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Abstract. Sudoku is a notorious logic-based puzzle that is popular with
puzzle enthusiasts the world over. From a computational perspective, Su-
doku is also a problem that belongs to the set of NP-complete problems,
implying that we cannot hope to find a polynomially bounded algorithm
for solving the problem in general. Considering this feature, in this paper
we demonstrate how a metaheuristic-based method for solving Sudoku
puzzles (which was reported by the same author in an earlier paper),
can actually be significantly improved if it is coupled with Constraint
Programming techniques. Our results, which have been gained through
a large amount of empirical work, suggest that this combination of tech-
niques results in a hybrid algorithm that is significantly more powerful
than either of its constituent parts

1 Introduction

Sudoku is a popular puzzle that appears regularly in a variety of newspapers,
books, and puzzle magazines worldwide. Although originating in the United
States in the late 1970s, it was actually in Japan in the 1980s that the puzzle
gained mainstream popularity. It was also here where it was given the name
“Sudoku”, which can be loosely translated in English as “solitary number”.

In its simplest form, Sudoku can be defined as follows. Given an n2×n2 grid
divided into n2 distinct n×n boxes (denoted by the bold lines in fig. 1), the aim
is to fill the grid so that three separate criteria are met:

1. Each row of cells contains the integers 1 through to n2 exactly once;
2. Each column of cells contains the integers 1 through to n2 exactly once;
3. Each n× n box contains the integers 1 through to n2 exactly once.

In this paper we will refer to the value of n as the order of a puzzle.
Typically some of the cells in a Sudoku grid will have been pre-filled by the

puzzle master (see fig. 1). The player will then use these to logically determine the
values for other cells in the grid, eventually allowing him-or-her to complete the
puzzle. As can be imagined, how many and which cells the puzzle-master chooses
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Fig. 1. Example of an order-3 Sudoku puzzle. This particular grid is logic-solvable.

to fill will therefore be particularly important if the puzzle is to be enjoyable for
the player. Generally speaking, a “good” puzzle (from the player’s perspective)
should be configured in such a way so that is logic-solvable – that is, the player
should be able to complete the puzzle in a logical sequence of steps using forward-
chaining logic only (obviously the deductive abilities of different players will
vary). In particular, a player should not usually be required to make random
choices, especially when the grid is still quite empty, because if this guess turns
out to be wrong, he-or-she will then have to go through the unsatisfying process
of backtracking and re-guessing. For these reasons “good” Sudoku puzzles tend
to have just one possible solution in each case.

From a computing perspective, the manual methods by which human players
go about solving Sudoku puzzles (albeit unbeknown to most of them) closely
follow simple Constraint Programming (CP) methods – each of the n4 cells
in the grid represents an integer variable which, initially, will have a domain
of 1 through to n2. Constraints can then be added in the form of “alldifferent”
constraints [1] (i.e. “all of the variables in row three should have different values”,
etc.), and by using the pre-filled cells in the grid (e.g. “because 5 appears in row
three, none of the unfilled cells in row three can contain a 5”, etc.). Combinations
of such constraints will reduce the domain-sizes of some of the variables and, if
an appropriate propagation scheme is used, the puzzle can then (hopefully) be
completed. (See the work of Simonis [2] for an example application of advanced
CP techniques to logic-solvable puzzles of order-3.)

It is worth noting, however, that not all puzzles will have the logic-solvable
property. Indeed, Sudoku has been proved to belong to the class of NP-complete
problems [3], implying that we cannot hope to find a polynomially bounded
algorithm for solving all problem instances (unless, of course, P = NP). In other
words, we can be fairly sure that there will be many problem instances where the
exclusive use of logical rules will not be enough and some sort of search will also
be required. For this reason, many existing automatic Sudoku solvers also include



branch-and-bound search mechanisms, such as the Sudoku Solver by Logic.1

However, for this sort of approach to be successful there will, of course, also be a
reliance on the search space being a manageable size. Indeed, in situations where
this is not so – perhaps because the grid is still quite empty and/or because the
puzzle is of a high order – then the potential timing implications of such searches
might turn out to be impractical.

Given the above, in a previous paper [4] we suggested that it might also be
useful to consider other types of search methods with Sudoku. Consequently,
we proposed a stochastic approach based around Simulated Annealing (SA). In
the next section we will describe this algorithm and its general characteristics
(as reported in [4]). Subsequently, we will then suggest a way in which this
algorithm might be coupled with a simple CP procedure to form a more powerful
hybrid algorithm. In Section 3 we will then carry out a number of experiments
to compare our original SA algorithm with this new approach and will discuss
our results. Finally, Section 4 will conclude the paper.

