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Abstract 

WEE 1 is a key eukaryotic cell cycle regulator. In plants it has a clear role at the DNA damage/ 

DNA replication checkpoints. I aimed to discover the functional significance of interactions 

between WEE1 and other cellular proteins in Arabidopsis thaliana and Nicotiana tabacum. First I 

examined effects of ectopic expression of Arabidopsis WEE1 (Arath;WEE1) in transgenic tobacco 

and tobacco WEE1 (Nicta;WEE1) in transgenic Arabidopsis. Western blotting using a plant WEE1 

antibody showed that expression of Nicta;WEE1 in Arabidopsis caused increases in total WEE1 

protein. The response of primary root length, numbers of lateral roots and primordia, and meristem 

length to zeocin (a DNA damaging agent) and hydroxyurea, (which perturbs DNA replication), 

resembled the wee1-1 insertional mutant rather than Arath;WEE1 over-expression. Expression of 

Arath;WEE1 in tobacco resulted in reduced WEE1 protein but also induced similar phenotypic 

changes as Nicta;WEE1 expression in Arabidopsis under zeocin and HU stress. I concluded that 

interactions with cellular proteins in the alien species resulted in down-regulation of WEE1 

activity. 

In a yeast 2-hybrid screen Arath;WEE1 interacted with the glutathione-S-transferase protein, 

GSTF9. To test the functionality of this interaction I analysised the root and cell cycle phase 

phenotypes of single mutants: wee1-1 and gstf9 and I generated the double mutant wee1-1;gstf9. I 

demonstrated that both Arath;WEE1 and GSTF9 have roles in the DNA replication and damage 

checkpoints, but largely act in different genetic pathways.  

Arath;WEE1 also interacts with GF14ω, a 14-3-3 protein in a yeast 2-hybrid assay. In other 

eukaryotes this stabilizes WEE1. I confirmed that over-expression of GFF14ω in transgenic 

Arabidopsis (GFF14ω OEX) results in a very similar root phenotype to over-expression of 

Arath;WEE1 as predicted from a stabilization of WEE1. However the GFF14ω OEX phenotype 



was not abolished in a wee1-1 genetic background. indicating that Arath;WEE1 is not required for 

the action of GF14ω. 
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1. General Introduction

In this thesis, I present work on the role of the cell cycle gene, WEE1, its interface with

other genes in the cell cycle, and its effect on plant growth, and development. I focused on

the role of this gene in response to treatments that induced chromosomal DNA damage

and perturbation of nuclear DNA replication. I used two model systems, Arabidopsis

thaliana and Nicotiana tabacum.

Arabidopsis thaliana is  a dicot species that over the past 25 years has become an

important model system in plant biology. It has various traits that make it ideal as a model

system. For example, it has a very small nuclear genome (0.6 pg C value 125 Mb with 5

chromosomes per haploid set) (www.DNACvalue.kew.org, www.arabidopsis.org).

Generally, Arabidopsis genes have few introns and that has made DNA sequencing

relatively straight forward. Not surprisingly, it was the first higher plant genome to be

fully sequenced (A. thaliana Genome Initiative, 2000). Arabidopsis is an ephemeral weed

capable of extremely fast growth enabling it to rapidly exploit open ecosystems. Indeed, it

can set seed within 5-6 weeks of germination. A vast array of developmental and

physiological mutants are also available that have been used to break new ground in the

understanding of plant growth and development. In addition, there is also a vast collection

of T-DNA insertional mutants freely available so that it is possible to access knockout

lines deficient in a gene(s) of interest (http://signal.salk.edu/cgi-bin/dnaexpress). It is a

member of the Brassicaceae and related to crop species within this family.

Nicotiana tabacum (tobacco) has also been widely used both as a whole plant and to

generate cell cultures. Tobacco is easily transformed and in fact was the first plant species

to be transformed (James, 1996), and the TBY-2 cell culture derived from the cultivar
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Bright Yellow is easy to maintain, and is particularly useful for cell cycle studies due to

the ease with which its cell division can be synchronised (Kumagai et al., 2006).

In the following sections, I review the plant cell cycle and genes/proteins that are

important in its regulation particularly in relation to WEE1, and the Arabidopsis protein

GSTF9. The latter was initially identified as being relevant to the cell cycle because it

interacts at the protein level with Arabidopsis WEE1 (Cardiff lab, unpublished data).

1.1 The plant cell cycle and its regulation

Cell division is a central component of plant growth and development and has been an

important topic for cell biologists for more than one hundred years (reviewed by Kuijit,

2006). The plant cell cycle consists of G1 (post mitotic interphase), S-phase (DNA

synthesis phase), G2 (premitotic interphase) and mitosis/cytokinesis. Two major transition

points are recognized in the cell cycle regulating entry into S phase and into M phase

(reviewed by Francis, 2006).

In S-phase DNA is replicated by a semi conservative mechanism during which a single

arm chromosome changes to a chromosome with double arms (Fig 1.1). DNA is replicated

semi-conservatively at multiple initiation sites along the chromosome. Each one is known

as a replicon. An origin of replication and two termini defines each replicon; semi

conservative replication proceeds outwards from the origin to the termini. The DNA is

unwound at an origin of replication. DNA primase primes the 3' OH group of exposed

single stranded DNA with a short molecule of RNA (Lewin, 1998). By this mechanism,

replication is in both directions from the starting point. This creates two-replication forks,

moving in opposite directions (Griffiths et al., 1999).
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Figure1.1 DNA replication from an origin: (a) Continuous strand synthesis: In the

asymmetric structure of the replication fork the 3' to 5'strand is known as the leading

strand, DNA polymerase synthesises the daughter strand from 5' to 3' continuously (b)

Discontinuous strand synthesis: The 5' to 3' is known as the lagging strand  which is

synthesized in opposite  direction to  the overall direction of DNA chain growth. The

replication of lagging strand occurs with delay in comparison with the leading strand,

these fragments which are synthesised discontinuously are named Okazaki fragments.

Note that the middle of the structure shows a clear gap between strands creating 5’ and 3’

binding sites, but is normally followed by rejoining in less than a second .

DNA polymerase (α) binds to the 3'-OH of the RNA primer molecule. It then catalyzes the

addition of new nucleotide monophosphates into the new strand of DNA and the cleavage

and release of pyrophosphate molecules into the nucleoplasm. Because DNA polymerase

(α) can only work in the 5' to 3' direction, DNA replication is bidirectional from the

common   origin. Once continuous   leading strand   DNA replication   has begun,

discontinuous 5' to 3' replication in the lagging strand occurs as a series of short sections

known as Okazaki fragments (Fig.1.1). Eventually, these fragments are joined together by

DNA ligase (see Alberts et al., 1985).
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Plants show considerable plasticity in the way they replicate their nuclear DNA. During

G2 phase the cell grows to an optimum size prior to its entry into mitosis. A number of

genes are expressed that regulate cell size some of which will be mentioned later in this

chapter.

The basic features of cell cycle control are remarkably conserved in all eukaryotes

(Huntley and  Murray, 1999),  but in  higher eukaryotes  the cell cycle is regulated by

different variants of the essential drivers, cyclin-dependent kinases (Eckardt, 2001).

1.1.1 Cyclin Dependent Kinases (CDKs)

In all eukaryotes the plant cell cycle is regulated by a super-family of serine/theronine

protein kinases known as cyclin-dependent kinases (CDKs) and cyclins which cooperate

with CDKs (Becker et al., 2003) (Fig. 1.2). Cyclins are the activating subunits of CDKs

and are essential for both kinase activity and substrate specificity (Elledge, 1996; Nigg,

1995). The T-loop is the part of the CDK which restricts access to the active site of the

CDK. In Schizosaccharomyces pombe, in  a non-catalytic domain there is a sequence

within the T-loop comprising the following amino acids- PSTAIRE; the T-loop is

responsible for binding with a cyclin partner. This PSTAIRE sequence is conserved in

animal CDKs and in CDKA;1 in Arabidopsis. Note that a hallmark feature of PSTAIRE-

containing CDKs is their property to rescue temperature sensitive cdc2-/cdc28 mutants of

fission and  budding yeast (Saccharomyces cerevisiae) , respectively (Burssens et  al.,

1998). In plants, a range of additional CDKs have also been identified and grouped: B, C,

D, E, F and G. In these CDKs the PSTAIRE domain has been altered during evolution

(Joubes et al., 2000). Thus, in plants CDKA types are prototypical CDKs, which share the

conserved PSTAIRE, found in cdc2/CDC28 in fission/budding yeast (Huntley and

Murray, 1999), which is normally active from the beginning of S-phase, until the end of



General Introduction

5

the G2/M transition. CDKA; 1 which is homologous to Schizosaccharomyces pombe

SpCdc2 homologue, and animal CDK1 and 2, is encoded by a single gene in Arabidopsis,

and its kinase activity peak is at G1/S and G2/M (Mironov et al., 1999; Iwakawa et al.,

2006; Nowack et al., 2006). However other plant CDKs including a CDKB is represented

by a multigene family that cannot complement the temperature sensitive cdc25- mutant of

S. pombe (Boudolf et al., 2004). The B-types are unique to plants, and as yet not found in

any other organism (Mironov et al., 1999; Joubès et al., 2000; Inzé and DeVeylde; 2006;

Boruc et al., 2010), and they only function at the G2/M transition (Huntley and Murray,

1999).

C-type CDKs in tomato failed to interact with cyclins A, B and D (Joubes et al;

2001). D-type CDKs have two functions, they participate in phosphoregulation of the

activity of RNA polymerase II, and also in phosphorylation of other CDKs during the cell

cycle (Harper and Elledge, 1998). An E-type CDK was observed in Arabidopsis

(Vandepoele, 2002); its activity may be restricted to reproductive growth and in specifying

stamens and carpels, and also in termination of stem cell division in floral meristems. Its

function in reproductive systems is similar to CDK8 in mammals (Wang and Chen, 2004).

CDKG has homology with the human cytokinesis- associated p58 galactosyltransferase

protein (Menges et al., 2005).
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Figure 1.2 Cell cycle regulatory proteins at different stages of the plant cell cycle, and the

interaction between different CDK and cyclins during G1, S, G2, and M phase. During G1

CDKA binds to CycD, at G1/S CycD is released and CDKA binds to CycA. During G1

phase cyclin D conjugates with CDKA. CycA is replaced by CycD during S-phase. In G2

to M-phase and within G2, the CycA is substituted by CycB. CycB conjugates to both

CDKA and CDKB. CycB is degraded by the Anaphase Promoting Complex (APC) at

metaphase.

1.1.2 Cyclins

Cyclins are proteins that bind to, and activate CDKs; they have large conserved sequences

within the cyclin box, and these sequences are responsible for substrate selection,

subcellular localization and stability of the CDK–cyclin complexes in relation to binding

with the T-loop of CDKs (Genschik et al., 1998; Wang et al., 2004). Sixty genes were

proved to regulate seven classes of cyclins: A, B, C, D, H, P and (T) (Francis, 2007).

Expressions of A- and B-type cyclins are at their highest at the S-G2-M and G2/M

transitions (Ito et al., 1998, 2001; Ito, 2000). A conserved N-terminal sequence called the

destruction box (D-box) exists in both A and B cyclins. The D-box serves as a binding site



General Introduction

7

which ubiquitin residues bind to prior to proteolytic destruction of the cyclin (Renaudin et al.,

1996; Vandepoele et al., 2002; Wang et al., 2004).

A-type cyclins are subdivided into three different subclasses: CYCA1, CYCA2,

CYCA3 (Chaubet, 2000). A-type cyclins are involved in S-phase progression and are

expressed before B-Type cyclins in the plant cell cycle, before S-phase (Fuerst et al.,

1996; Setiady et al., 1995; Lew et al., 1991). The expressions of two A3-type cyclins are

up-regulated at the G1/S transition (Reichheld et al., 1996).

B-type cyclins are expressed specifically in late G2, at the G2/M transition, and in

early M-phase of the cell cycle (Ito, 2000). B-type cyclins are subdivided into three

subclasses in Arabidopsis, CycB1 , CycB2, and CycB3 (Vandepole et al., 2002). CycB1 ,

CycB2 are found in other eukaryotes whereas the third subclass is specific to Arabidopsis

(Renaudin et al., 1996).

Cyclin levels are regulated through transcription or specific protein degradation

(Lees and Harlow, 1993). During the transition from metaphase to anaphase, cyclin A-

types and B-types are degraded; this degradatory pathway involves priming of the cyclin

with ubiquitin residues which makes the cyclin unstable. This unstable complex is then

degraded in the 26S proteasome (Genschik et al., 2007) (Fig. 1.2).

Ten D-type cyclins have been classified in Arabidopsis (Vandepoele et al., 2002).

D-type cyclins can be controlled  both  transcriptionally and  post-transcriptionally. For

example, sucrose, cytokinin, and brassinosteroids can control the expression of CycD

(Riou-Khamilichi et al., 2002; Hu et al., 2000). In suspension cultures of Arabidopsis,

cytokinin can induce CycD3 expression and sucrose can induce CycD2 and CycD4

expression (Riou-Khamlichi et al., 2000). Most encoded Cyclin Ds contain a combination

of amino acids rich in proline, glutamate, serine and threonine (PEST), amino acids that

are responsible for targeting ubiquitin/proteasome-mediated proteolysis by the so-called
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SCF complex; these cyclins have an N-terminal LxCx(D/E) retinoblastoma-binding motif

(Renaudin et al., 1996; Vandepoele et al., 2002; Planchais et al., 2004; Yanagawa and

Kimura, 2005 ; Sorrell et al., 1999). G1- specific D-type cyclins regulate the progression

from G1 to S-phase (Soni et al., 1995; Vandepoele et al., 2002; Menges et al., 2005;

Boruc et al., 2010). The genes which encode these types of cyclins are expressed at a

constant level during the cell cycle (Sorrell et al., 1999).

H-type cyclin is known as a partner of a cyclin activating kinase (CAK) which catalyses

the phosphorylation of a tyrosine residue of a CDK (Tyr-160/167) enabling, for example,

CycD–CDKA binding (Yamaguchi et al., 2000; Shimotohno et al., 2004).

Transcriptional regulators, cytoskeleton, nuclear   matrix, nuclear   membrane

proteins, and chromatin-associated proteins can all be substrates   of CDK–cyclin

complexes (Norbury and Nurse, 1992; Koch and Nasmyth, 1994; Joubès et al., 2000).

1.1.3 CDK regulation

Cyclins are not the only  proteins which control CDK activity. Cyclin-dependent

Activating Kinases (CAKs) can positively regulate CDKs by phosphorylating a threonine

residue (T 160/167) within the CDK loop. This phosphorylation event occurs at the same

time as cyclin binding to the CDK and in its absence this binding will not take place. The

binding of a CDK with its partner cyclin is catalysed by the CAK kinase and at the same

time the cyclin binds to the CDK. Two classes of CAK have been identified: D-type CDKs

(homologous to vertebrate CAKs) and F-type CDKs (plant specific CAKs) (Umeda et al.,

2005).
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Environmental and developmental signals cause the inhibition of CDK/CYC complexes by

Cyclin-dependent Kinase Inhibitors (CKIs) (LaBaer et al., 1997; Cheng et al., 1999). Two

major classes of CKI proteins have been identified in mammalian cells which are Kip/Cip

and INK4 (Sherr and Roberts, 1999). Kip related proteins have been identified in Arabidopsis

but with only limited sequence homology compared with mammalian cells. The first plant

CKIs were detected in yeast two hybrid screens (Wang et al., 1997; Verkest et al., 2005).

They were initially discovered by this approach in plants in the lab. of L. Fowke in the 1990s

and were named Interactors with CDKs (ICKs, Wang et al., 1999). Because of their limited

homology with animal CKIs, they were renamed by L. DeVeylder as KRP (Kip-related)

proteins of which there are seven in the Arabidopsis genome (Ormenese et al., 2004).

KRPs/ICKs can negatively regulate CDK activity by binding to both the CDK and cyclin

subunit (Wang et al., 1999). This will cause cycle arrest or delay cell cycle progression in

response to intracellular or extracellular signals (Verkest et al., 2005). Arath; ICK1/KRP1

and Arath;ICK2/KRP2 are unstable proteins (Zhou et al., 2003b; Verkest et al., 2005). In

plants ICK/KRP members were isolated either by the yeast two-hybrid approach from

Arabidopsis (Wang et al., 1997; Lui et al., 2000; Zhou et al., 2002), tobacco (Jasinski et al.,

2002a, 2003) and alfalfa (Pettko-Szandtner et al., 2006), or by data mining from Arabidopsis

(De Veylder et al., 2001), maize (Coelho et al., 2005), rice (Barroco et al., 2006) and tomato

(Bisbis et al., 2006). Homologous proteins to INK4 have not been identified in Arabidopsis.

Over-expression of ICK/KRP genes inhibits cell cycle progression at both G1/S and G2/M

transitions, causing smaller plant size, serrated leaves, reduced cell number and enlarged

cells (Wang et al., 2000; De Veylder et al., 2001; Zhou et al., 2002; Jasinski et al., 2002a,

2003; Barroco et al., 2006;  Kang et  al.,  2007; Bemis and  Torii,  2007),  while weak

overexpression of ICK1 (KRP1) or ICK2 (KRP2) caused inhibition of mitosis (Verkest et

al., 2005; Weinl et al., 2005). Recombinant ICK1 protein in Tradescantia virginiana
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stamen cells increased transition time to metaphase so that mitosis is slowed down (Cleary

et al., 2002).

1.1.4 G1/S transition

The conserved mechanism of G1/S transition in mammals and plants is partly

dependent on the retinoblastoma protein (Rb), and the progression to S-phase is controlled

by the activity of E2F transcription factors (He et al., 2004). E2F is bound to the Rb

protein and this represses the transcription of E2F-dependent genes. Six E2Fs have been

identified in Arabidopsis: E2Fa, E2Fb, E2Fc, E2Fd/DEL2, E2Fe/DEL1 and E2Ff/DEL3

(Inzé, 2005). In Arabidopsis, there are also dimer proteins (DP(s)) that bind (dimerise)

with E2Fa, E2Fb, E2Fc and DPs and only have one DNA-binding domain to interact with

the canonical E2F motif, whereas E2Fd/DEL2, E2Fe/DEL1 and E2Ff/DEL3 proteins

contain two DNA-binding domains allowing them to bind to the E2F site (Mariconti et al.,

2002; Vandeopoele et al., 2002). In G1/G0, CDKA/cyclinD phosphorylate Rb and this

causes the release of E2Fs which then bind to the promoters of genes that drive the cell

into S-phase; as a result, E2F responsive genes are activated.

Homologues of the Rb protein have been identified in maize, Zea mays (Z. mays,

Zm), tobacco, Nicotiana tabacum (N. tabacum, Nt), and in Arabidopsis (Grafi et al., 1996;

Nakagami et al., 1999; Kong et al., 2000). In Arabidopsis the Rb protein can be

phosphorylated by the CDKA/CYCD complex, which thereby releases E2F (De Veylder et

al., 2002). In the green alga Chlamydomonas reinhardii (C. reinhardii ), mutation in the

Rb protein genes did not result in a shortened G1-phase or premature entry into S-phase as

a result, normal differentiation in cells was observed, while in mammalian cells loss of Rb

proteins results in a shortened G1, suggesting that the Chlamydomonas Rb pathway is not
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an S-phase switch, but a size sensor restraining cell cycle progression (Umen and

Goodenough, 2001).

1.1.5 G2/M transition

In most eukaryotes, phosphoregulation of CDKs controls the G2/M transition. In

mammals, the CDK-cyclin complex forms during the S and G2 phases and it is inactivated

by inhibitory phosphoregulation of two adjacent amino acid residues, Thr 14 and Tyr 15,

towards the NH2-terminus of the protein (Mueller et al., 1995). Phosphoregulation is

partly controlled by a family of protein kinases , WEE1, MIK1, and MYT1 (Lundgren et

al., 1991; Mueller et al., 1995; Porceddu et al., 2001).

