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On variance amplification in a three-echelon

supply chain with minimum mean square error

forecasting
Takamichi Hosoda†, and Stephen M. Disney

Abstract

We analyse a three echelon supply chain model. First-order autoregressive end consumer demand is assumed. We

obtain exact analytical expressions for bullwhip and net inventory variance at each echelon in the supply chain. All

of the three supply chain participants employ the order-up-to policy with the minimum mean square error forecasting

scheme. After demonstrating that the character of the stochastic ordering process observed at each level of the supply

chain is mathematically tractable, we show that the upper stream participants have complete information of the market

demand process. Then we quantify the bullwhip produced by the system, together with the amplification ratios of

the variance of the net inventory levels. Our analysis reveals that the level of the supply chain has no impact upon

the bullwhip effect, rather bullwhip is determined by the accumulated lead-time from the customer and the local

replenishment lead-time. We also find that the conditional variance of the forecast error over the lead-time is identical

to the variance of the net inventory levels and that the net inventory variance is dominated by the local replenishment

lead-time.

Index Terms

Bullwhip effect; order-up-to policy; inventory variance; information sharing; supply chain management; minimum

mean square error forecast.

I. I

The bullwhip effect, a well known phenomena in supply chain management was first popularised by Forrester [1],

and various ways of quantifying bullwhip have been suggested. Chen et al. [2] suggest using σ2
O
/σ2

D
, where σ2

D

denotes the variance of demand and σ2
O

refers to the variance of orders placed by a retailer. Simply, this equation

represents the ratio of the input variance to the output variance. Because of its simplicity and understandability,

many researchers have adopted this equation to describe the magnitude of bullwhip (e.g. [3], [4], [5]). However,

Disney and Towill [6] argue that this equation is only one half of the bullwhip problem as the replenishment rule

† Corresponding author. The authors are with the Logistics Systems Dynamics Group, Cardiff Business School, Cardiff University, Aberconway

Building, Colum Drive, Cardiff CF10 3EU, Wales, UK (email: hosodat@cardiff.ac.uk; disneysm@cardiff.ac.uk) Tel: +44(0)29 2087 6083; Fax:

+44(0)29 2087 4301
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also influences the inventory dynamics. They suggest that σ2
NS
/σ2

D
, where σ2

NS
denotes the variance of the net

inventory levels should also be considered. The net inventory is the on-hand inventory, that is, the stock actually

you have, minus any backorders.

Inspired by Lee et al.’s [7] model structure, we investigate a sequential three echelon supply chain in which the

demand in a market place follows a first-order autoregressive (AR(1)) process. The participants in the supply chain

are the retailer, the distributor and the manufacturer. Moreover, we assume that each participant adopts the order-

up-to (OUT) policy with a minimum mean square error forecasting (MMSE) scheme (Fig. 1). Our research herein

is concerned with how the structure of the stochastic demand process evolves as the orders move up the supply

chain. We measure the magnitude of the bullwhip effect using σ2
O
/σ2

D
to quantify order variance and σ2

NS
/σ2

D
to

quantify net inventory variance. The net inventory variance measure is of importance as it allows us to determine

the necessary safety stock level to achieve a required service level such as a fill-rate or availability target.

It is well recognised that the information sharing has an impact on the dynamics of a supply chain. A number

of research papers assume that the retailer uses an exponential weighted moving average (EWMA) forecasting

method even though an AR(1) demand process is assumed in their models (e.g. [8], [9]).1 Here, a natural question

arises: Does the benefit of information sharing still exist, if the retailer adopts the MMSE forecasting scheme? Lee

et al. [7] use the MMSE scheme in a one retailer and one manufacturer supply chain model. An AR(1) demand

process and order-up-to policy with an MMSE forecasting scheme at retailer is assumed. Under the constraint that

the manufacturer employs only the latest order from the retailer, they suggest that there is a value of demand

information sharing. On the other hand, Raghunathan [10] argues that without up-to-date information sharing, the

manufacturer can still forecast the orders placed by the retailer correctly because the manufacturer already has

enough information; it is all contained in historical ordering data.

In addition, some researchers (e.g. [3], [11]) recognise that for the ordering policy presented in Lee et al. [7], the

replenishment order placed by the retailer follows an ARMA(1,1) process, whose specification is a function of the

autoregressive parameter of demand and the replenishment lead-time. The most significant difference between these

pioneering papers and this contribution is that we consider not only the transformation of the demand process and

the order variance amplification (bullwhip), but also the amplification of the net inventory variance in a three echelon

supply chain model without making an approximation, as it is common. The quantified net inventory variance at

each echelon enables us to recognise the relationship between the demand pattern, the lead-time, the number of

echelons to the end consumer, the forecast error, and the variance of the net inventory levels.

Remarking upon our methodology, we will use a combination of statistical approaches, discrete control theory

and simulation. Using these approaches together we will achieve some understanding of a fairly complex model.

The statistical approach is very useful for gaining insight into the structure of the ordering process as it moves

up the supply chain. However the statistical approach will become rather unmanageable when we consider the

1From practical point of view, this assumption of exponential smoothing forecast methods seems reasonable because in the real business world

the exponential smoothing forecast method is widely used as it is computationally efficient, mathematically tractable and readily understood.
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net inventory variance as the expressions for the covariances between the states of the system are very complex.

However, with control theory techniques, these intractable expressions are avoided altogether. Simulation will also

play an important role2; quickly verifying our model and its workings.

Our paper is organised as follows. In the next two sections, the demand model and the ordering policy model are

introduced. We will then introduce our three echelon supply chain model. In Section V, we analyse the bullwhip

ratio in the supply chain. The measurement of net inventory variance amplification ratio is derived by using a

control engineering methodology. We conclude in Section VII.

