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Abstract

It is shown that the spectrum of a one-dimensional Dirac operator with a potential

q tending to infinity at infinity, and such that the positive variation of 1}q is

bounded, covers the whole real line and is purely absolutely continuous. An example

is given to show that in general, pure absolute continuity is lost if the condition on

the positive variation is dropped. The appendix contains a direct proof for the special

case of subordinacy theory used.

1. Introduction

It is a well-known fact in non-relativistic quantum mechanics that the Schro$ dinger

operator with a potential which tends to ¢ at ³¢ has a purely discrete spectrum.

In contrast, the Dirac operator of relativistic quantum mechanics exhibits a very

different behaviour in this situation. Specifically, for the one-dimensional Dirac

operator

h¯σ
#
p­σ

$
­q,

with a real-valued potential q `L"
loc

(2) (one has the limit point case at ³¢ and thus

essential self-adjointness of the minimal operator) the spectrum is never purely

discrete (cf. the appendix of [10]). If q tends to infinity at ­¢ and satisfies certain

regularity conditions, the spectrum of h is purely absolutely continuous and

comprises the whole real line. This has been observed by Plesset[6] in the case when

q is a polynomial. Titchmarsh[12] has extended this result to functions q `C" such

that q« `AC
loc

and

&
¢ q«#

q$
!¢, &

¢ rq§r
q#

!¢.

This regularity requirement has subsequently been weakened to essentially q `AC
loc

,

&
¢rq«r

q#
!¢ (1)

by Erde! lyi [2]. It should be mentioned that Rose and Newton[8], section IIIB, have

found a purely continuous spectrum for all real values of the spectral parameter,
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assuming only that lim
xU¢ q(x)¯¢, and that q is monotonic near infinity; however,

their reasoning is incomplete, assuming without justification that the σ
$

term of h

does not significantly affect the asymptotics of solutions.

In the present paper we revisit the question of the quality of the spectrum for

potentials infinite at infinity. Our main theorem (Theorem 1), which is proved in

Section 2, states that the whole real line is purely absolutely continuous spectrum of

h provided lim
xU¢ q(x)¯¢ and 1}q is of locally bounded variation, and of bounded

positive variation near infinity. This extends Erde! lyi’s result not only because the

local regularity of q is relaxed from absolute continuity to bounded variation, but

because there is virtually no restriction on the growth of q ; in particular any

eventually non-decreasing function q is admissible (cf. Remarks 3, 4).

Our argument basically runs as follows. By the method of subordinacy, which was

developed by Gilbert and Pearson[3], [4] for the Sturm–Liouville operator, and

applied to the one-dimensional Dirac operator by Behncke[1], it suffices to prove

that for every real λ, all solutions u of the eigenvalue equation

(σ
#
p­σ

$
­q®λ)u¯ 0 (2)

are globally bounded. While the general subordinacy theory requires a subtle and

quite circumstantial argument, one can give, based on an idea of [11], a rather direct

proof for the special case we use, which is sketched in the appendix.

To establish the boundedness of any real-valued solution u of (2), the key idea is

to study not the behaviour of the norm of the solution rur, but that of the function

RB'rur#­
2

q®λ®1
u#
"

(3)

on a right half-axis where q®λ®1" 0. To motivate this choice, consider the case of

a potential q which is piecewise constant. Then on each interval of constancy of q the

general solution of (2) is found to be

u(t)¯R

E

F

'q®λ®1

q®λ­1
cos (o(q®λ)#®1 t®φ)

sin (o(q®λ)#®1 t®φ)

G

H

, φ `2,

R" 0 being constant in this interval. Thus the solution is moving on an ellipse of

major radius R, which is more elongated the smaller q®λ®1 is, and which tends to

a circle as qU¢. At a discontinuity of q, then, there is (by the absolute continuity

of u) a continuous transition between two concentric ellipses of different

eccentricities, which obviously requires that the major radius of the more eccentric

ellipse is greater than or equal to that of the less eccentric one. Thus when q is

shrinking, R grows or remains the same; when q is growing, R shrinks or remains the

same, which establishes a close link between the qualitative behaviour of q and of R.