2 A Hybrid Algorithm for Solving Sudoku

In the following descriptions, a grid cell will be described as fixed when its value
is definitely known, either because it has been defined in the problem instance
or, in the case of our hybrid algorithm, because its value has been determined
by our CP procedure (to be described in Section 3). Cells whose values are
undetermined will be described as unfixed.

The SA algorithm operates as follows. Given a problem instance of order n,
the algorithm first creates an initial solution by assigning a value to each of the
unfixed cells in the grid. This is done randomly, but in such a way so that each
box ends up containing the values 1 through to n2 exactly once. Creating an
initial solution in this way guarantees that the third criteria of Sudoku is met;
however, it also means that the grid may well feature violations of the remaining
two criteria. A suitable cost function is thus:

n2∑

i=1

r(i) +
n2∑

j=1

c(j) (1)

where r(i) and c(j) represent the number of values, 1 through to n2, that are
not present in the ith row of cells and the jth column of cells respectively. An
optimal (i.e. valid) solution will thus have a cost of zero.

In order to try and find an optimal solution, a neighbourhood operator is
then used that randomly selects two unfixed cells in the same box, and swaps
their contents. Following standard SA methods, a swap is then accepted (a) if it
causes the cost to drop, or (b) with a probability exp(−δ/t), where δ represents
the proposed change in cost and t is the current temperature of the system.
During a run t is slowly reduced from an initial value t0 according to a geometric

1 Available at http://www.sudokusolver.co.uk/index.html



cooling schedule. A simple reheating function is also used that resets t to t0 when
the algorithm considers itself to be caught in a local minimum.

Note that the neighbourhood operator ensures that the third criterion of
Sudoku is always met. This means that that the total size of the search space is:

n∏

i=1

n∏

j=1

f(i, j)! (2)

where f(i, j) indicates the number of unfixed cells in the box in the ith row of
boxes and jth column of boxes.

In [4], this SA algorithm was applied to a large number of solvable problem
instances using a generator that was able to closely control the proportion of
fixed cells in a grid (this will also be used in Section 3). Results indicated that,
similarly to many other combinatorial optimisation problems (e.g. [5, 6]), Sudoku
also features an “easy-hard-easy” phase transition with solvable instances. In
other words, the SA algorithm is generally able to discover an optimal solution
when presented with instances containing very low or very high proportions of
fixed cells, but at the boundary of these two extremes there occur instances that
the algorithm finds more difficult to solve. The suggested reasons for this phase
transition are as follows:

When the proportion of fixed cells in a grid is low, then according to eq. (2)
there will be a large search space for the algorithm to navigate. However, there
will also be a very large number of optimal solutions within this search space.2

Consequently, the algorithm will nearly always be able to find one of these in
a reasonable amount of time. For grids with high proportions of fixed cells,
meanwhile, although there will only be a very small number of optimal solutions
(and perhaps only one), the search space will be much smaller. Additionally, it
is also likely that solutions to these highly constrained instances will tend to lie
at the bottom of deep local minima (with a strong basin of attraction), thus also
allowing easy discovery by the algorithm. However, instances at the boundary of
these two extremes cause the algorithm more problems. First, the search spaces
for these instances will still be relatively large, but they will also tend to admit
only a small number of solutions. Second, because of their moderate numbers of
constraints, the fitness landscapes will also tend to feature more plateaus and
local minima, making things even more difficult for the algorithm. (See also the
work of Cheeseman et al. [8])

From these explanations it is easy to see that, from the point-of-view of a
stochastic search approach, an important contributing factor for an instance be-
ing “hard” is a large search space. However, it is fairly obvious that one way
that we might go about alleviating this factor is by first determining the con-
tents of as many cells as possible before applying such an algorithm. This is
the approach that our new hybrid algorithm will take here. Given a particular
problem instance, a simple CP procedure will first be applied which will fill-in

2 It has been calculated by Felgenhauer and Jarvis [7], for example, that there are
6,670,903,752,021,072,936,960 different optimal solutions for order-3 grids.



and fix as many cells as possible. Then, once this stage has been completed the
resultant partial solution will then be passed over to our original SA algorithm,
which will operate in the manner that we have described.

3 Experimental Analysis

In order to compare the performance of the two algorithms, experiments were
carried out on a large number of solvable problem instances of various orders.
In Section 3.1 we will describe the experiments that we conducted on randomly-
formed problem instances (i.e. ones that are not necessarily logic-solvable). In
Section 3.2 we will then present results that were gained when using collections
of publicly available puzzles.