II. T DM

Let us assume the demand pattern faced by the retailer is an AR(1) process. The AR(1) demand process assumption

is common when autocorrelation exists among the demand process. Many researchers employ this assumption (e.g.

[2], [3], [5], [7], [8], [9], [12], [13], [14], [15]). The formulation of AR(1) process is given by

Dt = d + ρDt−1 + εt, (1)

where Dt is the demand at time period t, ρ is the autoregressive (AR) parameter, −1 < ρ < 1, and εt is a i.i.d.

white noise process with mean zero and variance σ2
ε. We note that this white noise processes can be drawn from

any continuous distribution, e.g. normal, log-normal, gamma, exponential etc. We may set d = 0 without loss of

generality, thus the long term mean of the demand rate is zero. This has the advantage of not having an initial

transient response. The general expression for the variance of the AR(1) process is

σ2
AR(1) =

σ2
ε

1 − ρ2
.

III. T O PM

Vassian [16] shows the ordering policy represented by (2) minimises the variance of the net inventory levels over

time,

Ot = D̂l
t −WIPt − NS t, (2)

where Ot is the order quantity placed at time period t, D̂l
t is the conditional estimate of the total demand over the

lead-time, l, WIPt is the total orders which are already placed but not yet received, and NS t is the net inventory

level at the end of period t. WIPt can be expressed by;

WIPt =



















0 if the lead-time is 1,
∑l−1

i=1 Ot−i otherwise.
(3)

Since the net inventory is the on-hand inventory minus backorders, NS t can be negative. Under the condition that

a review period and the lead-time are constant, NS t can be described as

NS t = NS t−1 + Ot−l − Dt. (4)

2Interested readers may visit to our web-site and experience the variance amplification using a simple supply chain simulation model at

http://www.bullwhip.co.uk.
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This equation assumes that Ot−l, which is received at the beginning of time period t, fulfils the demand at time

period t.

A. Order-up-to Policy

The OUT policy can be represented with two equations;

Ot = Dt + (S t − S t−1), (5)

S t = D̂l
t + kσ̂l, (6)

where S t is the OUT level at time period t, and σ̂l is a conditional estimate of the standard deviation of the forecast

error over the lead-time. This policy allows Ot to be negative, in which case we assume that excess inventory is

returned without penalty as commonly assumed (see, [2], [3], [12], [13], [14] for example). k is a chosen constant

to meet a desired service level such as the fill-rate or availability objective. Note that the OUT policy expressed

as (5) and (6) has been used in several papers (e.g. [3], [5], [7]). Interestingly, (2) and (5) are identical (The proof

is provided in Appendix I). In this section, we use (5) because of its simplicity. (2) is used to generate the block

diagram in Fig. 8.

B. The Relationship Between the Net Inventory Variance and the Forecast Error over the Lead-time

The OUT policy ensures that the variance of net inventory levels and the variance of forecast error over the

lead-time are equal. This fact originates in [16]. We may restate (4) as

NS t = D̂l
t−l −

l
∑

i=1

Dt−l+i,

as shown in Appendix I. The RHS of the above equation clearly represents the forecast error over the lead-time.

This result means that the forecast error made at time period t−l is the same as the net stock inventory at time period

t. Therefore, when the time horizon is infinite, the variance of the net inventory levels is equal to the variance of

forecast error over the lead-time. Vassian [16] also shows that if an order is placed according to the policy described

by (2), the variance of the net inventory levels is minimised for the forecasting policy employed. Therefore, the

ordering policy represented by (2) or (5) ensures the variance of the net inventory levels is both minimised and

identical to the variance of the forecast error over the lead-time. This fact allows us to compute the variance of

the forecast errors over the lead-time instead of computing the variance of the net inventory levels directly (for

example, see [17]). This result also highlights that an MMSE forecast scheme is an essential ingredient to minimise

inventory in supply chains.

IV. O T E S CM

The sequence of events in any period at any echelon is as follows: the order placed earlier is received, and the

demand is fulfilled at the beginning of the period, the inventory level is reviewed and ordering decision is made

at the end of the period. We will now describe the three echelon supply chain model where each echelon uses

Hosoda, T. and Disney, S.M., (2006), “On variance amplification in a three-echelon supply chain with minimum mean squared error forecasting”, 
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the OUT policy with the MMSE forecasting scheme. In this paper, we assume a periodic review period but do

not assume a specific length of the review period. All of the results here are consistent whichever review period

is adopted (day, week, month, etc.). Note that in the case of a single echelon supply chain, this OUT policy has

been shown to be optimal by Johnson and Thompson [18] for a zero lead-time and linear inventory holding and

stockout costs for the lost sales case. However, the optimal policy for a multi echelon supply chain is not yet well

understood. We will use the subscript n (n = 1, 2, 3) to represent the echelon level.

A. The Retailer’s Ordering Policy (n = 1)

In an OUT policy, Ot,1, the order placed by the retailer at the end of time period t, can be expressed as;

Ot,1 = Dt + (S t,1 − S t−1,1), (7)

S t,1 = D̂
l1
t + k1σ̂l1 . (8)

NS t,1, the net inventory level of the retailer at the beginning of the period t, is given by

NS t,1 = NS t−1,1 + Ot−l1 − Dt.

