

slot along their length, which puts a curtain of service water onto the strip to chill its 

surface.  All seven of the Finishing Mill stands have multiple roll cooling headers to 

cool the surfaces of the work rolls, fed from the roll coolant system.  The supply of 

adequate cooling uses most water within the Hot Mill.  This water is of the highest 

cleanliness and has its own dedicated water supply system, i.e. apart from the Crop 

shear it is only used for Finishing Mill roll cooling (Morris, 2009). 

 

When the strip comes out of the Finishing Mill, its thickness is checked with an x-ray 

gauge, which is cooled by service water.  From here the strip travels to the Run Out 

Table (ROT), which consists of multiple cooling banks on top and underneath the strip, 

that spray ROT water onto the surfaces to remove heat in order to control correct 

metallurgical properties.  As can be seen in Figure 3.37, this re-circulating water system 

has its own cooling towers to control the temperature of the water used.  The Run Out 

Table cooling water has a tendency to pool on the strip surface and in order to clear that, 
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cross sprays are mounted along the operator side of the Run Out Table that spray 

service water across the strip and thus clear the warmed water off the strip ready for the 

next cooling bank.  After cooling, the finished strip is coiled by one of two coilers 

which are themselves kept cool with service water (Morris, 2009). 

 

The Reheat furnaces have their own closed-loop re-circulating water system (Figure 

1.39) that is used to cool the walls, roof, doors, and walking beam system.  Water stored 

in the main holding tank is pumped through two filters and then to the furnaces.  When 

it returns, it is cooled in one of three cooling towers before returning to the holding 

tank.  Once used, this water returns to the dirty water ponds for recycling to the water 

treatment plant (Morris, 2009). 

 

Like the Furnace cooling, the Runout Table has its own closed-loop re-circulating 

cooling system (Figure 3.36).  Once it drops from the strip, it is collected in the flume 

under the Runout Table.  At the Finishing Mill end of the Runout Table flume is a weir 

that allows excess water to overflow into the Finishing Mill flume and out to the dirty 

water return.  Cross sprays, are one source of makeup water for losses from the system 

due to evaporation at the cooling towers and overflows over the weir and take their 

water from the service water main in the Finishing Mill basement.   

 

3.5.7.2 Hot Mill Effluent and Effluent Pollutants 

 

Water for the various cooling tasks is returned via the Dirty Water Return (Figure 3.36) 

to be recycled for reuse within the Mill and there are no specific effluent arising within 

the Hot Mill operations.  As seen in Figure 3.37, the used water first passes along the 

mill flume to a scale pit, where coarse scale is removed and the returned water is then 

split between No.1 and No. 2 sedimentation canals.  Clarified water from No. 2 

sedimentation canal is then filtered through the primary sand filters and pumped to the 

de-scaling pumps, to the cooling tower or it is returned to the main pump house.  The 

Water from No. 1 sedimentation canals passes through further clarifiers before going to 

the cooling tower and is then returned to the main pump house (Swindley, 1999).  Thus, 

apart from evaporation losses, the vast majority of water used in the Hot Mill is 

continually recycled to the Water Treatment Plant for reuse.  This re-circulation system 
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however is not closed, as the Water Treatment Plant supplies the entire Port Talbot 

Works with water.  The total flow rate of the Dirty Water Return is ~7400 m³/hr 

(Morris, 2009) and there is a top-up of ~400 m
3
/hr for the Hot Mill cooling water 

systems from Works Reservoir to the Water Treatment Plant, which totals an input of 

~7800 m
3
/hr to the Hot Mill water systems. 

 

3.6 Conclusion 

 

Due to a long operational evolution of the Tata Port Talbot Steelworks, the works’ 

water supply and distribution systems have evolved into a complex and extensive 

system with several abstraction points, an extensive pipe network and several water and 

wastewater treatment plants. 

 

A huge amount of around 145,020,000 m
3
 (2007) per annum of water is being used in 

the Steelworks over a year.  >88% of this is abstracted from the Docks and used mainly 

for indirect, once-through cooling purposes.  Of the water used, around 12,500,000 m
3
 

is discharged annually via the Long Sea Outfall.  Out of a total effluent, around 

3,500,000 m
3
 per annum is treated by the Nautilus final effluent treatment plant in order 

to remove suspended solids, particularly zinc, prior to the discharge. 

 

Nautilus chemical precipitation treatment system generally performs well in the removal 

of suspended solids, although on occation high levels of zinc cause breaches.  

  

Out of the individual production facilities, most water is used by the blast furnace, 

although casting and hot mill water consumption levels are also high.  The most 

complex effluents are arisen during coke-oven and blast furnace operation and most of 

the zinc is present within the blast furnace effluent. 
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4 WORLDSTEEL WATER MANAGEMENT PROJECT 

4.1 Introduction 

 

The World Steel Association (WSA) or worldsteel was founded on 19 October 1967 as 

a non-profit research organisation with headquarters in Brussels, Belgium.  In April 

2006, worldsteel opened a second major office in Beijing, China. Worldsteel is one of 

the largest and most dynamic industrial associations in the world. Worldsteel represents 

approximately 180 steel producers (including 19 of the world’s 20 largest steel 

companies), national and regional steel industry associations, and steel research 

institutes.  The members of worldsteel produce around 85% of the world’s steel output. 

 

The purpose of the association is to provide a forum for the world’s steel industry for 

addressing any strategic issues or challenges it is facing on a global basis.  In addition, 

worldsteel facilitates benchmarking of best practices amongst its members across many 

aspects of steel manufacturing.  The association promotes steel products and industry to 

customers, other industries, media bodies, and the general public and assists its 

members to develop the market for steel. Worldsteel also promotes a zero-harm 

working environment for steel industry employees and contractors. 

 

The use of freshwater as a performance indicator was proposed and data collected for 

the International Iron and Steel Institute’s 2005 Sustainability Report after it was 

realised that freshwater is a regional issue and the emphasis of issues differs greatly by 

region (quality, quantity, etc.) whereas the worldsteel (former International Iron and 

Steel Institute or IISI) sustainability performance indicators are global.  Water remained 

on the agenda of both the worldsteel member companies and the worldsteel itself, and at 

the 44
th

 meeting of the worldsteel Committee on Environmental Affairs (ENCO-44) in 

2006 worldsteel discussed the issue further and decided to form a small group with 

Sustainability Reporting Project Group’s (SRPG) support to look at the issues and scope 

the project, considering both quantity and quality.  It was agreed that a water 

management project was to be initiated and extra members would be sought from the 

member companies (IISI, 2007).   
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This chapter explains the initiation of the worldsteel Water Management Project and 

Working Group.  It describes the background of the project and explains how the 

benchmarking survey, created as a part of the project, was developed.  The author of 

this thesis worked as one of the long standing members of the group and was one of the 

members to significantly contribute to the final project report: Water Management in 

Steel Industry 2011.  Furthermore, the author contributed majorly in the development of 

the survey used for gathering data as part of the worldsteel water management project as 

explained later in the Chapter.  The journal articles written by the author about the 

worldsteel project and its findings can be found at Appendix I. 

 

4.1.1 Aim and Objectives 

 

The IISI Water Management Project was initially launched in order to prepare the 

steelworks for future public and political pressures relating to water which, together 

with establishing suitable key performance indicators (KPIs) for the use of the steel 

industry, is the main aim of the project. Other aims include demonstrating that the 

sustainability of the steel industry is not being compromised by their approach to water 

issues and providing best-practice exchange on water management (IISI, 2007). 

 

In other words, the aim was to achieve efficient water management now and for the 

future by: 

- Comparing members' policies and strategies on water management, 

- Benchmarking global rates of water use and consumption and 

- Evaluating further opportunities for water utilisation and consumption rate 

improvements by making an inventory of technologies applied. 

 

In line with the project aims, the objectives of the project were to: 

- Collect information, facts and material on important water issues for the steel 

industry in each region of the world, and on what the industry is doing to manage its 

water resources. 

- Include contributions made by the steel industry in providing water for communities 

in areas of water scarcity. 
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- Cover all aspects of water issues, including environmental, resource availability, 

commercial, operational, political, etc.  

- Ensure that the industry is prepared for current and expected future public and 

political discussions on water. 

The main deliverable of the project is a report that covers steelworks water-related 

issues, including: 

- Consumption rates,  

- Considerations on how water strategy is formulated,  

- Identification of state-of-the-art water technologies and practices and  

- Evaluation of further opportunities for water utilisation and consumption rate 

improvement (worldsteel, 2011). 

 

4.2 Project timeline and meetings 

 

The project was launched in 2007, with the first official meeting taking place in June 

2007.  By this meeting, the nomination process for the initial working group members 

was completed.  Several meetings were supposed to take place during 2008 and 2009, 

but due to the difficult economic times at the end of 2008 and 2009, meetings were held 

back and the delivery of the final report was delayed from the end of 2009 to May 2011.  

In the end, the working group met four times during the project as can be seen in Table 

4.1, although 9 meetings were planned at the beginning. 

 
Table 4.1 Project meeting dates and hosts 

 

Date Location Host 

June 2007 Brussels, Belgium worldsteel 

October 2007 IJmuiden, The Netherlands Corus 

March 2008 Vitória, Brazil ArcelorMittal Tubaraõ 

March 2010 Brussels & Gent, Belgium and worldsteel ArcelorMittal 
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4.3 Project team 

 

Mr. Hans Regtuit, Tata Steel has been the chairman of the project group and Ms. Åsa 

Ekdahl, worlsteel has had the role of the project manager.  The project group has been 

made up of the following companies and associations (the names in bold participated to 

the re-launch of the survey): ArcelorMittal, Baosteel, Blue Scope, China Steel, CMC, 

Corus
7
, Duferco, Essar, Hadeed (part of SABIC), HKM, Isdemir, POSCO, 

Rautaruukki, Sail, Salzgitter, Tata Steel, Tenaris, Ternium,Třinecké železárny, 

Usiminas, US Steel, VDEh and Voestalpine.  The global representation of the members 

with the meeting locations can be seen in Figure 4.1. 

 

Figure 4.1 Geographic distribution of the project team and meeting locations 

 

4.4 Pre-survey 

 

In the beginning of the project, May 2006, a pre-survey questionnaire was sent to the 

member companies in order to find out what the most important water-related issues 

being faced by the steel industry are.  48 member companies took part in the 

questionnaire and the main water related issues faced by these companies in order of 

importance were: 

                                            
7
 Tata acquired Corus during the project 
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1. Quality of wastewater 

2. Water recycling and minimisation of consumption 

3. Pollutants in the water 

4. Implementation of new water management technologies 

5. Cost-effectiveness of wastewater treatment technologies 

6. Quality of process water 

7. Reduction in fresh water consumption 

8. Wastewater treatment technologies 

9. Threat of shortage in water resources in future 

10. Change in approach to water strategy & policy (IISI, 2006) 

 

The above issues were broken down to specific key performance indicators, which were 

then used to build up the survey for data collection.  During the meetings it was decided 

that next to looking at water in process format and gather quantitative data, an 

additional part measuring quality of water management was to be developed.  This 

water management performance matrix was used to measure softer water management 

issues such as level of water metering and targeting, water manager and organisation, 

etc. in a quantitative format scale.                                         

 

4.4.1 Scope and Boundaries 

 

The reliability of any survey always depends on the reliability of the data.  Therefore in 

case of comparisons or benchmarking, it is necessary to take into account the quality, 

accuracy and origin of the data in order to avoid misinterpretation, wrong conclusions 

or unjustified generalisations. 

 

In this case the working group of the worldsteel Water Management Project was well 

aware of the fact that it is difficult to compare the use of water between different steel 

plants for several reasons.  These difficulties include: 

- Lack of (exact) monitoring data: The participants completed the questionnaires with 

the existing knowledge and in many cases estimates were used and in some cases 

entries were left open.  
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- Interpretations of the survey:  The survey was distributed with default value ranges. 

It was possible to fill in >90% of the survey in this matter.  For less predictable 

entries in e.g. (sub) processes, no default ranges were provided.  These data are 

especially hard to use for comparison between different steel plants.  

- Mistakes in submitting data: It is likely that in some cases questions were 

misinterpreted. By carefully scrutinising all answers and asking participants to re-

asses, a huge step in improving quality was achieved.  It is however possible that the 

report still contains some misinterpretation and inaccuracies. 

- The process configuration of steel companies varies a lot: Only data from 

comparable configurations can be compared.  In some cases the main processes 

concerning the water use are interlinked. 

- Completing information: The level of detail given varies a lot between participants. 

Sometimes only totals could be provided without the requested differentiations. 

Some participants had difficulty completing the data for reuse flows.  Some 

participants included storm water, some didn’t.  In some cases what was filled-in is 

not clear and the same concerns municipal water. 

- Difference in processes between steelworks: In cases of the use of treatment plants 

for different flows it is difficult to compare a certain flow from a certain process 

between different steel plants at the level of (sub) processes. 

 All these factors influence the results and must be taken into account when using the 

data. 

 

4.4.2 Methodology 

 

After the first attempt to collect water management data with the original web-based 

survey, the re-launch can be characterised by 7 different phases of: 

Phase 1: Development of the (new) Water management Survey. 

Phase 2: Request to all the worldsteel members to participate and to provide 

information. 

Phase 3: Analysis and handling the data. 

Phase 4: Development of water flow charts + extra data quality improvement request.  

Phase 5: Request for description of good practises (case studies). 

Phase 6: Analysis, handling and comparison of the final data. 
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Phase 7: Writing of the report. 

4.4.2.1 Phase 1: Development of the (new) Water Management Survey 

 

The first phase of the project concentrated on what kind of data are required in order to 

carry out benchmarking and how high-quality data could be collected in a way that 

would provide data that are understandable and suitable to compare.  Because of the fact 

that the first attempt to collect data with a web-based survey failed, lessons were learned 

and a more user-friendly type of survey was developed. The reason for using Microsoft 

Excel as the base of the survey was that it’s flexible, well known and used all over the 

World.  The new survey was developed by the Environmental Management Department 

of Tata Steel in Ijmuiden, the Netherlands, based on the initial survey that was 

developed by the author of this thesis.  Furthermore the water management matrix was 

developed solely by the author. 

 

Water consumption, water use, water discharge etc. in the steel industry depend very 

much on several different factors.  Therefore it is difficult to use one fixed survey 

format to collect data from all the different plants. The water use of a steel plant 

(inflows/outflows/re-use or not/applied techniques etc.) depends on several factors, 

including; local legislation, geographical situation, economical situation, the types of 

water available and (in many cases the unique) combination of processes and sub-

processes. 

 

The survey was built so that all identified processes, sub-processes, water types, 

inflows, re-use flows, etc. had their own entry to fill-in.  Whenever possible a default 

range was given. But as some things cannot be predicted, especially not when it comes 

to water management, the survey also allowed to fill-in data outside the range, 

especially when no default values were predicted.   

 

To understand and complete the survey in a correct way, a manual with examples etc. 

was provided as a tool, together with the survey. 

 

The following data were asked for in the survey. 

General information about the plant 
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- Name / address etc. 

- Contact 

- Annual production of crude steel 

- Annual intake and discharge numbers (distinction in types of water) 

 

Specific information about the processes 

- Kind of processes (like coke making, casting etc) and annual production 

- Kind of sub-processes (like once-through cooling
8
, quenching etc.) 

- Water intake (flows in m
3
/day) 

- Water variety (seawater, potable, ground-water etc.) 

- Flows of water re-use (where from/where to/daily amount) 

- Water discharge (destination: surface water or ext. sewage works, daily flows) 

 

This part of the survey was especially difficult to complete.  To be able to compare the 

numbers from different sites, some conditions had to be taken into account.  The most 

important conditions were: 

- Intake water = water from outside the plant e.g. fresh water like potable water, 

groundwater, seawater. 

- Re-use water = process water discharged is reused in another process.  This part was 

left open to the participants and they were allowed to qualitatively describe the 

outflows for re-use, origin and destination. 

- Total inflow = total intake + re-use water.  The total inflow is a number that can be 

compared very well between the same processes from different plants. 

- Outflows were divided into discharge to sewage works, discharge to surface water, 

outflow for re-use, and outflow to other.  With sewage works is meant an external 

sewage works.  Every treatment plant inside the facility is considered not a 

destination but a treatment.  So, water that is treated in a biological treatment plant 

and is discharged to surface water, is supposed to be an outflow to surface water and 

the (biological) treatment is supposed to be considered as the post treatment 

technique. 

- “Outflow to other” is for all other destinations.  

                                            
8
 In once-through cooling the water is discharged after use, whereas in recirculating cooling, the water 

lost during cooling needs is topped up by using make-up water  
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Techniques applied 

This part of the questionnaire deals with all water treatment techniques applied. A clear 

distinction is made between: 

- Water pre-treatment techniques  

- Water post-treatment techniques  

 

Water quality 

This part of the questionnaire deals with the permit values of the effluents 

(concentrations of the most common compounds) in the effluents of different (sub) 

processes. 

 

Water Management Matrix 

The purpose of this part of the questionnaire was to find out about the qualitative water 

management issues within the steelworks and report them in a quantitative way to 

enable comparison between different steelworks.  The matrix was as a self-assessment 

tool, rating perceived water management efforts within the company on a 5 -step scale, 

ranging from 0 to 4.  Score of 0 reflects no interest on the specific topic in question, 

where as score of 4 reflects maximum interest.  The topics rated were: 

- Water Management & organisation 

- Water Policy 

- Water Metering 

- Water Analyses 

- Future investment plans 

- Procurement 

- Strategic planning 

- Maintenance 

- Reporting 

The Water Management Matrix was developed by the author and the development 

began by using a utility matrix as a base that the author had previously developed in co-

operation with a senior lecturer of the University of Glamorgan.  Several versions of the 

Matrix were developed during the Water Management Project and feedback from other 

water professionals was used to improve it prior to this final version. 
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Feedback 

For continuous improvement reasons at various stages of the survey the participants 

were asked to provide feedback on the survey.  Further explanations about their survey 

were done on an interactive basis.  

 

4.4.2.2 Phase 2: Request to all the worldsteel Members to Participate and 

Complete in the Survey 

 

The second survey was launched and sent to all the members of the worldsteel in July 

2009.  In spite of the fact that this was already a second attempt it soon became clear 

that there was serious interest in the subject but that the timing for the re-launch was 

bad because of the holiday period.  Therefore the deadline was extended several times.  

In the end, data was received from 29 participants, ranging from steelworks with only a 

hot rolling mill to fully integrated steel plants.  Steelworks from several countries and 

regions took part in the survey, including: ArcelorMittal, Baosteel, BlueScope Steel, 

China Steel Corporation, CMC, Corus
9
, Duferco, Essar, Hadeed (part of SABIC), 

HKM, Isdemir, POSCO, Rautaruukki, Sail, Salzgitter, Tata Steel, Tenaris, Ternium, 

Třinecké železárny, Usiminas, US Steel, VDEh and Voestalpine.  The participants were 

asked to provide data from the last ‘full’ production year.  For some steelworks this was 

2008, but due to the downturn, some of the data provided as a part of the survey dates 

back to year 2007. 

 

4.4.2.3 Phase 3: Analysing and Handling the Data 

 

Different models were developed to analyse and handle the data and make it 

comparable.  As was anticipated, during the process of handling the data, it became 

clear that it is very difficult to compare steel plants when those plants don’t have the 

same configuration.  It also became clear that it is much more important to see the 

differences in water management on the level of main processes like coke making, 

casting or hot rolling instead of the level of the water management of the entire plant. 