In particular, R cannot grow at growth points of q. It turns out that in the general

situation of a potential q of locally bounded variation, the growth of q can likewise

be disregarded, while the growth of R as q decreases can be controlled, by means of

a Gronwall type lemma (Lemma 2), in terms of the positive variation of 1}q. In order

to illustrate that lim
xU¢ q(x)¯¢ alone is not sufficient for the spectrum to be purely

absolutely continuous, we give, in Section 3, a simple example of a potential with
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logarithmically divergent positive variation of 1}q, such that the operator has an

eigenvalue.

2. Absolutely continuous spectrum

We introduce the following notation. By BV
loc

(I) we denote the functions of

bounded variation on each compact subinterval of I. Given a function f `BV
loc

(I) we

write Pf for the (indefinite) positive variation of f, the non-decreasing function

determined up to a constant by

Pf(b)®Pf(a)¯ sup 3
N

j="

max ²0, f(x
j
)®f(x

j−"
)´, (4)

where the supremum is taken over all partitions

a¯ x
!
! x

"
!…! x

N
¯ b, N `.,

of the interval [a, b]Z I. In an analogous way, the (non-decreasing) negative

variation Nf and the total variation Tf are defined such that

Tf¯Pf­Nf, f¯Pf®Nf.

By σ
ac

(h), σ
s
(h) we denote the absolutely continuous and the singular part of the

spectrum of h, respectively.

T 1. Let q `L"
loc

(2) be a real-valued function such that lim
xU¢ q(x)¯¢,

1}q `BV
loc

(c,¢) for some c `2 and P(1}q) (¢)!¢ ; then σ
ac

(h)¯2, σ
s
(h)¯ J.

Proof. By Lemma 1 below, it is sufficient to show that for every λ `2, any real-

valued solution u of the eigenvalue equation (2), i.e. of

u!

"
¯®(q®λ®1)u

#
,

u!

#
¯ (q®λ­1)u

"
, * (5)

is globally bounded on a right half-axis. Fix ch " c such that λ­1% q}2 on [ch ,¢).

Then it follows from (4) that

P(1}(q®λ®1))(x)®P(1}(q®λ®1))(ch )% 4(P(1}q) (x)®P(1}q) (ch )) (x& ch ),

and similarly for the total variation; so that 1}(q®λ®1) is of locally bounded

variation, and P(1}(q®λ®1))(¢)!¢. In particular,

R#(t)B rur# (t)­
2

q(t)®λ®1
u#
"
(t) (t& ch )

is of locally bounded variation, and by the rule of integration by parts for Stieltjes

integrals (cf. [7] §54) we have for t
#
& t

"
& ch :

R#(t
#
)®R#(t

"
)¯& t#

t"

(rur#)«­& t#

t"

2

q(t)®λ®1
d(u#

"
(t))­& t#

t"

2u#
"
(t) d 0 1

q®λ®11 .
As u#

"
is locally absolutely continuous, the first two integrals can be taken together

as Lebesgue integrals :

& t#

t"

0(rur#)«­
2

q®λ®1
(u#

"
)«1¯& t#

t"

02u!

"
u
"
­2u!

#
u
#
­

4

q®λ®1
u!

"
u
"1¯ 0,
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since the integrand vanishes by (5). Hence

R#(t
#
)®R#(t

"
)¯ 2& t#

t"

u#
"
(t) dP 0 1

q®λ®11 (t)®2& t#

t"

u#
"
(t) dN 0 1

q®λ®11 (t)

% 2 sup
t`[t",t#]

R#(t)& t#

t"

dP 0 1

q®λ®11 ,
since 0%u#

"
(t)%R#(t).

By virtue of Lemma 2 below, this implies the boundedness of R.

L 1. Let q `L"
loc

(2) be real-valued. Assume that for each λ `2 there exist c `2

and C" 0 such that for each solution u of (2) ru(x)r!C ru(c) r (x ` [c,¢)). Then

σ
ac

(h)¯2, σ
s
(h)¯ J.