In all experiments the CP procedure that was used in conjunction with our
hybrid algorithm operated by following the 5 steps given below. This procedure
is deterministic.

1. For each unfixed cell in the grid, construct a list of possible values that this
cell could contain by examining the contents of the cell’s row, column, and
box;

2. If any of these lists contains just one value, then insert this value into the
cell, mark it as fixed, and go back to step 1;

3. Look at each row in turn. If any cell’s list in a particular row contains a
value x that does not occur in any of the other cells’ lists on the same row,
then insert x into this cell, mark the cell as fixed, and go back to step 1;

4. Repeat step 3 for each column and also each box;
5. If we are here, then the procedure cannot fix any further cells, and so end.

3.1 Solving Random Sudoku Grids

For our first set of experiments we used the same method of instance generation
as in [4], which operates as follows:

To start with, a full and optimal Sudoku grid of a given order is taken. Such
a grid can be obtained from a variety of places such as the solution pages of a
Sudoku book or newspaper, by calculating the puzzles “Root Solution” (see [4]),
or by simply running the SA algorithm using a blank grid as a problem instance.
In the next step of the procedure, this grid is then randomly shuffled using the
following five operators:

– Transpose the grid (2 possibilities);
– Permute columns of boxes within the grid (n! possibilities);
– Permute rows of boxes within the grid (n! possibilities);
– Permute columns of cells within a column of boxes (n!n possibilities); and
– Permute rows of cells within a column of boxes (n!n possibilities).



Note that all of these shuffle operators preserve the optimality of the grid.

Finally, a number of cells in the grid are then made blank by going through
each cell in turn and deleting its contents with a probability 1 − p, where p
is a parameter to be defined by the user. Obviously, this means that instances
generated with a low p-value will have a low proportion of fixed cells (i.e. a
fairly unconstrained problem instance), whilst larger values for p will give more
constrained, full problem instances.

Before comparing the SA and hybrid algorithms, it is first worth taking a
look at how our CP procedure is able to cope with the randomly generated
instances unaided. This is shown in fig. 2. Here, we can witness the clear pattern
between the proportion of fixed cells in the initial problem instance, and the
proportion of cells that are fixed after the CP procedure has been applied. As
is shown, for very low p-values (0 to approximately 0.2) the CP procedure is
not able to do anything at all, because the near-blank grids that occur here do
not provide enough clues for any further cells to be filled. Meanwhile, for p-
values of approximately 0.75 and above, because of the high proportion of fixed
cells in the instances, the CP procedure is nearly always able to complete the
puzzles. Finally, in-between these values, although the procedure is often unable
to complete the puzzles, it is, however, usually able to fill some of the cells. Note
that this procedure is also very quick to run – none of these trials took more
than 0.03 CPU seconds (using Windows XP, with an Intel 3.2GHz processor and
1.99Gb of RAM).
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Fig. 2. The relationship between p and the proportion of fixed cells after an application
of the CP procedure for problems of order 3, 4, and 5. Each individual point in the
figure is a mean, calculated after runs on twenty problem instances of a specific p-value.
The smooth lines were produced using Gnuplot’s sbezier function



In order to compare the SA and hybrid algorithms directly, we used same
instance generator to perform the following experiments. For p-values of 0 to
1.0 (incrementing in steps of 0.05), twenty separate problem instances were first
created. With each of these instances, twenty separate trials with both algorithms
were then performed. This was done for instances of order-3 (91 cells), order-4
(256 cells), and order-5 (625 cells), using time limits of 2, 40, and 450 CPU
seconds respectively.

Finally, the SA in both algorithms was executed under the following condi-
tions:

– An intial temperature t0 was calculated by applying a small number of neigh-
bourhood moves to the initial solution (in our case we used 100 moves). t0
was then set to the variance of the cost across these moves (see [9] for the
theoretical foundations of this).

– At each temperature a total of (
∑n
i=1

∑n
j=1 f(i, j))2 neighbourhood moves

were attempted, where f has the same interpretation as eq. 2.
– The temperature was updated using a simple geometric scheme whereby
ti+1 = αti. In our case, we set α = 0.99.

– Finally, if no improvements in the cost were found for twenty successive
temperatures, then the current temperature was reset to t0, whereupon the
algorithm would continue as before.