From that moment the working group decided to focus on the main-processes and 

underlying sub processes.  To compare the data, the data were calculated as the usage of 

                                            
9
 Tata acquired Corus during the project 
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water in m
3
/tonne product for each process.  Based on the inflows and outflows the loss 

was automatically calculated.  All the surveys were carefully manually checked.  

Unfortunately in a lot of cases, many questions and uncertainties about data remained.   

Therefore the project group decided to add an extra quality improvement step (Phase 4).  

 

4.4.2.4 Phase 4: Development of the Water Flow Charts + Extra Quality 

Improvement Step 

 

For each participant a water flow chart was built.  The objective was to show the 

participants their completed survey in one picture.  Mistakes and misinterpretations in 

this way could easily be identified. 

 

All the participants received their own water flow chart together with additional specific 

questions.  As an example the flow chart of the water management system from an 

integrated steel plant was also distributed.  In reply to this information about 80% of the 

participants corrected their data.  This phase was a crucial step to improve the quality of 

the received data.  

 

4.4.2.5 Phase 5: Request for Description of Good Practices 

 

Initially the objective of the water management working group was to identify the best 

practice for water-usage in the steel industry.  Because of reasons mentioned before, this 

objective soon became far too ambitious.  Too many things differ from site to site like 

the already mentioned legislation, geographical situation, economical situation, and 

especially the availability and quality of the water.  In many cases, the unique 

combination of sub-processes makes comparison even harder.  In the received surveys it 

was very hard to find two comparable configurations.  Based on this observation the 

working group decided to look for good practices instead.  Based on the received 

information good practices were identified and participants were asked to describe those 

practices in detail. 
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4.4.2.6 Phase 6: Analysing, Handling and Comparing the Final Data 

 

The following information was extracted from the data: 

1. For each steel plant the water-usage was calculated in m
3
/tonne of product for each 

process. 

2. Comparison of steel plant configuration, total production and total water-usage 

was made. 

3. Comparison of data at the level of the water consumption of the main processes 

(All results are expressed in m
3
/tonne of specific product. As an example, water 

usage in coke making is expressed in m
3
/tonne of coke and the blast furnace water 

usage as m
3
/tonne of pig iron). 

4. A software selection tool was developed to select pre treatment techniques (on the 

level of (sub) processes/kind of water/applied techniques etc. 

5. A software selection tool was developed to select post treatment techniques (on the 

level of (sub) processes/kind of water/applied techniques etc. 

6. A software selection tool was developed to select water quality (on the level of 

sub-processes. 

7. Comparison of the water management efforts of the participants was made. 

8. Finalised and updated water flow charts of all the participating steel plant were put 

together. 

9. A database with all the presented and derived data was set up. 

 

4.4.2.7 Phase 7: Writing of the Report  

 

The writing of the report was carried out over a year as a co-operation between the 

water management project members and the worldsteel.  The report was published in 

May 2011. 

 

4.5 Results 

 

These results outline differences in water quantity and quality performance in the 29 

steelworks that took part in the survey.  Port Talbot Steelworks’ results are listed as 

number 24 within the results. 
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4.5.1 Survey Data 

 

The 29 steelworks that completed the survey represent around 8% or 110.9 million 

tonnes of the World’s annual steel output. The number of different facilities within the 

participating steelworks together with combined production figures for the different 

facilities can be seen in Figure 4.2.  All together 17 integrated steel plants took part in 

the survey as indicated by coke making, sintering, blast furnace and basic oxygen 

facility numbers.   

Figure 4.2 Number of different facilities within the participating steelworks (Suvio et al., 2010a) 

 

As seen in Table 4.2, the highest intergrated individual production figure was 14.9 

million tonnes per annum and lowest 2.5 million tonnes per annum.  Out of the 12 non-

integrated steel plants, 8 steel plants use an electric arc furnace (EAF).  Out all the 29 

steel plants, 2 use both, the basic oxygen and electric arc furnace.  Out of the non-

integrated steel plants, the highest individual production figure was 4.6 million tonnes 

per annum and lowest 0.1 million tonnes per annum.  The average overall production 

figure for the participating steel plants was 3.8 million tonnes per annum. 
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Table 4.2 Data from worldsteel water survey (Suvio, et al., 2010a) 
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As can be seen in Table 4.2, consumption
10

 and discharge performance figures are 

based on m
3
/tonne of crude steel (m

3
/ts).  However, this concept often refers to steel 

produced via the basic oxygen plant route or electric arc furnace route.  In some cases 

however, due to the lack of the above production facilities, consumption is expressed as 

the next possible production unit, e.g. as a tonne of rolled product.  With individual 

facilities, the water related figures are always outlined as a tonne of product of the 

facility in question. 

 

4.5.2 Calculations for Water Related Performance 

 

In the following calculations, data from steel plant number 16 has been excluded, due to 

not being able to balance its flow data.  Therefore the following calculations include the 

remaining 28 participants.  Other data for plant number 16, including the water 

management matrix score is outlined as part of the results. 

 

As seen in Table 4.3, the annual water intake or consumption within the 28 steel plants 

totals little over 3 billion m
3
 of water or 28.4 m

3
/ts.  The annual water inflow to the 

facilities of the different steel plants averages 29.7 m
3
/ts.  The remaining 1.3 m

3
/ts 

difference is achieved by water reuse, which creates a 4.4% portion of the total water 

intake.  

 

Table 4.3 Calculations for water related performance 

 

Calculations for 28 steel plants 

Annual steel production 110.1 million tonnes 

Annual water intake                      3,129,063,984m
3
 28.4m

3
/ts 

Annual water reuse                          143,920,058m
3
 1.3m

3
/ts 

Annual water inflow                     3,272,984,042m
3
 29.7m

3
/ts 

Annual once-through cooling       2,560,847,489m
3
 23.2m

3
/ts 

Annual total discharge                  2,801,462,260m
3
 25.4m

3
/ts 

Annual discharge surface water    2,764,914,272m
3
 25.1 m

3
/ts 

Annual discharge sewage                  36,547,988m
3
 0.3 m

3
/ts 

Annual water loss                            297,349,055m
3
 3.0m

3
/ts 

 

                                            
10

 Consumption within this chapter refers to: intake water, when a complete steelworks is in question and 

actual water needed by the process or facility (intake + reuse water) when talking at process level. 
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Out of the 28.4 m
3
/ts of water consumed by the steelworks, 25.4 m

3
/ts is discharged, 

leaving a loss of 3.0 m
3
/ts or a total of just under 300 million m

3
, which is a 10.5% 

fraction of all the water consumed.  Out of the total 25.4 m
3
/ts of discharge, a large 

portion of 25.1 m
3
/ts is discharged to surface waters and the remaining 0.3 m

3
/ts is 

discharged via sewerage networks. 

 

4.5.3 Steel Plants’ Water Consumption and Discharge  

 

As seen in Figure 4.3, water use and discharge varies greatly between different 

steelworks.  Consumption ranges from under 1 to near 150 m
3
/ts with a standard 

deviation of 36.9 m
3
/ts, therefore indicating a great spread in the data. 

 

When analysing the survey results, a distinction can be made between two different 

steel production routes.  The first one is the basic oxygen steel making (BOS) route or 

the integrated steel making route and the other electric arc furnace (EAF) route.  Out of 

the total 110.1 million tonnes of steel produced by the 28 steel plants that participated in 

the survey, the 17 integrated steel plants that took part produced 94.8 tonnes or 5.6 

million tonnes on average per annum, whereas the non-integrated plants produced a 

total 15.3 million tonnes per annum or an average 1.4 million tonnes per annum. 

 

 

Figure 4.3 Steel Plant water consumption and discharge figures 
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Only 10 steel plants out of 28 consume and discharge more than the average amount of 

water per tonne of steel (m
3
/ts) (Figure 4.3).  Out of these, 4 are actually close to the 

average water consumption and discharge line.  15 steel plants consume and discharge 

well under 10 m
3
/ts, out of which 9 steel plants consume and discharge very little, under 

5 m
3
/ts.   

 

Especially with the steel plants with higher consumption and discharge figures, the 

water consumption and discharge figures are very close to each other as can be seen in 

Figure 4.3. With the steel plants that are consuming much less water, the water 

discharge figures are often considerably lower than the consumption figures.  This is 

likely to be due to lack of water in the areas where the steel plants are located, which 

leads to use of closed-loops and water recycling and reuse solutions in the steel plants’ 

processes. 

 

4.5.4 Integrated versus Non-Integrated Steel Plants 

 

As seen in Table 4.4, there are few distinctive differences between water performance at 

integrated and non-integrated steelworks. The non-integrated steel plants only reuse an 

average of 0.4 m
3
/ts, whereas the integrated steel plants reuse 1.5 m

3
/ts.  Also the annual 

once-through cooling figures are higher for non-integrated plants at 25.8 m
3
/ts, 

compared to the integrated figure of 22.8 m
3
/ts.  On the other hand the non-integrated 

steel plants lose less water at 1.6 m
3
/ts, against the 2.9 m

3
/ts that is lost by the integrated 

plants. Furthermore, the non-integrated steel plants hardly discharge water to sewage, 

where as the same figure for the integrated plants is 0.4 m
3
/ts. 

 

4.5.5 Water Performance per Facility 

 

As with individual steelworks, there are great differences between the average water 

consumption and discharge figures of the facilities within the steelworks (Figure 4.4).  

As can be seen in the Figure, the supporting functions described as ‘rest’ consume by 

far most of the water with an average figure of 24.3 m
3
/tonne of product, which is well 

beyond any of the actual facilities.  The ‘rest’ supporting functions to steel plants’ 

operations often include power generation, equipment and indirect cooling acitivities.   
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When looking at water consumption and discharge of the actual facilities within the 

steel plants, the COREX figures with 18.1 m
3
/tonne of product, stand out much higher 

than the rest, it should however be noted, that only one steel plant (number 12) with a 

COREX process took part in the survey.  Therefore, it has not been included in the 

results.  

 

Table 4.4 Water calculations for integrated and non-integrated steel plants 

 

Calculations for 17 integrated and 10 non-integrated steel plants 

Type of plant 

Annual steel production 

Integrated 

94.8 tonnes/annum 

Non-integrated 

15.3 tonnes/annum 

Unit m
3
 m

3
/ts m

3
 m

3
/ts 

Annual water intake                      2,706,844,277  28.6  422,219,707 27.6 

Annual water reuse                          138,215,627
 

1.5 5,704,431 0.4 

Annual water inflow                     2,845,059,903 30.0 427,924,139 28.0 

Annual once-through cooling       2,165,353,929 22.8 395,493,560 25.8 

Annual total discharge                  2,403,153,856 25.3 398,308,404 26.0 

Annual discharge surface water    2,366,763,913 25.0 398,150,359 26.0 

Annual discharge sewege                  36,389,943 0.4 158,045 0.0 

Annual water loss                            272,391,924 2.9 24,957,131 1.6 

 

Of the remaining production facilities, a good assessment of where most water is being 

consumed, discharged and lost can be carried out.  As seen in Figure 4.4, most of the 

major steel plants’ production facilities consume between 3 and 5 m
3
/tonne of product.  

As expected, the Blast Furnace has the highest figure at 5.7  m
3
/tonne of product, 

followed by Hot Rolling with 5.0 m
3
/tonne of product, Cold Rolling with 4.6 m

3
/tonne 

of product and Cokemaking with 4.5 m
3
/tonne of product.  The discharge figures for 

these same facilities are 4.8 m
3
/tonne of product for Blast Furnace, 4 m

3
/tonne of 

product for Hot Rolling, 3.5 m
3
/tonne of product for Cold Rolling and 3.4  m

3
/tonne of 

product for the Cokemaking.  The smaller water users include Baxic Oxygen 

Steelmaking, Sintering, Pelletising and Briquetting as can be seen in Figure 4.4.   
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Figure 4.4 Steel plants water consumption and discharge figures for facilities 

 

4.5.6 Coke Making 

 

When looking deeper into some of the individual facilities, it can be seen that in some 

cases few individual plants have much higher consumption figures than the others.  This 

is the case for example with the cokemaking plants, where the three most consuming 

plants rate as follows: 

1. 37.1 m
3
/tonne of coke (plant number 7) 

2. 16.0 m
3
/tonne of coke (plant number 8) 

3. 4.5 m
3
/tonne of coke (plant number 19) 

 

As mentioned before, the average water consumption figure for the 17 cokemaking 

plants that took part in the survey is 4.5 m
3
/tonne of coke, if however, the highest value 

is dropped out, the consumption drops down to 2.5 m
3
/tonne of coke and if two of the 

most consuming plants are left out and an average calculated for the 15 remaining 

plants, the figure drops down to mere 1.6 m
3
/tonne of coke.  Taken that the two highest 

consumption figures are multiple times higher than any of the rest, it appears that this 

last figure is rather more correct as an average consumption for coke making than the 

original 4.5 m
3
/tonne of coke, which would make the coke making a minor consumer of 

water in relation to most of the other facilities within the steelworks. 
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Figure 4.5 Coke making water usage breakdown 

 

As outlined in Chapter 3, water does however have a very important function in coke 

making and is used for two very important functions, namely gas cleaning and 

quenching.  As seen in Figure 4.5, out of the total water used in coke making, an 

average 35% of the consumed water is used for quenching, where as the same figure for 

gas cleaning is 30%, the rest is used for cooling, etc.  

 

When comparing the water usage between the different processes in coke making and as 

follows within the blast furnace operations, only plants that listed separate consumption 

figures for all the main processes within the facilities have been included in the 

calculations.  However, these total in both cases ten or more steel plants. 

 

4.5.7 Blast Furnaces 

 

Although not with as clear a margin as with the coke making plants, the blast furnaces 

have a few bigger consumers, with the biggest consumption figures as follows: 

1. 28.2 m
3
/tonne of iron (plant number 3) 

2. 22.1 m
3
/tonne of iron (plant number 10) 

3. 7.1 m
3
/tonne of iron (plant number 26) 

 



Water in Steelworks  P. Suvio 

 

 
106 

 

 

21 % 

12 % 

62 % 

5 % 

Blast Furnace Water Usage 

Gas cleaning Circulating cooling Once-through cooling Rest 

When normalising the average blast furnace water consumption figures without the 

biggest consumer, a consumption figure of 4.3 m
3
/tonne of iron is achieved, the same 

figure without the two biggest consumer is 3.1 m
3
/tonne of iron.  Due to the nature of 

the blast furnace operation, large volumes of water are used for cooling, the blast 

furnace hearth cooling being the biggest consumer.  As seen in Figure 4.6, 62% of the 

water inflow to the blast furnaces is used for once-through cooling.  Only 12% of the 

water is used by circulating cooling.  As with coke making, blast furnace gas cleaning 

requires large volumes of water and as seen in Figure 4.6, 21% of all the water 

consumed at the blast furnace is used for this purpose.  

 

As with coke making and blast furnace, similar comparisons could be carried out for 

Basic Oxygen Furnace process looking at water consumption in gas cleaning and 

cooling duties, as well for Hot Rolling and Cold Rolling, looking at how the once-

through and circulating (closed-loop) water usage has been divided. Coke Making and 

Blast Furnace operations were nevertheless chosen here as they are the facilities with 

most varying water consumption and biggest environmental factors, including crucial 

gas cleaning requirements. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Blast furnaces water usage breakdown 

 

4.5.8 Cooling Water Usage 

 

Overall, it should be noted that the water consumption and discharge varies hugely 

depending on the plant, configuation, geographic situation (availability of water) and 



Water in Steelworks  P. Suvio 

 

 
107 

 

 

local legislation.  Large volumes of water are consumed by once-through cooling 

especially at locations near the seaside (Figure 4.7), while especially when water is 

scarce, closed-loops and circulated cooling plays an important part and minimum 

amount of water is consumed or used as a make-up water.  

 

As outlined by Figure 4.7, one can distinguish that large integrated steel plants are using 

by far most of their water for cooling purposes and most of this cooling is done with 

once-through cooling systems. Most of the water used for the once-through cooling, 

next to sea water, is other non-potable water, which in most cases is fresh water from 

rivers and reservoirs. Out of the 10 biggest once-through cooling users,, 5 are using sea 

water for their cooling, 3 other non-potable and 1 is using brackish water.  Other non-

potable water is mostly used for non-once-through cooling activities. 

 

As mentioned before, out of the total water consumed at the steel plants, on average 

82% of water is used for once-through cooling.  It should be noted however that these 

figures are different for BOS and EAF routes at 80% and 93% respectively.  

 

Large portions of the water used for once-through cooling is used for cooling purposes 

at the supporting functions, including cooling for power generation.  Figure 4.4 outlines 

the water-related performance of the supporting functions as ‘rest’ in relation to the 

other facilities within steelworks. 

 

4.5.9 Water Management Matrix 

 

As a part of the water management survey, the participants were requested to fill-in a 

water management matrix (Table 4.5) as a form of self-assessment.  The matrix was 

developed by the author of this thesis and its purpose was to provide results that give an 

understanding of the importance of the water management activities within the 

organisation, next to the hard data gathered using the survey.  As can be seen in Table 

4.5, the participants were asked to rate 9 different topics on a scale of 0 to 4, where 

score zero is equating to very low level of water management activities on the specific 

area and four equating to a high level of water management activities.   
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Figure 4.7 Water consumption per plant between once-through and other water usage 
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Table 4.5 Water management matrix 

 

 

 0 1 2 3 4 

Water 

Manager & 

Organisation 

Unclear 

responsibilities 

Part-time water manager 

with limited authority or 

influence 

Clear responsibilities with 

part-time water manager 

Dedicated, full-time water 

manager with influence and 

power 

Full-time water manager and 

high-powered water committee 

Water policy No policy An unwritten set of 

guidelines 

Policy references in 

environmental or other 

policies 

Formal water policy, but no 

active review process 

Formal water policy, regular 

reviews and commitment of top 

management 

Water 

Metering 

Billing meters Billing meters with limited 

sub-metering (e.g. potable 

water meters only) 

Substantial metering and 

sub-metering 

Substantial metering and sub-

metering, water metering 

reporting party/division 

Extensive metering on all the 

facilities, water metering data 

reported 

Water 

Analysis 

Meters checked 

against utility bills 

Some analysis reference to  Water performance reports 

issued internally 

Water performance compared 

against historical data and 

benchmarking 

Advance automated monitoring 

and targeting with alarming & 

trend analysis 

Future 

Investment 

Plans 

Nil Anything with quick 

payback 

Capital spending on 

replacements only 

Some planned investments to 

reduce water consumption 

and/or improve water efficiency 

Major planned investment(s) to 

reduce water consumption 

and/or improve water efficiency 

Procurement Water efficiency not 

considered when 

purchasing new 

plant/equipment 

Water efficiency 

occasionally taken into 

consideration in new 

purchases  

Water efficiency 

considered on utility plant 

only e.g. water treatment 

plant, etc. 