This is a consequence of [1], theorem 1. For a direct proof, cf. the appendix below.

L 2. Let c `2, f : [c,¢)U [0,¢) locally bounded, and α : [c,¢)U2 non-

decreasing and bounded. Assume

f(t
#
)®f(t

"
)% sup

t`[t",t#]

f(t)[(α(t
#
)®α(t

"
)) (t

#
& t

"
& c).

Then there is a constant C" 0 such that f%C.

Proof. Choose t
"
& c so large that α(¢)®α(t

"
)! 1. Then for every t

#
& t

"
we have

sup
t`[t", t#]

f(t)% f(t
"
)­ sup

t`[t", t#]

( sup
s`[t", t]

f(s) (α(t)®α(t
"
))

% f(t
"
)­ sup

t`[t", t#]

f(t) (α(¢)®α(t
"
)),

and thus sup
t`[t", t#]

f(t)%
f(t

"
)

1®α(¢)­α(t
"
)
!¢.

Remark 1. For reasons of symmetry it is clear that the assertion of Theorem 1

holds as well if q tends to ®¢, and 1}q is of locally bounded variation and bounded

negative variation near infinity.

Remark 2. A Hartman–Wintner type argument shows that the central fact of our

proof, namely, that for each λ `2 all solutions of (2) are bounded, is invariant under

the addition of an L" perturbation. Thus Theorem 1 remains valid if q¯ q
"
­q

#
with

q
"
satisfying our hypotheses and q

#
`L"(c,¢), and also if an angular momentum term

is added. For this, cf. [9], proof of proposition 1.

Remark 3. If q `AC
loc

(c,¢),

P(1}q) (¢)¯ const­&
¢ (q«)

−

q#
,

where (q«)
−
Bmax ²0,®q«´. Thus Theorem 1 imposes no condition on the positive

part of q« and in this way (in conjunction with Remark 2) generalizes the result of

Erde! lyi (cf. (1)).
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Remark 4. If q is any non-decreasing function, it is of locally bounded variation,

and the positive variation of 1}q vanishes; thus Theorem 1 applies.

3. A counterexample

In this section we construct a potential q such that lim
xU¢ q(x)¯¢, but 0 is an

eigenvalue of h. This shows that infinite growth of q alone does not guarantee that

the spectrum is purely absolutely continuous.

For m ` ²3, 4,…´ set q
#m

Bm}2, q
#m+"

Bm. We consider the potential q assuming

the value q
j
on the interval I

j
B [3j−"

k='
l
k
,3j

k='
l
k
), where

l
j
B

π(1­4q
j
)

2oq#
j
®1

( j ` ²6, 7,…´)

(this defines q on [0,¢), since l
j
¯ 2π­o(1) as jU¢), and extended to 2 by q(®x)B

q(x) (x ` [0,¢)).

Now consider the solution u of (2) for λ¯ 0, with u(0)¯ (!
"
) ; it is sufficient to study

the solution in [0,¢) as the solution in (®¢, 0] is an exact mirror image. The

function R defined in (3) has the constant value R
j
in the interval I

j
. The positions

of the points of discontinuity of q are chosen in such a way (note that 2q
j
is an integer)

that the decrease from q
#m−"

to q
#m

takes place at a zero of u
"
, so that R

#m
¯R

#m−"
.

On the other hand, the increase from q
#m

to q
#m+"

takes place at a zero of u
#
and thus

leads to a decrease of R according to

R
#m+"

¯R
#m'q

#m+"
­1

q
#m+"

®1

q
#m

®1

q
#m

­1
¯R

#m'm­1

m®1

m®2

m­2
.

By induction

R#
#m

¯R#
#m−"

¯ 0 0
m−"

j=$

j­1

( j­1)­11 0 0
m−"

j=$

j®2

( j­1)®21¯
4

m#®m®2
,

since the products telescope. Consequently,

sus#% 2 3
¢

m=$

2(2π­o(1))R#
#m

!¢.