It is well known that the MMSE forecast is provided by the conditional expectation [19, pp.133-135]. With an

MMSE scheme, D̂
l1
t and σ̂2

l1
become;

D̂
l1
t = E

















l1
∑

i=1

Dt+i | τt

















=
ρ
(

1 − ρl1
)

1 − ρ
Dt = ρΛl1 Dt, (9)

σ̂2
l1
= Var

















l1
∑

i=1

D̂t+i | τt

















=

l1
∑

j=1















j−1
∑

i=0

ρi















2

σ2
ε

=
σ2
ε

(1 − ρ)2

l1
∑

i=1

(

1 − ρi
)2

(10)

=





















l1
(

1 − ρ2
)

+

ρ
(

1 − ρl1
) (

ρl1+1 − ρ − 2
)





















(1 − ρ)2 (1 − ρ2)
σ2
ε, (11)

where Λl1 = (1− ρl1 )/(1− ρ), and τt = {Dt,Dt−1,Dt−2, . . .}, the set of all observed demand. Thus, from (7), (8), and

(9), the retailer’s order at time period t can be expressed as

Ot,1 = Dt + ρΛl1 (Dt − Dt−1). (12)

Using (1) and (12), we have the retailer’s order quantity for the period t + 1,

Ot+1,1 = ρOt,1 + (1 + ρΛl1 )εt+1 − ρΛl1εt. (13)

Note that (13) is a scaled ARMA(1,1) process which has been previously reported by [11], where the general

expression is given by

Ot+1,1 = ρOt + εt+1 − θ1
εt.

Hosoda, T. and Disney, S.M., (2006), “On variance amplification in a three-echelon supply chain with minimum mean squared error forecasting”, 
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Here θ1 is the moving average (MA) parameter of the retailer’s ordering process. Let us introduce an error term

expressed as

εt,1 = (1 + ρΛl1 )εt.

We may then rewrite (13) as

Ot+1,1 = ρOt,1 + εt+1,1 −
ρΛl1

1 + ρΛl1

εt,1, (14)

which represents an ARMA(1,1) process with θ
1
= (ρΛl1 )/(1 + ρΛl1 ), and Λl1 = (1 − ρl1 )/(1 − ρ). (14) shows that

the retailer’s order contains all the information contained in the demand process, that is the values of ρ and εt. The

general expression of variance of the ARMA(1,1) process is

σ2
ARMA(1,1)

=
1 + θ2 − 2θρ

1 − ρ2
σ2
ε,

where θ is an MA parameter, and σ2
ε is the variance of the error term. Appendix II details our control engineering

methodology for calculating variance ratios. Appendix III applies it to the long-run variance of an ARMA(1,1)

demand process.

B. The Distributor’s Ordering Policy (n = 2)

Ot,2, the order placed by the distributor at the end of time period t, and NS t,2, the net inventory level of the

distributor at the beginning of the period t can be expressed as;

Ot,2 = Ot,1 + (S t,2 − S t−1,2), (15)

S t,2 = Ô
l2
t,1
+ k

2
σ̂l2 , (16)

NS t,2 = NS t−1,2 + Ot−l2,2 − Ot,1.

Consider an MMSE forecasting scheme. We can express Ô
l2
t,1

and σ̂2
l2

as;

Ô
l2
t,1
= E

















l2
∑

i=1

Ot+i,1 | τt,1

















= Λl2 Ôt+1,1, (17)

σ̂2
l2
= Var

















l2
∑

i=1

Ôt+i,1 | τt,1

















=
σ2
ε

(1 − ρ)2

l1+l2
∑

i=l1+1

(

1 − ρi
)2

(18)

=





















l2
(

1 − ρ2
)

+

ρl1+1
(

1 − ρl2
) (

ρl1+1 + ρl1+l2+1 − 2ρ − 2
)





















(1 − ρ)2(1 − ρ2)
σ2
ε, (19)

where Λl2 = (1 − ρl2 )/(1 − ρ), Ôt+1,1 = E
(

Ot+1,1 | Ot,1, εt

)

= ρOt,1 − ρΛl1εt, and τt,1 = {Ot,1,Ot−1,1,Ot−2,1, . . .}, the

set of all observed orders placed by the retailer. We can obtain from (15) - (17) the following expression for the

distributor’s ordering process,

Ot,2 = Ot,1 + Λl2 (Ôt+1,1 − Ôt,1). (20)

Hosoda, T. and Disney, S.M., (2006), “On variance amplification in a three-echelon supply chain with minimum mean squared error forecasting”, 
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ACCEPTED FOR OMEGA, AS OF NOVEMBER 2, 2004 7

Now, we can find the distributor’s order quantity for the period t + 1 with (13) and (20),

Ot+1,2 = ρOt,2 + (ρΛl2 + ρ
2Λl1Λl2 − ρΛl1Λl2 + ρΛl1 + 1)εt+1

− (ρΛl2 + ρ
2Λl1Λl2 − ρΛl1Λl2 + ρΛl1 )εt. (21)

(21) can be rewritten as

Ot+1,2 = ρOt,2 + εt+1,2 −
ρΛl2 + ρ

2Λl1Λl2 − ρΛl1Λl2 + ρΛl1

ρΛl2 + ρ
2Λl1Λl2 − ρΛl1Λl2 + ρΛl1 + 1

εt,2, (22)

where

εt,2 = (ρΛl2 + ρ
2Λl1Λl2 − ρΛl1Λl2 + ρΛl1 + 1)εt.

Interestingly, (22) is also an ARMA(1,1) process with

θ
2
=
ρΛl2 + ρ

2Λl1Λl2 − ρΛl1Λl2 + ρΛl1

ρΛl2 + ρ
2Λl1Λl2 − ρΛl1Λl2 + ρΛl1 + 1

=
Υ

Ξ
, (23)

where θ
2

is MA parameter for the distributor’s ordering process, Ξ = ρΛl2 + ρ
2Λl1Λl2 − ρΛl1Λl2 + ρΛl1 + 1, and

Υ = ρΛl2 + ρ
2Λl1Λl2 − ρΛl1Λl2 + ρΛl1 .