1.1.5.1 Phosphoregulation of CDKs:

1.1.5 .1 .1 WEE1 kinase

WEE1 kinases are proteins which phosphorylate CDKs at Tyr15. Typically, WEE1s have

a C-terminal catalytic domain and an N-terminal regulatory domain. In fission yeast, Wee1

causes a delay in mitosis by phosphorylation of the CDK at tyrosine 15. Wee1 level rises

during S and G2 phase, and decreases during M phase (McGowan et al, 1995; Watanabe

et al., 1995). Loss of Wee1 function resulted in premature entry into mitosis at a smaller

mitotic cell size. Hence, WEE1 is a negative regulator of cell size at cell division.

The first WEE1 in plants was cloned in maize (Sun et al., 1999), and in

Arabidopsis (Sorrel et al. 2002). Arath; WEE1 was identified by sequence homology

(Sorrel et al., 2002) and shares a high homology with Zeama; WEE1 that has been shown

to inhibit the CDK complex in plants (Sun et al., 1999). Over-expression of Arabidopsis

and maize WEE1 in Schizosaccharomyces pombe inhibited cell division and caused an

increase in cell size (Sun et al., 1999; Sorrell et al., 2002). However, when Arath; WEE1
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was expressed  in tobacco  BY-2 culture cells, it induced  a small mitotic cell  size in

comparison with the wild type (Siciliano, 2006).

In animal cells, WEE1 is found in the nucleus most of the time, and after mitosis

begins, it is transferred to the cytoplasm (Baldin and Ducommun, 1995). In animal cells,

14-3-3 proteins together with Chk1 are positive regulators of Wee1, and during mitosis the

interaction between 14-3-3 and Wee1 proteins is reduced leading to a decrease in Wee1

kinase activity (Lee et al., 2001). In wee1 mutants (Xwee1) lacking the ability to bind 14-

3-3 proteins, WEE1 becomes less active in CDK phosphorylation and is therefore not

efficient in regulating G2/M (Wang et al., 2000). In S. pombe, mitotic inhibitory kinase

(Mik1) has a similar role to Wee1 in the cell cycle (Lundgren et al., 1991), although Mik1

is not present in Arabidopsis.

Phosphoregulation of the ATP-binding domain of the kinase protein regulates the

activity of the CDK-cyclin complex. In fission yeast, the activity  of CDK-cyclin is

induced by the dephosphorylation of Tyr15 whereas this occurs on both Tyr15 and Thr14

in higher eukaryotes (Russell and Nurse, 1986; Dunphy, 1994; Watanabe et al., 1995).

This activation of the CDK-Cyclin complex is catalysed by a unique class of enzymes, the

CDC25 phosphatases.

1.1.5.1.2 Cdc25 phosphatase

In animals and yeasts, CDC25 is a positive regulator of CDKs at the G2/M transition. An

increase in WEE1 activity causes delay in entering mitosis at an enlarged cell size whilst

an increase in CDC25 activity can cause premature entry to mitosis at a reduced cell size

(Russell and Nurse, 1987). A putative homologue of animal and yeast CDC25 was

discovered in plants (Landrieu et al., 2004; Sorrell et al., 2005). Arath; CDC25 protein

shares homology with the catalytic domains of CDC25A, CDC25B, and CDC25C in
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humans, and CDC25 in yeast, however it lacks a regulatory domain. The Arath; CDC25

also has arsenate reductase activity under arsenate stress conditions (Bleecker et al., 2006)

but acts as a phosphatase in the presence of a phosphorylated substrate in vitro (Landrieu

et al., 2004). The role of CDC25 in plants is controversial because Arabidopsis T-DNA

insertional lines for Arath;CDC25 grow and develop normally (Dissmeyer et al., 2009).

However, cdc25 knockout lines were hypersensitive to hydroxyurea treatment, a drug that

induces the DNA replication checkpoint (Spadafora et al., 2011). Hence, CDC25 may be a

necessary component of the DNA replication checkpoint in plants.

1.1.5.2   14-3-3 proteins

14-3-3 refers to the elution and migration pattern of these proteins following DEAE-

cellulose chromatography and starch-gel electrophoresis. The 14-3-3 proteins eluted in the

14th fraction of bovine brain extract/homogenate and were found on positions 3.3 during

subsequent electrophoresis (Moore and Perez ,1967).

The role of 14-3-3 proteins in cell cycle regulation was first recognized in S. pombe (Ford

et al., 1994). These proteins can regulate the cell cycle by modulating protein localization

(Zeng and Piwinica-Worms, 1999); for example they can control intracellular distribution

of Cdc25 (Lopez Girona et al., 1999). Nuclear accumulation of Cdc25 was observed in S.

pombe when the 14-3-3 protein, Rad24, was knocked out causing the activation of the

CDK/cyclin complex (Zeng and Piwnica-Worms, 1999). In H. sapiens, a 14-3-3 protein

stabilizes WEE1, and a wee1 mutant lacking the ability to bind 14-3-3 proteins is less

efficient in inducing a G2 cell cycle delay (Wang et al., 2000). 14-3-3 proteins protect

phosphorylated sites on Wee1 and Cdc25 under checkpoint conditions thereby preventing

further phosphorylation by polo-like kinases (Forbes et al., 1998; Kumagai and Dunphy,

1999; Lee et al., 2001).
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1.1.5.3 GSTF9 and redox regulation of the cell cycle

GSTF9 (glutathione S-transferase transmembrane (GST) family) belongs to a family of

multifunctional, dimeric enzymes that catalyse the nucleophilic attack of the tripeptide,

glutathione, on lipophilic compounds which have electrophilic centres (Wagner et al.,

2002). In plants the GST gene family is derived from an ancestral class of all eukaryote

GSTs the theta class, also present in vertebrates and insects. Based on amino acid

sequence, six classes of plant GSTs are now recognized (Dixon et al., 2002), composed

of 54 members in Arabidopsis (Dixon et al., 2009). GSTs in plants are divided into six

classes based on amino acid sequence: phi (GSTF), tau (GSTU), zeta (GSTZ), theta

(GSTT), lambda (L), and dehydroascorbate reductases (DHAR) (Dixon et al., 2002;

Moons, 2005; Dixon et al., 2009). Two of these classes are found in mammals: the theta

class and zeta classes, while the remaining larger classes of tau, phi (GSTF), lambda, and

dehydroascorbate reductase (DHAR) are specific to plants (Droog, 1997; Dixon et al.,

1998a; Edwards et al., 2000). These enzymes are found in the cytosol of the cell although

there is some evidence for the expression of some GSTs in the nucleus and peroxisomes

(Dixon et al, 2009).

Z class GSTs are involved in tyrosine metabolism, and the DHAR class is involved in

ascorbic acid recycling (Dixon et al., 2009). One of the most important activities of the phi

class of GSTs is glutathione peroxidase which causes reduction of organic hydroperoxides to

their respective alcohols (Dixon et al., 2010).

A function has also been ascribed to individual GSTs e.g. in responses to stress and

plant growth regulators (Moons, 2005), flavonoid metabolism (Kitamura et al., 2004) and as

hydroperoxide-reducing glutathione peroxidases (Dixon et al., 2009). In addition, GSTs are

also considered as  transporter proteins for secondary metabolites  (Alfenito et  al.,  1998;

Muller et al., 2000; Dixon et al., 2002; Kilili et al., 2004; Dixon et al., 2010). Li et al. (2007)
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also showed GSTs catalyse cis-trans isomerisation in the carotenoid synthesis pathway. They

can also function as storage proteins for reactive oxylipins, phenolics, and flavonoids, (Dixon

et al., 2010).

Expression of GSTs is induced in response to some stresses such as general cellular

injury and oxidative stress (Dixon et al., 2002). The roles of plant GSTs are not only confined

to function in stresses but also to plant growth and development (Gong et al., 2005; Moons,

2005). However, the exact function in vivo for the majority of GSTs is unknown (Dixon et

al., 2010).

GSTs are not able to catalyse conventional conjugation reactions, so cells require GSHs

as a cofactor GSTs bind to hydrophobic ligands which react with the thiol group of GSH

which is active in transferase function. (Dixon et al., 2010). All GSTs are therefore dependent

on glutathione (GSH) which has a role in endogenous metabolism including detoxification

and buffering redox reactions in response to oxidative stress, flavonoid binding, and

regulation of apoptosis. Abiotic stresses in plants cause production of GSH (Dixon et al.,

2002, Klein et al., 2006). GSH is imported to the vacuole by ATP-binding cassette (ABC)

transporter proteins when plants are exposed to abiotic stresses (Rea, 2007).

The first step of GSH synthesis in Arabidopsis takes place exclusively in the

chloroplasts (Meister, 1995). In other plant species the situation is less clear (Wachter et al.,

2005). Glutathione at millimolar concentrations is present in many cellular compartments

(Foyer et al., 2005), and in both animal and plant cells, glutathione is a key regulator of cell

proliferation (Harris et al., 1969). Microinjection studies showed that GSH in early G1 is in

the nucleus. At the end of prophase/beginning of metaphase there is a change in cytosolic

GSH availability. A change in cytosolic redox enables GSH synthesis in the cytoplasm

leading to a rapid increase in the total GSH pool of the cell. When the nuclear envelope

dissolves in prophase, it allows equilibration between the cytosol and nuclear GSH pools.
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When the nuclear envelope re-forms during telophase the cellular GSH pool is re-distributed

between the daughter cells (Briviba et al., 1993, Pedro et al., 2010). Various residues in the

histone tails are subject to posttranslational modification, and the GSH pool could have

effects on DNA or histone methylation or maybe other histone modifications such as those

catalysed by histone acetyltransferases (Jenuwin et al., 2001).

Redox signalling is an important regulator of the cell cycle (Atzori et al., 1990;

Hirt, 2000). In early G1-phase, an oxidation event is a critical regulatory step in the

progression to S-phase (Menon et al., 2003). Moreover, in the G1-phase, GSH levels are

low and progress of cells from the G1- to the S-phase needs an increase in total GSH

(Kerk et  al.,  1995).  Thus  the current  model  of cell-cycle regulation  incorporates an

intrinsic redox cycle, which means transient oxidations regulate key proteins and cell-

cycle progression or cause an arrest in the proliferation cycle (Menon et al., 2007). This

redox-balance provides a powerful mechanism for strategic development of antioxidant

defence mechanisms during the cell cycle in animals and plants (Vivancos et al., 2010).

Although expression of several GST genes has been shown to be cell cycle regulated

(Takahashi and Nagata, 1992; Menges et al., 2002), the role of GST proteins in the cell cycle

is as yet unclear.

1.1.6 Mitosis

Plant cell division has five phases: Prophase, prometaphase, metaphase, anaphase and

Telophase and is followed by cytokinesis. In prophase, the chromosomes begin to

contract maximally so that they can be seen as double-armed structures held together by

cohesin (Kuijt, 2006). Towards the end of prophase, the nuclear envelope breaks down,

and mitotic spindles are synthesized, however, they are unable to bind to the

chromosomes. Instead, the spindles attach to a specialized protein structure, the
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kinetochore. The latter then binds to the centromere (Nigg, 2001). Chromosomes move to

the metaphase plate that is the equatorial plane. At this stage chromosomes gather in the

central part of the cell and they are held under tension by the mitotic microtobules. At

anaphase, chromatids separate. Each set of sister chromatids, which are separating from

each other, are once again named as a set of chromosomes. Anaphase can be divided into

different parts: Anaphase A: the stage in which microtubules are shortening by the action

of microtubules-dependent motors (Kuijt, 2006). Anaphase B: the separation of

chromosomes is regulated by separase that is held inactive for most of the cell cycle by

securin  (Bilou et  al., 2002). Separase catalyses  the breakdown  of cohesin.  Here the

Anaphase Promotion Complex (APC) also has an important role in degradation of securin

that releases separase and also regulates the ubiquitination of B-type cyclins (Hall et al.,

2004). This causes their proteolytic destruction in the 26S proteasome (Morris et al.,

1976; Passmore et al., 2003). In the eukaryotic APC/C there are at least 13 conserved

subunits (Nasmyth, 2005). Most targets of the APC/C are short N-terminal motifs which

are called D or KEN boxes (Burton, 2001; Harper, 2002; Passmore, 2003). Cdc20p and

Cdh1p are two conserved targeting/adaptor factors which are responsible for linking the

APC/C to specific substrates (Pringle et al., 1991; Schott et al., 1998; Thornton et al.,

2003).

At  telophase, chromosomes  move to  the pole of cell, and  a nuclear envelope

reforms around the clustered daughter chromosomes. After this stage chromatin

decondensation begins (Kuijt, 2007).

1.1.6.1 Cytokinesis

Plant cytokinesis is the stage in which the construction of a new cell wall is occurring; this

wall can form at the centre of the cell or towards one end of the mother cell. In cytokinesis, a
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bunch of microtubules which is called the phragmoplast remains at the division plane, the

phragmoplast is stabilizing under the expanding cell plate through HINKEL, which is a

kinesin-related protein (Strompen et al., 2002). Cytokinesis protein (NACK1) via  MAP

kinase helps to regulate depolymerization of MTs beneath the cell plate (Nishihama et al.,

2002). NACK1 protein accumulates at anaphase and telophase when  NPK1 is activated

(nucleus and phragmoplast NACK1-like localized protein kinase) (Ishikawa et al., 2002).

Degradation of a B-type cyclin is an important factor which affects the timing of cytokinesis

(Weingartner et al., 2004). B-type cyclin degradation is dependent on a specific sequence

element in its N-terminal region, which is known as the destruction box (D-box) (Glotzer et

al., 1991). During anaphase non-degradable cyclin B1 may associate with a B-type CDK

(Lee et al., 2003) and in BY-2 cells was shown to disrupt anaphase and telophase

(Weingartner et al., 2004). The formation of a phragmoplast was disrupted and separated

nuclei were observed because of the deactivation of a cytokinetic kinesin-related protein

related to cyclin B1; under these conditions separated nuclei fuse (Weingartner et al., 2004).

1.2 Cell cycle checkpoints

Cell cycle checkpoints arrest the cell cycle during DNA damage or perturbation to nuclear

DNA replication (Reviewed by Francis et al., 2003). In higher eukaryotes ATM /ATR are the

cell cycle checkpoint sensors while in S. pombe RAD3 is the sole sensor (Elledge, 1996;

Weinert, 1998, Abraham et al., 2000). ATM and ATR both have been identified in plants

(Culligan et al., 2004). In animals, ATM/ATR are up-stream of WEE1 and CDC25 (Elledge,

1996; Martinho et al., 1998; Weinert, 1998; Abraham et al., 2000), and checkpoint protein

kinases (CHK1/2) are phosphorylated by either ATM or ATR (Rhind and Russell, 1998).

CHK1/2 does not exist in the Arabidopsis genome (Garcia et al., 2000); hence, it is assumed

that higher plants have a different signalling pathway compared with yeast and animals.
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As mentioned earlier, in yeasts and animals, the SWE1/WEE1 tyrosine kinases, negatively

regulate CDC28/Cdc2. In fission yeast, Wee1 kinase phosphorylate Cdc2 at its tyrosin15

residue. In animals the homologous WWE1 and the unique MYT1, phosphorylate both T14

and Y15 of the CDK. The latter CDK loses its kinase activity and the cell is unable to enter

mitosis. Only in favourable conditions does a phosphatase, CDC25, catalyse the

dephosphorylation of T14/Y15 on the CDK. The latter regains its activity providing the

CDC2 protein is binding with a partner cyclin. Under these conditions, the cell enters mitosis.

(Tang et al., 1993 ; Lundgren et al., 1991 ; Millar et al., 1991). In higher animals, MYT1,

an additional kinase, also phosphorylates Cdc2 on threonine 14 (T14), although in a different

study phosphorylation of this residue was not involved in checkpoint control (Fletcher et al.,

2002).   Through the activities of Wee1 and Mik1 in response to DNA damage,

phosphorylation of  Y15 of fission yeast Cdc2 is maintained (Kharbanda et al., 1994;

O'Connell et al., 1997; Rhind et al., 1997). In animals, Chk1 via phosphorylation may cause

cell cycle arrest in response to DNA damage by stabilising the activity of Wee1 and Mik1

proteins (O'Connell et al., 1997; Baber-Furnari et al., 2000) and inhibiting  Cdc25

phosphatase (Peng et al., 1997; Sanchez et al., 1997). The phosphorylated WEE1 kinase and

Cdc25 phosphatase are protected from dephosphorylation by 14-3-3 proteins (see above). In

Xenopous. laevis, 14-3-3 proteins together with Chk1 function as positive regulators of Wee1

(Lee et al., 2001). In plants neither Chk1 nor Chk2 exist. Therefore in plants, in to response

to   DNA damage, WEE1 kinase may be responding to an as yet unidentified CHK1-type

protein capable of responding to plant ATM/ATR and in turn capable of regulating WEE1

(reviewed in De Veylder et al., 2007; Francis 2007). In H. sapiens, 14-3-3β acts as a positive

regulator and stabilizer for Wee1 during the cell cycle by binding to the C-terminal catalytic

region of Wee1 (Wang et al., 2000; Rothblum-Oviatt et al., 2001). As mentioned above, the

role of CDC25 in the plant cell cycle is unclear but over-expression of Arath;CDC25 did



General Introduction

20

accelerate the elongation rate of primary roots of Arabidopsis. Whilst T-DNA knockouts of

this gene were hypersensitive to HU the over-expressing lines were relatively insensitive to

HU. However, the over-expressing lines were as sensitive to a zeocin treatment, or salinity

stress as were the cdc25 KO lines. Hence, CDC25 may have a role restricted to the DNA

replication checkpoint in plants (Spadafora et al., 2011).

However, when Arabidopsis is exposed to hydroxyurea, an agent that stalls DNA replication,

this induces the DNA replication checkpoint. Zeocin is an agent that mimics DNA damage

caused by radiation, and at both checkpoints WEE1 is highly expressed at the RNA and

protein levels (De Schutter et al., 2007). Moreover, treatment of Arath;wee1 knockouts with

zeocin and HU caused a hypersensitive response (De Schutter et al., 2007). This suggest that

Arath;WEE1 has a major role in preventing cells from dividing until the DNA is repaired or

until replication is normalised (Boudolf et al., 2006).

1.3 Interaction of WEE1 with other proteins

In budding yeast, an intricate signalling network of kinases including Gin4, Hsl1, Cla4 and

Elm1 is required for regulation of SWE1 which affects cell growth and cell division at

G2/M (Altman and Kellogg, 1997; Barral et al., 1999; Carroll et al., 1998; Edgington et

al., 1999; Kellogg and Murray, 1995; Longtine et al., 2000; Ma et al.,1996; Shulewitz et

al., 1999; Sreenivasan and Kellogg, 1999; Tjandra et al., 1998). Inactivation of this

signalling network causes cells to undergo continuous polar growth which causes

abnormally large cells during a prolonged G2/M delay, producing highly elongated cells

that are abnormally large. Several kinases have been identified in fission yeast and

budding yeast for regulation of Wee1 (Young and Fantes, 1987). The fission yeast kinases
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Cdr1/Nim1 and Cdr2 were identified to promote entry into mitosis by inhibiting Wee1

activity (Coleman et al., 1993; Kanoh and Russell, 1998; Parker et al., 1993; Wuand

Russell, 1993). Moreover, the yeast two-hybrid system indicated the interaction of Nim1

with Wee1 (Wu, 1997).

A variety of different methodologies have been employed to find interactors between WEE1

and other proteins in animals and yeasts (thebiogrid.org/113303/summary/homo-

sapiens/wee1.html, Table 1.1). In humans this has led to the identification of nine unique

interactors with WEE1 (Table 1.1).

Table 1.1: Proteins interacting with WEE1 in humans.

(data from thebiogrid.org/113303/summary/homo-sapiens/wee1.html and references therein)

Method Protein name function
Affinity capture Western FBXW11 F-box protein
Affinity capture Western/Far
Western

PIN1 Peptidyl-prolyl cis-trans isomerase NIMA-
interacting 1, Essential PPIase that
regulates mitosis presumably by interacting
with NIMA

Affinity capture Western/2-
hybrid

YWHAB 14-3-3 protein

Affinity capture Western UBC Polyubiquitin-C
Affinity capture Western SKP2 F-box protein S-phase kinase-associated

protein 2
Affinity capture Western BTRC F-box protein
Affinity capture Western CRK Proto-oncogene
Reconstituted complex CDCA3 cell division cycle-associated protein 3
Affinity capture-MS SFN 14-3-3 protein

Three of these are F-box proteins and one is involved in ubiquitination, a process related

to proteasome mediated degradation. This fits with the requirement for WEE1 removal at

mitosis (McGowan and Russell, 1995). Two other proteins belong to the 14-3-3 family,

known to interact with WEE1 and modulate its activity (see section 1.1.5.3). The

remaining proteins are related to cell cycle control and hence again interaction with
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WEE1 is consistent with the role of WEE1 in cell cycle regulation in human cells. In

addition, in human cells, CDC2 can phosphorylate WEE1 (Watanabe et al., 2003).