We observe that the points of increase of 1}q are asymptotically evenly spaced and

the transition from 1}q
#m−"

to 1}q
#m

contributes 2}m®1}(m®1)C 1}m, so that the

positive variation of 1}q is logarithmically divergent.

Appendix

Lemma 1 above, i.e. the statement that global boundedness of all solutions of (2)

for all λ `2 (or, more generally, for a λ interval) implies purely absolutely continuous

spectrum in 2 (resp. in the interior of that interval), can be viewed as a special case

of the general subordinacy method developed by Gilbert and Pearson, cf. [1]. As this

special case proves particularly useful in applications, it is interesting to note that

Simon[11] has recently given a fairly direct proof for the analogous statement about

Sturm–Liouville operators; we now sketch a proof of Lemma 1 along these lines.
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For some fixed α `2, let θ([,λ), φ([,λ) be the solutions of (2) for λ `# such that

θ(0,λ)¯ 0cosα

sinα1 , φ(0,λ)¯ 0®sinα

cosα 1 .
As the singular endpoints ³¢ are in the limit point case, for λ `#c2 one has m(λ),

n(λ) `# such that

ψ([,λ)¯
χ([,λ)¯

θ([,λ)­m(λ)φ([,λ) `L#(0,¢)

θ([,λ)­n(λ)φ([,λ) `L#(®¢, 0)* . (6)

From the Weyl–Titchmarsh theory (cf. [5], [11]) it is known that m,n are regular

functions in the upper half plane and that Imm(λ)" 0, Imn(λ)! 0 (Imλ" 0).

Furthermore,

Imm(λ)¯ Imλ&
¢

!

rψ([,λ)r#,

and ρα(λ)¯ lim
εX

!

1

π&
λ

!

Imm(µ­iε) dµ (λ `2)

is the spectral function for the operator hα given as σ
#
p­σ

$
­q on the half-axis

[0,¢) with boundary condition (cosα, sinα)[u(0)¯ 0. Thus its singular part ρα,s
is

supported on the set

²λ `2 r lim
εX

!

Imm(λ­iε)¯¢´,

and its absolutely continuous part ρα,ac
has derivative

ρ!α,ac
(λ)¯ lim

εX
!

1

π
Imm(λ­iε).

Similarly, with the matrix

M(λ)¯
1

n(λ)®m(λ) 0
1

"
#
(n(λ)­m(λ))

"
#
(n(λ)­m(λ))

n(λ)m(λ) 1 ,
the spectral matrix ρ for the operator h is given as

ρ(λ)¯ lim
εX

!

1

π&
λ

!

ImM(µ­iε) dµ (λ `2),

and its singular part is supported on

²λ `2 r sup
j,k`²

",#
´

lim
εX

!

ImM
jk
(λ­iε)¯¢´.

To prove Lemma 1, it is sufficient to show that this support is empty and thus

σ
s
(h)¯ J, and that ρ!α,ac

(λ)" 0 for all real λ, since then by Glazman’s decomposition

principle (cf. [13] p. 165 seq.) σ(h)[σ
e
(hα)[σ

ac
(hα)¯2. With the above general

information, these two properties are guaranteed by:

L 3. Let λ `2. Assume all solutions of (2) are bounded in [0,¢). Then

lim inf
εX

!

Imm(λ­iε)" 0, lim sup
εX

!

rm(λ­iε)r!¢.
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Furthermore, lim sup
εX

!

rM
jk
(λ­iε)r!¢ ( j, k ` ²1, 2´).

Proof. For µ `#, let T([,µ) be the matrix valued solution of (2) (with eigenvalue

parameter µ) on [0,¢) with T(0,µ)¯ 1. As detT3 1, rT−"r¯ rTr, where r[r denotes

the operator norm in ##. By hypothesis, there is a constant C" 0 such that rT(x,λ)r
%C(x ` [0,¢)).

Let ε" 0 and define Sε BT−"([,λ)T([,λ­iε) ; then Sε is the solution of the initial

value problem

S!ε(x)¯ εT−"(x,λ) (®σ
#
)T(x,λ)Sε(x) (x ` [0,¢)), Sε(0)¯ 1.