C. Manufacturer’s Ordering Policy (n = 3)

The manufacturer’s order and net inventory level at the end of time period t, are given by;

Ot,3 = Ot,2 + (S t,3 − S t−1,3), (24)

S t,3 = Ô
l3
t,2
+ k

3
σ̂l3 , (25)

NS t,3 = NS t−1,3 + Ot−l3,3 − Ot,2.

We find Ô
l3
t,2

and σ̂2
l3

, considering an MMSE forecasting scheme;

Ô
l3
t,2
= E

















l3
∑

i=1

Ot+i,2 | τt,2

















= Λl3 Ôt+1,2, (26)

σ̂2
l3
= Var

















l3
∑

i=1

Ôt+i,2 | τt,2

















=
σ2
ε

(1 − ρ)2

l1+l2+l3
∑

i=l1+l2+1

(

1 − ρi
)2

(27)

=





















l3
(

1 − ρ2
)

+

ρl1+l2+1
(

1 − ρl3
) (

ρl1+l2+1 + ρl1+l2+l3+1− 2ρ − 2
)





















(1 − ρ)2(1 − ρ2)
σ2
ε, (28)

where Λl3 = (1 − ρl3 )/(1 − ρ), Ôt+1,2 = E(Ot+1,2 | Ot,2, εt) = ρOt,2 − Υεt, and τt,2 = {Ot,2,Ot−1,2,Ot−2,2, . . .}, the set of

all observed orders placed by the distributor. Υ is described in (23). Referring to (24) - (26), we find that Ot,3 can

be expressed as

Ot,3 = Ot,2 + Λl3 (Ôt+1,2 − Ôt,2). (29)

Hosoda, T. and Disney, S.M., (2006), “On variance amplification in a three-echelon supply chain with minimum mean squared error forecasting”, 

OMEGA: The International Journal of Management Science, Vol. 34, pp344–358. DOI: 10.1016/j.omega.2004.11.005.



ACCEPTED FOR OMEGA, AS OF NOVEMBER 2, 2004 8

Substituting (21) into (29), we obtain the following,

Ot+1,3 = ρOt,3 + (Ξ + ρΛl3Ξ − Λl3Υ)εt+1 − (Υ + ρΛl3Ξ − Λl3Υ)εt. (30)

Incorporating

εt,3 = (Ξ + ρΛl3Ξ − Λl3Υ)εt,

into (30), and after some simplification, we find that

Ot+1,3 = ρOt,3 + εt+1,3 −
Υ + ρΛl3Ξ − Λl3Υ

Ξ + ρΛl3Ξ − Λl3Υ
εt,3. (31)

Again, interestingly, we obtain an ARMA(1,1) ordering process (31) with an MA parameter of

θ3 =
Υ + ρΛl3Ξ − Λl3Υ

Ξ + ρΛl3Ξ − Λl3Υ
. (32)

Applying (23), (32) can be rewritten as

θ3 =
θ2 + ρΛl3 − Λl3θ2

1 + ρΛl3 − Λl3θ2

.

We find that not only is the order process faced by distributor an ARMA(1,1) process, but also that the order

process faced by the manufacturer follows an ARMA(1,1) process; furthermore both can be expressed in terms

of the parameters of the market demand process. Therefore, the manufacturer will have, as the distributor does,

complete information of the market demand process with the MMSE scheme. Fig. 2 summerises how the original

AR(1) demand process is changed by the OUT policy with the MMSE scheme as it proceeds up the supply chain.

Disney et al. [20] have observed that the ARMA(1,1) demand model matched real world demand patterns within

the consumer goods industry. Within the OUT policy with the MMSE scheme, when an ARMA(1,1) process is

assumed as the market demand process, we will observe that an ARMA(1,1) ordering process also occurs at the

higher levels of the supply chain. Details are shown in Appendix IV. Thus the ARMA(1,1) process is, in a sense,

“absorbing”.

V. B   T E S C

Let the variance amplification ratio (bullwhip) of orders (VRorder) be given by;

VRorder[Retail] =
σ2

O1

σ2
D

,

VRorder[Distri] =
σ2

O2

σ2
D

,

VRorder[Manu] =
σ2

O3

σ2
D

,
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where σ2
D

, σ2
O1

, σ2
O2

, and σ2
O3

are the variances of Dt, Ot,1, Ot,2, and Ot,3 over an infinite time horizon respectively.

Each variance can be described as;

σ2
D =

σ2
ε

1 − ρ2
, (33)

σ2
O1
=





















(

1 − ρl1+1
)2
+

ρ2
(

1 − ρl1
)2
− 2ρ2

(

1 − ρl1+1
) (

1 − ρl1
)





















(1 − ρ)2(1 − ρ2)
σ2
ε, (34)

σ2
O2
=





















(

1 − ρl1+l2+1
)2
+

ρ2
(

1 − ρl1+l2
)2
− 2ρ2

(

1 − ρl1+l2+1
) (

1 − ρl1+l2
)





















(1 − ρ)2(1 − ρ2)
σ2
ε, (35)

σ2
O3
=





















(

1 − ρl1+l2+l3+1
)2
+

ρ2
(

1 − ρl1+l2+l3
)2
− 2ρ2

(

1 − ρl1+l2+l3+1
) (

1 − ρl1+l2+l3
)





















(1 − ρ)2(1 − ρ2)
σ2
ε. (36)

(34) - (36) reveal that when l1 + l2 or l1 + l2 + l3 is constant, the value of the σ2
O2

or σ2
O3

keeps its original value.

Thus, the following insight is revealed.

Insight 1: When each participant in supply chain uses the OUT policy with the MMSE forecasting scheme,

it is the sum of the accumulation of all downstream replenishment lead-times (or the echelon lead-time) and

the local replenishment lead-time that influences the variance of order rates in a supply chain and not the

number of echelons.