In plant cells, the role of WEE1 is far less well-defined (as has been discussed above). Some

published data on protein-protein interactions with WEE1 is available (Fig 1.3; Table 1.2).

Figure 1.3 Interaction of Arath;WEE1 protein with other proteins in the cell cycle  (

Adapted from http://string-db.org) (Purple lines are based on experimental evidence and

details of these proteins are listed in Table 1.2)
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Table 1.2 Experimental evidence for protein interactors with Arath;WEE1

(data from http://string-db.org)

Gene name/code function
CDC2 cyclin-dependent protein kinase
AT5G25060 RNA recognition motif (RRM)-containing protein
AT5G10800 RNA recognition motif (RRM)-containing protein
AT3G62930 glutaredoxin family protein
DRB2 DRB2 (DSRNA-BINDING PROTEIN 2); double-stranded

RNA binding
UBA2A UBP1 interacting protein 2a (UBA2a); encodes a nuclear

protein that binds to RNA

In addition, the 2-hybrid technique was used to show that Arabidopsis WEE1 interacted

with the Non-Epsilon group of 14-3-3 proteins (Lentz Grønlund et al., 2009). In a wider 2-

hybrid screen undertaken in the Cardiff lab WEE1 was shown to interact with a much

broader range of over 60 different proteins (Table 1.3). Some of these interactions have

been verified by bimolecular fluorescence (BiFC) using the split YFP system (Walter, et

al., 2004) (Table 1.3), and part of my work focussed on the interaction between GSTF9

and WEE1.
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Table 1.3: proteins identified by a 2-hybrid screen (Lentz Grønlund, 2007). Those in bold

were further studied using BiFC and the interaction with Arath; WEE1 confirmed.

Transcription factors/ DNAor RNA binding proteins, histone modifications
At2g18160 bZIPTranscription factor GBF5:
At4g00150 Transcription factor (?) SCL6:GRAS protein, ham family,
At2g33610 SWIRM domain containing protein (chromatin interactions)

AT5G13780 histone modification? GCN5 related N-terminal acetyltransferase, ,
At4g14465 DNA binding protein possible function in positioning of chromatin fibers
AT5G49400 putative role in splicing zinc knuckle (CCHC-type) family protein,

PGRs and Signal transduction
At1g48480 Receptor kinase gene RLK1
AT1G08980 IAA biosynthesis
At3g07350 Unknown protein,
AT3G22440 hydroxyproline-rich glycoprotein
AT1G64570 Unknown function,
AT5G35570 auxin perception and transduction
Stress responses/ detoxification/ pathogen responses
At2g41300 Strictosidine synthase:alkaloid biosynthesis
At3g56240 Copper chaperone ATX1:

At2g30860
At2g30870

GST AtGSTF9: Phi class GST cell cycle regulated

GST AtGSTF10 phi class GST dehydration induced

At1g04960 Unknown, up-regulated by ozone
At2g40800 Unknown: down regulated by H2O2

At1g06040 Zinc finger, salt tolerance protein
At2g37040 PAL1(1)
At4g11650 Osmotin OSM34: role in caesium detoxification
AT1G14730 Cyt B561 protein, transcript salt and osmotic stress induced
AT2G38730 putatively involved in protein folding/stress response
AT1G18970 Germin-like protein, transcripts up-regulated by genotoxic stress
AT4G15610 integral membrane family protein, up regulated by bacterial pathogens
AT4G23680 pathogenesis response
AT5G60640 Possible role in protein folding,
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Table 1.3 continued Cell division/cell size/ cell
wall and cell growth

At1g05850 Chitinase AtCTL1:Lignin deposition affecting cell shape
At3g09840 Cdc48A: Cell cycle gene, spindle pole body separation,

At3g10220 Tubulin folding co-factor B
At5g62350 Pectin methyl esterase inhibitor family
At4g24780 Pectate lyase family protein
At3g61430 Aquaporin PIP1A: role in cell expansion?
At3g11070 OMP85: mitochondrial membrane biogenesis protein
At3g16640 Loosely bound cell wall protein,  tumour family protein
Ribosomes/ protein synthesis
At4g01560 Brix domain protein:Ribosomal biogenesis
At2g43970 La domain protein:RNA binding proteins associated with polyribosomes
At1g07830 Ribosomal protein
At1g54270 translation initiation factor
At1g56070 E2F

Ubiquitin mediated degradation
At5g57900 SKP1/SCF interacts with SKP1/ASK1 subunit of SCF ubiquitin ligase
At5g23540 26S proteasome regulatory subunit (1)
At4g39600 F-box family protein
At1g06630 F-box family protein up-regulated in seeds(1)
At1g67340 F-box family protein
other

AT1G28580 Lipase down regulated by bacterial pathogen elicitor
AT1G29900 carbamoylphosphate synthetase, N metabolism,
AT2G05440 Glycine rich protein: structural role? Protein interactor?
AT2G10950 BSD domain containing  protein: could be a transcription factor??
AT2G44100 rab-specific GDP dissociation inhibitor,
AT3G02090 mitochondrial processing peptidase
At3g02470 S-adenosylmethionine decarboxylase - polyamine biosynthesis.
At3g03773 Unknown protein, no info on function or responses
AT3G55410 Mitochondrial protein, oxidoreductase activity,
AT3G55440 cytosolic triose phosphate isomerase (glycolysis) (1)
AT4G27870 integral membrane family protein, unknown function
AT4G31350 Predicted protein of unknown function, no expression info available (1)
AT5G03940 Chloroplast Signal Recognition Particle Subunit,
AT4G22920 Chloroplast protein unknown function.
AT5G43330 cytosolic malate dehydrogenase, tricarboxylic acid cycle intermediate

metabolism(1)
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1.4 Experimental Aims

The main focus of my work has been to further investigate the regulation of WEE1

function in plants. As discussed above, in animal and yeast cells a complex network of

regulatory proteins has been unravelled that controls WEE1 function. In plants very little

is known about the regulation of WEE1 activity. Two-hybrid screens have revealed

numerous interacting proteins (Lentz, 2007, http://string-db.org), however the function of

these interactions is unknown.

I became interested in the extent to which the two proteins, Arath;WEE1 and GSTF9,

might interact in the cell cycle in whole plants both in  normal and genotoxic

environments. I investigated the extent of this interaction by  studying phenotypic

responses of T-DNA insertional mutants for Arath;WEE1 and GSTF9 following exposure

to hydroxyurea (HU) and zeocin, treatments that induce the DNA replication and DNA

damage checkpoints, respectively. By making the double mutant, wee1-1 gstf9, and

analysing its root phenotype following HU and zeocin treatments, I was also able to test

the extent to which the interaction of Arath;WEE1 and GSTF9 on rooting phenotype was

additive under either normal or checkpoint conditions.

Previous work in Cardiff had shown that in yeast two-hybrid assays, Arath;WEE1

interacted with 14-3-3 protein GF14 (Lentz et al., 2009). Moreover, mutation of the

WEE1 protein at residue 485 (S485A) abolished binding between WEE1 and 14-3-

3 both in vivo and in vitro (Lentz et al., 2009). I investigated this aspect of cell cycle

control further by examining phenotypic responses of a line created by crossing a T-DNA

insertional line for WEE1, wee1-1, with a GF14 over-expressing line. My hypothesis was

that over-expression of GF14 would result in a similar phenotype to over-expression of
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Arath;WEE1 due to a stabilising effect on the WEE1 protein. Furthermore I also

hypothesised that this effect would be abolished in the absence of a functional WEE1

protein as is the case in the wee1-1 insertion mutants.

Finally, I followed up an unusual observation made in the Cardiff lab. Siciliano

(2006) found that expression of the Arabidopsis WEE1 in tobacco BY-2 cells induced a

small as opposed to a predicted large cell size phenotype, and a premature as opposed to a

delayed entry into mitosis. I tested the hypothesis that Arabidopsis WEE1 in a tobacco

genetic background might have resulted in these perturbed the cell cycles. To do this I

examined the phenotype of transgenic lines in which Arabidopsis WEE1 was expressed in

tobacco and the converse, tobacco WEE1 in Arabidopsis. In this way, I further tested

whether the tobacco WEE1 would have the same effect in the Arabidopsis genetic

background.
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2. General Materials and Methods

2.1 Plant materials

Plants used in this work are listed in Table 2.1.

Table 2.1 Transgenic and mutant lines used in this work

Name Description/use Origin and
reference

Plant
species

Arath;WEE1oe Constitutive Arath;WEE1 oe Cardiff lab
collection; Bohner et
al (1999)

Arabidopsis
Origin
Cardiff lab

NT-Arath;Wee1 Arath;WEE1 ORF fused to
the C- terminal portion of
YFP driven by 35S
promoter. Used to express
Arath;WEE1 in tobacco
plants

Walter et al. (2004);
Lentz Grønlund et al.
(2009)

Tobacco
Origin
Cardiff lab

At Nt;WEE1 Nicta;WEE1 ORF driven
by an inducible  promoter.
Used to express
Nicta;WEE1 in
Arabidopsis plants

Cardiff Lab
(unpublished)

Arabidopsis
Origin
Cardiff lab

wee1-1
(GABI_270E05)

T-DNA insertion 7th intron Alonso et al. (2003); De
Schutter et al. (2007)

Arabidopsis
Origin NASC,
UK

gstf9 T-DNA insertion 2nd intron Dixon et al, (2002) Arabidopsis
Origin NASC,
UK
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2.2 Media and Antibiotics

Table 2.2 Media used in this work are listed in Table 2.2.

Organism Medium Recipe
Arabidopsis

Tobacco

MS medium 4.708 gl-1 MS basic salts (Duchefa), 30gl-1

Sucrose, 10gl-1 bacto agar

2.3 PCR

A master mix with a volume of 24 µ l for each sample was prepared including 2.5 µ l of 10

x PCR buffer (100 mM Tris-HCl pH 8.8, 200 mM KCl, 15 mM MgCl2), 0.5 µ l of 10mM

dNTPs, 1 µ l of each required primer (10 µ M), 0.125 µ l of Taq polymerase which is

purified in house within the Cardiff Laboratory and 18.9 µ l of autoclaved SDW .

The master mix was pipetted (24 µ l) into a sterile labelled Eppendorf tube. For PCR 1 µ l

of genomic DNA was used as template to make a 25 µ l reaction. The standard PCR

programme was as follows: 1 cycle for initial denaturation for 3 min at 95°C; 40 cycles of

denaturation for 1 min at 95 °C; annealing for 1 min at 55 °C; extension for 1 min 72 °C; 1

cycle of final extension for 5 min at 72°C. Primers used in this project are listed in Table

2.3.
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Table 2.3 PCR primers  used for this work. All primers used were purchased from

SIGMA-GENOSYS, UK.

Primer name Sequence bp

1 AtWEE1 fw AGCTTGTCAGCTTTGCCT 18

2      AtWEE1 rv TCAACCTCGAATCCTATCA 19

3 PUV2 TTCCATGCTAATGTATTCAGAC 22

4 PUV4 ATGGTGGTGACGGGTGAC 18

5      35STRS ACGCTGAAGCTAGTCGACTC 20

6     14-3-3 RV ACTCGGATCCTCACTGCTGTTCCTCGG 27

7 P4b GAAATCATTCAAATTCTACCTGGTC 25

8      p6 ATATTGACCATCATACTCATTGC 23

9    T-DNA CGCGTTCAAAAGTCGCCTAAG 21

10  GST9F GTGCTAAAGGTGTACGGAC
19

11  GST9R TGACCTGTACTTCTCAGCTAC 20

2.4 Agarose gel electrophoresis

For 1% gels, 0.5 g of agarose (Bioline) was added to 50 ml of 1x TAE buffer (50 x : 242

gl-1 Tris, 100 ml l-1 0.5M NaEDTA pH 8.0, 57.1 ml l-1 glacial acetic acid).Then the solution

was mixed and microwaved on top power for approximately 1-2 min checking every 10-

20 seconds until all the agarose had dissolved. After cooling down to approximately 50°C,

5 µ l of ethidium bromide (10 mg ml-1) was added. The gel was poured in a tray and when
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set, the tape was removed and the gel tray was placed in the running tank and covered

completely by 1 x TAE buffer. The gel was loaded with sample mixed with 1/10 volume

of loading buffer (50 mM Tris-HCl pH.7.6, 60% glycerol, bromophenol blue). 10 µ l (250-

500 ng).Marker (10 µ l) of 1 kb DNA ladder (Invitrogen) was loaded in to the first well,

before loading 10 µ l of each sample into the remaining wells and run in 1x TAE buffer at

approximately 100 V. Afterwards, the DNA was detected by the UV light using a Genius

Bio imaging System (SYNGENE LTD).

2.5 DNA extraction from leaf discs

DNA was extracted from leaf discs essentially as described by Edwards et al. (1991). Leaf

tissue (10-50 mg) was ground with a sterile Eppendorf grinder for approximately 2 min in

a sterile Eppendorf tube. Sterile extraction buffer (200 µ l of 0.5 % SDS, 250 mM NaCl,

100 mM Tris-HCl pH 8.0, 25 mM EDTA) was added to the Eppendorf tube and left for 5

min; afterwards, the extract was centrifuged at top speed in an Eppendorf MiniSpin

centrifuge for 5 mins. The supernatant was removed and 150 µ l of it added to 150 µ l of

isopropanol, mixed and placed on ice. The mixture was centrifuged for 10 min. The

supernatant was carefully removed. The pellets were air dried at 60 °C for 5-10 min.

Pellets were resuspended in 100 µ l of TE (10mM Tris-HCl pH 8.0, 0.1 mM EDTA) and

samples were stored at 20 °C. The extract (1 µ l) was used in 25 µ l PCR reactions.

2.6 RNA Extraction

Leaf RNA was extracted by grinding 200 mg of tissue in liquid N2 in a mortar and pestle

that had been pre-cooled at -20oC. Tri Reagent (SIGMA) (2 ml) were added to the ground

tissue. Then the liquid was divided into two 1.5 ml Eppendorf tubes, the tubes were
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vortexed for 5s, left at room temperature for 5 min, and then they were centrifuged in a

BECKMAN Coulter Allegra 21R centrifuge with a F2402H rotor for 15 min at 12000

rpm, at a temperature of 4°C. The supernatant was transferred to fresh sterile Eppendorf

tubes and chloroform (0.2 ml) was added. Following vortexing for 15 seconds the tubes

were then incubated at room temperature for 5 min. The samples were then centrifuged for

15 min at 12000 rpm, 4 °C as above and the supernatant transferred to a fresh Eppendorf

tube. Isopropanol was added (500 µ l), and following mixing, incubated for 10 min at room

temperature. The samples were centrifuged again as above, the supernatant was removed

and the pellet washed in 1 ml of 75% ethanol and vortexed for 5s. The pellets were then

air dried for 30 min. The pellets were re-suspended in 50 µ l of SDW and the contents of

the two tubes combined. The extracted RNA was stored at -80 °C but prior to freezing 10

µ l was checked by agarose gel electrophoresis. To ensure removal of contaminating

RNAses, the tank, gel tray and comb for the gel electrophoresis were treated for 1 h with

0.1M NaOH and then washed copiously with SDW.

2.7 DNase treatment and cDNA synthesis

DNase treatment was carried out by mixing 5 μg of RNA with 1x RQ1 DNase buffer (400

mM Tris-HCl pH 8, 100 mM MgSO4, 10 mM CaCl2) 1 U RQ1 DNase (PROMEGA), and

SDW was added to reach the final volume of 20 μl, Then the tubes were incubated at 37°C

for 30 min. After 30 min 2 μl of RQ1 DNase stop solution (20 mM EGTA pH 8.0) was

added, and the samples incubated at 65°C for 10 min.

RNA was used for cDNA synthesis. DNase treated RNA (1 µ g) was mixed with 500 ng of

Oligo(dt)15 primer (PROMEGA), and made up to a final volume of 20 μl. The samples were

incubated at 70°C for 10 min in a PTC-100 Thermocycler and then cooled on ice for 10 min.
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Then 6 μL 5x M-MLV RT buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl, 15 mM MgCl2,

50 mM DTT), 2 μl 0.1 M DTT and 1 μl 10 mM dNTP mix were added and the reaction was

incubated at 42°C for 2 min. M-MLV Reverse Transcriptase RNase H Minus (200 U)

(PROMEGA),, were added and the samples were incubated for 50 min at 42°C. The samples

were heated at 70°C for 15 min. The synthesized cDNA was checked by PCR and stored at -

20°C.

2.8 Protein extraction from plant tissue

Protein extraction was carried out from leaf material that was ground to a powder in liquid N2

in a mortar and pestle pre-cooled at -20oC. The powder (1-2 ml) was transferred to a 14 ml

tube on ice and the following were added: 986 μl lysis buffer (50 mM Tris-HCl pH. 7.5, 75

mM NaCl, 15 mM EGTA, 15 mM MgCl2, 60 mM β-glycerophosphate), 42 μl 25x PI (one

complete protease inhibitors (Roche) dissolved in 2 ml SDW and filter sterilized), 21 μl 50x

PPI (50 mM NaF, 10 mM Na3VO4, 100 mM Na4P2O7) and 1 μl 1M DTT. A Soniprep 150

sonicator (MSE) was used to homogenize the samples with four bursts of 30 s. The samples

were placed on ice for 30s between each sonication. The samples were then transferred to

pre-chilled Eppendorf tubes and centrifuged in a Beckman Coulter AllegraTM 21R centrifuge

with a F2402H rotor for 30 min at 14000 rpm, 4°C. The supernatant was stored at -80°C in

100 μl aliquots.

2.9 Bradford assay

A Bradford Assay was carried out to measure the concentration of protein extracts (Bradford,

1976) making sure that Bradford Reagent (Sigma) was mixed gently in the bottle and brought

to room temperature before use. BSA protein standards with the range of 0.1 – 1.4 mgml-1
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were prepared in an appropriate lysis buffer. The protein standards (5 μl) were added to a

multi-well plate in separate wells alongside 5 μl of each sample. Bradford Reagent (250 μl)

was mixed with the sample in each well for 30 s, and reactions were incubated at room

temperature for 5 min. The absorbance of the proteins was measured at 570 nm, and it was

then plotted against the protein concentration of each standard. From the standard curve the

protein concentration of the unknown sample was determined.

