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Abstract

We study the interplay between recurrences for zeta related functions
at integer values, ‘Minor Corner Lattice’ Toeplitz determinants and integer
composition based sums. Our investigations touch on functional identities
due to Ramanujan and Grosswald, the transcendence of the zeta function at
odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-
characteristic polynomials for zeta related functions. We begin with a recent
result for ((2s) and some seemingly new Bernoulli relations, which we use
to obtain a generalised Ramanujan polynomial and properties thereof.

1 Introduction

Let By = 1 and define the s-th Bernoulli number, B, and the s-th Bernoulli
polynomial, Bs(z), in the usual fashion [9], [7], so that

s—1

(1) By=-—m > <3 . 1)Bk, B =) (Z)Bs_kx’f.

k=0

In recent papers [14], [13] we showed that the Bernoulli numbers satisfy the

recurrence relation

_ — (25 + _
1.2 92-1pg, — _ 5 92%-1p
(1.2 o = g QSH;( JEa

and we applied the well-known Bernoulli-zeta even integer identity [4]

(—1)8+1228_17T28B25

(13) C(2s) = s,

to yield the result

s—1

7T288 L sfk7r2k
(1.4) C(2s) = (=1)*7! (m +;((212ﬁ<(25—2k)>.
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Our results are motivated partly by the relations of the title (given in Lemma 2.1)
and partly by the connection with results obtained by Murty et al. concerning
Ramanujan polynomials [16], [10].

The odd-indexed Ramanujan polynomials are defined by

s+1

BopBasio ok o
1. ) - :
(15) Rzs(2) kg 2E)(2s 12— 2k)1°

They satisfy the functional (reciprocal polynomial) equation
25+2 1
(1.6) Rost1(2) = 27" Rosa 2 )
and occur in Ramanujan’s renowned identity involving the odd zeta constants
B 1 0 n—(25+1)
a S<§<(28+1)+262an_1 =
n=1
(1.7)

1 1 > TL_(2S+1) st Bo. By _
— | Z¢(2 1 R 225 -1 k s+2—2k s+1—k ok
35 <2C( ot )+;e2ﬁn—1 ;;)( Ve 2t P

where o, > 0 and o3 = 72. By definition (1.5), the sum involving Bernoulli

numbers in (1.7) therefore corresponds to the Ramanujan polynomial

OZS+1R25+1 (2\/E> — OZS+1R23+1 <’Lé) .
« ™

The following definition enables us to generalise the Ramanujan polynomials to

include the even-indexed values Ras(2).

Definition. Let B! and B’ be defined for s > 2 and s > 1 respectively by the

recurrences

1 s—1 1 1 s—1 1
(1.8) B* =-— <8+ )Qk_sBk, B, =— (SZ >2_5Bk,

S+1k:0 k S+1k0

with initial values Bj = B, =1 and B} = %.

For r > 0, we define the generalised Ramanujan polynomial Q,(z) such that

[(r+1)/2] B* . 2]@ng
o r+1— 2k
(19) Urle) = kzo (r+1-2k)(2k)"

THEOREM 1.1. With the definition of Q(z) in (1.9), then for r =2s+ 1 we

have

(1.10) Qae1(2) = Rasr1(2).



When r = 2s is even we have
(1.11)
1 1 1

Qos(2) = 42212 <R28+1 <;> — Ros1q (§)> =4 (R28+1(Z) - WstH(?Z)) ;

and defining Ras (z) = Q25 (2) we deduce the two-term reciprocal relation

(1.12) Ros (2) — Ros (g) = 242 <RQS G) ~ Ry, (2—1Z>) .

Hence we can maintain the notation developed by Murty et al. and speak of the
even-indexed Ramanujan polynomials, Ros(z), as well as the odd-indexed Ra-

manugjan polynomials Rasy1 (2).
COROLLARY 1. For every integer s > 1 we have

25 + 1) Bog —BZ
(1.13) Rosi1(2) = Rygr(1) = (25 +1)Bassn Rog(1) = ——24L

(2s+2)! 7’ (2s)!
so that
(1.14)
1 1 1 . Bl 1o By
— e — 1 — g =
Ros+1 (2) 92512 Ras11(1), Fas (2) — (25 + 1 — 2k)!(2k)! 0

and when s = 2s1 is even we have for the complex values

(1.15) Rosir (i) =0, Ros (i) = Ros <%> .

COROLLARY 2. For every integer s > 1 at least one of

o0

(1.16) ((4s —1), Z n451(;7m —1)

n=1

18 transcendental.

Similarly, for every integer s > 1 at least one of

[e.9]

1 1 1
(1.17) C(43 + 1)7 Z nAs+1 (eﬂn 1 - 245(647rn _ 1))

n=1

1s transcendental.

From the first relation in (1.12) we obtain

s+1
Bogio_onB
% 2s+2-2kBak _ _
(1.18) kz (2 - 1) B2 o~ et (2) — e (1) = 0,
=0

which in turn relates to a quadratic recurrence relation for the even zeta numbers
(stated in Theorem 1.3) similar to that discussed by Dilcher [8]. In Lemma 2.1 we

derive the Bernoulli relations of the title which enables us prove Theorems 1.1 and



1.2. We mention in passing that (1.18) implies that the odd-indexed Ramanujan
polynomials have a root approaching 2 (from above) as s — oc.

In this paper we also show that recurrence relations of the type depicted in
(1.4) are closely linked to functions related to ((2s) as well as to the Li equiv-
alence for the Riemann Hypothesis. These type of recurrence relations can be
expressed in determinant form, and in Theorem 1.4, we give a restatement of the
Li equivalence in terms of determinant properties of a square matrix.

Further results concern the existence of pseudo characteristic equations for
((2s) and related functions on the interval [1,00), where the approximations are
exact at the end points s = 1 and s = 0o, taking approximate values in between.
In music a related type of problem is encountered when considering open or
natural tuning versus equal temperament tuning. A harmoniously acceptable but
inexact solution is obtained by dividing the interval [1, 2], representing the octave,
into twelfths, by defining the frequency ratio of two adjacent notes (an equally
tempered semitone) to be 21/12 The approximation then agrees at the end points
of the octave but takes approximate values in between.

For 1/{(s) (and again related functions thereof) we also give a pseudo char-
acteristic equation with bounds for the accuracy of these approximations in The-
orem 1.5.

We now introduce some more notation.

Definition (of functions related to ((s)). Let

> X _1\yn—1
119 =2 = = (1o 5 ) <)
n=1 n=1

Then

(L.21) () =6(s)+ (), and  n(s) = 0(s) - b(s).