Proof: For convenience, let us use Le, where Le represents the sum of the accumulation of all

downstream lead-times and the local replenishment lead-time in a supply chain. We will then have a general

expression for the variance of order,




















(

1 − ρLe+1
)2
+

ρ2
(

1 − ρLe

)2
− 2ρ2

(

1 − ρLe+1
) (

1 − ρLe

)





















(1 − ρ)2(1 − ρ2)
σ2
ε,

which has no information on the number of echelons in a supply chain.

Combining the variance expressions surrenders the variance ratio of order;

VRorder[Retail] = 1 +
2ρ

(

1 − ρl1
) (

1 − ρl1+1
)

1 − ρ
,

VRorder[Distri] =





















(

1 − ρl1+l2+1
)2
+ ρ2

(

1 − ρl1+l2
)2
−

2ρ2
(

1 − ρl1+l2+1
) (

1 − ρl1+l2
)





















(1 − ρ)2
,

VRorder[Manu] =





















(

1 − ρl1+l2+l3+1
)2
+ ρ2

(

1 − ρl1+l2+l3
)2
−

2ρ2
(

1 − ρl1+l2+l3+1
) (

1 − ρl1+l2+l3
)





















(1 − ρ)2
.
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We have plotted VRorder under the condition that −1 < ρ < 1 with four patterns of lead-time settings constrained

to l1 + l2 + l3 = 15 in Fig. 3. From this figure, we will find that:

• bullwhip effect does not occur when ρ ≤ 0. The proof is provided in Appendix V.

In the case of ρ > 0, we can see that:

• The VRorder are almost identical when ρ is relatively small (e.g. ρ < |0.2|).

• VRorder[Manu] is not affected by the values of l1, l2, or l3. As we expect, it keeps the same shape under the

constraint that l1 + l2 + l3 is constant.

• The condition VRorder[Retail] ≤ VRorder[Distri] ≤ VRorder[Manu] is observed for all lead-time settings.

VI. T N I V A R   T E S C

From our description in Section II and IV, we may now develop a block diagram of the three echelon supply

chain with the MMSE forecasting. The block diagram is shown in Fig. 8. The transfer function of the net inventory

levels can be found from this block diagram and from this we may derive the variance of the net inventory levels;

σ2
NS 1

=





















l1
(

1 − ρ2
)

+

ρ
(

1 − ρl1
) (

ρl1+1 − ρ − 2
)





















(1 − ρ)2 (1 − ρ2)
σ2
ε, (37)

σ2
NS 2

=





















l2
(

1 − ρ2
)

+

ρl1+1
(

1 − ρl2
) (

ρl1+1 + ρl1+l2+1 − 2ρ − 2
)





















(1 − ρ)2(1 − ρ2)
σ2
ε, (38)

σ2
NS 3

=





















l3
(

1 − ρ2
)

+

ρl1+l2+1
(

1 − ρl3
) (

ρl1+l2+1 + ρl1+l2+l3+1− 2ρ − 2
)





















(1 − ρ)2(1 − ρ2)
σ2
ε. (39)

where σ2
NS 1

, σ2
NS 2

, and σ2
NS 3

, are the variance of the net inventory levels at the retailer, the distributor, and the

manufacturer, respectively. Comparing (37) - (39) to (11), (19), and (28), we can recognise that the net inventory

variance is identical to the variance of forecast error over the lead-time, as we expect. Here, we have the following

two insights:

Insight 2: When each participant uses the OUT policy with the MMSE forecasting scheme, it is the local

replenishment lead-time that dominates the variance of the net inventory levels and not the accumulation of

the downstream replenishment lead-time, if the value of ρ is close to zero, and/or at least one of {Ldown +

1, Ldown + llocal} is large enough.

Proof: As an expression of the variance of the net inventory levels, we can use (10), (18), and (27)

instead of (37), (38), and (39) because the variance of net inventory is equal to the variance of forecast error

over the lead-time. For convenience, we use Ldown and llocal to represent the accumulation of the downstream

replenishment lead-times and the local replenishment lead-time, respectively. Note that Ldown = 0 for the
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first echelon. This will yield a new general expression for the variance of the net inventory level,

σ2
ε

(1 − ρ)2

Ldown+llocal
∑

i=Ldown+1

(

1 − ρi
)2
.

And this can be rewritten as

σ2
ε

Ldown+llocal
∑

i=Ldown+1

(

1 − ρi

1 − ρ

)2

.

Here, the value of σ2
ε is constant. Since | ρ |< 1 is assumed, we have

lim
i→∞

(

1 − ρi

1 − ρ

)2

=

(

1
1 − ρ

)2

.

Now, if we exploit this relationship, we have the approximation of the variance of the net inventory levels,

σ2
ε

Ldown+llocal
∑

Ldown+1

(

1 − ρi

1 − ρ

)2

≈ σ2
ε

(

1
1 − ρ

)2

× llocal. (40)

This is the case that the llocal has a dominant impact on the the variance of net inventory levels. This

relationship (40) is valid if:

1) the value of ρ is close to zero, regardless of the value of Ldown or llocal, and/or

2) at least one of {Ldown + 1, Ldown + llocal} is large enough, regardless of the value of ρ.

The second condition is not critical as it may be seen in terms of the dominance of llocal. Fig. 4 shows the

distributor’s variances of the net inventory levels in the cases that case 1: llocal = 1 and case 2: llocal = 2 under the

constraint Ldown + llocal = 3. Even when the total replenishment lead-times for each case are equal and small, the

dominance of llocal is clearly shown in Fig. 4; the variance of net inventory levels for case 1 is always bigger than

that for case 2; at any value of ρ.

