
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 127, Number 8, Pages 2367–2374
S 0002-9939(99)05069-8
Article electronically published on April 9, 1999

OSCILLATION OF THE PERTURBED HILL EQUATION
AND THE LOWER SPECTRUM OF RADIALLY

PERIODIC SCHRÖDINGER OPERATORS IN THE PLANE

KARL MICHAEL SCHMIDT

(Communicated by Hal L. Smith)

Abstract. Generalizing the classical result of Kneser, we show that the
Sturm-Liouville equation with periodic coefficients and an added perturba-
tion term −c2/r2 is oscillatory or non-oscillatory (for r →∞) at the infimum
of the essential spectrum, depending on whether c2 surpasses or stays below
a critical threshold. An explicit characterization of this threshold value is
given. Then this oscillation criterion is applied to the spectral analysis of two-
dimensional rotation symmetric Schrödinger operators with radially periodic
potentials, revealing the surprising fact that (except in the trivial case of a
constant potential) these operators always have infinitely many eigenvalues
below the essential spectrum.

1. Introduction

It is a famous result in the oscillation theory of Sturm-Liouville equations that
−1/4 is a critical threshold in

−u′′ + c(x)u = 0;

this equation being oscillatory at ∞ if c(x) < (−1/4 − ε)x−2, and non-oscillatory
at ∞ if c(x) > (−1/4 + ε)x−2 for some ε > 0 and sufficiently large x ([8]; for
a quick proof cf. [5], Chapt. XI, Ex. 1.2). This has later been generalized by
Hille to include logarithmic corrections, which in particular settled the limiting
case limx→∞ x2 c(x) = −1/4 to be non-oscillatory (cf. [13], §2.8).

Note that the equation

−u′′ +
c

r2
u = 0

may be interpreted as the constant-coefficient Sturm-Liouville equation −u′′ = 0,
with an added perturbation c/r2, such as arises naturally from a separation of polar
coordinates for a rotation symmetric Schrödinger operator in higher dimensions (cf.
[14], Sect. 17.F). With this motivation in mind, it may not be inappropriate to ask
about the oscillation behaviour of the eigenvalue equation for more general Sturm-
Liouville equations perturbed by a c/r2 term: Will r−2 decay still be the borderline
case? And what will be the critical value of the coupling constant? An auspicious
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candidate to replace the constant-coefficient equation as unperturbed reference is
the Sturm-Liouville equation with periodic coefficients,

−(p u′)′ + q u = λw u, λ ∈ R,

which shares certain qualitative properties of the constant-coefficient case; thus it
is well known that the spectrum of the corresponding self-adjoint Sturm-Liouville
operator

h =
1
w

(
− d

dx
p

d

dx
+ q

)
consists of purely absolutely continuous bands, often separated by spectral gaps.
In particular, at λ = λ0 := inf σe(h), the equation is disconjugate, possessing a
fundamental system composed of a positive periodic solution, and an unbounded
solution which has exactly one zero (cf. [4], Thm. 3.1.2(i)).

However, the perturbed equation

−(p u′)′ + q u +
c

r2
u = λ0 w u

does not immediately subordinate itself to any one of the classical oscillation cri-
teria, as collected e.g. in [13] or [15]. More specifically, in studies of the perturbed
Hill equation

−u′′ + q u + q̃ u = λ0 w u

(such as [1], [10]) assumptions of the type∫ ∞
(1 + |x|) q̃(x) dx < ∞

on the perturbation q̃ are common. In a series of works, Rofe-Beketov [11], [12] has
devoted some attention to the case of Hill’s equation with a c/r2 perturbation. He
gives Kneser-type critical values of the coupling constant for the discrete spectrum
to be finite or infinite not only at the bottom of the essential spectrum, but also
at each of the end-points of the spectral gaps; due to the growth of these critical
values, sufficiently remote gaps contain only a finite number of eigenvalues ([11], p.
153). Moreover, he states that these results extend at least in part to the case of
an almost-periodic unperturbed equation ([12], Thm. 1).

In this note we present an oscillation – non-oscillation criterion for the perturbed
Sturm-Liouville equation with periodic coefficients, giving a Kneser-type critical
value for the coupling constant c (Theorem 1). In particular, this provides an
independent simple proof for Rofe-Beketov’s results in so far as they concern the
infimum of the essential spectrum in the periodic case. The key idea of the proof of
Theorem 1 is to introduce an equivalent Riccati-type equation, which enables us to
study the behaviour of solutions of the perturbed equation relative to the periodic
solution of the unperturbed equation. The direction field of the Riccati equation can
easily be discussed in general terms outside a critical interval; inside this interval,
averaging over a period interval turns the right-hand side of the equation essentially
into a parabola (plus higher order terms), and the problem of oscillation or non-
oscillation reduces to the question of whether this parabola has zeros or not, which
shows in a fairly transparent way how the Kneser-type constant arises.

