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[1] A multiproxy paleoceanographic record from the Atlantic margin off the British Isles reveals in

unprecedented detail discharges of icebergs and meltwater in response to sea surface temperature increases

across the last deglaciation. We observe the earliest signal of deglaciation as a moderate elevation of sea

surface temperatures that commenced with a weakly developed thermocline and the presence of highly

ventilated intermediate waters in the Rockall Trough. This warming pulse triggered a series of

multidecadal ice-rafted debris peaks that culminated with a major meltwater discharge at 17,500 years

before present related to ice sheet disintegration across the NW European region. The impact of meltwater

caused a progressive reduction in deep water ventilation and a sea surface cooling phase that preceded the

collapse of the Laurentide Ice Sheet during Heinrich event 1 by 500–1000 years. A similar sequence of

rapid ocean-ice sheet interaction across the European continental margin is identified during the Bølling-

Allerød to Younger Dryas transition. The strategic location of our sediment core suggests a sensitive and

rapid response of ice sheets in NW Europe to transient increases in thermohaline heat transport.
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1. Introduction

[2] Abrupt shifts in North Atlantic climate records

indicate a strong link between the meridional heat

flux driven by thermohaline convection and glaci-

marine discharges from the Late Pleistocene ice

sheets [Ruddiman and McIntyre, 1981; Lehman

and Keigwin, 1992; Bond et al., 1993]. The impact

of meltwater on thermohaline circulation is often

invoked as a forcing factor for rapid climate change

[Ganopolski and Rahmstorf, 2001], although the

mechanism for promoting submillennial scale

instability of marine ice margins remains unclear

[Bond and Lotti, 1995; van Kreveld et al., 2000].

The massive discharges of icebergs during Hein-

rich events have been related to periodic collapses

of the Laurentide Ice Sheet (LIS) [MacAyeal,

1993], but internal ice sheet dynamics cannot

explain the 1–2 ka cycle of glacial fluctuations

that is related to the stadial events of the Greenland

summit climate record [Bond and Lotti, 1995].

There is increasing evidence that this millennial-

scale ice-rafted debris (IRD) signal was produced

by ice sheets that were much smaller than the LIS

and directly influenced by ocean climate [Fronval

et al., 1995; Elliot et al., 1998; Knutz et al., 2001].

The position of the Icelandic, Fennoscandian, and

British ice sheets in vicinity of the main path of the

North Atlantic Drift which presently feeds the

thermohaline overturn cell in the Nordic Seas

[McCartney and Talley, 1984], provides the poten-

tial for a close coupling between oceanic heat

transport and glacial mass balances. A differential

response between circum-North Atlantic ice sheets,

possibly linked to changes in the thermohaline

circulation, has been suggested from IRD prove-

nance studies across Heinrich events 1 and 2

[Grousset et al., 2000; Scourse et al., 2000]. Here

we present a paleoclimatic record of the last

deglaciation from the NE Atlantic margin, which

provides new evidence of multidecadal scale inte-

raction between ocean circulation and sensitive ice

sheets in NW Europe.