Theorem 1.2 gives linear recurrence relations, similar to that in (1.4), for the
functions n(2s), 6(2s) and ¢(2s).

THEOREM 1.2. We have

(25 — w2 T (—1)s ka2

(1.22) 0(23):(—1)8—1( ) +)° e C(2s—2k)>,
k=1

and

(28—1 s—1 s k Zk
(123)  ¢(2s) = (-1)*" < 1T +Z 2k+ BT T2 k)).
k= 1




COROLLARY. We have

o1 7T28 s—1 (_1)871’»‘7.(.2]{
(1.24) 0(2s) = (—1) (4(%)!*2 G 9(%-%)),

s — 12 Sl qys—kr2k
(1.25) B(2s) = (—1)*! <(j(28 31)! + kzl ((2113 - B(2s — 2k)> ,

and

o1 7T28 s—1 (_1)371’»‘ 2k
(1.26) n(2s) = (1) (2(23+1)!+k§ @) n(%-%)).

The recurrence relation in (1.4) was originally deduced by studying determi-

)

nants [12] and the leading coefficients of the geometric polynomials bés in m,

defined for » > 0 and ¢ = 1,...m, by the polynomial recurrence relations

r—1
+r—q+1 1 m+r—Fk
1.2 pr+1) — (M N (2k+1)
(1.27) d 2r + 1 ZQT—Q]{?+1 or —2k )1 ’

k=0
r—1
+r—gq 1 m+r—k
1.2 @) _ _(™ _ - - (2k)
(1.28) bq ( 2r ;_()2r—2k+1 2r — 2k by

and also for bé%) with 7 > 0 in (1.28) with b(()o) = m. When ¢ = m in (1.27),
the leading coefficients of the polynomials then follow the Dirichlet eta function

recurrence relation given in (1.26).

Definition. Corresponding to the three infinite-dimensional vectors

h:(hlah2ah3a"')a H:(H15H2)H3)"')a G:(G15G25G3)”’)5

we define
hq 1 0 0 0
h2 h1 1 0
hs3 ha hy 1 ... 0
(1.29) Ash) = (=1)*| . : : .. b
hs—l hs—2 h5—3 h5—4 1
hs hsfl hsf hsf hl
H,; 1 0 0 0
Hy hy 1 0 0
Hj ho h1 1 ... 0
(1.30) Ue(h,H) = (-1)° ) . . . ] o,
Hs—l h5—2 h5—3 h5—4 1
Hs h3,1 h572 h573 hl




H, 1 0 0 0
H, hi 1 0 0
H; ho hy 1 0
(131)  AyhH,G) = (-1)° .
Hs—l hs—2 h5—3 hs—4 o 1
Hs Gsfl Gsf2 Gsf3 R Gl

We refer to Ag(h) as an s x s minor corner layered determinant, or type 1 MCL
determinant for short; to ¥4(h,H) as a half-weighted s x s MCL determinant,
or type 2 MCL determinant for short, and to As(h,H,G) as a fully-weighted
s x s MCL determinant, or type 3 MCL determinant for short. Furthermore, if
Hy = Gy, for each k = 1,...,s then we call A(h,H,H) a balanced fully-weighted
MCL determinant.

The closed forms for bét) given in (1.27) and (1.28), were originally obtained

by studying associated magic squares under matrix multiplication [14]. We will
see later in Lemma 3.1 that all recurrence relations of this type can be expressed
as one of the three types of Minor Corner Layered determinants defined above.

We can now state Theorem 1.3, which expresses both 6(2s + 2) and ((2s + 2)
as a quadratic recurrence relation, an “integer composition” based sum and as a

type one MCL determinant.

THEOREM 1.3. Let p and q be the two infinite-dimensional vectors defined
such that

0(2s+2) =2 Z_: ¢(2s — 2k)0(2k + 2) = (i

k=0

Ay(p)

T 5 t
1.32 = ot dr(9)pd2(4) ... ¢ (2
R 3 DU (R C T IR}
t=1 d; >0
di+da+...+ds=t
d14+2do+...+sds=s

and
2 4 (—1)*72
k=0

72 /2 - t
(133) = Yoy o (d p p >gd1(2)gd2(4)...gds(23).
t=1 d; >0 1,02y...,0Us
di+do+..+ds=t
d14+2do+...+sds=s



Remark. Similar sums have been considered by Dilcher [8], where for N > 1,
he defines the Sy (n) such that

2n
1.34 S = By, Bog, ... B
(1.34)  Sn(n) 2 Z<2d1,2d2,...,2dN) 2d1 22z - - 2w
di+do+...+ds=n d;>0

and the sequence rl(cN) of rational numbers recursively by réN) =1,
) _ —L o 1 vy
T =N Tk 5
with r,gN) =0 for k < 0. For 2n > N, Dilcher then shows that
Sn(n) = _en) (N§/2 p Ban—2k
N @n—N) & 'k 2n—2k

= > 37 ¢@2d)¢(2ds) - . ((2d);

di+ds+...4+ds=n d;>0

note that Dilcher’s sum includes the non-elementary value ¢(0) = —% (see Titch-
marsh [18], equation (2.4.3)).

In Lemma 3.3 we show that the linear recurrence relations already stated
for ((2s), n(2s), 6(2s) and ¢(2s), in (1.4), (1.24), (1.25) and (1.26) can also be
expressed as MCL determinants and as “integer composition” based sums.

This seemingly fundamental link between the even zeta based constants, closed
form recurrence relations, “integer composition” based sums and MCL determi-
nants also extends to the Li equivalence for the Riemann Hypothesis.

The Li equivalence relies on the non-negativity of a sequence of real numbers

{An}52, determined from the Riemann xi function as follows. Let
§(s) = s(s = Dr /20 (3) ¢(s),

b

(n—1)ldsm

o) =€ (1) =14 S
j=1

for |z] < 1/4. Then &(s) satisfies the functional equation £(s) = &(1 — s). By

expressing A, as a sum over the non-trivial zeros of ((s) and utilising Jacobi

An = [s" " log £(5)]s=1,

and

theta functions, Li [11] shows that a; is a positive real number for every positive

integer j; that

~ (D!
(1.35) =) Yook ap,

t=1 1<k1,....kt<n
k1+ko+...+ki=n




and that the recurrence relation
n—

(1.36) A = na, — Z Xjn—j
i=1

holds for every positive integer n.

PROPOSITION 1 (Li Criterion). A necessary and sufficient condition for the
nontrivial zeros of the Riemann zeta function ((s) to lie on the critical line is

that A\, is non-negative for every positive integer n.