Procurement policy provides 

clear guidance on water 

consumption for new purchases 

Procurement policy including 

water and environmental 

performance 

Strategic 

Planning 

Water  management 

planning is short-

terms only 

Strategic planning for 

water management is long-

terms but isolated from the 

other planning processes 

Water management only 

loosely associated with 

overall strategic planning 

Water management function is 

clearly established but not fully 

integrated into strategic 

planning 

Full strategic plan for water in 

place with times scales and 

resources agreed and allocated 

Maintenance No maintenance plan, 

leaks fixed when and 

if resources become 

available  

Periodic maintenance 

inspections, leaks are 

given low priority 

Maintenance plan exists, 

some preventative 

maintenance carried out, 

leaks are given moderate 

priority 

Comprehensive preventative 

maintenance and inspection 

plan, leaks are given high 

priority 

Comprehensive preventative 

maintenance and inspection 

plan, leaks receive special 

priority and resources 

Reporting No periodic reporting 

of water statistics to 

senior technical or 

operations 

management 

Annual reporting of water 

issues to senior technical 

or operations management, 

e.g. Manager Steelmaking 

Monthly reporting of water 

issues to senior technical 

or operations management, 

e.g. Manager Steelmaking 

Weekly reporting of water 

issues to senior technical or 

operations management, e.g. 

Manager Steelmaking 

Daily reporting of water issues 

to senior technical or operations 

management, e.g. Manager 

Steelmaking 
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Table 4.6 Water management matrix results (Suvio et al., 2010a) 
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As can be seen in Table 4.6, the average scores for the nine different water management 

areas vary from 2.4 to 2.9. On average the participants rated their efforts in Maintenance 

and Future Investment Plans the highest, with an average score of 2.9, whereas the 

lowest average score was in Reporting with 2.4 followed by Procurement with a score 

of 2.5.  As can be seen in Table 4.6, some steel plants assessed themselves to score in 

all areas at 3 or 4 out of 4, giving them a fully green line and an average percentage 

score around 80-90% out of the full 100%.  These plants include numbers 1, 2, 10, 14 

and 23.   

 

On the other hand, there are a few plants that scored all but one of the nine diffferent 

water management areas at 0-2 and have an average percentage score around 30-50% 

(Table 4.6).  These plants include numbers 4, 6 and 25. The average score for all the 29 

plants is 2.7 or 68%. 

 
Figure 4.8 Water management matrix results

11
 

 

As can be seen in Figure 4.8, there is a wide range of difference between the scores of 

different steel plants, with plant number 6, scoring themselves lowest at only 31% and 

plant number 23 scoring themselves highest at 94%.  The water management matrix 

was built so that the expected average score would be around 50%, what is striking 

                                            
11

 The production figures of the specific facility are visible within the bars in million tonnes/annum 
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however is that the participants rated their water management efforts rather high and 

averaged a score of 68%. 

 

Out of the 17 integrated plants, only 6 are in red in Figure 4.8, namely plant numbers 

19, 20, 21, 24, 25 and 27.  Out of the 11 non-integrated plants, 6 are in red, which 

would indicate that overall, water is deemed to be somewhat less important at integrated 

than at the non-integrated steel plants but this might merely reflect the fact that much 

less water is consumed in non-integrated steelworks.  As can be seen in the Figure, there 

is no link between the water consumption per tonne of steel and the actual steel 

production tonnages, as there are low and high steel producers in both ends of the graph. 

 

In order to expand on the water management matrix results, the Water Management 

Working Group members were asked to give multipliers on a scale of 0 to 4 to the nine 

different water management topics based on how important they thought that the 

specific topic was for the overall water management within steel industry.  As seen in 

Table 4.7, when averaging the multiplier assessment results, it can be seen that the 

working group members thought that the Water Management and Organisation was by 

far the most important topic within the matrix and therefore the most important topic for 

the water management within steelworks.  Water Metering, Analysis and Maintenance 

was also rated fairly high, where as especially Procurement and Future Investment Plans 

were not considered that important for overall water management at steelworks. 

 

Table 4.7 Water management matrix multipliers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water Performance Matrix Multipliers 

Topic Average assessment 

Water Manager & Organisation 4.0 

Water Policy 2.0 

Water Metering 2.8 

Water Analysis 2.5 

Future Investment Plans 1.5 

Procurement 1.5 

Strategic Planning 2.0 

Maintenance 2.5 

Reporting 1.8 
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Water management scores were further re-analysed using the multipliers as a help to 

give them more meaning and the results of the re-analysis can be seen in Figure 4.9.  As 

can be seen in the figure , the average results rose to 71%, while the overall variation of 

the results got smaller, the lowest results being 42% for plant number 6 and 97% for 

plant number 23.  Overall the order of the different steel plants did not change a lot, 

apart from few exceptions, including plant number 1, whose score dropped from 81% to 

65.8%.  This drop indicates that the Water Management Matrix areas that were deemed 

important by the Water Management Working Group, were assessed lower than the 

other areas by the steel plant number 1. 

Figure 4.9 Water management matrix results with multipliers 

 

4.6 Conclusion 

 

Water Management Working Group ran from June 2007 until May 2011 during which a 

successful water benchmarking survey was compiled, data received and results 

analysed. 

 

29 steel plants, including 17 integrated and 12 non-integrated, completed the survey, 

representing around 8% or 110.9 million tonnes of the World’s annual steel output.  
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It was found that most of the water consumed during steel making is used for supporting 

functions such as cooling for power generation. 

Water has an important function in iron making for environmental purposes, with coke 

making, for example, using 30% of all of its water for gas cleaning purposes. 

 

Out of the main production facilities the Blast Furnace is one of the highest overall 

consumers and uses 62% of the consumed water for once-through cooling. 

 

Most of the integrated steel plants use large volumes of water for once-through cooling, 

rather than using closed-loop water cooling systems. 

 

Rolling activities consume and lose great amounts of water via direct water cooling. 

 

Most of the steelworks rate their water management activities high, despite of their 

water related performance (m
3
/ts) figures. 
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5 METAL REMOVAL FROM WASTEWATER BY 

CHEMICAL PRECIPITATION 

5.1 Introduction 

 

There are a number of technologies available for the removal of metals from wastewater 

but Eckenfelder (2000) states the most commonly employed for most of the metals is 

conventional precipitation by an addition of, as an example, hydroxide OH
-
, sulfide S

2-
 

or carbonate CO3
2-

, with hydroxide being the most common option.  The most common 

hydroxide precipitating agents are (US Army Corps of Engineers, 2001):  

- Calcium Hydroxide (Hydrated Lime) - Ca(OH)2, 

- Sodium Hydroxide - NaOH and 

- Magnesium Hydroxide - Mg(OH)2. 

 

As is often the case, when metals enter the treatment process, they are in a stable, 

dissolved form and are unable to form suspended solids.  The goal of metal-containing 

effluent treatment, by hydroxide addition as an example, is to adjust the pH via raising 

the hydroxide ion concentration of the water so that the metals form insoluble 

precipitates. Once the metals are in solid or insoluble form, they can be easily removed, 

leaving the water with low metal concentrations.  Metal precipitation is primarily 

dependent upon two factors: the concentration of the metal and the pH of the water.  

According to Ayres et al., (1994) metals are usually present in effluent water in dilute 

quantities (1 - 100mg/L) and at neutral or acidic pH values (<7.0). Both of these factors 

are disadvantageous for metals removal. However, when hydroxide ions are added to 

water, it becomes alkaline, and the dissolved metals present in the water can form metal 

hydroxide solids, as outlined by the following hydroxide metal precipitation reaction for 

cationic metals in valence II: 

 

M
2+

 + 2NaOH  M(OH)2 (s) + 2Na
+
   (1) 
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The behaviour of metals in aqueous solution is controlled by their chemical speciation, 

i.e. the molecular and ionic species that they form.  Metal cations (M
z+

) will hydrolyse 

to form complexes with the hydroxide ion as a function of pH and the forming 

complexes can be cations, neutral molecules, as well as anions.  The different 

complexes formed are mainly governed by the valence of the metal (Z+) and metal ion 

concentration in the solution (Dyer et al., 1998). 

 

Large volumes of water are utilised during the operation of complex integrated 

steelworks, which results in discharge of effluents containing low concentrations of 

metals in solution. As described in Chapter 3, low metal-concentration effluent is 

generated in most of the facilities at Tata Port Talbot Steelworks and the final effluent is 

currently treated by a conventional alkali precipitation and flocculant sedimentation 

system, especially to target zinc in solution.  Effluent arisen from steelworks can be 

effectively treated by this type of chemical precipitation, which is particularly feasible 

for treating large volumes of metal containing effluents due to its simplicity and low 

cost. 

 

5.2 Metal Solubility 

 

 A condition for successful precipitation is that the metal salts formed are so insoluble 

that any residual concentration of dissolved metal ions is small enough to fulfill 

legislative requirements (Hartinger, 1994). 

 

In chemical precipitation, metals are often precipitated as the hydroxide, through the 

addition of slaked lime (CaOH2) or caustic soda (NaOH) to a pH of minimum solubility.  

An example of solubility products with their solubility product constants (Ksp) for free 

metal concentrations in equilibrium with hydroxides can be seen in Table 5.1. 

 

The degree of precipitation of metal hydroxides relates directly to the hydroxide ion 

concentrations i.e. pH, but the minimum solubility and the pH required for achieving it 

varies with the metal species and the precipitation format (type of alkali reagent used) in 

question.  According to Metcalf and Eddy (2003) it is important to remember that the 
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minimum solubility will also vary depending on the other constituents in the 

wastewater.  Metal hydroxides precipitate out of solution when they reach their 

solubility limit, which occurs at a certain pH (Kuyucak, 1995) as seen in Figure 5.1, 

which outlines a solubility curve for the most common metal hydroxides and sulphides.   

 

Table 5.1 Solubility products with their solubility product constants for free metal ion 

concentrations in equilibrium with hydroxides at 25ºC (Adapted from Metcalf & Eddy, 2003) 

 

Disinfectant Half reaction Solubility product 

constant (Ksp) 

Cadmium hydroxide Cd(OH)2  Cd
2+

 + 2OH
-
 7.2×10

-15
 

Chromium hydroxide Cr(OH)3  Cr
3+

 + 3OH
- 

6.3 x 10
-31 

Copper hydroxide Cu(OH)2  Cu
2+

 + 2OH
- 

4.8×10
-20 

Iron (II) hydroxide Fe(OH)2  Fe
2+

 + 2OH
-
 4.87×10

-17
 

Lead hydroxide Pb(OH)2  Pb
2+

 + 2OH
-
 1.43×10

-20
 

Nickel hydroxide Ni(OH)2  Ni
2+

 +2OH
- 

5.48×10
-16 

Zinc hydroxide Zn(OH)2  Zn
2+

 + 2OH
- 

1.2 x 10
-17 
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Figure 5.1 Solubility of metal hydroxides and sulphides (Eckenfelder, 2000) 

Table 5.2 lists theoretical solubilities for selected metals using different chemicals with 

different functional elements to carry out the precipitation.  As seen in the Table, metal 

sulphides provide lower metal concentrations than metal hydroxides with most of the 

main metals.  Carbonate works only with some metals, but some cases, Pb
2+

 and Zn
2+

 

for example, give better results in metal removal from the solution than hydroxide.  The 

problem occurring with carbonate alkalis is that if there are high levels of acidity in the 

effluent, carbonate compounds can only raise the pH to 8.5 to 9.0, which is often not 

always sufficient for metal precipitation (Brown et al., 2002; Skousen et al., 1990).  The 

treatment of low acid or non-acid effluent, such as steelworks final effluent can however 

be carried out by using carbonate reagents.  If the choice is made between hydroxide 

and sulphite however, the latter gives better treatment efficiency as seen in Figure 5.1. 

 

Table 5.2 Theoretical minimum solubilities achieved by using reagents with different functional 

element (adapted from Lanoutte, 1977; US Army Corps of Engineers, 2001 and Bullen, 2006) 

 

Metal 

 

Solubility of metal ion (mg/l) 

As Hydroxide As Sulphide As Carbonate 

Cadmium 

Chromium 

Cobalt 

Copper 

Iron 

Lead 

Manganese 

Mercury 

Nickel 

Silver 

Tin 

Zinc 

Cd
2+ 

Cr
3+ 

Co
2+

 

Cu
2+

 

Fe
2+

 

Pb
2+

 

Mn
2+

 

Hg
2+

 

Ni
2+

 

Ag
+
 

Sn
2+

 

Zn
2+

 

2.3 x 10
-5

 

8.4 x 10
-4

 

2.2 x 10
-1

 

2.2 x 10
-2

 

8.9 x 10
-1

 

2.1 

1.2 

3.9 x 10
-4

 

6.9 x 10
-3

 

13.3 

1.1 x 10
-4

 

1.1 

6.7 x 10
-10

 

No precipitate 
1.0 x 10

-8
 

5.8 x 10
-18

 

3.4 x 10
-5

 

3.8 x 10
-9

 

2.1 x 10
-3

 

9.0 x 10
-20

 

6.9 x 10
-8

 

7.4 x 10
-12

 

3.8 x 10
-8

 

2.3 x 10
-7

 

1.0 x 10
-4

 

- 

- 

- 

- 

7.0 x 10
-3

 

- 

3.9 x 10
-2

 

1.9 x 10
-2

 

2.1 x 10
-1

 

- 

7.0 x 10
-4

 

 

 

Examples of the minimum metal concentration levels that can be achieved by 

precipitation of some metals can be seen in Table 5.3.  When comparing the figures in 

Tables 5.2 and 5.3, it is clear that the theoretical metal concentrations are not achieved 

within industry. It should be noted that the minimum theoretical metal concentrations 

are not generally achieved when treating industrial effluents, as there are often many 
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different constituents present in the wastewater that might influence the treatment 

efficiencies. 

 

Table 5.3 Practical effluent concentration levels achievable in metals removal by different types of 

precipitation (Metcalf and Eddy, 2003) 

 

Metal Achievable effluent 

concentration, mg/L 

Type of precipitation 

and technology 

Cadmium 0.05 Hydroxide precipitation at pH 10-11 

 0.05 Co-precipitation with ferric hydroxide 

 0.008 Sulfide precipitation 

Copper 0.02-0.07 Hydroxide precipitation 

 0.01-0.02 Sulfide precipitation at pH 8.5
12 

Nickel 0.12 Hydroxide precipitation at pH 10 

Zinc 0.1 Hydroxide precipitation at pH 11 

 
 

5.3 Chemical Precipitation and Co-precipitation 

 

Several studies have been carried out looking at the process of chemical precipitation 

and co-precipitation and findings of the studies are well documented in the available 

literature (Zinck et al., 2000).  Some of the most important studies are summarised here 

and if necessary, the reader can consult the Engineering Doctorate Dissertation of 

Swindley, S.P., Control of Effluent in Steel Production, University of Wales, Cardiff, 

1999 for more references. 

 

The behaviour of divalent metals during precipitation was described in great detail by 

Feitknecht, who was the first to report co-precipitation of metals from solution (1933).  

Using Debye-Scherrer diagrams and X-ray diffraction, he showed that basic salt 

precipitates consisted of hydroxides, with intercalated salt ions and were found to share 

a common stoicheometric composition and had similar metallic radii that enabled them 

to behave as isomorphs.  Later, using X-ray diffraction, Feitknecht (1934) showed that a 

range of structures and crystal planes were formed, which were dependent on the 

precipitation conditions including temperature, concentration and ratio of metals.  He 

                                            
12 Eckenfelder (2000) Industrial Water Pollution Control 
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proposed that when precipitates with a high density of lattice defects transform to a 

more ordered structure, it is possible for the cations in a lattice to be replaced with those 

of another metal, but also having the same valence. Schwab & Brennecke (1943) found 

mixed crystal of variable composition, so supporting the finding of Feitknecht on lattice 

defects.   

 

Schwab & Polydoropoulos (1953) carried out co-precipitation of metal hydroxides 

including zinc-chromium in different ratios and concluded that at zinc to chromium 

ration 4:6, a plateau occurred at pH 5, corresponding to twice the quantity of hydroxide 

required to form chromium hydroxide.  Formation of salts was also followed, 

concluding that formation of a basic metal salt is very much dependent on the metal in 

question and the type of anion and its concentration in solution. Using X-ray methods, 

Hartinger (1994) reported residual concentration of nickel decreasing when co-

precipitated with zinc.  The lowest concentrations of nickel were achieved when there 

was small, but equal concentrations, of both metals present in solution. 

 

Tunay & Kabdasli (1994) investigated effects in hydroxide precipitation of complex 

metals, including cadmium, nickel and copper in the presence of organic complex 

formers using theoretical solubility comparison and NaOH laboratory experiments.  

High pH precipitation using lime was found to be effective when the organic ligand was 

effectively bound by the calcium ions, freeing the bound metals and allowing it to be 

precipitated. 

 

The most extensive investigation into solubility of metal hydroxides and oxides was 

carried out by Dyer et al. (1998) and concluded that even though extensive data for 

metal solubility are available, they do not always agree on the water solubility of a 

particular metal hydroxide or oxide.  Furthermore, the solubility of a given metal will 

vary significantly with pH and therefore it is insufficient to know only the solubility 

product (Ksp).  Study compared existing data on solubility of metal hydroxides and 

oxides against solubility curves predicted by “OLI” simulation software for electrolyte 

chemistry.  It was found that the solubility of metal in water is dependent on obvious 

variables including pH and temperature, but also on initial metal concentration, particle 

size and experimental approach.  Crystallographic formation history can have a major 



Water in Steelworks  P. Suvio 

 

 
121 

 

 

impact on metal solubility and depends on how long the precipitate has aged.  This 

stable crystalline form of a solid will have a lower solubility than an active amorphous 

solid with sometimes a difference of more than an order of magnitude.  Reliable 

thermodynamic “equilibrium” data may exist for only these stable crystalline solids, 

while the active forms of precipitates are metastable and hence never truly at 

equilibrium. 

 

Swindley (1999) investigated the removal of metal complexes from solution as metal 

hydroxides.  The work demonstrated that the solubility of metal ions and the minimum 

pH required for maximum precipitation varied according to the mix of the metal ions 

present in the solution and ratio of metals present in solution.  Data showed that co-

precipitation of nickel together with chromium reduces residual concentrations of both 

and the nickel curve can be seen to mirror the chromium curve, indicating that the two 

metals precipitate from solution together.  Overall Swindley (1999) concludes that the 

combined precipitation of metal ions is advantageous for achieving lower residual metal 

concentration at most cases and aging of metal hydroxide precipitates was found to 

reduce the residual concentrations of most metals. 

 

Kuyucak (2006) concludes that factors governing the metal-removal process, in addition 

to the pH, include chemical reagents used and the oxidation/reduction and hydrolosis 

reactions, the presence of biotic and abiotic catalysts and the retention time of the 

effluent in the reactors. 

 

5.3.1 Zinc 

 

Zinc is always present in effluent water from steelworks and as described in Chapter 3, 

zinc is the only metal approaching the current consent limits at the Tata Port Talbot 

Steelworks final effluent discharge.   

 

Onset of the zinc precipitation occurs at pH 7.6, but residual zinc concentrations of 

under 0.5 mg/l were only achieved at a pH above 9 (Swindley, 1998; Hartinger, 1994).  

According to Dyer et al. (1998) zinc hydroxide exemplified the significant impact of the 

solids phase’s crystallographic formation history on metal solubility.  7 distinct solids 
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phases have been identified for zinc hydroxide, but in industrial precipitation processes, 

the solubility of the amorphous form (amorphous Zn(OH)2)  will most likely represent 

total Zn in solution since, at most, some hours will be available for any precipitate to 

form (Dyer et al., 1998).  According to Swindley (1998) zinc precipitates as a cloudy 

white precipitate until higher pH values, when the structure of the precipitate was 

observed to change to a crystalline form.  Changes of the physical characteristics of the 

precipitate were reported to occur on standing at pH between 10.5 and 11. 

