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Abstract
This research focuses on combining the rich representations of computer-aided design systems 

with current collaboration technologies to support distributed design processes. Our emphasis is 
not on concurrent multi-user access to integrated databases, but rather on shared protocols of 
interaction that are independent of implementation and storage schemes. We have developed a 
prototype for a Synchronous Collaborative Design System (SYCODE) that enables 
geographically dispersed designers to share common representations even when using different 
hardware platforms. The limitations of the existing network infrastructure has impelled us to 
devise a meaningful and parsimonious representation scheme and to semantically define pending 
and confirmed actions.

Keywords: Computer Supported Co-operative Work, Collaborative Design, Multi-user 
Synchronous CAAD, Shared Workspace, Shared Protocols of Interaction.

1. Introduction
The traditional view of the architect as lone hero and ultimate creator of “good” architecture 

has been gradually abandoned, in favor of greater attention to the importance of collaboration in 
assuring excellence in design (Cuff, 1992). Additionally, recent advances in computer and 
communication technology have enabled researchers to explore a variety of computer systems 
that attempt to respond to this paradigm shift (Maher et. al., 1993).

Nevertheless, we find that current collaborative “groupware” technologies - such as 
unstructured shared whiteboards, multi-media electronic mail, desktop conferencing systems, 
and distributed single-user software - are inadequate for the particular needs of collaborative 
design processes. On the one hand, CAD systems do not support simultaneous, multi-user 
discussion and co-production of architectural documents. On the other hand, the limited data 
structures of generic groupware systems do not capture architecturally significant semantics, 
such as mass, material, space, and function.

To expand the capabilities of current CAD systems and to go beyond the limited 
expressiveness of general purpose collaboration tools, we propose a new generation of design-
oriented software that combines collaboration technologies with a rich and meaningful 
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representation scheme. We are particularly interested in supporting the early design phases, 
wherein many of the most important decisions are made and collaboration is most important: 
client debriefing, data collection, architectural program formulation, and schematic design 
generation. These activities are crucial to the evolution and quality of the final design, and they 
are receptive to and can benefit from computer support. Furthermore, these are precisely the 
areas where current CAD systems are weakest.

We propose a Synchronous Collaborative Design Environment (SYCODE) that enables 
teamwork among geographically dispersed designers using the Internet. SYCODE is a long-term 
project which aims at supporting the creation of global design teams. This paper provides an 
overview of the theoretical foundations of SYCODE and an outline of its overall architecture, 
communication protocols, and data structures. In addition, it includes results from our first 
experimental phase, which involved the simultaneous development and testing of SYCODE 
clients on heterogeneous computer systems at remote sites - Hong Kong and Ann Arbor, 
Michigan.

2. The Client-Server Model
SYCODE is based on the Share-Kit (Jahn, 1994) which is a general-purpose toolkit that 

enables the construction of synchronous groupware systems. The Share-Kit uses a client-server 
paradigm in which computer programs, called clients, exchange messages through a central 
computer program called a server (Figure 1). In the case of the Share-Kit, the server offers 
multiple sessions that act as switching boards. Clients can exchange information when they 
connect to the same session within the central server. This can be achieved through a 
communication interface module that translates the data being shared between its parent client 
and the server. Beyond this interface, the client’s specific implementation is independent from 
that of the server and other clients.

SHARE-KIT
SERVER

S1 S2 S3

S5S4

S6 S7 S8

Client A Client B

Client DClient C

Figure 1. The Share-Kit’s Client-Server Design.