Insight 3: When each participant uses the OUT policy with the MMSE forecasting scheme, the variance

of the total net inventory, σ2
NS 1
+ σ2

NS 2
+ σ2

NS 3
, can be expressed as the variance of forecast error over the

accumulated replenishment lead-time and is independent from the number of echelons to the end consumer.

Proof: Again, we will use (10), (18), and (27). The sum of the variance of the net inventory level in

the supply chain can be obtained as;

σ2
NS 1
+ σ2

NS 2
+ σ2

NS 3
=

σ2
ε

(1 − ρ)2

















l1
∑

i=1

(

1 − ρi
)2
+

l1+l2
∑

i=l1+1

(

1 − ρi
)2
+

l1+l2+l3
∑

i=l1+l2+1

(

1 − ρi
)2

















=
σ2
ε

(1 − ρ)2

l1+l2+l3
∑

i=1

(

1 − ρi
)2

=
σ2
ε

(1 − ρ)2

Le
∑

i=1

(

1 − ρi
)2
. (41)

where Le = l1 + l2 + l3. (41) does not contain information on the number of echelons any more, but does

contain information on the accumulated replenishment lead-time in the supply chain.
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We now obtain the net inventory variance amplification ratio (VRinv), which is given by;

VRinv[Retail] =
σ2

NS 1

σ2
D

,

VRinv[Distri] =
σ2

NS 2

σ2
D

,

VRinv[Manu] =
σ2

NS 3

σ2
D

.

Using the results in this section, VRinv is expressed as;

VRinv[Retail] =





















l1
(

1 − ρ2
)

+

ρ
(

1 − ρl1
) (

ρl1+1 − ρ − 2
)





















(1 − ρ)2
, (42)

VRinv[Distri] =





















l2
(

1 − ρ2
)

+

ρl1+1
(

1 − ρl2
) (

ρl1+1 + ρl1+l2+1 − 2ρ − 2
)





















(1 − ρ)2
, (43)

VRinv[Manu] =





















l3
(

1 − ρ2
)

+

ρl1+l2+1
(

1 − ρl3
) (

ρl1+l2+1 + ρl1+l2+l3+1− 2ρ − 2
)





















(1 − ρ)2
. (44)

We have plotted VRinv under the condition that −1 < ρ < 1, with four patterns of lead-time settings, constrained

to l1 + l2 + l3 = 15 in Fig. 5. From this figure, we will find that:

• The net inventory variance is also affected by the value of ρ.

• Even when ρ is negative, we will find that the net inventory may still vary more than demand.

• In contrast to VRorder, the affect of the local lead-time can be clearly seen. In the case of l1 = 12, even though

the retailer takes the closest position to the market, the net inventory variance is bigger than the distributor’s

and the manufacturer’s net inventory variance. Furthermore, the level of supply chain has less impact on VRinv,

as we expect from Insight 2.

VII. C

We have investigated a three echelon supply chain, constituting of a retailer, a distributor, and a manufacturer,

using a combination of statistical methods and control theory. We assume the demand process follows an AR(1)

stationary process and each supply chain participant adopts the OUT policy with the MMSE forecasting scheme.

The OUT policy minimises the variance of the net inventory levels with a given forecasting method and that

the minimised variance of the net inventory levels is equal to the variance of the forecast error over the lead-time.

This interesting characteristic can be applied to an evaluation of inventory performance in the real business. Simple

comparison of the variance of net inventory levels and the variance of forecast error over the lead-time yields useful

insights on the inventory performance. For example, if the variance of net inventory levels is greater than that of

the forecast error over the lead-time, there might be room to improve inventory turn over. However, if both values
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of variances are (nearly) equal, inventory management is under control and one way to improve your inventory turn

over is to increase the forecast accuracy.

The AR(1) demand process is transformed into an ARMA(1,1) process as it moves up supply chain. The

autoregressive parameter keeps its original value, although the moving average parameter is changed at every each

echelon. The value of the moving average parameter is a function of the autoregressive parameter, the accumulated

downstream lead-time, and the local replenishment lead-time for the echelon in question.

As the ordering process contains complete information of market demand, the upstream supply chain participants

may exploit an ARMA(1,1) model to estimate both the autoregressive and the moving average parameters to create

the MMSE forecasts. Then, with knowledge of the accumulated lead-time and the demand process, each participant

may estimate the quantity of its demand over the lead-time. Thus, with the set of assumptions in this paper, and as

suggested in Raghunathan [10], there is no benefit of information sharing in terms of the forecast accuracy among

supply chain participants. This result leads us to a practical insight. Before thinking about information sharing with

your downstream customer, it might be better to identify the demand process you face and the ordering policy the

customer uses. If the demand process follows ARMA(1,1), and your customer employs the OUT policy with the

MMSE forecasting method, you might already have full information of the demand in the market place.

To describe the character of a three echelon supply chain, we used two measurement methods; VRorder, and

VRinv. In terms of VRorder, the number of stages in the supply chain does not affect the value of VRorder. Only

the accumulated lead-time has an impact upon VRorder. Also, we find that the local lead-time has the dominant

impact on the variance of the net inventory levels, if the value of ρ is close to zero, and/or at least one of

{Ldown + 1, Ldown + llocal} is large enough. Therefore, reducing a local lead-time will allow all upstream suppliers to

reduce their local order related costs, but it will also have a large positive effect on local inventory holding costs.

Via simulation, we have shown that VRinv[Retail] may be greater than VRinv[Manu], even when VRorder[Retail] is

smaller than VRorder[Manu].