2.10 SDS-PAGE

The SDS-PAGE separation gel was made by mixing the following: 3.3 ml of 40%

acrylamide/bis-acrylamide (MELFORD LABORATORIES), 4.4 ml of 2.5x separation buffer

(1.875 M Tris-HCl, pH 7.5, 0.25% SDS),  3.3 ml of SDW, 100 μl of 10% ammonium

persulfate (APS), 10 μl of N,N,N’,N’-tetramethyl-ethylenediamine (TEMED) (SIGMA) and

divided between two sets of glass plates. The stacking gel was made by mixing the following:

0.56 ml 40% acrylamide/bis-acrylamide (37.5:1), 0.66 ml 5x stacking buffer (0.3 M Tris-

HCl, pH 6.7, 0.5% SDS), 2 ml SDW, 30 µ l 10% APS, 5 μl TEMED and was cast on top of

the separation gel. Samples were prepared by adding an appropriate amount of 5x loading

buffer (250 mM Tris-HCl pH. 6.8, 10% SDS, 30% glycerol, 0.5 M DTT, 0.02% bromophenol

blue) and were boiled for 5 min before loading onto the gel. The gel was then run in 1x

Laemmli buffer (10x: 10 gl-1 SDS, 30.3 gl-1 Tris base, 144.1 gl-1 glycine) at 100 – 200 V. and

proteins were detected by staining with Coomassie Brilliant Blue (2.5 g Coomassie Brilliant

Blue staining R-250 (Sigma), 450 ml EtOH, 100 ml acetic acid, 450 ml SDW). PageRulerTM

pre-stained protein markers (FERMENTAS) were used as a marker for the SDS-PAGE.
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2.11 Western blotting

A Hybond-P PVDF membrane (AMERSHAM PHARMACIA BIOTECH) was pre-wetted in

100% MetOH for 30 s then rinsed in SDW for 5 min. Then the membrane, sponges, filter

paper and SDS gel were all soaked in blotting buffer (20% MetOH, 0.01% SDS, 14 gl-1

glycine, 3gl-1 Tris base) for 15 min. The sponge, filter paper, SDS gel, PVDF membrane,

filter paper and sponge were assembled into the cassette of a Mini-Trans Blot® Western

Blotting system (Bio-rad), and placed in the gel tank which was filled with blotting buffer. To

effect the transfer, 0.35 mA were applied for 1 h. After 1 h the cassette was removed and the

PVDF membrane soaked in 25 ml blocking solution (20 mM Tris-HCl pH 7.5, 150 mM

NaCl, 0.05% Tween-20, 5% dry milk powder) for 1 h on a shaking platform. The primary

antibody (NtWEE1 (1:1000) (Sigma; Lentz Grønlund et al., 2009) in the blocking buffer was

added to the membrane and incubated on the shaking platform for 1 h. The membrane was

then washed three times with wash buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05%

Tween-20, 1% Triton® X-100), once for 15 min and twice for 5 min. The membrane was then

incubated with the blocking buffer including the secondary antibody (α-rabbit IgG (1:2500)

(Sigma)) in a 25 ml volume and on the shaking platform for 1 h. Then the membrane was

rinsed with wash buffer three times: once for 15 min and twice for 5 min. The membrane was

carefully placed on cling film and 0.125 ml cm-2 of ECL solution (Amersham Pharmacia

Biotech) (Western blotting detection reagents in a ratio of reagent1: reagent2, 50:50) were

pipetted onto the membrane. The detection reagent was then removed and the membrane was

wrapped in cling film and exposed to HyperfilmTM ECL (AMERSHAM BIOSCIENCE) in an

X-ray cassette  (GRI MOLECULAR BIOLOGY) from 20 s to overnight. The film was

developed using a Curix 60 developer (AGFA).
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2.12 Sterilization of Arabidopsis seeds

Wild type and transgenic Arabidopsis seeds were surface-sterilized by adding 1 ml of

bleach solution (1:10 dilution of hypochlorite) to each tube of seeds. The tubes were

inverted and then seeds allowed to settle for 5 min. The bleach solution was removed and

1 ml of ethanol mix (21 ml of ethanol, 3 ml of hypochlorite and 6 ml of SDW) was added

to each Eppendorf tube for 5 min. The ethanol mix was removed and 1 ml of SDW was

added to each Eppendorf for 5 min. Then the seeds were washed three times in 1 ml of

SDW. The seeds were sown on Petri dishes containing solid MS medium (see Section 2.2)

using a pipette. To induce germination, the seeds were stratified by placing the plates at

4°C for 24-48 h. After that plates were transferred to a SANYO growth cabinet at 22 °C

with 16 h light and 8 h dark per day. For phenotypic analyses seeds were sown in a line of

about 5 seeds at one end of the Petri dish and Petri dishes were placed in a vertical system

such that roots grew along the surface of the solid medium.

2.13 Fixing the roots

After 10 days growth in the incubator, 8 ml fixative solution (3:1 (v/v) absolute ethanol:

glacial acetic acid) was added to each plate before wrapping in cling-film and storing at

4°C for 24 h.

2.14  Staining the roots

Seedlings were washed for 5 min by adding 8 ml of H2O directly to the agar plate. After

that the water was removed, 8 ml of 5 M HCl was added and the plates incubated for
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exactly 25 min at 25 °C, and subsequently washed twice with 8 ml ice-cold SDW for 5

min. After the wash, 8ml of Feulgen stain (BDH CHEMICALS Ltd) was poured onto the

plate and the seedlings were incubated for 2 h at room temperature.

2.15 Measuring primary root length, number of lateral roots, length of

meristem and cell size of epidermal meristem cells

Primary root length was recorded as the distance between the junction of the base of the

primary root/hypocotyl to the root tip. Arabidopsis seedlings were Feulgen-stained as

above (BDH CHEMICALS Ltd). To avoid damaging lateral roots, seedlings were not

removed from the agar. Roots were analyzed by light microscopy using an Olympus BH2

microscope equipped with a x10 objective. Firstly, the number of lateral roots and lateral

root primordia  were  scored. Then, root apical meristem length was estimated as the

distance between the apex  of the meristem to the basipetal border between intensely

staining-to- lightly  stained tissue. Finally, using the x40 objective, the number of

epidermal cells were counted along the contour of the RAM. This enabled a calculation of

epidermal cell length in the meristem as length of meristem divided by the number of

epidermal cells that spanned that meristem. The SPSS 15 statistics program was used to

analyze the data.

2.16  Growth of Arabidopsis plants in soil

Arabidopsis seeds were sown in pots containing moist compost, left for 24 h at 4ºC to

ensure  uniform germination and then placed in a SANYO-GALLENKAMP growth

chamber at 21ºC, 16 h light (300-400 μmol m-2 s-1) and 8 h dark (standard condition).

Plants for seed collection were grown in the same pot until formation of siliques. Before



General Materials and Methods

38

the siliques became yellow when they were still green, leaf material was collected for

DNA, RNA or protein extraction.

2.17 Sterlization of tobacco seeds and growth in sterile conditions

Tobacco seeds were sterilized by adding 1 ml of 1:10 dilute bleach solution to each Falcon

tube of seeds. The tubes were inverted and then left for 5 min. The bleach was removed

and 1 ml of ethanol mix (ethanol: hypochlorite: distilled water in a ratio of 7:1:2) was

added to each Eppendorf for 5 min. Three drops of Tween-20 were added to the ethanol

mix prior to use. The ethanol mix was removed and 1 ml of SDW was added to each

Eppendorf and left to stand for 5 min. Then the seeds were washed three times in 1 ml of

SDW. After the third wash, water was not removed from the Eppendorf and seeds were

settled for 2 h, then the seeds were poured onto a sterile filter paper, and by using sterile

forceps 5 seeds were placed on appropriately labelled MS plates. Each plate was wrapped

in cling film and placed at 4°C for 24 h. Plates were transferred vertically into an incubator

exposed to 16 h of light at 20 °C and seeds were left to germinate. After four weeks the

phenotype of these seedlings was analysed.

2.18 Crossing Arabidopsis plants

For crossing Arabidopsis lines, seeds were surface-sterilised and sown as described in

Section 2.14 then grown horizontally in a SANYO growth cabinet in conditions of 22 °C

with 16 h light and 8 h dark per day. When the seedlings had 4-6 leaves they were

transferred carefully using forceps into pots and watered. A transparent cover (cloche) was

put over the pots for a few days, and then the cloche was removed and they were watered

as normal. When the plants had a fully formed rosette, but before they started to flower, a
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small portion of a leaf was taken and DNA was extracted to confirm the genotype.

Flowers not yet open but with a mature stigma were selected under the dissecting

microscope and used as targets for the crossing. Flowers were selected for crossing as the

male parent which were just open with yellow anthers, and then under the dissecting

microscope with fine forceps immature flowers (small and green), the sepal, petal and

opened flowers were removed from the plant. The anthers of plant used as the male parent

were brushed on the stigmas of plants used as the female parent in which anthesis had not

yet occurred. All anthers were removed from the female parent flower prior to crossing.

Crossed flowers were marked, and were left to set seed. When the siliques became yellow,

seeds were collected and following seed germination, seedlings were checked by PCR.

2.19 Mitotic index measurements

The mitotic index, the sum of prophase, metaphase, anaphase and telophase mitotic figures as

a percentage of all cells, was measured for a minimum of 100 cells per slide in a random

transect. Cells and mitotic figures were visualized using a fluorescence microscope

(OLYMPUS BH2, UV, λ=420nm).

2.20  Statistical analysis
The data were analyzed using SPSS (version 14), Significant interactions were detected

using t-test and chi square tests.
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3. The interaction of wee1-1 and gstf9

3.1 Introduction

wee1-1 is a T-DNA insertion line carrying an insertion in the Arath;WEE1 (AT1G02970)

gene and originates from the SALK collection of T-DNA insertion lines (Alonso et al.,

2003). This insertion allele carries the T-DNA insertion in the seventh intron and has been

characterised by De Schutter et al. (2007) (see also Fig. 3.1). The wee1-1 line has two major

phenotypes: 1) it is hypersensitive to hydroxyurea (HU) compared to WT; 2) it produces

more lateral roots than WT (Lentz Grønlund, 2007).

Arath;WEE1 was used as a probe in a 2-hybrid screen to identify a number of interacting

proteins including GSTF9. The interaction was confirmed by BiFC and found to occur in the

nucleus (Lentz Grønlund, 2007, Cardiff Laboratory unpublished data).
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Figure 3.1 Schematic Diagram of the gene map of GSTF9 and Arath;WEE1 genes (to

scale) with USS/promoter (grey), exons in black, intron (thin black line), and 3’ and 5’

UTRs with the position of the T-DNA insertion.

Arabidopsis GSTF9 (AT2G30860) encodes a glutathione S-transferase (GST), important

enzymes of glutathione metabolism (Dixon et al., 2002). GSTF9 is from the phi class of

GSTs, and is a member of a pair of GST genes GSTF9 and GSTF10 which share a high

level of homology and form a tandem array on chromosome 2 (Dixon and Edwards, 2010).

GSTF9 is expressed at high levels in most tissues (Wagner et al., 2002) with high expression

in leaves, and the shoot apical mersitem (TAIR; http://arabidopsis.org/index.jsp). Together

GSTF6, 7, 9 and 10 contribute 65% of the transcript pool in seedlings and 50% in roots and

leaves (Sappl et al., 2008). A T-DNA insertion line for GSTF9 (SALK_001519) was found

not to  have a clear phenotype (Sappl et  al., 2008) and  RNAi  of four phi class  GSTs

including GSTF9 (GSTF6,7,9 and 10 ) also did not elicit and striking phenotypic traits

(Sappl et al., 2008). However in another report (Dixon and Edwards, 2010) RNAi

knockdown lines of GSTF9 and GSTF10 were found to have more compact rosettes,

increased levels of anthocyanins and an increased sensitivity to salt and chemical stresses.
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All GST classes have a conserved gene structure. The phi class of GSTs have two introns

(Wanger et al., 2002) (Fig. 3.1). In the current work the insertion mutant studied was derived

from the JIC Suppressor Mutator collection and was reported to have an insertion in the

second intron which would be 64 amino acids into the open reading frame.GSTF9 is from

the phi class of GSTs, and the phi class of GSTs have two introns (Wanger et al., 2002).

In my study, hydroxyurea (HU) and zeocin were used to induce the DNA replication and

DNA damage checkpoints respectively. HU inhibits the enzyme ribonucleotide reductase,

arresting cells during S-phase (Eklund et al., 2001). Zeocin is a member of the bleomycin/

phleomycin family of antibiotics isolated from Streptomyces. Zeocin is a water soluble,

copper-chelated glycopeptide; this copper-chelated form is inactive (Calmels et al., 1991;

Drocourt et al., 1990; Gatignol et al., 1987; Mulsant et al., 1988; Perez et al., 1989). When

the antibiotic enters the cell, the copper cation is reduced from Cu²+ to Cu¹+ and then

removed by sulfhydryl compounds in  the cell.  Upon removal  of the copper, zeocin  is

activated and will bind to DNA and cleave it (Berdy, 1980). Zeocin induces chromosomal

DNA breaks in Arabidopsis (Trastoy et al., 2005).

Very little is  known about  DNA surveillance systems  in plants.  However, recently,  in

Arabidopsis, by using knock-out mutants in genes encoding the ATM and ATR kinases (see

Introduction Section 1.2), it was demonstrated that the DNA replication checkpoint is routed

through ATR while the DNA damage checkpoint is through ATM (Garcia et al., 2003;

Culligan et al., 2004). The atr mutant is insensitive to replication blocking agents like HU

but it is hypersensitive to DNA damaging agents, such as gamma irradiation (Garcia et al.,

2003). In contrast, The atm mutant is hypersensitive to gamma irradiation and relatively

insensitive to HU (Culligan et al., 2004). De Schutter et al. (2007) showed that transcript

levels of Arath;WEE1 increase upon HU or zeocin treatment in an ATM/ATR dependent
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manner. This makes Arath;WEE1 a down-stream target gene of the ATM/ATR signalling

cascade.

3.2 Aims

Part of my thesis is aimed at a better understanding of cell cycle checkpoints

(see Section 3.1). Given the interaction between Arath;WEE1 and GSTF9

proteins, the hypothesis is that the interaction of the two proteins may be

functional in the DNA replication and damage checkpoints (Fig 3.2). To test

this hypothesis, the response of wee1-1 and gstf9 insertion lines to HU and

zeocin was examined. Hence, the aims of the work reported in this chapter

were to examine:

 Root phenotypes of the wee1-1 and gstf9 mutants in response to HU and

zeocin compared to wild type. As previous studies showed repression in

root growth of wee1-1 plants treated with HU, I examined whether this

was so following a zeocin treatment. If GSTF9 is also implicated in the

DNA replication/DNA damage checkpoint, I would also expect a similar

repression in primary root length and total number of lateral roots and

primordia in gstf9 plants following HU and zeocin treatment.

 The effect of HU and zeocin on the component phases of the cell cycle in

wee1-1 and gstf9 mutants. The hypothesis was that increasing

concentrations of HU resulted in increases in the percentage of cells in G1,

and, consequently, a decrease in the percentage in S-phase cells, the

presumed role of WEE1 in the cell cycle provides the expectation that

wee1-1 plants have a higher cell number and shorter cell length.
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 I also made a cross between wee1-1 and gstf9 to generate the double

recessive mutant. This could then be used to establish whether the

phenotypic effects of the two mutations were additive. If the interaction of

the proteins is important in modulating the function of one or both of them

(Fig. 3.2) one would not expect an additive effect. If however the protein-

protein interaction is not in fact functional and the phenotypes of the

mutants are independent of each other then the expectation is that the

effects would be additive in a double mutant.

GSTF9? ?
WEE1

CDK-CYCLIN

G2 M

Figure 3.2 Can the interaction between GSTF9 and WEE1 be important

for modulating the activity of either enzyme?
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3.3 Materials and Methods

3.3.1 Arabidopsis lines

A homozygous line for the gstf9 T-DNA insertion mutant, which carries the T-DNA

insertion in the second intron (Fig. 3.1), was donated to our lab by Prof. Rob Edwards

(Durham University). The wee1-1 line was obtained from the GABI-KAT T-DNA

insertion collection (GABI_270E05) from NASC, and a homozygous line had been

previously derived in the Cardiff Lab. WT and mutant (wee1-1 and gstf9) Arabidopsis

thaliana cv. Columbia lines were maintained by selfing of plants grown at 20oC with 18h

light, 6 h dark.

3.3.2 Growth of Arabidopsis lines on agar

Media contained different concentrations of HU: 0, 1 or 2 mM. To prevent HU from

degradation, it was added to MS medium after autoclaving. Stocks containing different

concentrations of HU as above were prepared and added to the medium using sterile

pipettes. Surface sterilization of the seeds is described in the General Materials and

Methods Chapter, Section 2.3.

Also another medium which contained different concentrations of zeocin 0, 5, 10, 20, and

50 µ M was prepared. Zeocin was added to the MS medium after autoclaving.

Seeds were sown in a line of about five seeds at one end of 90 mm diameter Petri dishes

which were placed vertically (Fig. 3.3) so that roots grew vertically down along the

surface of the solid medium.
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Figure 3.3 Plants growing vertically for measuring phenotypic traits (diameter of Petri

dishes = 90 mm)

Roots were stained and fixed (see General Materials and Methods Chapter, Sections 2.15

and 2.16), and root phenotypic analysis was performed on 10 day old wild type and mutant

seedlings by light microscopy using an Olympus BH2 microscope equipped with a 40X

objective.

3.3.3 Microdensitometry

Roots were fixed and stained by the Feulgen reaction (see General Materials and Methods

Section 2.14). Using a fine-point needle, the intensely staining part of the root tip

(meristem) was dissected into a small droplet of 45% (v/v) acetic acid on a microscope

slide. A coverslip was applied and tapped gently to create a monolayer of stained cells.

Slides were then placed on frozen CO2, until the coverslip frosted over. The coverslip was

then flicked off with a single edge razor blade. The slides were then stacked into glass

holders and passed through the following reagents each for 10 min:
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45% acetic acid, SO2 water (twice), and then an alcohol dehydration series (from 10% at

20% increments through to 100% ethanol). The latter rinse was repeated and finally, the

slides were rinsed in xylene (twice) before a fresh coverslip was reapplied to the squash

preparation using DPX-mountant. Slides were left to dry in darkness for a minimum of 24

h. Each slide was then analysed using a Vickers (UK) M85A integrating scanning

microdensitometer at spot size 1, a wavelength of 570 nm with a band width of 80 nm.

Each nucleus in the preparation was positioned centrally under bright-field illumination

and then scanned in darkness (scanning time = 10 seconds). Absorbance values were then

recorded following each  scan. For each slide,  the relative nuclear DNA amounts of

Feulgen-stained nuclei were scored normalised to C values against densities of internal

mitotic standards: prophase = 4C, and half-telophase = 2C (where 1C is the amount of

nuclear DNA in an unreplicated haploid nucleus of a gamete). Several slides per genotype

were analysed in this way with the cumulative number of nuclei being approximately 100

to 150 nuclei per genotype. Because each slide was normalised with internal standards,

the densities of interphase nuclei, for several slides per genotype, could be plotted on a

unified 2C 4C X-axis and presented as percentage frequencies per genotype. In addition,

the mitotic index was measured for each preparation per genotype (see general General

Materials and Methods Chapter Section 2.21).

The percentage frequency of cells in G1, S-phase and G2 were then calculated according

to the following range of DNA C values: 1.6-2.2C = G1, 2.2-3.6 C = S-phase, 3.6-4.4C =

G2, >4C = polyploid. These ranges are normal microdensitometric distributions for

proliferative cells of meristems in each of these phases (Francis D. unpublished data).

The mitotic index (% frequency of cells in mitosis) was also scored for each preparation

and added to the total percentage obtained by microdensitometry. For example, a mitotic

index of 4% on a given slide would be added to the 100% of interphase nuclei and the

above-mentioned percentages in G1, S, and G2 corrected by dividing each value by 104.
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Thus, the proportion of cells in each stage of interphase was corrected according to the

true frequency of cells in each phase of the cell cycle. The percentage frequency

histograms were then analysed statistically using contingency chi square.

3.4 Results

3.4.1 Genotyping and expression analysis of the gstf9 insertion allele

Firstly the position of the DNA insertion in the gstf9 mutant was checked by PCR. PCR

products of the expected size were obtained (sequence details of the primers are in the

General Materials and Methods Chapter, Table 2.3) thus confirming the position of the T-

DNA insertion (Fig 3.4a and b). Seedlings were confirmed to be homozygous for the

insertion.

Then the gstf9 insertion mutant was checked by RT-PCR (Fig. 3.4c) which showed that

although there was no transcription using primers for the WT GSTF9 gene, there is some

transcript produced even in the homozygous gstf9 mutant revealed using primers from

within the T-DNA insertion and the 3’ end of the gene.
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Figure 3.4 Genotyping of T-DNA lines (a) Schematic diagram of primer design for the

gstf9 gene: TDNA/GSTF9R positive for mutant, negative for WT, and GSTF9F/GSTF9R

positive for WT and negative for gstf9 (b) PCR confirming the position of the T-DNA

insertion in the gstf9 mutant and homozygosity of the gstf9 line using primers described

in (a) (c) RT-PCR indicating transcription was positive with TDNA/GSTF9R (1), while

this expression was negative with WT primers (GSTF9F/GSTF9R)(2) in the gstf9 mutant

line

3.4.2 Cross between gstf9 and wee1-1mutants

To investigate whether there is a genetic interaction between GSTF9 and Arath;WEE1, a

cross was made between the gstf9 and the wee1-1 lines. The F1 generation was allowed to

self-fertilise and set seed, and one line which was homozygous for both mutant alleles,

was selected by PCR (Fig 3.5).
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gstf9/gstf9 wee1-1/wee1-1

Arath;WEE1/Arath;WEE1 x GSTF9/GSTF9 crossed

GSTF9/gstf9
Arath;WEE1/wee1-1 selfed

Select for: gstf9/gstf9 (using PCR with
wee1-1/wee1-1 specific primers)

Figure 3.5 Flow chart for the cross between wee1-1 and gstf9 to obtain double mutants.