2. Material and Methods

[3] Core DAPC2 was retrieved from a contourite

drift deposit located SE of Rosemary Bank, north-

ern Rockall Trough (58�58.100N, 09�36.750W) at a

water depth of 1709 m (Figure 1). The site is at

present influenced by Norwegian Sea Overflow

Water (NSOW; a precursor water mass of North

Atlantic Deep Water, NADW) crossing the

Wyville-Thomson Ridge [Ellett and Roberts,

1973; New and Smythe-Wright, 2001] and recircu-

lated NADW [McCartney, 1992]. The chronology

of DAPC2 is constrained by seven 14C-AMS dat-

ings (Table 1) and a stratigraphic control point,

which relates a sharp increase in foraminiferal

abundances to the YD-Holocene transition of the

GRIP d18O profile (Supplementary Information,

available at http://www.g-cubed.org). A calendar

year timescale was derived from the linear extrap-

olation between age control points using CALIB

4.1 [Stuiver et al., 1998], which included a marine

reservoir correction of 400 years. The marine 14C

reservoir age is known to have varied across the

last deglaciation in response to ocean circulation

changes and atmospheric 14C production rates

[Voelker et al., 1998] so the timescale represents

a first order approximation. Sedimentation rates

average 23 cm ka�1 across the last deglaciation,

encompassing the Younger Dryas (YD), Bølling-

Allerød (B-A) and Heinrich event 1 (H-1), increas-

ing to >70 cm ka�1 across the interval associated

with the late glacial-early deglaciation. Similarly

high sedimentation rates have previously been

observed in glacial sections of contourite deposits

from the Rockall Trough and are probably related

to deposition from meltwater plumes emanating

from the western European shelf margins [Knutz et

al., 2001; Lassen et al., 2002]. Samples were

obtained at 2 cm intervals, enabling us to recognize

paleoceanographic shifts at a multidecadal tempo-

ral resolution. The high sedimentation rates and the

sharpness of the proxy signals observed in DAPC2

suggest that the influence of bioturbation is negli-

gible [Anderson, 2001]. Nevertheless, should a

small amount of bioturbational blurring of the

paleoclimatic signals have occurred, then the speed

of the events recorded in DAPC2 is likely to be

faster than we claim here.

[4] The relative abundance of the polar foramin-

ifera Neogloboquadrina pachyderma sinistral

(Nps) in the >125 mm fraction was counted in
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sample splits containing >300 specimens, as a

relative indicator of sea surface temperature

(SST) changes. In the North Atlantic this species

makes up more than 95% of the planktic faunal

assemblage at summer SSTs below 5�C [Johan-

nessen et al., 1994]. The abundance of detrital

components (grains per gram dry bulk sediment)

was analyzed in the >250 mm fraction. The frac-

tured quartz (FQ) component provides a positive

indicator of iceberg-transported debris [Knutz et

al., 2001], while the content of detrital carbonate

(DC) is related to deposition from distal icebergs

derived from the LIS [Andrews and Tedesco,

1992]. The FQ flux was calculated from the FQ

abundance and bulk mass accumulation rates (Sup-

plementary Information, available at http://www.

g-cubed.org). The stable isotope composition of

planktonic foraminifera species Nps and Globiger-

ina bulloides (Gb), and the epibenthic species

Cibicidoides wuellerstorfi (Cw) was determined

using a Micromass Multiprep system attached to

a VG PRISM mass spectrometer. d18O and d13C
values are reported relative to the Vienna Peedee

belemnite (VPDB) international standard with ana-

lytical precision better than ±0.06%. The content of

sortable silt (10–63 mm) was measured on a Sedi-

graph grain size analyzer subsequent to removal of

calcium carbonate using 2 M acetic acid. In con-

tourite drift sediments, this parameter is primarily

related to relative changes in flow speed of near-

bottom currents [McCave et al., 1995b].

3. Rapid Ocean-Ice Sheet Responses

[5] Major events of increased supply in ice-rafted

debris during the Younger Dryas and the early

deglaciation are clearly recognized by the flux of

FQ (Figure 2b). The ratio betweenDC and FQgrains

provides a signal of icebergs discharged from the

Hudson Bay region of the LIS and pinpoints the

Figure 1. Location of core DAPC2, modern deep ocean circulation and the extend of the LGM ice sheet in NW
Europe. Broad arrows indicate the main glacimarine outlets [McCabe and Clark, 1998; Knutz et al., 2001]. The thin,
black arrow illustrates a northerly boundary current driven by recirculated North Atlantic Deep Water, which flows
along the European continental slope at depths of 2–3 km [McCartney, 1992]. The broken arrow represents
Norwegian Sea Overflow Water, which enters the northeast Atlantic across the shallow sills between Iceland and
Scotland [Ellett and Roberts, 1973; New and Smythe-Wright, 2001]. RB: Rockall Bank, RT: Rockall Trough, W-T:
Wywille-Thomson Ridge. Contours represent 200 m (thick line), 1000, 2000 and 3000 m (thin lines) water depth.
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glacial collapse associated with H-1, which in the

central North Atlantic IRD belt is dated between 16

and 17 ka before present (BP) [Andrews, 1998]. We

also observe a DC peak within the B-A interval,

which likely corresponds to theOlderDryas cooling.

The sharp centennial-scale IRD peaks observed

during the earliest deglaciation between 18 and 17

ka BP (Figure 2b) are outstanding as these occur

more than 1500 years prior to the peak of the H-1

event. The twomost prominent IRDpeakswithin the

broad IRD increase correlate with sharp d18O deple-

tions suggesting that these are related to regional

glacimarine discharges and not just local anomalies

(Figures 2b and 2c). The relative magnitude of the

IRD flux between 18 and 17 ka, on average more

than three times greater than during H-1, and the

sharp meltwater pulses points to a nearby source on

the NE Atlantic margin for these events.