Li obtains a corresponding equivalence for the Dedekind zeta function (x(s) of
an algebraic number field k. There is an illuminating discussion of the Li Criterion
in [5], [6].

We can reword the Li Criterion (and similarly for an algebraic number field)

using half-weighted MCL determinants.

THEOREM 1.4. With \; and a; defined as in (1.35) and (1.36), let a and A

be the two infinite-dimensional vectors defined by
a = (ay,a9,as,ay4,...), A = (a1,2a9,3a3,4ay,...).

Let L,, be the n x n matrix given by

—aq 1 0 0 e 0
—20,2 aj 1 0 e 0
—3a3 a9 al 1 N 0
(1.37) L, = , . . A
—(n—1)apn-1 an-2 Gpn-3 ap-g ... 1
—nan Ap—-1 QAp—2 AaAnp—-3 ... Q]

and define M, such that M,, = (—1)"|Ly|. Then
(1.38) M, =\, =%(a,—A) = —-T(a,A),

and a necessary and sufficient condition for the nontrivial zeros of the Riemann
zeta function to lie on the critical line is that nxn half-weighted MCL determinant
M, given in (1.38) satisfies My, > 0 for alln =1,2,3,....

Theorem 1.5 examines some ‘pseudo-characteristic polynomials’ that approx-
imate ((s), 1/{(s) and related functions.

Definition (of pseudo characteristic polynomials). Let

5—1 k; 1.2k o s—1 (_1)/%% o
(1.39) ; 2k—|— 0! ) qs(w) = kzzomx )
37187.(23 _ 8*17r23
(1.40) zs(z) = ( él ) + ps(x), ts(x) = (ZT)! + ps(z),



(_1)sfl7r2s
2(2s +1)!

(—1)571(2s — 1)m?
4(2s +1)!

(1.41) eg(z) = + ps(x), fs(x) = + ps(x).

The polynomials above are all of a similar structure to that in (1.4).

THEOREM 1.5. For positive integers s the polynomials zs(x) and qs(x), eval-
uated either at k = 2s or k = 2s — 1, satisfy the following inequalities.
For s > 17

(1.42) (k) = 3{C(k)}* < 2(C(k)) < C(R).
For s > 38
(1.43) O(k) — 3{0(k)}* < t,(0(k)) < O(k).
For s > 34

1 1
(1.44) RON {C(k)} < 1445(¢(R)) < oM 1{¢(R)}.
For s > 114

1

(1.45) —) —{0(k)}® < 1+q,(0(k)) < 0] +11{0(k)}>.

(
Here {¢(k )} = ((k) — 1 is the fractional part of ((k). Similar results hold for
es(n(k)), fs(o(k)) and 1+ g5(n(k)).

2 Bernoulli relations

We now establish the Bernoulli relations of the title. Different relations of this

type were obtained by Woon [19].

LEMMA 2.1 (Bernoulli trio). Let Bl and B} be defined as in (1.8). Then for

natural number s, the following three identities hold:

W 1 2B
B3, = Bas, By, 1= <1 - ﬁ’) TQS
(i)
Bl=
(iii)

2s 2s -1
T(.%') _ Zl ?28B_231)1 .%'28 2 (1 + Z 2 B)2s 2s>
00 —1
_ 82(—1)8197(35) _ (1 +22 s 1¢ 25 23) )

s=1
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S 0l]1 123|456 8 10 11 12
111 1 1 —1 5 —691

B(s) 115150300 || 0 |35 0 |s| O |=m0
B*(S) 1] |l ==L L|L| =7 | =1 3L | 5 | =691} —691
1 |6|32|30|64|42| 1024 | 30 | 1024 | 66 | 8192 | 2730

As an immediate consequence of the second identity in (i), we have

B (_1)54—1225—37.‘.28‘8;871
(2.1) 0(2s) = s

The first few values of B; and B are given in the table above.

Proof. Let the s-th Bernoulli number, By, and the s-th Bernoulli polynomial,
Bs(x), be defined as in (1.1), where By = 1.

The first expression in (i) follows directly from rearranging the identity in

(1.2). We have

s—1
92s-1p, 23+1 92k—1p
2s+1 2s+1
k=1
s 1 /1 (2s+1) 1 2 /2s+1
— _ _ 2k}—1B
23+1+23+1(2 2 ) 23+1kz_0( k > F

2s—1

1 25+ 1\ .1,
= 2k-1p
25—}—1];)( k > b

so that
2s—1

1 25+ 1\ 4o
Byy=—5—r ) ok=2sp _ Bx
2s 25+ 1 & ( k > k= P2s

as required.
To obtain the second part of (i) we consider By(z) with s > 1 and z = 1.

(2178 —1)Bs = By (%) = Zs: (Z) (%) o By,

Then we have

k=0
yielding
2s 2s—k
_ 2s 1
(21 2s 1)B23 = <k> (§> By.
k=0
Thus we get
2s
(22571 1) 25\ Jp_2
WBQS - - k 2 * By,
k=0

925—1 _ 1 B2 96\
%3254_325:_2( >2k QSB]g7
k=0
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so that

252
22 1By =3 (2%)2 1B
(@ - 1)Bo ==Y ()2 B

k=0
It therefore follows that

25—2
1\ 2Bas 2 25\ j_1
(1-5m) 2 = 2 ()2 e

25—2

1 2s

- _ 2k3—28+1B

2s (k) h
k=0

and replacing s with 2s — 1 in (1.8) we deduce the result. The identity (2.1) then
follows from the definition of 6(2s).

Part (ii) of the Lemma can be obtained by simply multiplying through by 27°
in the definition for By, although for part (iii), we need to consider the series

expansions of both cothz and tanh z. It is known from [1] that

1 — 2% By, 2s—1
COchC:"Ei +gw$ ST 5 |IE|<7T,
and that -
22522 — 1)B
tanh oz = ( 53] ) 2 g2, 2] < g
s=1 ( 8)'
Writing
) -1
T(x) = - tanh% = (g coth g) , lz| <,
then gives
22s+1(22$ — 1)Ba, 2252 < i 9225 B, x25> -1
25—1 1 92 )
port (2s)! 22s —~ (2s)! 2%
so that .
o] [oe} -
4228—1325 252 _ ( Bs 2>
P L L+ oo™
' 7
s=1 s=1 (28)
and )
- _
Z g (228 — 1)B2S .’11'2872 — (1 + i B2s sz)
—_1\! | ’
s (2s —1)! port (2s)!