The gstf9 insertion mutant was crossed with the wee1-1 insertion line to obtain

heterozygotes for both genes. These were then selfed to select for homozygotes for the

insertion mutants of both genes.

The homozygous double mutant line was selected by PCR analysis and was positive for

gstf9 and wee1-1 primers, but negative for the wild type GSTF9 and Arath;WEE1 primers

(Fig 3.6). This line was used for all further experiments and was denoted dm.
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a

b

489 bp

Figure 3.6 PCR analysis of the line selected from the cross between wee1-1 and gstf9 (dm) to verify that

it was indeed (a) positive for wee1-1 primers (P4b/P6) and negative for the WT Arath;WEE1primers: P60

and P61 (b) negative for the GSTF9 primers  GSTF9F/GSTF9R and positive for the gstf9 primers

TDNA/GSTF9R. (c,d) all reactions were positive with 18S primers (PUV2 and PUV4).
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3.4.3 Response of Arabidopsis wee1-1 and gstf9 mutant lines to

hydroxyurea (HU) treatment

It was already established that the insertion mutant wee1-1 line is hypersensitive to HU

(De Schutter et  al., 2007).  Given  the discovery of the 2-hybrid  interaction  between

Arath;WEE1 and GSTF9 I wanted to test how the gstf9 insertion mutant responds to HU.

If gstf9 is also hypersensitive to HU this would support the hypothesis that GSTF9 is

involved in the DNA replication checkpoint and that its interaction with Arath;WEE1

may therefore be of functional significance.

I also analysed the phenotype of the double mutant wee1-1 gstf9 to assess whether the

phenotypes were additive. If both genes were operating on the same pathway, the effect

of mutating both genes should be similar to mutating just one of them. However, if the

two genes were operating on different pathways, the effect of mutating both of them

would be additive. The lack of an additive phenotype would thus support the hypothesis

that the two genes are acting in the same pathway. Furthermore I also extended the work

of De Schutter et al. (2007) with wee1-1 to provide a more detailed analysis of root

growth at the macroscopic and cellular levels.

3.4.3.1 Primary root length and rate of lateral root production

In the controls, primary root length of 10 day old seedlings was significantly longer in

wee1-1, gstf9 and dm when each was compared with WT (P < 0.05). The magnitude of

increase compared with WT was: wee1-1, 1.25-fold, gstf9, 1.12-fold, dm, 1.46 consistent

with an additive effect of these genes on primary root elongation (Fig. 3.7, Table 3.1).
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The wee1-1 and gstf9 genotypes were extremely hypersensitive to 1 mM HU with a

highly significant decrease in  primary root  length compared  with  the control grown

without HU (P<0.001) (Table 3.1). The magnitude of decrease in primary root length for

each genotype ± 1mM HU was: WT, 1.26, wee1-1, 6.80, gstf9, 3.80, dm, 10.54, thereby

providing evidence of an additive effect of these genes on primary root length when

seedlings were stressed with 1 mM HU.

Effects of different treatments of wee1-1: wee1-1 +1mM HU and wee1-1 +2 mM HU on

primary root growth were all significant compared to the same treatment of HU in WT

(P<0.01). This concentration-dependent effect was also evident for, gstf9 and the double

mutant compared to WT (P<0.01) (Fig 3.7, Table 3.1). .

Figure 3.7 Primary root length of 10 day old Arabidopsis wee1-1, gstf9 and dm mutant

lines compared to wild type (WT) grown on MS agar plates treated with 1, 2 and 5 mM

hydroxyurea (HU). (Mean ±SE, n = 20)
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Table 3.1 Student’s t-test within a genotype in 10 days old primary root length or total number of
lateral roots and primordia +1, 2 or 5 mM HU compared with -HU .

Level of significant difference + 1mM HU
primary root length No. of laterals + lrp

WT * *
wee1-1 *** ***
gstf9 *** ***
dm *** ***

Level of significant difference + 2 mM HU
primary root length No. of laterals + lrp

WT *** **
wee1-1 *** ***
gstf9 *** ***
dm *** ***

Level of significant difference + 5 mM HU
primary root length No. of laterals + lrp

WT *** ***
wee1-1 *** ***
gstf9 *** ***
dm *** ***
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05

In addition  to  measuring root  length at  10  days (Fig.  3.7)  in another experiment, I

recorded root length daily for 6 days ±HU treatment (Fig 3.8). These kinetic data were

then analysed by linear regressions that enabled measurement of rates of primary root

elongation per day for all genotypes± HU (Table 3.2).

Root elongation rate differed between the wild type and each of the mutant lines in the

presence or absence of HU (Fig 3.8). For example, -HU, the rate for wee1-1 was 1.2-fold

faster than WT whilst gstf9’s was marginally slower (1.09-fold) and the dm’s was the

fastest (1.40-fold). The rates of elongation are consistent in showing that the absence of

functional WEE1 enables faster rates of elongation compared with WT. GSTF9 appears

to have no impact on rates of primary root elongation, and this is also reflected in the rate
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for the dm, which has a rate of elongation much closer to that of wee1-1 than gstf9. Hence

functional WEE1 but not GSTF9, is a contributor in regulating primary root elongation in

normal conditions.

Figure 3.8 The relationship between mean ±S.E. primary root length (mm) and time

(days) ± 1 mM hydroxyurea (HU) in the genotypes: WT, wee1-1, gstf9 and wee1-1 gstf9

(dm) (n=4).
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Table 3.2. regression equation for each of the plots in Fig. 3.8, together with the level of

significance of the regression followed by the rate (mm per day). Key *** P<0.001;

NS=non significant (n=7).

Genotype Regression equation P value Rate (mm per
day)

WT y=4.57x+2.29 *** 4.57

WT+HU y=3.25x+2.29 *** 3.25

wee1-1 y=5.54x+3.96 *** 5.54

wee1-1 +HU y=1.86x+6.71 NS --

gstf9 y=4.36x+3.50 *** 4.36

gstf9+HU y=1.86x+6.71 NS --

dm y=6.406x+1.27 *** 6.41

dm+HU Y=0.286x+0.89 NS ---

In the presence of HU, the rate for WT decreased by %29. Although a regression could

be calculated for the mutants +HU, in each case the regression was not significant.

Indeed, in Fig. 3.8 it can be observed that whilst the primary root data were virtually

identical for 3 days ± HU, thereafter there was no further increase in primary root length

in the mutant genotype +HU. The data are consistent in showing that in the presence of

HU each mutant was able to elongate at virtually the same rate ± HU for 3 d but

thereafter, elongation was terminated. Hence, the suggestion is that cells in the RAM of

the  mutants escaped from the  DNA replication checkpoint for  3 days but this was

followed by an arrest of elongation perhaps because of an accumulation of perturbed S-

phases in successive cell cycles. However, WT+1HU was able to elongate over the entire

experiment albeit at a slower rate than WT because presumably, perturbation of DNA

replication was overcome but the time taken to overcome the perturbation at successive

cell cycles resulted in an eventual slow down of primary root elongation.

The number of lateral roots and primordia (L+LRP) was greater in all three mutant

genotypes compared to WT in the absence of HU (Fig. 3.9). With 1mM HU there was a
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dramatic reduction in L+LRPs in the mutants compared to WT, indicating a

hypersensitivity  to the HU stress. As HU levels increased, WT L+LRPs decreased

further, whereas in the mutants the decrease was less marked (Table 3.3).

Figure 3.9 Total number of lateral roots and primordia (± SE) of 10 day old Arabidopsis seedlings in

the Arabidopsis genotypes: WT, wee1-1, gstf9 and wee1-1 gstf9 (dm) grown on MS agar plates

supplemented with 1, 2 or 5 mM hydroxyurea (HU) (n=20)

Table 3.3 Student’s t-test within genotype for number of lateral roots and primordia ± 1,2 or
5mM  HU compared with -HU

WT wee1-1 gstf9 dm
Total number of
lateral roots and
primordia

Total number of
lateral roots and
primordia

Total number of
lateral roots and
primordia

Total number of
lateral roots and
primordia

1 mM HU * *** *** ***
2 mM HU *** *** *** ***
5 mM HU *** *** *** ***

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05
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Table 3.4 Student’s t-test results for number of lateral roots and primodia in 2mM HU

compared with the 1mM HU treatment within each genotype.

2 mM HU
Total number of
lateral roots and
primordia

WT **
wee1-1 *
gstf9 *
dm NS

Since root growth and numbers of  laterals are  linked, lateral root production was

calculated as a function of primary root length (Fig 3.10). In other words what is

important is the frequency of lateral root formation per mm of primary root tissue per

genotype per treatment (Fig.3.10, Table 3.3, Table 3.5). This is calculated as x-coordinate

divided by y coordinate for each point plotted in Fig. 3.10. For example, the mean rate of

lateral root production per mm of primary in WT is 0.17 per mm of primary root,

compared with 0.19 in the 1 mM HU treatment. In the same way, in the HU treatment,

the mutant phenotypes exhibit similar rates of increase in lateral root formation relative to

-HU. However, if the rate for each mutant genotype +HU is compared with WT +HU, a

1.89- and 2.21-fold increase in the rate of lateral root production is evident for wee1-1

and the double mutant, respectively but there is no change in the rate for gstf9 compared

with WT.

Hence, in the presence of HU, wee1-1, lacking a copy of WEE1 makes more laterals than

gstf9 which  has a copy of WEE1 but  the double mutant shows a similar rate (and

response) to wee1-1. These data  suggest that the  lateral root phenotypes ±HU are

governed by WEE1 without any interaction with GSTF9.
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A

B

WT-HU

WT+HU

wee1-1- HU

wee1-1+ HU

gstf9-HU

gstf9+HU

Figure 3.10 Root phenotype analysis of 10 day old Arabidopsis wee1-1, and gstf9 mutant
lines compared to wild type (WT) grown on MS agar plates treated with 1mM hydroxyurea
(HU). (A) (a) wee1-1 (b) wee1-1 +1mM HU (c) WT (d) WT+1mM HU (e) gstf9 (f)
gstf9+1mM HU (g) wee1-1 gstf9 (dm) (h) wee1-1 gstf9 (dm)+1mM HU (B) The relationship
between primary root length and total number of lateral roots and primordia in seedlings of
the same genotypes listed above. Means ± SE are plotted with error bars for both x and y
coordinates. Where error bars are absent the variation about the mean was less than the
diameter of the symbol. (n =20)
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Table 3.5 Rate of lateral root production mm primary root-1 in the different genotypes of 10

day old Arabidopsis seedlings obtained by dividing the x by the y coordinates for each point

plotted in Fig. 3.9.

Rate of lateral root production
mm primary root-1

-HU 1mM 2mM 5mM
WT 0.17 0.19 0.11 0.47
wee1-1 0.31 0.36 0.27 0.38
gstf9 0.16 0.19 0.37 0.39
dm 0.36 0.42 0.26 0.30

3.4.3.2 Meristem length

To investigate whether the effects on primary root elongation were related to changes in

meristematic activity, the meristem length was examined in all genotypes in response to

different concentrations of HU. Compared with WT-HU, meristem length tended to be

longer for each mutant genotype but not to a significant extent (P > 0.05) (Table 3.5).

In general, there was a negative concentration-dependent relationship between meristem

length and HU concentration for all genotypes (Fig. 3.11). This fits with the general

concentration-dependent inhibition of primary root length for all genotypes.

In WT, the decrease in meristem length in the 1 mM HU and 2 mM HU treatment was

not significant compared  with  the control  (P > 0.05)  but  it was  so at  5  mM (P =

0.001***). For the mutant genotypes, increasing concentrations of HU resulted in  a

gradual decrease in meristem length but the reductions between concentrations were

significant (P <0.01**).

The data suggest that wee1-1 and wee1-1 gstf9 (dm) exhibited a very similar pattern of

reduction in meristem length in response to increasing HU concentration but with the

greatest reduction occurring for wee1-1 in response to 1 mM HU (<0.01). In contrast, the



61

The interaction of wee1-1 and gstf9
pattern of reduction in meristem length in gstf9 in response to increasing concentrations

of  HU  was almost linear. Overall, the  pattern of reduction in meristem length to

increasing HU concentrations was very similar in wee1-1 and the dm, whilst in this

respect WT and gstf9 were most  similar to each other. Hence, in  the absence of a

functional WEE1 in wee1-1, meristem shortening in response to 1 mM HU (1.3-fold) was

hypersensitive. This means that in the absence of WEE1 or in the double mutant, the

RAM is unable to maintain a normal size when the roots are stressed with 1mM HU.

However, the functional absence of GSTF9 either in gstf9 or in the dm appears to make

no substantial difference to the pattern of shortening of meristem length in response to

1mM HU. Concentrations of HU >1mM, result in significant reductions in meristem

length in all genotypes suggesting that they begin to impose a toxic effect on the roots

and this was clearly evident in the reductions in primary root length at increasing HU

concentrations.

Fig 3.11 Mean (± SE.) length of the primary root apical meristem in 10 day old seedlings

of various genotypes of Arabidopsis grown in daily cycles of 16 h light and 8 h dark at

21 ˚C ± either 1, 2 or 5 mM hydroxyurea (HU) n=20
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Table 3.6 Mean meristem length (± SE) in 10 day old seedlings of various genotypes of

Arabidopsis ± hydroxyurea (HU). Probability values are based on meristem length ± HU

within a genotype. (n = 20)

Root apical meristem length P value
± HU

-HU + 1mM HU
WT

370.10 (±34.38) 359.55(±26.09) 0.808 NS
wee1-1

408.15(±25.85) 314.35 (±23.64) 0.006**
gstf9

382.85 (±24.54) 345.65 (±15.6) 0.231 NS
dm

426.52 (±15.98) 308.23 (±9.65) <0.001***

3.4.3.3 Number of epidermal cells along the meristem

The data in Fig. 3.12 are consistent in revealing a differential response of WT compared

with all three mutant genotypes because whilst increasing  HU concentration had a

negative effect on epidermal cell number in the RAM in WT, cell number remained

remarkably constant in each of the mutant lines regardless of HU concentration.
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Figure 3.12 The relationship between mean ( S.E.) number of cells in epidermis of the RAM in different

genotypes: wild type (WT), wee1-1, gstf9 and wee1-1 gstf9 with 1 or 5 mM hydroxyurea treatment in 10 day

old Arabidopsis plants grown in 16 h light and 8 h dark at 21°C. n =20

Table 3.7 Student t-tests within genotype for number of cells in RAM ± 1, 2 and 5 mM HU
compared with -HU for each genotype (see Fig. 3. 13)

Level of significant
difference + 1 mM
HU

Level of significant
difference + 2 mM
HU

Level of significant
difference + 5 mM
HU

Number of cells in
RAM

Number of cells  in
RAM

Number of cells in
RAM

WT NS ** ***
wee1-1 NS ** **
gstf9 NS NS NS
dm NS *** ***
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05

Epidermal cell number was significantly greater in the RAM of each mutant genotype

compared with WT in all HU concentrations (P < 0.001). Indeed epidermal cell number

in the RAM was clearly buffered within each mutant genotype. In rank order and minus

HU the magnitude of increase was: wee1-1, 1.53-fold, gstf9 2.42-fold and the dm, 3.61-

fold. To be a strictly additive effect the magnitude of increase would be the sum of each

single mutant (3.96-fold). Hence the magnitude of increase is very near additive.



64

The interaction of wee1-1 and gstf9
No significant differences could be detected between epidermal cell number in the RAM

±1 mM HU for any genotype. Note from above, that 1 mM HU resulted in decreases in

the size of the RAM in all genotypes although only significantly so for wee1-1 and the

dm. Mean cell number began to decrease significantly in WT as increased concentrations

of HU were applied (Table 3.7). Given that cell number in the mutants does not alter ±

HU this suggests that a major effect of HU was to reduce cell size in all genotypes. This

was tested and described below in section 3.4.3.4.

3.4.3.4 Epidermal cell length

Epidermal cell length in the 0mM HU treatment was significantly shorter in all genotypes

compared with WT . This effect was accentuated at increasing concentrations of HU (Fig.

3.13 and 3.14). Thus, at 0 mM HU, epidermal cell length was 1.41-fold different in wee1-1

2.32-fold different in gstf9 and 3.12-fold different in the dm compared with WT. These

data suggest an additive effect of WEE1 and GSTF9 on epidermal cell length within the

RAM.

The hypothesis that HU at all concentrations induced a decrease in cell size in all

genotypes was proven for wee1-1, gstf9 and the dm but not for WT. In the latter, there

was a significant increase in cell length in at 1, 2 and 5 mM HU treatments compared

with 0 mM HU. Thus under these conditions, there were larger but fewer cells in the

meristem, explaining why meristem size remained unaltered in WT ± HU (Fig. 3.11).

For the mutant genotypes treated with 1 mM HU, the reverse was true for wee1-1 and the

dm, but there was no change in epidermal cell size in gstf9 ± 1mM HU (Table 3.8).

For WT, the increase in cell size would be consistent with the induction of the DNA

replication checkpoint and an enforced delay in the transition from G2 to M but continued
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cell growth whilst DNA replication is being normalised. Unpublished data from the

Cardiff lab. for synchronised BY-2 cells showed such a delay in entry to mitosis under

HU conditions. The absence of a functional WEE1 in wee1-1 resulted in a significantly

smaller epidermal cell size which would be consistent with cells escaping the DNA

replication checkpoint and dividing prematurely at a reduced cell size. However, the

absence of a functional GSTF9 had a null effect on epidermal cell size in the 1 mM HU,

although there was a downward trend from 1, to 2 through to 5 mM HU whilst in the dm,

a significantly reduced cell size was detected once more in the 1 mM HU compared with

0 mM. Hence, for cell size regulation under 1 mM HU stress, there does not seem to be

an interaction between GSTF9 and WEE1.
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A B

C D

Fig 3.13 Whole mounts of root tips of (A) wild type meristem (B) wee1-1 meristem (C)

gstf9 mersitem (D) dm Scale bar = 10µ m. Arrows indicate length of representative cells

in the image.
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Fig 3.14 The relationship between mean ( S.E n =20.) cell length in the epidermis of the

RAM in different genotypes: wild type (WT) , wee1-1, gstf9 and dm with HU treatment

in 10 day old Arabidopsis plants grown in 16 h light and 8 h dark at 21°C.

Table 3.8 Student t-test within a genotype for cell length ± 1, 2 and 5 mM HU (see Fig.

3.14). Key: NS = not significant (P> 0.05) * P = 0.05-0.02; **P = 0.02-0.001; *** P <

0.001). n=20

Level of significant
difference ± 1 mM
HU

Level of significant
difference ± 2 mM
HU

Level of significant
difference ± 5 mM
HU

Cell length in
RAM

Cell length in RAM Cell length in RAM

WT *** *** ***
wee1-1 * *** ***
gstf9 NS *** ***
dm *** *** ***
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05
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3.4.4.2 Elongation Zone

Root elongation is the product of cell division in the root apical meristem and the

subsequent displacement of cells from the meristem which then elongate markedly. Cells

at the basipetal margin of the meristem divide and their descendants begin to elongate and

are eventually  displaced to a position at which they no longer do so prior to

differentiation. However, it is well known that the contribution of each component

parameter to primary root elongation rate can vary with respect to species and

environmental conditions (Fiorani et al, 2002). It was therefore of interest to compare cell

division, cell number and cell length in the meristem, and the extent of the elongation

zone in all three genotypes studied. Here, I have added measurements of the elongation

zone to the various RAM parameters in relation to primary root elongation rates for all

three genotypes reported above.