 

Table 5.4 Precipitation treatment results for zinc-containing wastewaters (Eckenfelder, 2000) 

 

Zinc concentration mg/l 

Source Initial Final Comments 

Zinc plating --- 0.2-0.5 pH 8.7-9.3 

General plating 18.4 2.0 pH 9.0 

 --- 0.6 Sand filtration 

 55-120 1.0 pH 7.5 

 46 2.9 pH 8.5 

  1.9 pH 9.2 

  2.8 pH 9.8 

  2.9 pH 10.5 

Metal fabrication --- 0.5-1.2 Sedimentation 

  0.1-0.5 Sand filtration 

Radiator manufacture  0.33-2.37 Sedimentation 

  0.03-0.38 Sand filtration 

    

Blast furnace gas  

scrubber water 

50 0.2 pH 8.8 

Zinc smelter 744 50  

 1500 2.6  

Ferroalloy waste 11.2-34 0.29-2.5  

 3-89 4.2-7.9  

Ferrous foundry 72 1.26 Sedimentation 

  0.41 Sand filtration 

Deep coal mine –  

acid water 

3.3-7.2 0.01-10  

 

Table 5.4, outlines results for total zinc concentrations achieved by zinc precipitation 

and in some cases further treatment for zinc-containing effluent in metal and mining 

industry.  As seen in the table, zinc precipitation alone doesn’t often achieve low levels 

of concentrations, but further sand filtration has been found to improve these results 
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5.3.2 Choice of a Precipitation Reagent 

 

Although alkalis using hydroxyl group (OH
-
) are most widely used reagents, several 

carbonate -containing alkalis are also used for precipitation reactions.  Typically the 

choice of the alkali reagent used is made in terms of calcium or sodium and hydroxide 

or carbonates, although in some cases magnesium-based reagents are also used.  

According to Bullen (2006), the choice of chemical used is based on the rate and degree 

of required pH increase, solubility in water, handling and cost of reagent.  The amount 

of alkali reagent required is usually greater than that predicted stoichiometrically and is 

controlled by rate of reaction, size of reaction vessels, and concentration of other 

elements (e.g. sulphate and carbon dioxide) present in the effluent (Bullen, 2006), but 

also the effluent temperature will have an effect on the metal solubility. 

 

Table 5.5 Theoretical doses and costs of commonly used alkali reagents (Coulton et al., 2003b) 

 

Reagent Unit cost 

(£/tonne) 

Theoretical 

consumption 

kg per kg Fe 

Actual consumption  

kg per kg Fe 

Dose Cost Efficiency Dose Cost 

Calcium 

oxide 

CaO 100 1.00 10 p 65% 1.54 15 p 

Calcium 

hydroxide 

Ca(OH)2 100 1.33 13 p 65% 2.05 21 p 

Magnesia MgO 220 0.72 16 p 80% 0.90 20 p 

Magnesium 

hydroxide 

Mg(OH)2 260 1.04 27 p 80% 1.30 34 p 

Sodium 

hydroxide 

NaOH 260 1.433 37 p 95% 1.50 39 p 

Sodium 

carbonate 

Na2CO3 150 1.89 28 p 95% 2.00 30 p 

 

The costs involved in using different alkali reagents vary considerably as can be seen in 

Table 5.5, which outlines the theoretical doses and costs for commonly used alkali 

reagents.  The table has used reagent kg per kg of Fe as the consumption indicator as Fe 

is often present when treating metal –containing waters, such as acid mine drainage.  
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The table gives nevertheless a good idea of the chemical costs involved in using 

different reagents. 

As seen in Table 5.5, out of the commonly used alkali reagents calcium oxide, magnesia 

and calcium hydroxide are the cheapest.  Limestone is readily available within the soil 

is most parts of the World and as seen in the Table, calcium costs are generally lower 

than sodium products and the cost savings often lead to calcium products being used for 

the treatment of high flows with high metal loads (Bullen, 2006).  When sulphate is 

present in high enough concentrations in the effluent, gypsum can however be formed 

when calcium products are used and calcium based alkali reagents require lime slaking 

and dosing equipment, which involve increased capital expenditure.  The sodium and 

magnesium –based alkalis are however more expensive, so a careful assessment of 

capital (CAPEX) and operational cost (OPEX) involved should be carried out prior to 

making the choice for the alkali reagent.  Table 5.6 gives an overview of the factors 

influencing selection between calcium or sodium compounds for minewater treatment. 

 

Table 5.6 Factors influencing the selection of calcium or sodium compounds for minewater 

treatment (modified from Skousen, 1988; Bullen, 2006; Kuyucak, 2006) 

 

Factor Calcium Sodium 

Solubility Slow Fast 

Application Requires mixing Diffuses well 

Hardness High Low 

Gypsum formation Yes No 

Calcium carbonate formation Yes No 

Chemical cost Low High 

Health and Safety issues Lower Higher 

Maintenance costs Higher Lower 

Amount of sludge generated Higher Lower 

Sludge settles Faster Lower 

CAPEX Higher Lower 

OPEX Lower Higher 

 

5.4 Laboratory Studies - Precipitation and Co-precipitation 

Experiments 
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In order to better understand the metal removal mechanism for complex mixtures of 

metals often found in steelworks final effluent discharge, a series of batch laboratory 

experiments were carried out in order to study the precipitation of zinc, nickel, copper, 

iron, cadmium and lead and co-precipitation of zinc with nickel, copper, iron, cadmium, 

chromium and lead using base titration with sodium hydroxide (NaOH). 

 

Titrations were carried out using Cardiff tap water into which the chemical reagents 

were allowed to dissolve naturally at room temperature.  The first sample was taken at 

the pH to which the solution settled naturally, at anywhere between pH 6 and around pH 

7.5.  The second sample on the other hand was taken on pH 8, except with copper, with 

which the second sample was taken at pH 7 due to very strong solubility of copper prior 

to pH 8. 

 

The purpose of the titrations was to establish the behaviour of the metal ions during 

precipitation and co-precipitation, whilst determining the pH range where minimum 

solubility occurs.  The dependence of solubility on pH was studied by precipitating and 

co-precipitating a series of samples at different pH’s, followed by filtering the solution 

and analysing the sample by using inductively coupled plasma spectrometry to 

determine the residual soluble metal concentration. 

 

5.4.1 Experimental Solutions 

 

A series of experiments were designed in order to examine the behaviour of metal ions 

and metal ion interactions during hydroxide precipitation.  The combined neutralisation 

of metal ions offers an opportunity for different residual solubility and possible surface 

adsorption through co-precipitation.  The beneficial or detrimental effects of co-

precipitation can be then compared to a single metal ion precipitation.   

 

In this laboratory study a 100 mg/l metal concentration or in the case of co-precipitation 

a 2 X 100 mg/L of metal concentration was added to a litre of tap water to create a 

solution.  The single and co-precipitation metal ion combinations are shown in Table 

5.7.  As seen in the Table, the double metal ion combinations were especially 

concentrating in zinc. 
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Table 5.7 Single and co-precipitation metal Ions 

 

Zn Fe Cu Ni Pb Cd 

 

Zn/Fe Zn/Ni Zn/Cr Zn/Cu Zn/Cd Zn/Pb 

 

Stock solution of metal chlorides and sulphates were prepared using General Purpose 

Reagent and AnalaR -grade metal solutions (Table 5.8) and tap water in 1000 ml 

volumetric flasks.  All the metal ions, except for chromium were in valance two as can 

be seen in Table 5.8 below. 

 

Table 5.8 Reagents for stock solutions 

 

Metal Ion Chemical Formula 

Zn
2+ 

Zinc Sulphate ZnSO4.7H2O 

Cu
2+ 

Copper II Sulphate CuSO4.5H2O 

Ni
2+ 

Nickel Chloride NiCl2.6H2O 

Pb
2+ 

Lead Chloride PbCl2 

Fe
2+ 

Iron II Sulphate FeSO4.7H2O 

Cd
2+ 

Cadmium Sulphate 3CdSO4.8H2O 

Cr
6+ 

Potassium Dichromate K2Cr2O7 

 

0.5M sodium hydroxide solution was prepared by addition of 20g of AnalaR sodium 

hydroxide (NaOH) pellets to one litre of tap water in a volumetric flask. 

 

5.4.2 Sodium Hydroxide Titrations 

 

Titrations were performed using sodium hydroxide with single and double metal ion 

combinations.  1000 ml metal ion solutions were prepared by adding the correct 

quantities of metal stock solution and making up the solution to a volume of 1000 ml. 

The solution was transferred to a beaker and placed on a magnetic stirrer, set to a half 
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speed with an octahedral magnetic flea.  The solution was left until the pH had 

stabilised, after which the experiments was commenced.   

 

With most of the precipitation and co-precipitation experiments, the first samples were 

taken at pH 7 or lower if the solutions stabilised naturally to a lower pH.  However, this 

was not the case with a few of the metals as after stabilising, their initial pH was already 

higher to that of 7.  The original pH’s of the metals and metal combinations can be seen 

in Table 5.9. 

 

Table 5.9 The starting pH of the precipitation and co-precipitation experiments 

 

Metal(s) Zn Zn/Fe Zn/Cu Zn/Ni Zn/Cd Zn/Pb Zn/Cr Fe 

Original pH 7.25 6 6.2 7.2 6.4 6.2 6.4 7.6 

Metal(s) Cu Cu/Zn Ni Ni/Zn Pb Pb/Zn Cd Cd/Zn 

Original pH 6.4 6.22 7.8 7.4 7.0 7.0 7.4 6.4 

 

The volumes of 0.5 M sodium hydroxide (NaOH) required to raise the pH to stable 7, 8, 

9, 10 and 11 were measured.  Furthermore, a sample was taken at each pH and filtered 

through a 0.4 µm filter for analysis of remaining soluble metal concentration in solution 

using a Perkin Elmer Optima DV2100 Inductively Couple Plasma (ICP) atomic 

emission spectrometer.  The technicians (Jeff Rowlands and Ravi Mitha) at the 

Characterisation Laboratories for Environmental Engineering Research (CLEER) 

facility in the School of Engineering at Cardiff University carried out the chemical 

analyses.  The pH meter used in the study was Hanna HI208.   

 

5.5 Theoretical Prediction with PHREEQC 

 

PHREEQCi Version 2 (Parkhurst, D.L. et al., 1999) is a “free-ware” computer program 

written in the C programming language that is designed to perform a wide variety of 

low-temperature aqueous geochemical calculations, based on an ion-association 

aqueous model.   

 

Theoretical prediction for single-metal precipitation was carried out by Dr Devin 

Sapsford from Cardiff University School of Engineering in order to compare the results 
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of the precipitation and co-precipitation experiments against theoretical values.  The 

metal ions predicted by PHREEQCi included Zn, Fe, Cu, Ni, Pb and Cr. 

 

Further, experimental precipitation and co-precipitation results have been converted into 

logarithmic metal concentration (log [Mez+]) values according to Equation 2 and 

compared to the predicted PHREEQCi 2 values. 

 

The effect of pH on the solubility of the metals is presented as a graph of logarithmic 

metal concentration; log [Mez+] based on the Equation (2): 

log [Mez+] = log Ksp + zKw –zpH    (2) 

Where: 

Ksp  = [Me2+ ]/[H+ ]2 (solubility product constant) 

zKw = equilibrium constant for the relevant metal 

 

5.6 Results 

 

The results compare how the theoretical metal solubility results from PHREEQCi 2 

compare with experimental precipitation and co-precipitation solubility results.  Within 

the following graphs, the PHREEQCi 2 results are outlined in red lines, where as the 

experimental precipitation and co-precipitation results are shown in scatter format. 

 

Next to the PHREEQCi zinc theoretical prediction, the first six graphs outline 

experimental zinc precipitation results in relation to the experimental zinc co-

precipitation results with iron, copper, nickel, cadmium, lead and chromium.  The 

following five graphs outline PHREEQCi theoretical values for Fe, Cu, Ni, Pb and Cr, 

together with their experimental precipitation and co-precipitation results. 

 

5.6.1 Zinc Precipitation and Co-precipitation Results 

 

As seen in Figure 5.2, as a single element, the zinc precipitation results follow predicted 

PHREEQC values closely at pH’s 7 to 9 and give even lower concentration values at 

pH’s 10 and 11.  When it comes to solubility, PHREEQCi data for zinc indicate that the 

best theoretical solubility is between pH 9.5 and 10 and the experimental zinc 
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precipitation curve is also at its lowest point at pH 10, although the concentrations left 

in solution are over ten times higher than predicted by PHREEQCi.  These results 

support the finding of Swindley (1999) and Hartinger (1994), which indicate that 

lowest; under 0.5 mg/L residual zinc concentrations were achieved via precipitation at 

pH 9 or above.  Around the pH 8.5, these results resemble closely the performance of 

the steelworks final discharge precipitation and settlement system for zinc left in 

solution, although it is clear that lower concentrations of zinc are predicted by 

PHREEQC and achieved by laboratory experiments than in the field. 

 

Figure 5.2 Comparison of theoretical PHREEQCi Zn concentrations, experimental Zn 

precipitation and Zn/Fe co-precipitation results at various pH’s 

 

When co-precipitating with iron II, zinc precipitation values were well under the 

predicted value at pH 6 and up to ten times less at pH 8.  At pH’s 9 to 11, there was no 

Zn left in the solution when co-precipitating with soluble iron II.  This would indicate 

that the precipitation of zinc at the presence of iron would enhance the residual 

concentrations of zinc in solution. 

 

As can be seen in Figure 5.3, when co-precipitating with copper, zinc precipitation 

results were close to the theoretical at pH 8-9, although the values were found to be 

higher than the predicted by PHREEQC.  At pH 6.2, the zinc values were much lower 

while co-precipitating with copper, than predicted by PHREEQC.  When co-
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precipitating with copper, the best zinc solubility is achieved at pH 11, where the 

concentration of zinc in solution is below the instrument detection limit. 

 

 

 

Figure 5.3 Comparison of theoretical PHREEQCi Zn concentrations, experimental Zn 

precipitation and Zn/Cu co-precipitation results at various pH’s 

 

 

Figure 5.4 Comparison of theoretical PHREEQCi Zn concentrations, experimental Zn 

precipitation and Zn/Ni co-precipitation results at various pH’s 
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Experimental zinc co-precipitation in the presence of nickel resulted in higher 

concentrations at pH 7 and 8 than either the zinc precipitation results or the PHREEQC 

theoretical data (Figure 5.4).  At pH 9 the co-precipitation achieved lower 

concentrations than the PHREEQC or the precipitation results and after pH 9 there was 

no zinc concentration left in solution at all.  The zinc co-precipitation results with nickel 

indicate that nickel enhances zinc precipitation after pH 9. 

 

 

 

 

 

 

Figure 5.5 Comparison of theoretical PHREEQCi Zn concentrations, experimental Zn 

precipitation and Zn/Cd co-precipitation results at various pH’s 

 

As seen in Figure 5.5, the co-precipitation of zinc with cadmium follows very similar 

metal concentration patterns as the predicted theoretical zinc concentrations with 

PHREEQC and zinc precipitation on its own at all pH’s, except pH 10.  At pH 8 and 11 

the co-precipitation of zinc is almost identical to the zinc precipitation results.  It 

appears that the presence of cadmium does not seem to affect the zinc precipitation 

majorly. 

 

As seen in Figure 5.6 zinc co-precipitation in the presence of lead gives considerably 

lower zinc concentrations at pH 6-8 than theoretical or experimental zinc precipitation 

and leaves no detectable zinc concentrations in solution beyond pH 8.  Despite the much 

lower concentrations, the zinc co-precipitation in the presence of lead provides results 

that follows the zinc and theoretical precipitation results curve well at pH 6-8.  At pH’s 
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9-11 zinc co-precipitation at the presence of copper results in concentrations below 

detection limit. 

 

Figure 5.6 Comparison of theoretical PHREEQCi Zn concentrations, experimental Zn 

precipitation and Zn/Pb co-precipitation results at various pH’s 

 

Zinc co-precipitation in the presence of chromium (Figure 5.7) gives similar results and 

trends as theoretical PHREEQC predicted values at pH 8-11.  On the other hand, the 

zinc co-precipitation doesn’t give as good solubility results than does the precipitation 

of zinc on its own.  Both, the precipitation and co-precipitation do nevertheless give 

their minimum solubility at around pH 10, similarly to the theoretical the PHREEQCi 

values.  

 

Metal finishing uses large amounts of chromium.  Chromium is commonly present in 

the steelworks pickling lines as hexavalent chromium in the form of chromium trioxide 

(CrO3).  The chromium used on the co-precipitation experiments was also a hexavalent 

chromium compound, which in itself does not precipitate out of solution. Therefore the 

chromium concentrations were not tested as a part of the Zn/Cr co-precipitation.  Zinc 

levels were tested nevertheless to find out how the presence of the hexavalent chromium 

will affect zinc precipitation.  In order to remove chromium via precipitation, it needs to 

be first reduced to trivalent chromium by using, for example, chemical reducing agents. 
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Figure 5.7 Comparison of theoretical PHREEQCi Zn concentrations, experimental Zn 

precipitation and Zn/Cr co-precipitation results at various pH’s 

 

As a part of the zinc precipitation and co-precipitation experiments, concentrations of 

the other metals listed in Table 5.7 and 5.8 were also looked at during the precipitation 

and co-precipitation experiments.  The results of these precipitation and co-precipitation 

experiments are presented in the following sections. 

 

5.6.2 Copper Precipitation and Co-precipitation Results 

 

In Figure 5.8 the results of copper precipitation data as predicted by PHREEQCi is 

compared with experimental copper precipitation and copper co-precipitation results at 

the presence of zinc. 

 

For both the copper precipitation as a lone metal and the copper co-precipitation with 

Zn, no detectable concentrations of copper are left in solution beyond pH 7.  The 

PHREEQCi prediction, albeit very low, does indicate there should be some, although 

very small, concentration of copper left in solution even beyond pH 7, with the 

solubility curve achieving its lowest point around pH 9.5. 
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Figure 5.8 Comparison of theoretical PHREEQCi Cu concentrations, experimental Cu 

precipitation and Cu/Zn co-precipitation results at various pH’s 

 

5.6.3 Nickel Precipitation and Co-precipitation Results 

 

Nickel precipitation and co-precipitation results (Figure 5.9) follow the trend of the 

predicted PHREEQCi values with the co-precipitation achieving little better results than 

nickel precipitation alone.  These results support Hartinger (1994), who reported 

residual concentrations of nickel decreasing when co-precipitating with zinc.  At pH 

below 7.4 nickel co-precipitation and precipitation appear to achieve nevertheless lower 

nickel concentrations than PHREEQCi indicates.  Beyond pH 10, there are no detectible 

concentrations of nickel left in solution by neither precipitation nor co-precipitation 

with zinc, although PHREEQCi indicates low concentrations present in solution.  It is 

possible that this is an incorrect result and there should be some residual concentrations, 

above the detection limit present in the solution. 
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Figure 5.9 Comparison of theoretical PHREEQCi Ni concentrations, experimental Ni precipitation 

and Ni/Zn co-precipitation results at various pH’s 

 

5.6.4 Lead Precipitation and Co-precipitation Results 

 

 

Figure 5.10 Comparison of theoretical PHREEQCi Pb concentrations, experimental Pb 

precipitation and Pb/Zn co-precipitation results at various pH’s 
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Lead is the only metal out of those tested, where the PHREEQCi predictions of the 

soluble metal concentrations are generally lower than what was achieved in laboratory 

experiments by lead precipitation and co-precipitation.  Furthermore, PHREEQCi 

predicts that the lead concentrations left in solution beyond pH 8.4 are below log-8.  