We then apply the first two parts of this lemma to obtain the polynomial result

~1
(2.2) T(r) = Z %x% 2 _ <1 T Z 2283)25 25) 7
s=1 .

and from the definitions of 6(2s) and ¢(2s) we obtain the final display in part (iii).
U
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With the aid of Lemma 2.1, we are now in a position to prove Theorems 1.1
and 1.2.

Proof of Theorem 1.1. To see (1.10) we have

* S+1
Bloyo o Bor  on Bosio ok Bok o R
Z ( = Rosy1(2)

(25 +2-20)12K)1° &= (25 +2— 2k)1(2k)!°

Q25+1

wM

and for (1.11), when r = 2s,

S, B B St1 Byuio opBX
k2 25422k _
Q2s( ) _ RQS( ) _ 2s+1—2 2 2k Z ( S 2 1 2s+2—2k

£a 25+ 1-20)12k) & (2s+2- 2RIk — 1)
s+1
_ i Bos 1o ok 1_ 2By, 25422k
£ (25 +2 — 2)!(2k — 1) 2% K
s+1

_ Z (2% _ 1) 4Bgs 22k Bok 25422k
(25 + 2 — 2k)!(2k)!122F

+1 2k
452542 Sz: (2% _ 1) Bas+o-2kBog 1
— (25 +2 —2k)1(2k)! \ 22

1 1
_ g, 2842 1) 2 )
z (R2s+1 (z) Ros 1 <2z>)

Using the odd-indexed reciprocal relationship of (1.6) then gives

1 1 1
2 Rysi (;) = Rosr1(2), 22" Ry (ﬂ) = aera ft2s+1(22),

from which we obtain Qa4(z) =

1 1 1
Rys(z) = 42°°12 <R28+1 (;) — Ros 1 (ﬂ)) =4 <st+1( ) — 92542 R28+1(22)> .

which is the relationship given in (1.11). Setting

Poy(2) = Ros (2) — Ros (g) ;

and then applying (1.6) and (1.11) we deduce the final statement of the theorem

1 1 1
Pys(2) = 212 Py (—) = %2 <R28 (—) — Ry <—>) :
z z 2z

It was proven in [16] that

(28 + 1)BQS+2

Ros41(2) = — @s+2)!

o0 to obtain the left hand identity in (1.12) we only need to show that

Ros41(2) = Ros11(1).
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We recall that the generating function for the Bernoulli numbers is

t = DBpt"
et—l_Z n! ’

n=0

and that for j > 1, Byjy1 = 0. Hence

(ett—1) <ett—1) - (ett—Ql)2 - <§Bl%k> <§% Bg”) ’

and for s > 1, the coefficient of t***2 in this product of sums is

2542 2542

i Bosyo_ 1By, 1+ _ i Basyo_ 1By 1k

22 @5+ 2 KR! 2 s+ 2 (R
s+1

Bosio_opBoy, 2%
= 1 p— s 1 .
;0(25+2—2k)!(2k)! Rzsi(1)

We notice also that

Hence

2 . Byt d [ Bttt
- - X e - (2
x [o@)
_ Bn n n+1 n\ __ Bn n n+1
_T;)W(Qt —t —(n+1)t)_nZ:OH(—(n—1)t — ).

So for n = 25+ 2 with s > 1, the coefficient of t>**2 in the above sum is given by

(n — 1)Bn (28 + 1)B28+2

n! B (2s+2)!

and equating the two different expressions for the coefficients of t2*72 gives

(28 + 1)BQS+2

Ros11(1) = Ros11(2) = — @s+2)!

where the right-hand identity in (1.12) is obtained in a similar fashion. Hence
R25(1/2) = 0 and applying (1.11) we deduce the two expressions in (1.14).

It was shown in [16] that when s is even Rasy1(i) = 0. To prove the remaining
identity in (1.15) and also the second Corollary we need to introduce Grosswald’s
generalisation of Ramanujan’s formula given in (1.7).

Grosswald defines

Ut(n) _ Zdtv and FS(Z) _ Z J_S(n)e2m'nz _ Z O'S(TL) lerinz7
n=1

ns
din

n=1
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so that we may also write

0 ) 1 e2minz
FS(Z) — § : n—se2mnmz — E — —
n 1 — e2minz

n,m=1 n=1
=—((s) - i = —((s) — F(—2).
— ns(e2mnz _ 1)
For any z lying in the upper half-plane, Grosswald obtained
~1 1 2mi) 25l
23) Fan() - P (T) = 50+ 06 - )+ E " R (o)

and he set z = iy/f/a =if/7 in (2.3) to get Ramanujan’s formula (1.7).
Substituting (2.3) into (1.11) we have

(2mi)2st1 1 228 1
s Ros(z) = —§C(2s +1) 5 1+ 9571
—-1 1 228 -1
(24)  +F1(2) — 22 Fagpa (7) - QQSTF%H(QZ) + 7F2s+1 (g) ;

and setting z = 4/2 in (2.4) when s is even gives

(27T)2s+1

(2.5) Ros(i/2) = oo (i/2) — g Fooa(26) + 2n(2s +1),

and when s is odd

(2m)2s+1
4

1

L1
228 F28+1(22)+§C(28+1)

Ros(i/2) = Fosq1(i/2)— iFQS-‘rl(i)—"_

(2.6) — S5

Similarly for z = ¢ in (2.4) when s is even we have

o)+l , , 1 1
(27) %st(l) = F23+1(Z/2) — ﬁF23+1(22) + 577(28 =+ 1),
and when s is odd
(2.8)
2mr)2stl , , L1 1 1
_%RQS(’L) = _F25+1(Z/2)+4F28+1(2)_ﬁF2S+1(22)+§ (3 - %> C(28+1)

When s is even (2.5) and (2.7) together imply that Ros(i) = Ras(i/2), which is
the final expression of the first Corollary.

It can be deduced from (2.6) and (2.8), using a similar approach to Murty et
al. [10], that (1.16) is true for every integer s > 1. Applying the same method to
(2.5) (or (2.7)) in order that we may prove (1.17), we argue as follows. Let s be

even. Then

2mr) s+l , , 1 L1
O Ros(5/2) = Faoi1(/2) — g Poui (20) + 3025+ 1)
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o] =N 00 747rn 1
Z 2$+1 (1 —e 7rn> Z n2s+1 < 47rn) + 577(28 + 1)

n=1 n=1
[eS)
1 1 1 1
- Z n25+1 (ewn -1 B 228(647rn _ 1)) + 577(28 + 1)
n=1

The right-hand side of this equation is is a sum of positive terms, and so is non-

zero. The left-hand side is therefore a non-zero rational multiple of 725*!, where
s is an even integer. Consequently, for every integer s > 1, at least one of
oo
1 1 1
<(48 + 1)’ nZl nds+1 (eﬂn -1 - 243(647rn _ 1))
is transcendental.
O

Proof of Theorem 1.2.