Finally, we have also extended Vassian’s [16] finding that the conditional variance of forecast error over the

lead-time is identical to the variance of the net inventory levels to a multi echelon supply chain setting. We have

shown that the variance of the total net inventory levels can be expressed as the variance of forecast error over

the accumulated replenishment lead-time. To estimate the variance of the total net inventory level, it is sufficient

to conduct an analysis of a single echelon model with the accumulated replenishment lead-time (Le), instead of a

multi echelon model, and calculate the variance of the net inventory levels or the forecast error over the lead-time.

A I

A   O PM

First, we consider the case that lead-time is greater than one. Without loss of generality, we assume k = 0, thus

S t = D̂l
t. Using (4), Ot can be written as

Ot = NS t+l − NS t+l−1 + Dt+l. (45)
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Substituting the above equation into (3), we will have another expression of WIPt,

WIPt = NS t+l−1 − NS t +

l−1
∑

i=1

Dt+i. (46)

Then, (2) can be rewritten as;

Ot = D̂l
t −WIPt − NS t

= S t −
















NS t+l−1 − NS t +

l−1
∑

i=1

Dt+i

















− NS t

= S t −
















NS t+l−1 +

l−1
∑

i=1

Dt+i

















.

By using (2), (45), and (46), the second expression on the right hand side of the above equation can be written as

NS t+l−1 = D̂l
t−1 −

l
∑

i=1

Dt−1+i.

This yields the required expression for Ot;

Ot = D̂l
t −WIPt − NS t

= S t −
















NS t+l−1 +

l−1
∑

i=1

Dt+i

















= S t −
















D̂l
t−1 −

l
∑

i=1

Dt−1+i +

l−1
∑

i=1

Dt+i

















=

















l
∑

i=1

Dt−1+i −
l−1
∑

i=1

Dt+i

















+ S t − D̂l
t−1

= Dt + (S t − S t−1),

which is identical to (5). To obtain the last equation, we use
∑l

i=1 Dt−1+i −
∑l−1

i=1 Dt+i = Dt. Following the same steps

as above, yields the same conclusion for the case of unit lead-time where WIPt = 0.

A II

A  V E  C T

From a verbal description it is easy to develop block diagrams that represent a supply chain in z-transform

notation. We refer readers to Nise [21] for an introduction to block diagrams.

The block diagram may be manipulated with simple techniques to yield transfer functions. From the transfer

function the required expressions for the variance amplification ratios may be determined using Cauchy’s contour

integral, see (47), where F(z) is the transfer function relating the input to the output of the system [22].

VR =
σ2

Output

σ2
Input

=
1

2π
√
−1

.
F(z)F(z−1)z−1dz. (47)
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The contour integral may be evaluated easily using a technique due to Åström et al. [23] that was further refined

by Jury [22]. Let us present the approach of Jury to derive our variance expressions. We refer readers to Jury [22]

for any required proof of his approach. Let the following form,

F(z) =
B(z)
A(z)

=

n
∑

i=0
biz

i

n
∑

i=0
aizi

,

describe the transfer function relating input to output of the variance ratio we require. The coefficients ai and bi

obviously depend on the transfer function in question. Next construct 2 matrices, Xn+1 and Yn+1 of the coefficients

of A(z) as follows;

Xn+1 =



































































an an−1 an−2 .. a0

0 an an−1 .. a1

0 0 an .. a2

: : : : :

0 0 0 0 an



































































,Yn+1 =



































































0 0 .. 0 a0

0 .. :

: 0 a0 .. an−2

0 a0 a1 .. an−1

a0 a1 a2 .. an



































































.

Jury shows that the variance ratio is given by

VR =
| Xn+1 + Yn+1 |b
an| Xn+1 + Yn+1 |

,

where [Xn+1 + Yn+1]b = [Xn+1 + Yn+1] with the last row replaced by
[

2bnb0, 2
∑

bibi+n−1, . . . , 2
∑

bibi+1, 2
∑n

i=0 b2
i

]

.

Thus, a simple algebraic process will construct a variance ratio expression.

A III

D  V R E

By way of introduction, let us first consider the simple case of calculating the variance of the AR(1) demand. It

is easy to see from (1) that the block diagram of the AR(1) process is as shown in Fig. 6.

Without loss of generality, we assume d = 0. Rearranging the block diagram we arrive at the following transfer

function,

D(z)
ε(z)

=
1

1 − ρz−1
.

This transfer function has the following constant coefficients;

b0 = 0, a0 = −ρ.

and

b1 = 1, a1 = 1.
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Arranging these coefficients into the Xn+1 and Yn+1 matrices yields;

Xn+1 =





















a1 a0

0 a1





















=





















1 −ρ

0 1





















,

Yn+1 =





















0 a0

a0 a1





















=





















0 −ρ

−ρ 1





















.

Thus the [Xn+1 + Yn+1] and [Xn+1 + Yn+1]b matrices are;

[Xn+1 + Yn+1] =





















1 −2ρ

−ρ 2





















,

[Xn+1 + Yn+1]b =





















1 −2ρ

2b0b1 2(b2
0 + b2

1)





















=





















1 −2ρ

0 2





















.

The determinants of these two matrices are;

| Xn+1 + Yn+1 | = 2(1 − ρ2),

| Xn+1 + Yn+1 |b = 2.

Assuming that the variance of the random shock is unity, we may determine the variance of the AR(1) demand as;

σ2
AR(1) =

| Xn+1 + Yn+1 |b
a1 | Xn+1 + Yn+1 |

=
2

2(1 − ρ2)
=

1
1 − ρ2

.

The ARMA(1,1) demand pattern is also very easy to determine using the same approach. Let us illustrate our

procedure once more. The block diagram is shown in Fig.7. The transfer function of Dt is given by

D(z)
ε(z)

=
z − θ
z − ρ

.

Then we can see the following constant coefficients;

b0 = −θ, a0 = −ρ.

and

b1 = 1, a1 = 1.