[6] The most proximal source for iceberg dis-

charges at this location was the NW sector of the

British Ice Sheet, which during the early deglaci-

ation advanced onto the shelf margin west of

Scotland [McCabe and Clark, 1998; Knutz et al.,

2001] (�200 km from the DAPC2 core site). We

cannot rule out that other ice sheets along the NE

Figure 2. Paleoceanographic time series from core DAPC2. (a) Relative abundance of the polar foraminifera
Neogloboquadrina pachyderma sinistral (Nps) in the >125 mm fraction. (b) Flux of ice-rafted, fractured quartz (FQ)
(number of grains cm�2 ka�1) and the ratio of pale-yellowish detrital carbonate (DC) to FQ. (c) Oxygen isotope
records (d18O) of planktonic foraminifera Nps and Globigerina bulloides (Gb). (d) Carbon isotope record (d13C) of
epibenthic foraminifera Cibicidoides wuellerstorfi (Cw). The arrow on the scale bar represents an average of late
Holocene Cw d13C values measured in DAPC2. (e) Records of magnetic susceptibility (MS) and weight percentage of
sortable silt (SS%, 10–63 mm terrigenous fraction). Heinrich events (H-1, H-0), European glacimarine events (E-1a-b),
Bølling-Allerød (B-A), Older Dryas (OD), and Younger Dryas (YD) are indicated. The FQ flux was calculated from
the grain abundance and bulk mass accumulation rates (Supplementary Information, available at http://www.g-
cubed.org). The timescale is based on linear interpolation of 7 AMS 14C dates (black triangles) performed on single-
species foraminifera (Table 1), and a stratigraphic control point (gray triangle), which relates a sharp increase in
foraminiferal abundances to the YD-Holocene transition in the Greenland summit GRIP d18O record. Left-hand panel
shows d18O records from GRIP [Dansgaard et al., 1993] and west Antarctic Byrd [Johnsen et al., 1972] ice cores on a
common age scale [Blunier and Brook, 2001] allowing comparison with the atmospheric temperature changes in the
northern and southern hemisphere. The late glacial warming trends in the GRIP d18O record are depicted by the
hatched line. Note the change in timescale at 17 ka BP.
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Atlantic margins contributed to the earliest degla-

cial IRD events, in particularly the Fennoscandian

Ice Sheet, which drained into the Norwegian

Channel to the NE of the British Isles [Sejrup et

al., 1994]. However, the low abundance of DC

precludes the Hudson Bay region of the LIS as the

main source of icebergs. Low DC layers observed

between H-1 and H-2 in the Labrador Sea region

may reflect a more frequent response from parts of

the LIS other than the Hudson Bay ice stream

[Stoner et al., 1996], but it is difficult to associate

these horizons, apparently of mixed downslope and

hemipelagic origin, with the large IRD fluxes of

the DAPC2 core between 18 and 17 ka BP. This

conclusion leads us to term the glacimarine dis-

charges observed during the earliest deglaciation as

European events, E-1a-b (Figure 2). We suggest that

the E-1 events in DAPC2 are analogues to the

European ‘precursors’ of Heinrich events recently

demonstrated on the NE Atlantic margin [Grousset

et al., 2000; Scourse et al., 2000].

[7] The E-1a-b events are immediately preceded by

a rapid warming pulse in SST, indicated by a sharp

reduction in the abundance of Nps (Figure 2a).

This warming signal starts abruptly at �18 ka with

an initial change lasting some 50 years. The

warming is terminated at �17.8 ka, and SST

rapidly cools and returns to its initial late glacial

level within several decades. The cooling is coin-

cident with the first glacimarine E-1b event,

marked by an abrupt negative Nps d18O excursion

of �1% (Figures 2a–2c). The E-1b peak suggests a

rapid glacial response to sea surface warming,

possibly related to onset of a fast-flow regime of

the British Ice Sheet, driven by high meltwater

production along its western margins [McCabe and

Clark, 1998]. The E-1a event at �17.5 ka BP is

characterized by an abrupt �1% decrease in plank-

tonic (Nps and Gb) d18O occurring over a period of

several decades. The negative step change in d18O
associated with the E-1a meltwater pulse suggests a

more widespread deglaciation in the NE Atlantic

sector, possibly involving the collapse of the

Barents Sea ice shelf, which has previously been

estimated at �17 ka [Bischof, 1994; Hebbeln et al.,

1994]. The multidecadal resolution expressed by

the DAPC2 record allows the E-1 glacimarine

events to be clearly discerned from the H-1 event,

which is evident as a prolonged negative Nps d18O
anomaly between 17 and 16 ka BP (Figure 2c).

