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Summary 

Climate-driven changes in the overall abundance or phenology of food resources may 

be critical factors affecting migratory populations, which depend on suitable conditions 

at widely-spaced locations across the planet. Numerous studies have described 

associations between climatic change and breeding success, survival and the timing of 

migration among migrant birds, but we used an experimental approach to investigate the 

causal mechanisms underlying these widely-reported correlations. Specifically, we used 

food-supplementations to simulate experimentally the impact of changes in food 

availability across the annual cycle of a model species of long-distance migrant bird, the 

northern wheatear (Oenanthe oenanthe). Food supplementation modified migratory 

schedules of wheatears by affecting migratory fuelling, but the strength of this impact 

varied between stages of the annual cycle and between two subspecies with contrasting 

migration strategies. Food supplementation advanced hatching date of wheatears in the 

UK, and led to some supplemented individuals increasing their reproductive output 

through multiple breeding attempts. Food-supplemented wheatears exhibited higher 

rates of annual survival than control wheatears, and the strength of this effect was most 

pronounced on survival of young immediately following fledging. These experiments 

highlight aspects of wheatear performance that are currently limited by food availability 

and are thus most sensitive to climate-driven changes in food supply (primarily 

migratory fuelling, number of breeding attempts and survival). We used experimental 

manipulations of temperature and soil moisture of upland grassland turfs to simulate the 

impact of climate change on the abundance and emergence phenology of the wheatear’s 

arthropod prey. Warming by 2 ºC and low soil moisture levels led to a reduction in 

arthropod abundance later in the season, indicating how such climate-driven changes 

would affect food availability to wheatears across the breeding season. These studies 

together provide experimental evidence for the mechanisms by which climate change is 

expected to influence population changes in migratory taxa.  
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INTRODUCTION 

Climate change has major implications for ecosystems and populations. The spatial and 

temporal heterogeneity of changes in temperature and rainfall present particular 

challenges to long-distance migratory taxa because they have to time their migrations to 

coincide with food availability at locations many kilometres apart. A multitude of 

studies have described how a variety of ecological changes have occurred that correlate 

with long-term trends in climate warming, or with large-scale climate fluctuations (e.g. 

see reviews by Root et al. 2003, Walther et al. 2005, Parmesan 2006). Due to the 

complexity of ecological and climatic systems, an approach based on observations and 

correlations is limited in the extent to which the underlying causes of ecological change 

can be identified. To begin to understand the mechanisms linking climate change and 

ecological change, an experimental approach has been advocated (Helmuth et al. 2005), 

but has yet to be fully exploited. Birds undergoing long-distance migration are a very 

suitable study system for such research, as climate change can have major consequences 

at all stages of their life cycle. These birds also rely on habitats in widely-spaced 

locations that may not experience the same rates or direction of climate change, which 

may limit their ability to adapt to change. The impact of temperature on arthropod 

abundance and phenology is a candidate mechanism underpinning changes in the 

migration strategies and population dynamics of migratory birds, for which arthropods 

are often the most important component of diet.  

 

In this study I use food supplementation experiments to simulate climate-linked 

increases in food availability across the annual cycle of a long-distance migratory bird, 

the northern wheatear (Oenanthe oenanthe) (Fig. 1.1). These food supplementations are 

linked to projections of climatic change by experimental manipulations of temperature 
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and moisture on the emergence phenology and abundance of the arthropod prey of 

northern wheatears. These experiments indicate the likely effect of climate warming and 

altered rainfall on the food availability of a long-distance migratory bird and, in turn, the 

impact of changes in food availability on the bird’s body mass regulation, breeding 

productivity and survival. This chapter summarises our current knowledge on impacts 

of climate change on migratory taxa and provides justification for the novel research 

described in the remainder of the thesis. The observed associations between recent 

climate change and aspects of the biology of migratory species have already been 

reviewed extensively (Gordo 2007, Jonzén et al. 2007a, Robinson et al. 2009). Rather 

than repeating such a review, here I focus on an area in which our understanding 

remains very limited, namely the underlying mechanisms by which climate change may 

affect migratory species. In this way, I highlight the need and opportunity for the 

experimental investigations described in the subsequent chapters.  

Fig. 1.1. Male northern wheatear Oenanthe oenanthe at entrance to nesting burrow, with grub for 

nestlings on Fair Isle, Shetland. 
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Impacts of climate change on migratory organisms 

Climate change is already altering the world’s ecosystems, and the rate of change is 

likely to accelerate over the coming decades (IPCC 2007). Global mean surface 

temperature increased by 0.76˚C between 1906 and 2005 and the best estimates of 

climate change models predict that a further increase of between 1.8 and 4.0˚C will be 

recorded by 2099, depending on the scenario of future greenhouse gas emissions (IPCC 

2007). Global temperature changes have not been uniform, with heterogeneity evident 

at a range of temporal and spatial scales. For example, daily minimum temperatures 

have increased approximately twice as much as daily maxima (Easterling et al. 2000a), 

while temperature has increased at a faster rate in the Arctic than elsewhere (IPCC 

2007). Rainfall patterns have also changed, and the incidence of extreme weather events 

(e.g. heavy precipitation, droughts and heat waves) has increased (IPCC 2007). There is 

now compelling evidence that climate change is causing changes in the phenology, 

abundance and distribution of different plant and animal taxa (Walther et al. 2002, 

Parmesan and Yohe 2003, Root et al. 2003, Warren et al. 2011). Long-distance 

migratory taxa are likely to be especially vulnerable to the effects of climate change, as 

their ability to complete their annual cycle depends on environmental conditions 

(including weather, habitat quality and food availability) at locations hundreds or 

thousands of kilometres apart. 

 

Climate change has fitness implications for migrants at their breeding grounds 

(e.g. affecting fecundity), wintering grounds (affecting survival) or during migration 

(affecting both survival and subsequent fecundity). It is, however, over-simplistic to 

view life cycle stages in isolation; events throughout an organism’s annual cycle are 
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fundamentally interlinked (Marra et al. 1998, Norris et al. 2004). Travelling many 

kilometres on migration requires a large intake of energy, and migrants are dependent 

on high quality foraging resources to undertake these journeys. Thus, the quality of 

foraging resources at stopover sites affects the condition of migrants on arrival. Arriving 

in poor condition may, in turn, result in lower survival or fecundity at subsequent life-

cycle stages. Such carry-over effects on individual fitness can even extend beyond one 

annual cycle. For example, late arrival at breeding grounds can result in an individual 

obtaining a low quality territory, leading to lower body condition at the end of the 

breeding season. This, in turn, may result in delayed or slower post-breeding migration 

and settlement on a poor quality territory on arrival back at the wintering area (Marra et 

al. 1998, Gill et al. 2001). Arriving late at breeding grounds relative to seasonal peaks in 

food abundance may in turn have negative consequences for reproductive success 

(Stenseth and Mysterud 2002, Both 2010). 

 

Higher spring temperatures at high- and mid-latitudes over recent decades have 

resulted in shifts in abundance of primary producers (e.g. plants and phytoplankton) in 

space and time (Root et al. 2003, Winder and Schindler 2004, Hays et al. 2005, Menzel 

et al. 2006). Consequently, the abundance and phenology of the consumers (e.g. 

arthropods and zooplankton) that feed on these primary producers have altered, with 

knock-on effects on higher trophic levels (Edwards and Richardson 2004, Visser et al. 

2006, Pearce-Higgins et al. 2010). Temperature may also have direct effects on 

arthropod development, which is generally accelerated by warming (Bale et al. 2002). 

Experimental evidence of the nature of the links between climate variables and 

phenological change is relatively lacking compared to the wealth of observational data. 

Experiments have confirmed that the phenology of primary producers responds to 
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warming temperatures; in terrestrial plants usually by advancing timing of bud burst, 

flowering and fruiting (Strathdee et al. 1993, Sherry et al. 2007, De Frenne et al. 2011), 

although experimental warming may also delay plant reproductive phenology in late-

flowering plants (Sherry et al. 2007). Animal populations generally respond to climatic 

fluctuations by adjusting their phenology to track that of lower trophic levels (even if 

they rarely actually match it). For example, the phenology of herbivorous arthropods 

appears to track that of their host plants (Strathdee et al. 1993). The timing of spring 

migration into Europe of many bird species is earlier in warmer springs, in accordance 

with the earlier phenology of European plants and invertebrates (Forchhammer et al. 

2002, Hüppop and Hüppop 2003, Cotton 2003, Gordo 2007). Among the few organisms 

in which shifts in phenology have been compared between trophic levels, however, in 

the majority of cases, consumers have either advanced their phenology too much or not 

enough, relative to the lower trophic levels on which they depend (Visser and Both 

2005). 

 

The ability of migratory species to respond to changes in the timing of food 

supply will be affected by ability to change the timing of migration. Short-distance 

migrants are likely to be able to adjust the timing of spring departure according to local 

weather conditions, since these are likely to correlate broadly with weather conditions at 

the destination (Forchhammer et al. 2002). In contrast, for long-distance migrants, local 

weather conditions in the wintering grounds are unlikely to be an adequate indicator of 

conditions at the breeding grounds thousands of kilometres away. Hence, many long-

distance migrants may be constrained in their ability to match migration timing with 

phenological shifts of their food supplies at their breeding grounds (Stenseth and 
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Mysterud 2002, Both and Visser 2005, Post and Forchhammer 2008, Thackeray et al. 

2010).  

 

The inability to track advancing phenology of food supplies leads to trophic 

mismatches between migratory predators and their prey, with demographic 

consequences (Visser and Both 2005). For example, recruitment of Atlantic cod (Gadus 

morhua) in the North Sea, which migrate to specific spawning locations, has been 

affected due to reduced food availability at the appropriate time for cod larvae 

(Beaugrand et al. 2003). Mismatching of breeding and foraging resource availability 

due to climate warming has resulted in a decline in breeding productivity and offspring 

survival of migratory caribou (Rangifer tarandus) in Greenland (Post and Forchhammer 

2008). Migratory bird species breeding in Europe that have not advanced their 

phenology in relation to climatic warming have declined in abundance (Møller et al. 

2008). Declines of pied flycatchers (Ficedula hypoleuca) in Europe have occurred in 

populations that have not advanced migration phenology sufficiently to maintain 

synchrony of breeding with peak abundance of caterpillars, the main prey delivered to 

nestlings (Both et al. 2006). For some insectivorous bird species populations, spring 

arrivals may be actually becoming later, for example common nightingale (Luscinia 

megarhynchos) and common cuckoo (Cuculus canorus) in parts of southern Europe 

(Peñuelas et al. 2002, Gordo et al. 2005). The mismatch between arrival of these species 

and the timing of food availability is particularly great, as insect phenology has 

generally advanced in their breeding areas. Nightingales in Croatia have advanced their 

spring arrivals, however (Kralj and Dolenec 2008), so the effects of climate change on 

these species’ migration phenology is unclear. A mechanistic approach, particularly 

investigating the role of changes in food supplies in the wintering grounds and en route 
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during migration, are likely to be of greater value in explaining such patterns, than 

correlations with temperatures trends alone. 

 

Changes in the timing of arrival of migrants at their breeding grounds could be 

due to changes in departure timing from the tropical winter grounds and / or altered 

speed of migration. The speed of migration is affected by a combination of fuelling 

conditions (availability of food) experienced en route, wind direction and speed, and 

other aspects of weather conditions, such as rain or snowfall (Dänhardt and Lindström 

2001). Departure timing appears to be predominantly governed by endogenous 

circannual rhythms (Hagan et al. 1991), but may be modified by other environmental 

factors such as photoperiod (Berthold and Terrill 1991, Gwinner 1996). There is 

empirical evidence that both departure timing and migration speed are associated with 

climatic and ecological conditions. Climate-driven changes in winter foraging may be a 

proximate cue for both short- and long-distance migrants to leave their winter grounds 

earlier, and / or may release a constraint on earlier departure. For example, rainfall in 

the tropical wintering grounds of American redstarts (Setophaga ruticilla) affects food 

(arthropod) availability, which in turn influences body condition and spring-departure 

timing (Studds and Marra 2011). Similarly, faster spring migration in pied flycatchers 

(Ficedula hypoleuca) is associated with warmer conditions close to the breeding 

grounds (Ahola et al. 2004). 

 

Although there exists a vast literature on the associations between climate 

variables and the phenology and populations of migratory birds, the ecological and 

behavioural mechanisms underlying these changes remain poorly understood. The main 

drawback of correlative studies (e.g. climate envelope modelling (Pearson and Dawson 



Chapter 1 Introduction 

 

 9 

2003) and trends based on fluctuations in large-scale climate cycles (Hüppop and 

Hüppop 2003)) is the difficulty in ascribing causation to climate change. The potential 

of climate envelope models to predict future distributions and abundances is limited 

because they largely ignore the potential for biotic interactions, genetic adaptability and 

dispersal limitations to modify the relationship between species and climate change 

(Hampe 2004, Van der Putten et al. 2010). By understanding the underlying 

mechanisms, it may be possible to appreciate the reasons for species-level variation in 

adaptation to climate change (Wingfield et al. 2011). I use experimental manipulations 

of food supply to simulate climate-driven increases in food availability at breeding, 

wintering and stopover sites of a long-distance migratory bird. The food 

supplementation that I have used was not designed to mimic directly the expected 

ecological response to climate change, which, in seasonal environments, is predicted to 

involve a shift in distribution of peaks in resource availability, as well changes in 

overall abundance. By supplementing food across whole breeding seasons and 

migratory fuelling periods, I aim to highlight aspects of the bird’s performance that are 

currently limited by food availability and thus are phenotypically flexible to climate-

linked alterations in food supply.  

 

A common migratory strategy of passerine birds is to breed in temperate and 

Arctic regions during the relatively short period of high productivity in spring and early 

summer, departing these areas when conditions become hostile (Moreau 1972, Alerstam 

and Högstedt 1982). Long-distance migratory birds may depend on a few specific 

stopover sites, as their migration is under the control of a sophisticated timing system, 

composed of both endogenous (circadian and circannual biological clocks) and 

exogenous (environmental variables, particularly photoperiod) components (Gwinner 
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1996, Bairlein and Hüppop 2004). The birds depend on suitable habitats and food at 

these stopover sites to fuel sufficiently for the next stage of migration. Climate change 

may affect the predictability and spatial distribution of foraging resources for stopover. 

Long-distance migrants could, therefore, be more affected by climate change than short- 

or medium-distance migrants, as the latter may be more flexible in their stopover 

decisions. Furthermore, short-range migrants rely on fewer intermediate migratory-

stopover locations, which are more likely to correlate in their phenology with conditions 

at the breeding grounds. 

 

Climate can impact on the reproductive success and survival of organisms by 

affecting the lower trophic levels on which they depend for food (White 2008). For 

example, climate-driven fluctuations in arthropod prey abundance have been shown to 

relate to the productivity of migratory birds in Europe (e.g. European golden plover 

Pluvialis apricaria, Pearce-Higgins et al. 2009) and North America (e.g. black-throated 

blue warbler Dendroica caerulescens, Sillett et al. 2000). In the case of the golden 

plover, reduced abundance of their key prey, craneflies (Tipulidae), was associated with 

warmer summer temperatures at their southern range margin the preceding year. This in 

turn was associated with reduced recruitment of plovers in the following year (Pearce-

Higgins et al. 2010).   

  

Climate change can have direct impacts on arthropods by affecting their 

physiology and behaviour, or indirect impacts by affecting other factors, such as the 

phenology and growth of their host plants (Bale et al. 2002). Changes in temperature, 

CO2 and rainfall can each affect arthropod abundance and phenology. Modest increases 

in temperature can cause dramatic increases of some insect taxa, such as species of 
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Hemiptera (Strathdee et al. 1993, Miles et al. 1997). Climate warming can also cause 

declines of cold-adapted insects, such as Tipulidae (Pearce-Higgins et al. 2010, Carroll 

et al. 2011), probably because of increased mortality due to drying of the soil (Coulson 

1962, Coulson et al. 1976). Elevated CO2 can influence insect-plant interactions in a 

number of ways, for example by reducing insect herbivore performance (by chemical 

changes in leaf tissues), although elevated temperature can buffer this effect (Veteli et 

al. 2002, El Zvereva 2006). The increase in occurrence of extreme events associated 

with climate change (Easterling et al. 2000b) may have greater impacts on survival and 

performance than increases in mean temperature. For example, drought, flooding and 

late frosts may all have severe impacts on insect abundance (Parmesan et al. 2000). 

Experimental simulations of winter warming events in the Arctic – which are predicted 

to become more frequent – had large negative effects on plant productivity, with 

delayed spring bud burst and reduced growth and fruit production (Bokhorst et al. 

2011). Such effects will inevitably affect higher trophic levels. Most research has 

focused on individual environmental factors, primarily temperature, but the interaction 

between climate change factors has not received enough attention (Bale et al. 2002). For 

example, changes in rainfall could mitigate the effect of temperature or act in 

combination to produce a stronger ecological response. 

 

The study system 

The study species, the northern wheatear, is a small insectivorous passerine bird of the 

family Turdidae. It was chosen for its extreme long-distance migrations, its tractability 

for field experiments, and the fact that a series of recent studies have paved the way for 

the proposed work (Pärt 2001a, 2001b, Schmaljohann and Dierschke 2005, Delingat et 

al. 2006). I focus on two subspecies of northern wheatear: O. o. oenanthe and O. o. 
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leucorhoa, both of which winter in the Sahel region in sub-Saharan Africa but which 

have contrasting migratory journeys. By focusing on these two closely-related and 

ecologically similar taxa, phylogenetic and ecological differences could be controlled 

while examining how differences in migration strategy might affect the response to 

climate change. Northern wheatears are mainly insectivorous, in common with most 

other long-distance migratory songbirds. Their reproductive success probably depends, 

to a large extent, on timing their breeding to match peak emergences of their arthropod 

prey, as has been shown in other species (Van Noordwijk et al. 1995, Both and Visser 

2005). Wheatears inhabit open areas, facilitating observation in the field. Recent studies 

have revealed much about the factors that influence reproductive success and migration 

strategy of wheatears. It has been shown, for example, that territory quality is the most 

important variable determining reproductive success of wheatears, not individual 

quality, and that early arriving, usually older, birds were able to settle on the best 

territories (Currie et al. 2000, Pärt 2001a, 2001b). There is therefore likely to be 

selection pressure for early arrival on breeding grounds. Accordingly, northern 

wheatears appear to follow a time-minimisation spring migration strategy (Delingat et 

al. 2006).  

 

The northern wheatear has a very large breeding distribution that stretches from 

eastern Canada, Greenland and Iceland, eastward through most of Europe, much of 

central and northern Asia and into Arctic North America. The winter quarters of the 

entire world population, including those birds breeding in the Nearctic, lies in Africa in 

a broad belt south of the Sahara extending from the west to east coasts (Cramp 1988). 

The global population numbers approximately 2,900,000 individuals (BirdLife 

International, 2004). There has been a marked decline in abundance of wheatears and a 
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retraction of their breeding range in NW Europe over recent decades, particularly in 

lowland grassland, but also in marginal upland areas (Cramp 1988, Baillie et al. 2010, 

PECBMS 2010). This decline has been attributed mainly to agricultural intensification 

that reduces habitat diversity and abundance of invertebrates, but also coincides with 

recent climate warming.  

 

Four subspecies of northern wheatear are recognised (Cramp 1988): O. o. 

oenanthe, O. o. libanotica, O. o. leucorhoa and O. o. seebohmi, all of which winter in 

sub-Saharan Africa. The latter subspecies breeds in North Africa, while O. o. libanotica 

breeds from southern Europe east to Mongolia (Cramp 1988, Wernham et al. 2002). O. 

o. oenanthe and O. o. leucorhoa are the focus of the present study; both are long-

distance migrants which migrate from or through NW Europe, but they contrast 

markedly in their migration strategies. O. o. oenanthe is widespread, breeding across 

NW Europe, including Scandinavia and the UK. This subspecies migrates in short 

flight-stages, south from the breeding grounds through France, Spain/Portugal and 

North Africa, before crossing the Sahara. These short flight stages require relatively 

small fuel reserves to be accumulated before each migration flight (Dierschke and 

Delingat 2001). O. o. leucorhoa, on the other hand, breeds in eastern Canada, Greenland 

and Iceland. This subspecies therefore makes trans-oceanic crossings in excess of 1,000 

km, which require very large fuel reserves to be accumulated prior to departure 

(Ottosson et al. 1990, Delingat et al. 2008). It has even been suggested that O. o. 

leucorhoa may sometimes fly non-stop from Greenland and Canada to northwest Africa 

during autumn migration, a journey of over 4,000 km (Snow 1953, Thorup et al. 2006).  
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Wheatears seem to follow a time-minimisation migration strategy, which is 

common amongst migratory passerines, although this is modified by the distance that 

must be travelled to cross barriers (Dierschke and Delingat 2001). Higher fuel loads are 

accumulated before departure across large ecological barriers, such as the Atlantic 

ocean or Sahara desert (Delingat et al. 2008, Boström et al. 2010). Environmental 

factors such as predation risk and local weather conditions also affect stopover decisions 

(Dierschke and Delingat 2001, Schmaljohann and Dierschke 2005), yet little is known 

about the impacts of climate- and ecological-changes on wheatears at their migration 

stopover sites. 

 

Wheatears require ready-made rock or burrow nest sites immediately adjacent to 

insect-rich patches of bare ground or short swards. Within these constraints, they occur 

in a wide variety of different habitats, including arctic tundra, moorland, heaths, 

unimproved and improved grasslands, sand-dunes, and even forest clearings (Cramp 

1988). Breeding site selection is thought to be made mainly on arrival, but may also be 

influenced by information collected the previous breeding season, on prior reproductive 

success and the distribution of conspecifics (Arlt and Pärt 2007). Territory quality 

(largely determined by vegetation height, which affects wheatear foraging success) 

appears to be more important than individual quality in determining reproductive 

success (Currie et al. 2000, Pärt 2001a, 2001b). Experimental manipulations of 

vegetation height show that northern wheatears holding territories with a short field 

layer rear young much more successfully than those in which the vegetation grows taller 

(Pärt 2001b). Adult survival rates are also higher in wheatears breeding in territories 

with short field layers (Low et al. 2010). Date of arrival on the breeding grounds is an 

important determinant of breeding success. Early arriving males, which are usually 
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older, settle on territories first and are more likely to pair than later arriving males 

(Currie et al. 2000). 

 

Breeding northern wheatears usually occur at densities between 5-20 pairs km
-2

 

but may reach densities of up to 23 pairs km
-2

 in prime habitat (Cramp 1988). Densities 

are low in areas of intensive agriculture, although wheatears often breed in areas of low 

intensity cultivation and sheep grazing. They form a mainly monogamous pair bond 

during the breeding season, but polygynous situations sometimes occur in which paired 

males mate with females outside of the pair bond. The monogamous pair bond only 

lasts for the breeding season, but pairing between the same individuals is often renewed 

annually because of fidelity to territories by both sexes (Cramp 1988).  

 

Detecting trends in the global population of the northern wheatear has been 

difficult because of the vast area occupied by the species in summer. The wheatear’s 

range has recently extended into eastern Canada, possibly due to increases in summer 

temperatures. Similar expansions in range may have occurred along the tundra of 

northern Scandinavia and arctic Russia (Cramp 1988). Further south, declines have 

occurred in central and western Europe, mainly due to agricultural intensification of 

former habitat (Kneis 1982). Eutrophication-linked rich grass growth in formerly 

sparsely vegetated areas has also contributed to declines (Osieck and Hustings 1994) 

because wheatears need short field layers to forage successfully (Arlt and Pärt 2007). 

The northern wheatear has declined rapidly in Europe since 2008 (PECBMS 2010). 

Wide fluctuations in the wheatear population of Britain have been recorded since 

monitoring began in 1994, and the species is considered likely to have declined (Baillie 

et al. 2010).  
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Little is known of wheatear ecology in their wintering grounds. Wheatear 

densities in northern Nigeria are negatively correlated with tree density, except at very 

low tree densities, which predict low numbers of wheatears (Wilson and Cresswell 

2010). They are mainly solitary outside of the breeding season. They defend relatively 

stable territories in their winter quarters (Leisler et al. 1983) and some also establish 

temporary territories on stopover sites during migration. The Sahelian droughts of the 

1960s, 1972 and 1983 are thought to have reduced the number of birds returning to their 

breeding grounds (Cramp 1988, Clement 1997).  

 

Wheatears spend a large proportion of daylight hours searching for food (e.g. 

51–67% for migrants stopping over on Helgoland Island, Germany) (Conder 1989, 

Dierschke et al. 2003). A large diversity of prey items have been recorded for the 

wheatear, which is unsurprising considering it has both a very large breeding 

distribution and winters south of the Sahara in Africa (Conder, 1989). Arthropods are 

particularly important, including beetles (Coleoptera), ants (Hymenoptera), craneflies 

(Tipulidae), caterpillars of butterflies and moths (Lepidoptera) and spiders (Araneae) 

(Cramp 1988). Plant berries are also eaten extensively at the end of the breeding season 

(Cramp 1988), probably to fatten up as partial frugivory allows birds to assimilate 

energy faster than insectivory alone (Parrish 1997). For nestlings, larvae of Lepidoptera 

and Tipulidae appear to be very important (Cramp 1988). The impact of climate change 

on the vast majority of these individual prey taxa is largely unknown, as is the net effect 

of climate change on the arthropod community as a whole, which influences the overall 

abundance and phenology of food availability to wheatears. 
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Independently of impacts on food abundance, climate change may also modify 

food availability to wheatears by modifying the birds’ foraging success. For example, 

the foraging success of wheatears is affected directly by effects of the immediate local 

weather conditions on the birds’ ability to find and capture arthropods; in wet and windy 

conditions foraging success is reduced, whereas in warm and still conditions foraging 

success is relatively high (Conder 1989).  

 

The focus of the present study is on the ecological and individual-based 

mechanisms that underlie population level responses to climate change. Observed 

changes in phenology, survival and reproduction associated with climate change could 

be due to one or both of rapid evolution or phenotypic plasticity (Jonzén et al. 2006, 

2007b, Both and te Marvelde 2007). By monitoring individually-marked individuals at 

breeding, wintering and stopover sites, I aim to determine the extent of phenotypic 

plasticity to changing food availability at different stages of the annual cycle. 

 

Chapter organisation 

Chapters 2 through to 5 are written as self-contained papers, for eventual publication. 

As such, there is some unavoidable repetition of aspects of research methods, while 

references, acknowledgements and appendices follow each of these chapters. Chapter 5 

is based on material from the MRes theses of two Cardiff University MRes graduates, 

Amy Hicks and Scott McKenzie. As well as being involved in the planning of these 

projects and undertaking extensive re-analyses, I have also synthesised the studies for 

eventual submission as a peer-reviewed paper. 
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Aims and objectives 

Aim 1. Simulating the impact of climate-driven changes in food supply, on the 

breeding performance, annual survival rates, and migration fuelling decisions of 

wheatears. 

Experimental manipulations of food availability (simulating a key effect of changes in 

temperature and rainfall) were used to evaluate the potential role of climate-driven 

changes in food supply on the body mass regulation and migration fuelling strategies of 

wheatears along their migration route between Greenland (for O. o. leucorhoa) or 

northwest Europe (for O. o. oenanthe) and the Sahel zone of Africa (Chapter 2). The 

impacts of these manipulations of food availability on breeding productivity (Chapter 3) 

and annual survival rates and population growth (Chapter 4) were also measured. 

 

Aim 2. Simulating the impact of climate warming on food availability at a breeding 

and stopover site. 

A major gap in our understanding of how climate change will affect migratory birds is 

the lack of information about the net impact of climate changes on their food 

availability. This study therefore investigated the effect of elevated temperatures on the 

productivity and timing of emergence of the major arthropod taxa on which northern 

wheatears feed (Chapter 5). 

 

In this study, I set out to: 

 

1. Determine the impact of changes in food supply on body mass regulation 

(including migration fuel deposition rates and departure fuel loads) and timing 

of departure, at a breeding and stop-over location and a wintering site (Chapter 

2) 
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2. Determine the impact of changes in food supply at the breeding grounds on 

nesting phenology (laying/hatching dates), and aspects of reproductive 

investment (clutch size, number of nesting attempts) and reproductive success 

(hatching success, number of offspring fledged per breeding season) of 

wheatears (Chapter 3). 

3. Determine the impact of changes in food supply at the breeding grounds, on 

annual survival of juvenile and adult wheatears (Chapter 4). 

4. Simulate climate warming and variation in rainfall by experimentally elevating 

temperature and soil water content of grassland sward in the laboratory, to 

predict the impact of climate changes on arthropod phenology and abundance 

(Chapter 5).  

 

I conclude the thesis with a synthesis of the likely impacts of projected climate 

changes on population change in the northern wheatear, across the species’ annual 

cycle. I place these findings within the wider context of climate change impacts on 

migratory taxa, and identify future research directions. 
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ABSTRACT 

Long-distance migratory birds depend on foraging resources at widely-spaced locations 

across the planet. Climate change may affect these resources in spatially and temporally 

variable ways, which may in turn affect body reserves and migration strategies, with 

subsequent effects on breeding success and survival. Climate-driven change in food 

availability is therefore a key mechanism by which climate may affect migratory 

populations. Food-limitation of migratory birds can occur in both breeding and non-

breeding seasons, with carry-over effects between life cycle stages. Here, we test the 

sensitivity of body mass regulation of long-distance migratory birds to changes in food 

availability across the annual cycle. We used food-supplementations to simulate 

experimentally the impact of climate-driven changes in food availability on body mass 

regulation and migration fuelling strategies across the annual cycle of two subspecies of 

northern wheatear (Oenanthe oenanthe oenanthe and O. o. leucorhoa) which exhibit 

contrasting migration strategies. Food-supplementation led to overall increases in body 

mass of both subspecies, but the effect of increased food availability on migratory 

fuelling varied between season, site and subspecies. Fuelling of food-supplemented O. 

o. oenanthe was more extensive in autumn than spring, while the reverse was true in O. 

o. leucorhoa. Departure fuel loads of food-supplemented birds increased with date in O. 

o. leucorhoa leaving a wintering site in West Africa, and in O. o. oenanthe leaving a 

breeding site in northwest Europe. The annual schedules of migratory birds are already 

known to be organised by endogenous controls that respond to changes in day length 

and geomagnetic fields. In this study, we show that changes in food availability as may 

occur under climate change are expected to modify these schedules by affecting the 

migratory fuelling of wheatears, and that the strength of this impact varies by migration 

strategy and stage of the annual cycle. 
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INTRODUCTION 

The spatial and temporal heterogeneity of climate change across the planet may 

limit the ability of long-distance migratory organisms to respond optimally to climate 

change because they utilise habitats at widely-spaced locations for breeding, wintering 

and stopping-over on migration (Stenseth and Mysterud 2002, Jones and Cresswell 

2010). The environmental conditions at each stage of the annual cycle of migratory 

organisms may have physiological effects on individuals that carry-over into subsequent 

stages (Norris et al. 2004, Saino et al. 2004, Brown and Sherry 2006, Saino and 

Ambrosini 2008, Reudink et al. 2009b). Understanding population changes of migratory 

taxa therefore demands investigation of all stages of the annual cycle (Marra, Hobson & 

Holmes 1998; Post et al. 2008), including at the breeding, stopover and wintering areas.  

 

Recent evidence suggests that temperature- and rainfall-linked fluctuations in 

food supply may be the key mechanism by which climate change affects the biology of 

migrant songbirds (Both and Visser 2005, Pearce-Higgins et al. 2010, Studds and Marra 

2011). Changes in temperature and rainfall affect primary productivity, which in turn 

affects arthropod abundance and phenology (Bale et al. 2002; Dell, Sparks & Dennis 

2005). Impacts of climate on arthropod food supplies are expected to have an important 

effect on migration strategies and breeding productivity of the primarily insectivorous 

migrant songbirds. Food supply can alter the birds’ body condition, leading to carry-

over effects into the subsequent breeding season (Brown & Sherry 2006; Reudink, 

Marra, et al. 2009; Smith, Reitsma & Marra 2010; Studds & Marra 2005). Furthermore, 

body condition can affect the timing of departure on migration (Fransson 1998, Brown 

and Sherry 2006, Stutchbury et al. 2011) and, in turn, the timing of arrival at the 

breeding or wintering grounds (Brown and Sherry 2006).  
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Early arrival at breeding grounds can enable an individual to obtain a higher 

quality territory, leading to improved reproductive success and body condition (Currie 

et al. 2000, Pärt 2001a, 2001b, Norris et al. 2004). Synchrony of timing of arrival at 

breeding grounds with the period of highest food availability can also be an important 

factor (Both and Visser 2001, Both et al. 2006). Timing of arrival at the breeding 

grounds depends on when birds depart the wintering grounds and on the duration of 

migration. A long-distance migratory journey typically consists of flight periods 

interspersed with stopover periods for rest and/or refuelling, with refuelling periods 

accounting for most of the overall duration of the migratory journey (Newton 2008). 