The distance of each successive transverse epidermal cell wall to the margin of the

meristem (as judged by the transition point in this lineage) was measured along the root

until the measurements began to plateau. This measurement was carried out in three

replicate primary roots from 10 day old seedlings. For WT, these data are displayed in

Fig. 3.15a and Table 3.9. Vertical lines are drawn at the point at which the data plateau

resulting in a mean elongation zone of 2933 ± 57.7 m for WT. Similarly the mean

elongation zone in wee1-1 (Fig. 3.15b, Table 3.9), gst9 and the dm (Fig. 3.16a, b, Table

3.9) is 2833±66.7, 2500±153, and 3000±10 m, respectively. T-tests on elongation zone

data showed there is no significant difference between the size of the elongation zone in

wee1-1 or the dm compared with WT. This suggests that the absence of functional WEE1

has no major impact on the elongation zone of primary roots of these genotypes. It would

appear that the elongation zone is significantly smaller in gstf9 compared with WT but

possible greater replication would be necessary to confirm this in future work.
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Note that for all three genotypes, there is considerable fluctuation in the cell

length measurements in the elongation zone. This is the result of asymmetric cell

divisions and, in many cases, unequal divisions that lead to root hair production. This

type of fluctuation has been demonstrated in the elongation zone of primary roots of other

species (Luxova, 1981).

Cell length in the elongation zone showed more fluctuation in wee1-1 compared with

WT, but the distance from the beginning of the elongation zone and their higher point

was not different. This was the same in gstf9 and the dm.

There were no significant differences between the elongation zone for each mutant

genotype compared with WT (control) (Table 3.10). Hence  the zone of elongation

remains remarkably constant for all genotypes and it is highly likely that neither WEE1

nor GSTF9 contribute to the cell elongation mechanism operating in primary roots under

normal conditions.

Table 3.9 Mean (±SE) of the elongation zone for each genotype

WT wee1-1 gstf9 dm

2500±153 2867±57 2500±150 2967±33

Table 3.10 Levels of significant differences between the elongation zone length for each

genotype compared to WT (see Fig. 3.16, Fig. 3.17)

Elongation zone

wee1-1 NS

gstf9 NS

dm NS
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(a) WT (b) wee1-1

Fig 3.15 The distance (m) between the margin of the RAM and successive transverse

cell walls of successive cells along an epidermal lineage in two individual primary roots

of (a) WT (b) wee1-1. Vertical dashed lines indicate the point at which the data begin to

plateau and hence represent the basipetal limit of the elongation zone for each root.
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(a) gstf9 (b) dm

Fig 3.16 The distance (m) between the proximal margin of the RAM and successive

transverse cell walls of successive cells along an epidermal lineage in three individual

primary roots of (a) gstf9 and (b) wee1-1 gstf9 (dm). Vertical dashed lines indicate the

point at which the data begin to plateau and hence represent the basipetal limit of the

elongation zone for each root.



72

The interaction of wee1-1 and gstf9
3.4.3.4 Percentage of cells in each component phase of the cell cycle in

the RAM of WT, wee1-1 and gstf9 ± HU treatment

Given  the various  phenotypic changes that  occur in response to  HU, there was  the

suggestion that the mutant lines are able to escape the DNA replication and DNA damage

checkpoints. For example, in wee1-1, although primary root growth was repressed in the

1 mM HU treatment, this mutant line exhibited a faster rate of lateral root production than

wild type. Cell division is necessary for lateral root production which would suggest an

escape by the mutants from the DNA replication checkpoint. To test this hypothesis I

measured the proportion of cells in different phases of the cell cycle using

microdensitometry. This analysis also enabled me to measure the extent to which HU

might be inducing endoreduplication in each of the genotypes.

In the RAM of WT seedlings, most cells were detected in G1 and then in descending

order: S-phase, G2 and M-phase. The effect of increasing concentrations of HU was to

cause a progressive increase in the percentage of cells in G1, and a progressive decrease

in S-phase whilst percentages in G2 and M remained relatively constant in the 1 and 2

mM HU treatments but decreased more so in the 5 mM treatment. There was no evidence

of polyploid nuclei in these treatments (Fig. 3.17A). The data are consistent in showing a

concentration-dependent accumulation of cells in G1 phase. In WT, The progressive

increase in the accumulation of cells in G1 as a result of HU treatment is consistent with

the induction of the DNA replication checkpoint.
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A B

C

Figure 3.17 The percentage frequency of cells in G1, S-phase, G2 and M-phase in squash

preparations from RAMs of 10 day old seedlings of (A)WT, (B) wee1-1 and (C) gstf9

treated with 1, 2 or 5 mM HU (n = 20).
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Table 3.11 Percentage of cells in M-phase of wild type (WT), wee1-1, gstf9 and the dm

with HU treatment

Mitotic
Index

0 mM HU 1 mM HU 2mM HU 5 mM HU

WT (%) 4 3 2 2
wee1-1 (%) 9 9 9 9
gstf9 (%) 7 7 7 7
dm(%) 12 12 12 12

In comparison with the WT±HU data, the pattern of alteration in the percentage of cells

in each phase appears to be more buffered in the wee1-1 mutant genotype. For example,

there was no significant difference in the pattern of cells in G1, S, G2 and M-phase ±

1mM HU (χ2 = 0.197, NS, df3), and the % in S, G2 and M remained remarkably

unaltered as the concentration of HU was increased in the 2 and 5 mM treatments. In

general, the same holds true in gstf9. However, time did not permit for microdensitometry

in the dm.

The only progressive change was a slight increase in the percentage of cells in G1 at the

higher HU concentrations. However, again, there is no evidence to show that HU induced

any polyploidy in these RAMs.
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3.4.4 Response of Arabidopsis insertional mutant lines wee1-1 and gstf9

to zeocin treatment

3.4.4.1 Primary root length and rate of lateral root production

When root length is compared between genotypes in the 0 mM zeocin treatment, the rank

order (longest  to  shortest)  is: dm, wee1-1, WT, gstf9,  Hence it  is  the absence of a

functional Arath;WEE1 that leads to longer roots whilst GSTF9 appears to have no effect

on root length in 10 day old seedlings under normal conditions (Fig. 3.18) These data

collected are very similar to those in the HU treatments (see Section 3.4.3.1).

WT responds to increasing concentrations of zeocin by a near proportional decrease in

root length. In contrast, in the mutant genotypes, the 5 µ M treatment induces a

hypersensitive response. However > 5 µ M there is a virtually proportional reduction in

primary root length in the mutants. On closer inspection, the extent of reduction in root

length, from 0 to the 5 µ m zeocin treatment is more similar between the wee1-1 (8-fold)

and the dm (9.6-fold) compared with gstf9 (2.9-fold) and WT (1.3-fold). This suggests a

strong involvement of WEE1 upon the induction of the DNA damage checkpoint.

However, gstf9 must have a wild type copy of Arath;WEE1 and yet there is a

hypersensitive response in this mutant compared with WT but one which is not as great

as that in wee1-1 and the dm. Thus GSTF9 is also exerting an albeit weaker effect on the

DNA damage checkpoint. However, the phenotype of the dm which shows a partially

additive effect suggests that the GSTF9 effect on the DNA damage checkpoint is

independent of Arath;WEE1.
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Figure 3.18 Primary root length of 10 day old Arabidopsis seedlings in the genotypes:

WT, wee1-1, gstf9 and wee1-1 gstf9 (dm) grown on MS agar plates supplemented with 5,

10 ,20 or 50 µ M zeocin. (mean ± SE, n = 20)
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Table 3.12 Student’s t-test results for primary root length within a genotype in 5, 10, 20 or
50 µ M zeocin compared wth the 0 µ M zeocin treatment within a genotype. For example, in
WT, primary root length in 0 µ M zeocin was not significantly different from WT grown on
5 µ M zeocin.

Level of significant difference ± 5 µ M zeocin
primary root length

WT *
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 10 µ M zeocin
primary root length

WT ***
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 20 µ M zeocin
primary root length

WT ***
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 50 µ M zeocin
primary root length

WT ***
wee1-1 ***
gstf9 ***
dm ***

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05

In a separate experiment, the rates of elongation of the primary roots were analysed over

6 days ± zeocin treatment (Fig. 3.19) by linear regression analysis (Table 3.13). As for

the HU, treatment with zeocin also almost abolished root elongation in the mutants, but

the timing differed  between  the mutant  lines: the dramatic reduction in growth rate

occurred on d 3 on wee1-1, d 4 in gstf9 but d 2 in the dm indicating an additive effect of

the two mutations.

In the absence of zeocin, over the linear portion of the growth in each genotype, (d3 to

d6), the fastest rate of elongation was in the WT (Table 3.13) and yet wee1-1and dm
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showed the longest primary root in the 10-day samples (Fig. 3.18). This anomaly could

be due to the difference in age of the seedlings and indicates that this analysis needs to be

repeated.

Figure 3.19 The relationship between mean ±S.E. primary root length (mm) and time

(days) ± 5 µ M zeocin in the genotypes: WT, wee1-1, gstf9 and wee1-1 gstf9 (dm) (n=4).
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Table 3.13 Regression equation for each of the plots in Fig. 3.19, together with the level

of significance of the regression followed by the rate (mm per day). Key *** P<0.001;

NS=non significant (n=7)

Genotype Regression equation P value Rate (mm per
day)

WT y=2.85x+4.9 *** 2.9

WT+ zeocin y=3.1x+1.6 *** 3.1

wee1-1 y=1.7x+2.75 *** 1.7

wee1-1 + zeocin y=2.36x+3.45 NS 2.3

gstf9 y=2.6x+2.1 *** 2.6

gstf9+ zeocin y=1.28x+4.8 NS 1.28

dm y=7.51x+0.71 *** 7.5

dm+ zeocin Y=0.78x+0.45 NS 0.78

Like HU, zeocin also induced a reduction in lateral roots +lateral root primordia (L+LRP)

in all genotypes (Fig. 3.20, Table 3.14). Again the mutants were hypersensitive to the

zeocin stress. As with the HU treatment, in the WT increasing levels of chemical induced

a progressive reduction  in L+LRPs  with  a striking drop from 10  to 20 μM zeocin.

However in the mutant lines there was a less significant (wee1-1) or not significant (gstf9

and dm) difference in L+LRPs between these two concentrations (Table 3.15).

Again as for the HU treatment the rates of lateral root production per mm of primary root

were calculated (Fig 3.21, Table 3.16). In the absence of zeocin, the rate of lateral root

production was almost 2-fold higher in the wee1-1 mutant and the dm, whereas lateral

root production in the gstf9 mutant was similar to WT. Treatment with 5 µ M zeocin

resulted in an almost 2-fold increase in lateral root production in wee1-1 whereas it had

little effect on either gstf9 or the dm. In this case, in contrast with the HU treatments, the
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effect of zeocin on dm was more similar to the WT and the gstf9 mutant than with the

wee-1-1 , suggesting that in this case gstf9 was acting epistatically over wee1-1.

Table 3.14 Student’s t-test results for total number of lateral roots and primordia within a

genotype in 5, 10 or 20, 50 µ M zeocin compared wth the 0 zeocin treatment within a

genotype. For example,in WT, primary root length in 0 zeocin was not significantly different

from WT grown on 5 µ M zeocin

Level of significant difference ± 5 µM zeocin
Total number of lateral roots and primordia

WT NS
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 10 µM zeocin
Total number of lateral roots and primordia

WT ***
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 20 µM zeocin
Total number of lateral roots and primordia

WT ***
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 50 µM zeocin
Total number of lateral roots and primordia

WT ***
wee1-1 ***
gstf9 ***
dm ***

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05
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Table 3.15 Student’s t-test results for total number of lateral roots and primordia within a

genotype in 10 compared with the 20 µ M zeocin treatment within each genotype.

wee1-1 gstf9 dm
Total number of
lateral roots and
primordia

Total number
of lateral roots
and primordia

Total number of
lateral roots and
primordia

20 µ M zeocin * NS NS

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05

Figure 3.20 Total number of lateral roots and primordia (± SE) of 10 day old Arabidopsis

seedlings in the genotypes: WT, wee1-1, gstf9 and wee1-1 gstf9 (dm) grown on MS agar

plates supplemented with 5, 10 ,20 or 50 µ M zeocin (n=20)



82

The interaction of wee1-1 and gstf9
Table 3.16 Rate of lateral root production mm primary root-1 in the different genotypes of

10 day old Arabidopsis seedlings obtained by dividing the x by the y coordinates for each

point plotted in Fig. 3.22.

Rate of lateral root
production mm
primary root-1

-HU 5 µ M
zeocin

10µ M
zeocin

20µ M
zeocin

50µ M
zeocin

WT 0.17 0.21 0.3 0.26 0.2
wee1-1 0.31 0.58 0.56 0.51 1
gstf9 0.19 0.20 0.19 0.19 0.2
dm 0.36 0.37 0.5 0.5 0.48

WT-zeocin

WT+ zeocin

wee1-1-zeocin

wee1-1+zeocin

gstf9- zeocin

gstf9+ zeocin

Fig 3.21 The relationship between primary root length and total number of lateral roots

and primordia in 10 day old seedlings of WT, wee1-1, gstf9 and the dm. Means ± SE are

plotted with error bars for both x and y coordinates. Where error bars are absent the

variation about the mean was less than the diameter of the symbol. (n =20)
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3.4.4.2 Meristem length

The meristem length was examined in all genotypes in response to different

concentrations of zeocin. In agreement with the experiment relating to HU treatments,

in untreated seedlings, mean meristem length was again slightly higher than in the WT in

5 µ M zeocin, but again differences were not statistically significant (Table 3.17). From

my results it is obvious there was a negative concentration-dependent relationship

between meristem length and zeocin concentration for all genotypes (Fig. 3.23). This is

in agreement with the inhibition of primary root length by increasing the amount of

zeocin in all genotypes. The pattern of reduction in meristem length was remarkably

similar to that elicited with HU.

In WT, the decrease in meristem length in the 5 µ M zeocin treatment was less significant

compared with the control (P = 0.04) but it was more significant with increasing zeocin

concentrations  (P = 0.001***). For the mutant genotypes, increasing concentrations of

zeocin resulted in a gradual decrease in meristem length but the reductions between

concentrations were significant (P =0.02*).

wee1-1 and wee1-1 gstf9 (dm) exhibited a very similar pattern of reduction in meristem

length in response to increasing zeocin concentration but with the greatest reduction

occurring for the dm in response to 5 µ M zeocin (P = 0.001***).A more or less linear

pattern of reduction in meristem length in gstf9 in response to increasing concentrations

of zeocin was observed.

Hence, the induction of the DNA damage checkpoint resulted in progressively shortened

RAMs in a similar way to the reductions observed in RAM length in the HU experiments

(see Fig. 3.22 compared to Fig. 3.11) Furthermore the absence of a functional
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Arath;WEE1 appears to have a greater effect on the response to DNA damage than the

lack of a functional GSTF9, as was also the case for the HU treatment which induces the

DNA replication checkpoint. Note that in wee1-1 and the dm meristems, there was a

hypersensitive responses (Fig 3.22), in the 0 to 5 µ M zeocin step up. This is consistent of

a functional role for WEE1 but not GSTF9 in regulating meristem length.

Figure 3.22 Mean (± SE) length of the primary root apical meristem in 10 day old

seedlings of various genotypes of Arabidopsis:wild type plants (WT), wee1-1, gstf9, and

the dm with treatments with four different concentrations of zeocin (5, 10, 20 and 50 µ M)

n =20
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Table 3.17 Student’s t-test results for total number meristem length within a genotype in 5,

10 or 20, 50 µ M zeocin compared wth the 0 zeocin treatment .

Level of significant difference ± 5 µ M zeocin
Meristem length

WT NS
wee1-1 **
gstf9 NS
dm ***

Level of significant difference ± 10 µ M zeocin
Meristem length

WT **
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 20 µ M zeocin
Meristem length

WT ***
wee1-1 ***
gstf9 ***
dm ***

Level of significant difference ± 50 µ M zeocin
Meristem length

WT ***
wee1-1 ***
gstf9 ***
dm ***

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05
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3.4.4.3 Number of epidermal cells along the meristem

In WT, in response to progressive increases in zeocin concentration, there was a

progressive decrease in the number of epidermal cells within the RAM. Fig 3.23 is very

similar to the cell number response of WT in the HU treatments (compared to Fig. 3.12).

However, as with the HU treatments, the mutant genotypes responded differently to

zeocin. Indeed, there was a remarkable buffering of epidermal cell number in response to

increasing zeocin concentrations for all three mutant genotypes exactly as there was in

response to HU (Figs 3.23 and 3.12). There was a subtle difference between the mutant

genotypes: while, 5 µ m zeocin elicited a significant response in wee1-1 this was not the

case in gstf9 or the dm. (Table 3.18). Again as seen with the HU treatment, cell number in

the RAM was higher for both wee1-1 and gstf9 compared to WT.

3.4.4.4 Epidermal cell length

Figure 3.23 Mean numbers of cells in an epidermal file of cells from the RAM (± SE) in 10

day old seedlings of various genotypes of Arabidopsis: (WT), wee1-1, gstf9, and the dm, ±

four different concentrations of zeocin (5, 10, 20 and 50 µ M grown in 16 h light and 8 h

dark at 21°C). (n = 20)
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Table 3.18 Levels of significant differences between the number of epidermal cells in the

RAM in 5, 10 or 20, 50 µ M zeocin compared wth the 0 zeocin treatment within a genotype.

Level of
significant
difference ± 5
µM zeocin

Level of
significant
difference ± 10
µM zeocin

Level of
significant
difference ± 20
µM zeocin

Level of
significant
difference ± 50
µM zeocin

Number of cells
in RAM

Number of cells
in RAM

Number of cells
in RAM

Number of cells
in RAM

WT * ** *** ***
wee1-1 * NS NS NS
gstf9 NS NS NS NS
dm NS NS NS NS
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05

Effects of zeocin on epidermal cell length (Fig 3.24, Table 3.19) was also similar to the

effects of HU (Fig. 3.14). Note also that whilst zeocin (all concentrations) treatment

resulted in a progressive increase in epidermal cell length in the WT, the exact converse

holds true for the mutant genotypes. The very similar trend of decrease in cell length with

respect to increasing zeocin for all three mutant genotypes tends to suggest that WEE1

and GSTF9 are operating in the same genetic pathway that regulates cell size in the

meristem in a treatment that induces the DNA damage pathway. However, cell size

measurements in the cortex and stele would be required to verify this tentative

conclusion.
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Figure 3.24 The relationship between mean ( S.E.) cell length in epidermis of the RAM

in different genotypes of Arabidopsis: wild type (WT) , wee1-1, gstf9 and the dm ± four

different concentrations of zeocin (5, 10, 20 and 50 µ M) in 10 day old Arabidopsis plants

grown in 16 h light and 8 h dark at 21°C (n =20).

Table 3.19 Levels of significant differences between the number of epidermal cells in the

RAM in 5, 10 or 20, 50 µ M zeocin compared wth the 0 zeocin treatment within a genotype.

Level of
significant
difference ± 5 µM
zeocin

Level of
significant
difference ± 10
µM zeocin

Level of
significant
difference ± 20
µM zeocin

Level of
significant
difference ± 50
µM zeocin

Cell length RAM Cell length RAM Cell length RAM Cell length RAM
WT *** *** *** ***
wee1-1 * * ** **
gstf9 *** NS NS NS
dm * * * *
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05
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3.4.4.5 Percentage of cells in each component phase of the cell cycle in

RAM of WT, wee1-1 and gstf9 ± zeocin treatment

WT responded differently to zeocin compared with HU. Whilst more cells were in G1

phase as zeocin concentration increased, there was also a substantial increase in the

percentage of cells in G2, whereas in the HU treatments the percentage in G2 declined

progressively (Fig 3.25 compared to Fig 3.17). Hence the induction of the DNA damage

checkpoint resulted in a progressive accumulation of cells in G2. In other words it seems

likely that the induction of chromosomal damage halted cells in G2. Consistent with this,

is a progressive decrease in the mitotic index in response to increasing concentrations of

zeocin in WT (Table 3.20), while the mitotic index and percentage of cells in G1, S and

G2 were relatively stable in wee1-1 and gstf9. This suggests that in all three mutant

genotypes, cells were dividing and hence escaping  the DNA damage checkpoint.

Moreover the mitotic index data are very near equal to an additive response of WEE1 and

GSTF9 when the mutants are challenged with zeocin. This further suggests that WEE1

and GSTF9 are working through different pathways in the DNA damage checkpoint.