From Lemma 2.1 (i) we have

252
1L \2Bs _ 1 (28 ok—2s+1p
225 ) s 2s = \ k o

<1—2%> Bas = —1- (( )22 2B, +Z< >22k 28+1B%>.

so that

Hence ; 1 (_1)3712237%23325
@)= (1-5) @)
(=)l ( 25 s—1 92k B, )
4 (2s)! — (2s — 2k)!(2k)!
2s—1 ©X  2%*p
= (-1 (4(23)! a ; 4(2s — 2/51!{(%)!) ’
yielding

s — D)2 STL(q)kgp2s—2k
0(2s) = (=1 <(2 4(23! > (2(;)9 pYAY C<2k)> !
k=1

which is the required identity given in (1.22).
To obtain (1.23) and (1.25) we use the definition in (1.8) so that

(1)t By, (1R (25 1) o
22s)1  @s+ )&=\ k& b

_ (o (2s+1)Br (25 + 1) By
(25 +1)! 2 <\ 2k 2

k=

$(2s) =
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—1 _
(1)t 2s+1) 1 +SZ 22k—1r2kp,,
A2s+ 1)1 2025+ 1)1 = (25 -2k + 1)1(2k)122k 72k ] 7

giving the required expressions

o(2s) = (—1p- (2L +§ D' o)
23—1—1 k125—2k‘—|—1'22k

B . (28— 1)7T28 s—1 ( 1)k 2k
= (=" ( 4(2s +1)! +k21 (2k + 1)!22s— 7 ¢ (28 k>> ’
and

. (28—1 5_1 s k 25 2k
$(2s) = (-1) ( 4(2s + 1)1 +; s—2k+1) ¢(2k)>

[yt (8_1 81 sk2k o
== 4(2s 4+ 1)! +Z 2k+1 25 = 2K) |

k=1
We substitute (1.4) and (1.23) into the first identity in (1.21) to obtain

0(2s) = ((2s) — ¢(2s)

4s — 25 4+1) 4 1)k
= (=17 <( 4(2s + IL)! s ; (25 — (Qk—i)— 1)ln2k (C(2k) — ¢(2k))>

s—1

o1 95 [ (4s—2s+1 —1)*
= (-1 ( 425 +1)! L+ ; (25 —(2k4)r1)!7r2k9(2k)>
7T28 s—1 -1 sfk7r2k
= (4(23)! + ; ( (2/2 T 0% - 2k)> !

which is the expression in (1.24).
Finally, to obtain (1.26) we substitute (1.24) and (1.25) into the identity

1(2s) = 0(2s) — ¢(2s),

given by the second relation in (1.21). O

3 Families of determinant equations

This section describe some of the fundamental relationships between the three

types of MCL determinant and certain recurrence relations.

LEMMA 3.1. Let hy,hs,...,hs, Hi,Ho,...,Hs; and G1,Go,...,Gs be given.
Fork=1,...,s, let Ap(h) be the k x k type 1 MCL determinant in (1.29). Let
Uy (h,H) be the k x k type 2 MCL determinant in (1.30) and let Ax(h,H,G)
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be the k x k type 3 MCL determinant in (1.31). Let Ag(h) = Yo(h,H) =
Ao(h,H,G) = 1. Then

(3.1) Ag(h) = - ghskAk(h)
(3.2) U,(h,H) = _ZZ;Hs—kAk(h)
(3.3) U, (h,H) = —H, — i hs_x Uy (h, H),
k=1
(3.4) Ay(h,H,G) iH _wUi(h, G).
k=0

Conversely, if Ag(h) = Yo(h,H) = Ag(h, H,G) = 1 and Ai(h),...,As(h),
hi,...,hs satisfy (3.1), then As(h) is given in terms of hy,...,hs by the MCL
determinant (1.29). In addition, if U1(h,H),...,¥,(h,H) and Hy, ..., H; satisfy
either of (3.2) or (3.3) (one implies the other), then Vs(h,H) is given in terms
of hi,...,hs and Hy,...,Hs by the half-weighted MCL determinant (1.30). As a
further addition, if Ay(h,H,G), ..., As(h, H, G) and Gy, ...,G5s also satisfy (3.4)
then Ag(h,H, G) is given in terms of hy,...,hs, H1,...,Hs—1 and G1,...,Gg,
by the fully-weighted MCL determinant in (1.31).

We refer to the above recurrence relations according to which type of MCL
determinant they relate to; type 1 recurrence relations are of the form (3.1);
type 2 recurrence relations are of the form (3.2) or (3.3) and type 3 recurrence

relations, where W4 satisfies a type 2 recurrence relation, are of the form (3.4).

COROLLARY. Let U, Vi and Wy be the respective s X s matrices corresponding
to the determinants Ag(h), ¥s(h,H) and As(h,H,G), i.e

As(h) = ‘US,v \IJS(hv H) = ‘VS,v AS(h7H7 G) = ’WS,
Then denoting the characteristic polynomials of Us, Vs and Wy by
Ag”)(h) = |U8_HIS|’ \Ijgu)(h’ H) = |VS_:U’IS|’ Agu)(h’H’ G) = |W8_HIS|’

we find that the characteristic polynomials of Us, Vs and Wy also satisfy the recur-
rence relations of the lemma, but with hy replaced with hy — v, Hy replaced with
Hy — u, Gy replaced with Gy — p and Ag(h), ¥(h,H), As(h,H, G) respectively
replaced by Ag”)(h), g (h,H), AW (h,H,G).