Lead precipitation and co-precipitation concentrations follow each other closely in pH 

7-9 and in both cases no detectible concentrations are left in solution beyond pH 9. 

 

 

5.6.5 Iron Precipitation and Co-precipitation Results 

 

During iron co-precipitation, no detectible concentrations are present in the solution at 

any tested pH.  Both iron precipitation and PHREEQCi theoretical values (Figure 5.11) 

on the other hand, although clearly apart, indicate a similar trend with the minimum 

solubility of iron between pH 10 and 10.5.  Iron precipitation and PHREEQCi values 

come closest at pH 10, but at pH 11 PHREEQCi gives no theoretical values, indicating 

no iron left in solution.  Perhaps no data exists within the PHREEQC software beyond 

pH 10.8 for iron precipitation.  It should also be noted that much lower solubilities are 

achieved for iron if it is oxidised to a higher valance to iron III.  This phenomenon will 

be explained in more depth within Chapter 6. 

 

Figure 5.11 Comparison of theoretical PHREEQCi Fe concentrations, experimental Fe 

precipitation results at various pH’s 
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5.6.6 Cadmium Precipitation and Co-precipitation Results 

 

Precipitation and co-precipitation results for cadmium (Figure 5.12) in the presence of 

zinc both follow similar a trend to the PHREEQCi predicted values, but interestingly on 

the opposite sides of the PHREEQCi curve.  Cadmium precipitation is achieving higher 

solubility results, although the precipitation and co-precipitation values are getting 

closer together from pH 8 to 10.  PHREEQCi predicts no concentration values beyond 

pH 9.8, but precipitation and co-precipitation results both show some metal 

concentrations at pH 10. 

Figure 5.12 Comparison of theoretical PHREEQCi Cd concentrations, experimental Cd 

precipitation and Cd/Zn co-precipitation results at various pH’s 

 

5.7 Conclusion 

 

Hydroxide is the most commonly used ion for chemical precipitation. 

 

PHREEQCi 2 theoretical and the experimental soluble metal concentrations match quite 

well through the various pH’s. 
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PHREEQCi 2 indicates that the minimum zinc solubility is received at pH 9.5. 

Laboratory experiments support this. 

 

The co-precipitation results support previous work by Swindley (1999), which showed 

that the actual solubility of metal ions and the minimum pH for maximum precipitation 

varies according to the mix of metal ions present in the solution. 

 

Iron enhances zinc precipitation strongly via co-precipitation.  A similar effect, although 

to a lesser extent, is achieved zinc co-precipitation with nickel and lead. 
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6 FORMATION OF HIGH DENSITY SLUDGE FROM 

STEELWORKS EFFLUENT 

6.1 Introduction 

 

As discussed in Chapter 5, conventional precipitation is effective in removing metals 

from solution and there are valid reasons for using chemical precipitation, which is easy 

to manage and predict and reagents, especially lime, are widely available, inexpensive 

and easily handled.  This type of treatment does however lead to the need to dispose of 

metal-rich sludges resulting from the treatment of the effluents.  Common with most 

effluent plants of this type, especially when sodium hydroxide is the alkali of choice, 

the settled sludge solid concentrations are very low.  In many similar situations the so-

called High Density Sludge (HDS) process has been found to be highly effective at 

improving sludge quality and enhancing sludge dewatering behaviour.  The HDS 

process, where precipitates are recycled to mix with the incoming feed, is a mechanical 

and chemical technique used to improve the physical properties of the sludge.  The prior 

precipitated sludge is either mixed with alkali prior to adding the incoming effluent or 

it’s mixed with the effluent prior to adding the alkali, depending on the type of high 

density sludge process chosen.  The recycling of the previously precipitated sludge will 

result in solids crystallisation, creating denser, heavier sludge particles than the ones 

achieved by conventional precipitation process.  

 

Upgrading the existing conventional precipitation and neutralisation treatment plant to 

High Density Sludge (HDS) process may not only improve the sludge settling and 

dewatering characteristics (Dey et al., 2007), but results in additional improvement in 

water quality, increased reagent efficiency, reduced overall treatment costs (Cox et al., 

2006) and reduced clarifier size  (Kuyucak et al., 2001). 

 

Use of the (HDS) process started in the steel industry looking at treatment of acidic 

pickle liquor, which is used for removing surface impurities from steel. HDS has been 

widely recognised as the preferred treatment methods for mine water, especially Acid 

Mine Drainage (AMD), which contains high metal concentrations. No previous studies 

have been carried out looking at the performance of the high density sludge process in 
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treating non-acidic, high volume effluents with low metal concentrations such as final 

effluent born in the steelworks. 

 

6.2 Types of Treatment Processes 

 

Three typical treatment processes, namely basic or bond (tailings or sludge bond) 

treatment, conventional treatment and HDS processes are used extensively in industry 

for treatment of metal-containing wastewaters and have been described in detail by 

Vachon et al., 1987 and Zinck et al., 1997.  The common and basic treatment methods 

are often also referred to as to low density sludge (LSD) processes. 

 

6.2.1 Conventional wastewater treatment system 

 

Conventional single-pass wastewater treatment system (Figure 6.1) remains to date the 

most common way of treating metal-containing effluents.  In a conventional treatment 

plant, the precipitation is carried out in a mix tank with a controlled additional of alkali 

reagent in order to attain the desired pH setpoint.  Arisen slurry is then contacted with a 

flocculant either at the clarifier feed well or prior to that in order to enable liquid/solid 

separation within the clarifier.  The sludge is collected from the bottom of the clarifier 

and is either pumped to, for example, a sludge bund for dewatering and/or storage or it 

is send to a filter-press, centrifuge or similar for further dewatering. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 6.1 Conventional precipitation by single-pass wastewater treatment systems 
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The single-pass treatment system has low capital and operational costs and often 

achieves metal concentrations below the local consent requirements.  This type of 

treatment system does however create bad quality sludge with low settling rates and 

filtrations characteristics, together with low solid concentrations % (w/v)
13

, resulting in 

high operational costs for sludge dewatering and disposal and loss of valuable fresh 

water with the sludge. 

 

Conventional precipitation can also be carried out as a multi-step neutralisation process 

(Figure 6.2), where lower concentrations of metals are required for the treated water or a 

precipitation of certain elements is required prior to the precipitation of the remaining 

metals.  This is the case when treating for example arsenic (As) –containing waters, 

where the pH of the first reactor is kept low at around pH 4.5 in order to enable 

precipitation of arsenic often as a co-precipitation with ferric or ferro-reagents, prior to 

rising to pH 9.5.  It is also common with a conventional treatment system; despite 

whether a one or multi-step neutralisation is in use, that air is introduced to the 

reactor(s) to help oxidation of Fe
2+

 to Fe
3+

.  This helps to produce chemically more 

stable sludge (Kuyucak et al., 1995). 

 

 

Figure 6.2 Conventional precipitation by multi-step neutralisation treatment system 

 

                                            
13

Sludge solid concentrations are either expressed as % (w/v) for number of grams material (solid or 

liquid) per 100 ml of the final solution or as % (w/w) for number of grams material (solid or liquid) per 

100 g of the final solution 
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In comparison to the single-pass treatment system, a multi-step neutralisation does 

achieve sludge concentrations (Figure 6.2) that are often a little higher, up to 5% (w/v) 

(Aubé et al; 2003; Aubé, 2004) than what is achieved by a single-pass systems with 

only one reactor. 

 

6.2.2 Simple Sludge Recycle Process 

 

It is possible to get a step closer to HDS process treatment system by recycling the 

sludge back to the reactor in a single-step precipitation system (Figure 6.3).  This 

process has not yet been patented and its benefits over the conventional treatment 

system have not been published.  It is however, used regularly in industry.  In the simple 

sludge recycle process, the sludge from the bottom of the clarifier is recycled to the 

reactor as seen in Figure 6.3.  This process has a number of advantages over the 

conventional treatment, including (Aubé, 2004): 

- Reduced scaling, 

- Improved solid/liquid separation, 

- Reduced reagent consumption and 

- Increased sludge density up to 15% (w/v). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Simple sludge recycle process 
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6.2.3 High Density Sludge (HDS) Processes 

 

HDS process is a mechanical technique used for improving the physical properties of 

the sludge and its also known as the state-of-the-art lime neutralisation process (MEND 

1994; Kuyucak, 2006).   

 

According to Kuyacak (2006), in order for a treatment plant to qualify for a HDS 

process, three conditions must be fulfil, namely: 

- More than one reactor is used to perform the neutralisation  

- Portion of the sludge is recycled from the clarifier back to the reactors and 

- Alkali is used as a reagent. 

 

6.2.3.1 Conventional HDS Process 

 

The first recorded HDS process was implemented in Bethlehem Steel Corporation 

(BSC) works in the late 1960’s (Kostenbader et al., 1970).  The BSC HDS process is 

based on the conventional HDS process and is outlined in a US patent 3738932 filed in 

April 1971 (Kostenbader, 1973).  The conventional HDS process was originally 

invented for the treatment of pickle liquor (Haines et al., 1968), but was quickly adopted 

for other acidic waters containing metals, especially acid mine drainage.  The 

conventional HDS process is applied at numerous mine sites throughout Canada, 

including Teck-Cominco’s Sullivan Site, Cambior’s La Mine Doyon and Noranda’s 

Brunswick and Heath Steele mines (Zinck, 2005). 

 

Figure 6.4 Conventional HDS process (Aubé et al, 2003) 
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In the conventional HDS process (Figure 6.4), the sludge is mixed with alkali in order to 

create lime/sludge slurry prior to feeding it to a Rapid Mix Tank (RTM), where the 

wastewater is added and mixed together with the lime/sludge slurry.  The RMT is often 

used to offer better pH control within the process (Zinck, 2005).  Within this setting, the 

air is added to the lime reactor to enable Fe
2
+ oxidation.  It is common in the HDS 

process that the neutralisation reactors are aerated to oxidise Fe
2
+ and pH is 

continuously monitored.   The arisen precipitate is flocculated with a polymer and a 

clarifier/thickener unit is used for liquid-solid separation. A portion of the generated 

sludge is recycled from the clarifier/thickener underflow back to process.  The amount 

of sludge recycled is controlled by the sludge recycled ratio i.e. the ratio of solids 

recycled in relation to the amount of new solids precipitated and it is typically 20 to 30 

kg of recycled solids per kg of new solids precipitated from the wastewater (Bullen, 

2006).  The recycled sludge is used as an additional alkali reagent as well as a platform 

for the arisen precipitate to attach to.  The conventional HDS process outlined in Figure 

6.4 was the original CESL (Cominco Engineering and Services Limited) design (Kuit, 

1980), which was modified by Aubé et al. (2003). 

Figure 6.5 Heath Steele modified HDS process arrangement (Aubé, 2004) 

 

Figure 6.5 shows Noranda Inc., Heath Steele Division recent variant of the HDS 

process.  The Heath Steele HDS process is identical in concept and provides the same 

physical and chemical advantages as the HDS but without two (rapid mixing tank and 

flocculant tank) of the four reactors.  With today’s advanced process control systems, a 

Rapid Mix Tank is not necessary for pH control and gives no advantage as proven by 

pilot scale tests carried out by Aubé (2004). 
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6.2.3.2 Staged HDS Process 

 

Although many different configurations of the HDS process has been trialled and used 

over time, only two main types of High Density Sludge (HDS) processes exist.  As 

described in section 6.2.3.1 of this Chapter, in the conventional High Density Sludge 

(HDS) process the recirculated sludge is mixed with alkali reagent prior to introducing 

the minewater (Aubé et al., 2003).  This type can also be called the Type I HDS process 

(Bullen, 2006).  In the second HDS process, the minewater is mixed with sludge at the 

first stage reactor, prior to adding the alkali reagent.  This process has been given many 

different names, including staged HDS process (Kuyucak et al., 1995), two-step HDS 

process (Kuyucak, 2006) and Type II HDS process (Bullen, 2006). 

 

In the staged HDS process (Figure 6.6) the pH of the wastewater is arisen to a pH 

between 7.0 and 8.0 with the recycled sludge in the first reactor, depending on 

minewater chemistry and recirculation rates, resulting in the removal of a high 

proportion of the metals from solution (Aubé et al., 1997; Bullen, 2006).  The pH in the 

first reactor varies with recirculation flow rates, which, as with the conventional HDS 

are controlled at approximately 25 kg of recirculated solids to each kg of new solids 

precipitated from the minewater (Bullen, 2006).  The pH is set to optimum (~9.5) in the 

second reactor in order to precipitate metals of concern.  Aeration is provided to first 

and second or at least to the second reactor for oxidation of Fe, in order to produce more 

chemically stable sludge (Kuyucak et al., 1995).  The fully oxidised slurry is dosed with 

flocculant at the flocculant tank and then flows to a clarifier for liquid/solids separation.  

The clarifier water is discharge, whilst approximately 95% of the settled sludge is 

recirculated to the first reactor, with the remaining 5% of settled sludge removed from 

the system (Bullen, 2006).   

 

Kostenbader et al. (1970) reported trialling the staged HDS process with little success, 

whereas Keefer et al. (1983) had success generating staged HDS by batch treatment 

trials.  It was during the 1990’s that the staged HDS process was originally developed 

by Kuyucak et al. (1995) at Noranda Technology Centre. Their patent for the process 

was accepted in June 1995.  At the same time Unipure Environmental independently 

developed a type of the staged HDS process.  Typical examples of the staged HDS 
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process can be found at Geco Mine, Ontario, Canada (Aubé et al., 1997), Wheal Jane in 

Cornwall, UK (Coulton et al., 2003a) and Horden, Country Durham, UK (Coulton et al., 

2004). 

Figure 6.6 Staged HDS process  

 

The Geco Process (Figure 6.7) uses the basic idea of staged HDS process but doesn’t 

include a flocculant tank.  Despite this, the Geco HDS process creates the densest 

sludge at >30% (w/v) (Aubé et al., 1997).  Like with the staged HDS process, within the 

Geco Process, waste water and sludge are mixed in the first reactor and the sludge raises 

the pH of the first reactor to 7.5.  Lime is added in the second reactor together with air 

(Aubé, 2004).   

 

Figure 6.7 Geco HDS process (Aubé, 2004)  

 

 

During the pilot plant work at the Geco mine, low initial sludge recycle ratios were in 

use, which resulted in the sludge not being pumpable due to the high viscosity.  
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However, when the sludge recycle ratios were increased, the viscosity dropped and the 

sludge became pumpable, resulting in recycled sludge concentrations of approximately 

35% (w/v) (Bullen, 2006).  

 

Out of the HDS processes, Geco has the lowest neutralising potential for the sludge, 

resulting in more lime-efficient process.  Under normal conditions, this would lead to 

reduced long-term sludge stability, but the Geco Process was found to create a very 

stable precipitate (Aubé, 2004).  pH increase during the Geco Process, is due to partial 

dissolution of the sludge and therefore reactions are occurring on the surface of the 

existing precipitates.  The Geco process has been reported to achieve excellent results 

with >95% precipitation of heavy metals overall and 99% removal of Fe, Zn and Al 

already on the first reactor (Aubé et al. 1997). 

 

As described above, there are a few different ways to operate a HDS process and care 

should be taken when choosing the right one for specific effluent treatment.  Ultimately 

the choice between where the sludge is recycled back i.e. which type of HDS process to 

use is dependent on the effluent to be treated and the best high density sludge process 

for the treatment of a specific effluent can be only determined by pilot trials (Coulton et 

al., 2003b).  

 

6.3 Formation of High Density Sludge 

 

Kostenbader et al., (1970) developed the first high density sludge process in the 1960’s 

at the Bethlehem Mines Corp’s coal mines in Cambria, Pennsylvania U.S. in order to 

encourage particle growth to battle the problem of voluminous sludge.   

 

Kostenbader et al., (1970) were unclear how the denser sludge was formed, but outlined 

key operating parametres that lead to the formation of HDS, including: 

- Neutralisation pH, 

- Point of alkalinity addition, 

- Fe
2+

 to Fe
3+

 ratios in the feed water, 

- Ratio of solids recirculated to new solids precipitated and 

- Retention time. 
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While testing the Geco HDS process, Aubé et al. (1997) concluded, supporting 

Kostenbader et al., (1970) that it was critical to the formation of HDS sludge that 

neutralisation pH of the system was controlled. 

 

The use of neutralisation and recirculation of the precipitated sludge was reported in 

more depth by Kuit (1980), at the Sullivan lead and zinc Mine of Cominco Ltd at 

Kimberley, B.C in Canada.  Following considerable pilot plant work, the plant had been 

successfully designed to treat AMD, achieving substantially denser sludge and after 

approximately a year of operation, the quality of treated effluents met or even fell under 

the limits set for the treated effluent. 

 

Bosman (1974) observed that iron is the main constituent of the chemical precipitate 

formed during AMD neutralisation.  The Anglo American Research Laboratories 

undertook further studies on the HDS process during the early 80’s and cited parameters 

for successful formation of HDS, including (Bosman, 1983): 

- Total iron content of the acid minewater, 

- Retention time in lime/sludge mix tank, 

- Oxidation state of the acid minewater, i.e. ratio of Fe
2+

 to Fe
3+

 and 

- Ratio of solids recirculated to solids precipitated from solution. 

 

The parametres suggested by Kostenbader (1970) and Bosman (1983) are still reported 

as key to the formation of HDS process sludge (Bullen, 2006). 

 

It is generally accepted that high iron ratios (Kostenbader et al., 1970; Bosman, 1983 

and Bachon et al., 1987) or at least high overall metal concentration are required for the 

formation of High Density Sludge (Kuyucak, 2006; Kuyucak et al., 2001) and also 

using calcium-based alkali (Coulton et al., 2003b).  Aubé (2005) suggest that when 

there is less than 100 mg/L of total metals in the incoming feed, it’s difficult to attain 

15% (w/v) of solids, whereas if there is a concentration of >200 mg/L Fe or Cu, more 

than 20% (w/w) solids are expected using the HDS process.  Coulton et al. (2003b) and 

Bullen (2006) did however demonstrate that HDS can be formed from mine waters 

containing low iron concentrations and by using sodium hydroxide as the neutralising 

reagent. 



Water in Steelworks  P. Suvio 

 

 
149 

 

 

Next to the metal concentration of the incoming feed, the sophistication of the treatment 

process, including the type of HDS process chosen affects the sludge solid content.  

Kuyucak (2006) concludes that in order to minimise the formation of a voluminous 

sludge, the process parameters need to be carefully considered.  These include:  

- Rate of neutralisation and oxidation,  

- Fe
2+

 and Fe
3+

 ratio,  

- Concentration of ions,  

- Sludge aging,  

- Recycling of settled sludge and  

- Temperature and crystal formation. 

 

Bullen (2006) carried out extensive research on how the High Density Sludge was 

formed.  He performed a large number of batch and continuous HDS experiments and 

reports, contrary to previous beliefs and adding to previous knowledge that: 

- HDS can be formed using non-calcium based alkali reagent, (including sodium 

hydroxide and carbonate), 

- Iron is not required to be present in the formation of HDS, 

- The Fe
2+

 and Fe
3+

 ratio in the feed water is not critical to the formation of HDS, 

although it does affect, 

- The valence of the metals does not affect the HDS process, 

- The time required for the formation of HDS and the process parametres (e.g. mass 

recirculation rates) depends on the characteristics of the influent feed, 

- The ratio of first reactors solids to the ratio of solids formed is key to the formation 

of HDS and 

- Surface chemistry and interactions is fundamental to the formation of HDS. 