In Theorem 2, we then apply this criterion to rotation symmetric Schrödinger op-
erators in the plane with radially periodic potentials, making the somewhat surpris-
ing and apparently novel observation that (except in the trivial case of a constant
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potential) these operators always have infinitely many eigenvalues below the es-
sential spectrum. The corresponding eigenfunctions are all rotationally symmetric.
This phenomenon, resulting from a very subtle resonance between the concentric
ripples of the potential, is restricted to the 2-dimensional case. Theorem 2 gives an
affirmative answer to a question posed in [6], Remark 2.

2. An oscillation – non-oscillation criterion

Theorem 1. Let p ∈ L∞(R), q, w, 1/p ∈ L1
loc(R), p, w > 0, q real-valued, and

p, w, q α-periodic, α > 0. Let λ0 be the infimum of the essential spectrum of the
maximal Sturm-Liouville operator on (−∞,∞),

h =
1
w

(
− d

dx
p

d

dx
+ q

)
,

and u0 a positive periodic solution of the equation

−(p u′)′ + q u = λ0 w u.(1)

Set K :=
1
4

(
1
α

∫ α

0

1
p u2

0

)−1 ( 1
α

∫ α

0

u2
0

)−1

; then the perturbed equation

−(p u′)′ + q u− c2

r2
u = λ0 w u(2)

is oscillatory at ∞ if c2 > K, and non-oscillatory at ∞ if c2 < K.

Remarks. 1. The existence of a positive periodic solution u0 of equation (1) is
a well-known result of Floquet theory; cf. [4], Thm 3.1.2 (i). (In [3] and [4],
q, w ∈ C(R), p ∈ C1(R) is assumed for convenience; however, the statements and
their proofs directly carry over to the present case. Instead of u ∈ C2((0,∞)), we
have u, pu′ ∈ ACloc((0,∞)).) As u0 is clearly not square-integrable, we have the
limit point case at ±∞, and hence the maximal operator h is self-adjoint.

2. Clearly K > 0. When the negative perturbation −c2/r2 is replaced by a
positive perturbation c2/r2, the resulting equation

−(p u′)′ + q u +
c2

r2
u = λ0 w u

is non-oscillatory at ∞ for all c ∈ R by Theorem 1 and the Sturm comparison
theorem (cf. [3], Thm 4.2.1).

3. If we specialize p ≡ w ≡ 1 and apply the results of oscillation theory ([2],
XII.7.53, 55), Theorem 1 coincides with the findings of Rofe-Beketov [12], Thm. 1,
on the finiteness or infinity, respectively, of the number of eigenvalues below λ0.

4. It seems to be a rather subtle point to decide whether equation (2) is oscilla-
tory or not in the borderline case c2 = K.

Proof of Theorem 1. Multiplying u0 by a suitable positive constant, we may assume
that sup p u2

0 = 1. Also we set µ := min u0 > 0. For any non-trivial solution u of
the perturbed equation (2), we introduce the function

ζ(r) := r u2
0(r)

(
(p u′0)(r)

u0(r)
− (p u′)(r)

u(r)

)
.
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If 0 < a < b are two consecutive zeros of u, or b = ∞ if u has no zeros in (a,∞),
then ζ|(a, b) is a maximal solution of the Riccati-type ordinary differential equation

ζ ′ =
1
r

(
ζ2

p u2
0

+ ζ + u2
0 c2

)
,(3)

and ζ(r) → −∞ (r → a+), ζ(r) →∞ (r → b−) if b < ∞.
Furthermore, if ζ(r) ≥ 0 for some r ∈ (a, b), then

ζ′(r) ≥ 1
r

(
ζ2

p u2
0

+ u2
0 c2

)
≥ 1

r
(ζ2 + µ2c2);

thus ζ is strictly increasing on (r, b). Writing ζ(ρ) = µc z(µc log ρ) (ρ ∈ (a, b)), we

find z′ ≥ z2+1, and comparing with the tan function, we infer that b ≤ r exp
(

π

2µc

)
.

Similarly, if ζ(r) ≤ −1 for some r ∈ (a, b), then for Z := ζ + 1,

Z′(r) =
1
r

(
Z2

p u2
0

−
(

2
p u2

0

− 1
)

Z +
1

p u2
0

− 1 + u2
0 c2

)
≥ 1

r
(Z2 + µ2c2),

and hence ζ is strictly increasing on (a, r). Writing ζ(ρ) = µc z(µc log ρ) − 1 (ρ ∈
(a, b)) and comparing with the tan function as above, we find a ≥ r exp

(
− π

2µc

)
.