Arranging these coefficients into the Xn+1 and Yn+1 matrices yields;

Xn+1 =





















a1 a0

0 a1





















=





















1 −ρ

0 1





















,

Yn+1 =





















0 a0

a0 a1





















=





















0 −ρ

−ρ 1





















.
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Thus the [Xn+1 + Yn+1] and [Xn+1 + Yn+1]b matrices are;

[Xn+1 + Yn+1] =





















1 −2ρ

−ρ 2





















,

[Xn+1 + Yn+1]b =





















1 −2ρ

2b0b1 2(b2
0 + b2

1)





















=





















1 −2ρ

−2θ 2(θ2 + 1)





















.

The determinants of these two matrices are;

| Xn+1 + Yn+1 | = 2(1 − ρ2),

| Xn+1 + Yn+1 |b = 2(θ2 + 1) − 4θρ.

Assuming that the variance of the random shock is unity, we may determine the variance of the ARMA(1,1) demand

as;

σ2
ARMA(1,1) =

| Xn+1 + Yn+1 |b
a1 | Xn+1 + Yn+1 |

=
2(1 + θ2 − 2θρ)

2(1 − ρ2)
=

1 + θ2 − 2θρ
1 − ρ2

.

Now let us turn our attention to the three echelon supply chain model. It is easy to develop the following block

diagram (Fig. 8) of our supply chain. From Fig. 8 we may identify the system transfer functions that relate the net

inventory levels and order rates at each echelon of the supply chain to the white noise process. Here, we provide

the transfer functions of the retailer’s order process and the net inventory level;

O1(z)

ε(z)
=
ρ − z + (z − 1)ρl1+1

(z − ρ)(ρ − 1)
,

NS 1(z)

ε(z)
=

z1−l1
(

−z(1 + zl1 (ρ − 1)) + ρ + (z − 1)ρl1+1
)

(z − 1)(z − ρ)(ρ − 1)
.

From these transfer functions we may use Jury’s Inners approach to determine the variance ratios (Note that we

also have to divide this by the variance of the demand). We have omitted these results here as there are rather

lengthy, although they are available upon request for interested readers.

Interestingly, we note that an alternative block diagram (Fig. 9) may be derived that is dynamically equivalent

to Fig. 8. From here it is obvious that there is no value of information sharing in this traditional supply chain, as

market place information is clearly, already shared and exploited in this model.

A IV

D  R’ O P  ARMA(1,1) D P

ARMA(1,1) demand process can be expressed as

Dt+1 = ρDt + εt+1 − θεt, (48)

where ρ is AR parameter, θ is MA parameter, and εt is a i.i.d. white noise process with mean zero and variance

σ2
ε at time period t. With the MMSE forecasting scheme, D̂

l1
t becomes;

D̂
l1
t = E

















l1
∑

i=1

Dt+i | τt

















=

(

1 − ρl1
)

1 − ρ
D̂t+1 = Λl1 D̂t+1, (49)
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where Λl1 = (1 − ρl1 )/(1 − ρ), D̂t+1 = ρDt − θεt, and τt = {Dt,Dt−1,Dt−2, . . .}. τt is the set of all observed demands.

Thus, from (7), (8), and (49), the retailer’s order at time period t is expressed as

Ot,1 = Dt + Λl1 (D̂t+1 − D̂t). (50)

Incorporating (48) into (50), we have the retailer’s order quantity for period t + 1

Ot+1,1 = ρOt,1 + (1 + Λl1ρ − Λl1θ)εt+1 − (θ + Λl1ρ − Λl1θ)εt. (51)

If we introduce an error term which is expressed as

εt,1 = (1 + Λl1ρ − Λl1θ)εt,

then we may rewrite (51) as

Ot+1,1 = ρOt,1 + εt+1,1 −
θ + Λl1ρ − Λl1θ

1 + Λl1ρ − Λl1θ
εt,1,

which represents a scaled ARMA(1,1) process with the converted new MA parameter

θ + Λl1ρ − Λl1θ

1 + Λl1ρ − Λl1θ
.

A V

B D N O I −1 < ρ ≤ 0

Let Le represent the accumulated replenishment lead-time. Thus, the expression of the variance ratio of order

will be

VRorder =





















(

1 − ρLe+1
)2
+ ρ2

(

1 − ρLe

)2
−

2ρ2
(

1 − ρLe+1
) (

1 − ρLe

)





















(1 − ρ)2
.

After some algebraic simplification, we have

VRorder = 1 +
2ρ

(1 − ρ)2

(

−ρ2Le+2 + ρ2Le+1 + ρLe+2 − ρLe − ρ + 1
)

.

To show the bullwhip will not occur, it is enough to describe that the second term of the above equation is negative,

which will make the VRorder ≤ 1. However, since −1 < ρ ≤ 0 and
2ρ

(1−ρ)2 ≤ 0, it is sufficient to show that;

− ρ2Le+2 + ρ2Le+1 + ρLe+2 − ρLe − ρ + 1 ≥ 0. (52)

Case 1: Le is even.

Since −1 < ρ ≤ 0 and Le is positive integer, we can see that

ρLe+2 − ρ2Le+2 ≥ 0,

−ρLe − ρ ≥ 0,

ρ2Le+1 + 1 ≥ 0.
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Thus, the sum of the all left hand expressions in (52) is positive.

Case 2: Le is odd.

Similarly, but with a little modification, we will have;

ρLe+2 − ρ ≥ 0,

−ρ2Le+2 − ρLe ≥ 0,

ρ2Le+1 + 1 ≥ 0.

Again, the sum of the all left hand expressions of (52) is positive.
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Fig. 5. Impact of value of ρ on the net inventory variance amplification ratio when l1 + l2 + l3 = 15
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