 

Unlike in any previous research on HDS, Bullen (2006) found that HDS with better 

settling and dewatering characteristics was actually formed using synthetic zinc and 

manganese minewater compared to synthetic iron minewater.  Furthermore, he 

concludes that operating the first reactor at a pH in excess of the point of zero charge
14

 

                                            
14

 Point of zero charge refers to the pH at which the surface has a net neutral charge i.e. the electrical 

charge density on a surface is zero 
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appeared to enhance the formation of HDS.  In a colloidal system point of zero charge 

exhibits what is called a zero zeta
15

 potential. 

 

6.3.1 Development of the HDS Process 

 

In recent years, the research looking into the formation of HDS has concentrated more 

on understanding how the sludge with high densities is formed.  Some of this work has 

concentrated on nucleation and crystal formation (Stumm et al., 1996; Dempsey, 1993) 

and has concluded that during HDS process, the nucleation or precipitation of metals is 

able to take place on a solids surface (heterogeneous) or in a solution (homogeneous).  

The location of nucleation can be controlled by the level of supersaturation
16

 (Bullen, 

2006).  Supersaturated conditions can be relieved by one of two ways.  Solute can either 

form new particles (nuclei) or deposit itself onto existing surfaces (Mullin, 1997).  More 

information on crystal growth and nucleation is available in literature (Stumm et al., 

1996; Mullin, 1997 and Bullen, 2006). 

 

Dempsey (1993) investigated how the control of nucleation/crystal growth rates affected 

the production of HDS sludges.  Bench scale tests were carried out using synthetic 

solutions using different processes and mechanisms.  These included: 

- Conventional HDS process, 

- Manipulation of the zeta potential during the precipitation of Fe
3+

 hydroxide, 

- Minimising supersaturation rates and 

- Physical/chemical disruptions to convert low density sludge into HDS sludge. 

 

Dempsey (1993) suggested that by controlling the degree of supersaturation the new 

precipitates do not form as new primary particles, but heteronucleation or crystal growth 

occurs, resulting in high density sludge formation.  This process can be controlled by 

managing the circulation rates, as crystal growth is proportional to the solids surface 

area (Bullen, 2006).  Using the above principles, Dempsey (1993) reported a fourfold 

increase in the density of the sludge by controlling the pH and the zeta potential. 

                                            
15

 Zeta potential refers to electrokinetic potential in colloidal systems. Lower the potential, lower the 

electric stability and higher the coagulation/flocculation rate of the particles 
16

 Supersaturation refers to a solution that contains more dissolved material than could be dissolved under 

normal circumstances 
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The Staged-Neutralization (S-N) process (Aubé, 2004) applies crystallisation principles 

in order to both enhance sludge crystallinity and reduce sludge volume (Demopoulos, 

1995).  As seen in Figure 6.8, the Staged-Neutralization process involved neutralising 

the effluent in a series of steps to control the level of supersaturation during metal 

precipitation (Aubé, 2004).  The process uses recycled sludge in the first two reactors to 

partially neutralise the incoming effluent.  The sludge is used to control the pH.  Within 

the third and the fourth reactor, lime slurry is used to bring the slurry to a desired pH.  

The four precipitation reactors are followed by a flocculant reactor and a clarifier. 

 

This process has been patented in the both the U.S. and Canada (Demopoulos et al., 

1997; Zinck et al., 2001), but it is yet to be applied in a full scale (Aubé, 2004).  Despite 

of the excellent sludge properties and low lime consumption that are to be expected 

(Aubé, 2004), the capital expenditure would be very high due to the amount of reactors 

required. 

Figure 6.8 Staged-Neutralization process (Demopoulos et al., 1995)  

 

6.4 Important Process Parametres for the Formation of HDS 

 

There are many parametres that are important for the formation of HDS and that will 

affect the quality of the formed HDS.  Based on the current knowledge, the most 

important process parametres for the formation of HDS include: 

- Neutralisation pH, 

- Point of alkalinity addition, 

- Retention time and 
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 (mass of solids recycled per unit time) / (mass of solids formed per unit time)  

 

- Ratio of solids recirculated to new solids precipitated. 

 

Against the common belief, Bullen (2006) reported that when it comes to solid 

recirculation, it is the ratio of first reactors solids to the ratio of solids formed that is key 

to the formation of HDS. 

 

6.4.1 Solid Recirculation Ratio 

 

HDS process is distinguished from the conventional precipitation system by the solid 

recirculation that is imperative for the creation of HDS.   

 

The solid recirculation ratio is often measured as: 

I.e. on a weight by weight basis 

 

Several different values are given for the sludge recirculation ratio throughout the 

literature and the choice of the ratio appears to relate to both the HDS process technique 

used as well as to the type of effluent water to be treated. 

 

When running a conventional HDS treatment plant at Heath Steele to treat pickle liquor, 

Kostenbader (1971) reported a recirculation rate of 20:1. Sengupta (1993) reported 20:1 

to 30:1 as the optimum ratio of solids recirculation using conventional HDS treatment 

for AMD. 

 

Aubé et al. (1999) considered the recirculation rates during both conventional and 

staged HDS processes while treating AMD and indicated that best recycling ratio would 

be between 10:1 and 30:1, resulting in 90% of the solids being in the lime reactor at any 

given time.  Later on Aubé (2005) suggested that recirculation ratio between 20:1 and 

25:1 works best when treating AMD by a HDS process. 

 

Following pilot testing findings, with an AMD-mimicking synthetic feed, the recycle 

ratio was found to be best between 20:1 and 45:1 (Canadian Environmental & 

Metallurgical Inc., 2002). 
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When treating AMD at the Wheal Jane mine using staged HDS, Coulton et al (2003a) 

reported recirculation between 25:1 and 50:1.  While Bullen (2006) was running several 

continuous staged or Type II HDS pilot plant trials, the maximum settled sludge 

densities were achieved at a recirculation ratio of between 25:1 and 30:1.  Furthermore, 

Bullen (2006) concluded that when high concentrations of other ions are present, 

including chloride, calcium and magnesium, higher recirculation rations are required. 

 

6.5 Sludge Quality 

 

Sludge produced by conventional chemical precipitation is voluminous in nature with 

solids concentrations for settled sludge ranging from 1 up to 5% of solids (w/v) 

(Kuyucak, 2006; Dempsey et al., 2001; Ming et al., 2009) and further dewatering can be 

problematic (Dempsey et al., 2001).  Voluminous sludge is born when the electrostatic 

(zeta) potential causes the sludge particles to repel each other. 

 

Despite the improvement to the conventional neutralisation method (Kuit, 1980; 

Vachon et al., 1987; Kuyucak et al., 1991; Demopoulos et al., 1995; Aubé, 1999), the 

sludge quality created by conventional precipitation remains poor.  In Canada alone, it 

is estimated that 6.7 million cubic metres of lime treatment sludge is produced annually 

(Zinc, et al 1997) and this rate is expected to increase (Zinck, 2005). In some cases the 

volume of sludge produced can approach the volume of the original effluent treated 

(Murdock et al., 1995). 

 

The use of the HDS process greatly affects the characteristics of the sludge generated.  

The sludge characteristics have been widely studied and reported in the literature.  

Sludge densities were reported by Kostenbader et al., (1970); Bosman, (1983); Zinck, 

(1997); Aubé et al., (1999), the particle size, sludge composition and mineralogy and 

morphology by Zinck, (1997); Aubé et al., (1999) and dewaterability of the sludge by 

Kuyucak (2001); Zinck et al. (2001). 

 

As explained previously, the sludge recycling used in the HDS process encourages 

nucleation, with the metals in the incoming effluent stream precipitating on the surface 

of previously created sludge particles.  This leads to particles growing to approximately 
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3 to 12 microns in diameters (Coulton et al. 2003a).  Aubé et al. (1999) reported that 

sludges produced by HDS display both smaller median particle sizes and narrower 

particle size distributions. 

 

Another challenge faced by the acid mine drainage treatment is long-term chemical 

stability of the sludge and it has been reported that the use of a conventional 

precipitation systems using lime leads to creation of unstable secondary sludges (Kalin 

et al., 2005).  The HDS process creates more stable sludges and it has been reported that 

the geochemical stability of the precipitates is even more favourable when there’s a high 

iron to total metal ration in the plant feed (Canadian Environmental & Metallurgical 

Inc., 2002).  The chemical stability of the sludge can be quantified by leaching studies 

that have been conducted by several researchers looking into HDS over time.  Chemical 

stability is however not as important with the sludge arisen following final effluent 

treatment at steelworks due to the nature and concentrations of the metals and other 

constituents present in the treated effluent. 

 

6.5.1 Sludge Densities during HDS 

 

Achieving as high as possible sludge density is the main purpose of the HDS process 

and the literature outlines a huge variation in the sludge densities achieved by using or 

experimenting with HDS processes. 

 

Using optimum operating parametres, Kostenbader, et al., (1970) reported that 

conventional HDS was forming between 15% (w/v) and 35% (w/v) of solids.  During 

conventional HDS experiments Bosman (1974) was able to achieve sludge densities 

between 11.5 and 23% (w/v).  Aubé et al. (2001) reported concentrations of 32.8% 

(w/v) using the Brunswick conventional HDS process plant.  Demopoulos et al. (1995) 

reported solids concentration of 55% (w/v) using NaOH as an alkali reagent and 67% 

(w/v) sludge solids concentrations using lime as the alkali reagent during staged-

neutralisation experiments.  Zinck et al. (2001) undertook pilot plant trials to compare 

the various forms of the HDS process and reported 23.3% (w/v) sludge densities by 

using staged-neutralisation process and staged HDS process and 13.9% (w/v) sludge 

densities by using Geco process. 
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Coulton et al. (2003a) concluded that HDS typically allows sludge concentrations of 15 

to 25% (w/w) at the thickener and following the clarification/thickening 50 to 80% 

(w/w).  While operating Wheal Jane mine staged HDS plant Coulton et al. (2003a) 

achieved sludge with a density of 20% (w/w). 

 

According to Kalin et al. (2005) the HDS plants can achieve sludge densities of 30% 

(w/v) or better, while Kuyucak (2006) concludes that HDS process results in solids 

content between 10-30% (w/v). 

 

6.6 Advantages of HDS 

 

During the 1960’s and early 1970’s the HDS process was developed as a means of 

producing sludge with higher settled solid concentrations.  The solid concentration of 

the HDS aside, there are many advantages in using a HDS process instead of a 

conventional precipitation system.  According to Dey, et al. (2007), the characteristics 

of HDS process not only enhance the removal efficiency of the effluent treatment 

process, but also provide a superior sludge in terms of handle-ability and disposal. 

 

One of the biggest advantages is that the HDS process is reported to improve the sludge 

settling and dewatering characteristics (Zinc et al., 2000; Aubé et al., 1997; Bosman, 

1983; Bullen 2006).  This is due to the density and the volume of the particle changing 

in line with the Equation 6.1 that governs particle settling as outlined by the Nalco 

Chemical Company (1988): 

 

      
        

 
    (Equation 6.1) 

where:  

F = impelling force 

g = gravitational constant 

V = volume of the particle 

S1 = density of the particle 

S2 = density of the fluid 
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Bullen (2006) recorded settlement velocities of 18 m/hr for staged HDS, whereas the 

experiments carried out by the author as a part of the present research study found that 

sludges produced via conventional precipitation have settlement velocities of 

approximately 10 m/h and matured staged HDS process sludges up to 25 m/hr. Coulton 

et al (2003a) states that HDS settles at significantly greater velocities and can be easier 

thickened than conventional hydroxide precipitates.  This results in reduction in the size 

of the solid/liquid separation unit.  According to Coulton et al (2003a), at the Wheal 

Jane Minewater Treatment Plant, the use of HDS process together with a lamella 

clarifier has allowed the solid/liquid separation unit to be reduced to about 13% of the 

original used during conventional hydroxide treatment system.  Bullen (2006) states that 

the reduction of the sludge volume produced by HDS process can reduce the operational 

costs of the treatment plant substantially. 

 

Keefer et al. (1983) were researching the conversion of minewater treatment sludge into 

a coagulant in batch treatment trials, when they had a success in generating staged HDS.  

The trials indicated that a lime saving of >31% was achieved in comparison to 

conventional precipitation.  Aubé (2004) reports increased lime efficiency due to HDS 

process promoting dissolution of unused reagent through repeated contact with the 

wastewater and Ming et al., (2009) concludes that consumption of lime reduced by 

33.3% by using HDS process. 

 

Aubé (2004) found HDS process to reduce scaling on the reactor walls and conduits to 

the clarifier.  However, with wastewater containing high sulphate concentrations, 

gypsum scaling can occur following the addition of Ca from lime.  Furthermore, if the 

pH setpoint is high (for treating Ni or Cd) calcium carbonate (calcite) scaling can occur.  

Fortunately in the HDS systems, the precipitation of gypsum or calcite occurs on the 

surface of existing particles instead of reactor surfaces (Aubé, 2004).  The reduced 

scaling is due to the calcium and sulphate ions attaching themselves into the charged 

sludge particles, instead of forming gypsum and causing scaling of the walls of the 

equipment and piping as seen in Figures 6.9a and 6.9b. 

 

One disadvantage of the HDS process is that the Lime/Sludge mixture can be very 

viscous and causes a soft scaling which can clog up the reactor.  This leads to reduced 
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retention time of the lime/sludge mixing tank and can cause the overflow to be plugged 

up (Aubé, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Scaling behaviour during conventional precipitation and HDS process  

 

6.6.1 Sludge Disposal 

 

Haines et al. (1968) indicated that conventional lime precipitation of Pickle Liquor 

effluent at Heath Steel can only achieve sludge densities of only 1% (w/v).  

Measurements of sludge densities arisen at the Port Talbot Steelworks current final 

effluent treatment system, using conventional precipitation with sodium hydroxide, give 

very similar results of just under 1% (w/v).  Further dewatering of conventional 

precipitation sludge can be problematic (Dempsey et al., 2001), even when using 

mechanical filter pressing equipment, such as filter presses or similar. 

 

Cox et al. (2006) concluded that the reduced sludge volume and improved sludge 

quality by using HDS process can lead to 50% cost savings on sludge handling and 

disposal (Cox, et al., 2006) 

 

 

Figure 6.9a Gypsum scaling during 

conventional precipitation 

Figure 6.9b Calcium and sulphate 

behaviour during HDS Process 
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6.7 Sludge Dewatering 

 

The sludge arising from effluent treatment requires safe disposal.  The cost of sludge 

disposal within the metal industry depends on several things, including: 

- Volume of sludge 

- Nature of the sludge (toxicity and leachability) 

- Transportation requirements and 

- Landfilling options. 

 

Volume of sludge is nevertheless by far the most important factor in the overall cost of 

the disposal and hence sludge dewatering plays an important role in reducing the costs 

related to sludge management.  Cox et al. (2006) states that HDS in itself can lead to 

50% cost savings on sludge handling and disposal.  This is due to the reduced volume of 

sludge and improved dewatering characteristics (Dey et al., 2007), further dewatering of 

sludge arisen during conventional precipitation can be problematic (Dempsey et al., 

2001). 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Schematic diagram of a sludge floc showing the association of the sludge particle with 

the available water (Gray, 2005 – Reproduced from Best, 1980) 

 

According to Gray (2005) at moisture contents >90%, sludges behave as liquids while 

at <90% moisture content they are behaving as non-Newtonian fluids with non-viscous 

flow.  In the sludges with a moisture content of >95% the water is in a free form (Figure 

6.10), while the remainder is bound to the sludge and is more difficult to remove, 

requiring mechanical dewatering. 
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The liquid/solids separation is important for sludge volume reduction that results in cost 

savings, but also, especially at regions of water scarcity for retaining freshwater that 

would otherwise be disposed together with the sludge. 

 

Several different mechanical sludge dewatering technologies are available, while the 

most commonly used in Europe include: filter and best presses, vacuum filtration and 

centrifugation.  The mechanical sludge dewatering techniques are often used as they aid 

with the liquid/solid separation by altering the particle formation of flocs and the 

cohesive forges that bind the particles together, thus releasing floc and capillary water 

(Gray, 2005). 

 

6.7.1 Filter Pressing 

 

Filter presses are commonly employed in the metal and mining industry to enhance the 

liquid/solid separation.  Since 2008, there has also been a filter press in use for the final 

effluent treatment sludge dewatering at the Port Talbot Steelworks, which is to be 

expected when using sodium hydroxide, which according to Kuyucak (2006) results in 

sludge that does not settle well and requires filtering in most cases. 

 

Produced in 1950’s, the filter presses are amongst the oldest mechanical dewatering 

devices around (BHS Filtration, 2008).  The operation of a filter press happens in 

batches and it is based on using pressure to push the sludge through a filter cloth.  The 

filter presses are often divided into over-pressure filters or under-pressure filters 

depending on how the pressure is applied.  The product remaining after the sludge 

dewatering is called filter cake. 

 

According to Vasilind (2003) the primary advantage of a filter press system is that it 

often produces cakes that are drier than those produced by other dewatering alternatives.  

Filter presses have adaptable operation to a wide range of solid characteristics, 

acceptable mechanical reliability, comparable energy requirements to other dewatering 

systems and a high filtrate quality.  The significant disadvantages of filter presses are 

their high capital cost and relatively high operating and maintenance costs.  
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6.7.2 Sludge Filterability 

 

In assessing the filterability of sludge it is necessary to consider not only the resistance 

to filtrate flow offered by the cake (measured by its specific resistance in m/kg) but also 

the cloth resistance which is a function of the type of cake produced. As described in 

Section 6.6 of this chapter, there is an extensive difference between the filterability of 

HDS process and conventional precipitation sludges. 

 

6.7.2.1 Specific Resistance to Filtration and Cloth Resistance 

 

The sludge filterability measurement is based on the concept of flow through a porous 

medium (Mininni, et al., 1984) and the unit of measure used is called specific resistance 

(m/kg) to filtration (Christensen, 1983), which might be defined as the resistance of 

sludge, having a unit weight of dry solids per unit area at a given pressure, to a unit rate 

of flow of liquid having unit viscosity (Berktay, 1998). 

 

The specific resistance of sludge to filtration (Equation 6.2) can be calculated using the 

following equation (Christensen, 1983): 

 

   
     

  
             (Equation 6.2) 

where: 

r = specific resistance (m/kg), 

b = slope of the time/volume versus volume plot (Sec S/m
3
/m

3
), 

P = pressure drop across the sludge cake (Pa), 

A = filtration area (m
2
), 

µ = viscosity of filtrate (Pa S) and 

c = dry cake mass per unit volume of filtrate (kg/m
3
). 

 

The higher the value of specific resistance indicates a sludge which is more difficult to 

dewater, whereas with lower values of specific resistance, no further conditioning of 

sludge is required. 
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Laboratory filtration experiments make it possible to determine the specific resistance to 

filtration (r) and cloth resistance by plotting the ratio of time to volume (t/V) of the 

filtrate as a function of volume (V) (Equation 6.3).  Using this method, the rate of 

filtration of sludge is given by (Coulson, et al., 1991): 

 

  (Equation 6.3) 

 

where: 

t = time in seconds (s), 

V = filtrate volume obtained after time t (m
3
), 

r = specific cake resistance (m/kg), 

ΔP = pressure drop across the sludge cake (Pa), 

A = filtration area (0.0045) (m
2
), 

µ = viscosity of filtrate (0.001) (Pa s), 

c = dry cake mass per unit volume of filtrate (kg/m
3
) and 

Rm = resistance of the filtration medium (Cloth resistance) (m
1
). 