The timing of departure from the wintering grounds is controlled mainly by photoperiod 

and endogenous rhythms (Berthold and Terrill 1991), but also correlates with rainfall 

and food availability at the wintering areas (Studds and Marra 2011) and with body 

condition (Stutchbury et al. 2011). For example, female American redstarts (Setophaga 

ruticilla) wintering in high quality habitat have better body condition, depart wintering 

grounds earlier and fledge more offspring on their breeding grounds than female 

redstarts that share the same breeding grounds but winter in poorer quality habitat 

(Norris et al. 2004, Studds and Marra 2007). The decision to leave a stopover location is 

related to the rate of fat and muscle accumulation (fuel deposition rate) and the size of 

fuel reserves already accumulated. Birds tend to leave stopover sites early if they have 

especially high or low levels of fuel deposition rate, or if their fuel reserves become 

sufficient to make the next stage of their migration route, which may, for example, 

involve crossing a desert or sea, with no opportunity for refuelling (Dierschke and 

Delingat 2001, Schaub et al. 2008, Goymann et al. 2010). Fuel deposition rate varies 
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with habitat type, with food availability likely to be the underlying factor (Dierschke, 

Delingat & Schmaljohann 2003).  

 

Climatic effects on ecological conditions in the non-breeding areas can therefore 

have effects on performance in the breeding season by affecting migration timing and 

speed and the acquisition of favourable territories. Similarly, life-history events (e.g. 

late breeding) and environmental conditions during the breeding season may affect post-

breeding body condition, speed of moult (Morton and Morton 1990) and the timing of 

autumn migration (Jenni-Eiermann and Jenni 1996, Pärt 2001b, Stutchbury et al. 2011), 

with carry-over effects into the non-breeding season (Linden and Møller 1989, Dawson 

et al. 2000). 

 

Our central aim was to test the sensitivity of body mass regulation to changes in 

food availability during breeding, wintering and migration periods. To evaluate the 

impact of climate change on body mass regulation and migration strategy across the 

annual cycle, we experimentally manipulated food availability of the northern wheatear 

(Oenanthe oenanthe), a long-distance migratory songbird, to simulate climate-driven 

changes in food supply. We focused on two subspecies of northern wheatear: O. o. 

oenanthe and O. o. leucorhoa, both of which winter in the Sahel region in sub-Saharan 

Africa but which have contrasting migratory journeys. By focusing on these two 

closely-related and ecologically similar taxa, we could control for phylogenetic and 

ecological differences while examining how migration strategy might affect the 

response of migratory birds to climate change.  

 

O. o. oenanthe has a very large breeding distribution extending from western 

Europe, through Scandinavia and Russia to Alaska. This subspecies migrates in short 
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flight-stages; the Sahara presenting the largest barrier to be crossed with little 

opportunity for refuelling. These short flight stages require relatively small fuel reserves 

to be accumulated before each migration flight (Dierschke and Delingat 2001). In 

contrast, O. o. leucorhoa breeds in eastern Canada, Greenland and Iceland and must 

therefore cross large expanses of the North Atlantic between its breeding grounds and 

West Africa, via northwest Europe (Snow 1953). It has even been suggested that O. o. 

leucorhoa flies non-stop from Greenland and Canada to northwest Africa during 

autumn migration, a journey of over 4,000 km (Thorup, Ortvad & Rabøl 2006). These 

trans-oceanic flights of O. o. leucorhoa require very large fuel reserves to be 

accumulated prior to departure (Delingat, Bairlein & Hedenström 2008; Thorup et al. 

2006). Both subspecies occupy a variety of open habitats, forage for arthropods mainly 

on the ground and establish territories in both breeding and non-breeding areas, 

including at stopover sites (Conder 1989, Panov 2005). 

 

In common with most migratory songbirds, northern wheatears appear to follow 

a strategy of migratory fuelling and flights that minimises the total duration of the 

migratory journey (Delingat et al. 2006, 2008). This strategy appears to be based on the 

foraging and weather conditions experienced at fuelling and stopover sites (Dierschke 

and Delingat 2001, Dierschke et al. 2003). In a related study we showed that food 

availability affects the breeding productivity of northern wheatears (Chapter 3). We 

therefore anticipated that wheatears may also be highly sensitive to climate-driven 

changes in food availability at other stages of the annual cycle. To test this, we used 

food-supplementation at breeding sites, a stopover location and a wintering area in West 

Africa, thereby experimentally simulating the effects of climate-driven changes in 

arthropod food resources across the annual cycle. While climate change may increase 

food availability at breeding and stopover sites (Strathdee et al. 1993, Miles et al. 1997), 
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the direction of change in food availability in sub-Saharan Africa is unclear (Hulme et 

al. 2001). If food availability in sub-Saharan Africa declines (e.g. due to drought), 

wheatears would become even more food-constrained than the control birds in the 

present study.  

 

We hypothesised that increased food availability would (1) lead to improved 

body condition of northern wheatears in all stages of the annual cycle; (2) have the 

greatest impact on body condition in the post-breeding period and autumn migration, 

when natural arthropod abundance is likely to be most limiting; and (3) have a greater 

effect on spring departure fuel loads of O. o. oenanthe than O. o. leucorhoa, because O. 

o. leucorhoa must anyway reach the minimum fuel loads required to perform Atlantic 

crossings. In addition, amongst food-supplemented individuals of both subspecies, we 

tested the hypotheses that late birds attempt to accumulate fuel (fat and muscle) at faster 

rates and departure with greater fuel loads than birds leaving a site earlier. This is 

because birds departing later are expected to fuel more extensively if foraging resources 

allow, thus compensating for late departure by carrying higher fuel loads, which will 

increase potential flight distance and hence overall migration speed, (e.g. Ellegren 1993, 

Fransson 1998). 
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MATERIALS AND METHODS 

Study locations and stages of the annual cycle 

The study was conducted at three locations: (a) a breeding location of O. o. oenanthe 

(Fair Isle, UK) that is also a spring- and autumn stopover location for O. o. oenanthe 

breeding further north and for O. o. leucorhoa, (b) a breeding location of O. o. 

leucorhoa (Qeqertarsuaq, Greenland) and (c) a wintering location of both O. o. 

oenanthe and O. o. leucorhoa (Parc National des Oiseaux du Djoudj, Senegal, 

henceforth “PNOD”) (Fig. 2.1). Fair Isle (59°32'N, 1°39'W) is one of the Shetland 

Islands, off the north coast of Scotland. Qeqertarsuaq (69°15'N, 53°34'W) is an island in 

Disko Bay off the west coast of Greenland. PNOD (16°10'N, 16°18'W) is in northwest 

Senegal, close to the Senegal River Delta.  

 

 

Fig. 2.2. Study sites in Greenland, Europe and Africa. QEQ = Qeqertarsuaq, FI = Fair Isle, PNOD = ‘Parc 

National des Oiseaux du Djoudj’.  

 

 

QEQ 

FI 

PNOD 
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Food supplementation experiments and remote weighing of wheatears (see Food 

supplementation experiment, below) were used to study the effect of increased food 

availability on fuel deposition rates and body reserves in all three locations. These 

experiments were carried-out on wheatears during five stages of the annual cycle (a) 

wintering and pre-migratory fuelling in PNOD in January–February 2009 and 

February–April 2010, (b) stopping-over on Fair Isle in April–May and August–

September 2008–2009, (c) pre-migratory fuelling on Fair Isle in July–September 2008–

2009, (d) pre-migratory fuelling in Qeqertarsuaq in August–September 2010 and (e) 

breeding on Fair Isle in April–July 2008–2010. We captured and measured additional 

non-supplemented wheatears in the study areas during 2008–2011, while further non-

supplemented wheatears were captured and measured on Fair Isle across the period 

1956–2011 by staff of Fair Isle Bird Observatory.  

 

Bird measurements and subspecies identification 

Fully-grown wheatears were captured with spring traps (www.moudry.cz, model SB30) 

baited with mealworms (Tenebrio molitor) and, on Fair Isle, additionally with large 

funnel (Heligoland) traps. Plumage features were used to sex and age captured birds as 

fledged in the current year (juvenile), in the previous year (young adult), before the 

previous year (old adult) or fledged before the current year (adult, but unknown if 

young or old) (Svensson 1992). All adult males, but only a minority of adult females, 

could be aged with confidence as young or old. All captured birds were measured (wing 

length: maximum wing chord to 1 mm) and weighed on an electronic balance (to 0.1 g). 

Flight muscle score was estimated on a four-class scale (0 = emaciated, 3 = large 

muscle mass) following Kaiser (1993) and fat score was estimated on a nine-class scale 

(0 = no fat, 8 = fat covering whole ventral area) following Bairlein (1994). Each bird 

was fitted with a unique combination of three plastic colour rings and a numbered metal 
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ring to enable individual identification in the field. Some nestlings on Fair Isle were 

colour ringed before fledging and 28 wheatears at Qeqertarsuaq were also fitted with 

geolocators (weighing 1.2 g) as part of a separate study. Wing length was used to assign 

birds in PNOD and stopping-over on Fair Isle to subspecies; males with wing length 

less than 99 mm and females and juveniles with wing length less than 96 mm were 

classed as O. o. oenanthe, while males and juveniles with wing length greater than 102 

mm and females with wing length greater than 97 mm were classed as O. o. leucorhoa 

(Svensson 1992). Individuals with intermediate wing-lengths at these locations could 

not be assigned to subspecies and were excluded from analysis. All wheatears breeding 

and stopping-over in Qeqertarsuaq were O. o. leucorhoa, whereas all wheatears 

breeding on Fair Isle were O. o. oenanthe.  

 

Food supplementation experiment 

Prey availability for wheatears was experimentally increased by providing live or dried 

mealworms (live: Fair Isle, obtained from Live Foods Direct, www.livefoods.co.uk; 

dried: PNOD and Qeqertarsuaq, obtained from Wild Bird Direct, 

http://www.wildbirddirect.com) in plastic bowls placed directly on the ground. The 

bowls were temporarily attached to electronic weighing balances (myweigh.co.uk; 

model i500), when required, to weigh birds attending them (Fig. 2.2). Small stones were 

placed in the bowls to weigh them down and larger rocks were positioned around the 

bowls to reduce the effect of wind on readings from weighing balances (Fig. 2.2). The 

rocks also encouraged wheatears to investigate the feeding bowls; they frequently make 

use of such objects as look-out posts (Conder 1989). 
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Fig. 2.3. Second-year (young) male wheatear (O. o. leucorhoa) with colour rings (right leg: dark blue/ 

metal, left leg: white/white/dark blue) using remote weighing set up in PNOD. The rocks and cattle dung 

positioned around the balance and bowl of dried mealworms are to reduce the effect of wind on the 

balance readings. Cardboard is attached to the front of the balance to shade the LCD from the sun, 

increasing its visibility. The balance reading is 29.8 g. 

 

Dried mealworms were used in Qeqertarsuaq and PNOD because of the 

logistical difficulties of transporting, importing and maintaining large numbers of live 

mealworms in these remote locations. Only water had been removed from the dried 

mealworms; we assumed that there was no difference in the protein and fat content of 

dried and live mealworms. Water availability affects fuel deposition of blackcaps 

(Sylvia atricapilla) but not lesser whitethroats (S. curruca) stopping-over in Israel, the 

species-specific difference being attributed to contrasting adaptation to arid 

environments (Sapir et al. 2004). Blackcaps winter in humid forests while lesser 

whitethroats winter in more arid habitats. As wheatears also winter in arid 

environments, the results obtained in PNOD and Qeqertarsuaq are unlikely to have been 

substantially different if live mealworms had been offered, as on Fair Isle.  

 

In all three locations, feeders were put out in areas with the highest relative 

densities of wheatears. Captures of control birds were made at the same locations. 

Feeders were in place for breeding pairs and their offspring at (a) Fair Isle from territory 

establishment in April until autumn departure (August–September) 2008–2010 and (b) 
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Qeqertarsuaq at the end of the breeding season until autumn departure in 2010. Feeders 

were positioned for wintering birds at PNOD during the late wintering period (January–

February) in 2009 and from the late wintering period until spring departure (February–

April) in 2010. Feeders for wheatears on migration stopover were put out on Fair Isle in 

spring (April–May) and autumn (August–September) 2008-2009.  

 

Feeders intended for breeding pairs on Fair Isle were filled with at least 200 

mealworms (mean weight ± SD of mealworms = 0.112 ± 0.026 g, n = 100, Thomas 

1997). These feeders were refilled on at least five of every seven days, until the 

departure on autumn migration of all of the breeding birds and their offspring that were 

using the feeders (which begins in August, latest departures occurring in early 

September, this study). A standard route through the study site on Fair Isle was walked 

almost daily from mid-April until the end of May, and pairs of wheatears (determined 

by behavioural signs of territory establishment and pair bonding, Conder 1989) were 

selected alternately as fed and control (i.e. unfed) pairs. Thus, fed and control pairs were 

stratified both spatially and with respect to arrival date. Additional feeders for stopover 

migrants were positioned in locations on Fair Isle where stopover wheatears were 

observed. These feeders were filled with a minimum of 200 mealworms and topped up 

at least twice every day until departure of any wheatears using them. Feeders in PNOD 

and Qeqertarsuaq were put out in areas where wheatears were observed, filled with at 

least 200 dried mealworms (each weighing a mean of 0.0357 g) and topped up twice 

every day. In all three locations, feeders with higher depletion rates were filled with 

greater numbers of mealworms.  

 

Feeding bowls offered to wheatears breeding on Fair Isle were covered with 

metal wire mesh cages to prevent the mealworms being taken by European starlings 



Chapter 2 Food supply and body mass of a migratory bird 

 

 39 

(Sturnus vulgaris). These cages permitted wheatears to enter through a small hole cut at 

the bottom of the wire mesh (lined with strong insulating tape to prevent injury) or via a 

hinged weighted walkway that swung shut when starlings (approximately three to four 

times heavier than wheatears) attempted to enter, swinging back open again when they 

stepped off the platform. No cages were used on feeders in Qeqertarsuaq, PNOD or 

feeders for stopover wheatears on Fair Isle (when starlings were not feeding chicks and 

therefore mealworm-depletion rates by starlings were low). Other species did 

occasionally attend these feeders, but mealworms were always available for wheatears 

using them. 

 

Remote-measurement of body mass 

We monitored the body masses of wheatears visiting feeders at the same times of day 

within each study site, to enable daily body mass regulation to be studied at each 

location. We temporarily attached the food bowls to electronic weighing balances (My 

Weigh iBalance 500, My Weigh, http://myweigh.com) (Fig. 2.2) and used small video 

cameras (Sony Handycam DCR-SR32, Sony Corporation, http://sony.co.uk) to record 

the weights (to 0.1 g) of wheatears visiting the feeders. Most individuals using feeders 

were captured and colour-ringed for identification. Some wheatears using feeders that 

were not colour-ringed could be identified on the videos with a combination of some of 

the following characteristics: presence/absence of metal ring, sex, age, plumage 

differences and large individual differences in body mass (> 2 g). 1.2 g was subtracted 

from the weights of any wheatears that were carrying geolocators (n = 3 individuals) at 

Qeqertarsuaq prior to analysis. Weights of wheatears that could not be confidently 

identified to individual level were excluded from the analyses.  
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Fuel deposition rate and departure fuel load 

Fuel deposition rate and body reserves were calculated for the fed wheatears that used 

the remote weighing set up described above. Only birds that could be categorised as 

either O. o. oenanthe or O. o. leucorhoa by wing length were included in this analysis. 

To control for the relatively large size differences between the two subspecies, we 

modelled fuel deposition rate and body reserves based on lean body mass. To calculate 

fuel deposition rate and body reserves, we first calculated for each individual bird as 

follows. Fully-grown wheatears (including both fed and control individuals, but 

excluding breeding females in May on Fair Isle, birds in moult and birds with juvenile 

plumage) captured between 2007 and 2010 at Fair Isle, PNOD and Qeqertarsuaq were 

used in the calculation of lean body mass. Lean birds were selected from this dataset, 

defined as birds with muscle score < 2 and fat score < 2. From this group, a subset of 

lean birds with mass below the 50 % quartile at each wing length was selected using 

quantile regression to ensure that individuals developing eggs or in moult (and not noted 

at the time of capture) did not elevate the estimate. We followed Schmaljohann et al. 

(2011), regressing body mass (g) of birds in this lean subset on wing length (mm), 

providing the following equations to (1) calculate lean body mass for wheatears of a 

given wing length (Fig. S2.1), (2) body reserves and (3) daily fuel deposition rate:  

 

 

 

 

 

 

lean body mass [g] = 0.182 x wing length [mm] + 4.445 (1) 

body reserves = (body mass [g] – lean body mass [g]) / lean body mass [g] (2) 

daily fuel deposition rate= (body mass change [g] between first and last day / days 

between measurements) / lean body mass [g] 

(3) 
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As there was variation in the times that particular individuals visited feeders and were 

weighed, we interpolated body masses for standardised times of day. Daily mass change 

was modelled using Generalised Additive Models (GAM) with three knots, fitted using 

the mgcv package (Wood 2008) within R (version 2.10.1, R Development Core Team 

2009) to the available data points on each day (using only days with ≥ 3 weight 

measurements) for each individual. These fitted body mass trajectories were then used 

to interpolate weights for each hour between 08:00 and 19:00 (except 12:00 and 13:00). 

This gave a set of predicted weights at different times for each day that an individual 

was weighed. For each individual, one of these times was used for the calculation of 

daily fuel deposition rate, by selecting the time that gave the greatest span of days 

between first and last day, choosing the latest dates and latest times for any ties, as these 

were likely to be closer to the departure fuel load. For example, if weights for an 

individual were available at 14:00 over the period 10–15 August, and 17:00 over the 

period 11–16 August (both 5 day periods), 17:00 was chosen to calculate daily fuel 

deposition rate for that individual. A similar approach has been used in other studies of 

fuel accumulation (Fransson 1998, Bayly 2006, Delingat et al. 2008). Daily fuel 

deposition rate was calculated over a period of a maximum of 7 days (to ensure that 

only birds actively fuelling were included) ending on the day of departure (wheatears 

depart on migration at night). Box plots of daily fuel deposition rate on time of day 

revealed no systematic difference between times of day. Departure fuel load was the last 

recorded measurement of body reserves for each individual that was not subsequently 

observed at the location. 
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Flight range estimates 

The amount of fuel carried by migrating birds, in combination with weather conditions, 

determines how far they can fly without stopping, and therefore whether barriers such as 

expanses of ocean can be crossed. In addition, depending on rates of fuel accumulation, 

birds might be able to increase overall migration speed by carrying larger fuel loads, 

thereby reducing the number of required stopovers (Alerstam and Lindström 1990). 

Maximum fuelling is rarely optimal, however, due to the rising energy costs with fuel 

load (Lindström and Alerstam 1992). To estimate the potential flight range (Y km) of 

wheatears with different departure fuel load, we used the equation developed by 

Delingat et al. (2008), where U is the average airspeed of a northern wheatear (47 km h
-

1
, Bruderer & Boldt 2008): Y = 100 * U * ln(1 + departure fuel load). As this equation is 

based on observed (i.e. empirically measured) rates of mass loss in wheatears, it is 

considered to be more robust than calculations based on aerodynamic theory, which 

make a large number of assumptions (Schmaljohann et al. 2011). The flight range 

equation refers to distance in relation to the surrounding air; thus tail winds or head 

winds will modify the potential flight range (Delingat et al. 2008). Likely destinations 

and flight paths of departing wheatears were inferred from the literature (Snow 1953, 

Cramp 1988, Dierschke and Delingat 2001). We used Google Earth (Google, Mountain 

View, USA) to measure approximate distances from the study locations to likely 

stopover areas and distances across major barriers (e.g. sea and desert). 

 

Data analysis 

In each location, our samples consisted of wheatears that were food-supplemented 

(“fed”) and wheatears that were not using feeders (“control”). In our analyses, 

experimental treatment (fed or control) is referred to as “treatment”. Fed birds were 



Chapter 2 Food supply and body mass of a migratory bird 

 

 43 

weighed multiple times by remote weighing at feeding stations, whereas control birds 

were only weighed when they were captured – often only once. To account for this 

difference in sampling effort between treatment groups, we randomly selected one 

weight per individual wheatear from each stage of the annual cycle in which they were 

measured. This reduced dataset was then used in our analyses of the effects of treatment 

on body reserves. Stage of the annual cycle was treated as a factor in analyses and 

referred to as “stage”. To consider the hypothesis that body reserves vary over time 

within each stage, we created a variable “stage-specific day”, where 1 = the first day 

within each stage. 

 

Based on the hatching dates that we recorded on Fair Isle during 2008–2010, all 

females had finished laying eggs of first clutches before the end of May. We excluded 

all weights of females recorded in April and May on Fair Isle due to the potentially 

confounding effects of different stages of egg development on comparisons of body 

mass between fed and control birds. Four females had second broods over the course of 

the study; weights of these individuals measured in the two weeks preceding and during 

egg-laying were also excluded. 

 

Examining the effect of food supplementation on body reserves of wheatears 

stopping over on Fair Isle in spring was not possible, because in the spring dataset there 

were no food-supplemented O. o. oenanthe (with wing lengths below the overlap range 

of O. o. oenanthe and O. o. leucorhoa) for comparison with control O. o. oenanthe, and 

only two food supplemented O. o. leucorhoa. Sample sizes of fed and control O. o. 

oenanthe in the remaining stages of the annual cycle were: wintering at PNOD – 7 fed, 

6 control; breeding on Fair Isle – 51 fed, 172 control; autumn migration on Fair Isle – 

62 fed, 423 control. Sample sizes of fed and control O. o. leucorhoa in the remaining 
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stages of the annual cycle were: wintering at PNOD – 11 fed, 9 control; autumn 

migration at Qeqertarsuaq – 10 fed, 117 control; autumn migration (stopover) on Fair 

Isle – 14 fed, 183 control. 

 

We fitted a series of models using R to investigate (1) the effects of treatment on 

body reserves across the annual cycle and (2) variation in fuel deposition rate and 

departure fuel load between subspecies and stages of the annual cycle. We fitted linear 

models for the analyses of body reserves across the annual cycle and departure fuel 

load. We fitted variance models in the analysis of fuel deposition rate, using maximum 

likelihood and generalised least squares within the R nlme package (gls: Pinheiro et al. 

2011), because of a large difference in the variance of fuel deposition rate between 

subspecies. Datasets were reduced so that there were no missing data for any of the 

factors in full models, to enable direct comparisons between models. The explanatory 

variables we included in our analyses are described in Table 2.1 and Table 2.3. 

 

The performance of competing models was compared using Akaike’s 

Information Criterion, corrected for small sample size (AICc; Burnham & Anderson 

2002). Decreasing values of AICc indicate better statistical fits. Two statistics were 

obtained for each model: ΔAICci (the difference in AICc between model i and the best 

model) and wAICci (Akaike weight), which indicates the likelihood that each model is 

the best approximation relative to all the other models in the model set. The models 

were ranked by ΔAICci and the most plausible models were defined as those with 

ΔAICci ≤ 2, following Burnham and Anderson (2002). Model averaging was carried out 

to derive parameter estimates and confidence intervals, based on the AICc weight 

(AICcwi) of each model i (Burnham and Anderson 2002). AICcwi determines the 
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contribution of each parameter estimate within model i to the average of that parameter 

across all considered models. 

 

RESULTS 

Effects of food supplementation on body reserves across the annual cycle 

To determine the effect of food supplementation on body reserves, we analysed the two 

subspecies separately because we did not perform the experiment during the O. o. 

leucorhoa breeding season. 

O. o. oenanthe 

There was one plausible model (AICc ≤ 2) of body reserves (body mass above lean 

body mass as a proportion of body mass) of O. o. oenanthe (Model 1, Table 2.1). This 

model indicated that the effect of supplemental food on body reserves varied between 

the different stages of the annual cycle and also varied by stage-specific day. Body 

reserves were higher in fed than control O. o. oenanthe at the wintering grounds in 

PNOD and at the end of the breeding season on Fair Isle, during the pre-migratory 

phase from July to early September (Table 2.2, Fig. 2.3a, 2.3e). There was, however, no 

effect of supplemental food on body reserves of O. o. oenanthe during the breeding 

period on Fair Isle (April–June) (Table 2.2, Fig. 2.3c).  
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Table 2.1. Linear models fit to body reserves of O. o. oenanthe and O. o. leucorhoa wheatears across the 

annual cycle. AICc is the corrected Akaike’s Information Criterion, ΔAICci is the difference in AICc 

between model i and the best model and wAICci is the Akaike weight. Plausible models are considered to 

be those with ΔAICci ≤ 2. Interactions are indicated by x and include all lower order fixed term effects. 

 
Model 

ID 

Dependent 

variable 

Subspecies Fixed 

effects 

df ΔAICci wAICci 

1 Body reserves O. o. oenanthe trt x stage, day 8 0 1 

2   trt x stage 7 20.3 < 0.001 

3   trt, stage 5 136.5 < 0.001 

4   trt 3 151.2 < 0.001 

5   stage, day 5 258.3 < 0.001 

6   none  2 279.4 < 0.001 

7   stage 4 280.3 < 0.001 

       

8 Body reserves O. o. leucorhoa trt x stage, day 8 0 0.975 

9   trt , stage 7 7.9 0.018 

10   trt x stage 5 10.2 0.006 

11   stage, day 3 14.3 < 0.001 

12   stage 2 59.6 < 0.001 

13   trt 5 60.3 < 0.001 

14   none 4 61.9 < 0.001 

Body reserves: % of body mass above lean body mass. 

Fixed effects. trt: treatment (fed or control), stage: wintering (PNOD: both oenanthe and leucorhoa), 

spring stopover (Fair Isle: leucorhoa only), breeding (Fair Isle: oenanthe only), start of autumn migration 

(Fair Isle: oenanthe; Qeqertarsuaq: leucorhoa), autumn stopver (Fair Isle: leucorhoa only), day: stage-

specific day, none: intercept-only model.  
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Table 2.2. Model-averaged parameter estimates (estimates of fixed effects included in models explaining 

body reserves, with ΔAICci ≤ 2 with contributions to average weighted by wAICci of model i), 

unconditional standard errors and 95% confidence intervals (Burnham & Anderson, 2002). Interactions 

are indicated by x. 

 
Dependent 

variable 

Subspecies Fixed  

effect 

Estimate SE 95% CI 

  Lower Upper 

Body reserves O. o. oenanthe trt 8.19 4.93 -1.49 17.86 

  stagebreeding 6.72 3.69 -0.51 13.96 

  stageAutumn 8.23 3.68 1.02 15.44 

  trt x stagebreeding -6.99 5.14 -17.06 3.07 

  trt x stageAutumn 13.37 5.08 3.42 23.33 

  day 0.06 0.02 0.03 0.09 

       

Body reserves O. o. leucorhoa trt 30.34 6.39 17.83 42.87 

  stageAutumn 14.18 4.89 4.60 23.76 

  stageAutumnStop 15.00 4.93 5.33 24.67 

  trt x stageAutumn -19.47 7.92 -34.99 -3.94 

  trt x stageAutumnStop -4.13 7.47 -18.76 10.51 

  day -0.20 0.06 -0.32 -0.08 

Body reserves: % of body mass above lean body mass. 

Fixed effects. trt: treatment (fed vs. control), stagebreeding: breeding (May and June on Fair Isle) vs. 

wintering (PNOD) (oenanthe only), stageSpringStop: spring stopover (Fair Isle) vs. wintering (PNOD) 

(leucorhoa only), stageAutumn: start of autumn migration (Fair Isle: oenanthe; Qeqertarsuaq: leucorhoa) vs. 

wintering (PNOD), stageAutumnStop: autumn stopover (Fair Isle) vs. wintering (PNOD), day: stage-specific 

day.  
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Fig. 2.4. Body reserves (% of lean body mass above lean body mass) of food-supplemented and control 

northern wheatears at different stages of the annual cycle. (a) O. o. oenanthe during late winter at PNOD, 

(b) O. o. leucorhoa during late winter at PNOD, (c) O. o. oenanthe breeding on Fair Isle, (d) O. o. 

leucorhoa in the autumn at Qeqertarsuaq, (e) O. o. oenanthe in the autumn on Fair Isle and (f) O. o. 

leucorhoa during stopover on Fair Isle. 
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O. o. leucorhoa 

There was one plausible model of body reserves of O. o. leucorhoa (Model 8, Table 

2.1). This model indicated that the effect of supplemental food on body reserves varied 

between the different stages of the annual cycle and also varied by stage-specific day. 

Fed O. o. leucorhoa had higher body reserves than control O. o. leucorhoa at all stages 

of the annual cycle that were measured (Table 2.2, Fig. 2.3b, d, f). The effect of food-

supplementation on body reserves was greatest during fuelling for spring migration at 

PNOD (Table 2.2, Fig. 2.3b). Control O. o. leucorhoa at Qeqertarsuaq also had lower 

body reserves than control birds recorded in autumn stopover on Fair Isle, but higher 

body reserves than control birds recorded at PNOD at the beginning of spring migration. 

Large body reserves were attained by fed O. o. leucorhoa leaving PNOD at the 

beginning of spring migration and by those stopping over on Fair Isle in the autumn. 

Body reserves of fed O. o. leucorhoa were lower among birds preparing to leave 

Qeqertarsuaq at the end of the breeding season.  

 

 Effects of stage, subspecies and date on fuel deposition rate 

There was one plausible model of fuel deposition rate (Table 2.3, Model 15; see Table 

S2.1 for the full set of candidate models). Fuel deposition rate was higher in O. o. 

leucorhoa than O. o. oenanthe (Table 2.4, Fig. 2.4a, c). Fuel deposition rate of O. o. 

leucorhoa during pre-migratory fuelling was lower in the autumn at Qeqertarsuaq than 

at the start of spring at PNOD (Table 2.4, Fig. 2.4a, b). Fuel deposition rate was similar 

between autumn migration on Fair Isle and the start of spring migration at PNOD (Table 

2.4, Fig. 2.4a, c). The positive parameter estimate for stage-specific day indicated that 

wheatears fuelling later during a particular stage did so at a faster rate than wheatears 
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fuelling earlier, although this was observed only in O. o. leucorhoa at PNOD in spring 

and, to a lesser extent, O. o. oenanthe at Fair Isle in the autumn (Table 2.4, Fig. 2.4a, c).  

 
Table 2.3. Plausible models (ΔAICci ≤ 2) fit to daily fuel deposition rates (FDR) (generalised least 

squares models), departure fuel loads (linear models) and departure dates (linear models) of O. o. 

oenanthe and O. o. leucorhoa across the annual cycle. AICc is the corrected Akaike’s Information 

Criterion, ΔAICci is the difference in AICc between model i and the best model and wAICci is the Akaike 

weight. Interactions are indicated by x and include all lower order fixed term effects. Full candidate 

model sets are presented in Tables S1–S3. 

Model 

ID 

Dependent 

variable 

Fixed 

effects 

Random 

effects 

df ΔAICci wAICci 

15 Daily FDR stage, subsp, day SD (subsp) 7 0 1.000 

       

23 DFL  subsp x stage, day - 6 0 0.456 

24  subsp x stage, stage x day - 7 2.0 0.165 

       

41 Departure date 

(O. o. oenanthe 

on Fair Isle only) 

age, HD - 4 0 0.751 

Daily FDR: Fuel deposition rate (% of body mass above lean body mass gained or lost per 24 h). DFL: 

Last recorded fuel load (% of body mass above lean body mass) before departure. Departure date: last 

recorded date on Fair Isle at start of autumn migration (O. o. oenanthe only). 

Fixed effects. subsp: O. o. oenanthe vs. O. o. leucorhoa, stage (Daily FDR): spring departure from winter 

grounds vs. autumn departure from breeding grounds, stage (DFL): start of spring migration at PNOD, 

start of autumn migration at Qeqertarsuaq, autumn migration at Fair Isle (start and stopover), day: stage-

specific day, where 1 = day that first bird departed during that stage, age: adult or juvenile, HD: hatch 

date (juveniles) or hatch date of last brood in that year (adults). 

Random effects. SD (subsp): Standard deviation of effect of subspecies on daily FDR, to account for the 

large difference in variation between the two subspecies.  
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Table 2.4. Model-averaged parameter estimates (estimates of fixed effects included in models with 

ΔAICci ≤ 2 with contributions to average weighted by wAICci of model i), unconditional standard errors 

and 95% confidence intervals (Burnham & Anderson, 2002) for daily fuel deposition rates (FDR), 

departure fuel loads (DFL) and departure dates across the annual cycle. Interactions are indicated by x. 

Dependent 

variable 

Fixed  

effect 

Estimate SE 95% CI 

  Lower Upper 

Daily FDR stageautumn.qeqe -5.890 2.620 -11.030 -0.741 

 stageautumn.fair 0.464 1.070 -1.638 2.567 

 subspoen -6.370 1.580 -9.471 -3.277 

 day 0.047 0.025 -0.002 0.095 

      

DFL subspoen x stageautumn.fair 23.296 9.879 3.932 42.659 

 day 0.891 0.154 0.591 1.192 

 stageautumn.fair x day 0.375 0.589 -0.781 1.530 

      

Departure date (O. o. 

oenanthe on Fair Isle 

only) 

agejuv -10.680 3.155 -16.864 -4.496 

 HD 0.573 0.165 0.250 0.896 

Daily FDR: Fuel deposition rate (% of body mass above lean body mass gained or lost per 24 h). DFL: 

Last recorded fuel load (% of body mass above lean body mass) before departure. Departure date: last 

recorded date on Fair Isle at start of autumn migration (O. o. oenanthe only). 

Fixed effects. stagei: location-specific stage of migration relative to start of spring migration at PNOD 

(stageautumn.qeqe: start of autumn migration at Qeqertarsuaq, stageautumn.fair: autumn migration at Fair Isle 

(start and stopover)), day (daily FDR): stage-specific day, subspoen: O. o. oenanthe vs. O. o. leucorhoa, 

day (DFL): stage-specific day, where 1 = day that first bird departed during that stage, agejuv: juveniles vs. 

adults, HD: hatch date (juveniles) or hatch date of last brood in that year (adults). 
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Fig. 2.5. Daily fuel deposition rates (% of lean body mass accumulated per 24 h) of food-supplemented 

northern wheatears during migratory fuelling at (a) PNOD (winter), (b) Qeqertarsuaq (autumn) and (c) 

Fair Isle (autumn). 