3. Issues in Computer-Supported Collaborative Design
This research project grew out of a case-study that analyzed the role of artifacts in 

collaborative design (Jabi, 1995). It concluded with the finding that, in architectural design, 
supporting focused tasks is more beneficial than supporting general-purpose ones and that 
artifacts, to a great extent, act as facilitators of collaboration. A disadvantage of collaborative 
whiteboard systems that represent the shared workspace as a video image or a digital bitmap is 
that they do not easily allow for the interpretation of the shared data by the connected computers 
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(Tang and Minneman, 1991). Additionally, researchers are finding that these general-purpose 
multimedia applications are hindering richer ways of collaboration:

Collaborative multimedia applications have been somewhat lacking in imagination, focusing on 
“talking heads” video as a way to create telepresence, or on data retrieval for simple information 
“foraging” and sharing tasks … We argue that collaborative multimedia technologies should be used 
… as means of providing richer, deeper ways to collaboratively compose shared artifacts such as 
documents, movies, data visualizations, simulations, designs such as architectural drawings, bulletin 
boards, libraries, and animations. We should also create ways to collaboratively analyze data within 
these artifacts.(Nardi, 1994).

Many of the collaborative tools that exist today can only support the hardware platform they 
were developed on (Watabe et. al., 1990). If we are to succeed in connecting users from various 
backgrounds together, we must be able to accommodate the extensive variety in hardware, 
configuration, display systems and operating systems that exists. To illustrate the feasibility of 
achieving this goal, SYCODE client applications were developed independently, based on a 
verbal description of protocols, with minimal sharing of actual source code. The first site - in 
Hong Kong- used a Silicon Graphics computer, the C programming language, and the X 
Window System, while the second site - in Ann Arbor, Michigan - used a NeXT workstation, a 
combination of C and Objective-C programming languages, and Display Postscript. Though their 
user interfaces and implementation details are different, these prototypes allow multiple users to 
share a virtual design space - both within and between the remote sites - in which to create and 
manipulate architectural elements.

Parsimony is another important goal we sought in our design of the SYCODE architecture. 
There are at least two layers of issues in implementing domain-specific software for computer-
supported collaborative work. The higher layer, concerning the semantics of architectural design 
teamwork, is rightly the principal focus of this research effort. Nevertheless, the lower layer, 
concerning the technical details of long-distance network communications, rears its ugly head 
and imposes limits on what can actually be accomplished with the existing infrastructure.

Five universities in Hong Kong rely on a single satellite dish for all of their Internet 
communications with North America. From this dish, the signal travels over 22,000 miles to a 
satellite in geosynchronous orbit, thence another 22,000 miles to a dish in California. The data 
rate over this path, as reported by programs such as “ping”, “ftp”, and “Netscape”, rarely exceeds 
100 bytes per second, and often falls below 50. This is on the order of 1000 times slower than the 
typical rate for local network communications at either end. Furthermore, the percentage packet 
loss as reported by “ping” is generally in the double digits.

If one wishes to move beyond theorizing about computer-supported collaborative work and 
discuss actual implementations, then one must come to terms with the limitations imposed by the 
network. We anticipate the day when the tenuous satellite link is replaced by a solid fiber-optic 
connection, but in the meantime … The low transmission rate, compounded by the loss and 
consequent retransmission of a large percentage of packets, results in time delays that are 
significant enough to become issues at the higher semantic layer of the design system (as well as 
in the details of how to program the main event loop).

For example, when a client changes an element of the model, when is the change considered to 
be officially “done”:  Immediately?  After he/she receives a round-trip confirmation from the 
server?  Or after all clients have received the message from the server?  How can a client know 
that all other clients have received the message, except by requesting a confirmation from each - 
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thus multiplying the communication traffic and compounding the problem?

If each client considers his/her actions to have immediate effect, then how are discrepancies in 
other clients’ simultaneous states of the model resolved?  Where does the “official” state reside, 
and how is it restored and redistributed in the event of a network failure?

As a developer or proposer of a collaborative design system, one may adopt the philosophy that 
these are transient technical problems that can be resolved with improved network infrastructure 
and robust software. However, the current weaknesses of long-distance network computing 
suggest an alternative philosophy that may lead to a richer system design. If one adopts the view 
that discrepancies are inherent in human interaction, then the goal is not to eliminate them, but to 
manage them. Technical glitches in the computing infrastructure are only one source of 
discrepancy.