 

For a constant pressure with an incompressible cake, there is a linear relationship 

between t/V and V.  The slope of the line, a, and the intercept, b, are defined as 

(Equation 6.4 and 6.5): 

   
    

     
    (Equation 6.4) 

 

   
      

     
   (Equation 6.5) 

The slope of the line and point of interception can be calculating by plotting the graph 

t/V against V.  The specific cake resistance and the cloth resistance can furthermore be 

calculated by using the slope of the line and point of interception.  

 

6.8 Laboratory Studies – Continuous High Density Sludge Process Trial 

for Steelworks Final Effluent 

 

In order to investigate options for sludge reduction in the present study, a High Density 

Sludge (HDS) process was operated in pilot scale using chemical feed stock imitating 
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Steelworks final effluent.  HDS was achieved by mixing recirculating sludge and the 

feed water prior to adding the alkali, creating a so-called staged (Kuyucak et al., 1995) 

or HDS II process (Bullen, 2006), where recirculated sludge acts as a seed for further 

metals precipitation.  A total metal feed concentration of under 100 mg/L and zinc metal 

concentrations under 50 mg/L was used based on the analysis of Port Talbot Steelworks 

final effluent.  

 

The trial was used to test if HDS could be formed using: 

- Non-acidic feed, 

- Non iron-containing feed, 

- Feed with low metal concentrations and 

- Sodium hydroxide as an alkali reagent. 

 

The objectives of the continuous trial were to: 

- Successfully operate a staged HDS process laboratory pilot plant to generate 

staged/Type II HDS from a synthetic feed mimicking steelworks final effluent, 

- Examine the efficiency of HDS in treating a synthetic feed mimicking steelworks 

final effluent and reagent use and creating HDS with suitable densities, 

- Examine suitability of the staged HDS process in creating relevant sludge densities 

and settlement characteristics from synthetic feed mimicking steelworks final 

effluent, 

- Demonstrate that Type II HDS can be formed using sodium hydroxide (NaOH) as a 

reagent, 

- Demonstrate that Type II HDS can be formed by using non-acidic feed and 

- Demonstrate that Type II HDS can be formed by non-iron containing or very low 

iron concentration feed water. 

 

A continuous trial with a HDS process pilot plant was carried out during the two months 

leading up to 16.02.2010 in order to confirm that HDS could be produced using sodium 

hydroxide as the alkali reagent. Zn, Cu, Fe, Ni and Mn were added to Cardiff tap water 

to give the desired concentrations.  The tap water was dosed with the appropriate 

amounts of Mg and Ca to mimic the background concentrations found at the steelworks. 
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6.8.1 Plant Description  

 

A photograph of the pilot plant can be seen in Figure 6.11 and a more specific process 

flow diagramme is presented in Figure 6.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Photograph of the HDS process pilot plant (Suvio et al., 2010b) 

 

The pilot plant consists of an influent water storage tank and a feed pump, Stage I 

Reactor tank, Stage II Reactor tank, flocculation tank and a clarifier.  Ancillary 

equipment includes alkali reagent (sodium hydroxide) and anionic flocculant and their 

storage and dosing systems as well as air supply (for metal oxidation).  A flow rate of 

10 litres / hour was chosen, giving a nominal flow with 30 minute retention time in the 

first two 5 litre reaction tanks. 

 

Within the pilot plant, the HDS was achieved by mixing recirculating sludge and the 

feed water prior to adding the alkali, creating a so-called staged (Kuyucak et al., 1995) 

or HDS II process (Bullen, 2006), where recirculated sludge acts as a seed for further 

metals precipitation and alkali is only added at the second (Stage II) reactor as explained 

in more detail in Section 6.2.3.3 of this chapter. 
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Figure 6.12 Process flow diagramme of the HDS process pilot plant 
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A brief description of each stage of the pilot plant follows. 

 

6.8.1.1 Influent Water Preparation, Storage and Pumping 

 

The first stage of the plant consists of a 1 m
3
 Intermediate Bulk Container (IBC) 

influent feed water storage tank.  The chemical composition of the water in the IBC was 

achieved by adding relevant chemicals to tap water to simulate Port Talbot Steelworks 

final effluent characteristics. 

 

The content of the IBC was manually stirred daily to ensure the contents were fully 

mixed.  A peristaltic feed pump (Watson Marlow SciQ 323) was used, aiming for a 

nominal incoming feed flow rate of 10 L/h (30 minute retention time in each of the first 

two reactors).   

 

6.8.1.2 Stage I Reactor Vessel 

 

The plant feed was mixed with the recycled sludge in the 5-litre Stage I reaction tank 

(cylindrical with a radius of 0.075 m and a height of 0.28 m).  A top mounted mixer (a 

Heidolph RZR 2041 operated at speed setting 1 at 302 rpm) was installed in the Stage I 

reactor to keep the solids in suspension.  The sludge was used to raise the pH of the 

reactor. 

 

6.8.1.3 Stage II Reactor Vessel 

 

The overflow from the Stage I reactor was fed into the similarly sized Stage II reactor, 

where the pH was raised by the addition of alkali (NaOH).  The aim was to keep the pH 

of the reactor around 8.5, which is an ideal pH for the removal of zinc as described in 

Chapter 5.  Air was introduced to the Reactor via a diffuser ring at a rate of 10 L/h to 

ensure the full oxidation of the metals.  A top mounted mixer (a Heidolph RZR 2041 

operated on speed setting 1 at 200 rpm) was used to ensure adequate mixing.   
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6.8.1.4 Alkali Reagent Dosing System 

 

The alkali was stored in a 25 L storage vessel and the stock solution was made up to a 

strength of 5% by dissolving 50 g of sodium hydroxide pellets per 1 litre of hot tap 

water, which ensured that all the pellets dissolved.  The sodium hydroxide was stored in 

a 25 litre vessel and each day the volume of the alkali added was recorded.  The sodium 

hydroxide was supplied from a storage vessel and dosed to the Stage II reactor via an 

integral controller/metering pump (Hanna Instruments BL 7916).  A pH controller was 

used to maintain the Stage II Reactor pH appropriate for the metals in the influent feed 

water.  The alkali dosing rate was controlled via a pH probe located at the outlet of the 

Stage II reactor.  The pH controller was calibrated three times a week and the pH 

measurement was also double-checked using a Hanna Instruments HI208 portable pH 

meter.  Both of the pH meters were calibrated to an accuracy of 0.2 pH. 

 

6.8.1.5 Flocculant Make-up System 

 

Anionic flocculant (Superfloc A-110 by Kemira Oyj) was made up at a concentration of 

0.05%   (i.e. 0.5 g of active flocculant/L).  The flow of flocculant was set so that a dose 

of approximately 2.5 mg/L would be achieved.  The dosing pump used was a FA 

Hughes (DCL) peristaltic pump.  In order to guarantee pumping reliability in such low 

volumes of flocculant, two pumps were used.  Therefore, should one pump fail, the 

flocculant dosing system would not totally fail. The volume of flocculant added was 

logged on a regular basis and additional “drop” tests were carried out regularly to ensure 

correct dosage rate.  

 

6.8.1.6 Air Blower System 

 

Air was supplied to the Stage II Reactor for metal oxidation.  The air was introduced via 

a diffuser ring located at the bottom of the Reactor.  The airflow was initially set at 

approximately 5 L/min, but due to the small amount of metals requiring oxidation 

present in the influent feed, the rate was not recorded during the trials. The flow rate 

was however checked weekly.  A top mounted mixer (a Heidolph RZR 2041 operated 

on speed setting 1 at 200 rpm) was used to increase oxygen transfer. 
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6.8.1.7 Flocculation Tank 

 

The treated water from the Stage II reactor overflowed into the flocculant tank (volume 

2.5 L, cylindrical with a radius of 0.075 m and a height of 0.14 m).  Flocculant was 

added to the feed line from the Stage II reactor.  A slow-speed flocculation mixer (a 

Heidolph RZR 2041 operated on speed setting 1 at 141 rpm) was used for solids and 

flocculant mixing.  The flocculated mixture then flowed via gravity into the clarifier.   

 

6.8.1.8 Clarifier/Thickener Unit 

 

Solids/liquid separation was achieved in a clarifier/thickener cone, with a maximum 

surface area of approximately 0.0176 m
2
.  A slow-speed mixer (a Heidolph RZR 2041 

operated on speed setting 1 at 70 rpm) was used to assist solids/liquid separation.  

Treated water was discharged from the system by overflowing the clarifier unit. 

 

6.8.2 Sludge Recirculation 

 

Thickened solids from the clarifier were recirculated to the Stage I reactor by peristaltic 

Watson Marlow 604U pump.  No solids were purposely removed from the system 

during the trial. 

 

6.9 Laboratory Studies – Filtration Experiments 

 

In order to determine how the filtration characteristics of the sludge changed during the 

HDS process experiment and how these filtration results compare with conventional 

precipitation (Chapter 5) sludge filtration results, piston press tests were undertaken on 

sludge samples.   

 

6.9.1 Svedala Piston Press Description 

 

 The filtration experiments were carried out using a Svedala piston press that was 

borrowed from Silbuster Solutions Ltd in Monmouth, UK.  A schematic representation 

of all the components and operational positioning of the piston press can be seen in 
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Figure 6.13.  Figure 6.14 outlines photographs of each major component of the Svedala 

piston press and a photograph of the piston press in operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Schematic diagram of the Svedala piston press (Bullen, 2006) 

 

6.9.2 Filtration Experiment Procedure 

 

During the experiments, the piston press was inverted (Figure 6.13) and the piston itself 

was gently dropped inside the cylinder, which had a 1-litre volume e and a diameter of 

0.076 metres. In order to produce an air tight seal an ‘O’-ring was used between the 

piston and sludge sample in order to produce an air tight seal.  During the experiments, 

a sludge sample of volume (0.5 litres) and known concentration was introduced on the 

top of the piston. 

 

The media or ‘filter cloth’, which was a fine cotton cloth, was then placed on the cloth 

support and the cloth support was placed into the end cap.  During the first experiments 

it was noted that water leaked from between the filter cloth and the filter cloth support 

and therefore an additional ‘O’-ring (O-shaped rubber ring with approximately 0.5 cm 

thickness) was added between the filter cloths and the filter cloths support.  The 

assembled press was then inverted and locked in a vertical position and a measuring 

cylinder was placed under the piston in order to capture the filtrate.  Compressed air was 

then applied to the unit using a pressure of 5 bars, while the volume of the filtrate was 

Figure 6.13a Piston press components Figure 3.13b Piston press in operation 
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recorded every 5 seconds.  Furthermore to the volumes recorded at regular intervals, an 

additional volume was recorder at the end of the test at ‘breakthrough’.  Following the 

filtration test, the filter cake solid concentration % (w/w) was measured using the ‘Total 

Suspended Solids Methodology’ described later on in Section 6.10.1.1 of this chapter. 

 

 

Figure 6.14 Photographs of the Svedala piston press 

 

6.10 Water Analysis Techniques 

 

Throughout the pilot plant experiments, water and sludge samples were taken at regular 

intervals.  The continuous pilot plant was located within the Cardiff University CLEER 

Figure 6.14a: Photograph of the piston press 

filter cloth support 

Figure 6.14b: Photograph of the piston press 

end cap and piston 

Figure 6.14c: Photograph of the piston press  

cylinder 
Figure 6.14d: Photograph of the  

piston press in operation 
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(Characterisation Laboratories for Environmental Engineering Research) facility and the 

analysis of the samples was carried out within the same Laboratory. A few individual 

methodologies were used to analyse the samples as outlined below. 

 

6.10.1.1 Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry Metal 

Analysis 

 

Daily samples were taken throughout the pilot plant for the analysis of dissolved metal 

concentrations.  Prior to the analysis, the samples were filtered through a 0.2 µm filter 

in order to remove any settleable solids, including insoluble metals and suspended 

solids.   

 

The elemental analyses of metals was undertaken by a Cardiff University CLEER 

Laboratory Technician, Mr Jeff Rowlands, using Perkin Elmer Optima 2100 DV ICP-

OES Inductively Coupled Plasma Optical Emission Spectroscopy.   

 

Prior to the analysis, the ICP was calibrated by Mr Rowlands for the relevant element to 

be analysed, therefore ensuring consistent accuracy.  The calibration was done by using 

standard samples, which were run through the ICP at the start of the each analysis.  The 

analysis was undertaken by file method.  Detection limit for the Perkin Elmer ICP-OES 

devices for relevant elements are shown in Table 6.1. 

 

The method for using ICP metal analysis is outlined in several water and wastewater 

analysis books, including the ‘Standard Methods for the Examination of Water and 

Wastewater’, Part 3120 B. 

 

Table 6.1 Detection limits for Perkin Elmer ICP-OES devices (Perkin Elmer, 2008) 

 

Element Detection limit (µg/L) 

Zn 0.2 

Ni 0.5 

Pb 1 

Cr 0.2 

Cd 0.1 

Mn 0.1 

Mg 0.04 
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It should be noted however that in laboratory environment it is common to only achieve 

mg/L values as detection limits, despite the potential detection limits of the relevant 

Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry device. 

 

6.10.1.2 Total Suspended Solids Methodology 

 

In order to determine the total suspended solids concentration the sample was filtered 

using a filter funnel and the sludge together with the filter paper was placed in an oven 

at a temperature of approximately 105°C for a minimum of 2 hours.  The amount of 

total suspended solids in the sample was attained by measuring the difference in weight 

between the filter paper prior to the filtering and the weight of the filter paper and dried 

solids following the oven treatment.   

 

The full procedure and methodology is presented in the ‘Standard Methods for the 

Examination of Water and Wastewater’, Part 2540 C. 

 

6.11 Results 

 

Several results can be derived from the HDS process pilot plant experiment, which 

include pilot plant performance monitoring results, including: water treatment 

efficiency, pH’s throughout the pilot plant, reagent consumption, sludge recirculation 

ratio and sludge densities.  Furthermore results on sludge settlement characteristics were 

derived from the HDS process pilot plant experiment. 

 

The specific resistance to filtration and cloth resistance results were derived from the 

results of the sludge filtration experiments carried out using HDS process experiment 

sludges as well as conventional precipitation sludge. 

 

6.11.1 Pilot Plant Performance Monitoring 

 

The performance of the pilot plant was assessed by monitoring several aspects during 

the trial.  The monitoring included daily checks of volume of feed water, reagent 
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consumption (volumes of added flocculant and alkali), as well as the pH’s and water 

quality throughout the plant.  The volume of sludge returned to the Stage I reactor was 

regularly monitored in order to determine correct recirculation ratio, sludge settling 

velocity tests were carried out using sludge from the flocculant tank from which also the 

sludge density was determined.  Finally, samples were taken from the clarifier to 

determine achieved sludge density at regular intervals during the trial.   

 

Analysis of the pilot plant performance monitoring results follows. 

 

6.11.1.1 Plant Flows and Reactor Retention Times 

 

A flow rate of 10 litres / hour was chosen, giving a nominal flow with 30 minute 

retention time in each of the first two 5 litre reaction tanks.  The volume added to the 

pilot plant was logged daily by measuring the volume of influent feed used from the 

IBC.  Additionally daily “drop” or flow calibration tests measuring times required to 

deliver known volumes into measuring cylinders were carried out to ensure the correct 

water feed rate was obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Average L/hr influent feed volume during the pilot plant trial 

 

The actual volume fed daily can be seen in Figure 6.15, from which it can be seen that 

during the experiment, the hourly volumes fed to the HDS process pilot plant vary 
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between approximately 7 litres per hour to above 13 litres per hour.  The average 

volume fed per hour throughout the whole experiment is however close to the aimed 10 

L/h at 9.7 L/h. 

 

6.11.1.2 The pH’s throughout the Pilot Plant 

 

The variation of pH with time in the feed and throughout the HDS pilot plant streams 

was measured daily and the results can be seen in Figure 6.16.   

 

Throughout the majority of the trial, the feed pH was hovering between pH 7 and 7.5, 

with the Stage I Reactor and the discharge pH being generally between pH 8 and 9.  

Towards to the end of the trial the operating pH was raised slightly, to ensure all the 

metals were being removed from solution.  As seen in Figure 6.16, pH increase at 

Reactor I led to a pH increase at Reactor II, Flocculant Tank and the discharge pH. 

 

 

Figure 6.16 The pH variation with time in feed and throughout the HDS pilot plant streams 

 

6.11.1.3 Water Quality 

 

During the trial, regular samples were taken throughout the plant (influent feed, all 

reactors and effluent stream) in order to carry out analysis for soluble metal 

concentration as explained in Section 6.10.1.1 previously. 
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Table 6.2 Soluble concentrations in the HDS Pilot Plant feed and discharge water 

 

Constituent In mg/L Out mg/L 

 Min Max Ave Min Max Ave 

Zn 24.5 76.8 42.7 0.0 5.2 1.4 

Cu 0.5 3.4 1.3 0.0 0.4 0.0 

Ni 4.3 8.0 6.0 0.0 3.4 1.0 

Fe 0.0 0.2 0.0 0.0 0.0 0.0 

Mn 12.8 26.2 16.1 0.0 11.3 6.1 

Mg 17.5 36.8 22.3 5.2 27.9 20.3 

Ca 200.7 470.9 339.2 87.4 391.7 290.6 

 

Table 6.2 presents a summary of the soluble metal concentrations before (In) and after 

(Out) being treated by the HDS pilot plant.  Results show that HDS provides efficient 

treatment resulting in discharge water with very low concentrations of soluble metal.   

When looking at the efficiency of the HDS pilot plant in removing zinc (Figure 6.17) in 

more detail, it becomes evident that the efficiency in removing zinc is excellent.  On 

average the plant is performing at a zinc removal efficiency of > 99.95%. 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Soluble Zn concentrations with time in the HDS pilot plant feed and discharge water 

 

Looking at the Mn and Zn removals in more detail it is interesting to note that the 

soluble Mn levels (Figure 6.18) in the discharge remained close to about 8 mg/L up to 

around 20/01/2010 when the operating pH of the Stage II Reactor was raised close to 9.  

The effect of increasing amounts of recirculating sludge seemed to be minimal.  Once 
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the pH was raised the Mn concentration in the discharge decreased accordingly.  For Zn, 

however, there appears to be a stabilisation of the soluble concentration in the pilot 

plant effluent well before the pH was increased. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Soluble Mn concentrations with time in the HDS Pilot plant feed and discharge water 

 

The performance of removing soluble Zn (Figure 6.17) during the trial was also getting 

better towards the end and lower discharge concentrations of soluble Zn were found at 

the end of the trial, even though the concentration of the Zn on the feed water was raised 

from 50 mg/L to 100 mg/L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 Soluble Zn concentrations with time at various locations within the HDS pilot plant, its 

feed and its discharge water 
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When looking at the soluble zinc concentrations in Reactor I and II, flocculant tank and 

the effluent discharge (Figure 6.19), it is clear that especially the zinc concentrations 

within the reactors are getting much lower when the sludge matures and its quality 

improves.  Over all the aging of the sludge improves the zinc removal efficiency as can 

be seen in the Figure. 