Proof. To obtain (3.1), we expand the determinant in (1.29) along its first column
starting at the r-th row so that

(=1)°Ag(h) = (=1)*711° 7y (=1)Ag(h) + (=1)* 21 2he1 (=1)  Ar(h)+
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(=1)*7315 3, _o(=1)2Ag(h)+...+hi(—1)*TA, 1 (h) ) 1Zhs kA (h)

and hence the result. Similarly, for (3.2), we expand the determinant in (1.30)

along its first column starting at the r-th row, yielding

(=1)°Wy(h, H) = (=1)" 71 H(=1)° Ao (h) + (=1)* 7?1 Hy1(=1) Ay (h)+

(=1)* 3153 H, 5(=1)2Ag(h)+. . .+H(—1)*"1A,_1(h) )5 1ZHS kA (h

To obtain (3.3), we expand the determinant in (1.30) along its r-th row starting

at the 1-st column, giving
(=1)°Ws(h, H) = (=1)" "1 Hy + (=1)° 7215 by (1) 10 (h, H)+

(=1)°73153hy_o(=1)*Uy(h,H) + ... + hy(—1)* 1, _;(h, H)

s—1
= (—1)*! <H3 +> by, Wi(h, H)) :

k=0

Finally, to deduce (3.4), we expand the determinant in (1.31) along its 1-st column
starting at the r-th row, which yields

(=1)°As(h, H,G) = (=1)" "1 Hy + (=1)" 1 Ho o |Ga] +

by 1 ... 0
hy hy ... 0

(O | g et |
2 heo heq ... 1
Gy Gy ... Gy

and by comparing the above determinants with those of the form (1.30) we obtain
the result. The converse follows by showing inductively that each Ag(h), Us(h, H)
and Ag(h, H, G) can be expressed as a determinant of the required form and then
re-packing the original determinants expanded above.

To see the Corollary one simply replaces hy, H; and Gy with hy — pu, Hy —

and G1 — p respectively in the recurrence relations of the Lemma. U

Remark. We note that the symmetric structure of the n x n MCL determinant
Ag(h) = |Ug, in (1.29), leads to a symmetry in the cofactors of the matrix
U = (uj ;). Specifically, let M; ; be the cofactor or minor of u; ;. Then for i—j > 0

we have

(35) Mi,j = (—1)i+jAn,Z’(h) X Ajfl(h).
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LEMMA 3.2. With As(h) as defined in the previous lemma we have

= t
. Ag(h) = —1)t dipd2 - pds
Bo Am= XY,

t=1d;>0
di+do+...+ds=t
d1+2ds+...+sds=s

where the above sum consists of 2571 monomial terms.

Proof. Repeated use of (3.1) gives

Slk‘11 wll

Ag(h Z Z Z Pty Py~ -+ - Py — 0y Dy, (D),

=0kz=0  ku=0
with ky = ky—1 — 1 =0, so that Ay, (h) = Ag(h) = 1. Hence we can write

s—1 k1—1 kw—1—1

(3.7) As(h Z Z Z Pos—oy Py —keg - - Py 1 ke

=0 k2=0 kw=0

which is just a sum of products of hx, where the subscripts in each product sum

to s. Therefore we have established that Ag(h) is a sum of monomials of the form
(3.8) +h{'hd> . hds,

with
d; >0, di+2dy + ...+ sdg = s.

We note that for a given di + 2ds + ... 4+ sds = s, with dy + do + ... + ds = t,
the coefficient of the product in (3.8) is the same (ignoring sign) as that in the

multinomial expansion of
(hl—i-hg—i-...—i-hs)t.

Hence we can write

_ - Y ¢ dipds  pds
(3.9) Adh)= DY > (-1 <d1,d2,...,d5>h1 hd> . pds,

t=1 d; >0
di+da+..+ds=t
d1+2ds+...+sds=s
To see that the number of monomials in this expression for Ag(h) is equal to
2571 we note that for fixed values of ¢, the rules of summation give the number
of compositions of the integer s into t parts, which is known to be (ij) Explicitly

we have

(3.10) > (dl,dQ,t...,d) N (j:D

d; >0
di+do+..+ds=t
d1+2da+...4-sds=s
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so that summing over the values 1 < t < s gives the required total of 257!
monomials. For example, when s = 5, we have
As(h) = —h§ + 4hthy — (3hah3 + 3hihg) + (2hahs + 2h1hy) — hs.
O

Definition. Let the five infinite dimensional vectors u, v, U;, Uy and Ug be
defined such that

(111 1 (111 1
R TR L P T L A T TR LA P D T
1 2 3 s 1 3 5 25 — 1
U=, > .., — . Up= (=, =, 2 . =2 .
! (3!’5!’7!’ (25 + 1) > 2 (3!’5!’7!’ T(2s+ 1) >
11 1 1
3.11 Us= (=, =, — ...
(3:11) ’ (m’m’&’ " (25) >

We now give two well known MCL determinant identities for the Bernoulli

numbers [19]. In the first instance we have
(3.12) B(s) = s!A4(v),

which by Lemma 3.1 can be written as the recurrence relation

s—1

1 s+1
B, = — By,
s—i-lz( k > F

k=0

given in (1.1), and by Lemma 3.2, as the double sum

B(s > t ~1)°
(3.13) ,_51 - 2.2 (dl,dg, . ,d5> 2!d13!d2(. . ()5 1)l

t=1d;>0
di+do+...+ds=t
d14+2da+...+sds=s

The second identity states that

—(2s)!

(3.14) B(2s) = T T

As(u),
the equivalent forms of which we express in terms of 7(2s) in Lemma 3.3.
Lemmas 3.1 and 3.2 effectively give us two alternative ways to express an MCL
determinant; as a recurrence relation and as a double sum over compositions of
s into t parts. For a half-weighted MCL determinant we get the two alternatives
just stated, along with an extra recurrence relation obtained by expanding the
determinant along the r-th row instead of the first column.
Combining these equivalent methods of expression for n(2s), ((2s), 6(2s) and

®(2s) we obtain the following lemma.
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LEMMA 3.3. Let n(2s), ((2s), 0(2s) and ¢(2s) be defined as in Theorem 1.1.
Then

Mm(2s) = (~1)'7>A,(u)

s—1
(—1)5_17{'25 (_1)19—17.[.2]9
= X~ J = - I2n(2s — 2
25+ 1)! +; oh ) 2% 2k

— 7'('28 i Z s (_1)t+8
di,do, ..., dg 3ldipldz (28 + 1)!d5 ’

t=1d;>0
di+do+...+ds=t
d14+2do+...+sds=s

((2s) = (=1)'n*Us(u, Uy)