Consequently, if ζ(r0) ≥ 0 for some r0 > 0, then the interval [r0, r0 exp(π/(µc))]
contains at least one zero of u, and some subsequent point r1 such that ζ(r1) ∈
[−1, 0). Therefore in order to decide whether or not u has infinitely many zeros, it
is sufficient to concentrate our attention on the behaviour of ζ when it takes values
in the interval [−1, 0): the number of zeros is finite if and only if ζ is trapped in
this interval after some point.

1st case: c2 > K. We show that equation (2) is oscillatory at ∞. By
contraposition, assume that there is a solution u with only finitely many zeros.
From the above considerations it follows that for sufficiently large R0 > 0, the
corresponding function ζ satisfies ζ(r) ∈ [−1, 0) (r > R0). In particular, with
C :=

∫ α

0
( 1

p u2
0

+ 1 + u2
0 c2), we have

|ζ(ρ1)− ζ(ρ2)| ≤
∫ r+α

r

|ζ′| ≤ C

r
(r > R0; ρ1, ρ2 ∈ [r, r + α]).

Set Kc :=
1
α

∫ α

0

u2
0 · (c2 −K) > 0, and choose

R1 ≥ max
{

R0,
2

Kc

(
2C

α

∫ α

0

1
p u2

0

+ α

)}
.
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For r > R1 define ζ(r) := 1
α

∫ r+α

r
ζ ∈ [−1, 0); then

ζ
′
(r) =

1
α

(ζ(r + α)− ζ(r)) =
1
α

∫ r+α

r

1
ρ

(
ζ2

p u2
0

+ ζ + u2
0 c2

)
dρ

≥ 1
r + α

(
1
α

∫ r+α

r

ζ2

p u2
0

+ ζ(r) +
c2

α

∫ α

0

u2
0

)
+

α

r (r + α)
ζ(r)

=
1

r + α

([(
1
α

∫ α

0

1
p u2

0

)1/2

ζ(r) +
1
2

(
1
α

∫ α

0

1
p u2

0

)−1/2
]2

+
c2

α

∫ α

0

u2
0 −

1
4

(
1
α

∫ α

0

1
p u2

0

)−1

+
1
α

∫ r+α

r

ζ + ζ(r)
p u2

0

(ζ − ζ(r)) +
α

r
ζ(r)

)

≥ 1
r + α

(
Kc − 1

r

(
2C

α

∫ α

0

1
p u2

0

+ α

))
≥ Kc

2 (r + α)
(r > R1),

using in the last but one step that since ζ is continuous, there is ρ0 ∈ [r, r +α] such
that ζ(r) = ζ(ρ0), and therefore |ζ(ρ)− ζ(r)| ≤ C/r (ρ ∈ [r, r + α]).

We conclude that

ζ(r) ≥ ζ(R1) +
Kc

2
log

r + α

R1 + α
→∞ (r →∞),

a contradiction.
2nd case: c2 < K. Let C be the same constant as in the 1st case,

Kc :=
1
α

∫ α

0

u2
0 · (K − c2) > 0,

and

R0 :=
(

2
Kc

+ 1
) (

2C

α

∫ α

0

1
p u2

0

+ α

)
.

Let ζ : [R0, R∞) → R (with R∞ ∈ (R0,∞]) be the right-maximal solution of the
initial value problem (3), ζ(R0) = −1. If R∞ < ∞, then lim

r→R∞
ζ(r) = ∞.

We observe that for ρ1, ρ2 ∈ [R0, R∞), ρ1 < ρ2, such that ζ([ρ1, ρ2]) ⊂ [−1, 0],
we have

|ζ(ρ2)− ζ(ρ1)| ≤ 1
R0

∫ ρ2

ρ1

(
1

p u2
0

+ 1 + u2
0c

2

)
.

Hence, if r ∈ [R0, R∞) is a point such that ζ(r) ∈ [−1,−C/R0], then r < R∞ − α
and ζ(ρ) ∈ [−1, 0] (ρ ∈ [r, r + α]).

In particular, −1 ≤ ζ(ρ) ≤ −1 + C/R0 ≤ −1− ζ0 ≤ ζ0 (ρ ∈ [R0, R0 + α]), where

ζ0 := −1
2

(
1
α

∫ α

0

1
p u2

0

)−1

< 0;

thus ζ(r) := 1
α

∫ r+α

r
ζ (r ∈ [R0, R∞ − α)) is defined on a non-empty interval and

satisfies ζ(R0) ∈ [−1, ζ0].
Now we show that ζ(r) ≤ ζ0 (r ∈ [R0, R∞ − α)). By contraposition, assume

r0 := sup{r ≥ R0 | ζ(ρ) ∈ [−1, ζ0] (ρ ∈ [R0, r])} < R∞ − α.