 

Effects of stage, subspecies and date on departure fuel loads 

Two models of departure fuel load were identified as plausible by AIC model selection 

from the candidate set of 19 models (Models 23–24, Table 2.3; see Table S2.2 for the 

full set of candidate models). The subspecies x stage interaction term was included in 

both plausible models because departure fuel loads of O. o. oenanthe were significantly 
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higher in the autumn than at the start of spring migration, while departure fuel loads 

were marginally higher in spring than autumn for O. o. leucorhoa (Table 2.4, Fig. 2.5). 

Departure fuel loads of O. o. leucorhoa were also higher than O. o. oenanthe in the 

spring, with no sub-specific difference in the autumn (Fig. 2.5). Stage-specific day was 

included in the top model, indicating that departure fuel loads increased with date, 

during both spring and autumn migration (Table 2.4, Fig. 2.5).  The interaction term 

stage x stage-specific day was also included in the second-best model, but the standard 

error for this effect was larger than the effect size, and the confidence intervals greatly 

overlapped zero, precluding meaningful interpretation (Table 2.4). 

 

 
Fig. 2.6. Departure fuel loads (% of lean body mass above lean body mass) of food-supplemented 

northern wheatears leaving (a) a wintering site (PNOD) and (b) breeding sites (O. o. leucorhoa: 

Qeqertarsuaq, O. o. oenanthe: Fair Isle). 

 

There was only one plausible model of departure date of O. o. oenanthe (Model 41, 

Table 2.3). Juveniles departed significantly earlier than adults (Table 2.4). Departure 

date was positively correlated with hatch date, confirming that late-breeding wheatears 

depart breeding grounds later than earlier breeding wheatears (Table 2.4). The slope of 

the effect of hatch date on departure date was significantly less than 1, indicating that 

birds with later hatch dates depart on migration sooner after fledging (for juveniles) or 

breeding (for adults) than birds with earlier hatch dates (Table 2.4). 
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Flight range estimates 

Flight ranges were only estimated for food-supplemented wheatears. This was because 

we were able to measure body masses of food-supplemented wheatears attending 

feeding stations until very close to the time of departure (assumed to have occurred 

during the night following the last recorded visit of individual birds), thus allowing us to 

estimate departure fuel loads. It was not possible to monitor weights of control 

wheatears until departure. The mean estimated flight range of four O. o. oenanthe 

departing on spring migration from PNOD was 1,346 km (range 913–1,514 km). The 

mean body reserves were probably just sufficient to cross the Sahara (c. 1,200 km). The 

smallest body reserves were not sufficient to cross the Sahara without a tail wind, which 

occur rarely in spring in northwest Africa (predominant wind direction in March/April 

is from NNW, source: http://windfinder.com). The mean estimated flight range of seven 

O. o. leucorhoa departing PNOD is 2,325 km (range 1,655–3,186 km), sufficient to 

reach the northern coast of Africa. The lowest range of 1,655 km is enough to cross the 

Sahara without refuelling, while the birds with the highest body reserves could reach 

Iberia. The estimated flight ranges of three O. o. leucorhoa stopping over on Fair Isle in 

spring were 830, 2,786 and 3,783 km. The lightest bird could have reached Iceland, 

while the two heavier birds could have reached the western coast of Greenland and 

Baffin Island (Canada), respectively.  

 

The mean estimated flight range of ten O. o. leucorhoa departing Qeqertarsuaq 

in autumn was 1,628 km (range 969–2,395 km). None of these birds could fly further 

than Iceland with these body reserves without wind assistance, while the lightest body 

reserves were enough to reach the southern coast of Greenland, but not Iceland. The 

mean estimated flight range of 49 O. o. oenanthe departing Fair Isle in the autumn was 
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1,807 km (range 879 – 2,800 km), enough to reach Morocco. Further refuelling would 

then be required to make the crossing of the Sahara to the wintering grounds. The 

lightest body reserves would enable a flight only as far as S England, while the largest 

body reserves would be enough to reach the northern edge of the Sahara with reserves 

remaining, but not to cross it. Thirteen O. o. leucorhoa departing Fair Isle in the autumn 

were estimated to have a mean flight range of 2,310 km (range 1,577–3,037 km). The 

lightest body reserves are enough to reach Iberia, the mean enough to reach Morocco, 

while the heaviest body reserves could power a flight to the Sahara, but would probably 

not be enough to cross it.  

   

DISCUSSION 

In this study, we show how climate-driven changes in arthropod availability are likely to 

affect body mass regulation of two subspecies of a long-distance migratory songbird, 

the northern wheatear. Our findings that fed wheatears had greater body reserves than 

control wheatears during spring and autumn pre-migratory periods and autumn stopover 

provides evidence that food is currently limiting migratory fuelling of wheatears across 

the annual cycle. Changes in food availability caused by climate change are therefore 

likely to affect the rate and extent of fuel accumulation of wheatears preparing for 

migration, both in spring and autumn. 

 

Food availability and body reserves across the annual cycle  

There were very large differences between the body reserves of fed and control O. o. 

oenanthe, both in the autumn on Fair Isle and O. o. leucorhoa at PNOD. Birds leaving 

the breeding or wintering grounds with larger body reserves will be able to fly further 

without needing to stop to replenish fuel reserves. This could speed up the whole 
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migratory journey by reducing the time required for refuelling at stopover sites 

(Alerstam and Lindström 1990). Control wheatears appeared to accumulate only modest 

fuel stores, consistent with a strategy of short flights with frequent stopover for 

refuelling, as has previously been observed in O. o. oenanthe under natural foraging 

conditions (Delingat et al. 2006). An increase in departure fuel loads of wheatears with 

supplemental feeding has been shown previously for birds leaving Iceland and Scotland 

(Delingat et al. 2008). The present study shows additionally that an increase in food 

availability increases fuel loads of wheatears at the onset of migration from sub-Saharan 

Africa. Our results suggest, however, that increased food availability has little impact on 

fuel deposition of O. o. leucorhoa departing Greenland. The food-supplementation 

experiments on O. o. leucorhoa were conducted at the beginning of their autumn 

migration in western Greenland and it is possible that wheatears only fuel enough to 

reach southern or eastern Greenland, where more extensive fuelling occurs for the 

Atlantic crossing. Alternatively, wheatears in western Greenland may be less food-

limited than those on Fair Isle or PNOD, such that non-supplemented western 

Greenland birds were able to source just as much food as supplementary fed birds.  

 

In contrast to the results during periods of fuelling for migration, there was no 

effect of food supplementation on body masses of O. o. oenanthe during the main 

breeding period (April–June), suggesting that body mass regulation of breeding 

wheatears is not currently limited by food availability. These results are consistent with 

our finding that food supplementation has little effect on success rates of first broods of 

O. o. oenanthe on Fair Isle (Chapter 3). Changes in food availability during the breeding 

season, at least when first broods are reared, are therefore unlikely to have significant 

impacts on the body condition of breeding adult wheatears on Fair Isle. We did, 



Chapter 2 Food supply and body mass of a migratory bird 

 

 57 

however, find that chicks of food-supplemented parents were larger in one out of two 

years (Chapter 3). This finding, together with the results in the present study, suggests 

that breeding wheatears may be more likely to allocate extra food resources into 

breeding attempts rather than their own body mass.  

 

The extent to which increased food availability results in earlier arrival at the 

destination was found to depend on the relationship between food availability, departure 

date and speed of migration. Results of previous studies show no consistent pattern, 

with favourable ecological conditions in sub-Saharan Africa reported to result in both 

advances (Saino et al., 2004) and delays (Tøttrup et al. 2008) of spring passage of 

migrants through North Africa. Delayed passage across the Sahara has been attributed 

to delayed departure from wintering grounds (Tøttrup et al. 2008). This could represent 

a phenotypic response by birds taking advantage of improved food availability to fuel 

more extensively than in poorer years. By carrying a larger fuel load, migratory birds 

can speed up the duration of migration by reducing the number of stopovers. A recent 

study tracking individual wood thrushes (Hylocichla mustelina) with light-level 

geolocators showed that improved body condition resulted in earlier autumn departure 

but that this did not result in earlier arrival in the tropical wintering sites because of 

substantial variation in stopover duration (Stutchbury et al. 2011). Several pairs of fed 

O. o. oenanthe raised second broods (Chapter 3), resulting in delayed post-breeding 

departure. The data on breeding and departure dates of fed birds on Fair Isle indicated, 

however, that birds compensated for late breeding to some extent by departing sooner 

after the final breeding attempt. This would be likely to involve faster moult (Morton 

and Morton 1990), while daily rates of fuel deposition were greater in later-departing 

birds. Departure fuel loads increased with date in fed O. o. oenanthe in the autumn on 
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Fair Isle and in fed O. o. leucorhoa in the winter at PNOD. Direct comparisons between 

departure fuel loads of fed and control wheatears are not possible as the weights of 

control wheatears at departure are not known. The lack of correlation between date and 

body reserves during pre-migratory fuelling periods of control O. o. oenanthe in the 

autumn or control O. o. leucorhoa in the winter suggests, however, that late-departing 

control wheatears did not fuel any more extensively than control wheatears departing 

earlier. This contrast between fed and control wheatears suggests a possible constraint 

on the optimal fuelling of late wheatears under current natural conditions, which could 

be exacerbated if climate change causes late-breeding-season food availability to 

decline below current levels. Temperature manipulations of upland turf support the 

prediction of a shorter peak of soil arthropod emergence under warmed conditions, 

resulting in lower abundance late in the breeding season (Chapter 5). Remote 

monitoring of wheatear presence/absence (e.g. using radio tracking) would enable the 

departure timing of food-supplemented and control wheatears to be compared. It is 

possible that food-supplemented wheatears are able to reach a preferred departure fuel 

load faster, and depart breeding grounds earlier.  

 

In American redstarts (Setophaga ruticilla), spring departure date from Jamaica 

is related to body mass, which in turn is influenced by winter rainfall (Studds and Marra 

2011). The mechanism linking rainfall to body mass appears to be change in food 

availability, as departure date was negatively correlated with arthropod biomass in the 

winter habitat. Fuelling rates of northern waterthrushes (Seiurus noveboracensis) also 

vary with winter habitat quality, associated with delayed departure of birds in lower 

quality habitats (Smith et al. 2010). American redstarts and black-tailed godwits 

(Limosa limosa) that wintered in high quality habitats arrived back at the breeding 
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grounds earlier (Gill et al. 2001, Reudink et al. 2009a), while rainfall in the wintering 

grounds also affects arrival times of several trans-Saharan migratory bird species 

(Gordo et al. 2005). Early arrival is associated with higher reproductive success in 

American redstarts (Marra et al. 1998) and many other species (Lack 1968; Lozano, 

Perreault & Lemon 1996; Perrins 1970), including northern wheatears (Currie et al. 

2000). 

 

Is food availability constraining fuelling in the autumn? 

Survival of migratory birds may be positively related to body reserves carried during 

migration (Newton 2008). Evidence from our Fair Isle study site suggests that changes 

in food availability may have their greatest effect on migratory fuel loads during the 

autumn pre-migratory fuelling period, when food abundance begins to decline under 

natural (i.e. non-supplemented) conditions. Unfortunately, we were unable to monitor 

fuel deposition rates or departure fuel loads of control wheatears, as these measurements 

were obtained via food-supplementation. Fuel deposition rate of fed O. o. oenanthe 

showed a slight increase with date in the autumn on Fair Isle, suggesting that there is 

increasing pressure to fuel at faster rates in birds departing later. We found that birds 

breeding late on Fair Isle leave sooner after fledging than earlier-breeding birds. This is 

consistent with a study of stonechats (Saxicola torquata), in which moult initiation, 

moult speed and start of migratory restlessness were negatively correlated with hatching 

date of juveniles kept in controlled aviary conditions (Helm et al. 2005). We also found 

that departure fuel loads of fed birds were positively correlated with date in the autumn. 

Higher departure fuel loads of late-leaving birds compared to earlier-leaving birds are 

known to occur in other species of migrating passerine (Fransson 1998, Dänhardt and 

Lindström 2001). One possible explanation is that birds migrating late in the autumn 



Chapter 2 Food supply and body mass of a migratory bird 

 

 60 

attempt to build up large fuel reserves, in anticipation of declining food abundance en 

route. Birds leaving earlier might be able to carry smaller loads and stopover more 

frequently and/or for longer periods while food abundance remains relatively high (e.g. 

Delingat et al. 2006). The lack of correlation between body reserves of control 

wheatears and date during the autumn pre-migratory period on Fair Isle suggests that 

food may be limiting the fuelling rates of later birds and hence constraining their ability 

to compensate for later departure with higher departure fuel loads.  

 

Fuel loads and flight distance 

Departure fuel loads of food-supplemented O. o. leucorhoa in the autumn at 

Qeqertarsuaq did not reach the levels of O. o. leucorhoa departing PNOD or stopping 

over on Fair Isle. The autumn migration of O. o. leucorhoa involves crossing the north 

Atlantic from Greenland, to Iceland and north-west Europe (Williamson 1958, 1961), or 

possibly even non-stop to north-west Africa (Thorup et al. 2006). We therefore expected 

O. o. leucorhoa at Qeqertarsuaq to reach departure fuel loads approximately 50–100 % 

above lean body mass, as they did in an earlier study (Ottosson et al. 1990). Contrary to 

this expectation, none of the fed O. o. leucorhoa in this study departed Qeqertarsuaq 

with sufficient body reserves to reach north-west Europe. Six out of 10 did, however, 

accumulate enough reserves to make a crossing to Iceland. The remaining four would 

have required refuelling elsewhere in Greenland to successfully cross the Atlantic. The 

body reserves of control O. o. leucorhoa in this study were much higher in birds 

stopping over on Fair Isle in spring than at other stages of the annual cycle. Food-

supplemented birds attained greater body reserves, but there was still variation between 

different stages of the annual cycle. In broad agreement with our findings, Delingat et 

al. (2008) reported that departure fuel loads of O. o. leucorhoa were significantly higher 

when departing from Fair Isle towards Iceland/Greenland in spring than when departing 
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from Iceland towards north-west Europe in autumn. Endogenous control mechanisms 

that respond to photoperiod and geomagnetism are likely to underpin the variation in 

fuelling extent with time and location that we observed in the fed birds (Berthold 1996). 

Among O. o. leucorhoa, these endogenous controls seem to limit maximum levels of 

fuel deposition so that the large body reserves required for a trans-Atlantic or trans-

Saharan crossing are reached only just before the crossing is to be made. Boström et al. 

(2010), using magnetic fields to simulate displacement of wheatears preparing for 

autumn migration demonstrated that birds increase their body reserves in anticipation of 

crossing a substantial barrier. The energetic costs of flight increase with size of body 

reserves (Pennycuick 1975, Lindström and Alerstam 1992), so it might therefore be 

optimal for wheatears to carry moderate fuel reserves and make more frequent stops, 

even when food availability is high, only building up large body reserves when 

substantial barriers are to be crossed (Delingat et al. 2006, 2008). Carrying large body 

reserves may also increase predation risk due to reduced aerial agility (Witter 1994, 

Lind et al. 1999), although wheatears will sometimes hide or remain motionless to avoid 

predators rather than fleeing (Schmaljohann and Dierschke 2005). 

 

Conclusions 

Our results indicate that changes in food availability affect body mass regulation of a 

long-distance migratory songbird to different extents across the annual cycle. Migratory 

fuelling, in both the spring and the autumn, were the stages of the annual cycle in which 

food manipulation in this study had the greatest measurable effect. Climate change 

therefore has the potential to affect migratory fuelling of northern wheatears via the 

effects of altered temperature and rainfall on arthropod abundance and phenology. 

Migration has been identified as the stage of the annual cycle of migrant songbirds in 
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which the great majority of mortality occurs (Sillett and Holmes 2002). The ability to 

accumulate enough fuel to reach subsequent destinations on a migratory route and to 

avoid starvation in unfavourable weather conditions en route are both likely to affect 

survival of migrating birds, and to depend to a large extent on food availability. 

Furthermore, fuel loads of migrating birds affect departure decisions, as well as 

determining the frequency at which birds need to stop to refuel, thereby affecting the 

speed of migration. Migration timing and speed can affect acquisition of favourable 

territories and synchronisation of breeding attempts with food availability. The 

consequences of changes to migratory fuelling induced by climatic changes in food 

availability may therefore have significant effects on fitness and survival of migratory 

songbirds. Our results also indicate that birds facing contrasting migratory journeys 

respond differently to changes in food availability. Migration strategy therefore needs to 

be taken into account when extrapolating results on climate change impacts between 

species and subspecies. Predictions of climate change impacts on migratory birds will 

be significantly improved by data on the impacts of altered food availability on 

migration survival and migration speed. 
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SUPPORTING INFORMATION (FIG. S2.1, TABLES S1–S3) 

 

 

Fig. S1. Subset of lean wheatears (n = 65) selected from birds with fat and muscle scores < 2, and falling 

within the 50% quantile. We used the regression of body mass on wing length indicated by the line of 

best fit to calculate lean body mass of all individuals in our analyses (lean body mass = 0.182 x wing 

length (mm) + 4.445). 
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Table S2.1. Models fit to daily fuel deposition rates of O. o. oenanthe and O. o. leucorhoa across the 

annual cycle. AICc is the corrected Akaike’s Information Criterion, ΔAICci is the difference in AICc 

between model i and the best model and wAICci is the Akaike weight. Plausible models are considered to 

be those with ΔAICci ≤ 2. Interactions are indicated by x and include all lower order fixed term effects.  

 
Model 

ID 

Dependent 

variable 

Fixed 

effects 

Random 

effects 

df ΔAICci wAICci 

15 Daily FDR stage, subsp, day SD (subsp) 7 0 1.0 

16  stage, subsp SD (subsp) 5 16.6 <0.001 

17  subsp x day, stage SD (subsp) 7 24.8 <0.001 

18  stage x day, subsp SD (subsp) 8 28.3 <0.001 

19  stage, day SD (subsp) 5 32.4 <0.001 

20  subsp SD (subsp) 3 39.4 <0.001 

21  stage SD (subsp) 4 45.2 <0.001 

22  none SD (subsp) 2 51.0 <0.001 

Daily FDR: Fuel deposition rate (% of body mass above lean body mass gained or lost per 24 h). 

Fixed effects. stage: location-specific stage of migration (start of spring migration at PNOD, start of 

autumn migration at Qeqertarsuaq, autumn migration at Fair Isle (start and stopover)), day: stage-specific 

day, none: intercept-only model. 

Random effects. SD (subsp): Standard deviation of effect of subspecies on daily FDR.  
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Table S2.2. Models fit to departure fuel loads (DFL) of food-supplemented O. o. oenanthe and O. o. 

leucorhoa across the annual cycle. AICc is the corrected Akaike’s Information Criterion, ΔAICci is the 

difference in AICc between model i and the best model and wAICci is the Akaike weight. Plausible 

models are considered to be those with ΔAICci ≤ 2. Interactions are indicated by x and include all lower 

order fixed term effects.  

 
Model 

ID 

Dependent 

variable 

Fixed 

effects 

df ΔAICci wAICci 

23 DFL  subsp x stage, day 6 0 0.456 

24  subsp x stage, stage x day 7 2.0 0.165 

25  subsp x stage, subsp x day 7 2.4 0.140 

26  subsp, stage x day 6 4.4 0.049 

27  subsp x stage, subsp x day, stage x day 8 4.6 0.046 

28  subsp, stage, day 5 4.6 0.046 

29  stage x day 5 4.7 0.043 

30  subsp x day, stage x day 7 5.9 0.024 

31  subsp x day, stage 6 7 0.014 

32  stage, day 4 7.1 0.013 

33  subsp, day 4 10.3 0.003 

34  subsp x day 5 12.7 <0.001 

35  day 3 17.3 <0.001 

36  subsp x stage 5 26.9 <0.001 

37  none 2 34.7 <0.001 

38  stage 3 35.6 <0.001 

39  subsp 3 35.7 <0.001 

40  subsp, stage 4 37.3 <0.001 

DFL: Last recorded fuel load (% of body mass above lean body mass) before departure. 

Fixed effects. subsp: O. o. oenanthe vs. O. o. leucorhoa, stage: spring departure from winter grounds vs. 

autumn departure from breeding grounds, day: stage-specific day, where 1 = day that first bird departed 

during that stage. 
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Table S2.3. Models fit to departure dates of food-supplemented O. o. oenanthe at the end of the breeding 

season on Fair Isle. AICc is the corrected Akaike’s Information Criterion, ΔAICci is the difference in 

AICc between model i and the best model and wAICci is the Akaike weight. Plausible models are 

considered to be those with ΔAICci ≤ 2. Interactions are indicated by x and include all lower order fixed 

term effects.  

Model 

ID 

Dependent 

variable 

Fixed 

effects 

df ΔAICci wAICci 

41 departure date age, HD 4 0 0.751 

42  age x HD 5 2.4 0.230 

43  HD 3 8.5 0.011 

44  age 3 9 0.008 

45  none 2 14.8 < 0.001 

Departure date: last date recorded attending feeding station. 

Fixed effects. age: adult or juvenile; HD: hatch date (juveniles) or hatch date of last brood in that year 

(adults); none: intercept-only model.
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ABSTRACT 

Climate variation is expected to influence the breeding productivity of insectivorous 

birds by affecting the abundance and phenology of their food supply. Food availability 

may constrain the reproductive output of birds by limiting the number of offspring 

fledged in each nesting attempt, or by limiting the number of nesting attempts. To 

investigate phenotypic flexibility in breeding parameters induced by changes in food 

availability, we conducted experimental food supplementation (with mealworms, 

Tenebrio molitor) over 3 years to test the hypothesis that increased food availability 

would increase the breeding productivity of northern wheatears (Oenanthe oenanthe); 

an insectivorous long-distance migrant bird. The number of offspring fledged over the 

season was higher for food-supplemented birds than for control birds. This was due to 

an increase in the number of breeding attempts for supplemented birds that started 

breeding early in the season, rather than an increase in clutch size, hatching success or 

fledging rates per nest. This increase was greater for males than females; males could 

attempt to rear simultaneous broods with multiple females as well as attempting second 

broods, whereas females only increased their breeding effort via second broods. Food 

supplementation advanced hatching date, which increased the time available to attempt 

a second brood. Supplemented birds also produced bigger nestlings in one out of two 

years. Multiple brooding is currently rare in the study population, but this experiment 

demonstrates the potential for climate-driven changes in food availability to affect 

wheatear breeding productivity, primarily via the birds’ phenotypic flexibility in the 

number of breeding attempts. 
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INTRODUCTION  

Climate change may influence animal population size through its effect on food 

availability. For example, climate-driven variation in temperature and rainfall is likely 

to have strong effects on populations of migrant birds by changing the abundance and 

phenology of their invertebrate food supply (Bale et al. 2002, Dell et al. 2005, Both et 

al. 2006, Pearce-Higgins et al. 2010). This, in turn, may affect the ability of 

insectivorous birds to obtain sufficient energy reserves for reproduction or to provide 

adequate food for their young (Both et al. 2006). Food availability may therefore 

constrain the reproductive output of migrant birds by limiting the number or quality of 

offspring fledged in individual nesting attempts, or by limiting the number of nesting 

attempts during each breeding season (Nagy and Holmes 2005, Illera and Díaz 2006).  

 

Long-distance migratory birds might be expected to be among the taxa most 

severely affected by climate change, because the strength and direction of modifications 

to climatic variables may vary between the different locations utilised across the annual 

cycle, and because of mismatches between the various cues controlling the timing of 

migration. Thus, migratory birds are exposed to the sum of all climate-related impacts at 

each location. Indeed, numerous studies have described associations between climate 

variables and aspects of the annual cycles of migratory birds, including: migration 

phenology (Gordo and Sanz 2006; Studds and Marra 2011) and speed of migration 

(Ahola et al. 2004), breeding phenology (Torti and Dunn 2005, Whittingham et al. 

2007, Musters et al. 2010), clutch size (Laaksonen et al. 2006, Wilson and Martin 

2010), egg size (Jàrvinen 1994), offspring survival (McMahon and Burton 2005), 

overall nesting success (Rajchard et al. 2006), number of offspring (Winkel and Hudde 
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1997), territory occupancy (Beale et al. 2006) and winter body condition (Studds and 

Marra 2007).  

 

Despite these numerous documented instances of correlations between climate 

variables and the biology of species, populations and individuals, there remain major 

gaps in our knowledge of the causal mechanisms that underlie such effects (Møller et al. 

2004, 2010). To understand and evaluate the mechanisms linking climate change and 

ecological change, an experimental approach is advocated as it avoids the problem of 

confounding factors inherent to many correlational studies (Hughes 2000, Møller et al. 

2004, Helmuth et al. 2005). Climate change has often been suggested to affect 

migratory birds via effects on their food supply (White 2008, Both et al. 2009). Few 

studies have addressed experimentally the impacts of changes in food availability on 

breeding productivity of long-distance migrant songbirds, many of which are declining 

(Hagan and Johnston 1992, Buchanan et al. 2006, Heldbjerg and Fox 2008, Thaxter et 

al. 2010). The few studies that have investigated the effect of changing food availability 

across entire breeding seasons have focused on Nearctic-Neotropical migrant 

passerines. In one such study, black-throated blue warblers (Dendroica caerulescens) 

had more breeding attempts per season when food availability was experimentally 

increased (Nagy and Holmes 2005). Food reductions, however, had little impact on 

reproductive output of red-eyed vireos (Vireo olivaceus) (Marshall et al. 2002). 

 

In temperate and arctic climates, invertebrate abundance is strongly seasonal and 

birds must therefore time their breeding so that the periods of greatest energetic demand 

(e.g. egg laying and chick rearing) coincide with this peak in food availability (Martin 

1987). Climate change affects phenology of many invertebrates and it appears that 
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declines of many insectivorous migrant birds breeding in Europe may be due to an 

inability to adjust their migration and / or breeding phenology to match that of their 

invertebrate prey (Visser et al. 1998, Both et al. 2006, Møller et al. 2008). 

  

In the present study, we experimentally manipulated food availability 

(simulating a key biological effect of predicted changes in temperature and rainfall) to 

evaluate the potential role of climate-driven changes in food supply on the breeding 

productivity of a model species of long-distance migrant. Our central aim was to test 

whether reproductive success is limited by food availability, and if so, which aspects of 

reproductive performance and timing are most sensitive to changes in food availability. 

Our experimental design was not intended to mirror directly the changes in food 

availability expected under any particular climate change scenario. Rather, we 

used simplistic food-addition across the breeding season, to explore the amount of (and 

limits to) phenotypic plasticity in relation to increases in food supply. 

 

We chose the northern wheatear (Oenanthe oenanthe) as the study species for its 

extreme long-distance migrations, its tractability for field experiments, and because a 

series of detailed recent studies have paved the way for the present work (Pärt 2001a, 

2001b, Arlt et al. 2008). Northern wheatears breed in north temperate and arctic regions, 

and in common with most other long-distance migrant passerine birds, are mainly 

insectivorous (Cramp 1988, Conder 1989, Panov 2005). Their reproductive success is 

expected to depend largely on the coincidence of breeding with the peak emergences of 

their highly seasonal invertebrate prey, as has been shown in other species (Pearce-

Higgins and Yalden 2004). The mean annual air temperature within the breeding 

distribution of the northern wheatear is predicted to increase by 1–4ºC by 2100, with the 
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expected amount of warming depending on location (e.g. greater warming is predicted 

at higher latitudes) and on the greenhouse gas emissions scenario considered (IPCC 

2007, Murphy et al. 2009). Experimental warming in line with these predictions within 

the current range of the northern wheatear (northern UK; Miles et al. 1997) and its 

predicted future range (the Arctic island of Svalbard; Strathdee et al. 1993) range, led to 

increases in insect abundance. Such temperature rises may increase insects’ 

developmental rates directly (through physiological effects) or indirectly (by 

augmenting growth of the plants on which they feed), which may in turn increase the 

number of generations per year of multivoltine insects (Bale et al. 2002, Altermatt 

2010).   

 

Declines in northern wheatear populations have occurred in western and central 

Europe, perhaps due to agricultural intensification of former habitat (Kneis 1982, 

Clement 1997, Burfield and Van Bommel 2004). The northern wheatear’s breeding 

range has, however, expanded relatively recently into eastern Canada, possibly as a 

result of increases in summer temperatures. Similar temperature rises have occurred 

across the tundra of northern Scandinavia and arctic Russia (Clement 1997).  

 

For all of these reasons, we anticipated that northern wheatears may be highly 

sensitive to climate-driven changes in food availability, and we therefore aimed to 

determine the effect of food availability on this species breeding productivity. To 

achieve this, we used food-supplementation to simulate experimentally the effects of 

climate-driven changes in invertebrate abundance. We tested the two-part hypothesis 

that (1) food supplemented northern wheatears would fledge more young per breeding 

season than unsupplemented control birds and that higher seasonal fledging rates of 
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supplemented birds would be underpinned by (2) earlier clutch initiation, larger clutch 

sizes, larger eggs, greater hatching success, greater chick size, more fledglings per 

brood and higher rates of multiple brooding.  

 

MATERIALS AND METHODS 

Study location and species 

The study was conducted on Fair Isle (59°32'N, 1°39'W), an island of ca. 1,000 ha, 

lying midway between mainland Shetland and Orkney, north-east of the Scottish 

mainland, UK (Fig. 3.1). The southern half of the island consisted mainly of improved 

grassland, grazed by sheep. The northern half of the island was also grazed by sheep 

and contained a largely unimproved mixture of heather moorland (dominated by 

Calluna vulgaris) and Festuca, Agrostis, Nardus and maritime grassland communities 

(Nolan et al. 1994). Breeding northern wheatears were monitored in the north of the 

island in 2008 and 2010; and in both the north and south of the island in 2009 (Fig. 3.1).  

 

Breeding northern wheatears arrive back on Fair Isle from their sub-Saharan African 

wintering grounds between the beginning of April and mid-May. Nests are located in 

holes in the ground (e.g. old burrows of rabbits (Oryctolagus cuniculus) or other 

rodents), under rocks or in dry stone walls. Egg-laying of first clutches on Fair Isle 

begins in early May and continues into June. Clutch size of northern wheatears ranges 

from 4 to 8 eggs (Moreno 1989), with a trend towards larger clutches at higher latitudes 

(Panov 2005). Mean clutch size of northern wheatears breeding at similar latitudes to 

Fair Isle in nearby southern Scandinavia is typically 6.0-6.4 eggs (Cramp 1988, Moreno 

1989). Incubation is performed almost exclusively by the female, and lasts for between 

10 and 18 days from the day on which the last egg is laid until the eggs hatch (Moreno  
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Fig. 3.1. Location of Fair Isle in relation to Great Britain and maps of Fair Isle showing the locations of 

nests within fed (supplemented with mealworms), and control (no supplemental food) territories in 2008, 

2009 and 2010. 

 

1989). Chicks fledge after approximately 15 days. The parents continue to feed their 

fledged offspring until they become independent, about two weeks after fledging.  
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Adult northern wheatears were captured in their breeding territories with spring 

traps (www.moudry.cz, model SB30) baited with mealworms. Plumage features (after 

Svensson 1992) were used to sex and age captured birds as fledged in the previous year 

(young), before the previous year (old) or fledged before the current year (unknown if 

young or old). All breeding males, but only a minority of breeding females, could be 

aged precisely as young or old. All captured birds were measured (maximum wing 

chord to 1 mm), weighed on an electronic balance (to 0.1 g), and fitted with a numbered 

metal ring and a unique combination of plastic colour rings to enable individual 

identification in the field. Nestlings were ringed when at least 5 days old, usually at 7 

days old (or older if they were discovered later). 

 

Feeding experiment 

Prey availability for breeding northern wheatears was experimentally increased by 

providing mealworms (Tenebrio molitor larvae) in plastic bowls placed directly on the 

ground, next to rocks which wheatears frequently made use of as look-out posts (Conder 

1989).  

 

During 2008-2010, feeders were put out from the time of territory establishment 

in late April/early May, and filled with at least 30 g of mealworms (mean ± SD = 37.8 ± 

2.7 g, n = 20 mealworm samples). These feeders were refilled on least five of every 

seven days, until the departure on autumn migration of all of the breeding birds and 

their offspring that were using the feeders (northern wheatears depart Fair Isle during 

August and early September). Feeders with higher depletion rates were filled with 

greater numbers of mealworms. Sample sizes of supplementary fed (treatment) and 
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unfed (control) wheatear pairs were: 2008 – 15 fed, 14 control; 2009 – 23 fed, 22 

control; 2010 – 27 fed, 27 control. 

 

The study areas (Fig. 3.1) were chosen for their relatively high densities of 

breeding northern wheatears. As there are age-related differences in arrival date and 

breeding success of northern wheatears (Currie et al. 2000, Arlt and Pärt 2007), a 

standard route through the study site was walked almost daily from mid-April until the 

end of May, and newly established breeding pairs were selected alternately as fed and 

control (i.e. unfed) pairs. A pair was selected if behavioural signs of pair establishment 

were observed (e.g. a male and female chasing away other wheatears but not each other, 

investigating potential nest sites, Conder 1989). In this way, fed and control pairs were 

stratified both spatially and with respect to arrival date. This procedure also meant that 

supplementary feeding only began after territory establishment, thus avoiding the 

potentially confounding situation of the highest quality individuals establishing 

territories around feeders, to the exclusion of lower quality individuals.  