[8] At the end of the B-A warm interval a small

increase in IRD at 13 ka BP is followed by a strong

IRD peak between 12.5 and 12.0 ka BP associated

with the H-0 event. The H-0 and the precursor

event coincide with a series of negative Gb d18O
anomalies observed across the B-A to YD transi-

tion. However, the first two of the d18O anomalies,

between 13.5 and 13.0 ka BP, clearly precede the

IRD peaks (Figure 2c) and are therefore unlikely to

represent a glacimarine meltwater signal. From the

proximity of the DAPC2 core to the European

continental margin the negative d18O anomalies

are more likely to represent glacifluvial discharges

produced from terrestrial ice-margins. The paleo-

climatic sequence across the Allerød-YD transition

supports the rapid response of NW European ice

sheets to SSTwarming similar to that of the earliest

deglaciation (Figures 2a and 2b).

4. Ocean Circulation Changes

[9] We use information derived from the stable

isotope composition of planktonic and benthic

foraminifera species to infer changes in North

Atlantic circulation and the impact of European

meltwater pulses on thermohaline circulation

across the last deglaciation (Figures 2c and 2d).

The offset in d18O of foraminiferal species repre-

senting surface water (Gb) and thermocline water

(Nps) provides an indication of the vertical hydro-

graphic structure (temperature, salinity) of the sur-

face ocean layer and its potential for convection

[Hillaire-Marcel and Bilodeau, 2000]. Benthic

d13C, in turn, serves as a paleoceanographic indi-

cator for the relative contributions of nutrient-

depleted NADW (high d13C) and nutrient-enriched

water originating from the southern hemisphere

(low d13C) [Kroopnick, 1985]. Prior to the E-1a
meltwater peak at 17.5 ka BP Nps and Gb d18O
signals are virtually identical, which suggests that

the initial warming pulse at �18 ka BP was

associated with a well-mixed surface-subsurface

layer that is indicative of a weakly developed

thermocline and decreased vertical stability of the
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upper water column (Figure 2c). This interpretation

is supported by the high benthic d13C values

(>0.8%) prior to 17.5 ka BP (Figure 2d), which

imply the presence of a nutrient-deficient and

highly ventilated water mass, presumably Glacial

North Atlantic Intermediate Water (GNAIW) that

is known to have extended to depths of �2000 m

[Duplessy et al., 1988; Oppo and Lehman, 1993;

Sarnthein et al., 1994]. The decrease in benthic

d13C directly following the E-1b event suggests that

high meltwater fluxes from western Europe caused

a progressive reduction in deep water ventilation.

This reflects a slow-down in the formation of

nutrient-depleted GNAIW, which in the deepest

parts of the Rockall Trough became replaced by

nutrient-enriched southern source water [Oppo and

Lehman, 1993; McCave et al., 1995a]. The general

increase in Gb-Nps d18O gradients after �16 ka BP

points to increased stratification and the shoaling of

the thermocline during the B-A.

[10] To constrain our palaeoceanograhic interpre-

tation, we have extracted sedimentological proper-

ties from DAPC2 that provide a physical indication

of changes in thermohaline circulation (Figure 2e).

The sortable silt percentage (SS%) is used as a

proxy of near-bottom flow, for which greater

abundance suggests faster relative flow speeds

[McCave et al., 1995b]. The strong influence of

bottom current sediment sorting in core DAPC2 is

supported by the positive correlation between SS%

and magnetic susceptibility, which in other records

from the NE Atlantic margin has been linked to the

intensity of NSOW [Rasmussen et al., 1996]. The

low SS% values prior to �17 ka suggest that

bottom currents were too weak to produce a

measurable sorting effect on the 10–63 mm silt

concentrations (Figure 2e). The gradual increase in

SS% from �17 ka indicates a progressive strength-

ening of flow speeds up to a local maximum during

the late Allerød warming. Combined with an

increase in benthic d13C, this points to an increased

vigor of deep water recirculation with a gradually

increasing contribution from a northern deep water

source, and a corresponding weakening of the

southern hemisphere water contribution (Figure

2d). We note that the benthic d13C levels during

the B-A interval represent a mixed water mass

rather than a pure northern source end-member

(Holocene d13C values average 1.14% compared

with an average of 0.57% during the B-A interval).