However, microdensitometric data for the dm would be required to verify this conclusion.
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A B

C

Figure 3.25 The percentage frequency of cells in G1, S-phase, G2 and M-phase in squash

preparations from RAMs of 10 day old seedlings of: (A) wild type (WT), (B) wee1-1, (C)

gstf9 treated with four different concentrations of zeocin (5, 10, 20 and 50 µ M) (n = 20).
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Table 3.20 Percentage of cells in M-phase of wild type (WT), wee1-1, gstf9 and the dm

with zeocin treatment

Mitotic
Index

0 µM zeocin 5 µM zeocin 10µM zeocin 20 µM zeocin 50µM zeocin

WT (%) 5 4 3 2 1
wee1-1 (%) 9 9 9 9 9
gstf9 (%) 7 7 7 7 7
dm(%) 12 12 12 12 12

3.5 Discussion

Previous studies using BiFC indicated a nuclear site of interaction between Arath;WEE1

and GSTF9 (Gemma Cooke, Cardiff Lab., unpublished data), so perhaps GSTF9 is

needed for Arath;WEE1 function. I tested this hypothesis by examining the phenotype of

the two single mutants wee1-1 and gstf9 and the double mutant wee1-1 gstf9 (dm). Firstly

I checked that the gstf9 line was indeed homozygous and that transcription of the GSTF9

gene had been abolished. Although no transcripts were detected using PCR primers than

spanned the insertion point of the T-DNA, a product was obtained from the RT-PCR

when a primer internal to the T-DNA was used, indicating that there appeared to be some

transcription driven by sequences from within the T-DNA which could result in truncated

mRNAs and possibly protein. Further work would be required using Northern and

Western analysis to confirm this. Meanwhile this mutant can be considered a knock-down

of the full GSTF9 transcript. Next I generated a double mutant deficient in both genes and

confirmed its genotype. I then examined how each genotype responded to either HU or

zeocin, inducers of the DNA replication and DNA damage checkpoints, respectively.

3.5.1 Primary root elongation of both wee1-1 and gstf9 mutant is

hypersensitive to HU and zeocin compared to WT

In the work reported in this chapter, HU treatment causes a shorter primary root length in

agreement with the data of De Schutter et al (2007). Wild type roots grew to a length of
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approximately 35 mm over the 10 day period of growth. Increasing concentrations of HU

from 1 to 5 mM induced a gradated inhibition of primary root elongation. In the WT, rate of

primary root elongation decreased by 1.41-fold in the + compared with the –HU treatment.

However, primary root elongation was not completely inhibited. Instead in the + HU

treatment, the rate of elongation was reduced. Hence it seems likely that the HU treatment

induced the DNA replication checkpoint in WT but the time taken to overcome it had the

knock-on effect of a slower rate of elongation compared with WT-HU.

Interestingly in the control (0 HU) treatment, 10-day-old wee1-1 seedlings had significantly

longer primary roots than WT (P < 0.05) confirming the earlier observations in the Cardiff

lab. Increasing concentrations of HU greater than 1 mM had a greater effect in decreasing

primary root length compared with 1 mM.

In the gst-f9 line, root length was again significantly shorter in the 1, 2 and 5 mM HU

compared with the 0 mM HU treatment. Thus these phenotypic analyses support a role

for GSTF9 in the DNA replication checkpoint which would be consistent with the

evidence of interaction of Arath;WEE1 and GSTF9. However the response of wee1-1 and

gstf9 double mutant suggest a near additive effect of WEE1 and GSTF9 in response to the

induction of the DNA damage checkpoint in relation to primary root elongation. This

indicates that the two genes may be at least in part acting through different pathways to

exert their effects.

The zeocin treatment elicited a similar effect on the mutant lines to HU, both showing

hypersensitivity to this DNA-damaging agent. Here too the greater effect is exerted by the

WEE1 gene rather than the GSTF9, and the effects in the dm are partly additive indicating

that there are independent effects of the two genes.
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3.5.2 Lateral root production in the presence of HU or zeocin was

enhanced in wee1-1 but not gstf9 mutants compared to WT

In the HU treatments, the mutant phenotypes exhibited similar rates of increase in

lateral root formation relative to -HU. The number of laterals in the WT decreased in a

gradated fashion with increasing levels of HU or zeocin which was not so for the two

mutant genotypes. For the wee1-1 controls, a significant increase in the number of

laterals was evident compared with WT but a highly significant reduction of LR

formation was recorded in the 1 mM HU treatment (P < 0.001). This behaviour was true

for higher concentrations (either 2 or 5 mM) of HU. Treatment with zeocin resulted in a

very similar response.

However, note that whereas wee1-1, lacking a functional Arath;WEE1 makes more

laterals than WT, gstf9 lacking GSTF9 but having a functional copy of Arath;WEE1 is

not significantly different from WT in lateral root production. This means that the

absence of GSTF9 alone there is no effect on lateral root production. This is supported

by the rate calculated for the double mutant which is not significantly different to the

wee1-1 mutant line in lateral root production. In the 1mM HU treatment, compared with

WT the magnitude of increase in the rate of lateral root formation is 1.9 and 2.2 in the

wee1-1 and dm, respectively but is no different in gstf9. In the 2 mM HU treatment,

there is a 2.5 and 2.4 fold increase in the rate for wee1-1 and dm respectively. However,

the most substantial increase occurred in gstf9 (a 3.4 fold increase). In the 5 mM

treatment, there is no substantial difference in the rates of lateral root formation between

genotypes and most probably indicates that the level of HU has reached toxic levels for

all genotypes. Thus the effects of GSTF9 and Arath;WEE1 on the DNA replication

checkpoint, as inferred from the phenotypes of these mutant alleles, seem to be similar

but differ in some of their features. The results from the double mutant appear to be
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consistent in indicating an effect of the two genes which may at least in part be

independent of each other.

Under zeocin treatment as it was observed in the HU treatment, wee1-1 roots produced

more laterals than gstf9 but the double mutant showed a similar rate to wee1-1. Moreover,

the response of the double mutant to zeocin treatment was like that of wee1-1. However,

the effect of 5 µ M zeocin compared to 0 µ M zeocin on the rate of lateral root production

in the dm matched more closely that of the gstf9 than wee1-1 mutant, suggesting that in

this feature at least gstf9 may be exerting the more major effect. These data emphasise

that  the primary root  length,  total  number of lateral roots,  but  not the rate of LRP

production under zeocin treatment are governed by WEE1 without any interaction with

GSTF9.

3.5.3 Root apical meristem length in the presence of HU or zeocin was

reduced in wee1-1 mutants

The length of the root apical meristem (RAM) was estimated as the extent of tightly

packed cells at the root tip, resolved by microscopy as a dark area of the root tip in fixed

seedlings. It should be noted that these are not definitive measurements of meristem size

but are used here on a comparative basis.

In wild type and in the mutant lines, increasing concentrations of both HU and zeocin

caused a gradated reduction in meristem length. However, whereas wee1-1 was

hypersensitive to HU and zeocin in its meristem length reduction, gstf9 was not. The

effects on the dm were most similar to wee1-1. This suggests that whereas Arath;WEE1 is

required for the maintenance of meristem size under HU and zeocin stress, GSTF9 is not.

To my knowledge this is the first time that meristem length has been reported on in

relation to abiotic stress.
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3.5.4 HU or zeocin affects cell size and number in the epidermal layer of

the RAM in both wee1-1 and gstf9 mutants compared to WT

In the absence of zeocin or HU, the epidermal cells in the RAM were significantly

smaller in wee1-1, gstf9 and the wee1-1 gstf9 double mutant line. This might be because

of premature cell division in the absence of either WEE1 or GSTF9. Gonzalez et al.

(2007) showed that S. lycopersicon WEE1 has a role in cell size control. In addition

studies of model systems in S. pombe, X. laevis and H. sapiens indicated that Wee1 has a

critical role in controlling cell size (McGowan and Russell, 1995; Aligue et al., 1997;

Michael and Newport, 1998; Goes and Martin, 2001; Watanabe et al., 2004; Watanabe et

al., 2005). Also Nurse et al. (1977) showed that the Wee1 protein was a negative

regulator of cell division in S. pombe by delaying entry into mitosis. A similar role of

Swe1 was found in controlling the cell size in S. cerevisiae (Jorgensen et al., 2002;

Harvey and Kellogg, 2003). However a role for GSTF9 or any other GST in regulating

cell size had not, to my knowledge, been previously reported.

There was a clear differential effect of hydroxyurea or zeocin on WT compared with all

three mutant genotypes. Whilst increasing levels of HU or zeocin resulted in progressive

increases in cell length, the converse occurred in the mutant genotypes. However, note

that there were significantly more cells in the epidermis of wee1-1 compared with WT,

and progressively more epidermal cells in gstf9 (P<0.001), and then the most in wee1-1

gstf9 ( P<0.001) under HU or zeocin stress. Interestingly,  the number of epidermal

meristematic cells remained remarkably constant in the three mutant genotypes regardless

of HU or zeocin concentration. It seems the production of aberrant cells, with suspected

incomplete or perturbed DNA replication, is unable to contribute as strongly  to

elongation growth as unperturbed ones in WT since keep the rate of primary root
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elongation fell in WT in the presence of HU or zeocin, in the mutants elongation has

stopped.

This indicates that both Arath;WEE1 and GSTF9 are important in the DNA replication/

DNA damage checkpoint, but the effects to the two genes appear in both cell number and

cell length to be additive.

3.5.5 HU or zeocin affects the percentage of cells in each component

phase of the cell cycle in the RAM in both wee1-1 and gstf9 mutants

compared to WT

In wee1-1, HU or zeocin treatment did not alter greatly the percentage of cells in each

phase although more cells were in G1 at the higher zeocin concentrations. Hence, in the

absence of a functional WEE1, cells continued to cycle. Again the stability of the mitotic

index in the zeocin treatments would be consistent with this view. These data confirm a

requirement for WEE1 in the DNA damage checkpoint. The cell cycle response of gstf9

to zeocin is remarkably similar to that of wee1-1. Hence on the basis of these data, the

absence of a functional GSTF9 also enabled cells to go through the cell cycle even in the

presence of a functional WEE1. In the gstf9 mutant these data support the idea of an

involvement of GSTF9 in regulating the DNA repair checkpoint.

In the presence of a functional WEE1 but the absence of a functional GSTF9, it looks as if

the  DNA replication checkpoint has been induced given the remarkable  similarity of

nuclear DNA distributions in the two mutant genotypes. Maintenance of the same or very

similar percentages of cells in each cell cycle phase in wee1-1 in response to HU and

zeocin confirms a role for WEE1 in the DNA damage and DNA replication checkpoints.

The mitotic index was higher in wee1-1 than WT in treatments at different concentrations

of HU. These data are consistent with the idea that in the absence of a functional WEE1,
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cells  in  the RAM  were bypassing the DNA replication checkpoint and escaping into

mitosis. However, again, there is no evidence to show that HU induced any polyploidy in

these RAMs
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4. Studying the interaction between Arabidopsis GF14  and
Arath;WEE1

4.1 Introduction

14-3-3 proteins are highly conserved in plants and animals (Dougherty and Morrison,

2004). There are 15 isoforms of 14-3-3 proteins in Arabidopsis although two of them are

pseudo-isoforms. The thirteen functional 14-3-3 proteins in Arabidopsis are divided into

two phylogenetic groups, Epsilon and Non-Epsilon, based on their amino acid sequence

(DeLille et al., 2001). In a yeast 2-hybrid assay the non-Epsilon group interacts with

Arabidopsis WEE1 (Lentz Grønlund et al., 2009). 14-3-3 proteins are distributed widely in

all parts of the cell, as a result, they may have different biological roles in the cell (Ferl et

al., 2002). The isoforms of 14-3-3 are distributed in the nucleus, plasma membrane, cell

wall, and cytoplasm (Bihn et al., 1997). Involvement of Arabidopsis 14-3-3 proteins in

activation of the plasma membrane H+ATPase has been demonstrated (Jahn et al., 1997;

Rosenquist et al., 2000). Some non-Epsilon group 14-3-3 proteins have a physical

association with proteins involved in the  photoperiodic control pathway; moreover,

different groups of 14-3-3 protein mutants exhibit a delay in flowering, and also growth

inhibition in hypocotyl (Mayfield et al., 2007). Three 14-3-3 proteins (ω, λ and κ),which

belong to the non-Epsilon group (also known as GF14 ω, λ and κ), from Arabidopsis were

found to interact with S. pombe Cdc25, but only the GF14ω isoform could complement an

S. pombe rad24¯  mutant (Sorrell et al., 2003). One Arabidopsis 14-3-3 isoform (GF14A)

accumulates differentially in the cell’s nucleus during the cell cycle. It is excluded from

the nucleus throughout most of the cell cycle but accumulates in the nucleus just after
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nuclear division, and disappears just before the completion of cytokinesis (Cutler et al.,

2000).

In Arabidopsis, Sorrel et al., (2002) showed that the transcription of GF14ω is restricted to

proliferative regions of Arabidopsis plants again supporting a role for this protein in cell

division. Lentz Grønlund (2007) showed an interaction between GF14ω and Arath;WEE1

by 2-hybrid analysis. This interaction was verified in vitro by immunoprecipitation and in

plant cells, using bimolecular fluorescence complementation (BiFC) (Walter et al., 2004;

Lentz Grønlund et al., 2009). Furthermore a putative 14-3-3 binding site was located in the

Arath;WEE1 protein at position S485, by homology to other WEE1 proteins. When the

WEE1 coding sequence was mutated to encode alanine instead of serine at this position,

the 2-hybrid interaction was abolished, although the BiFC signal was affected only in its

localisation (Lentz Grønlund et al., 2009). Thus there was strong evidence from this work

that there was a specific interaction between GF14ω and Arath;WEE1. However the

functionality of this interaction had not been tested.

GF14ω was over-expressed in Arabidopsis under an oestradiol-inducible promoter (Zuo et

al., 2000, Fig. 4.1).

Fig 4.1 A schematic diagram of the XVE vector (Zuo et al., 2000) showing the multiple cloning site MCS
This vector was used for oestrogen receptor-based transactivation which mediates gene expression in transgenic
Arabidopsis plants and in this case over-expression of GF14ω. The chaemeric transcription factor XVE is
composed of LexA (DNA binding domain), VP16 (transcription activation domain), hER (oestrogen receptor
regulatory domain) and TE9 (terminator) driven by PG10-90) (a synthetic promoter). OLexA

-46 contains eight copies
of the LexA operator sequence that activate transcription of the GF14ω when the oestrogen binds to the hER
region.
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In preliminary experiments, over-expressing GF14ω induced a decrease in the rate of

primary root elongation compared with WT (Lentz Grønlund et al., Cardiff Lab,

unpublished results). This phenotype is similar to that of over-expressing Arath;WEE1.

This would fit with a hypothesis that GF14ω stabilises Arath;WEE1 at the protein level,

increasing  its activity in vivo. Hence an over-expression of GF14ω might result in

increased WEE1 activity resulting in a phenotype similar to Arath;WEE1 over-expression.

If the effect of GF14ω over-expression is mediated by Arath;WEE1, then over-expression

of GF14ω in the wee1-1 mutant background would have a null effect. However, if in the

cross, GF14ω expression elicits the same phenotype as in the WT genetic background then

we can conclude that the effects are independent of Arath;WEE1.

However, later experiments in the  Cardiff  lab failed to confirm the GF14ω over-

expression phenotype probably due to a confounding effect from the oestradiol inducer on

root growth; hence it was necessary to start by verifying the GF14ω over-expression

phenotype.

In this chapter I present my results aimed at:

(1) A further investigation of the phenotype of Arabidopsis plants over-expressing

GF14ω to identify conditions that induced the GF14ω transgene but did not affect

WT root growth

(2) Establishing whether the GF14ω interaction with Arath;WEE1 is a requirement for

its function by crossing a GF14ω over-expressing line with the wee1-1 line.
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4.2 Materials and methods

4.2.1 Plant material

Over-expressing GF14ω line (line # 42, named here GF14ωOEX), WT and a line over-

expressing Arath;WEE1 (line 61) called hereafter WEE1OEX were used for this work.

Further details are in Chapter 2, Section 2.1.

4.2.2 Phenotypic analysis of an GF14ω overexpressing line

Seeds were sown onto MS (see Sections 2.2 and 2.14) with varying amounts of sucrose

and oestradiol and root phenotype was analysed, (see Chapter 2, Section 2.17).

4.2.3 Cross between an GF14ω overexpressing line and wee1-1

Seeds of GF14ωOEX (line # 42) and the homozygous T-DNA insertion line wee1-1 were

surface sterilised and grown as described in Chapter 2, Section 2.14 and 2.18 and then

crossed as described in Chapter 2, Section 2.20.

To confirm the presence of the transgene in GF14ωOEX and to confirm that the wee1-1

line was carrying the T-DNA insertion, PCR was performed using primers: 35STRS, 14-3-

3 RV for checking GF14ωOEX genotypes and P4b, P6 for checking the wee1-1 genotype.

P60/P61 primers were used to check for the presence of the wild type Arath;WEE1 gene

(For primer sequences see Chapter 2, Section 2.3). The GF14ωOEX line was a segregating

population so it was a mixture of heterozygotes and hemizygotes (WT were eliminated by

the hygromycin selection). Hence the genotypes of the F1 generation were expected to be

as shown in Figure 4.2.
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GF14ωOEX/-
wee1-1 / wee1-1

GF14ωOEX/ GF14ωOEX
WEE1/ wee1-1

GF14ωOEX / GF14ωOEX
WEE1/WEE1

GF14ωOEX / GF14ωOEX or GF14ωOEX/- x -/-
WEE1/WEE1 wee1-1

GF14ωOEX /- GF14ωOEX /- -/- F1 generation
WEE1/wee1-1 WEE1/ wee1-1 WEE1/ wee1-1

Selfed

GF14ωOEX /- GF14ωOEX /-
WEE1/ wee1-1 WEE1/WEE1

GF14ωOEX/ GF14ωOEX -/- -/- -/-
wee1-1 / wee1-1 WEE1/ wee1-1 WEE1/WEE1 wee1-1 / wee1-1

F2 generation

Figure 4.2 The progeny of cross between over-expressing GF14ω (GF14ωOEX) and the T-DNA

insertion line wee1-1 showing F1 and F2 generations. WEE1 represents the WT copy of

Arath;WEE1. Boxed in thicker lines are the genotypes of interest for phenotypic analysis and in

broken lines, genotypes that were eliminated by hygromycin selection.

To recover seeds which were homozygous for the wee1-1 mutant allele and carried at least

one copy  of the GF14ωOEX transgene, it was necessary  to take plants to the next

generation (F2). Seeds of the cross were sown and PCR was carried on DNA extracted

from leaves of these plants as above to check their genotype before proceeding. Possible

genotypes from this generation of the cross are shown in Fig 4.2. One line from these
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plants which was positive for both GF14ωOEX primers and wee1-1 primers (but not

Arath;WEE1 primers) was selected. This plant was selfed, 30 seeds of this line were sown

and PCR was done on DNA extracted from each leaf. The ones which were positive for

GF14ωOEX primers and wee1-1 primers, but negative for wild type primers were selected

and the phenotyping on  the roots of these  seedlings was carried  out as described in

Chapter 2, Section 2.17.