 

Each food-supplemented territory was provided with one feeder, located as near 

to the centre of the territory as possible, to minimise the possibility of wheatears from 

neighbouring control territories raiding the feeders. Direct observation and small video 

cameras (Sony Handycam, model DCR-SR32) were used to confirm the identities of the 

wheatears using the feeders. At least three recording sessions, of at least 1 hour each, 

were viewed per feeder, but viewing sessions were extended to 4 hours if neither or only 

one of a pair had attended the feeder during the initial period. During this video 

monitoring, none of the adult wheatears from control pairs were ever recorded taking 

mealworms from any of the feeders in any year. Raids on feeders by wheatears from 



Chapter 3 Food supply and breeding of a migratory bird 

 

 83 

outside the sample population were occasionally recorded, but these were almost always 

after breeding had finished. Wheatears from supplementary fed pairs were sometimes 

recorded taking mealworms from other feeders outside their own territory.  

 

To prevent European starlings (Sturnus vulgaris) from using the feeders, metal 

wire mesh cages were placed over the feeding bowls. These cages permitted wheatears 

to enter through a small hole cut at the bottom of the wire mesh (lined with strong 

insulating tape to prevent injury) or via a hinged weighted walkway that swung shut 

when starlings (approximately three to four times heavier than wheatears) attempted to 

enter, swinging back open again when the starling stepped off the platform. 

Approximately 1 month was allowed between positioning feeders and deploying cages 

(about the time that starling raids on feeders intensified as they began feeding chicks) to 

maximise the likelihood of wheatears continuing to use them. In each year, however, 

some wheatear pairs (5 in 2008, 6 in 2009 and 2 in 2010) that had at first been attending 

feeders stopped using them once the cages were placed over them. Such pairs were 

excluded from some analyses (see Data Analysis section below). 

 

Reproductive parameters 

Nests were found as early as possible by observing the parents going to and from nest 

holes (see Fig. 3.1 for locations). On finding each nest, its status was recorded as (i) 

being built, (ii) containing eggs or (iii) containing chicks. Nest contents were 

subsequently checked every other day. Any dead chicks or un-hatched eggs left in the 

nest at this stage were counted. The full set of reproductive parameters that were 

measured from egg laying to fledging are described in Table 3.1. 
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Table 3.1. Reproductive parameters recorded for breeding wheatears in the present study. 

Parameter Description 

Identity of 

parents 

The social parentage of each brood was observed by recording the 

colour ring combinations of the birds involved in incubation and 

provisioning. 

 

Laying 

date 

The day on which the first egg of a clutch was laid (Day 1 = 1
st
 May). 

Only estimated for clutches of known size. Estimated by back-dating 

from date last egg laid or hatching date minus average incubation 

duration for clutches in this study (12.46 days), assuming one egg was 

laid per day (Conder, 1989).   

 

Clutch size The total number of eggs in the completed clutch. Nest contents were 

not directly visible as the nests were always built in burrows or in rock 

piles, and so the eggs were counted by touch. These counts proved to 

be 100% accurate when eggs were taken out of the nest for measuring 

in 2010 (the only year in which egg size measurements were taken, see 

below). Clutches were considered to be complete once no new eggs 

were found on successive visits and the eggs were warm (and 

therefore being incubated). 

 

Egg 

volume 

In 2010, maximum length and maximum width of the eggs of all 

accessible clutches were measured (to 0.1 mm) using plastic callipers. 

Egg volume was then calculated following Hoyt (1979).  

 

Incubation 

duration 

The number of days between the last egg being laid (which is the first 

day of regular incubation of the clutch) and the first egg hatching. 

 

Hatching 

date 

The day that the first egg or eggs hatched. If all the chicks had already 

hatched when the nest was found, hatching date was estimated based on 

development of the chicks, using data from chicks of known age in the 

study population. 
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Table 3.1, continued 

Hatching 

success 

The number of chicks that hatched, calculated from the clutch size, 

minus the number of unhatched eggs found in the nest. 

 

Chick size Chick maximum wing chord (to 1 mm) and body mass (to 0.1 g) were 

measured at between 5 and 8 days old (usually at 7 days) in 2009 and 

2010, at the same time as being fitted with a uniquely numbered metal 

ring. 

Fledgling 

number 

The number of chicks surviving to leave the nest. Fledglings were either 

counted or calculated by subtracting the number of dead chicks found 

in the nest cavity after fledging (once fledglings were observed and/or 

parents were giving intense warning calls from 15 days after the 

hatching date) from the number of live chicks that were present in the 

nest at 5-8 days old (Arlt et al., 2008). Although this method does not 

account for predation of nestlings between ringing and fledging, 

partial nest predation of wheatears is very rare (less than 1% of 

successful nests in a detailed study in Sweden (Arlt et al., 2008)), and 

so should not have a major effect on the results. 

 

Nest 

survival 

After locating active nests, they were checked every 2 or 3 days and 

recorded as active, failed (no chicks fledged) or successful (if at least 

one chick was fledged). Successful breeding attempts were defined as 

nests where fledglings were observed and/or parents gave intense 

warning calls from 15 days after the hatching date (Arlt et al., 2008). 

 

Breeding 

attempts 

For pairs with successful first broods, the presence or absence of a 

second breeding attempt was recorded. A second breeding attempt was 

recorded if at least 1 egg was laid. A separate analysis was carried out, 

individual males and individual females, since additional broods might 

be attempted by members of the original pair subsequently pairing 

with other partners for a second breeding attempt. 
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Data analysis 

The analysis focuses on the effects of food supplementation on each of the parameters 

of reproductive success outlined above and summarised in Table 3.1. In addition to the 

potential effect of food supplementation, year, adult age, adult body size and other 

individual characteristics may all contribute to explaining reproductive success. 

Furthermore, aspects of breeding parameters early on in a breeding attempt (e.g. 

breeding date, clutch size) may also influence later measures of breeding success (e.g. 

chick size, number of juveniles). To investigate these effects, we fitted a series of 

models using the statistical software R (version 2.10.1, R Development Core Team 

2009). Where appropriate (see below), we used general linear models, linear mixed 

models (fitted by maximum likelihood) and generalised linear mixed models (fitted by 

the Laplace approximation). Mixed models were fitted using the lme4 package (Bates 

and Maechler 2009) within R while other models were fitted using the basic R 

installation. Datasets were reduced so that there were no missing data for any of the 

independent variables in the full models, to enable direct comparisons between models. 

Intercept only models (null models) were included within each set of candidate models. 

 

Some males were present in multiple years, or had multiple broods within a 

year, so male identity (ID) was included where appropriate as a random effect in mixed 

models. Female ID was used as the random effect instead of male ID in models of 

reproductive parameters in which female characteristics are likely to be more important 

than male characteristics (e.g. models of egg volume, hatching success). Male and 

female ID were never included together, as female ID was entirely nested within male 

ID. Unringed breeding individuals were included within some analyses, being given 

unique IDs based on their breeding territories. The number of unringed individuals was 
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relatively high in 2008 (10 males and 7 females out of 22 pairs), becoming less 

numerous in 2009 and 2010 (5 males and 7 females out of 40 pairs in 2009; 5 males and 

5 females out of 48 pairs in 2010). Thus there may have been some pseudoreplication of 

unringed breeders between years, although only about 50 % of unringed adult birds are 

expected to return the following year (Chapter 4), suggesting that such 

pseudoreplication is not likely to have a great impact on the model outputs. Fed pairs 

that stopped using feeders when cages were deployed were included in analyses of 

clutch size and egg volume, as they were still being fed during those stages of the 

breeding cycle. For all other analyses, these pairs were excluded from the dataset. 

 

The performance of competing candidate models was compared using Akaike’s 

Information Criterion, corrected for small sample size (AICc; Burnham and Anderson 

2002). Smaller values of AICc indicate better statistical fits. Two statistics were 

obtained for each model: ΔAICi (the difference in AICc between model i and the best 

model) and wAICi (Akaike weight), which indicates the likelihood that each model is 

the best approximation relative to all the other models in the model set. The models 

were ranked by ΔAICi and the most plausible models were defined as those with ΔAICi 

≤ 2. 

 

Details of specific analyses 

Fledging success 

(a) Chicks fledged per nesting attempt 

Only first clutches were considered in the analyses of the number of chicks fledged per 

nesting attempt. Clutches that failed due to predation or disturbance by rabbits and re-

laid clutches were excluded. Only the earliest clutch of each polygynous male was 
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included, as the females laying the later of these clutches may have previously failed a 

nesting attempt and moved territory. Generalised linear mixed models (Poisson error 

family, log link function) were used, with male ID as the random effect. Fixed effects 

were: treatment, hatching date, year and the interactions treatment x hatching date and 

treatment x year. 

 

(b) Fledging success per breeding season 

The total number of chicks fledged across the whole breeding season was obtained for 

each parent; male and female parents were analysed separately. Individuals with failed 

broods were included in the analysis because feeding treatment may influence decisions 

about re-laying after failed nesting attempts. The analysis was carried out for individual 

parents instead of pairs, as new pairs could form after failed nesting attempts and males 

could have simultaneous broods with multiple females. Generalised linear mixed 

models (Poisson error family, log link function) were used, with female ID as the 

random effect for the female analysis and with male ID as the random effect for the 

male analysis. Fixed effects were: treatment, hatching date of first brood (earliest first 

brood for males with simultaneous broods) and year. For both male and female 

analyses, treatment x hatching date and treatment x year interactions were included in 

the full models.  

 

(c) Fledging success per egg 

Only first broods were considered in the analyses of fledging success per egg. 

Generalised linear mixed models (binomial error family because eggs either fledged (1) 

or not (0)) were fitted, with male ID as the random effect. Treatment, year, hatching 



Chapter 3 Food supply and breeding of a migratory bird 

 

 89 

date and treatment x hatching date were included as fixed effects. Models including 

treatment x year are not considered as the routine failed to converge.  

 

Hatching dates 

We used hatching dates as our main measure of the timing of breeding, as more data 

were available for hatching dates than for laying dates. We restricted the analysis of 

hatching dates to data from 2009 and 2010, as in 2008 there were insufficient data on 

early broods. Only the earliest clutches for each male were included in these analyses 

(second clutches, re-laid first clutches and clutches with additional females with later 

initiation dates were excluded). Linear mixed models fitted by maximum likelihood 

were used to analyse differences in hatching date; the full models included treatment, 

male age, year, treatment x year and treatment x male age as fixed factors, as well as 

male ID as a random effect. 

 

Clutch size 

There was no pseudoreplication arising from the same individual females appearing in 

the dataset more than once; thus we used general linear models (Poisson error family, 

log link function). The full model included treatment, year, female wing length, laying 

date and all first order interactions involving treatment. 

 

Egg volume 

We only measured egg volume in 2010. A linear mixed model was used, with female ID 

as a random effect and with treatment and female wing length as fixed effects.  
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Incubation duration 

We only used data from 2009 and 2010 to analyse variation in incubation duration, as 

insufficient data with precise laying and hatching dates were available from 2008. The 

analysis was of first broods only and there was no pseudoreplication from breeding 

females appearing more than once. Thus, we used linear models; the full model 

included treatment, clutch size, female wing length (as an indicator of female size), 

laying date and all first order interaction terms. 

 

Hatching success 

We restricted the analysis of hatching success to first broods (i.e. excluding re-laid 

clutches and second broods). Clutches with total hatching failure (all predated nests, 

nests disturbed by rabbits and infertile clutches) were included in these analyses, as food 

availability may affect female investment in egg production and/or affect the time 

available to parents for nest defence. Generalised linear mixed models (binomial error 

family with a logit link function) were used to investigate the effect of the food 

supplementation treatment on the probability of each egg hatching within each nest. The 

starting model included treatment, laying date and the treatment x laying date 

interaction as fixed effects and female ID as a random effect. 

 

Chick size 

We only measured chick maximum wing chord in 2009 and 2010. Only first broods 

were used in the analysis and 382 chicks from first broods were measured. Only 7- and 

8-day-old chicks (n = 266 and 70 chicks, respectively) were included in the analyses 

because for other ages there was no contrast in feeding treatment in the dataset (they 

were either all fed or all control). Linear mixed models were used, with male ID as the 
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random effect. Fixed effects in the full model were treatment, number of chicks in nest 

at time of measurement and year, plus the interactions of treatment x number of chicks 

and treatment x year. 

 

Nest survival 

We estimated daily nest survival rates using the Mayfield technique (Mayfield 1975). 

For each nest visited more than once, the number of days that the nest was active and 

the number of days failed (either 1 if the nest failed or 0 if it was active) were recorded. 

Generalised linear mixed models (binomial error family, logit link function) were then 

fitted, with male ID as the random effect. Treatment, date found, year and the treatment 

x year interaction were included as fixed effects in the full model. 

Breeding attempts 

The low frequency of multiple brooding did not allow us to fit models with individual 

ID as random effects. To avoid pseudoreplication, one data point was randomly selected 

per individual. General linear models (binomial error family because individuals either 

had multiple broods in a year (1) or did not (0), with logit link function) were then fitted 

to the data. Separate analyses were carried out for breeding males and breeding females. 

For males, treatment, hatching date, age and the interactions of treatment x hatching 

date and treatment x age were included in the full model. For females, the full model 

included treatment, hatching date and the treatment x hatching date interaction. Female 

age was not included in the models as less than half of the females could be aged as 

young or old.  
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RESULTS 

 

We found 143 northern wheatear nests during 2008–2010 (Table S3.1, Supplementary 

Information). 128 of these were first clutches, three were re-lays after first clutch 

failure, eight were simultaneous clutches (additional clutches fathered by a male 

concurrently provisioning another nest) and four were second clutches (a clutch 

following a successful first clutch). The most direct measure of reproductive success is 

the number of fledglings produced, and so these results are described first. The other 

reproductive parameters are then examined to investigate in more detail the mechanisms 

by which the experimental increase in food availability may influence reproductive 

output.  

 

Fledging success 

Chicks fledged per breeding season 

More young were fledged during the breeding season by fed males (mean ± SE = 6.32 ± 

0.48 fledglings male
-1

) than by control males (4.76 ± 0.27 fledglings male
-1

). For 

breeding males, the only plausible model included the treatment x hatching date 

interaction and year. The Akaike weight of 0.746 indicated that this model was a three 

times better approximation than all other considered models combined (Table 3.2, 

Model 1). This showed that fed males tended to father more fledglings over the course 

of a season the earlier that they started breeding in a given season, while for control 

males, no such relationship existed (Fig. 3.2). There was also annual variation in the 

number of juveniles fledged per season per male. The number of fledglings per male 

was higher in 2010 than in 2009 and higher in 2009 than in 2008 (Table 3.3).   
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Table 3.2. Models fit to different reproductive parameters. AICc is the corrected Akaike’s Information 

Criterion, ΔAICci is the difference in AICc between model i and the best model and wAICci is the 

Akaike weight. The plausible models (ΔAICci ≤ 2) are presented here; see Tables S2 – S14 for the full 

sets of candidate models. Interactions are indicated by x and include all lower order terms as well (e.g. trt 

x age represents trt, age, trt x age).  

 
Model 

ID 

Reproductive 

parameter 

Fixed 

effects 

Random 

effects 

df ΔAICci wAICci 

 chicks fledged male
-1

 breeding season
-1 

    

1  trt x HD, yr male ID 7 0 0.746 

 chicks fledged female
-1

 breeding season
-1 

    

2  yr female ID 4 0 0.242 

3  none female ID 2 0.4 0.198 

4  trt female ID 3 0.5 0.190 

5  trt, yr female ID 5 1.2 0.132 

 chicks fledged nesting attempt
-1 

    

6  yr male ID 4 0 0.333 

7  none male ID 2 1.1 0.188 

 egg survival to fledging     

8  none male ID 2 0 0.351 

9  HD male ID 3 0.6 0.256 

 clutch size      

10  none - 1 0 0.399 

11  yr - 2 1.6 0.176 

12  LD - 2 1.9 0.152 

 egg volume      

13  none  female ID 3 0 0.4968 

14  FWing  female ID 4 2 0.1856 

15 
 trt female ID 4 

2 0.1833 

 incubation duration     

16  clutch - 3 0 0.350 

17  none - 2 0.4 0.288 

 hatching date      

18  trt, yr male ID 5 0 0.219 

19  trt, age, yr male ID 6 0.2 0.194 

20  trt x yr, age male ID 7 1 0.134 

21  trt x yr male ID 6 1.2 0.122 

22  yr male ID 4 1.2 0.121 

23  age, yr male ID 5 1.5 0.102 
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Table 3.2, continued      

 hatching success      

24  LD female ID 3 0 0.404 

25  none female ID 2 0.9 0.258 

 chick maximum wing chord     

26  

trt x chicks, trt x yr, trt x 

date
a
, age male ID 11 0 0.244 

27  

trt x chicks, trt x yr, date
a
, 

age male ID 10 0.2 0.223 

28  trt x chicks, trt x yr, age male ID 9 0.4 0.196 

29  trt x yr, age male ID 7 2.0 0.090 

 nest survival      

30  none male ID 2 0 0.315 

31  trt male ID 3 0.7 0.225 

32  date
b 

male ID 3 1.6 0.140 

33  trt, date
b
 male ID 4 1.7 0.133 

 breeding attempts per male per breeding season     

34  trt, HD - 3 0 0.208 

35  trt, age, HD - 4 0.2 0.184 

36  trt, age - 3 0.8 0.139 

37  trt - 2 1.8 0.085 

38  trt x HD - 4 1.8 0.084 

Fixed effects. trt: treatment (fed or control), age: male age (young (yearling) or old (2+)), yr: year, LD: 

lay date, FWing: female maximum wing chord, clutch: clutch size, chicks: number of 7- and 8-day-old 

nestlings, date
a
: date of measurement (1 = 1

st
 May), date

b
: date found, HD: hatching date, none: intercept-

only model.  
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Table 3.3. Model-averaged parameter estimates (estimates of fixed effects included in models with 

ΔAICci ≤ 2 with contributions to average weighted by wAICci of model), unconditional standard errors 

and 95% confidence intervals (Burnham and Anderson 2002). Interactions are indicated by x. 

 
Reproductive  

parameter 

Fixed  

effect 

Estimate SE 95% CI 

  Lower Upper 

chicks fledged per nesting attempt     

 yr2009
a 

0.229 0.170 -0.103 0.562 

 yr2010
a 

0.350 0.160 0.037 0.663 

egg survival to fledging      

 HD -0.045 0.036 -0.116 0.025 

chicks fledged per male per breeding season     

 yr2009
a
 0.102 0.163 -0.217 0.421 

 yr2010
a
 0.358 0.154 0.057 0.659 

 trt x HD -0.045 0.015 -0.077 -0.014 

chicks fledged per female per breeding season     

 yr2009
a
 0.124 0.429 -0.717 0.965 

 yr2010
a
 0.268 0.417 -0.551 1.086 

 trt 0.114 0.316 -0.505 0.734 

clutch size      

 yr2010 0.088 0.123 -0.153 0.328 

 LD -0.005 0.011 -0.026 0.016 

egg volume      

 FWing -5.834 18.623 -42.335 30.667 

 trt -18.450 68.110 -151.946 115.046 

incubation duration      

 clutch -0.428 0.247 -0.912 0.056 

hatching date      

 trt -2.314 1.624 -5.498 0.870 

 age
a
 1.992 1.739 -1.416 5.401 

 yr2010
b
 4.210 1.598 1.077 7.343 

 trt x yr2010
b
  -3.213 2.967 -9.028 2.602 

hatching success      

 LD -0.138 0.083 -0.300 0.024 

chick maximum wing chord      

 trt x chicks 2.061 1.327 -0.540 4.662 

 trt x yr2010
b
 -10.121 3.315 -16.619 -3.623 

 trt x date
a
 0.325 0.211 -0.089 0.738 

 age
b 

5.439 1.498 2.503 8.374 

 date
a
 0.154 0.010 -0.041 0.349 
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Table 3.3, continued     

nest survival      

 trt 2.071 2.986 -3.781 7.924 

 date
b 

0.075 0.375 -0.659 0.809 

breeding attempts per male per breeding season     

 trt 2.296 1.535 -0.712 5.304 

 age
a
 -1.552 1.553 -4.597 1.493 

 HD -0.1336 0.285 -0.691 0.424 

 trt x HD -0.113 0.177 -0.459 0.233 

Fixed effects. trt: treatment (fed vs. control), age
a
: male age (young (yearling) vs. old (2+)), yr2009

a
: year 

2009 vs. year 2008, yr2010
a
: year 2010 vs. year 2008. yr2010

b
: year 2010 vs. year 2009, LD: lay date, 

FWing: female maximum wing chord, clutch: clutch size, chicks: number of nestlings alive in brood at 

time of measurement, date
a
: date of measurement (1 = 1

st
 May), age

b
: age of chicks, date

b
: date found, 

HD: hatching date, none: intercept-only model.  

 

 

More young were fledged by fed females (5.33 ± 0.25 fledglings female
-1

) than 

by control females (4.68 ± 0.22 fledglings female
-1

) (Table 3.3, Fig. 3.2). For breeding 

females, four out of the ten considered models were plausible predictors of the total 

number of chicks fledged over the breeding season (ΔAICci ≤ 2; Table 3.2, Models 2–

5). The best model included year, but this was only 1.2 times better than the model with 

no fixed effects. Treatment was included in the third best model, and treatment and year 

in the fourth best. Yearly variation had a larger effect size than treatment (Table 3.3). 

The trend was for females to fledge more chicks in both 2009 and 2010 compared to 

2008, with the most juveniles per female being fledged in 2010. 
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Fig. 3.2. The relationship between hatching date of first broods and number of juveniles fledged across 

the season for food-supplemented and control male and female wheatears in the three years of the study 

(2008-2010). 
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Chicks fledged per nesting attempt 

There was no effect of food supplementation on the number of chicks fledged per 

nesting attempt amongst first broods (Table 3.2). There was, however, annual variation 

in the number of chicks fledged per nesting attempt; the number of chicks fledging per 

nest was highest in 2010 and lowest in 2008 (Table 3.3). The best fitting final model 

included only year as an explanatory factor, while the only other plausible final model 

(ΔAICi ≤ 2) had no fixed effects (Table 3.2, Models 6–7).  

 

Egg survival to fledging 

The best model to explain number of chicks fledged per egg amongst first broods 

included no fixed effects (Table 3.2, Model 8). The only other plausible model included 

hatching date (Model 9). The survival of eggs to fledging was inversely related to 

hatching date (Table 3.3).  

 

Clutch size 

Mean clutch size was 6.3 eggs (range 4-8). Treatment was not included in any plausible 

model of clutch size. The best model included no fixed effects (Table 3.2, Model 10) 

and this model was more than twice as likely as either of the other two plausible 

models, which included year and laying date, respectively (Table 3.2, Models 11–12). 

There was a trend for clutch size to decrease with laying date (Table 3.3). 

 

Egg volume 

Mean egg volume (± SE) was 2761 ± 14.42 mm
3
 (range 2036 – 3229 mm

3
). The three 

plausible models for describing egg volume were the null model, the model containing 

female wing length and the model containing treatment (Table 3.2, Models 13–15). 
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Counter-intuitively, egg volume decreased with increasing female wing length (Table 

3.3), and egg volume was lower in fed broods. There was little support for an effect of 

either female wing length or treatment on egg volume. However, the confidence 

intervals of both effects overlap zero (Table 3.3) and the AICc weights show that the 

null model is 2.58 and 2.71 times more probable than the female wing length-only 

model and the treatment-only model, respectively.   

 

Incubation duration 

The best model for describing incubation duration included only clutch size as a fixed 

effect, while the model including no fixed effects was the only other plausible model 

(Table 3.2, Models 16–17). Incubation duration declined with increasing clutch size 

(Table 3.3).  

 

Hatching date 

Variation between years was included in all six plausible models of hatching date 

(Table 3.2, Models 18–23), with mean hatch date 4.2 days later in 2010 than 2009 

(Table 3.3). Three of the six plausible models indicated that the clutches of younger 

males hatched later than those of older males (Table 3.2, Models 19, 20 and 23). Mean 

hatch date of broods of fed birds was 2.3 days earlier than broods of control birds across 

the two years (Table 3.3, Fig. 3.3). Two of the plausible models included the interaction 

of treatment x year (Table 3.2, Models 20 and 21). This suggested that the effect of 

treatment on hatching date was stronger in 2010 than 2009. Broods of fed birds hatched 

approximately 3 days earlier than did broods of control birds in 2010 (Table 3.3, Fig. 

3.3).  
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Fig. 3.3. Distribution of dates of hatching of first clutches in 2009 and 2010 according to treatment. 

Density estimation curves are superimposed to aid interpretation (solid = fed, dashed = control). 

 

 

Hatching success 

4 out of 62 clutches failed to hatch, due to predation and rabbit disturbance. The best 

model of hatching success included only laying date (Table 3.2, Model 24), with a trend 

for hatching success to decline with laying date (Table 3.3). The null model was the 

only other plausible model (Table 3.2, Model 25).  
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Chick size 

Treatment x year was included in all four plausible models of chick size (chick 

maximum wing chord) (Table 3.2, Models 26–29) and the effect of food 

supplementation was greater in 2009 than 2010 (Fig. 3.4). Treatment x brood size was 

included in three of the four plausible models (Models 26–28). Food supplementation 

had a greater positive effect on chick size in larger broods (Table 3.3). Treatment x date 

was included in one of the plausible models (Model 26) and date was included in one 

other plausible model (Model 27). The impact of food supplementation appeared to 

increase with date, while chick size also appeared to increase with date (Table 3.3).  

 
Fig. 3.4. Variation in wing length (mean ± 95 % confidence limits) in relation to age for fed and control 

chicks in 2009 and 2010. 

 

 

Nest survival 

Out of 43 nests of fed parents, 41 were successful (i.e. ≥ 1 chick fledged) and 60 of 67 

nests of control parents were successful. Mayfield daily nest survival rates (mean ± SE) 

were 99.6 ± 4.0 % for nests of fed parents and 97.4 ± 1.8 % for nests of control parents. 

The null model was the most likely of the considered models (Table 3.2, Model 30). 

Treatment was included in two of the four plausible models (Table 3.2, Models 31 and 
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33), as was finding date (Table 3.2, Models 32 and 33). However, the confidence 

intervals for the effects of both treatment and finding date indicated little statistical 

support for either variable (Table 3.3).  

 

Number of breeding attempts 

Multiple breeding attempts by individual wheatears were recorded in 2009 and 2010, 

but not in 2008 (Table 3.4). There were more second broods in 2009 than in 2010 but 

more simultaneous broods in 2010 than 2009. 

 

Males 

Nine out of 41 fed males and one out of 61 control males had multiple broods. 

Treatment was included in all five plausible models (Table 3.2, Models 34–38). 

Hatching date was included in three of the plausible models (Table 3.2, Models 34–35 

and 38) and male age was included in two of the plausible models (Table 3.2, Models 

35–36). The interaction of treatment x hatching date was included in one of the plausible 

models (Table 3.2, Model 38). Food supplementation had a larger effect than the other 

independent variables on the probability of multiple brooding (Table 3.3). Multiple 

brooding by males was more likely if they were old and/or had first broods that hatched 

early (Table 3.3). The treatment x hatching date interaction indicated that the difference 

in probability of multiple brooding between fed and control males declined with 

hatching date (Table 3.3).  

 

Females 

Four out of 41 fed females had second broods (these were all consecutive broods with 

the same male), whereas none of the 61 unfed females had second broods. Fed females 
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were significantly more likely to have multiple broods than control females (Fisher’s 

Exact Test P = 0.027). As there were no cases of multiple broods within the control 

group of females, we did not use linear modelling to test for an effect of food 

supplementation on multiple brooding by females.  

 

DISCUSSION 

 

Numerous studies have demonstrated that insects (the main food source of small 

migratory birds) respond to changes in temperature, with effects including altered 

phenology, distribution and abundance (e.g. Parmesan et al. 1999, Altermatt 2010, Hill 

et al. 2011). In this study we simulated experimentally the effects of climate-driven 

changes in food availability on the reproductive performance of a model species of 

long-distance migratory insectivorous bird. The experimental increase in food 

availability led to an increase in the annual reproductive output of the northern 

wheatears breeding on Fair Isle and our detailed measurement of reproductive 

parameters within this experiment allows us to identify the likely mechanisms by which 

changes in food availability (such as those driven by climate change) may impact on the 

reproductive output of migrant birds.  

 

Food supplementation did not appear to influence the success of individual 

nesting attempts, but was associated with increases in the number of fledglings 

produced across the whole breeding season (from a mean of 4.4 to 6.3 young fledged 

per male and from 4.3 to 5.3 per female). The main changes in the reproductive 

parameters underpinning this increased reproductive output across the season were 

changes in hatching date, chick size and the number of breeding attempts. Specifically, 
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increased food availability led to an advance in hatching date of first broods by 

approximately 2.3 days, an increase in the wing length of chicks measured at 7 days of 

age in 2009 (but not in 2010) (which could either represent a larger fledging size, or 

more rapid growth towards an unaltered fledging size) and an increase in second and 

simultaneous breeding attempts.  

 

The increase in the number of breeding attempts primarily involved those 

individuals that both started breeding early and were food supplemented. This effect 

was especially pronounced for male wheatears, due to an increase in simultaneous 

brooding (i.e. two or more nests with different females) in addition to second brooding. 

In contrast, female wheatears appear unable to maintain two nests simultaneously, and 

so were limited to second brooding as a means to increase their numbers of breeding 

attempts. The magnitude of this impact of the supplementary feeding on annual 

reproductive output varied between years; the smaller effect of the treatment in 2010 

being mainly due to the higher success of control nests relative to that in 2009. This 

suggests that reproduction is more strongly constrained by food availability in some 

years than in others, presumably due to variation in natural food availability and/or 

weather conditions. Consistent with our findings, food supplementation led to increases 

in number of breeding attempts in black-throated blue warblers (Nagy and Holmes 

2005) and song sparrows (Melospiza melodia) (Arcese and Smith 1988), while 

experimental and natural reductions in food availability led to fewer nesting attempts in 

black-throated blue warblers (Rodenhouse and Holmes 1992). In contrast, a food 

reduction experiment indicated that red-eyed vireos (a single-brooded neo-tropical 

migrant) delayed laying when food abundance was low, but there was little effect on 

reproductive success (Marshall et al. 2002), while one recent study found that brood 
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sizes of blue tits (Cyanistes caeruleus) and great tits (Parus major) were reduced by 

food supplementation (Harrison et al. 2010). The latter two examples indicate that 

caution is needed in the extent to which the results of food supplementation experiments 

should be generalised across species. 

 

The earlier date of first clutches (as measured by hatching date) induced by food 

supplementation may have contributed to an increased reproductive output through two 

different mechanisms. Firstly, there was a trend for clutch size to be larger in earlier 

first clutches. Clutch size sets the upper limit on reproductive success of a breeding 

attempt, so larger early clutches could potentially produce more fledged chicks. We 

found no evidence, however, that the food supplementation itself increased either clutch 

size, or the number of chicks fledged from first broods. Secondly, wheatears that 

initiated their first brood earlier and had access to supplemental food were more likely 

to have second broods (or, in the case of males, have simultaneous broods) than food-

supplemented wheatears that initiated their first brood later, or than non-supplemented 

control birds. A higher proportion of pairs that initiated a first brood subsequently 

initiated second broods in 2009 (6.5 %) than in 2010 (1.9 %), which is consistent with 

the earlier start to breeding in 2009 (the earliest hatch date in 2009 was 8 days earlier 

than that in 2010). The proportion of males initiating simultaneous broods was, 

however, higher in 2010 (9.6 %) than 2009 (4.3 %). The time to complete simultaneous 

broods should be approximately the same as single broods, while completing a second 

brood will approximately double the duration of the breeding period. The frequency of 

second brooding is therefore likely to be more dependent than the frequency of 

simultaneous brooding on a long breeding season. 
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These results together suggest that an increase in food availability across the 

breeding season may lead to earlier (and possibly larger) first clutches, followed by 

additional reproductive attempts. Additional breeding attempts were very rare in early-

breeding control pairs, suggesting that the increase in the number of breeding attempts 

was likely to depend on food availability in combination with early breeding, and not 

just on early breeding per se.  

 

Similar effects of food supplementation on breeding date have been described in 

other passerine species. Food supplementation of European blackbirds (Turdus merula) 

led to advances in laying date of yearling females but not older females (Desrochers 

1992). The fed yearling females had laying dates similar to those of older females (fed 

or control), while control yearling females had later laying dates. Birds initiating first 

broods later were less likely than earlier-starting birds to make second breeding 

attempts, and so breeding productivity for the whole breeding season declined with 

laying date of the first clutch. Similarly, food supplementation of great tits advanced 

laying date to a greater degree in yearling females than in older females (Källander 

1974). It was suggested that later laying by yearling females under control 

(unsupplemented) conditions was due to lack of experience and therefore reduced 

foraging efficiency.  

 

These results are broadly consistent with an earlier observational study of 

northern wheatears in East Anglia, UK (Tye 1992), where earlier breeding was 

associated with greater fledging success of first broods and with a higher probability of 

second brooding (though not with an increase in clutch size). An increase in clutch size 

with earlier laying is, however, well documented in the literature for a range of species 
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(e.g. Winkler and Allen 1996), including northern wheatears; in a long-term study in 

Sweden, laying date of wheatears was inversely related to reproductive output, although 

laying date was not as important as age in explaining reproductive success (Pärt 2001a). 