Then ζ
′
(r0) ≥ 0 and ζ(r0) = ζ0; by the continuity of ζ, there is ρ0 ∈ [r0, r0 + α]

such that ζ(ρ0) = ζ(r0) = ζ0.
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By the above observation we find ζ(ρ) ∈ [−1, 0] (ρ ∈ [r0, r0 + α]). Estimating
the error term as in the 1st case, we have:

ζ
′
(r0) =

1
α

∫ r0+α

r0

1
ρ

(
ζ2

p u2
0

+ ζ + u2
0 c2

)
dρ

≤ 1
r0

(
1
α

∫ r0+α

r0

ζ2

p u2
0

+ ζ(r) +
c2

α

∫ α

0

u2
0

)
− α

r0 (r0 + α)
ζ(r0)

=
1
r0

([(
1
α

∫ α

0

1
p u2

0

)1/2

ζ(r0) +
1
2

(
1
α

∫ α

0

1
p u2

0

)−1/2
]2

+
c2

α

∫ α

0

u2
0 −

1
4

(
1
α

∫ α

0

1
p u2

0

)−1

+
1
α

∫ r0+α

r0

ζ + ζ(r0)
p u2

0

(ζ − ζ(r0))− α

r0 + α
ζ(r0)

)

≤ 1
r0

(
1
α

∫ α

0

1
p u2

0

(ζ(r0)− ζ0)2 −Kc +
1
r0

(
2C

α

∫ α

0

1
p u2

0

+ α

))
,

≤ −Kc

2r0
< 0,

a contradiction.
Hence, ζ(r) ≤ ζ0 (r ∈ [R0, R∞ − α)), which implies ζ(r) ≤ 0 (r ∈ [R0, R∞)).
In particular, R∞ = ∞; the solution of (2) corresponding to ζ has no zeros in

[R0,∞), and (2) is non-oscillatory at ∞.

3. The lower spectrum of rotation symmetric

Schrödinger operators in the plane

Theorem 2. Let V ∈ L2
loc(R2) be rotation symmetric: V (x) = q(|x|) (x ∈ R2),

q ∈ L2
loc(R) α-periodic, α > 0, and bounded below.

If V is not constant, then the Schrödinger operator H = −∆ + V has infinite
lower spectrum.

Remark. Following [9], we call the discrete spectrum of H in the interval (−∞,
inf σe(H)) the lower spectrum of H . H |C∞0 (R2) is essentially self-adjoint by Kato’s
theorem [7].

Proof of Theorem 2. By separation of polar coordinates, H is unitarily equivalent
to a direct sum of self-adjoint Sturm-Liouville operators on the half-axis (0,∞),
formally given as (cf. [14], p. 286)

hl = − d2

dr2 + q(r) +
l2 − 1/4

r2
(r > 0; l ∈ Z).

Let λ0 be the infimum of the essential spectrum of the Hill operator

h = − d2

dx2 + q(x) (x ∈ R).

Since h is in the limit point case at∞ (cf. Remark 1), and the angular momentum
term (l2−1/4)/r2 is bounded near ∞, hl is in the limit point case at ∞. For |l| ≥ 1,
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hl is in the limit point case at 0 as well ([14], Thm. 6.4 a), and hence essentially
self-adjoint on C∞0 (0,∞). Consequently,

(hl ϕ, ϕ) =
∫ ∞

0

(|ϕ′|2 + q |ϕ|2 +
l2 − 1/4

r2
|ϕ|2) ≥ (h ϕ, ϕ) (ϕ ∈ C∞0 (0,∞)),

and so hl ≥ h ≥ λ0. Thus the parts hl, |l| ≥ 1, do not contribute any spectrum
below λ0.

Now consider the operator h0. For each λ ∈ R, the equation

−u′′ − u

4r2
− λu = 0

(which can be solved explicitly in terms of Bessel functions) is non-oscillatory at 0;
thus by Sturm’s comparison theorem and the lower boundedness of q,

−u′′ + q u− u

4r2
= λu(4)

is non-oscillatory at 0 for all λ ∈ R.
On the other hand, −u′′ + q u = λu is non-oscillatory at ∞ if λ < λ0, and

oscillatory at∞ if λ > λ0 (cf. [2], XIII.7.40, [14], Thm. 14.9 c), and since 1/(4r2) →
0 (r →∞), the same holds true for equation (4). As a consequence, λ0 = inf σe(h0).

Let u0 be a positive periodic solution of −u′′ + q u = λ0 u; clearly u0 is not
constant, since q is not constant. Hence by the Schwarz inequality,

K :=
1
4

(
1
α

∫ α

0

1
u2

0

)−1( 1
α

∫ α

0

u2
0

)−1

<
1
4

(
1
α

∫ α

0

1
)−2

=
1
4
;

by Theorem 1, the equation (4), with λ = λ0, is oscillatory. Oscillation theory ([2],
XIII.7.51, [14], Thm. 14.7 b) implies that h0, and therefore H , has an infinity of
eigenvalues below λ0 = inf σe(H).
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