A marked reduction in SS% across the YD cooling

and an abrupt decrease in d13C at 12.5 ka BP indicate

a transient decrease in deep ventilation suggestive of

a close linkage between meltwater injection and

convective slow-down in the North Atlantic (Fig-

ures 2d and 2e). Flow speed then increased rapidly

in two discrete steps. The first increase occurred

immediately after the YD meltwater peak around

12.2 ka (Figure 2c), while the second marks the YD-

Holocene transition placed at 11.5 ka according to

the GRIP d18O record. By analogy with the sharp-

ness of the YD termination in the GRIP ice core

(Figure 2) we infer that the transition from the

convective slow-down during the YD to a modern

circulation regime with full-scale NSOW influence

occurred in as little as 60 years.

5. Discussion and Conclusions

[11] Comparison of our records with the d18O signal

from the GRIP ice core [Dansgaard et al., 1993]

reveals a broad correlation between transient shifts

in NE Atlantic ocean circulation and the evolution

of regional climate during the last deglaciation

(Figure 2). The warming pulse observed prior to

the E-1 events in DAPC2 is not explicitly revealed

in the GRIP ice core but appears to be embedded

into the broad temperature increase observed

between 18.5 and 16.5 ka. According to our corre-

lation the early deglacial warming trend in the GRIP

d18O record was aborted by the E-1a meltwater peak.

Renewed increase in Greenland air temperatures

occurred subsequent to the E-1a event, but again

climatic amelioration was disrupted, this time by the

H-1 meltwater pulse. The age discrepancies of 1.3–

1.6 ka (including the 400 year correction used in the
14C age calibration) that arise from the correlation

between the late glacial d18O transitions in the GRIP

record and the E-1 and H-1 meltwater pulses in

DAPC2 are likely to represent the effects of

increased marine 14C reservoir ages [Voelker et al.,

1998; Waelbroeck et al., 2001] on our converted,

calendar-year timescale. Comparison with the Byrd

ice core [Johnsen et al., 1972; Blunier and Brook,

2001] (Figure 2) shows that atmospheric temper-
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atures over Antarctica continued to increase over

this early deglacial period. We surmise that the Byrd

temperature record, from its isolated location in

Antarctica, is more representative of the mean

global evolution of atmospheric temperature. Devi-

ations from this trend, as seen in the GRIP ice core

record, are likely a response to the forcing that

ocean-ice sheet interaction, notably thermohaline

heat transport and meltwater production exerted on

North Atlantic climates [Grootes et al., 2001].

[12] Our findings suggest that the initial cooling

observed prior to H-1 in many North Atlantic

records [Bond et al., 1993; Labeyrie et al., 1999;

Bard et al., 2000] is likely to be the effect of

meltwater discharge from European ice sheets.

However, the mechanism that links the E-1 and

H-1 event remains enigmatic. One possibility is that

surging of ice sheets in NWEurope acted as a trigger

mechanism for H-1 through a sea level rise that over

a period of centuries destabilized the marine-based

margins of the LIS [Andrews, 1998; Grousset et al.,

2000]. This hypothesis is supported by the step-like

decrease in d18O at 17.3 ka BP which marks a major

deglaciation of the entire European and Arctic

region [Jones and Keigwin, 1988; Hebbeln et al.,

1994; Sarnthein et al., 1995]. Alternatively, the time

lag between E-1 and H-1 may reflect a slower

response of the LIS to a common climatic forcing

manifest by the late glacial warming pulse [Scourse

et al., 2000]. A phase of climatic amelioration with a

maximum around 18–17 ka BP has previously been

documented in the NE Atlantic [Lagerklint and

Wright, 1999; Zaragosi et al., 2001] and Scandina-

via [Vorren et al., 1988] which points to a regional

incursion of temperate water masses along the Euro-

pean continental margin. The corollary is that the

warmingmight represent the initial developing stage

of a Dansgaard-Oeschger event that was disrupted

by glacimarine discharges before it could trigger

full-scale thermohaline convection in the Nordic

Seas, and consequently produce a sharp temperature

increase in the Greenland climate record.

[13] In summary, the records from DAPC2 suggest

that a major ice sheet collapse in NW Europe was

triggered by a brief warming pulse that punctuated

the late glacial-early deglacial interval. The ensu-

ing sequence of ocean-ice sheet interaction in the

NE Atlantic appears to have been critical for the

glacimarine discharges that subsequently emerged

from the Hudson Bay region during H-1. Our

results confirm the high sensitivity of the glacial

North Atlantic to even minor changes in freshwater

fluxes that are demonstrated in ocean-climate mod-

els [Ganopolski and Rahmstorf, 2001].
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