Older male wheatears had higher reproductive success than yearling males, probably 

because older birds arrive on breeding grounds earlier and potentially gain the best 

territories (Pärt 2001a, 2001b). In the present experimental study, hatching date was 

important in explaining the extent to which wheatears improved reproductive output 

with increased food availability (and therefore improved territory quality) via the 

number of breeding attempts. High quality early-arriving males with supplementary 

food may be able to expend more energy on defending larger territories and attracting 

mates, while lower quality late-arriving males may be more constrained in their territory 

choice, and hence in their ability to attract additional females for simultaneous broods, 

or to initiate a consecutive breeding attempt. 

 

The low rates of total nest failure in this study are in stark contrast with the 

studies of wheatears in East Anglia and Sweden. Only about 8 % of first clutches in the 

current study failed to produce any fledglings, while total failure rates of about 41 %, 30 

% and 21 % were recorded in East Anglia (Tye 1992) and two studies in Sweden 

(Moreno 1989, Arlt et al. 2008), respectively, most of which were due to predation. 

Such low natural failure rates on Fair Isle make it less likely that an effect of food 

availability on nest survival rates would be detectable. The low level of nest predation 

risk on Fair Isle may lead to brood-provisioning adult wheatears spending more time 

foraging and less time in predator-avoidance behaviour (e.g. vigilance) than in locations 

with greater predation levels. It is possible that increases in food availability have a 

greater effect on the reproductive parameters measured on Fair Isle than among 
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wheatears living in areas with greater predation risk, such as Sweden or East Anglia, 

and this would be an interesting avenue of future research. 

 

In addition to increasing the number of chicks fledging over the season, the 

experimentally increased food availability in the present study also resulted in increased 

chick quality (and therefore probably fledgling quality), as measured by chick size. 

There was variation between years in the magnitude of the impact of food 

supplementation on chick size, suggesting that food availability is not always limiting to 

chick growth under current natural (unsupplemented) conditions. In 2009, the chicks of 

food-supplemented pairs were larger than the chicks of unsupplemented pairs, 

suggesting that chick growth was being limited by the parents’ ability to find food. 

These results are consistent with those of natural and experimental food reduction, 

which led to decreased nestling growth rates of black-throated blue warblers 

(Rodenhouse and Holmes 1992). In contrast, in 2010 there was no difference in the size 

of wheatear chicks between food-supplemented and control pairs, suggesting that chick 

growth in this year was not being limited by food availability. It is not known if the 

observed difference in chick size between treatment groups in 2009 was due to greater 

female investment in eggs (i.e. egg size) or to a greater delivery of food to the nestlings, 

or both of these explanations (egg size was not recorded in 2009, but in 2010 there was 

no effect of food-supplementation on egg volume).  

 

Although food supplementation had measurable effects on hatching date, the 

number of breeding attempts and chick growth, other parts of the breeding cycle 

appeared to be unaffected by changing food availability. There was no difference in 

clutch size or hatchling survival of first broods, while there were only marginal effects 
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on hatching success (due mainly to poor hatching success of two early control nests). 

These results together explain why food-supplementation also did not increase the 

number of chicks fledged from first broods. Similarly, food supplementation had no 

effect on number of fledglings from first broods in black-throated blue warblers (Nagy 

and Holmes 2005), while clutch size was higher in food-supplemented pairs in only five 

of 14 reviewed species (comprising non-migratory and short-distance migrant species) 

(Arcese and Smith 1988).  

 

The present study provides evidence that the number of breeding attempts that 

can be fitted into each breeding season, and hence the total number of chicks that can be 

produced, is currently limited both by food availability, and by the date of initiation of 

the first brood - which is itself limited by food availability. Our food supplementation 

was uniformly high across the whole breeding season, yet high altitude and high latitude 

moorland habitats typically have short growing/breeding seasons, with highly peaked 

food availability for breeding birds such as wheatears (Both 2010). Climate-induced 

changes in natural food availability at the start and end of the season are therefore 

predicted to have a particularly strong effect on the number of breeding attempts that 

can be fitted into the breeding season. This will be the case for those individuals which 

are able to initiate and complete their first brood early enough to initiate a second brood, 

which would tend to intensify selection for early breeding. Phenological changes 

associated with climate change are, indeed, already resulting in earlier spring arrivals 

and longer durations of stay on the breeding grounds of wheatears and many other 

species (e.g. Cotton 2003), which would facilitate the ability of birds to fit additional 

breeding attempts into the breeding season - if food availability allows. The variation 

between years in the frequency of second broods in our study suggests that other factors 
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(e.g. weather and availability of key prey taxa) as well as overall food availability may 

affect multiple brooding. 

 

This study has shown that changes in food availability of the northern wheatear 

affect both breeding phenology following arrival on the breeding grounds, nestling 

growth and reproductive output. This identifies a likely mechanism by which climate 

change may affect the reproductive performance of long-distance migratory birds via 

climate-driven changes in their food supply. Caution is required in extrapolating the 

results of our 3-year experiment with northern wheatears in Shetland, UK, to other 

populations, species or even to other years (Both 2010). There may be latitudinal (and / 

or altitudinal) and between-year variations in the degree of food-limitation of breeding 

productivity. Equivalent longitudinal studies at northern and southern range margins of 

the northern wheatear may aid in the prediction of climate change impacts on 

distributional changes. Furthermore, our experiment isolates the effects of increases in 

food availability on breeding parameters, but there may also be independent, direct 

effects of temperature on breeding parameters (e.g. via thermoregulation and incubation 

behaviours of parent birds) (Stevenson and Bryant 2000, Salvante et al. 2007, Visser et 

al. 2009). 

 

The effects of climate change on the phenology and overall abundance of 

invertebrate prey are currently poorly understood and may differ substantially between 

the short-, medium- and long-term as temperature variations increasingly exceed the 

range to which indigenous invertebrate taxa are physiologically and genetically adapted. 

Our experimental manipulations were not designed to mimic specific climate change 

scenarios. Rather, our experiment measures the degree of behavioural flexibility of a 
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range of different breeding parameters to increases in food availability, revealing the 

extent to which individual birds can respond instantly to current changes in 

environmental conditions. If the range of climate (and thus food) variability that the 

birds’ phenotypic plasticity encompasses is exceeded, then there will be selective 

pressure for evolutionary change. Indeed phenotypic plasticity, combined with genetic 

variance, contributes to the phenotypic variation on which selection can act, facilitating 

evolutionary change.  
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SUPPORTING INFORMATION (TABLES S3.1–S3.14) 

 

Table S3.1. Total number of first, re-lay (clutch following failure of first clutch), second (clutch 

following successful first clutch, i.e. ≥ 1 chick fledged) and simultaneous (clutch initiated by male with a 

different female before completion of active first clutch) clutches recorded in each of the three years of 

this study. 

 
Year Treatment Clutch type 

  First Re-lay Simultaneous Second 

2008 Fed 9 0 0 0 

 Control 21 0 0 0 

      

2009 Fed 19 0 2 3 

 Control 27 1 0 0 

      

2010 Fed 25 1 5
a 

1 

 Control 27 1 1 0 

a
Two of these clutches were fathered by the same male. 
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Table S3.2. Model comparisons for number of juveniles fledged per male per season. As including male 

age reduced the data set from 92 to 76, and it was insignificant in all cases, it was excluded in the final 

analyses.  Random effect is Male ID. AICc is the corrected Akaike’s Information Criterion, ΔAICc i is the 

difference in AICc between model i and the best model and wAICci is the AICc weight of the model. 

Interactions are indicated by x and include all lower order terms as well (e.g. trt x age represents trt + age 

+ trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci  

trt x HD, yr -37.69 7 90.7 0 0.746 

trt x HD, trt x yr -37.21 9 94.6 3.9 0.106 

trt x HD -42.33 5 95.4 4.7 0.073 

trt, HD, yr  -41.61 6 96.2 5.5 0.048 

trt, yr -44.03 5 98.8 8 0.013 

trt, HD -45.93 4 100.3 9.6 0.006 

trt -47.10 3 100.5 9.8 0.006 

yr -47.04 4 102.5 11.8 0.002 

HD -49.21 3 104.7 14 < 0.001 

none -51.18 2 106.5 15.8 < 0.001 

Fixed effects: trt: treatment (fed or control), yr: year, HD: hatching date of first brood (earliest brood if 

male had simultaneous broods), none: intercept-only model.  

 

 

Table S3.3. Model comparisons for number of juveniles fledged per female per season. Random effect is 

female ID. AICc is the corrected Akaike’s Information Criterion, ΔAICci is the difference in AICc 

between model i and the best model and wAICci is the AICc weight of the model. Interactions are 

indicated by x and include all lower order terms as well (e.g. trt x age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

yr -34.14 4 76.7 0 0.242 

none -36.49 2 77.1 0.4 0.198 

trt -35.47 3 77.2 0.5 0.190 

trt, yr -33.64 5 77.9 1.2 0.132 

HD -36.49 3 79.2 2.5 0.069 

trt, HD -35.47 4 79.4 2.7 0.064 

trt, HD, yr -33.61 6 80.1 3.4 0.044 

trt x HD -35.03 5 80.7 4 0.033 

trt x HD, yr -33.16 7 81.6 4.9 0.021 

trt x HD, trt x yr -31.83 9 83.7 7 0.007 

Fixed effects: trt: treatment (fed or control), yr: year, HD: hatching date of first brood, none: intercept-

only model.  
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Table S3.4. Model comparisons for number of fledglings per first nesting attempt. First broods only, 

offered excluded, excludes total failures due to predation. Random effect is Male ID. AICc is the 

corrected Akaike’s Information Criterion, ΔAICci is the difference in AICc between model i and the best 

model and wAICci is the AICc weight of the model. Interactions are indicated by x and include all lower 

order terms as well (e.g. trt x age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

yr  -17.12 4 42.7 0 0.333 

none -19.85 2 43.8 1.1 0.188 

yr, HD -17.02 5 44.7 2.1 0.119 

trt, yr -17.11 5 44.9 2.2 0.109 

trt -19.72 3 45.7 3 0.074 

HD -19.76 3 45.8 3.1 0.070 

trt, yr, HD -17.02 6 47 4.3 0.038 

trt, HD  -19.67 4 47.8 5.1 0.026 

trt x HD, yr -16.74 7 48.8 6.1 0.016 

trt x yr -17.00 7 49.3 6.6 0.012 

trt x HD -19.48 5 49.6 7 0.010 

trt x yr, HD -16.90 8 51.5 8.9 0.004 

trt x HD, trt x yr -16.68 9 53.6 10.9 0.001 

Fixed effects: trt: treatment (fed or control), yr: year, HD: hatching date, none: intercept-only model.  

 

 

Table S3.5. Model comparisons for fledging success: the proportion of all chicks per nest that fledged. 

Random effect is Male ID. AICc is the corrected Akaike’s Information Criterion, ΔAICci is the difference 

in AICc between model i and the best model and wAICci is the AICc weight of the model. Interactions are 

indicated by x and include all lower order terms as well (e.g. trt x age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

none -47.28 2 98.8 0 0.352 

HD -46.48 3 99.4 0.6 0.257 

trt -47.27 3 101 2.2 0.117 

trt, HD -46.48 4 101.7 2.9 0.081 

yr  -46.77 4 102.3 3.5 0.061 

trt x HD -45.64 5 102.4 3.6 0.057 

yr, HD -46.04 5 103.2 4.4 0.038 

trt, yr  -46.77 5 104.7 5.9 0.018 

trt, yr, HD  -46.02 6 105.7 6.9 0.011 

trt x HD, yr -45.14 7 106.5 7.7 0.008 

Fixed effects: trt: treatment (fed or control), yr: year, HD: hatching date, none: intercept-only model.  
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 Table S3.6. Linear model comparisons for clutch size. AICc is the corrected Akaike’s Information 

Criterion, ΔAICci is the difference in AICc between model i and the best model and wAICci is the AICc 

weight of the model. Interactions are indicated by x and include all lower order terms as well (e.g. trt x 

age represents trt + age + trt x age).  

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

none -107.77 1 217.6 0 0.399 

yr -107.51 2 219.2 1.6 0.176 

LD -107.66 2 219.5 1.9 0.152 

trt -107.77 2 219.8 2.1 0.137 

LD, yr -107.40 3 221.2 3.6 0.065 

LD, FW, yr -107.37 4 223.5 5.9 0.021 

trt, LD, yr -107.40 4 223.6 5.9 0.020 

trt, FW, yr -107.48 4 223.7 6.1 0.019 

trt, LD, FW, yr -107.37 5 225.9 8.3 0.006 

trt x LD, FW, yr -107.37 6 228.4 10.8 0.002 

trt x yr -107.43 6 228.5 10.9 0.002 

trt x LD, trt x yr, FW -107.35 7 231 13.4 < 0.001 

Fixed effects: trt: treatment (fed or control), yr: year, LD: lay date, FWing: female wing length, none: 

intercept-only model.  

 

 

Table S3.7. Model comparisons for egg volume. Random effect is female ID. AICc is the corrected 

Akaike’s Information Criterion, ΔAICci is the difference in AICc between model i and the best model and 

wAICci is the AICc weight of the model. Interactions are indicated by x and include all lower order terms 

as well (e.g. trt x age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

none  -1523 3 3052.4 0 0.4978 

FWing  -1523 4 3054.4 2 0.186 

trt  -1523 4 3054.4 2 0.183 

trt, FWing -1523 5 3056.4 4 0.068 

trt x FWing -1522 6 3056.4 4 0.067 

Fixed effects: trt: treatment (fed or control), FWing: female wing length, none: intercept-only model.  
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Table S3.8. Linear model comparisons for incubation duration in 2009 and 2010. AICc is the corrected 

Akaike’s Information Criterion, ΔAICci is the difference in AICc between model i and the best model and 

wAICci is the AICc weight of the model. Interactions are indicated by x and include all lower order terms 

as well (e.g. trt x age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

clutch -30.37 3 68.1 0 0.350 

none -31.92 2 68.5 0.4 0.288 

clutch, FWing -30.27 4 70.9 2.8 0.086 

FWing -31.80 3 70.9 2.9 0.084 

trt, clutch -30.34 4 71 2.9 0.080 

trt -31.90 3 71.1 3 0.077 

trt, FWing -31.78 4 73.9 5.8 0.019 

trt, clutch, FWing -30.24 5 74.2 6.1 0.016 

Fixed effects: trt: treatment (fed or control), FWing: female wing length, clutch: clutch size, none: 

intercept-only model.  

 

 

Table S3.9. Model comparisons for hatching date. Random effect is Male ID. AICc is the corrected 

Akaike’s Information Criterion, ΔAICci is the difference in AICc between model i and the best model and 

wAICci is the AICc weight of the model. Interactions are indicated by x and include all lower order terms 

as well (e.g. trt x age represents trt + age + trt x age).  

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

trt, yr -209.3 5 429.5 0 0.219 

trt, age, yr  -208.2 6 429.8 0.2 0.194 

trt x yr, age -207.3 7 430.5 1 0.134 

trt x yr -208.7 6 430.7 1.2 0.122 

yr -211.0 4 430.7 1.2 0.121 

age, yr -210.0 5 431.1 1.5 0.102 

trt x age, yr -208.2 7 432.2 2.7 0.057 

trt x age, trt x yr -207.3 8 433.1 3.5 0.037 

trt -214.2 4 437 7.5 0.005 

none -215.6 3 437.5 7.9 0.004 

trt, age -213.6 5 438.2 8.7 0.003 

age -215.0 4 438.7 9.1 0.002 

Fixed effects: trt: treatment (fed or control), age: male age (young (yearling) or old (2+)), yr: year, none: 

intercept-only model.  
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 Table S3.10. Model comparisons for hatching success. Random effect is female ID. The interaction 

treatment x year could not be included in any model because of convergence problems. AICc is the 

corrected Akaike’s Information Criterion, ΔAICci is the difference in AICc between model i and the best 

model and wAICci is the AICc weight of the model. Interactions are indicated by x and include all lower 

order terms as well (e.g. trt x age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

LD -49.66 3 105.7 0 0.404 

none -51.21 2 106.6 0.9 0.258 

trt, LD -49.66 4 108 2.3 0.129 

trt -51.14 3 108.7 3 0.091 

trt x LD -49.42 5 109.9 4.2 0.050 

LD, yr -49.58 5 110.2 4.5 0.042 

trt, LD, yr -49.58 6 112.7 7 0.012 

trt, yr -51.13 5 113.3 7.6 0.009 

trt x LD, yr -49.35 7 114.8 9 0.004 

Fixed effects: trt: treatment (fed or control), yr: year, LD: lay date, none: intercept-only model.  
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Table S3.11. Model comparisons for maximum wing chord of 7- and 8-day-old chicks in 2009 and 2010. 

Random effect is Male ID. AICc is the corrected Akaike’s Information Criterion, ΔAICci is the difference 

in AICc between model i and the best model and wAICci is the AICc weight of the model. Interactions are 

indicated by x and include all lower order terms as well (e.g. trt x age represents trt + age + trt x age). 

Fixed effects Log-likelihood df AICc ΔAICci wAICci 

trt x chicks, trt x date, trt x yr, age -955.4 11 1933.6 0 0.244 

trt x chicks, trt x yr, date, age -956.6 10 1933.8 0.2 0.223 

trt x chicks, trt x yr, age -957.8 9 1934.1 0.4 0.196 

trt x yr, age -960.6 7 1935.6 2 0.090 

trt x yr, chicks, age -959.8 8 1936 2.4 0.073 

trt x yr, chicks, date, age -958.9 9 1936.3 2.6 0.065 

trt x yr, date, age -960.2 8 1936.9 3.3 0.047 

trt x date, trt x yr, chicks, age -958.5 10 1937.7 4 0.033 

trt x date, trt x yr, age -960.0 9 1938.6 4.9 0.021 

trt x chicks, date, yr, age -962.2 9 1943 9.3 0.002 

trt x chicks, trt x date, yr, age -961.3 10 1943.2 9.6 0.002 

trt, chicks, date, yr, age -964.1 8 1944.7 11.1 < 0.001 

trt x chicks, trt x date, age -963.2 9 1945 11.4 < 0.001 

trt x date, chicks, yr, age -963.9 9 1946.3 12.7 < 0.001 

trt x chicks, yr, age -965.0 8 1946.5 12.9 < 0.001 

trt, chicks, yr, age -966.6 7 1947.5 13.9 < 0.001 

trt, yr, date, age -966.6 7 1947.6 14 < 0.001 

trt, yr, age -967.9 6 1948.1 14.5 < 0.001 

trt x chicks, date, age -965.9 8 1948.2 14.5 < 0.001 

trt x date, yr, age -966.6 8 1949.5 15.9 < 0.001 

trt x chicks, age -968.7 7 1951.7 18 < 0.001 

trt x date, chicks, age -968.4 8 1953.1 19.5 < 0.001 

trt, chicks, date, age -969.8 7 1953.9 20.2 < 0.001 

trt, chicks, age -972.0 6 1956.2 22.5 < 0.001 

trt, age -973.8 5 1957.7 24.1 < 0.001 

trt, date, age -972.8 6 1957.9 24.3 < 0.001 

trt x date, age -972.0 7 1958.3 24.7 < 0.001 

chicks, yr, date, age -977.1 7 1968.4 34.8 < 0.001 

yr, date, age -979.5 6 1971.3 37.7 < 0.001 

chicks, date, age -979.8 6 1971.9 38.2 < 0.001 

chicks, yr, age -979.8 6 1971.9 38.3 < 0.001 

yr, age -981.1 5 1972.5 38.8 < 0.001 

chicks, age -982.2 5 1974.7 41 < 0.001 

date, age -982.6 5 1975.3 41.7 < 0.001 

age -983.8 4 1975.7 42 < 0.001 

none -1008.0 3 2021.2 87.5 < 0.001 
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Fixed effects: trt: treatment (fed or control), age: male age (young (yearling) or old (2+)), yr: year, chicks: 

number of 7- and 8-day-old nestlings alive in nest at time of measurement, date: date of measurement (1 = 

1
st
 May), none: intercept-only model.  

 

 

  Table S3.12. Model comparisons for first brood nest survival. All models have Male ID as the random 

factor. Main effects were included for all interactions. AICc is the corrected Akaike’s Information 

Criterion, ΔAICci is the difference in AICc between model i and the best model and wAICci is the AICc 

weight of the model. Interactions are indicated by x and include all lower order terms as well (e.g. trt x 

age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

none -26.58 2 57.3 0 0.315 

trt -25.87 3 58 0.7 0.225 

date -26.34 3 58.9 1.6 0.140 

trt, date -25.31 4 59 1.7 0.133 

yr -25.95 4 60.3 3 0.071 

yr, date -25.2 5 61 3.7 0.050 

trt, yr -25.6 5 61.8 4.5 0.033 

trt, date, yr -24.75 6 62.3 5 0.025 

trt x yr -25.42 7 65.9 8.7 0.004 

trt x yr, date -24.43 8 66.3 9 0.004 

Fixed effects: trt: treatment (fed or control), yr: year, date: date found, none: intercept-only model.  

 

Table S3.13. Model comparisons for number of breeding attempts per male per season (successful first 

broods, second broods and simultaneous broods with additional females). AICc is the corrected Akaike’s 

Information Criterion, ΔAICci is the difference in AICc between model i and the best model and wAICci 

is the AICc weight of the model. Interactions are indicated by x and include all lower order terms as well 

(e.g. trt x age represents trt + age + trt x age). 

Fixed effects Log-likelihood df AICc ΔAICci wAICci 

trt, HD -20.92 3 48.2 0 0.208 

trt, age, HD -19.92 4 48.4 0.2 0.184 

trt, age -21.32 3 49 0.8 0.139 

trt -22.90 2 50 1.8 0.085 

trt x HD -20.70 4 50 1.8 0.084 

trt x age, HD -19.68 5 50.3 2.1 0.073 

trt x HD, age -19.82 5 50.6 2.4 0.064 

trt x age -21.18 4 51 2.8 0.052 

age, HD -22.44 3 51.2 3 0.045 

HD -24.02 2 52.2 4 0.028 

trt x age, trt x HD -19.60 6 52.5 4.3 0.024 

age -25.14 2 54.5 6.3 0.009 

none -26.99 1 56 7.8 0.004 

Fixed effects: trt: treatment (fed or control), age: male age (young (yearling) or old (2+)), HD: hatching 

date of first brood, none: intercept-only model.  
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Table S3.14. Model comparisons for probability of multiple brooding by females in one breeding season. 

AICc is the corrected Akaike’s Information Criterion, ΔAICci is the difference in AICc between model i 

and the best model and wAICci is the AICc weight of the model. Interactions are indicated by x and 

include all lower order terms as well (e.g. trt x age represents trt + age + trt x age). 

 
Fixed effects Log-likelihood df AICc ΔAICci wAICci 

trt, HD -9.42 3 26 0 0.657 

trt x HD -9.42 4 28.2 2.2 0.222 

trt -13.00 2 30.7 4.7 0.062 

HD -13.14 2 31.1 5 0.053 

none -16.45 1 35.5 9.5 0.006 

Fixed effects: trt: treatment (fed or control), HD: hatching date of first brood, none: intercept-only model.  
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CHAPTER 4. Effects of increased food availability at a 

breeding site on annual survival of a long-distance migratory 

bird, the northern wheatear 
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ABSTRACT 

Temperature- and rainfall-driven change in food availability is one likely mechanism by 

which climate change may affect animal population dynamics and species distributions. 

We used experimental food supplementation at a breeding site to examine and compare 

the impact of changing food supply on annual survival of adult migratory birds and their 

offspring. Climate change presents particular challenges to long-distance migratory 

birds because they must time their migrations to coincide with food availability at 

locations hundreds or thousands of kilometres apart. Climate-driven changes in the 

overall abundance of food or the phenology of peaks in food availability may therefore 

be critical factors influencing annual survival. In this study we provided supplemental 

food to northern wheatears (Oenanthe oenanthe) breeding on Fair Isle, UK, to simulate 

a climate-linked increase in food availability. Food-supplemented wheatears exhibited 

higher rates of annual survival than control wheatears, and the strength of this effect 

varied with age. Food-supplementation led to c. 1.5 times higher annual survival of 

juveniles and c. 1.2 times higher survival of adults. Survival of juveniles was related to 

their own food availability as fledglings but not to whether their parents were food-

supplemented or unfed controls. Combined with increased breeding productivity 

associated with food-supplementation (Chapter 3), our results suggest that a climate-

driven increase in food availability, of the magnitude simulated in our experiment, 

would increase the population growth rate of wheatears on Fair Isle from approximately 

 = 0.92 to  = 1.14. Such an effect suggests that the food supplementation would turn 

Fair Isle from a population sink to a population source, if extended to the whole island. 
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INTRODUCTION 

Climate change is widely expected to cause changes in the abundance and distribution 

of different animal taxa (Stenseth et al. 2002, Walther et al. 2002, Parmesan 2006). 

However, we currently have only a limited understanding of the underlying mechanisms 

by which climate impacts on animal populations. Many animal populations are limited 

primarily in a “bottom-up” manner by food abundance (White 2008) which is itself 

influenced by climate variability (Both and Visser 2005, Pearce-Higgins et al. 2010, 

Altermatt 2010). Temperature- and rainfall-driven changes in food availability are 

therefore likely mechanisms by which climate change may affect animal population 

dynamics and species distributions. Indeed, climate variables have been shown to 

correlate with a wide range of biological processes relevant to foragers and their food 

supplies, including phenology (Parmesan and Yohe 2003, Saino et al. 2007), 

development rates (Bale et al. 2002), body condition (Studds and Marra 2007), breeding 

productivity (Both et al. 2006, Matthysen et al. 2011) and survival (McDonald et al. 

2004).  

 

Climate change presents particular challenges to long-distance migratory birds 

because they must time their migrations to coincide with food availability at locations 

hundreds or thousands of kilometres apart. Climate-driven changes in the overall 

abundance of food or the phenology of peaks in food availability may therefore be 

critical factors influencing annual survival. Population growth rates (positive or 

negative) represent the sum of breeding productivity, individual survival and rates of 

immigration and emigration. In this study, we test the impacts of food supply on the 

survival between breeding seasons of a long-distance migratory bird, using 

experimental food supplementation at a geographically isolated breeding site, to 
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examine and compare the impact of changing food supply on the annual survival of 

adult birds and their offspring.  

 

Migratory birds must accumulate large fuel reserves (constituting muscle mass 

and fat deposits) at the onset of migration, requiring a large energy intake (Blem 1980, 

Klaassen 1996). Food availability during the breeding season, pre-migratory fuelling 

period and migration stopovers affects the body condition of migratory birds (Brown 

and Sherry 2006). This, in turn, is likely to affect survival - both directly via starvation 

risk, and indirectly via ecological factors such as predation risk. The limited available 

evidence, based on only one species, suggests that most mortality of adult long-distance 

migratory birds occurs during migration (Sillett and Holmes 2002). Body condition at 

the end of the breeding season affects timing of autumn departure (Stutchbury et al. 

2011) and possibly also timing of arrival at winter grounds, which in turn affects the 

acquisition of high quality wintering habitats for territorial species. Body condition at 

the end of winter also determines arrival times at breeding sites (Gill et al. 2001; Studds 

and Marra 2005; Marra, Hobson, and Holmes 1998). Food availability may also affect 

the costs of reproduction to survival of adult birds, due to the increased effort required 

to provision offspring when food is scarce (Low et al. 2010). 

 

Juvenile birds are more likely to starve during the critical nestling and post-

fledging periods, if food availability limits the ability of parents to provide their 

offspring with adequate food. Heavy mortality of juvenile birds typically occurs during 

the nestling and early post-fledging stages (Anders et al. 1997), while juvenile mortality 

rates during the first migration are likely to equal or exceed those suffered by adults, 

due to inexperience. Post-fledging mortality of juvenile long-distance migratory birds 
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has, however, rarely been studied directly. Predation was the primary cause of mortality 

of fledgling wood thrush (Hylocichla mustelina), a Neotropical migratory bird (Anders 

et al. 1997). By limiting nutritional status, food availability can indirectly influence 

predation risk, for example by causing birds to take greater risks in foraging, or by 

limiting the energetic resources available for the birds to flee predators (Witter 1994, 

Duncan Rastogi and Zanette 2006). Hence, climate-linked changes in food availability 

at breeding sites may be expected to have an even greater effect on juvenile survival 

than on adult survival. 

 

While most mortality of adult migratory songbirds occurs outside of the breeding 

season (Sillett and Holmes 2002, Mazerolle et al. 2005), events and conditions (e.g. 

food availability) during the breeding season appear to be linked to annual survival 

rates, both directly and via carry-over effects into subsequent life cycle stages (Chase et 

al. 1997, Low et al. 2010). For example, annual survival rates of northern wheatears 

(Oenanthe oenanthe) in Sweden differ between breeding habitats, which vary in their 

food availability (Arlt et al. 2008). In habitats with tall, dense vegetation, it is more 

difficult for northern wheatears to locate food, hence parents have to fly longer 

distances to provision their offspring (Pärt 2001a, 2001b, Low et al. 2010). In such 

habitats, the risk of nest predation (many females are predated during nest predation 

events) is also increased (Low et al. 2010). Such correlations between annual survival 

and habitat quality may be confounded by the quality of individual birds, since higher 

quality birds may occupy higher quality habitat. However, experimental manipulations 

of vegetation height confirmed that northern wheatear adult survival – both female and 

male – during the breeding season, as well as subsequent (post-breeding) survival rates, 

were lower in habitats with tall field layers (Low et al. 2010). Climate change may 
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therefore affect survival rates of northern wheatears by altering the availability of their 

invertebrate prey during the breeding season, and hence affecting adult reproductive 

costs. 

 

In this study we provided supplementary food to breeding northern wheatears 

(henceforth “wheatears”) to simulate a climate-linked increase in food availability. 

Northern wheatears are small, insectivorous long-distance migratory songbirds that 

breed in open habitats across the Mediterranean, temperate and Arctic regions of the 

northern hemisphere, wintering in sub-Saharan Africa. We hypothesise that food 

availability during the short breeding season may affect the time and energetic trade-

offs of reproductive effort, post-breeding moult and timing of autumn departure, all of 

which may affect subsequent survival. In addition, we hypothesise that food availability 

is likely to affect survival rates of juvenile birds in their first weeks post-fledging while 

gaining foraging experience. From these hypotheses, we predict that food-supplemented 

adults and juveniles will experience higher annual survival than unfed control birds. We 

also predict a stronger effect of food supplementation on juveniles relative to adults. 

Rather than attempting to simulate a specific climate-change scenario, our simulation 

was of an overall, uniform increase in food availability throughout the breeding and pre-

migratory fuelling periods, to measure and compare the strength of food-limitation on 

the annual survival of adult and juvenile birds.  

 

MATERIALS AND METHODS 

Study site 

Fair Isle (59°32'N, 1°39'W) is a small island (ca. 1,000 ha) midway between mainland 

Shetland and Orkney (each ca. 40 km away), north-east of the Scottish mainland, UK. 
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The island consists mainly of improved and unimproved grassland (Festuca, Agrostis, 

Nardus and maritime grassland communities) and heather moorland (dominated by 

Calluna vulgaris), all grazed by sheep (Ovis aries) (Nolan et al. 1994).  

 

Experimental design 

Food supplementation was carried out throughout the breeding seasons of 2008–2010. 

As arrival date correlates with breeding success of wheatears (Currie et al. 2000, Arlt 

and Pärt 2007), a standard route through the study site was walked almost daily from 

mid-April until the end of May, and newly-established pairs of wheatears were selected 

alternately as food-supplemented (henceforth ‘fed’) and non-food-supplemented 

(henceforth ‘control’) pairs. In this way, fed and control pairs were stratified both 

spatially and with respect to arrival date. This procedure also avoided the potentially 

confounding situation of the highest quality individuals establishing territories around 

feeders, to the exclusion of lower quality individuals. Prey availability in fed territories 

was increased experimentally by providing mealworms (Tenebrio molitor) in plastic 

bowls, placed directly on the ground. Each fed territory was provided with one feeder, 

located as near as possible to the centre of the territory, to minimise the possibility of 

wheatears from neighbouring control territories raiding the feeders. Bowls were filled 

with at least 30 g of mealworms (mean ± SD = 37.8 ± 2.7 g, n = 20 samples) and 

refilled on at least five of every seven days. Food supplementation was continued until 

the departure on autumn migration of all fed parent wheatears and their offspring 

(August–September). The majority of wheatears in the study were marked with 

individual-specific colour-ring combinations, allowing the identities of wheatears using 

the feeders to be observed; both directly in the field, and remotely using small video 

cameras (Sony Handycam DCR-SR32, Sony Corporation, http://sony.co.uk). To 
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confirm the identities of wheatears attending each of our feeders, at least three recording 

sessions, of at least 1 hour each, were viewed per feeder, but viewing sessions were 

extended to 4 hours if neither or only one of a pair had attended the feeder during the 

initial period. None of the adult control wheatears were recorded taking mealworms 

from any feeder. 

 

After allowing wheatears to become accustomed to using the feeders for 

approximately 4 weeks, cages were placed over them with holes cut in the mesh large 

enough for wheatears to pass through but too small for larger birds (e.g. European 

starlings Sturnus vulgaris). In each year, however, some wheatear pairs stopped 

attending feeders once cages were installed (5 pairs in 2008, 6 pairs in 2009 and 2 pairs 

in 2010). Individuals of such pairs were regarded as control birds. If only one individual 

of a pair stopped attending a feeder (3 out of 4 pairs in 2008, 8 out of 18 pairs in 2009 

and 18 out of 30 pairs in 2010), both were included in the analysis as fed birds because 

the food supplementation of the offspring via the fed parent may affect the reproductive 

costs and subsequent survival of its (unfed) partner. 