(_1)5—187T2s s—1 (_1)k—1kﬂ_2k

= — 2n(2s — 2k
251 1)! +}; r ) 22— 2k
s—1
(—1)57187'(28 (_1)k717r2k
= 2 LD (25— 2
25+ 1)! 12 oy 22
B 225—27T25 iz ¢ (_1)t+8
O — di,ds,...,ds) 3145ld2 (25 4 1)lds”
dy ot tds—t
d14+2do+...+sds=s
46(25) = (~1)'720,(u, U2>
sfl
(~1)"(2s - 151 (2% — 1)
= 2 2s — 2k
(25+1 +; 2k+1) n(2s = 2k)
B (_1)871(23_1)7{_2 +5 1( 1)k717r2k4¢(2 %)
- (25 +1)! £ 2k + 1) y
7T28 S S (_1)t+s
= 25—1 _ Z Z 1d151d2 1ds
(2 ) &4 di,dy,... dg) 3195l (25 +1)!
dl+d2+---;ds:t
d14+2da+...+sds=s
40(25) = (=1)*7%W,(u, U,)
s—1
(—1)5_17{'25 (_1)19—17.[.2]9
= - ~—In(2s — 2k
2l © oy 2128 = 2K)
k=1
_1)5— 128 s—1 1)k—1,-2k
) i ) 46(2s — 2k)
(2s)! pt (2k +1)
(223 _ 1)7‘(‘25 hd S (_1)t+s
= 25—1 _ Z Z 1d151d2 1ds *
(2 I di,dy,. .. dg) 3195l (25 +1)!

di+do+...+ds=t
d14+2da+...+sds=s
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Proof. The proofs follow directly by applying Lemmas 3.1 and 3.2 to the recur-

rence relations stated in Theorem 1.2. ]
We are now in a position to prove Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.3.

From Lemma 2.1, we can write

-1
o 925 o o ?(28) o _
82 1222 2<1+2Z 1—7528)932) = (1425)7"
s=1

=1-254(25)% - (28)3 + (29)* — ...,

and comparing terms in x enables us to obtain the double-sum expression for
0(2s) in (1.32). The determinant and single-sum identities of #(2s) in (1.32) are
then deduced by applying Lemmas 3.1 and 3.2. To obtain the expressions in (1.33)
we rearrange the double-sum in (1.32) and again apply Lemmas 3.1 and 3.2 to

get the determinant and single-sum identities. O

Proof of Theorem 1.4.
Substituting ¥,, = \,, H, = —na, and h,_; = a,_; into the type 2 recur-

rence relation (3.3) of Lemma 3.1 gives

n—1
n = Nap — § )\jan—ja
j=1

which is just (1.36). Hence by Lemma 3.1 we have

al 1 0 0 . 0
2a2 aj 1 0 e 0
3a3 a9 al 1 . 0
)\n = Mn = (_1)71—1 . . . . . . = _\I]n(aa A),
(n—1)ap—1 apn—2 apn-3 apn—4 ... 1
nany, ap—-1 AAp—2 ap-3 ... 41

so that
>0 M, >0.

Therefore a necessary and sufficient condition for A, to be non-negative for n =
1,2,3,...is for M, to be non-negative and the equivalence of the theorem follows.
O

Remark. An important point to note with the sums in (1.32) and (1.33) is that
they consist entirely of positive terms, whereas the single sums in Theorem 1.2
all consist of an alternating series. We now give the examples using the double-
sum composition expressions from both (1.33) and (3.15) and also the single
recurrence sum from (1.33) for ¢(14) = 27'4/18243225.
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Taking s = 6 in (1.33), we have the strictly positive sums

2

C(14) = 3 (C(12) +2 (2¢(2)¢(10) + 2C(4)C(8) +2¢*(6))

+27 (3¢%(2)(8) + 6¢(2)¢(4)¢(6) + ¢ (4)*)
+2% (4¢%(2)¢(6) + 6¢%(2)¢%(4))
+25¢4(2)¢(4) +2°¢°(2) ),

and

¢(14) = 4098¢(2)¢(12) + 1038¢(4)¢(10) + 318¢(6)¢(8),

whereas (3.15) with s = 7 gives the alternating expansion

rl4212 7/ q 2 2
Yy=1 = (= _ (2 L, _ =2 4 =
¢(14) 213 _ 1 (15! (3!13! + 5'11' + 7

4
_(3!39! +3'25'7' 3'5'3
10
t 3!471 3!3512

3 6
T\ 3 e T 3'7'2 7!

3!55! * 3!7>

As expected, the number of terms in the double sums from (1.33) and (3.15) is
given by

TIC2T =002, 1156,
and

710 =00, 1<t <7,

respectively. In general, the sum of the coefficients in (3.15) is simply 2°~!, and

for (1.33), taking into account the extra 2!=! terms, the coefficients sum to 3571

For comparison we give the more common (alternating) recurrence identity [4]
for ¢(2s), which states that

s (_1)k7r2k
(3.15) C(25) =) m(l — 92k=2st1y (25 — 2k) = 0.
k=1 ’

4 Approximating equations

The Riesz, Hardy-Littlewood and Béez-Duarte equivalences to the Riemann hy-

pothesis all rely on bounding sums involving inverse zeta constants. Hence the
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ability to approximate 1/((s), for s € N, is of interest. The simplest well-known
bound for ((s) and its inverse can be deduced as follows.
From Euler’s product [2], [17], and the identity

20(s) — 1 = 2 (1 - l) C(s) = 1 < C(s),

9s
we obtain
(4.1) 1+23_1<C(S)<1+ﬁ’
and
1 1 1
4.2 1——— — 1——.
( ) 2371 < C(S) < 28

In a similar vein, using (1.20) and (1.19) gives

1
<n(s) <1<B(s)<1l+——r,

4. 1-—
(43) 25 -1 25 -2

from which we obtain the consecutive integer bounds
(4.4) 2°—2<(2°=1)n(s) <2° —1, 2 —2<(2°-2)0(s) <2° — 1.
For ((s) and ¢(s) we have

(4.5) 2°=2¢(s) < (2°=3)¢(s) <2°=((s),  1=29(s) < (2°=3)(s) < 1—¢(s),

so that the respective intervals here are ((s) and ¢(s) themselves.

Although the upper bound in (4.1) has been improved by Murty et al [16]
to 14+ 27%(s + 1)/(s — 1), the interval bounding ((s) is still O (1/257!). The
bounds in Theorem 1.5 for the pseudo characteristic polynomials that approxi-
mate ((2s) and ((2s—1) are more accurate. We need two lemmas before we prove
Theorem 1.5.

LEMMA 4.1. Let

L Fu(s) = Fo(s)

_ Fy(s) ) — Fo(s) ) — Fy(s)
= e PO G PO = e 9= G

and (to,t1,t,t3,t4) = (9,34,76,68,228). Then for integers k > 1 and s > t; we

have

Fo(s) =

s

1

(4.6) Fi(s) < W7

i=1,...4
COROLLARY. As s — oo we have

F(s)= o ({((s)}*), and  F(s) = o ({8(s)}°).