 

6.11.1.4 Reagent Consumption 

 

As can be seen in Figure 6.20, the flocculant dosage rate during the trial was between 2 

and just under 6 mg of flocculant per litre of feed water treated.  The best settling 

characteristics were found with a flocculant rate of around 2.5-3 mg of flocculant per 

litre of feed water treated.  From 20/01/2010 onwards, the flocculant dosage per litre of 

influent feed water was increased in order to help to increase sludge density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Flocculant dosage rate in mg of flocculant per litre of feed flow during the HDS pilot 

plant trial 

 

 

When looking at the alkali consumption during the trial (Figure 6.21), it is clear that the 

consumption stays very similar throughout the experiment until the very end of the trial, 

when the metal concentrations of the influent feed were raised.  The average alkali 

consumption during the trial is 0.2 g/L of treated water. 
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Figure 6.21 Alkali dosage rate during the HDS pilot plant trial 

 

6.11.1.5 Sludge Density 

 

In order to find what kind of sludge densities the staged HDS process was able to 

achieve whilst treating non-acid low metal concentration wastewater, regular solid 

concentration checks were carried out on the recirculation sludge.  The checks were 

carried out using the total suspended solids methodology as explained in Section  

6.10.1.2 of this Chapter. 

 

 

 

 

 

 

 

 

 

Figure 6.22 Recirculation sludge solids concentrations during the pilot plant trial 
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 (mass of solids recycled per unit time) / (mass of solids formed per unit time)  

 

As seen in Figure 6.22, the sludge densities were very low at the beginning but during 

the last weeks of the experiment they started to rise rapidly.  Concentrations of above 

5% (w/w) were only achieved during the last two weeks of the experiment and yet the 

sludge densities reached those of above 17% (w/w) at the end of the experiment.   

 

6.11.1.6 Sludge Recirculation Ratio 

 

Regular tests were carried out in order to carefully manage the ratio of sludge 

recirculation in relation to the metal hydroxide mass. As explained in Section 6.4.1, the 

solid recirculation ratio is often measured as: 

 

I.e. on a weight by weight basis 

 

Due to the low metal concentrations present at feed water, no sludge was removed from 

the pilot plant, although as a consequence of a blockage at the end of the trial, some 

sludge was lost and the sludge concentrations fell as can be seen in Figure 6.23. 

 

 

 

 

 

 

 

 

 

Figure 6.23 Recirculating solids and incoming metal hydroxide ratio during the HDS pilot plant 

trial 

 

As seen in the Figure, the metal hydroxide mass recirculation ratio varied between 

95.1:1 and 680.4:1 during the whole trial.  As seen in Figure 6.22, the solids densities 
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were low at the beginning of the trial and they were not growing fast enough.  The 

sludge recirculation ratio was raised significantly on 25/01/2010 in order to create 

denser sludge.  After successfully increasing the sludge densities, the sludge 

recirculation ratio was lowered again at the end of the trial.  It appears that higher 

recirculation ratio might be required when using a low metal concentration feed. 

 

6.11.1.7 Sludge Settlement Characteristics 

 

In order to find out how the sludge quality in terms of settling characteristics and final 

solid concentration changed during the HDS process experiment, settlement tests 

(‘mudline tests’) were undertaken regularly using flocculated slurry from the flocculant 

tank of the pilot plant.  The purpose of the tests was to estimate the initial settling 

velocity and the final settled solids concentration. 

 

6.11.1.7.1 Initial Settling Velocity 

 

Daily settling tests were carried out in order to determine the settling velocity of the 

sludge during the HDS process experiment.  The initial settling velocity tests were 

carried out by measuring the height of the interface between the solids and the clear 

supernatant water in a 250 ml measuring cylinder after 10 seconds of settling.  The 

purpose was to determine at the initial settling velocity, which indicates the speed of the 

free fall of the sludge. 

The initial settling velocity was calculated by dividing the distance the sludge interface 

had dropped by 10 seconds and the results were then plotted in m/h. 

I.e. 

Initial settling velocity = distance (m) interface dropped in 10 sec 

     0.02777 (hr) 

 

From the settling rate data collected, the initial velocities (corresponding to the linear 

portion of the settling curves) were plotted against the respective solids concentrations 

to monitor how the speed of sedimentation changes with the age of the sludge. 
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Figure 6.24 Initial Settling Rates as Functions of Volume Fed to the HDS Pilot Plant during Two 

Months of Operation 

 

There was a very dramatic improvement in the settling rates as the trial progressed as 

can be seen in Figure 6.24, which displays the settling rates as a function of the 

corresponding solid concentrations for discrete ages of the sludges as reflected by the 

volumes treated.  The ability of a floc to settle depends on its size and density.  As the 

HDS process develops the floc density increased and an enhanced settling characteristic 

is obtained.  The data clearly show the development of floc density (HDS formation) as 

more and more precipitation occurs.  In total, a volume of about 6000 litres was treated 

over the two months of the trial, culminating in exceptionally high settling rates in 

excess of 22 m/h at a relatively high solids concentration of 5% (w/v).  For very young 

sludges it was not possible to achieve high settling velocities even at solids 

concentrations as low as 0.1% (w/v).  
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6.11.1.7.2 Final Settled Solids Concentration 

 

In order to find what the final concentrations of the settled solids would be, 250 ml 

sludge samples were taken from the clarifier underflow.  These samples were left in a 

measuring cylinder for a period of 2 hours, after which the volume of the cylinder 

occupied by solids was used to calculate the settled solids concentration. 

 

Settled solids concentration= initial concentration (mg/L)* settled solids volume (mL) 

       250 mL 

 

The initial solids concentration of the sludge was measured by filtering samples and 

measuring their weight against the sample volume % (w/v) after drying in oven at 105 

ºC for 2 hours as outlined in Section 6.10.1.2 of this chapter. 

 

As can be seen in Figure 6.25, the final settled solids concentrations vary dramatically 

throughout the trial.  During the first weeks of the trial, it was very difficult to get the 

sludge solids concentrations to increase substantially and around 330 hours of trial, 

equalling to approximately 2 weeks of continuous operation was necessary to get sludge 

with solids concentrations above 10% (w/v).  Sludge concentration rose very quickly 

following this and after around 450 hours of operation or under 3 weeks, the sludge 

solids concentration was greater than 20% (w/v). Unfortunately, following the 

densification of the sludge, the pipe between Reactor I and II got blocked overnight on 

the 11
th

 of February 2010 and most of the sludge was lost.  Therefore, despite most of 

the sludge being mature HDS, the overall sludge concentrations dropped for 5 

consecutive days, indicating that new young sludge was arising as a consequence of 

conventional precipitation taking place.  The trial was ceased thereafter.  The results of 

the reduced sludge concentrations can also be seen in the last solid concentrations of the 

sludges used for measuring the initial settling rates in Figure 6.24. 

 

Towards the end of the trial it was demonstrated by following the whole settling curve 

for 24 hours that settled solids concentration in excess of 70% (w/v) were potentially 

achievable compared to the literature values of less than 5% (w/v) for conventional 

precipitation sludge, see Section 6.5 
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Figure 6.25 Final settled solids concentration following the whole 24 hour settling curve 

 

6.11.2 Sludge Filtration Characteristics 

 

As explained in detail in Section 6.12, filtration experiments were undertaken on 

sludges generated during the pilot plant trial and on conventional precipitation sludge.   

 

The HDS sludge samples were taken every two weeks during the trial, with the first 

sample (HDS 1) taken 2 weeks after starting the experiment.  The solid concentrations 

of the different sludges used for the experiment are listed in Table 6.3. 

 

Table 6.3 Concentrations of sludges used for filtration experiments 

 

Type of Sludge Solids Conc. % (w/v) 

HDS 1 3.41 

HDS 2 4.50 

HDS 3 4.72 

HDS 4 2.94 

single pass 0.79 
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As can be seen in Figure 6.26, where ratios of time and filtrate volumes are plotted 

against filtrate volumes for each sludge tested, the differences in filtration results 

especially between conventional single pass sludge and HDS sludges are very clear.  

The Figure shows that the single pass sludge has the highest slope of all the sludges, 

indicating that the HDS process increases sludge filterability. 

Figure 6.26 Filtration rate for incompressible cake in time/filtrate volume versus volume plot 

 

 

As can be seen in Figure 6.26, there is a difference between the filtration rates of HDS 

sludges.  The first sludge sample, HDS 1, has the highest slope, indicating slower 

filterability as expected.  The HDS 2 and 3 sludge samples showed improved filtration 

rates, with the rates at the end part of the filtration volume clearly lower than those with 

the HDS 1 sludge sample.  The final HDS 4 sample shows that the filtration rate at the 

beginning of the filtration is largely improved in relation to the HDS 2 and 3 and shows 

overall better filtration performance than the other HDS sludges.  Overall, the final HDS 

4 sludge is filtering around 10 times faster than the first HDS 1 sludge. 

 

The specific cake resistance (Figure 6.27) gives an even better idea of how much better 

the HDS sludge quality is in relation to the single pass conventional precipitation 

sludges. The specific cake resistance of mixed metal single pass sludge, generated by 

using the same solution as the HDS pilot plant influent feed, has a specific cake 
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resistance of nearly 35 000 Gm/kg, whereas after some weeks of operation, the pilot 

plant HDS sludges have a cake resistance of a mere 169 Gm/kg, over 200 times less 

than the conventional precipitation sludge. 

 

 

Figure 6.27 Specific cake resistance for different sludges 

 

The reason for the specific cake resistance for the HDS sludges getting lower is that 

when the sludge matures due to the fact that the slope of the filtration time/volume 

versus volume plot is getting smaller (Figure 6.26) as is the pressure drop across the 

sludge cake.  Furthermore, the viscosity of the filtrate and the dry cake mass per unit 

volume of filtrate is getting higher (Equation 6.2). 

 

6.12 Observations 

 

Several observations were made during the trial.  These include: 

- The pH control of the HDS process pilot plant is imperative.  This supports the 

finding of Aubé, et al. (1997). 

- HDS can be formed using sodium hydroxide as an alkali and influent feed with low 

iron concentrations, supporting the finding of Bullen (2006). 

- HDS can be formed using low total metal concentration and non-acidic water, 

despite of previous beliefs. 
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-  There is an indication that higher sludge recirculation ratios might be required when 

using influent feed with low metal concentrations.  More research into the topic 

would be required to confirm this. 

- It appears that when high concentrations of non-metal ions are present, including 

chloride, calcium and magnesium, higher recirculation rations are required.  This 

supports the findings of Bullen (2006).  

 

6.13 Conclusion 

 

The use of HDS started in the steel industry (pickle liquor) and has since been 

recognised as the preferred active treatment method for mine water, especially AMD, 

but it has never before been tested with low metal concentration nor non-acidic effluent. 

 

In the HDS process, the arisen sludge is recycled from the clarifier and is mixed with 

alkali prior to adding the incoming effluent or effluent prior to adding the alkali.  

During HDS process, the recycling of the previously precipitated sludge results in solids 

crystallisation, creating denser and heavier sludge particles. 

 

The HDS process provides many benefits, including improved treatment efficiency and 

sludge quality, and up to 50% cost savings on sludge handling and disposal  

 

The results of the continuous staged or Type II HDS process pilot trials mimicking 

steelworks final effluent at the Tata site in Port Talbot prove that matured high density 

sludge > 17% (w/v) settling at a rate of 22 m/h can be created by using: 

- Low iron influent concentrations 

- Sodium hydroxide (NaOH) as a reagent 

These finding support the findings of Bullen (2006) and contradict the findings of many 

other HDS process experts. 

Furthermore, the results show that despite previous beliefs, High Density Sludge forms 

using the following parametres: 

- Low overall total influent metal concentration and 

- Non-acidic influent water. 

 



Water in Steelworks  P. Suvio 

 

 
186 

 

 

HDS forms very readily with this particular steelworks feed, giving precipitates with 

excellent settling characteristics. 

 

Furthermore, it was found that HDS sludge created by using influent feed that mimics 

steelworks effluent is up 200 times easier to filter than single pass sludge. 
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7 CONCLUSIONS 

 

The main conclusions from the research work reported in this thesis are as follows: 

 

- The Water Framework Directive (WFD) 2000/60/EC is set to overhaul the 

management of the water environment within the EU and will have a significant  

effect on water management within steelworks. 

 

- A large  amount of around 145,000,000 m
3
 (2007)  of water is being used in the Port 

Talbot Steelworks over a year and around 12,500,000 m
3
 is discharged annually to 

the Bristol Channel via the Long Sea Outfall.  Out of the total effluent, around 

3,500,000 m
3
 per annum is treated by the Nautilus final effluent treatment plant. 

 

- The Nautilus chemical precipitation treatment system performs generally well, 

removing around 80% suspended solids present in the influent feed, although on 

occasons   breaches in the consent limits, particulary for Zn, do occurr.   

 

- As a part of the World Steel Association Water Management Working Group 

project,  29 steel plants, including 17 integrated and 12 non-integrated, completed 

the survey, representing around 8% or 110.9 million tonnes of the World’s annual 

steel output.  

 

- On a worldwide basis the Working Group has found that most of the water 

consumed during steel making is used for supporting functions, including cooling 

for power generation.  Water consumption at different steel plants  varies from 1 to 

near 150 m
3 

per tonne of steel and most of the steelworks rate their water 

management activities high, despite their water related performance (m
3
/ts) figures. 

 

- Iron enhances zinc precipitation strongly via co-precipitation.  A similar effect, 

although to a lesser extent, was achieved in zinc co-precipitation with nickel and 

lead. 
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- The results of the continuous staged (or Type II) HDS process pilot trials mimicking 

steelworks final effluent at the Tata site in Port Talbot proved that matured high 

density sludge containing more than 17% (w/w) solids concentration settling at a 

rate of 22 m/h can be created.  

Furthermore, the results show that despite previous beliefs, High Density Sludge forms 

using: 

- Low overall total influent metal concentration containing low levels of Fe, 

- Non-acidic influent water and 

- Sodium hydroxide (NaOH) as the alkaline reagent. 

 

- HDS sludge created by using an influent feed that mimics steelworks final effluent 

is up to 200 times easier to filter than single pass (i.e. freshly precipitated without 

sludge recirculation) sludge.  
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8 RECOMMENDATIONS 

 

Based on the results of this research project, several recommendations for water in 

steelworks particularly in Port Talbot can be derived, including: 

 

Nautilus final effluent treatment system 

- For zinc using NaOH in a conventional precipitation system, a pH of around 10 

should be applied as proven by the latoratory tests, despite the optimum pH for Zn 

removal theoretically being closer to 9. 

- Effluent treatment systems targeting zinc removal should be operated continuously 

and zinc precipitates  are likely to dissolve back to solution if they are left standing 

over night and changes to the physical characteristics of zinc precipitates have been 

reported to occur on standing at pH between 10.5-11. 

- Currently flocculant is used randomly, but use should be calculated using 

stoichiometry and the dosing should also be confirmed by laboratory tests during the 

runs as stoichiometric values are theoretical and can often be too high. By using too 

little or too much flocculant, settling suffers. 

 

Transformation of Nautilus final effluent treatment system into a HDS Process 

In order to transform Nautilus final effluent treatment into a HDS Process, several 

changes need to take place.  A simplified process diagram of one possible new solution 

can be seen in Figure 8.1 below. 

 

Figure 8.1 Suitable design for Nautilus HDS Process 
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In the new design, the influent streams arriving to the Nautilus HDS Process treatment 

systems would be pumped through a trash screen into a mixing tank. The purpose of the 

mixing tank is to provide unified effluent streams to the new Nautilus effluent treatment 

plant. The mixing tank should have a two-hour influent flow capacity. 

 

From the mixing tank the homogenous effluent is pumped to the first chamber, where it 

is mixed together with the recirculated sludge that acts as a seed and a platform for the 

precipitation to take place.  Additionally, air could be added to this chamber to allow 

iron oxidation to valence III, which would enhance co-precipitation behaviour. 

 

From the first chamber, the effluent overflows to the second chamber, where reagents 

are added.  The alkali used could be changed into calcium hydroxide, which is cheaper 

than sodium hydroxide.  Flocculant is also added in this chamber.  Reagent should be 

applied based on stoichiometry and laboratory tests.  Changing into a HDS Process will 

lower reagent and flocculant consumption.  Part of the sludge generated during this step 

will be recirculated to the first chamber, the rest is pumped from underneath the 

chamber to the sludge bunds.  From the sludge bunds the sludge is pumped to a suitable 

filter for further dewatering. 

 

From the second chamber, the effluent overflows to the third chamber, where oil and 

smaller particles are separated by lamella clarifier.  The generated sludge is pumped to 

the sludge bunds and further to the filter. 

 

The above described Nautilus HDS Process would require several changes to the current 

systems.  These include among others: 

- Investing into new equipment, including feed mixing tank, trash screen and suitable 

filter. 

- Raising the walls of the treatment system, so that it would be possible to divide the 

treatment system into 3 separate chambers and enable water overflow from one 

section to another. 

- Arranging sludge removal from underneath the second chamber and changing the 

currently used sludge pumps to properly efficient sludge pumps. 
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- Have a more controlled management of the Nautilus effluent treatment plant and 

transforming it to a HDS Process means running the plant more carefully due to 

ensure right parameters, including the correct sludge recycle ratio. 

 

Overall Port Talbot Steelworks water systems 

Sufficient metering should be installed to the water and effluent systems in order to 

manage the water and effluent flows. 

 

Facility-specific water systems 

It is most efficient and cost-effective to treat the effluent at source, therefore it would be 

beneficial to improve some of the facility-specific treatment systems, including: 

- New water treatment system for the Hotmill in order to create a fully closed-loop 

recirculating water system and to remove steel scale present in the effluent.  A 

suitable treatment system could include, for example, efficient clarifiers/thickeners, 

followed by sand filters and a suitable filter for solid/liquid separation. 

- Taking the Coke-Ovens DETOX biological effluent treatment system back into use. 

- New water treatment system for the Blast Furnaces gas washing effluent treatment.  

This effluent contains most of the zinc present in the steelworks effluent flows and a 

suitable treatment system tackling volatile metals within the effluent could include a 

process with an efficient aeration tank, followed by a suitable clarifier/thickener. 

 

worldsteel Water Management Working Group 

- Investigate how the findings of the worldsteel Water Management Working Group 

could be put in to use at the Port Talbot Steelworks.  Specifically, the best practice 

descriptions that can be found within the The worldsteel (2011) ‘Water Mangement 

in the Steel Industry’ could be used as a part of the development of the water 

systems within Port Talbot Steelworks. 

- worldsteel is organising a second stage of the Water Management Working Group 

and it would be beneficial if someone from the Port Talbot Steelworks that is 

familiar with the water systems would take part on the Working Group’s activities. 
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9 FUTURE WORK 

 

Following the investigations described in this thesis, a number of projects concentrating 

on the HDS Process could be taken on.  Ideal topics for further research include: 

-          Further investigations on how HDS formed from steelworks feed mimicking 

influent affects filterability and what kind of filter would be most suitable for use for 

this type of HDS. 

-          Further investigations into the formation of HDS using: 

o Influent with low metal and especially low iron concentrations, 

o Influent with Zn as the main metal in solutuion, 

o Non-acid influent and 

o Other than calcium-based alkali. 

Investigations into the formation of HDS using the above parameters should concentrate 

in finding suitable pH range for a minimal zeta potential in order to ensure mimimum 

electrokinetic potential within the flocs and therefore miminal stability of the colloidal 

system, aiding flocculation.  In order to get a better understanding on the HDS 

formation and sludge particle structure, crystal or otherwise, investigation should 

include characterisation by scanning electron microscope (SEM). 
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