Figure 3 shows the results of these experiments and displays, for each algo-
rithm, their success rates and solution times for all of the tested p-values. The
success rate indicates the proportion of runs where the algorithms were able to
find an optimal solution within the specified time limits. The solution time in-
dicates the average number of CPU seconds that it took to find a solution. (In
cases where the success rate was less than 1.0, those runs where optimality was
not found were not considered in the latter’s calculation.)

Looking at the order-3 results first, we can see that both algorithms feature
a 100% success rate across all of the instances and that, in both cases, lower
values for p will generally require longer solution times (due to the noted fact
that these instances will feature a larger search space). We can also see that for
p-values of 0 through to 0.2, both algorithms feature roughly the same solution
times. This is because, as we saw in fig. 2, with these instances the CP procedure
will not usually be given sufficient clues in order to be able to fill any of the cells,
and so the two algorithms are equivalent. For p-values of 0.25 up to around 0.7,
however, we can see that the hybrid algorithm clearly shows shorter solution
times, due to the fact that the CP procedure is able to fill some of the cells,
therefore reducing the size of the search space for the SA algorithm.

Moving our attention onto the results of the order-4 and order-5 experiments,
similar patterns also emerge with the solution times. In the centre of both graphs
we also witness dips in the success rates, indicating the presence of the phase
transition region that we have mentioned in Section 2. As we noted in [4], it
can also be seen that as puzzle order is increased, then the effects of the phase
transition also become more pronounced. Note, however, that throughout the



phase transition the hybrid algorithm shows both higher success rates and also
shorter solution times than the SA algorithm. According to a signed ranked test
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Fig. 3. Comparison of the SA and hybrid algorithms’ performance with puzzles of
order-3 (top), order-4 (middle), and order-5 (bottom).



the increases in the success rates across the various p-values were seen to be
significant (with ≥ 95% confidence).

3.2 Solving Published Sudoku Grids

For our second set of experiments we also tested the SA and hybrid algorithms
on a number of published instances that are known to have unique solutions. Our
first set of order-3 puzzles was taken from the on-line resource provided by the
Los Angeles Times [10]. These were published in the newspaper between January
and March 2006 and all are known to be logic solvable. A second set of order-3
puzzles was also taken from [11]. This resource features a very large collection
of different puzzles that each contain just 17 fixed cells, which is currently the
known minimum for guaranteeing that an order-3 puzzle features exactly one
solution. Finally, for completeness we also used the instance generator available
at [12] to produce a number of order-4 and order-5 puzzles. In general, puzzles
of this size are much less popular than order-3 puzzles and so our choices here
were limited. For this reason, we advise the reader to show slight caution when
interpreting these latter results, as this generator has not been scientifically
verified.

Table 1 contains the results of these experiments and displays the source of
the puzzles, their order, the number of instances used each case (Inst.), the aver-
age proportion of fixed cells in the instances (Fixed), and the puzzles’ “grades”.3

For each algorithm we then present the corresponding success rates and solution
times (with standard deviation), calculated in the same manner as in Section 3.1.
For the hybrid algorithm, we also present the average proportion of fixed cells
that occurred after the CP procedure was applied (Fixed′). All entries are an
average of ten runs on each of the available instances – i.e. 10 × Inst. runs in
each case. The same CPU time limits as Section 3.1 were also used.

As can be seen, in all cases the hybrid algorithm features an equal or higher
success rate than the SA algorithm. Additionally, in all but two of the instance
sets, we can see that the hybrid algorithm also gives shorter solution times (the
remaining two cases are due to sampling errors caused by the very low success
rates). One interesting point to note from this table is the relatively low success
rates when tackling the order-3 instances of [11]. In reality these instances might
be the most difficult sorts of problem for a stochastic search approach, because
they feature close to the largest possible search spaces for order-3 grids whilst
also ensuring that only one possible solution exists. For similar reasons, we can
also see that the success rates for both algorithms also drop as the order of
the puzzles is increased (with the one anomaly being the order-4 “superhard”
instances, which could be due to some feature of the problem generator).

3 Note that puzzle grades are probably superfluous here, because they tend to relate
to the complexity of the logical techniques that a player needs to use in order to
complete it. Additionally, the boundaries and adjectives that are used to define the
different grades also vary from place to place.