25

Proof. For i = 0 and s > 9 we can write s = 9k + r with £k > 1, r > 0. Then
49 /(9K)! < 1 giving

s 43 49k+r

— < —

sl sl T (9k) 9k +1)...(9k +r)

< il < il < ! < !
9k +1)...9% +7) — (9k)" — (2k)" — (2k)s—9k’
and taking k = 1 gives the result.
Similarly, for ¢ = 1 and s > 34 we can write s = 34k + r with kK > 1, »r > 0.
Then 13%* /(34k)! < 1 and we have

Fi(s)  (4n)® 13° - 1334+
CEHPE S s S5 S BBk + ). 34k + 1)

- 13" 13" Lot 1
S BTG L) B (@R (k) (k)

when k£ = 1. The proofs are similar for the remaining three cases when i = 2, 3, 4.

The Corollary follows by considering the limit as s — oo by either fixing k

and increasing 7 or vice-versa. O

LEMMA 4.2 (approximate sine lemma). In the notation of (1.39) we have

B (— )[””] sinT{z} ()
ps(w) =1 +kz_; 2k+1 ’
and e i
B (=1 sm7r{x} > nz)?
as(@) = * ; 2k + 1)!
Proof. We have
8—1 )2k+1 2k+1
le; 2k+1 - _EZ 2k+1

1 0 2k+1 i 7T1‘ 2k
S T Y
T 2k + 1 2k +1)!
k=0 k=s

SInTr = (—1)F 1 (7x)?k
4.7 =1- —_— .
(47) T + Z (2k+1)!
sin 7 ([z] + {x} > )Qk
-1 _
1 sin w[z] cos m{x} + cos w[x] sin w{x} N i - )%
T P Qk: +
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cos 7r[ sin 7T{.’IJ} > )2]“
—1_
+ ; Qk —l— 1)!
(— ) sin W{x} > 7T£l?)2k
— 1 —

as required. O

We are now in a position to prove Theorem 1.5. As with the previous lemma
we give the proof for z4(¢(k)), with k = 2s or k = 2s — 1. The proofs for t,(0(k)),
es(n(k)), fs(@(k)), 1+ qs(0(k)) and 1 + qs(n(k)) are similar.

Proof of Theorem 1.5.

By (1.40) and Lemma 4.2, for any integer k > 1, we can write

(—1)8717'(288

zs(C(k)) = TosT + ps(C(k))

(_1)8—17T288

_ (-n! SH”T{C )} = (=DM ¢ (k)
T (25 +1)! - +£ (2k + 1)!
_ (_1)3717T23 s 2C( )23+2 4C( )23+4 B
= s <5+C(k)2 25 +2)(25+3) " @25+2).. (251 5) >

sin 7 {¢(k)}
+1+ e (k)

: ' o +17;' (et (14 g (WC>(<2)22+ 3" @ +(27T><.(.%)<)243 )
g -
g( .<5+C 2s<1+ 25+2)22 2852);+>)
= (257i31)! (qu)% (1 - ((;s @2)) > ) +1+ {EEIZ;} - WQ{CC(ES)}?’ +...
T T (40} B (SO S )

et T Tewmy T et

< oy L (0} = A HEWE + A {CmP - ) (L e
Expanding out the brackets and collecting terms we find that

2s

zs(C(k)) < 1+ {C(k)} + (;T—S), —{CR)Y* + (1 = 7){¢(R)}F + O ({C(R)}) -
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7T28

Gy~ KB,

and with a slight adjustment of signs to the above argument we can deduce the

< ((k) +

lower bound

ok
zs(C(k)) > ¢(k) — s 2{¢(k)}*.
Hence we have
7'('25 7'('25

and applying Lemma 4.1 with & = 2s or 2s — 1 we deduce (1.42) of Theorem 1.5.
To see (1.44) we use ¢5(C(k)) =1 — ps(¢(k)) in the above proof, omitting the
initial term in z4(¢(k)). This yields

2(n*) R} | mC(R))  aHC(k))

qs(C(k)) < (25 +1)! C(k) C(k) C(k)

+ ..., for k > 4,

so that
1 2(m*°) 2
qs(¢(k)) < RO 1+ @s+1)! + 72 {¢ (k).

We again obtain a lower bound by considering the signs in the upper bound

argument, and combining these results we have

1 2(m%) 1 2(m*) 2
Tk)_l_ m <gs(C(k)) < @ —1+m+7 {C(k)}?’v

whence we apply Lemma 4.1 with k = 2s or 2s—1 to deduce the inequality (1.44).
The proofs for the inequalities involving 6(k) and 1/6(k) in (1.43) and (1.45) are

similar. O

Hence 1 + ¢4(¢(2s)) approximates 1/¢(2s) to an accuracy of O({¢(2s)}?) on

the interval [1,00), where the approximation is exact at the end point s = occ.

Remark. The Béez-Duarte equivalence to the Riemann hypothesis, [3], [15],

using coefficients ¢; defined by

(49) o= i{)(—l)ﬁ (t> o

s=

asserts that the Riemann hypothesis is true if and only if for integers ¢ > 0,
(4.10) ¢ = O34 for all € > 0.

Our approximation to 1/{(2s) is probably not strong enough to use in the Baez-
Duarte equivalence to the Riemann Hypothesis in terms of re-stating the equiv-
alence as sums of both ((2s) and 1/{(2s).
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5 Roots of the Ramanujan polynomials

We conclude this paper with a brief look at the roots of the Ramanujan polyno-
mials R,(z). In [10], it was shown that Ras1;(2) is a polynomial in z of degree
2s + 2 whose four real roots are zg, 1/29, —z9 and —1/zy, where zy is the root of
Ros11(z) slightly greater than 2. It was also shown that the 2s — 2 complex roots
of Ros+1(2) lie on the unit circle and as s — oo the distribution of these nonreal
roots on the unit circle becomes uniform. Specifically, the roots of unity that are
zeros of Rosi1(z) are given by +i when s is even; all four of +p, £p when s is a
multiple of 3, and no others. Here p is a cube root of unity.

In contrast, the even-indexed Ramanujan polynomials Ry,(z) are of degree 2s
in z (as by Theorem 1.1 it can be seen that the leading terms cancel) and appear
to only have the two real roots £1/2, as detailed in Corollary 1 of Theorem 1.1.
Explicit calculation suggests that for s > 1, Res(z) has 2s — 2 complex roots,
which all lie just outside the unit circle and whose distribution also becomes
uniform as s — co.

The zeros of the Ramanujan polynomials [16] are important because they
occur in expressions for the odd zeta values and as such the roots of Ros(z) may

well be worth investigating further.
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