 

Fully-grown wheatears were captured either with spring traps (www.moudry.cz, 

model SB30) baited with mealworms, or in Fair Isle Bird Observatory’s permanent 

Heligoland traps (large funnel traps). Plumage features were used to sex and age 

captured birds according to Svensson (1992) as fledged in the current year (juvenile), or 

before the current year (adult). We did not age adults more precisely (as second year or 

older) because ageing methodology for adult females is unreliable (Svensson 1992). All 

captured birds were marked with unique combinations of a numbered metal ring and 

four plastic colour leg rings to enable individual identification in the field. Nestlings 
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were ringed with a numbered metal ring alone when approximately 7 days old. Colour 

rings were only fitted once chicks were at least 9 days old, as their tarsi only become 

slim enough along the full length to fit multiple rings from that age. Young wheatears 

were therefore re-caught for colour ringing, either in the nest towards the end of the 

nestling period (where possible), or with spring traps after fledging.  

 

Following Arlt et al. (2008), fledging was determined when juveniles were 

observed outside the nest chamber or when parents gave intense warning calls > 15 days 

after the hatch date and the nest chamber was empty. Each nest was searched for dead 

nestlings after fledging. Nestlings found dead at the nest were excluded from analysis of 

first year survival; we separately analysed the effects of the food supplementation on 

fledging rates (Chapter 3). Ringed nestlings not subsequently found dead at the nest 

were assumed to have fledged. 

 

We searched the whole island for colour-marked birds throughout the 2009–

2010 breeding seasons and intensively for 3 weeks in June 2011, using a telescope or a 

camera with telephoto lens to confirm colour combinations. Opportunistic re-sighting 

data over the same period were also provided by Fair Isle Bird Observatory staff and 

other ornithologists. We verified most additional sightings in the field or from 

photographs. We attempted to recapture for colour ringing and identification any 

breeding wheatears wearing only a metal ring, as these individuals were likely to have 

been ringed as nestlings in previous years. Only three such birds were known to have 

avoided capture over the re-sighting period (2009–2011).   
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Data analysis 

We analysed adult and first year survival rates separately, because the sex of juveniles 

only becomes known if they survive their first year and return to the study area, yet we 

wanted to include sex as a variable in adult survival models. Each field season was 

treated as a single re-sighting “occasion”, with each individual being either seen or not 

seen in each year. 

 

Adult survival 

Data from 237 individually marked adult (119 males and 118 females) wheatears were 

used to estimate the effect of food availability on adult survival. In addition to the 

experimental treatment conditions (fed or unfed), we considered a priori that sex and 

year may influence annual survival.  

 

Adult birds in this study could shift experimental state (fed or control) between 

years, precluding the use of standard Cormack-Jolly-Seber mark-recapture models to 

estimate state-specific survival. We therefore used multi-state mark-recapture models to 

estimate survival rates of adults (Arnason 1972, 1973, Schwarz et al. 1993, Brownie et 

al. 1993, Nichols et al. 1994, Nichols and Kendall 1995). We used the package RMark 

(Laake and Rextad 2011) in the statistical programme R (version 2.13.0, R 

Development Core Team, 2011) to implement mark-recapture models in the programme 

MARK (version 6.1, White and Burnham 1999).  

 

In our multi-state models, we used  to denote the probability that an organism 

in a particular state survived to the next re-sighting occasion (to the next year, in the 

context of our study; Brownie et al. 1993; Hestbeck et al. 1991; Schwarz et al. 1993). 
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The transition parameter () is the probability of switching between the two states, fed 

and control. This parameter was held constant across groups because the probability of 

being a fed bird in a given year was random with respect to experimental treatment in 

the previous year and with respect to individual and environmental variables. The 

detection parameter (p) of a particular state is the probability that a marked individual 

alive in that state on a particular re-sighting occasion is encountered on that occasion 

(i.e. in that year). This detection parameter p is less than 1 when there are gaps in any 

individual capture history (e.g. a gap occurs when an individual is observed in year t, 

not in year t+1 and seen again in year t+2, and hence was alive but missed in year t+1). 

 

As a necessary first step of our analysis, we carried out a goodness of fit test on 

the most general (global) time-dependent model, denoted {treatment x sex, treatment x year,  

psex, year}, where survival probability  was allowed to vary by treatment and sex in an 

interactive manner (we use x to denote interactions), transition probability  was 

constant across groups and detection probability p was allowed to vary by sex and year. 

Goodness of fit tests were conducted with the median-ĉ procedure (Cooch and White 

2011) with 500 samples in MARK. The dispersion parameter ĉ of the global model 

indicated moderate overdispersion in the data (ĉ ± SE = 1.987 ± 0.030) (Burnham and 

Anderson 2002). As recommended by Burnham and Anderson (2002), we therefore 

conducted model selection based on values of the Akaike Information Criterion adjusted 

for small sample size and the degree of overdispersion (QAICc), to identify models 

within candidate sets that most parsimoniously explained variation in adult detection 

probability and survival. We first tested a candidate set of models of p: {psex, year}, 

{psex}, {pyear}and {p} – which we considered a priori as possible predictors of detection 

probability – using a reasonably complex model for  {treatment, sex, year} and with  
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constant across groups {} (Table S4.1, Supporting Information). Sex was considered 

as a factor because of the possibility of females being on the nest, and therefore out of 

sight (although we attempted to minimise the risk of missing individuals by conducting 

multiple visits to all areas). Parameter estimates for survival probability  when 

detection varied across all years indicated highly implausible survival rates of adults in 

the period 2010–2011 of > 0.95. Detection probability p for 2011 can only be directly 

estimated by conducting resighting in 2012, and so  for 2010–2011 cannot be adjusted 

for an estimate of p specific to 2011. As our fieldwork in 2011 focused exclusively on 

resighting and retrapping individuals, it is likely that all returning colour-ringed 

individuals were observed in 2011 (or at least very few were missed) but it is less likely 

that this was the case in the preceding years. We therefore considered only models in 

which p was allowed to vary in 2009 and 2010 but fixed at 1 for 2011 or at the mean of 

2009 and 2010 (Table S4.1, Supporting Information). This resulted in more biologically 

realistic values for survival (see Results). 

 

Next, we built our global model of adult survival, with a reasonably complex but 

biologically plausible combination of variables {treatment x sex, treatment x year}, modelling p 

using the most plausible model structures identified in the previous step (i.e. those with 

ΔAICc ≤2) and with  constant across groups. We then built a series of reduced 

parameter models starting with the global model of adult survival, with  decreasing in 

complexity until the final fully-constrained model, in which was constant across 

groups. In this way, we built a set of ten candidate nested models that we considered to 

be biologically reasonable potential explanations of variation in adult annual survival.  
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Model averaging was carried out to derive parameter estimates and confidence 

intervals, based on the AICc weight (wAICc) of each model i (Burnham and Anderson 

2002). wAICci determines the contribution of each parameter estimate within model i to 

the mean of that parameter across all considered models. Model averaging was carried 

out with RMark, implemented in MARK.  

 

First year survival 

Data for 599 individually-marked juveniles were used to estimate the effect of food 

availability on first year survival. Of these, 495 were ringed as nestlings (and 

subsequently fledged; nestlings that died before fledging were excluded) and the 

remaining 104 were ringed after fledging. Of the 533 juveniles from known nests (i.e. 

ringed as nestlings or as juveniles that could be assigned to parents based on parent 

provisioning behaviour), 243 had fed parents and 290 had control parents.  

 

Two separate analyses of first year survival were carried out. In the first analysis, we 

considered only the 533 juveniles from known nests, to investigate the effect of 

experimental treatment during the nestling stage on subsequent first year survival of 

fledged juveniles. “Fed juveniles” were those with fed parents and “control juveniles” 

were those with control parents.  

 

In the second analysis, we included only the 252 colour ringed juveniles that were 

captured or observed (having been previously colour-ringed as nestlings) between 

fledging and autumn departure. In this second analysis, “fed juveniles” (n = 67) were 

those attending feeding stations themselves and “control juveniles” (n = 185) were those 

not attending feeding stations, regardless of whether their parents were fed or control. 
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Of the fed juveniles, 45 were offspring of parents that were fed, 11 were offspring of 

control parents and 11 could not be assigned to parents (and therefore were of unknown 

nest treatment). 38 of the control juveniles were offspring of fed parents, 92 were 

offspring of control parents and 55 could not be assigned to parents. To avoid including 

transient birds in these samples, only fledglings yet to finish post-juvenile moult at the 

time of capture were included, as juvenile northern wheatears generally begin migration 

once their moult has finished (Cramp 1988). 

 

First year survival probability () and detection probability (p) were estimated 

with extensions of Cormack-Jolly-Seber (CJS) models, as outlined by Lebreton et al. 

(1992), using RMark, implemented in MARK. Factors considered in these models were 

nest treatment (fed parents or control parents), juvenile treatment (fledged individual 

was fed or control), presence/absence of colour rings and year.  

 

A complex but biologically plausible global model of first-year survival  was 

built for each of the two juvenile datasets and tested for goodness of fit with the median-

ĉ procedure (500 samples), as with the adult global model. These were {nest treatment x year, 

ppresence/absence of colour rings, year} for juveniles of known nest treatment, where survival 

probability was allowed to vary by nest treatment and year interactively, and detection 

probability p by the presence or absence of colour rings and by year, and {treatment x year, 

pyear} for colour-ringed juveniles observed after fledging, where survival probability 

was allowed to vary by treatment and year interactively and detection probability by 

year. The dispersion parameter ĉ of the global model of first year survival for juveniles 

of known nest treatment was 1.151 ± 0.046. As this dispersion parameter was only 

marginally above 1, this model suffered from only very moderate overdispersion. The 
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dispersion parameter ĉ for the global model for colour-ringed juvenile birds observed 

after fledging was 0.783 ± 0.088. Therefore, this model suffered from moderate 

underdispersion (Burnham and Anderson 2002). As recommended by Cooch and White 

(2011), we set ĉ =1 (i.e. made no adjustment to ĉ) for both candidate sets of models of 

first year survival.  

 

We used values of AICc to test candidate sets of models of detection probability 

p with various factors (presence/absence of colour rings, experimental treatment, year 

and interactions of these factors) for the two analyses of juvenile survival, using a 

reasonably complex structure of  (nest treatment: nest treatment x year; juvenile treatment: 

treatment x year). As for the adult analysis, for the analysis of juveniles that were observed 

or captured post-fledging we considered models in which p was allowed to vary in 2009 

and 2010, but in 2011 was fixed at 1 or the mean of 2009 and 2010 (Table S4.2, 

Supporting Information). We then carried over the plausible models of p (i.e. those with 

ΔAICc ≤2) to the analyses of survival probability . In these analyses, we tested 

candidate sets of reduced-parameter models, starting with general models of  – {nest 

treatment x year} for juveniles of known nest treatment and {treatment x year} for juveniles 

observed or captured post-fledging – and ending with fully constrained models {}. 

Each model of  within these candidate sets was considered with each of the plausible 

models of p identified in the preliminary step above. 

 

Model averaging of parameter estimates was carried out in the same way as for 

adult survival. 
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Population growth rate 

We used the model averaged parameter estimates for adult and first year survival (nest 

treatment data set), combined with data on fledglings produced per breeding season 

from our related analyses (Chapter 3) to estimate the net effect of supplementary 

feeding on population growth rates of fed and control wheatears. The population growth 

rate (t) for each treatment group (fed and control) was estimated with the following 

equation: 

 

     
tfemtmale

tjuvstmalejuvstmaletfemtfemtmaletmale

t
NN

NNNN

,,

,,,,,,,

 

  1






 
 , 

where Nmale,t is the number of colour ringed breeding males in year t (Nfem,t for females), 

male,t is the survival rate estimate of males in year t (fem,t for females), Njuvs male
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 is the 

mean number of fledglings produced per male in year t and juvs,t is the survival rate 

estimate of fledglings in year t. Upper 95% confidence intervals for the estimates of t 

were then calculated with the following equation: 
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where is a correction factor for multiple upper bounds (0.718), derived from the 

fourth root of  (because there are 4 separate standard errors in the equation). Lower 

95% confidence intervals were calculated with a similar equation:  
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RESULTS 

Adult survival 

Model selection to determine the best structure for detection probability p resulted in 

five out of the eight candidate models being identified as plausible (ΔQAICc ≤ 2) {psex} 

(fixed at 1 and fixed at 0.901, the mean of 2009 and 2010), {p} (fixed at 1 and fixed at 

0.901) and {psex, year} (2011 fixed at 1) (Table S4.1 and Fig S1a, Supporting 

Information). These included effects of sex and year, as well as a model of equal 

detection probability across groups. All five plausible models of p were then carried 

over to the candidate list of survival models.  

 

Table 4.1. Multistate models of annual adult survival () ranked by ΔQAICc. Subscripts of denote 

variables used in the model for survival: no subscript = constant across groups and time, trt = 

experimental treatment (fed or control), sex and year.  

 

 Model 

No. 

parameters ΔQAICc wAICc Deviance 

(1) trt  psex [2011 = 1] 5 0.0 0.101 86.0 

(2)   psex [2011 = 1] 4 1.0 0.062 89.1 

(3) trt  p [2011 = 1] 4 1.3 0.053 89.4 

(4) trt x year  psex [2011 = 0.901] 9 1.5 0.047 79.2 

(5) trt x year  psex [2011 = 1] 9 1.5 0.047 79.2 

(6) trt, sex  psex [2011 = 1] 6 2.0 0.037 86.0 

(7) trt  psex, year [2011 = 1] 6 2.1 0.036 86.0 

(8) trt  psex [2011 = 0.901] 5 2.2 0.034 88.2 

(9) trt, year  psex [2011 = 1] 7 2.2 0.034 84.1 

(10)   p [2011 = 1] 3 2.4 0.031 92.5 

(11) trt x year  p [2011 = 0.901] 8 2.4 0.030 82.2 

(12) trt x year  p [2011 = 1] 8 2.4 0.030 82.2 

(13) trt, year  psex [2011 = 0.901] 7 2.8 0.025 84.7 

(14) year  psex [2011 = 0.901] 6 2.9 0.024 86.8 

(15) year  psex [2011 = 1] 6 2.9 0.024 86.8 

(16)   psex [2011 = 0.901] 4 2.9 0.024 91.0 



Chapter 4 Food supply and survival of a migratory bird 

 

 143 

Table 4.1, continued 

(17) sex  psex [2011 = 1] 5 3.0 0.023 89.0 

(18)   psex, year [2011 = 1] 5 3.0 0.022 89.1 

(19) trt, sex  p [2011 = 1] 5 3.1 0.022 89.1 

(20) trt, year  p [2011 = 1] 6 3.2 0.021 87.1 

(21) trt x year  psex, year [2011 = 1] 10 3.2 0.020 78.7 

(22) trt  p [2011 = 0.901] 4 3.6 0.016 91.7 

(23) trt, year  p [2011 = 0.901] 6 3.8 0.015 87.7 

(24) year  p [2011 = 0.901] 5 3.9 0.014 89.9 

(25) year  p [2011 = 1] 5 3.9 0.014 89.9 

(26) trt, year  psex, year [2011 = 1] 8 4.0 0.014 83.7 

(27) trt x sex  psex [2011 = 1] 7 4.0 0.013 85.9 

(28) trt, sex  psex, year [2011 = 1] 7 4.1 0.013 85.9 

(29) trt, sex  psex [2011 = 0.901] 6 4.2 0.012 88.1 

(30) sex  p [2011 = 1] 4 4.2 0.012 92.3 

(31)   p [2011 = 0.901] 3 4.5 0.011 94.6 

(32) year  psex, year [2011 = 1] 7 4.6 0.010 86.5 

(33) sex, year  psex [2011 = 0.901] 7 4.9 0.009 86.7 

(34) sex, year  psex [2011 = 1] 7 4.9 0.009 86.8 

(35) sex  psex [2011 = 0.901] 5 4.9 0.009 91.0 

(36) sex  psex, year [2011 = 1] 6 5.0 0.008 89.0 

(37) trt x sex  p [2011 = 1] 6 5.1 0.008 89.1 

(38) trt x sex, trt x year  psex [2011 = 0.901] 11 5.3 0.007 78.6 

(39) trt, sex  p [2011 = 0.901] 5 5.4 0.007 91.4 

(40) trt x sex, trt x year  psex [2011 = 1] 11 5.5 0.006 78.9 

(41) sex  p [2011 = 0.901] 6 5.7 0.006 89.7 

(42) sex, year  p [2011 = 1] 6 5.8 0.006 89.8 

(43) trt x sex, trt x year  p [2011 = 0.901] 10 5.9 0.005 81.5 

(44) trt x sex  psex, year [2011 = 1] 8 6.1 0.005 85.9 

(45) sex  p [2011 = 0.901] 4 6.2 0.005 94.3 

(46) trt x sex  psex [2011 = 0.901] 7 6.2 0.004 88.1 

(47) trt x sex, trt x year  p [2011 = 1] 10 6.3 0.004 81.8 

(48) sex, year  psex, year [2011 = 1] 8 6.6 0.004 86.4 

(49) trt x sex, trt x year  psex, year [2011 = 1] 12 7.2 0.003 78.4 

(50) trt x sex  p [2011 = 0.901] 6 7.4 0.002 91.4 

Detection probability for 2011 was fixed at different levels, as denoted within brackets following the p 

model notation: 1, [2011 = 1] and the mean of p in 2009 and 2010, 0.901 [2011 = 0.901].
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Table 4.2. Model-averaged estimates of annual survival probability () (year t to year t + 1) of adult 

wheatears by sex, year and experimental treatment. Contributions to estimates from each model are 

weighted by wAICc. 

 

  Treatment
1 

  Fed Control 

Sex Year t (95% CI) (95% CI) 

    

Male 2008 0.577 (0.311–0.805) 0.474 (0.324–0.628) 

 2009 0.520 (0.263–0.767) 0.456 (0.316–0.603) 

 2010 0.661 (0.354–0.874) 0.505 (0.348–0.661) 

    

Female 2008 0.567 (0.302–0.798) 0.467 (0.318–0.623) 

 2009 0.510 (0.253–0.761) 0.449 (0.310–0.597) 

 2010 0.652 (0.345–0.870) 0.498 (0.339–0.658) 

1
Experimental treatment of individuals during year t (fed = supplementary fed, control = no 

supplementary feeding). 

 

Six models of adult survival were identified as plausible (ΔQAICc ≤ 2, Table 

4.1, Models 1–6). Treatment was included in five of the six plausible models (Models 1 

and 3–6), year was included in two plausible models (interactively with treatment) 

(Models 4–5) and sex was included in one plausible model (Model 6). One of the 

plausible models assumed constant survival across groups (Models 2). Model-averaged 

parameter estimates (Table 4.2) indicated that survival was highest in the period 2010–

2011. Estimated annual survival was approximately 1.2 times higher for fed adults than 

control adults across both sexes and all years (range 1.14–1.31) (Fig. 4.1). The effect of 

treatment was greatest in 2010, with adult survival estimates approximately 1.31 times 

higher for fed birds than for control birds from 2010 to 2011. The reasonably wide 

confidence intervals suggest, however, that these results need to be treated with some 

degree of caution.    
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Fig. 4.1. Model-averaged survival estimates (± 1 SE) in the three years of this study of adults, yearlings in 

the nest treatment subset and yearlings in the fledgling treatment subset. Adult survival estimates are 

averaged across models without sex effects to aid clarity, as sex was of only minor importance in QAICc 

ranking (Table 4.1). 

 

 

First year survival 

For the analysis of the effect of coming from a food-supplemented nest on first-year 

survival, two structures of detection probability p were supported by the data 

{ppresence/absence of colour rings} and {ppresence/absence of colour rings, year} (Table S4.2 and Fig S1b, 

Supporting Information). These indicated that detection probability was, as expected, 

higher for colour-ringed birds (because their identity could be confirmed without 

requiring recapture). These two structures of p were then used in the candidate set of 

models of first-year survival in the analysis of nest treatment.  

 

For the analysis of the effect of supplementary feeding of fledged juveniles on 

first-year survival, three out of four considered structures of p were supported; two of 

which indicated that detection probability was constant across groups (one with p for 

2011 fixed at 1 and one with p for 2011 fixed at the mean of 2009 and 2010) and one 

with detection probability varying by year (with p for 2011 fixed at the mean of 2009 

and 2010) (Table S4.2, Fig. S1c, Supporting Information). These structures of p were 
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used in the candidate set of models of juvenile survival in the analysis of juvenile 

treatment. 

 

There were two plausible models of first year survival of juveniles of known 

nest treatment (Table 4.3, Models 51–52). Firstly, a model with constant survival across 

groups and detection probability higher for colour-ringed birds than those which were 

metal ringed only.  Secondly, a model with survival varying by experimental treatment, 

with detection probability again higher for colour ringed birds. Model-averaging 

indicated that there was very little difference in first year survival between juveniles 

from fed nests and juveniles from control nests (Table 4.4, Fig. 4.1). 
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Table 4.3. Models of first year survival () of wheatears determined to have fledged successfully, ranked 

by ΔAICc. Subscripts denote factors used in the survival and detection probability (p) models: no 

subscript = constant across groups and time, nest treatment (nest_trt; fed parents or control parents), 

juvenile treatment (trt; fed or control), year and presence/absence of colour rings (col). 

  

 Model 
 No. 

parameters 
ΔAICc wAICc Deviance 

Juveniles of known nest treatment
1 

    

(51)  pcol 4 0 0.479 29.2 

(52) nest_trt pcol 5 1.7 0.203 28.9 

(53) year pcol 6 3.2 0.099 28.3 

(54)  pcol, year 6 3.7 0.077 28.8 

(55) nest_trt, year pcol 7 4.9 0.041 28.0 

(56) year pcol, year 8 5.1 0.038 26.1 

(57) trt pcol, year 7 5.4 0.032 28.5 

(58) nest_trt, year pcol, year 9 6.8 0.016 25.8 

(59) nest_trt x year pcol 9 7.6 0.011 26.5 

(60) nest_trt x year pcol, year 11 9.4 0.004 24.2 

      

All juveniles
2 

     

(61) trt p [2011 = 0.675] 4 0.0 0.390 11.5 

(62) trt pyear [2011 = 0.675] 5 1.9 0.153 11.3 

(63) trt p [2011 = 1] 4 2.3 0.122 13.9 

(64)  p [2011 = 0.675] 3 3.0 0.088 16.6 

(65) trt, year p [2011 = 1] 6 3.9 0.056 11.3 

(66) trt, year p [2011 = 0.675] 6 3.9 0.055 11.3 

(67)  p [2011 = 1] 3 4.7 0.037 18.3 

(68)  pyear [2011 = 0.675] 4 4.9 0.034 16.4 

(69) trt, year pyear [2011 = 0.675] 7 5.9 0.021 11.2 

(70) year p [2011 = 0.675] 5 7.1 0.011 16.5 

(71) year p [2011 = 10] 5 7.1 0.011 16.5 

(72) trt x year p [2011 = 0.675] 8 7.9 0.007 11.1 

(73) trt x year p [2011 = 1] 8 7.9 0.007 11.1 

(74) year pyear [2011 = 0.675] 6 9.0 0.004 16.3 

(75) trt x year pyear [2011 = 0.675] 9 9.9 0.003 10.9 

1
Subset of juveniles with known experimental nest treatment (parents fed or control) because parent ID 

could be confidently determined. Includes juveniles with metal rings (with/without colour rings), that 

were assumed to have fledged or observed/captured after fledging. 
2
All colour-ringed juveniles that were observed/captured after fledging, including those of unknown nest 

treatment.  

Detection probability of the data set of all colour-ringed juveniles for 2011 was fixed at different levels, 

as denoted within brackets following the p model notation: 1, [2011 = 1] and the mean of p in 2009 and 

2010, 0.675 [2011 = 0.675].  
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Table 4.4. Model-averaged estimates of first year survival () probability (hatching year to the following 

year) of juvenile wheatears by year and juvenile experimental treatment. Contributions to estimates from 

each model are weighted by wAICc. 

 

 Treatment 

Hatching 

year 

Fed Control 

(95% CI) (95% CI) 

Juveniles of known nest treatment
1 

 

2008 0.191 (0.118–0.294) 0.184 (0.117–0.277) 

2009 0.197 (0.135–0.279) 0.189 (0.130–0.266) 

2010 0.185 (0.122–0.270) 0.178 (0.118–0.260) 

   

All juveniles
2 

 

2008 0.430 (0.250–0.630) 0.281 (0.187–0.397) 

2009 0.428 (0.255–0.620) 0.278 (0.190–0.388) 

2010 0.412 (0.226–0.626) 0.265 (0.157–0.412) 

1
Subset of juveniles with known experimental nest treatment (parents fed or control) because parent ID 

could be confidently determined. Includes juveniles with metal rings (with/without colour rings), that 

were assumed to have fledged or observed/captured after fledging. 
2
All colour-ringed juveniles that were observed/captured after fledging, including those of unknown nest 

treatment.  

 

We then analysed models of first year survival with the data set containing only 

juveniles that were observed (having been colour-ringed in the nest) or captured and 

colour-ringed between fledging and autumn departure. Two plausible models were 

identified, both including treatment only, one with detection probability constant across 

years (with p for 2011 fixed at the mean of 2009 and 2010) and one with detection 

probability varying by year (with p in 2011 fixed at the mean of 2009 and 2010) (Table 

4.3, Models 61–62). Model weights showed that these models were more than four 

times as well supported by the data than the nested models, which did not incorporate a 

treatment effect (Models 64 and 68, w61+62/w64+68 = 0.390 + 0.153/0.088 + 0.034 = 4.45; 

Table 4.3). Model-averaged estimates indicated that individuals receiving 
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supplementary feeding as fledged juveniles were approximately 1.5 times more likely to 

survive their first year than control juveniles (Table 4.4, Fig 4.1). 

 

Comparing the results for juveniles of known nest treatment with those of 

juveniles observed only after fledging, estimates of first year survival rates were 

approximately twice as high for juveniles observed after fledging than juveniles ringed 

in the nest and assumed to have fledged, indicating that a substantial percentage of first 

year mortality occurs in the first few days after fledging (Table 4.4). Furthermore, the 

effect of supplementation seemed to be greater once juveniles had left the nest than 

during the nestling stage (Table 4.4, Fig 4.1). 

 

Population growth rate 

The estimated population growth rate  of fed wheatears was close to or greater than 1 

(where 1 = no change in population size between years) in all years of this study, while 

for control wheatears it was lower than 1 in two out of three years (mean and [95% 

confidence intervals] for  = 0.98 [0.76, 1.22] for fed birds in 2008, 0.81 [0.67, 0.97] for 

control birds in 2008, 1.20 [0.96, 1.46] for fed birds in 2009, 0.85 [0.72, 0.98] for 

control birds in 2009, 1.24 [1.01, 1.48] for fed birds in 2010 and 1.10 [0.93, 1.28] for 

control birds in 2010).  

 

DISCUSSION 

The abundance of terrestrial arthropods in North temperate and Arctic regions is 

predicted to alter under climate change scenarios of increased temperature and altered 

rainfall (Strathdee et al. 1993, Miles et al. 1997, Pearce-Higgins et al. 2010, Chapter 5). 

While abundance of sap-sucking insects (Hemiptera) increases with climate warming 
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(Strathdee et al. 1993, Miles et al. 1997), other arthropod taxa decline in abundance 

(Pearce-Higgins et al. 2010), or advance their phenology such that abundances are lower 

during late summer (Chapter 5). The overall availability of arthropod prey of northern 

long-distance migrant songbirds is therefore predicted to change, which could have 

consequences for their survival rates. Our results showed that for one such species, the 

northern wheatear, survival rates of adult and juvenile birds are sensitive to changes in 

food availability at a breeding location in northern Scotland. Combining the results of 

this study with parallel findings on breeding productivity (Chapter 3) suggests that at 

our study site, increased food availability may result in a population increase, although 

this may be moderated by density-dependent effects on recruitment (which we did not 

measure).  

 

Observed return rates to a particular location are the product of survival of 

individuals that return to that location (i.e. ruling out both mortality and emigration) and 

the probability that they are then observed (Lebreton et al. 1992). The estimated 

detection probabilities in this study were high (> 0.90 for adults and > 0.67 for 

yearlings) and thus we are confident that they allow us to estimate accurately the 

numbers of birds surviving and returning. The apparent adult survival rates are highly 

likely to reflect actual adult survival rates because breeding site fidelity in northern 

wheatears is very strong (Cramp 1988, Conder 1989, Panov 2005). We cannot, 

however, rule out the possibility that the variation we observed in apparent first year 

survival was driven by natal dispersal decisions related to post-fledging food 

availability. In common with many other bird species (Greenwood and Harvey 1982), 

first year northern wheatears disperse further from their natal sites than adults disperse 

from previous nest sites (Fulton 2010). Circumstantial evidence however, supports the 
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argument that the difference in first year return rates we observed are due to real 

survival differences, rather than differences in natal dispersal between fed and unfed 

individuals. Fair Isle is a small, isolated island, the nearest neighbours of which are 

another small, isolated island to the SW (North Ronaldsay, Orkney) and a larger island 

to the NE (mainland Shetland), each approximately 40 km away. Both of these sites are 

presumably the most likely destinations of young wheatears surviving the winter that do 

not return to Fair Isle to breed. At a mainland site in Sweden (at a similar latitude to Fair 

Isle), median natal dispersal distance is approximately 1.3 km (dispersal distances 

within the 10/90% quantile = 0.47/3.39 km), within a search area extending to 6 km 

from natal sites (Arlt et al. 2008). As on Fair Isle, North Ronaldsay has a bird 

observatory running a regular bird census programme during the summer, while both 

North Ronaldsay and Shetland (e.g. the Sumburgh Head bird reserve at the southern tip 

of the Shetland Mainland, which is the nearest point to Fair Isle) attract many amateur 

ornithologists each year. The chances of observation of colour-ringed wheatears 

breeding at either location are therefore high. The only such record during the three 

years of this study was of an adult male breeding on North Ronaldsay in 2011 that had 

been a fed nestling on Fair Isle in 2010. At the same time, we have received reports of 

nine wheatears that had been colour-ringed on Fair Isle and recorded on passage 

elsewhere in the UK (including one on North Ronaldsay) in the same period (personal 

communications from various observers, usually with photographic evidence), only one 

of which was not subsequently seen on Fair Isle.  We therefore believe that the levels of 

natal or breeding dispersal from Fair Isle are likely to be very low and that dispersal 

decisions are not the cause of the food availability-linked variation in apparent first year 

survival.  
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Adult survival rate estimates were higher for fed than control birds in all years. 

While the width of the confidence intervals of these estimates require caution to be 

applied in their interpretation, it is nonetheless compelling that for both males and 

females, survival rate estimates for fed birds were higher than for control birds in all 

years (0.51–0.66 for fed birds and 0.45–0.51 for control birds). The survival estimates 

for control and fed adults were approximately within the range reported for adult 

northern wheatears under natural conditions in Sweden, at a similar latitude to the 

current study  (0.41–0.62, Arlt et al. 2008; 0.42–0.50, Low et al. 2010). Food 

supplementation in our study may have compensated for periods of low natural food 

availability, thereby reducing nutritional stress, reducing the work load of feeding 

dependent offspring, and ensuring plentiful food during moult and fuelling for 

migration. All of these benefits would be likely to lead to higher survival of adults due 

to lower reproductive costs (Low et al. 2010), improved quality of newly-moulted 

feathers (Norris et al. 2004b) and improved body condition at the onset of migration 

(Fransson 1998; Chapter 2).  

 

Our results suggested that fed juveniles (i.e. those that used feeding stations as 

opposed to those fledging from fed nests) were more likely to survive their first year 

than control juveniles (i.e. those observed after fledging but which did not use feeding 

stations). In contrast, there was no support for the hypothesis that survival rates of 

juveniles were enhanced by higher food availability to parents provisioning dependent 

offspring (nestlings and juveniles during the first 2 weeks after fledging). Consistent 

with these results, we found that fledging success of first broods was no different 

between fed and control pairs (Chapter 3). This suggests that under current natural 

foraging conditions on Fair Isle, brood size and the fledging rate of first broods are not 



Chapter 4 Food supply and survival of a migratory bird 

 

 153 

limited by food availability. An alternative explanation is that food availability does 

limit growth and survival of chicks, but that parents do not increase feeding rates even 

when food availability increases. We did find that, in 2009, chicks of fed parents were 

significantly larger than chicks of control parents (Chapter 3). The current study, 

however, failed to find convincing evidence that this led to higher survival rates of those 

chicks from fed broods. In contrast, there was a marked effect of juvenile treatment on 

first year survival rate estimates: survival estimates for juveniles using feeders ranged 

from 0.41 to 0.43, while for juveniles not using feeders (but observed after fledging), 

estimates ranged from 0.27 to 0.28. Evidence that fed birds had better body condition 

than control birds post-breeding comes from an analysis of body mass of wheatears of 

the same study population (Chapter 2). Food availability between fledging of first 

broods and departure on autumn migration could be limiting the body condition of 

wheatears under current natural foraging conditions. Late-season food limitation is 

likely to affect juvenile birds to a greater extent than adult birds, because adults have 

greater foraging experience and knowledge of local foraging resources than juveniles, 

gained in previous seasons. Changes in late-breeding-season food availability due to 

climate change (or other factors such as land use change) could therefore affect body 

condition of juvenile wheatears. Experimental warming by 2ºC of upland turf samples 

from wheatear habitat in mid-Wales suggests that climate warming will lead to a 

reduction of late-breeding-season food availability due to a shortening of the arthropod 

emergence peak (Chapter 5). This could affect the quality of post-juvenile moult, 

starvation risk on Fair Isle, predator avoidance behaviour (due to the need for increased 

risk taking under conditions of nutritional stress) and the rate and extent of fat and 

muscle accumulation for autumn migration. Feather quality is likely to influence 

survival via its effects on thermoregulation and flight performance (Nilssen and 
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Svensson 1996, Dawson et al. 2000). Variation in post-breeding food availability could 

affect quality of flight feathers only in adults, because juveniles retain their juvenile 

flight feathers until the end of the subsequent breeding season. Foraging conditions 

could affect the quality of adult and juvenile body feathers moulted post-breeding, 

however, with subsequent effects on thermoregulation. The substantially higher rates of 

first year survival of juveniles that had already survived the immediate post-fledging 

period, compared to those monitored from the nestling stage, reveal that much first year 

mortality occurs around the time of fledging on Fair Isle, before departure on autumn 

migration. Birds departing Fair Isle with greater fat and muscle stores may have an 

improved likelihood of surviving migration to the wintering grounds, due to an 

increased resistance to starvation during periods of poor weather, or at stopover sites of 

poor foraging conditions. To gain a better understanding of how much mortality occurs 

at the breeding location or in non-breeding areas (migration or wintering sites) would 

require intensive re-sighting or remote tracking of birds until departure.  