A Gronwall argument yields the bound

rT(x,λ­iε)r% rT(x,λ)r rSε(x)r%C exp (εC#x) (x ` [0,¢)).

As T operates as a transfer matrix for solutions, we have in particular

ψ(0,λ­iε)¯T(x,λ­iε)−"ψ(x,λ­iε).

By a straightforward calculation based on (6), rψ(0,λ­iε)r¯o1­rm(λ­iε)r#, and

thus

rψ(x,λ­iε)r&
1

C
exp (®εC#x)o1­rm(λ­iε)r#.

Hence Imm(λ­iε)¯ ε&
¢

!

rψ(x,λ­iε)r#&
1­rm(λ­iε)r#

2C%

&
1

2C%

" 0,

and rm(λ­iε)r& Imm(λ­iε)&
rm(λ­iε)r#

2C%

,

i.e. rm(λ­iε)r% 2C%!¢.

To prove the statement about the matrix M, we observe that since Imn(λ­iε)!
0,

rn(λ­iε)®m(λ­iε)r& Imm(λ­iε)®Imn(λ­iε)&
1

2C%

,

so rM
""

(λ­iε)r% 2C%!¢. On the other hand, Im (n(λ­iε)−")" 0 and

Im (m(λ­iε)−")¯®
Imm(λ­iε)

rm(λ­iε)r#
%®

1

8C"#

,

so rM
##

(λ­iε)r¯ rm(λ­iε)−"®n(λ­iε)−"r−"% 8C"#!¢.

Finally,

rM
"#

(λ­iε)r¯ ) 12 0
1

m(λ­iε)
M

##
(λ­iε)­m(λ­iε)M

""
(λ­iε)1 )

% 8C"'­2C)!¢.

Acknowledgements. It is a pleasure to thank H. Kalf for helpful discussions. The

author also wishes to thank B. Simon for the hospitality of Caltech, and the Deutsche

Forschungsgemeinschaft for financial support.



384 K M S

REFERENCES

[1] H. B. Absolute continuity of Hamiltonians with von Neumann–Wigner potentials.
II. Manuscripta Math. 71 (1991), 163–181.

[2] A. E! . Note on a paper by Titchmarsh. Quart. J. Math. Oxford (2) 14 (1963), 147–152.
[3] D. J. G and D. B. P. On subordinacy and analysis of the spectrum of one-

dimensional Schro$ dinger operators. J. Math. Anal. Appl. 128 (1987), 30–56.
[4] D. J. G. On subordinacy and analysis of the spectrum of Schro$ dinger operators with

two singular endpoints. Proc. Royal Soc. Edinburgh 112A (1989), 213–229.
[5] D. B. H and J. K. S. Absolutely continuous spectra of Dirac systems with long

range, short range and oscillating potentials. Quart. J. Math. Oxford (2) 36 (1985), 183–213.
[6] M. S. P. The Dirac electron in simple fields. Phys. Rev. (2) 41 (1932), 278–290.
[7] F. R and B. S-N. Lectures on functional analysis (F. Ungar, 1955).
[8] M. E. R and R. R. N. Properties of Dirac wave functions in a central field. Phys.

Rev. (2) 82 (1951), 470–477.
[9] K. M. S. Dense point spectrum and absolutely continuous spectrum in spherically

symmetric Dirac operators. Forum Math. 7 (1995), 459–475.
[10] K. M. S. Dense point spectrum for the one-dimensional Dirac operator with an

electrostatic potential. Proc. Royal Soc. Edinburgh. 126A (1996), 1087–1096.
[11] B. S. Bounded eigenfunctions and absolutely continuous spectra for one-dimensional

Schro$ dinger operators, preprint.
[12] E. C. T. On the nature of the spectrum in problems of relativistic quantum

mechanics. Quart. J. Math. Oxford (2) 12 (1961), 227–240.
[13] J. W. Spectral theory of ordinary differential operators. Lect. Notes Math. 1258

(Springer, 1987).