Our aim in designing SYCODE is not to automate design, but to support collaboration between 
human designers, working in proximate or remote locations, simultaneously or in “shifts”. Thus, 
we accept that discrepancy from a variety of sources is inevitable, and must be managed at the 
higher semantic layer of the system as well as in the details of programming event loops and 
Interment socket communications.

4. An Overview of SYCODE
We are still in the process of specifying the overall architecture of SYCODE, thus, this section 

includes our provisional thoughts. These design decisions are by no means finalized and will 
most probably change in the future. At the conference presentation, we will present the latest 
modifications and seek the audience’s feedback.

Chat Window Architecture Program Conceptual Layout

Brainstorming 3D Modeling Schematic Layout

John: Hi Robert, How is the
office doing?
Robert: Not too bad, busy
with the project.
John: I have some new
drawings waiting for you.
John: OK. Put the m up, let’s
see.

. Site 50000 sqft.
. Building1   10000 sqft.

. Sales

. Executive Suite
. Building2  10000 sqft.

. Computer Dept.

. Support

. Storage

Figure 2. Multiple Views in a SYCODE Interface.
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SYCODE’s goal is to support the early phases of architectural design that include: design 
argumentation, defining spatial and non-spatial requirements, and incremental generation of 
schematic design solutions. Hence, a SYCODE interface offers multiple windows each 
representing one aspect of the design project (Figure 2). Furthermore, the underlying 
representation scheme used consists of agents and artifacts. Agents are representations of either 
human participants or software modules that possess certain skills while artifacts are the various 
documents and pieces of information being shared.

4.1 Agents
SYCODE defines several types of agents (Figure 3): 1) One agent is a Group Overall Director 

(G.O.D.) that has ultimate authority to perform any action in SYCODE. The G.O.D.’s 
responsibilities include defining protocols for interaction, assembling design teams, and initiating 
collaborative projects. 2) Each design team member is also an agent possessing certain rights 
with regard to artifacts. 3) Artificial agents consist of computer programs that interact with other 
entities in SYCODE. One such artificial agent, called the manager, is crucial for maintaining 
consistency. The manager remains active at all times, contains the current “official” status of the 
project, continuously saves it to disk to prevent data loss in case of network failure, and 
maintains other book-keeping information and preferences. The G.O.D. interacts with the 
manager to set all preferences and provide the needed information to manage the project at hand.

Project
Artifacts

G.O.D.

Participant A

Participant B

Manager

Figure 3. The Various Agents in SYCODE.

4.2 Artifacts
Artifacts in SYCODE are organized in a hierarchic fashion (Figure 4). A prototypical artifact 

includes links to component artifacts within it and maintains an access control list of agents that 
specifies their ownership status and rights for reading and modifying it. At the top of the 
hierarchy is a project artifact that corresponds closely to its architectural counterpart as found in 
professional practice. Being an artifact, it inherits the ability to include component artifacts and 
maintain an access control list. In addition, it maintains a record of its evolution through a 
directed graph representing states of the project through time. A state artifact can be thought of 
as a snapshot of the project at a certain point in time. Thus, SYCODE always represents the 
current status of a project through a current state artifact. A state is composed mainly of 
workspaces in which to create entities. Currently, the design of SYCODE requires one public 
shared workspace where the current state resides. In addition, each participant has a private 
workspace, access to which he/she may grant or deny to any subset of other participants. For 
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entities in private workspaces to become a part of the current state, they must eventually be 
incorporated in the public workspace. The entities in a workspace may be either declarative or 
procedural. Examples of declarative entities include spatial and non-spatial requirements, 
primitive shapes, instantiations of shapes, and architectural spaces. Examples of procedural 
entities include proposals for action and calls for votes.

TIME

State1 State2 State3 State4

Access
Control

List

Project

Artifact

Figure 4. The Hierarchy of Artifacts in SYCODE.