 

Habitat-specific differences in population growth rates of wheatears have 

previously been shown to be determined by differences in adult survival more than 

reproductive success (Arlt et al. 2008). Foraging conditions determined by vegetation 

height underpin these differences in habitat-specific population growth (Arlt et al. 2008, 

Low et al. 2010). In our studies on wheatears, we have shown that an increase in food 

availability leads to increased fledgling production (Chapter 3) and that more of these 

fledglings then survive to recruit to the local population (current study). We also found 

that increased food availability had a positive impact on adult survival rates. The 

combination of these factors provided an estimate of a 1.2 times higher annual 

population growth rate in our fed birds than our control birds. This estimate is likely to 
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be conservative within the context of our experiment, because the cages that we used to 

prevent more voracious species (starlings) stealing food also stopped some target 

wheatears, causing them to be excluded from the food-supplemented treatment group 

(and treated as controls) even though they had received a limited amount of 

supplementary food early in the breeding season. If the food supplementation was 

extended to all wheatear territories on Fair Isle, our results suggest that the island would 

turn from a population sink to a population source. Environmental conditions in the 

non-breeding season of migratory birds are undoubtedly important determinants of 

population sizes (Marra et al. 1998, Sillett and Holmes 2002, Norris et al. 2004a). The 

results of this study suggest that climate-linked changes in breeding season food 

availability can affect survival. The direction of change in food availability will 

determine whether this could exacerbate or buffer lowered survival in the sub-Saharan 

wintering areas, where climate change could lead to lower food availability.  
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Supporting Information 

 

Table S4.1. ΔQAICc ranking of multi-state models of detection probability (p) of adult wheatears. The 

same covariate structure for survival () is used for all candidate models, while the transition parameter 

() is fixed at 1 for all models. Subscripts denote factors allowed to vary for the  and p parameters (trt 

(treatment), sex and year). No subscript = constant across groups and time. 

 

Model 
No. 

parameters 
ΔQAICc wAICc Deviance 

(S1) trt, sex, year  psex [2011 = 1] 8 0.0 0.239 84.0 

(S2) trt, sex, year  psex [2011 = 0.901] 8 0.5 0.181 84.5 

(S3) trt, sex, year  p [2011 = 1] 7 0.8 0.157 86.9 

(S4) trt, sex, year  p [2011 = 0.901] 7 1.4 0.121 87.4 

(S5) trt, sex, year  psex, year [2011 = 1] 9 1.8 0.097 83.7 

(S6) trt, sex, year  pyear [2011 = 1] 8 2.3 0.075 86.3 

(S7) trt, sex, year  psex, year [2011 = 0.901] 9 2.4 0.073 84.2 

(S8) trt, sex, year  pyear [2011 = 0.901] 8 2.8 0.057 86.8 

Detection probability of the data set of all colour-ringed juveniles for 2011 was fixed at different levels, 

as denoted within brackets following the p model notation: 1, [2011 = 1] and the mean of p in 2009 and 

2010, 0.675 [2011 = 0.675].  
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Table S4.2.  ΔAICc ranking of models of detection probability (p) of yearling wheatears. The same 

covariate structure for survival  is used for all candidate models. Subscripts denote factors allowed to 

vary for the  and p parameters: nest treatment (nest_trt), juvenile treatment (trt), presence/absence of 

colour rings (col), year and no subscript = constant across groups and time. 

 

Model 

No. 

parameters ΔAICc wAICc Deviance 

Juveniles of known nest treatment
1
      

(S9) nest_trt x year pcol  9 0 0.692 26.5 

(S10) nest_trt x year pcol, year  11 1.9 0.271 24.2 

(S11) nest_trt x year p  8 6.1 0.032 34.7 

(S12) nest_trt x year pyear  10 9.6 0.006 34.1 

        

All juveniles
2
       

(S13) trt, year p [2011 = 1] 6 0.0 0.371 11.3 

(S14) trt, year p [2011 = 0.675] 6 0.1 0.360 11.3 

(S15) trt, year pyear [2011 = 0.675] 7 2.0 0.137 11.2 

(S16) trt, year pyear [2011 = 1] 7 2.1 0.132 11.2 

1
Subset of juveniles with known experimental nest treatment (parents fed or control) because parent ID 

could be confidently determined. 
2
All ringed juveniles, including those of unknown nest treatment. 

Detection probability of the data set of all colour-ringed juveniles for 2011 was fixed at different levels, 

as denoted within brackets following the p model notation: 1, [2011 = 1] and the mean of p in 2009 and 

2010, 0.675 [2011 = 0.675].  
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Fig. S1. Model-averaged encounter probabilities (± 1 SE) in the three years of this study of (a) adult 

males and adult females (note that in 2011, resighting probabilities were fixed at 1 or the mean of 2009 

and 2010 in different models), (b) yearlings in the nest treatment subset that were either colour-ringed or 

not colour-ringed (i.e. metal ringed only) and (c) yearlings in the fledgling treatment subset (note that in 

2011, resighting probabilities were fixed at 1 or the mean of 2009 and 2010 in different models).  
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ABSTRACT 

An important mechanism by which climate change affects animals is likely to be 

through changes in the abundance and phenology of their food supply, yet the effects of 

climate on food availability are generally poorly understood. Here we determine the 

effects of experimental manipulations of temperature and soil moisture on the 

emergence of arthropod prey of insectivorous birds, from turf samples obtained from 

upland grassland and kept in individual containers. Manipulations of both temperature 

and soil water content affected arthropod phenology and abundance, as well as the size 

of arthropods that emerged. Warming by 2°C in combination with elevated soil 

moisture caused a higher peak of abundance among the non-Sciaridae arthropod taxa. 

Warming by 2°C caused a shorter peak of abundance of these univoltine taxa at lower 

levels of soil moisture. There was, however, no difference in total abundance of these 

taxa between temperature or soil moisture treatments. Abundance of the only 

multivoltine insects in our samples, the Sciaridae, was greatly increased by warming in 

combination with increasing soil moisture. Mean body length of arthropods emerging 

from warmed turf was greater than those from unheated turf at the beginning of the 

season, and smaller at the end. Extreme low soil water content reduced arthropod 

emergence. Arthropods are expected to be smaller at the end of hot summers, whilst 

abundance of individual taxa will depend on life-history. The phenology of the 

arthropods emerging from grassland turf samples in the present study suggests that the 

window of high food availability to upland grassland birds such as the northern 

wheatear will be shorter and earlier during warmer and drier summers, which are 

predicted to become more frequent in Wales over the next century.    

 



Chapter 5 Arthropod abundance and phenology 

 

 165 

INTRODUCTION  

Understanding how climate affects the abundance and phenology of animal food 

availability is important for predicting ecological responses to climate change (Helmuth 

et al. 2005). For organisms living in seasonal environments, synchronisation of 

energetically expensive stages of the life cycle with periods of high food availability is 

essential to maximise fitness (Perrins 1970). For example, migratory songbirds living in 

temperate regions typically have a diet dominated by arthropods, which have a 

pronounced peak in abundance during the spring and summer (Van Noordwijk et al. 

1995, Visser et al. 2006). By altering the abundance and phenology of their arthropod 

prey, climate change can have impacts on the survival and breeding success of 

migratory songbirds (Both et al. 2006; Mazerolle et al. 2005; Norris et al. 2004, 

Chapters 2, 3 and 4). 

 

There is compelling evidence that some migratory songbirds have undergone 

phenological changes over recent decades that are associated with climate-driven 

changes in food availability; for example by advancing the timing of migration and egg-

laying, so that chick-rearing still coincides with peaks in food abundance that are 

occurring progressively earlier during the breeding season (Dunn and Winkler 1999, 

Jenni and Kéry 2003, Cotton 2003, Crick 2004, Tryjanowski et al. 2005, Visser and 

Both 2005). The ability of birds to track changes in food abundance is expected to have 

a major effect on breeding performance and survival, and hence on population sizes and 

distributions (Møller et al. 2008). For example, declines of some European populations 

of pied flycatcher, Ficedula hypoleuca, appear to be due to an inability to adjust arrival 

dates sufficiently to match the advancing phenology of their arthropod food resources, 

brought about by recent climate change (Both and Visser 2001).  
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Food manipulation experiments (simulating climate-driven changes in food 

availability) have demonstrated directly the effect that changing food abundance at 

breeding areas can have on breeding productivity of migratory birds (Nagy and Holmes 

2005; Rodenhouse and Holmes 1992; Chapter 3). Food supplementation led to increases 

in the number of breeding attempts in black-throated blue warblers, Dendroica 

caerulescens, (Nagy and Holmes 2005) and northern wheatears, Oenanthe oenanthe, 

(Chapter 3). Food supplementation also had a positive impact on first year survival of 

northern wheatears (Chapter 4). Experimental food reductions led to fewer nesting 

attempts in black-throated blue warblers (Rodenhouse and Holmes 1992), but had no 

impact on breeding productivity of red-eyed vireos, Vireo olivaceus (Marshall et al. 

2002).  

 

Although these studies indicate that the timing and abundance of food 

availability has a major effect on the population dynamics of migratory birds, the details 

of how future climate change will actually affect food availability for birds in any 

particular habitat remain largely unknown. Climate change is known to affect 

population sizes (Bale et al. 2002), distribution (Musolin 2007) and phenology (Buse 

and Good 1996, Musolin 2007) of individual arthropod taxa. However, the responses of 

insect life-histories to climate change are both complex and varied, depending on an 

individual species’ life-history and ecology (Briones et al. 1997). Marked changes in 

species distribution – of taxa including Odonata, Orthoptera and Lepidoptera – in 

response to unusually hot summers, provide useful information about the potential 

effects of climate change (Cannon 1998), but there has yet to be an overall test of the 

hypotheses that climate change will affect both (i) the productivity and (ii) the 

phenology of entire insect communities in any habitat. This is a critical question in the 
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context of understanding the mechanisms underlying the effects of climate on the 

breeding and migration strategies of insectivorous birds. It is, for example, not known 

whether climate change is causing an overall increase or decrease in upland arthropod 

biomass, or how the peaks in total arthropod availability may be advanced or delayed by 

climate changes. The present study addresses this gap in current knowledge of the 

changes taking place in upland ecosystems, by testing the effects of projected climate 

change on a whole community of grassland arthropods and provides insights into the 

trophic mechanisms which may underlie currently observed widespread changes in bird 

behaviour, phenology and populations. 

 

Both changing temperature and changing rainfall patterns can impact arthropod 

abundance and phenology (Bale et al. 2002). Soil moisture content may be more 

important than average temperatures, for example because many arthropod larvae 

(particularly Tipulidae) are sensitive to desiccation (Coulson et al. 1976, Briones et al. 

1997). Soil moisture is related to both precipitation (the amount of water falling onto the 

soil) and temperature (affecting evaporation of water from the soil). Climate change is 

predicted to lead to warmer, dryer summers in the UK uplands (Holden et al. 2007), 

which has been shown to cause significant declines in abundance of tipulids, a key prey 

category for many upland breeding birds (Pearce-Higgins et al. 2010, Carroll et al. 

2011). Experimental increases of upland peatland moisture levels led to increases in 

abundance of tipulids, a keystone taxon of peatland ecosystems (Carroll et al. 2011). 

Temperature also affects arthropod development rates, diapause and emergence 

(Butterfield, 1976; Bale et al. 2002). Although an increase in temperature may cause 

earlier arthropod emergence (Masters et al. 1998, Gordo and Sanz 2006), these early 
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emergents may have a lower adult weight and fecundity (Butterfield 1976). This may in 

turn affect both their reproductive success and their value as food for migratory birds. 

 

The majority of upland birds in the UK forage on arthropods. This arguably 

makes them particularly sensitive to climate change (Pearce-Higgins 2010) because 

arthropods are themselves known to be sensitive to climate change (Bale et al. 2002, 

Pearce-Higgins et al. 2010, Bale and Hayward 2010). Furthermore, years of land-use 

changes, including recent agricultural intensification, have had major impacts on the 

suitability of many areas of the uplands as bird habitat (Buchanan et al. 2006, Amar et 

al. 2011). 

  

Adults and larvae of Diptera represent a large proportion of the diets of upland 

birds (Buchanan et al. 2006). Higher temperatures should allow faster development 

times, which for multivoltine species (i.e. species with more than one generation per 

year) such as many Diptera, may allow additional generations per year. It is predicted 

that higher ambient temperatures will allow many multivoltine species to expand their 

geographical ranges to higher latitudes and altitudes (Bale et al. 2002). Indeed, this has 

already been observed in a number of UK butterfly species (Pollard et al. 1995).  

 

In this study we test the potential net effect of climate change on phenology and 

abundance of the community of arthropods emerging from upland grassland swards, by 

experimentally manipulating temperature and soil moisture content. We focused on 

likely prey of the northern wheatear, a widespread Afro-Palearctic migrant songbird, 

that in the UK inhabits mainly upland moorland and grassland habitats (Cramp 1988, 

Conder 1989). This bird species was chosen as a case-study because we have previously 
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shown how changes in food abundance affect the survival, body mass regulation and 

breeding productivity of northern wheatear (Chapters 2–4). In the present study, we 

used experimental manipulations of temperature and soil water content to enable us to 

predict the effects of future climate change on the arthropod prey of northern wheatears, 

thus examining the mechanism linking projected changes in temperature and rainfall in 

wheatear breeding habitats, with our results on the effects of changing food availability 

on demographic change in wheatear populations. We tested the hypotheses that (1) a 2 

ºC increase in temperature (within the range of projected warming by 2100; IPCC 2007, 

Murphy et al. 2009) would lead to advanced emergence phenology and greater 

arthropod abundance, and (2) extreme (high or low) soil moisture content would have a 

negative impact on arthropod abundance in upland grassland sward. As most upland 

grassland and moorland migratory birds forage primarily on arthropods (especially 

insects), these results are applicable across upland migratory bird communities, 

including taxa of conservation concern such as ring ouzels (Turdus torquatus), skylarks 

(Alauda arvensis) and golden plovers (Pluvialis apricaria).  

 

MATERIALS AND METHODS 

Sampling site, turf collection and maintenance 

We extracted 72 samples of turf, measuring approx. 40 cm long x 25 cm wide x 10 cm 

deep, from an upland, semi-natural, grassland site at Coed-y-Wern farm, Pwllgloyw, in 

the Brecon Beacons National Park, mid-Wales, UK (51°59'N, 3°25'W). Mean turf 

weight (± SE) was c. 6.48 ± 0.05 kg (range 5.6–7.3 kg). The turf collection site 

comprised short-grazed grassland sward and scattered rocks and so represented typical 

northern wheatear breeding habitat in the British uplands (Cramp 1988). Indeed, 

territory-holding northern wheatears had been observed at the site in the years preceding 

our turf removal (R.J. Thomas, pers. obs.). The underlying soil was a mixture of red 
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sandstone and clay typical of the Brecon Beacons National Park and the field was 

grazed by ponies (Equus ferus caballus), sheep (Ovis aries) and rabbits (Oryctolagus 

cuniculus). The plant composition of the turf was typical of short-grazed upland 

grassland, dominated by common bent (Agrostis capillaris) with sheep’s fescue 

(Festuca ovina), springy turf moss (Rhytidiadelphus squarrosus), glittering wood moss 

(Hylocomium splendens) and occasional ribwort plantain (Plantago lanceolata), 

common dog violet (Viola riviniana), bird’s foot trefoil (Lotus corniculatus) and 

creeping thistle (Cirsium arvense).  

 

The turf samples were collected on 25
th

 March 2011. The date of sample 

collection was chosen in order for the experiment to begin at the time when wheatears 

were beginning to arrive and breed in the Welsh uplands, and in fact coincided with the 

first sighting of wheatears on the southern coasts of England and Wales in late March 

2011. The experiment was carried out across 19 weeks, from late March to late July 

2011, in order to encompass the arrival and breeding season of northern wheatears until 

independence of first-brood fledglings in June–July (Cramp 1988). Importantly, the 

experimental period included the later stages of the breeding season in June–July, when 

wheatears would be expected to initiate second broods if sufficient food resources were 

available to them (Chapter 3). 

 

Each turf sample was placed in a separate plastic seed propagator tray with a 

transparent plastic lid and closable ventilation holes (obtained from B&Q ltd). The turf 

samples, in their propagators, were kept under covered outdoor shelters (an unused 

aviary) with wire mesh walls (gauge size ca. 2 cm) and a Perspex roof, to maintain them 
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at approximately outdoor temperatures and light levels, including diurnal and seasonal 

fluctuations, whilst keeping the samples sheltered from rainwater and direct sunlight.  

 

The vegetation in each of the turf samples was cut weekly with scissors to a 

height of 10 cm, to simulate natural grazing conditions that would occur in an upland 

setting. When the turf samples were collected, the vegetation on the samples had been 

grazed to a shorter length (c. 3–4 cm) over the preceding winter; however this was 

shorter than the height that wheatear habitat would typically be grazed to during the 

summer (pers. obs), and so the vegetation of the sampled turfs was allowed to grow to 

10 cm before cutting began.  

 

Experimental design 

Each turf sample was randomly assigned to one of six treatment groups (Table 

5.1), in a 3 x 2 factorial experiment (with n = 12 turf samples in each treatment) with 

three soil moisture treatments (raised, control, lowered) and two temperature treatments 

(ambient and warmed). 
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Table 5.1. The six combinations of soil moisture and temperature treatment, in a 3 x 2 factorial design. 

Increased soil moisture turfs were watered weekly to raise soil water content above 12%. Turfs with 

minimal change in soil moisture were kept as close to their starting soil water content levels as possible 

(within 9–12% soil water content). Turfs with decreased soil water content were kept below 9% soil water 

content. The temperature of ambient temperature turfs was allowed to fluctuate with outside conditions. 

Warmed turfs had their temperature raised approximately 2 °C above the ambient turfs.  

 

group  moisture treatment  temperature treatment n 

A1 increased  ambient 12 

A2 increased  warmed 12 

B1 minimal change ambient 12 

B2 minimal change warmed 12 

C1 decreased  ambient  12 

C2 decreased warmed 12 

 

Soil moisture treatments 

We used a soil moisture probe (Lutron PMS-714) to measure volumetric soil water 

content to 0.1%. Readings were taken every 2 to 3 days, by inserting the probe 

horizontally into the centre of each turf sample, from 4 cm below the soil surface. This 

standard procedure allowed for the most repeatable measurements and direct 

comparison between samples, as water content may vary between the edges and the 

centre of each turf. The mean (± SE) initial volumetric soil water content of samples 

removed from the sampling site was 9.9 ± 0.1% (range 7.7–11.9%). During week 13, 12 

water content readings taken in the field at the sampling site ranged from 9–12%. 

 

Turf groups A1 and A2 (increased soil moisture treatments) were watered 

weekly for the first four weeks of the experiment in order to raise the volumetric soil 

water content above 12% (the upper range recorded in the turf samples just after 

removal from the field). Each sample was watered with up to 300 ml of water, but with 

less if saturation of the soil was reached (i.e. water began draining from the bottom of 
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the turf into the bottom of the seed tray). Samples were not watered at all if water was 

already pooled in the bottom of the tray, as these samples were considered to be already 

saturated. After the 4 weeks of initial watering, soil water content was maintained at an 

elevated level for each treatment, by watering those samples which had dried by 1% 

volumetric water content or more. During watering, water was added to the turf in 50 ml 

increments, whilst monitoring with the soil moisture probe, until the target water 

content was attained.  

 

Groups B1 and B2 were kept as close to their initial (week 1) soil water content 

as possible. Any condensation that formed on the inside surface of the propagator lid 

was poured back onto the soil to minimise water loss. Samples were monitored with the 

soil moisture probe and watered when having lost 1% or more volumetric water content 

from their target level (as above in A1 and A2). 

 

Groups C1 and C2 were initially dried through the repeated removal of 

condensation from the inside surface of the propagator lids using a towel. This was 

carried out three times weekly for the first four weeks. Volumetric water content was 

monitored and after the initial drying period, samples were watered whenever they had 

lost 1% volumetric water content (as in the above treatments). 

 

Particularly warm spells of weather caused faster drying than the 1% per 2 to 3 

days that we aimed for, before moisture levels were restored by watering. In addition, 

peaks of higher than expected soil water content occurred when soil water content 

continued to rise after watering – as water diffused/percolated through the compacted 

clay soil – or after heavy rainfall that entered the shelter. The desired water contents 
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were restored in these cases by wiping away condensation from the inside surfaces of 

the lids. Despite these practical difficulties, the required differences between treatment 

groups in mean soil water content were apparent across the study period (Fig. 5.1). 

 

Fig. 5.1. Mean soil water content (± 1 SE) at three soil moisture treatments (wet (elevated soil moisture), 

control (within pre-manipulation range: 9–12%) and dry) and two warming treatments (ambient and + 2 

ºC) in week 1 and week 19. 

 

Two samples in the dry heated treatment (C2) were colonised by ants. The 

structure of the ant's nests, within the soil, made water content measurement with the 

soil moisture probe impossible. These samples were therefore removed from all 

analyses. 

 

Temperature treatments  

Groups A1, B1 and C1 (temperature controls) were left at ambient temperature. Groups 

A2, B2 and C2 (elevated temperature treatment) were placed on thermostatically 

controlled heat mats (Bio Green, Bischoffen-Oberweidbach, Germany) to elevate soil 

temperatures to 2 ºC above ambient. Temperatures of turf samples were monitored 

using mercury thermometers placed inside the propagator, on top of the soil, three times 

weekly throughout the experiment, and the heat mat thermostats adjusted accordingly if 
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necessary. On some occasions, temperature differences were recorded between those 

samples near the edge of the shelter and those in the middle. These edge effects 

depended upon the weather, but since they never exceeded 1 ºC, and because the six 

treatment groups were evenly distributed with regard to these edge effects, they were 

considered not to have interfered with differences between temperature treatments. 

 

Monitoring arthropods 

Oecos drystick yellow fly papers (Oecos, Kimpton, UK) –henceforth referred to as 

“sticky traps” – were placed inside each propagator for 1 week in every 2 weeks 

throughout the experiment. This discontinuous sampling was chosen to allow the life 

cycles of arthropods emerging from the turf to continue as much as possible during non-

trapping weeks, rather than trapping all arthropods as soon as they emerged. We 

identified arthropods caught on sticky traps to family level, and measured their body 

length to 0.5 mm.  

 

Arthropod sampling at the field site 

During week 13 (on 2 June 2011), twelve pitfall traps and eight sticky traps were set at 

the site from which the experimental turf samples were taken. The traps were collected 

one week later. Sticky traps were placed on the surface of the vegetation and covered 

with a propagator lid to simulate experimental conditions. Pitfall traps were set at 

ground level and covered with a raised lid to prevent flooding.  

 

Data analysis 

For analysis, we carefully selected which arthropod families to include, 

according to their relevance to the diet of northern wheatears, whether they had soil-
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based life cycle stages (eggs / larvae / over-wintering adults) and whether they were 

adequately sampled by sticky-trapping. For one or more of these reasons, we excluded 

ants, springtails (Collembola), and arachnids (with the exception of trombidiid spiders 

whose egg and larval life stages occur in soil) from our analysis.  

 

The design of the experiment involved repeated sampling from the same set of 

turf samples over a protracted period, so a random variable (turf I.D.) was included in 

all models to avoid the problem of temporal pseudo-replication. In addition, arthropod 

count data were non-normally distributed, so generalised linear mixed models 

(GLMMs) were used to model the effects of the experimental treatments on temporal 

variation in arthropod abundance. All statistical analyses were carried out using R (R 

Development Core Team 2011). The performance of competing candidate models was 

compared using Akaike’s Information Criterion, corrected for small sample size (AICc; 

Burnham & Anderson, 2002). Smaller values of AICc indicate better statistical fits. 

Two statistics were obtained for each model: AICi (the difference in AICc between 

model i and the best model) and wAICi (Akaike weight), which indicates the likelihood 

that each model is the best approximation relative to all the other models in the model 

set. The models were ranked by AICi and the most plausible models were defined as 

those with AICi ≤ 2. 

 

Sciaridae (colloquially known as “fungus gnats”) made up over 80% of all 

arthropods caught. These small flies are well known garden pests, and flourish in damp 

turf (Keates et al. 1989, Meers and Cloyd 2005). It is unclear whether sciarids are a 

component of wheatear diet and therefore we analysed counts of Sciaridae in separate 

analyses to those of other arthropod families. This was because the extreme dominance 
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of sciarids in the sticky-trap samples, together with their strong association with wet 

turf, was likely to mask results from other taxa. 

 

Arthropod abundance varied over time in a clearly non-linear manner. We used 

zero-inflated GLMMs (with a Poisson error distribution and log link function) using the 

R package “GLMM.admb” (ADMB Project 2009) with week number represented as a 

categorical variable.  

 

Sciarid abundance was also zero-inflated, and in addition had some very large 

counts from individual turf samples. The residual distribution was normalised by square 

root transformation of sciarid abundance. We used a zero-inflated GLMM with a 

negative binomial distribution (and log link function), using GLMM.admb. To model 

arthropod size, we used a GLMM with a Poisson distribution (and log link function) 

implemented in GLMM.admb.  

 

RESULTS 

Across all 72 turf samples and 19 weeks of the experiment, a total of 2,752 individual 

arthropods emerged and were captured, of which 85.0% were of the dipteran family 

Sciaridae. Other Diptera accounted for 10.7% of the individuals, the remaining 4.3% 

comprising individuals of Trombidiformes (Arachnida), Collembola, and the Insecta 

orders Lepidoptera, Hymenoptera, Orthoptera, Coleoptera, Hemiptera, Dermaptera and 

unidentified insects. A summary of the taxa captured is given in Table S1 (Supporting 

Information). 
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Effects of warming and soil moisture on abundance and phenology of non-sciarid 

arthropod taxa 

Temperature treatment and soil water content were both found to affect the emergence 

of non-sciarid arthropods over time. Temperature and soil water content also exhibited 

interactive effects on abundance. The only plausible model (with AICc ≤ 2) to explain 

numbers of emerging arthropods was the model including all pairs of 2-way interactions 

between warming treatment, soil water content and week (Table 5.2, Model 1). The AIC 

weight of c. 0.99 of this model indicated very strong support for these interactions as 

explanatory terms.  

 

The strong support for the warming x week interaction indicated effects of 

warming on the phenology of arthropod emergence. Specifically, warmed turf samples 

produced more arthropods than unwarmed turf in the first 9 weeks – particularly in the 

elevated moisture treatment – then produced fewer arthropods than unheated turf from 

week 11 onwards (Fig. 5.2a, c and e). Despite these shifts in the timing of emergence, 

peak emergence occurred in week 7 in both warmed and ambient turf. Furthermore, 

across all weeks, the mean number of non-sciarid arthropods per trap (± SE) was very 

similar in warmed and ambient turf (0.60 ± 0.07 and 0.61 ± 0.06 respectively), 

indicating that warming alone had very little effect on the total number emerging across 

the study period. 
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Table 5.2. Results of AICc selection of models of non-Sciaridae arthropod abundance. Interactions are 

indicated by x and include all lower order terms as well. AICci is the difference in AICc between model 

i and the best model and wAICci is the Akaike weight. Turf ID included as a random effect. 

 

model ID dependent 

variable 

fixed effects
2 

df AICci wAICci 

1 abundance
1 

warming x water, warming x week, 

water x week 

38 0 0.987 

2  warming x week 18 9.7 0.008 

3  warming x water, warming x week 22 11.7 0.003 

4  warming x week, water 20 12.2 0.002 

5  water x week 27 41.8 < 0.001 

6  water x week, warming 28 43.9 < 0.001 

7  warming x water, water x week 30 44 < 0.001 

8  week 9 47.2 < 0.001 

9  warming x week 10 49.3 < 0.001 

10  water, week 11 49.6 < 0.001 

11  warming x water, week 14 51.4 < 0.001 

12  warming, water, week 12 51.7 < 0.001 

13  warming x water 6 391.7 < 0.001 

14  none 1 392.2 < 0.001 

15  warming 2 394.2 < 0.001 

16  water  3 395.4 < 0.001 

17  warming, water  4 397.3 < 0.001 

1 
number of non-Sciaridae invertebrates emerging per turf, per sampling period 

2 
fixed effects: warming = warming treatment (+ 2ºC or ambient), water = mean soil water content, week 

= sampling week, none = intercept-only model.  
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Fig. 5.2. Mean (± 1 SE) abundance of arthropods emerging from turfs over time, by warming treatment (+ 

2 ºC and ambient control) and soil moisture treatment: (a) non-Sciaridae at elevated soil moisture (> 12%; 

wet), (b) Sciaridae at elevated soil moisture (> 12%; wet), (c) non-Sciaridae at medium soil moisture (9– 

12%; control), (d) Sciaridae at medium soil moisture (9– 12%; control), (e) non-Sciaridae at reduced soil 

moisture (< 9%; dry) and (f) Sciaridae at reduced soil moisture (< 9%; dry). Sciarid abundances were 

square root transformed. 
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The warming x soil water content interaction term indicated that warming had a 

larger positive impact on non-sciarid arthropod abundance in the elevated moisture 

treatment, relative to other moisture treatment groups (Fig. 5.2a, c and e).  

 

The soil water content x week interaction term indicated that the effect of soil 

moisture on non-sciarid arthropod abundance varied significantly over time. From the 

first measurement of the moisture treatment (week 3) until week 9, emergence from wet 

turf and dry turf rose relative to control turf (Fig. 5.2a, c and e).  

 
 

Fig. 5.3. Mean (± 1 SE) abundance of arthropods emerging per turf per sampling period, starting from the 

week of (a) minimum % soil moisture and (b) maximum % soil moisture for each individual turf. 

 

Numbers of arthropods per turf per sampling occasion were similar between the 

wet, control and dry soil water content groups (mean ± SE of 0.68 ± 0.09, 0.60 ± 0.08 

and 0.68 ± 0.10, respectively). Across all samples and weeks, turf which dried out to 
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lower than approximately 6% soil water content had very little or no emergence of non-

sciarid arthropods in the week of minimum soil water content or subsequent weeks (Fig. 

5.3a). There was no evidence for a similar pattern in turf that experienced very high 

maximum levels of soil water content (Fig. 5.3b). Overall, only extremely low levels of 

soil water content had a great effect upon abundance. 

 

Effects of warming and soil moisture on abundance and phenology of the Sciaridae 

Warming and soil moisture were found to affect the emergence of Sciaridae primarily 

through interactions with time, indicating effects on Sciaridae phenology as well as 

overall abundance. There appeared to be multiple peaks of emergence of Sciaridae (Fig. 

5.2b, d and f), in accordance with this family’s multivoltine life history. There were 

three plausible models to explain Sciaridae abundance, each including the warming 

treatment x week interaction term (Table 5.3, Models 19–21). AIC weights indicated 

very strong support for this interaction (summed AIC weights > 0.99). Soil water 

content and the interaction of warming and soil moisture treatment each appeared in one 

model (Table 5.3, Models 20–21). Warming appeared to advance second peaks of 

emergence of Sciaridae (which are multivoltine), but not first peaks (Fig. 5.2b, d and f).  

 

The interaction between warming treatment and soil moisture treatment 

indicated that Sciaridae abundance was increased under warm conditions with elevated 

soil moisture (Fig. 5.2b), relative to other treatments (Fig. 5.2d and f). Soil moisture 

treatment was also reasonably well supported by the data. Overall, over 1.7 times as 

many Sciaridae emerged from warmed turf relative to ambient turf (mean ± SE per 

sample; warmed: 4.71 ± 1.32; ambient: 2.57 ± 0.60). Over 2.2 times as many Sciaridae 
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emerged from elevated soil moisture turfs relative to control or dry turfs (mean ± SE per 

sample; elevated: 5.92 ± 1.86; control: 2.63 ± 0.87; dry: 2.21 ± 0.45). 

 

Table 5.3. Results of AICc selection of models of Sciaridae abundance. Interactions are indicated by x 

and include all lower order terms as well. AICci is the difference in AICc between model i and the best 

model and wAICci is the Akaike weight. Turf ID included as a random effect. 