Table 1. Performance Comparison of the SA and Hybrid Algorithms with Instances
with Unique Solutions

Instance Description SA Performance Hybrid Performance
Source Order Inst. Fixed Grade Suc. Rate Sol. Time Fixed′ Suc. Rate Sol. Time

[10] 3 10 0.34 gentle 0.99 0.67± 0.1 0.94 1.00 0.05± 0.1
[10] 3 10 0.36 tough 0.95 0.76± 0.3 0.59 1.00 0.22± 0.2
[10] 3 10 0.34 diabolical 0.82 0.80± 0.3 0.48 0.99 0.49± 0.2
[11] 3 1000 0.21 n/a 0.01 1.41± 0.2 0.30 0.16 0.64± 0.5

[12] 4 10 0.40 easy 0.04 14.3± 7.5 0.47 0.24 25.8± 10.3
[12] 4 10 0.40 hard 0.10 20.3± 9.4 0.48 0.28 16.4± 8.6
[12] 4 10 0.49 superhard 0.91 8.64± 6.6 0.74 1.00 2.18± 2.5

[12] 5 10 0.46 easy 0.01 165.9± 0.0 0.51 0.04 234.1± 23.2
[12] 5 10 0.45 hard 0.00 n/a 0.49 0.00 n/a

4 Conclusions and Discussion

In this paper we have seen that our hybrid algorithm, which incorporates con-
straint programming and stochastic search, clearly outperforms the same stochas-
tic search algorithm when used on its own. We have seen that the two techniques
that make up this hybrid algorithm actually seem to complement one another,
because it is evident that on the one hand, CP techniques have the potential to
drastically improve the performance of the stochastic search algorithm, whilst
on the other hand, the stochastic search algorithm can also be used to help
CP-based approaches to solve a much wider range of instances (i.e. those that
are not necessarily “logic-solvable”). Indeed, it is also likely that if we were to
improve either aspect of the hybrid algorithm (e.g., by using more advanced
deduction techniques such as the “swordfish” and “X-wing” rules [13], or by us-
ing more sophisticated search techniques), then the overall performance of the
hybrid algorithm would also subsequently improve.

One interesting aspect of this work is the observation that our CP procedure
allows the possibility of moving a problem instance away from the phase transi-
tion region, thus making it easier for the SA algorithm to solve. However, if this
is the case, then we might ask whether it is also possible for the same procedure
to move some instances into the phase transition region, making them harder
to solve. We believe the answer to this question to be negative. This is because,
as we have seen, the CP procedure will only ever fix a cell if it has deduced its
contents with absolute certainty. Thus, although the procedure might be able to
reduce the search space size by adding additional constraints, it will not reduce
the number of solutions within this space, and its actions may well lead to a
reduction in the number and/or size of plateaus in the fitness landscape. It is
likely, therefore, that the instance will become easier to solve in general.

Considering future work, it is interesting to note that Sudoku can also be
modelled as a graph colouring problem. This is done by considering each of the
n4 cells in a grid as a node, and then adding edges between any two nodes



corresponding to a pair of cells in the same row, column, and/or box (meaning
that the n2 nodes occurring in each row/column/box will form a clique of size
n2.) Further edges can then also be added due to the pre-filled cells that are
supplied with the puzzle – for example in fig. 1 it is clear that nodes (cells) 9
(top right) and 10 (first on second row) should never be the same colour, and so
we can add an extra edge between these in order to ensure that they will never
be allocated the same colour in a feasible solution. Given such a graph, the task
is to then colour the nodes using exactly n2 colours. Graph colouring has, of
course, been widely studied in the past (see [14], for one example) and in the
future it is likely that various techniques from this field could show applicability
to Sudoku and, indeed, vice-versa.4

Finally, it is worth stressing that although Sudoku itself might not seem to
have great practical implications in a real-world/industrial context, to its credit it
is a problem that is very easy to understand, and it is certainly the case that it has
encouraged many people to take an interest in constraint satisfaction problems.
Perhaps more importantly though, it is noticeable that Sudoku features various
similarities with other important combinatorial optimisation problems, and so its
study should allow us to gain deeper insights into these as well. As an example,
consider a typical timetabling problem where the aim is to assign a number of
events to a limited number of timeslots and rooms in accordance with a set of
constraints. In these problems it is common, among other things, to encounter
pre-assignment constraints (e.g. “event 3 must be scheduled into room 6 in
timeslot 8”, etc.). In the past, various stochastic search techniques have been
applied to handle these sorts of constraints in timetabling (see, for example,
some of the works in [15]). However, it is noticable that this sort of constraint is
actually very similar to the constraints introduced by the fixed cells in Sudoku.
This suggests that it should also be useful to consider hybrid algorithms (of the
sort described here) for these sorts of problems as well. Here, we refer the reader
to papers by Merlot et al. [15] and Duong and Lam [16], where some preliminary
work on this matter has been conducted.
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