As shown in figure 5, one way to maintain consistency while accommodating the often 
simultaneous design states is to devise a system wherein starting from an initial agreed-upon 
state, several individual and possibly discrepant states can be created that, nevertheless, converge 
at a later date on what we call a milestone state to which everyone concerned agrees. This 
process of convergence is achieved through either an authoritative action (such as one from the 
G.O.D.) or voting. To maintain the integrity and chronology of events, we have provisionally 
decided that participants cannot modify the public workspace unless connected to the session 
manager. When not connected, due to network failure or otherwise, the participant can only 
modify his/her private workspace. We are currently working on the implementation details of a 
suitable voting mechanism and will report on it at the conference presentation of this paper.

TIME

State1 State2 State3

Figure 5. Divergence and Convergence of Design States.
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Figure 6. A SYCODE client running on a NeXT workstation.

5. Implementation
The first phase of this project included the installation of the Share-Kit servers at the two

sites – Ann Arbor and Hong Kong – and the definition of an initial protocol for communication 
of shared artifacts. Two SYCODE client prototypes were then developed independently on 
different hardware platforms. The SYCODE client starts by requesting the address of the 
machine where the server is running, the session name to connect to, and an optional alias for the 
participant to be identified with. Once a connection is made, the participant can create entities 
and add them to the shared workspace (Figure 6). These entities, however, are not merely 
graphical. They behave as complete objects that can be communicated with, asked to perform 
certain actions such as drawing themselves; and queried about ownership, status, assigned unique 
identifier and other task-specific attributes.

A second client, connecting to an existing session, automatically receives a complete and 
synchronized copy of the current state, after which actions taken by any of the connected clients 
are broadcast to each of them (Figure 7). It is important to note here, that what is being 
transmitted are not display system events, but requests to create and modify objects. Consistency 
in the chronology of actions, as seen by each client, is maintained by routing all actions through 
the server. Thus, client actions that modify the current state do not take effect until distributed by 
the server and echoed back to the originator.
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Figure 7. A SYCODE client running on a Silicon Graphics workstation.

6. Conclusion
The reality of the existing network infrastructure has dictated many of the design decisions we 

had to make. Parsimony in the exchange of data became a major concern for the design of 
SYCODE. Conducting an experiment between two vastly remote sites has informed us of the 
realities of time delays and taught us the need to represent pending as well as confirmed actions. 
Furthermore, display-specific attributes such as font style and size, window size and current 
scrolling position seem to be needed if tight-coupling of artifact representation is desired. 
Nevertheless, our experiments indicate that collaboration in architectural design can proceed 
effectively through the sharing of simple and concise messages that create and modify artifacts. 
The urgent need is to exchange and interpret artifacts rather than to share visual images of each 
other or shallow representations of drawings. It may well be beneficial to include video 
conferencing and shared whiteboards in a comprehensive collaborative environment, but we 
believe that sharing a common and meaningful language of design through artifacts will better 
serve the domain-specific requirements of architects.

References

Bly, S.A. A Use of Drawing Surfaces in Different Collaborative Settings, Proceedings of the 
Conference on Computer-Supported Cooperative Work. (New York: ACM, 1988); p. 250-256.

Cuff, D. Architecture: The Story of Practice. (Cambridge: MIT Press, 1992).

8



Jabi, W. An Outline of the Requirements for a Computer-Supported Collaborative Design 
System, Open House International (forthcoming in 1995).

Maher, L.M., Gero, J.S., Saad, M. Synchronous Support and Emergence in Collaborative CAAD. 
in CAAD Futures ‘93: Proceedings of the Fifth International Conference on Computer-Aided 
Architectural Design Futures. (New York: North-Holland, 1993); p. 455-470.

Nardi, B. (Organizer). Collaborative Multimedia: Getting Beyond the Obvious, Proceedings of 
the Second ACM Conference on Multimedia (New York: ACM, 1994); p. 119-120.

Tang, J.C. and Minneman, S.L. VideoWhiteboard: Video Shadows to Support Remote 
Collaboration, Proceedings of CHI’91. (New York: ACM, 1991); p. 315-322.

Watabe, K. et. al. Distributed Multiparty Desktop Conferencing System: MERMAID, 
Proceedings of the Conference on Computer-Supported Cooperative Work. (New York: ACM, 
1990); p. 27-38.

9