 

model 

ID 

dependent 

variable 

fixed effects
2 

df AICci wAICci 

19 abundance
1 

warming x week 19 0 0.457 

20  warming x water, warming x week  23 0.7 0.329 

21  warming x week, water  21 1.6 0.207 

22  warming x water, warming x week, 

water x week  

39 9.7 0.004 

23  warming x week, water x week  37 10.7 0.002 

24  week 10 15.1 < 0.001 

25  water, week  12 15.1 < 0.001 

26  warming x water, week  15 15.2 < 0.001 

27  warming, week 11 15.9 < 0.001 

28  warming, water, week  13 16.2 < 0.001 

29  water x week  28 23.7 < 0.001 

30  warming x water, water x week  31 24.2 < 0.001 

31  water x week, warming  29 24.8 < 0.001 

32  warming x water 7 90.2 < 0.001 

33  water  4 90.3 < 0.001 

34  none  2 91.4 < 0.001 

35  warming, water 5 91.7 < 0.001 

36  warming 3 92.4 < 0.001 

1 
number of individual Sciaridae insects emerging per turf, per sampling period. 

2 
fixed effects: warming = warming treatment (+ 2ºC or ambient), water = mean soil water content, week 

= sampling week, none = intercept-only model.  
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Table 5.4. Results of AICc selection of models of arthropod body length. Interactions are indicated by x 

and include all lower order terms as well. AICci is the difference in AICc between model i and the best 

model and wAICci is the Akaike weight. Turf ID included as a random effect. 

 

model 

ID 

dependent 

variable 

fixed effects
1 

df AICci wAICci 

34 body length
 

warming x week  16 0 0.727 

35  warming x week, water  18 3.3 0.141 

36  warming x water, warming x week  20 5.4 0.048 

37  warming, week  9 5.6 0.044 

38  week  8 7.2 0.019 

39  warming, water, week  11 8.7 0.010 

40  warming x water, week 13 9.6 0.006 

41  water, week 10 9.8 0.005 

42  none  1 27.3 < 0.001 

43  warming 2 28.5 < 0.001 

44  water 3 29.6 < 0.001 

45  warming x water 6 30.2 < 0.001 

46  warming, water 4 31.2 < 0.001 

47  warming x week, water x week 32 51.2 < 0.001 

48  water x week 24 58.4 < 0.001 

49  water x week, warming 25 59.1 < 0.001 

1 
fixed effects: warming = warming treatment (+ 2ºC or ambient), water = mean soil water content, week 

= sampling week, none = intercept-only model. 
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Effects of warming and soil moisture on arthropod size 

Warming was found to increase the mean size of emerging arthropods (all taxa 

combined) over the first 11 weeks (except for week 3), after which mean arthropod size 

was greater in the ambient treatment (Fig. 5.4). The only plausible model to explain 

weekly mean arthropod body length included the interaction warming x week (Table 

5.4, Model 34). AIC weights indicated very strong support for inclusion of the warming 

x week interaction term (summed weights = c. 0.92). Across the experiment as a whole, 

however, there was little difference in the size of arthropods emerging from warmed and 

ambient turf (mean body length ± SE of 4.24 mm ± 0.23 mm and 4.00 mm ± 0.19 mm, 

respectively). 

 

Arthropod sampling at the field site 

The arthropod families captured on sticky traps and in pitfall traps at the field sampling 

site during week 13 are listed in Table S5.1 (Supporting Information). All families of 

invertebrates captured on sticky papers at the sample site were recorded emerging from 

experimental turf samples, except the spider family Thomisidae, which does not have a 

soil-based life-cycle. Pitfall traps contained mainly Coleoptera, of which most were 

carabids. Of 11 families captured in pitfall traps at the field site, only four were caught 

on sticky traps emerging from experimental turf samples. 
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Fig. 5.4. Mean (± 1 SE) body length (mm) of arthropods emerging from warmed (+ 2 ºC) and ambient 

temperature turf samples at three soil moisture treatments; (a) elevated (> 12%; wet), (b) medium (9– 

12%; control) and (c) reduced (< 9%; dry). 
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DISCUSSION 

The most recent climate change projections for the UK suggest that summers in Wales 

will become warmer and drier, relative to a 1961–1990 baseline. Predictions are that 

summer mean temperature in Wales will increase by approximately 2 ºC by the 2080s, 

while mean summer precipitation will fall by about 20% over the same period (Murphy 

et al. 2009). Our results suggest that these predicted climatic changes will have impacts 

on upland soil arthropod abundance and phenology in Wales, which could, in turn, 

affect higher trophic levels (such as migratory birds). 

 

Effects of warming and soil moisture on arthropod phenology and abundance  

Arthropod phenology 

In our study, warming by 2 °C alone had little effect on dates of peak emergence of 

non-sciarid emergence but increased the height of these peaks. Warming (especially in 

combination with elevated soil moisture) tended to increase the abundance of non-

sciarid arthropods emerging early on (from mid-March until early May), though the 

time of peak emergence remained unchanged at week 7 (late April). Warming alone 

resulted in an advance of late emergence peaks of Sciaridae, relative to their emergence 

from turf kept at ambient temperature, though there was no advance of first Sciaridae 

emergence peaks. The unchanged timing of peak emergence of arthropods (non-sciarids 

and first peaks of sciarids) contrasts with the widely observed trend for advancement of 

spring phenology in a wide range of plant and animal taxa, due to warming (Peñuelas et 

al. 2002, Walther et al. 2002, Parmesan 2006), although the shifted relative distribution 

of abundance towards early emergence under warmed conditions are in accordance with 

these studies.   
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By the last week of the experiment, emergence of all arthropods except Sciaridae 

and – in very small numbers – Tineidae (Lepidoptera) had stopped altogether. 

Emergence of Sciaridae, on the other hand, increased throughout the experiment, 

particularly in warmed turf with elevated moisture soil. This, together with the 

observation that the Sciaridae were the only family to have more than two separate 

peaks of abundance, suggests that the Sciaridae were the only family sampled which 

produced more than one generation. High peaks of sciarid abundance were not followed 

by much lower emergence, and emergence across all weeks was far higher from 

warmed, moist turf. The advancement of later peaks relative to first peaks in the 

warmed turf, but not in control turf, suggests that sciarids develop faster and shorten 

inter-generation intervals in warmer weather.  

 

Soil moisture was found to have an important effect on the phenology of upland 

arthropods. Immediately after the separation of water treatment groups by differential 

watering and drying regimes, soil with high (> 12%) soil water content produced more 

arthropods than mid-level (9-12%) or low (< 9%) soil water content. As there was only 

a minimal delay between watering and this difference in emergence, it is likely that 

water acted as an emergence cue, rather than a cue to end diapause. 

 

Few studies have focused on the effects of soil moisture on invertebrate 

phenology; however our findings support the hypothesis of Tauber (1998) and results 

for tipulids (Carroll et al. 2011) that in some habitats, moisture is likely to play an 

important role in insect phenology. The changes investigated in our experiment are 

relatively short-term (intra-annual) effects, but it is clear that longer-term changes in 

temperature and moisture lead to changes in plant community structure and composition 
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(Yang et al. 2011), which will in turn affect the communities of insect herbivores 

feeding on them (Bale et al. 2002). 

 

Arthropod abundance 

When soil moisture levels fell to about 6% and below, subsequent arthropod emergence 

fell considerably. This indicates that prolonged periods of drought (leading to drying of 

soil), which are predicted to increase in frequency under future climate change (IPCC 

2007), could significantly reduce the abundance of arthropods in upland grasslands. 

Drought in particular, might be of concern in the uplands where much agricultural 

grassland, used by foraging birds, has been artificially drained (Amar et al. 2011). Few 

turf samples in the present study reached these very low water content values, however, 

so statistical inference is difficult. Moisture has been shown previously to play a 

significant role in the abundance and vertical distribution within the soil of arthropods, 

especially Diptera, which experience high mortality in dry conditions (Coulson 1962, 

Briones et al. 1997). For example, warming during the late summer (August) in peatland 

ecosystems correlates negatively with abundance of the dipteran family Tipulidae (a 

keystone prey taxa of many upland birds) the following spring (Pearce-Higgins et al. 

2010). In contrast to dry conditions, there was no evidence that the wettest conditions 

led to increased mortality of arthropods yet to emerge from the turf samples. 

 

Aside from the driest levels of soil moisture, there was little difference between 

the soil moisture treatments in the overall abundance of emerging non-sciarid 

arthropods. This suggests that upland soil arthropods are resistant to quite broad 

fluctuations of soil moisture. These arthropods appear to be strongly negatively affected 

once the soil water content falls below a certain threshold (approximately 6% water 
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content in our study). These thresholds of low soil water content appear to be reached in 

UK peatlands during hot summers (Pearce-Higgins et al. 2010). Carroll et al. (2011) 

found that reversing drainage procedures in upland bogs, to increase soil water content, 

increased Tipulidae abundance over a period of 2 years. Numbers of Sciaridae were 

greatly increased in the elevated soil moisture treatment group. This finding is 

consistent with previously published data on sciarids (Keates et al. 1989, Meers and 

Cloyd 2005). 

 

Arthropod size 

Arthropods were, on average, larger in warmed turf than ambient turf during the first 15 

weeks of trapping, then larger in ambient turf in subsequent weeks. This indicates that 

in years with hotter summers, overall arthropod biomass is likely to be even higher than 

predicted by abundance alone early in the northern wheatear breeding season, but lower 

towards the end. Increased temperature was not likely to be causing increases in 

individual body size, since the effects of elevated temperature had only a phenological 

effect, rather than an effect on mean arthropod size over the whole study period. It is 

more likely that warming simply caused species of larger arthropods to emerge earlier. 

 

Food availability to breeding northern wheatears 

Northern wheatears arrive in the uplands of NW Europe from mid-March to early April 

(Cramp 1988). Based on our results, sciarids are expected to be the most abundant 

arthropods emerging from soil at this time. However, these insects are very small (< 3 

mm) so other arthropod taxa may be more energetically worthwhile prey. Our results 

indicate that sciarids are unlikely to be affected by warming at the time of wheatear 

arrival, whilst total abundance of other arthropods is expected to be higher. During this 
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pre-breeding period, the combination of rainfall and temperature is likely to be an 

important factor determining the availability of soil-emerging arthropods, with total 

abundance of arthropods being highest when soil is damp and warm. For birds which 

have arrived early enough, a warm but wet spring might therefore provide an 

opportunity to increase breeding productivity by breeding early, hence providing 

increased possibilities for multiple-breeding attempts (by initiating a second brood, or 

by simultaneous polygyny) (Chapter 3).  

 

Egg-laying in northern wheatears breeding in northwest Europe takes place from 

mid April to early June, with chicks hatching 10 to 15 days later (Cramp 1988). 

Coinciding with wheatear egg-laying, the peak emergence of non-sciarid arthropods 

occurred in late April in the present study. In warmed and dry soil, this period of peak 

abundance ended abruptly in early May, whereas in ambient, wet soil, it continued until 

early June, suggesting that in warm dry years, food availability to insectivorous birds in 

the uplands will be lower during the critical period when nestlings are being provisioned 

by their parents. Peak emergence of Sciaridae in the present study coincided 

approximately with this provisioning period, but occurred two weeks earlier in warmed 

soil at the beginning rather than the middle of June. As sciarids are perhaps more likely 

to be fed to very young wheatear chicks because of their small size (Cramp 1988), and 

because Diptera in general are more important to the diet of chicks than adults (Pearce-

Higgins 2010), an abundance of sciarids may be beneficial to breeding wheatears with 

newly-hatched chicks. As with the other arthropods, dry and warm conditions resulted 

in low abundance of sciarids. Warming temperatures and reduced summer rainfall is 

therefore predicted to negatively affect migratory upland birds via a reduction in food 

availability. 
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Methodological considerations 

Members of all families of arthropods previously found to be included in northern 

wheatear diet (Cramp 1988, Pearce-Higgins 2010) were recorded as part of the present 

study, except Curculionidae (weevils). Tipulids, an important food resource for 

wheatears and other upland birds (Buchanan et al. 2006, Pearce-Higgins 2010), were 

however very rare in our turf samples. This was likely to be due to the patchy local 

distribution of tipulids, related to the distribution of food plants such as mosses and 

liverworts (Coulson 1962). Other taxa important in northern wheatear diet were absent 

from our analysis, due to their life cycle not including a soil-based stage. In particular, 

Lepidoptera are very important to the diet of young wheatears (Cramp 1988), yet only a 

few individual lepidopterans, belonging to one family (Tineidae), were included in our 

dataset.  

 

The sticky traps in our experiment sampled almost all the same families as were 

captured by sticky traps at the field site from which we collected our turf samples. 

Pitfall trapping at the field location revealed that our sticky traps were inadequate for 

sampling of Coleoptera. The most frequent Coleoptera family captured at the field site 

was Carabidae, but these constitute only a small proportion of wheatear diet (Pearce-

Higgins 2010). Overall, despite the fact that arthropods sampled as part of the present 

study make up only part of the arthropod community in upland grassland, their 

abundance is still important for foraging northern wheatears (Pearce-Higgins 2010). 

Major changes in the abundance and phenology of these arthropods, are therefore likely 

to have consequences for breeding productivity, migratory fuelling and annual survival 

of wheatears and other long-distance migratory songbirds. 
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Conclusion 

As initially hypothesised, our experiment demonstrated important changes in arthropod 

abundance and phenology, associated with warming and changes in soil water content. 

Climate-driven changes in the timing of peaks in the availability of arthropod biomass, 

with which migratory birds normally synchronise their breeding, can lead to birds 

mistiming their reproductive efforts with regards to resource availability (Strode 2003, 

Both 2010). Mismatching between breeding events and peak food availability is now 

thought to be one of the major problems facing Afro-Palearctic migratory birds, as 

shown in detailed studies of the pied flycatcher (Both et al. 2006; Both and Visser 2001; 

Both 2010; Both and Visser 2005; Møller et al. 2008). Similarly, the northern wheatear, 

a well-studied model species of migratory bird (Schmaljohann and Dierschke 2005, Arlt 

and Pärt 2007, Delingat et al. 2008, Low et al. 2010), has been shown to be sensitive to 

changes in food availability across its annual cycle (Chapters 2–4). The phenology of 

the arthropods emerging from grassland turf samples in the present study suggests that 

the window of high food availability to upland grassland birds such as the northern 

wheatear will be shorter and earlier during warmer and drier summers, as are predicted 

to become more frequent in Wales over the next century. If this is the case, then the risk 

of mismatch of peak arthropod abundance with the breeding period of northern 

wheatears and other upland migrants will increase.  
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SUPPORTING INFORMATION 

Table S5.1. Arthropod taxa captured by sticky-trap after emerging from experimental turf samples and at 

the field sampling site, and by pitfall traps (field site only). Numbers of individuals are recorded for 

experimental turfs. Presence of taxa within samples at the field site is indicated with an x. UNK = not 

identified to taxonomic level of that column. 

 

Class Order Family 

Experimental 

turfs 

 

Field site 

Sticky traps  Sticky traps Pitfall traps 

Arachnida Araneae Lycosidae 0   x 

Arachnida Araneae Thomisidae 0  x x 

Arachnida Opiliones Phalangiidae 0   x 

Arachnida Trombidiformes Trombidiidae 2   x 

       

Collembola UNK UNK 8    

       

Insecta Coleoptera Cantharidae 1   x 

Insecta Coleoptera Carabidae 0   x 

Insecta Coleoptera Elateridae 0   x 

Insecta Coleoptera Geotrupidae 0   x 

Insecta Coleoptera Staphylinidae 3   x 

Insecta Coleoptera UNK 1    

Insecta Dermaptera UNK 1    

Insecta Diptera Cecidomyiidae 13  x  

Insecta Diptera Chironomidae 5    

Insecta Diptera Dolichopodidae 89    

Insecta Diptera Fanniidae 28    

Insecta Diptera Psychodidae 5    

Insecta Diptera Sciaridae 1369  x  

Insecta Diptera Tabanidae 5  x  

Insecta Diptera Tipulidae 1    

Insecta Diptera UNK 149    

Insecta Hemiptera Aphrophoridae  56  x  

Insecta Hemiptera UNK 5    

Insecta Hymenoptera Braconidae 1  x  

Insecta Hymenoptera Cephoidea 1    

Insecta Hymenoptera Diapriidae  6    

Insecta Hymenoptera Formicidae 0   x 

Insecta Hymenoptera Gasteruptiidae 0  x  

Insecta Hymenoptera Platygasteridae 2    

Insecta Lepidoptera Tineidae 10    

Insecta Orthoptera Acrididae 6    

Insecta UNK UNK 4    
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Discussion 
 

The impact of climate change on individual species and on biodiversity as a whole has 

become an increasingly dominant topic of ecological research over the last 20 years. 

There remains, however, much that we do not know. Current research tends to 

concentrate on observations of correlations between climate variables and various 

ecological factors, such as the timing of migration (Robson and Barriocanal 2011) and 

population distribution shifts (Sharma et al. 2009). Predictions are often based on 

extrapolations from the effects of climate within the current range of variation, or from 

bioclimatic envelope modelling (e.g. Huntley et al. 2007), which uses climate thresholds 

within the current distribution of a species to predict its future distribution based on 

projections of these climate variables within space and time. At large scales, the current 

distributions of a number of species have been successfully simulated with bioclimatic 

envelopes (Beerling et al. 1995, Pearson 2002, Huntley et al. 2007). Bioclimatic 

envelope modelling of future species distributions has, however, been criticised because 

they ignore much of the complexity of ecological communities, such as inter-specific 

interactions (Davis et al. 1998). For migratory species, a bioclimatic approach to 

modelling future distributions may be inadequate because they often utilise locations 

many kilometres apart that may differ in rates and / or direction of climate change. 

Furthermore, the different stages of the annual cycles of migratory species are 

inextricably inter-linked and changes in one stage (e.g. breeding) may  reflect changing 

conditions during another stage (e.g. over-wintering). A major research priority is to 

move beyond simply describing associations and to establish a more mechanistic and 

experimental approach to understanding the biological impacts of climate change, by 

identifying the mechanisms by which climate change impacts biodiversity (Møller et al. 
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2010, Pearce-Higgins and Gill 2010, Wingfield et al. 2011). By understanding the 

mechanisms, it may be possible to appreciate the reasons why some species adapt to 

climate change while others do not (Wingfield et al. 2011) and to devise effective 

mitigation and conservation strategies. In this thesis, I have attempted to address this 

gap in our knowledge by studying the mechanisms by which climate change impacts on 

a long-distance migratory bird, the northern wheatear. 

 

In Chapter 1, I outlined the ways in which climate change is thought to affect 

migratory taxa. Long-distance migrants are likely to be especially vulnerable to the 

effects of climate change, as their ability to complete their annual cycle depends on 

environmental conditions (including weather, habitat quality and food availability) at 

locations many kilometres apart. Climate change therefore has fitness implications for 

migrants at their breeding grounds (e.g. affecting fecundity), wintering grounds 

(affecting survival) or during migration (affecting both survival and subsequent 

fecundity). Furthermore, ecological conditions at one stage of the annual cycle can have 

impacts on subsequent stages via carry-over effects (Marra et al. 1998, Norris et al. 

2004).  

 

A common theme of recent scientific literature in this subject area is the 

suggestion that food availability is one of the primary mechanisms by which climate 

change impacts migratory taxa. For example, changes in temperature and moisture 

affect the development and survival of the invertebrate prey of migratory songbirds, 

both directly and via impacts on primary productivity (Dell et al. 2005, Smith et al. 

2010, Carroll et al. 2011). As well as changes in overall abundance and distribution of 

their food supply, migratory songbirds also have to adjust their timing of migration to 

match the shifting phenology of their food during breeding periods in seasonal 
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environments (Pearce-Higgins et al. 2005, Both et al. 2006). Declines in abundance of 

some long-distance migratory birds – and other migrant taxa – may have been caused by 

constraints preventing them advancing arrival on breeding grounds in synchrony with 

advancing phenology of their food supplies (Beaugrand et al. 2003, Both et al. 2006, 

Møller et al. 2008). 

 

In Chapters 2, 3 and 4, I used food supplementation of wheatears to simulate 

climate-driven increases in food availability at breeding, wintering and stopover sites. 

The food supplementation was not intended to mimic directly the expected ecological 

response to climate change, which, in seasonal environments, is predicted to involve a 

shift in distribution of peaks in resource availability, as well changes in overall 

abundance (Chapter 5). Rather, by supplementing food across whole breeding seasons 

and migratory fuelling periods, I was able to highlight aspects of wheatear performance 

that are currently limited by food availability. The most important of these were 

migratory fuelling, number of breeding attempts and annual survival (due to changes in 

food availability at the breeding grounds). These are thus the factors most likely to be 

affected by climate-linked changes in food availability, whether that is an increase or a 

decrease.  

 

In Chapter 5, I described manipulations of temperature and soil moisture levels 

of turf samples from wheatear habitat to measure the effects of these climate-linked 

environmental variables on the abundance and phenology of the wheatear’s arthropod 

prey. Warming by 2 ºC caused a higher peak of arthropod emergence, especially in 

combination with elevated moisture. This lead to a reduction in arthropods emerging 

after the peak of emergence, relative to turf kept at ambient temperature. Abundance of 

emerging arthropods was dramatically reduced when turfs dried to lower than 
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approximately 6% soil water content. Summer droughts are predicted to occur with 

increasing frequency in the UK and other northern temperate regions during the next 

100 years (IPCC 2007). The present study provides experimental evidence that climate 

change is likely to cause declines in emergence of upland grassland arthropods, via 

reductions in soil moisture. This builds on field observations and experiments in upland 

peatlands, which indicated that climate change and artificial drainage cause declines in 

tipulid emergence (Pearce-Higgins et al. 2010, Carroll et al. 2011). 

 

In Chapter 2, I tested the hypothesis that changing food availability would affect 

the body mass regulation of two subspecies of northern wheatear (O. o. oenanthe and O. 

o. leucorhoa) with contrasting migration strategies. I examined the effects of an increase 

in food availability during migratory fuelling periods of both subspecies at shared 

wintering and stopover locations, as well as at the onset of autumn migration. The trans-

Atlantic sea-crossings of O. o. leucorhoa are one of the most extreme examples of long-

distance songbird migration, requiring them to double their lean body mass in fuel in the 

form of fat and muscle. O. o. oenanthe are ecologically very similar, but migrate in 

shorter flight stages. Both subspecies, however, must fly across the Sahara desert twice 

annually, where there are few foraging opportunities. By studying two closely-related 

and ecologically similar subspecies, the importance of migration strategy in determining 

the impact of changing food supply on body mass regulation could be tested. For O. o. 

oenanthe, I also tested the hypothesis that body mass regulation during the breeding 

season would be affected by an increase in food availability. 

 

Both subspecies increased their body mass in response to food supplementation 

during migratory fuelling periods, but the magnitude of this increase varied by 
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subspecies and location. Food supplementation had a large positive impact on body 

mass of both subspecies in the autumn on Fair Isle, indicating quite strong food 

limitation (under current climatic and foraging conditions) on their ideal fuelling 

strategy. I did not expect a difference between the subspecies at this location in the 

autumn, as they both face an identical onward journey to reach their wintering grounds. 

Summers in the UK are predicted to become warmer and drier, conditions which, when  

these conditions were experimentally simulated, led to lower arthropod emergence 

during the post-fledging period (Chapter 5), in accordance with field observations of 

lower tipulid abundance after drought (Pearce-Higgins et al. 2010). Since the addition of 

food demonstrated food limitation on autumn migratory fuelling on Fair Isle, reduction 

of food abundance is likely to limit fuelling rates further, as well as possibly affecting 

post-breeding moult. As migration is likely to be the period when most mortality of 

migratory birds occurs (Sillett and Holmes 2002), limitation on fuelling due to falling 

arthropod prey abundance is likely to reduce survival rates of long-distance migrant 

birds, such as northern wheatears. 

 

Northern wheatears breeding at high latitudes such as Fair Isle and Sweden 

rarely have multiple breeding attempts (except for replacement clutches after nesting 

failure), but this aspect of breeding productivity was increased by food supplementation 

(Chapter 3). First broods were little affected by the feeding experiment, except for some 

evidence that chicks grew larger when food availability was increased. These results 

suggest that climate change may affect breeding productivity of northern wheatears 

primarily by affecting behavioural decisions over multiple breeding attempts. It was not 

possible to test whether second broods were more successful amongst fed birds than 

control birds, as control birds never produced a second brood. Further south, second 
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brooding is more common; for example, approximately 50% of wheatear pairs on 

Skokholm have second broods (Conder 1989). If arthropod emergence peaks become 

higher but narrower, as my results in Chapter 5 suggest, first broods are unlikely to be 

significantly affected, but rates of second brooding may decline. Rates of polygyny 

during the first brood period may increase, however, due to a higher peak of arthropod 

abundance (Chapter 3). Simultaneous polygyny is therefore a means by which 

individual male wheatears can increase their annual reproductive output (at the expense 

of rival males) if foraging conditions permit. However, an increase in polygyny need 

not result in higher productivity at the population level, if the number of females is the 

limiting factor to the total number of reproductive attempts among the whole 

population. 

 

Timing of clutch initiation was an important factor determining breeding 

productivity of northern wheatears (Chapter 3). Timing of breeding is constrained by 

arrival date in migratory songbirds, which is affected by departure date from wintering 

grounds and the fuelling conditions experienced at wintering grounds and en route. 

Supplementation of food supply of wintering northern wheatears showed that migratory 

fuel accumulation is currently limited by food availability (Chapter 2). Rainfall 

variation in the Sahel correlates with over-winter survival and spring migration timing, 

possibly because of its effect on arthropod abundance (Baillie and Peach 1992, Boano et 

al. 2004, Saino et al. 2007), where wheatears and many other Afro-Palaearctic 

migratory songbirds over-winter. Models of climate change are inconclusive regarding 

the direction of changes in future Sahel rainfall (Hulme et al. 2001). If food supply 

increases in the Sahelian wintering grounds due to higher rainfall, this may facilitate 

earlier departures of migratory birds, allowing them to track advancing phenology of 
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arthropod emergence in their breeding grounds. Conversely, decreasing rainfall in the 

region is likely to lower arthropod abundance, reducing the potential of migrants to 

respond to advancing phenology of food supplies in their breeding grounds by 

increasing fuelling rates.  

 

Environmental conditions in the non-breeding season of migratory birds are 

undoubtedly important determinants of population sizes (Marra et al. 1998, Sillett and 

Holmes 2002, Norris et al. 2004a). The results of this study suggest that climate-linked 

changes in breeding season food availability can affect survival of adults and juveniles. 

Predictions of drier summers in the UK (Murphy et al. 2009), combined with the results 

of Chapter 5 and other studies (Coulson et al. 1976, Pearce-Higgins et al. 2010), suggest 

that food availability during the post-fledging period is likely to decline in future, which 

will be likely to reduce fledgling survival. The direction of change in food availability 

in the Sahel, which is currently difficult to predict because of uncertainties over future 

rainfall (Hulme et al. 2001), will determine whether this will be exacerbated or buffered 

by changes in over-winter survival.  

 

This study has identified some of the key mechanisms by which climate change 

is likely to affect northern wheatears, but it also suggests a number of important 

questions. While this study has examined short-term impacts of simulated climate 

changes on northern wheatears and their arthropod prey, what will be the longer-term 

effects of warming and moisture level changes? For example, what will be the relative 

importance of increases in climate fluctuations and changes in mean temperature and 

rainfall on arthropod abundance and phenology? How will competition between resident 

and migratory birds be affected by climate change? Will changes in survival rates in one 
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stage of the annual cycle be buffered by density-dependent effects at other stages of the 

annual cycle? What is the extent of phenotypic and genetic flexibility in the migration 

strategies of long-distance migrants, which although reasonably flexible in timing in 

relation to current environmental conditions, are under genetic controls over general 

timing, destination and route? How much genetic variation in migration strategy exists 

to allow a rapid evolutionary response to climate change? As ecological conditions in 

the African wintering grounds are implicated in population limitation of many Afro-

Palaearctic migratory birds (Baillie and Peach 1992, Sanderson et al. 2006, Wilson and 

Cresswell 2006), future research effort should focus on the effects of changing climate 

in this region on wintering birds. 

 

In addition to climate change, food availability to wheatears and other migrant 

birds is affected by land-use changes. Changes in land use and management, particularly 

agricultural intensification, have been implicated in the declines of wheatears observed 

in Europe. Wheatears are associated with unimproved, often sheep grazed, grassland 

(Woodhouse et al. 2005) and breeding success and survival is highest in areas with short 

grass swards, where prey density and foraging success are highest (Tye 1992, Pärt 

2001a, 2001b, Low et al. 2010). High-density stocking of sheep reduces arthropod 

abundance, however (Dennis et al. 2008). Soil moisture is an important determinant of 

soil invertebrate abundance. Extensive drainage of peatlands has occurred in the UK 

and elsewhere in northern Europe, causing reductions in the abundance of invertebrates 

such as tipulids. Climate warming is likely to cause further reductions of moisture-

sensitive invertebrate species by increasing evaporation from the soil (Coulson et al. 

1990). Management interventions, such as drain blocking, that increase the moisture 

levels of peatlands are likely to increase the populations of tipulids and other 
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invertebrates (Carroll et al. 2011). This, in turn, should lead to increases in the 

populations of predators that feed on them, such as wheatears. Land-use change is likely 

to differ from climate change in that overall food availability is affected rather than 

primarily the phenology of food availability. In that respect, the experiments in Chapters 

2- 4 are arguably better representations of the effects of land-use change than of climate 

change. Changing food availability is the most important mechanism underlying both of 

these environmental changes, and so this thesis addresses the consequences of both 

issues. 

 

In this study, I compared the impact on body mass regulation of increased food 

availability on O. o. oenanthe and O. o. leucorhoa during migratory fuelling periods. 

This highlighted how migration distance may be a factor explaining the response of 

migratory birds to climate-driven changes in food availability. It would have been 

desirable to extend the food manipulation experiments on breeding O. o. oenanthe to O. 

o. leucorhoa. The long migrations across the North Atlantic of O. o. leucorhoa may 

have consequences on other life history stages. For example, the costs to survival of late 

reproduction may be amplified because reduced fuelling efficiency of late migrating 

birds, due to dwindling food resources late in the Arctic and sub-Arctic 

summer/autumn, are likely to have more severe impacts when thousands of open ocean 

must be crossed without stopping. Because of the differences in migration journey 

between the two subspecies, the condition of breeding adults on arrival may differ. This 

possibility, combined with possible differences in the duration of peaks of arthropod 

abundance on the breeding grounds, may mean that O. o. leucorhoa are less flexible in 

their reproductive decisions than O. o. oenanthe. Such extreme contrasts of migration 
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strategy between ecologically and phylogenetically similar species can help to highlight 

how migration strategies have co-evolved with other aspects of life history. 

 

Climate changes expose migrants to new environmental conditions, to which 

they must adapt (Stenseth et al. 2002). Selective pressure for evolutionary change will 

occur if the range of climate (and thus food) variability exceeds the birds’ current 

phenotypic plasticity. Indeed phenotypic plasticity, combined with genetic variance, 

contributes to the phenotypic variation on which selection can act, facilitating 

evolutionary change. Some migratory birds are showing a decreased tendency to 

migrate or even radical changes in migration direction, which has been attributed to 

recent climate change. A small but growing number of blackcaps (Sylvia atricapilla) 

breeding in south central Europe for example, have stopped migrating to the 

Mediterranean, wintering instead in southern Britain (Berthold 1995, Fiedler 2003). 

These birds arrive earlier on the breeding grounds in spring than the birds continuing to 

winter in the Mediterranean, which has lead to assortative mating, and hence could lead 

to sympatric speciation (Bearhop et al. 2005). Such changes in migratory behaviour may 

be less likely to occur in species that migrate across large ecological barriers, such as 

wheatears and other Afro-Palaearctic migrants crossing the Sahara desert, because the 

opportunities for gradual shifts in wintering distributions are physically limited by the 

desert margin. The evolutionary history of migratory taxa clearly has a strong influence 

on current strategies. For example, northern wheatears breeding in Alaska or Greenland 

and eastern Canada still migrate to sub-Saharan Africa; some of the most extreme 

migrations of any songbird, in terms of total distance and distance across inhospitable 

barriers, respectively. Other species breeding sympatrically with these populations 

migrate shorter distances, probably reflecting the evolution of their migration strategies. 
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For example, other migratory songbirds breeding alongside northern wheatear in 

Canada winter in the Neotropics or southern USA, rather than crossing the Atlantic to 

reach Europe / Africa. Climate change may impact on the migration of birds with 

different evolutionary histories in unpredictable ways. By increasing or decreasing food 

availability, climate change can lead either to new locations being utilised by migrants 

(for breeding, wintering or stopping over), or to locations becoming unsuitable. Either 

scenario would be likely to influence selection pressures on stopover, fuelling and 

departure decisions, leading to adaptation of migratory strategies. The extent to which 

this can be achieved may depend on the level of existing genetic variability in the 

populations, as well as current levels of phenotypic flexibility.  

 

This study has used an experimental approach to address an important gap in our 

knowledge of biotic impacts of climate change; the mechanisms underlying these 

impacts. Climate change is a global problem, and by focusing on a long-distance 

migratory bird, I have been able to assess how climate may affect species populations in 

geographically and climatically contrasting locations. This project emphasises that 

although climate change may act globally, it can be investigated locally by manipulating 

key climate-linked variables, to understand the causal mechanisms by which individual 

organisms, populations and ecological communities may be affected. 
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