4.3 Results

4.3.1 Optimising the oestradiol treatment for induction of the GF14ω in the

GF14ωOEX line

In transgenic  Arabidopsis plants, induction of oestradiol activates the expression of  the

GF14ω under  the control of a  35S promoter, whereas the  uninduced controls had no

detectable transcript (Cardiff lab, unpublished results). However previous work in the Cardiff

lab. had suggested that oestradiol might affect root growth in WT, confounding the potential

effects of GF14ω over-expression. I tested the oestradiol effect on wild type  plants in

medium with/without 3% (w/v) sucrose. At 1 or 2 μM of oestradiol with and without sucrose,

no significant difference in primary root length was observed compared with the zero control

(Table 4.1, Fig.  4.3). However, at  a higher concentration  of oestradiol (5µ M)  with  3%

sucrose was a statistically significant reduction in primary root length (P<0.05). In further

analysis I therefore sowed the GF14ωOEX line on MS with 2µ M oestradiol and with 30 gl-1

sucrose to examine primary root length.
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Table 4.1 Mean ( S.E.) primary root length of 10 day old Arabidopsis WT plants grown on medium ±
oestradiol ± 30 gl-1 sucrose. A student unpaired t-test was used to test for differences between in 0 and 1, 2 or
5 μM oestradiol and between 0 and 3% sucrose (n =14)

0 µ M oestradiol 1 µ M oestradiol Standard t-test

Medium with sucrose WT 37.1 37.5 NS

Medium without sucrose WT 37.3 37 NS

0 µ M oestradiol 2 µ M oestradiol

Medium with sucrose WT 37.1 37.4 NS

Medium without sucrose WT 37.3 37.8 NS

0 µ M oestradiol 5 µ M oestradiol

Medium with sucrose WT 37.1 25.6 ***

Medium without sucrose WT 37.3 36.6 NS

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05

Figure 4.3 Mean (± S.E.) primary root length in wild type (WT) Arabidopsis plants grown in medium
with 30 g/l and without sucrose and 0, 1, 2 or 5 μM oestradiol in 16 h light and 8 h dark at 21°C. n =14
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4.3.2 Genotyping progeny from the cross between an GF14ωOEX and wee1-1.

The seeds of F2 generation of the cross between GF14ωOEX and wee1-1 were sown

directly onto soil. After plants became sufficiently  large I checked by PCR for the

presence of the GF14ωOEX transgene and the wee1-1 allele but absence of the WEE1

allele. (Fig. 4.4).

Figure 4.4 PCR carried out for checking plants of the cross between GF14ωOEX and wee1-1 with
(A) GF14ωOEX primers (35STRS and 14-3-3 RV) lanes: 1) plant 1 2) plant2 3) plant 3 4) plant 4
(B) wee1-1 primers (P4b/P6) lanes : 1) plant 4 2) plant3 3) plant 2 4) plant 1
(C) P60/P61 primers, lanes: 1) WT plant 2) plant 3 3) plant 4

Plants 3 and plants 4 were positive for both GF14ωOEX and wee1-1 primers (Fig 4.4 (A) and

(B) also the absence of the WT Arath;WEE1 gene was confirmed by testing with P60/P61

primers (Fig4.4(C)).
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Seeds from plant 3 were used for further analysis, testing for the presence of the

GF14ωOEX transgene before use in phenotyping.

4.3.3 Phenotype of progeny from the cross between an GF14ωOEX and wee1-1

Analysis of primary root length within genotype, and total number of lateral roots and

primordia within genotype confirmed that the sucrose/oestradiol (+OE) combination did

not affect root growth in WT or in the transgenic line over-expressing Arath;WEE1

(WEE1OEX) compared to the no oestradiol treatment (-OE) (Fig. 4.5). In the GF14ωOEX

line +oestradiol (+OE) primary root length and number of laterals+primordia were

significantly reduced. WEE1OEX showed a similar root phenotype to the induced

GF14ωOEX line, a reduction in both primary root growth and production of lateral roots

(Fig. 4.5 and 4.6).

The root phenotype of the progeny from the cross of GF14ωOEX * wee1-1 was also

affected by the 2 µ M oestradiol treatment. Seedlings had a significantly shorter primary

root length and a  significantly reduced total number  of  lateral roots and primordia

compared to WT. Furthermore the total number of laterals + primordia was significantly

lower in the GF14ωOEX wee1-1 line compared with GF14ωOEX + 2 µ M oestradiol and

Arath;WEE1 OEX + 2 oestradiol although primary root length in the GF14ωOEX wee1-1

line + 2 µ M oestradiol was not significantly different to the GF14ωOEX + 2 µ M

oestradiol.
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WT-OEWT+OE
GF14OEX-OE
GF14OEX+OE
WEE1OEX-OE
WEE1OEX+OE
GF14OEXwee1-1-OE
GF14OEXwee1-1+OE

Figure 4.5 Relationship between primary root length and total number of lateral roots and primordia in

wild type (WT), GF14ωOEX, and GF14ωOEX wee1-1 10 day old Arabidopsis plants grown in medium with

or without 2 µ M oestradiol in 16 h light and 8 h dark at 21°C. n =15

Table 4.2 Within genotype ( S.E.) differences in primary root length and total number of lateral roots and
primordia of wild type (WT) GF14ωOEX, and GF14ωOEXwee1-1 Arabidopsis plants ± 2 μM oestradiol
treatment n =14.

Level of significant
difference ± 2 µM
oestradiol treatment

Level of significant
difference ± 2 µM
oestradiol treatment

primary root length Total lateral roots and
primordia

WT NS NS
WEE1OEX NS NS
GF14ωOEX *** **
GF14ωOEXwee1-1 *** ***
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Figure 4.6 Root phenotype analysis of 10 day old Arabidopsis WT, WEE1OEX, GF14ωOEX, and

GF14ωOEX wee1-1 grown on MS agar plates + 2µ M oestradiol (OE).

Table 4.3 Rate of lateral root production mm primary root-1 in the different genotypes of 10 day old

Arabidopsis seedlings obtained by dividing the x by the y coordinates for each point plotted in Fig. 4.5.

Rate of lateral root production mm primary
root-1

-OE +OE

WT 0.15 0.14

GF14ωOEX 0.13 0.1

WEE1 OEX 0.07 0.06

GF14ωOEX wee1-1 0.08 0.06

In the genotypes–OE, the rate of lateral root formation was highest in WT and did not change

significantly with the addition of oestradiol (+OE) (Table 4.3). GF14ωOEX –OE would be

predicted to have a rate  similar  to WT which was the case. Moreover, on addition of

oestradiol (+OE) GF14ωOEX and GF14ωOEX wee1-1 rates of lateral root formation were

both slower compared with WT: The rates were 1.4 and 2.33-fold slower respectively.

Arath;WEE1 over-expression should result in a slower rate than WT; the data in Table 4.3

confirmed the predictions and agree with other data obtained in the Cardiff lab. showing a

similar negative effect of Arath;WEE1 over-expression on the rate of lateral root production.

However, in the cross, GF14ωOEX wee1-1 +OE, it was predicted that in the absence of
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functional Arath;WEE1, the rate would be similar to WT. Instead GF14OEX wee1-1 + OE

cross exhibited a rate remarkably close to that for the GF14OEX. This result is consistent

with GF14ω having a negative effect on the rate of lateral production that is independent of

its suggested role in stabilising WEE1.

To determine whether the effects on root growth were reflected in changes at a cellular

level, cell length in a file of cells in the RAM epidermis was compared between the

different lines (grown on medium supplemented with 2µ M oestradiol). Cell length was

significantly greater in the GF14ωOEX, WEE1OEX and the GF14ωOEX wee1-1 lines

compared with wild type (Fig. 4.7, Table 4.4).
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(A)

(B)

*** ***

NS

Figure 4.7 Mean cell length (±S.E.) in a file of cells in the RAM epidermis of wild type (WT),

GF14ωOEX, and GF14ωOEX wee1-1 in 10 day old Arabidopsis plants grown in medium + 30 g l-1 sucrose

) in 16 h light and 8 h dark at 21°C. n =14 (A) + 2µ M oestradiol (B) Minus Oestradiol, P level(s):

***<0.001, NS, not significant from WT.

Table 4.4 Differences in epidermal cell length compared to WT for the different genotypes (GF14ωOEX,
WEE1OEX and GF14ωOEX wee1-1 ± oestradiol in 10 day old Arabidopsis plants (n =14).

Level of significant difference ± 2 µM
oestradiol treatment

Level of significant difference ± 2 µM
oestradiol treatment

Cell length in RAM’s epidermis Cell length in RAM’s epidermis
wee1 OEX *** ***
GF14ωOEX *** NS
GF14ωOEXwee1-1 *** ***
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05
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4.4 Discussion

My starting hypothesis was that GF14ωOEX would display a similar phenotype to over-

expression of Arath;WEE1 but that this phenotype would be suppressed when GF14ω was

expressed in the wee1-1 mutant background. The rationale for this is that if the Arath;WEE1

/GF14ω interaction has functional significance then the expected function based on work in

other species (see Section 4.1 and chapter 1, section 1.1.5.3) would be to stabilise WEE1.

Hence the prediction of a similar effect in GF14OEX to over-expressing Arath;WEE1.

However if the only effect of GF14ωOEX is via the WEE1 interaction, then I would predict

that mutation of the Arath;WEE1 gene would abolish the GF14ωOEX phenotype.

The first step was to optimise the oestradiol induction system. Previous work (Zuo et al.,

2000) used a range of oestradiol concentrations, but there was no clear indication of an

interaction between sucrose and oestradiol. My discovery of an interaction with 30 g l-1

sucrose in the medium explains the interaction seen in WT with some of the Cardiff lab.

protocols for growing Arabidopsis. Previous studies by (Lentz Grønlund, 2007) showed over

expressing GF14ω induced a subtle decrease in the rate of primary root elongation compared

with WT in the presence of oestradiol. My results confirm this result and further show a

strong effect on production of lateral roots and primordia similar to that seen in the line over-

expressing Arath;WEE1. So this would seem to confirm my hypothesis that the over-

expression of GF14ω may be stabilising Arath;WEE1.

I then tested whether Arath;WEE1 is required for the GF14ωOEX phenotype or not, and I

observed that in the GF14ωOEX wee1-1 line, in which GF14ω was induced by oestradiol,

the phenotype was very similar to over-expression of GF14ωOEX in the WT genetic

background, In fact total number of lateral roots and lateral root primordia were even
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lower. Thus the phenotype suggests that Arath;WEE1 is not required for the action of

GF14ω. This was supported by the analysis of rates of LRP formation, and cell length in

epidermal RAM cells where cell size in the GF14ωOEX wee1-1 line was even greater

than in the GF14ωOEX or the Arath;WEE1OEX. This does not exclude the possibility

that the interaction between GF14ω and Arath;WEE1 may be meaningful but indicates

that GF14ω also act on root growth and cell size independently of WEE1.

Lentz Grønlund et al., (2009) showed that the interaction between Arath;WEE1 and GF14ω

was abolished in the S485A mutant. Further study on whether the Arath;WEE1 (S485A)

mutant can complement the wee1-1 mutant may throw further light on the function of GF14ω

and its relationship to Arath;WEE1.
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5. Investigating the effects of expressing Nicta;WEE1 in Arabidopsis thaliana 
 

 

and Arath;WEE1 in Nicotiana tabacum 
 
 
 
 
 
 
 
 

 
5.1 Introduction 

 

In fission yeasts, wee1 is the main genetic element involved in cell size control (Nurse, 1975). 

While loss of wee1 function leads to a premature entry of cells into mitosis resulting in a 

small  cell  size,  over expression  of  wee1  has  the opposite effect  leading to  a large cell 

phenotype due to a delay in mitotic entry (Russell and Nurse, 1987). Induced expression of 

Arabidopsis thaliana WEE1 (Arath;WEE1) in Schizosaccharomyces pombe also delays cell 
 

cycle progression resulting in a large mitotic cell phenotype (Sorrell  et al., 2002). This 

indicates  that  in  plants,  Arath;WEE1  may  also  be  involved  in  regulating  cell  size.  S. 

cerevisiae Swe1 and Xenopus laevis Wee1 proteins are regulated by ubiquitin degradation, 

while in Homo sapiens, WEE1 is regulated by phosphorylation and degradation (Kaiser et al., 

1998; Michael and Newport, 1998; Goes and Martin, 2001; Watanabe et al., 2004; Watanabe 
 
et al., 2005). A reduced level of endoreduplication was observed by the down-regulation of 

 
Solly;WEE1  in  tomato  (Gonzalez  et  al.,  2007).  It  was  shown  in  previous  studies  that 

 
endoreduplication is positively correlated with cell size (Melaragno et al., 1993; Traas et al., 

 
1998).  Notably, in the tomato line in which, Solly;WEE1 was down-regulated, there was a 

reduced cell size and cell cycles which had a shortened G2 compared with wild type. Also, 

when Solly;WEE1 was expressed in synchronised tobacco BY-2 cells, there was a notable 

delay in the first peak of mitotic index, and an increase in mitotic cell size was reported, ( 

despite the fact that there was an overlap in standard errors in their data on cell size ) 

(Gonzales et al., 2007). Regarding cell size, in BY-2 cells, following synchronisation, over- 
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expression of  Nicotiana tabacum (Nicta;WEE1) in BY2 cells delayed the mitotic peak but 
 
there was a null effect on cell size (Siciliano, 2006). 

 
The over-expression of Arath;WEE1 in Arabidopsis plants had a negative effect on 

root  growth  (Siciliano,  2006;  Lentz  Grønlund,  2007;  Spadafora,  2008):  primary  root 

elongation was inhibited, and plants had a lower frequency of lateral root primordia, but they 

had a longer meristematic root epidermal cell phenotype compared to WT (Lentz Grønlund, 

2007). Seemingly in this transgenic line, activation of clusters of cells of the pericycle is less 

frequent compared with WT cycles arguing for the suppression of many more mitotically 

competent pericycle cells compared with WT. Since, in Arabidsopis it is from the G2/M 

transition in the pericyle that lateral root primordia are initiated in Arabidopsis (Dubrovsky et 

al., 2000) it can be hypothesised that over-expression of WEE1 suppresses the 

dephosphorylation of CDKs at many potential sites of lateral root primordium initiation. 

Interestingly, in Arabidopsis, WEE1 is spatially expressed at the base of young lateral 

primordia but not in the apex (G. Cook, unpublished data). Hence over-expression of WEE1 

may cause a delay in mitosis and cells remain in G2 phase, so in this case, when the cells are 

arrested in G2 they might re-enter the cell cycle with a lower frequency and, consequently, 

fewer lateral roots will be formed. However analysis of T-DNA insertional mutants in 

Arath;WEE1 showed that down-regulation of this gene had no effect on normal plant growth 

(De  Schutter  et  al.,  2007;  Lentz  Grønlund,  2007)  although  they  did  not  study  these 

phenotypic effects in as much detail as presented in this chapter. However, a transcriptional 

response of Arath;WEE1 in Arabidopsis cell suspensions treated with HU was observed by 

De Schutter et al (2007), and they concluded that this treatment transcriptionally activated the 

WEE1 gene. In Arath;WEE1 loss-of-function plants treated with 1mM HU, the length of 

primary roots was reduced. Thus although Arabidopsis WEE1 was shown not to be rate- 

limiting for cell cycle progression or endoreduplication under normal growth conditions, 
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upon  DNA  damage  and  replication  blockage,  Arath;WEE1  was  a  critical  target  for 

ATM/ATR signalling. These results suggest that the WEE1-deficient plants failed to activate 

a G2 arrest and progressed into mitosis without a fully replicated genome (De Schutter et al., 

2007). 
 

As mentioned above, when Nicta; WEE1 was over-expressed in BY-2 cells it induced 

a lengthening of G2 phase but did not affect cell size (Spadafora, 2008). Even more 

surprisingly, Siciliano (2006) found that expression of Arath;WEE1 in BY-2 cells either 

under the 35S or a DEX-inducible promoter induced a shortened G2 phase, a premature entry 

into mitosis and a smaller mitotic cell area. This was confirmed independently by other 

experiments in the Cardiff Laboratory (Lentz Grønlund, unpublished data). 

Prior to my project, Arath; WEE1 had been transformed into tobacco plants under a 

constitutive 35S promoter and a reciprocal transformation was carried out generating an 

Arabidopsis line expressing Nicta;WEE1. In the latter the tobacco version of WEE1 

(Nicta;WEE1) was under the control of an inducible promoter. These transgenic lines 

allow the possibility to test the effect of ectopic expression of Arath;WEE1 in tobacco and 

the ectopic expression of Nicta;WEE1 in Arabidopsis. Hence, the aim of the work reported 

in   this   chapter   was   to   analyse   cross-species   WEE1   expression   through   detailed 

measurement of rates of primary root elongation and lateral root production, and, at the 

cellular level, apical meristem size, cell number and cell length of epidermal cells within 

the meristem domain in both tobacco and Arabidopsis. 

 
 
 

5.2 Materials and methods 
 

 

5.2.1 Expression of Nicta;WEE1 in Arabidopsis 
 
Two transgenic Arabidopsis (Col-0) lines (lines 3 and 11) carrying the Nicta;WEE1 gene 

under a DEX inducible promoter (vector pTA7002; Aoyama and Chua 1997), had been 
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previously characterised to check for presence and expression of the transgene (Cardiff 

lab., unpublished results). Arabidopsis seeds were sown as described in chapter2 Section 

2.3 onto M&S medium (-DEX) or medium containing 30 µ M dexamethasone for induction 

of Nicta;WEE1. Two bottles were prepared each one containing 1l of M&S medium. After 

autoclaving, the bottles of medium were left to cool in a sterile laminar flow hood and then 

120 µ l of 100 mM dexamethasone (+DEX) were added. Primary root phenotype was 

assessed as described in chapter 2, Section 2.13. 

 
 
 

5.2.2 Expression of Arath; WEE1 in tobacco plants 
 
Nicotiana   tabacum   cv   Samsung   was   previously   transformed   using   a   leaf   disc 

transformation method with a construct in the pSPYNE 35S vector (Walter et al., 2004), 

carrying the Arabidopsis WEE1 gene (Arath;WEE1) under the 35s promoter fused to the C 

terminal portion of YFP and a gene conferring resistance to hygromycin (Anne Lentz 

Grønlund unpublished results). Hygromycin resistant calli were isolated and five 

independent transformants were recovered from the transformation previous to my project 

(lines NTArath;Wee1#1, NTArath;Wee1#2, NTArath;Wee1#7, NTArath;Wee1#8, NT- 

Arath;Wee1#9). Two of these lines were partially characterised by a student in the Cardiff 

Lab. (James Davies unpublished results). Seeds from a WT line and an empty vector 

transgenic line were also sown as controls. 

 
 
 

Seeds were sown into compost and grown in a greenhouse with 16 h light, 8 h dark and an 

average temperature of 4 oC). For seed collection, flowers were bagged before they opened 

and seed collected when seed pods were mature. 

 
 
 

All other methods are as described in the General Materials and Methods (Chapter 2). 
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5.3 Results 
 

 

To simplify the nomenclature of the transgenic lines, tobacco lines carrying Arath;WEE1 

are denoted NT-Arath;Wee1# 1,2,3 etc and Arabidopsis lines carrying Nicta;WEE1 are 

denoted AT-Nicta;Wee1# 1,2,3 etc. 

 
 
 

5.3.1 Selection of T1 transgenic tobacco lines transformed with Arath;WEE1 
 
Five transgenic lines were recovered from the tobacco transformation experiment 

undertaken before the start of this project. In two lines (lines NT-Arath;Wee1#2 and NT- 

Arath;Wee1#8) the presence of the transgene and its expression had already been verified 

in the T1 generation (derived from selfed T0 plants) (James Davies, Cardiff Lab). I tested 

for the expression of Arath;WEE1 in T1 lines NT-Arath;Wee1#1 ,NT-Arath;Wee1#7, and 

NT-Arath;Wee1#9, and verified expression in a T1 line of  NT-Arath;Wee1#8, confirming 

that the transgene was expressed in all five lines. Results from four of these lines are 

shown in Fig. 5.1. 
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Figure 5.1 RT-PCR with Arath;Wee1 forward and reverse primers to confirm expression of the transgene 

in T1 generation plants: (A) NT-Arath;Wee1#1 plants Lane: 1) positive control (cDNA from Arabidopsis), 2) 

plant 1, 3) plant 2, 4) plant 3, 5) plant 4, 6) plant 5, (B) NT-Arath;Wee1#9 plants: Lanes: 1). plant 1, 2) plant 

2, 3) plant 3, 4) plant 4, 5) plant 5,  6) plant 6  (C) NT-Arath;Wee1#7 Lanes: 1) plant 1, 2) plant 2, 3) plant 3, 
 

4) plant 4, 5) plant 5,  6) plant 6  (D) NT-Arath;Wee1#8: Lanes: 1) plant 1, 2) plant 2, 3) plant 3, 4) plant 4, 
 

5) plant 5, 6) plant 6 
 
 
 
 

T1 lines for each of the independent transgenic lines of NT-Arath;Wee1: lines #1, 2, 7, 8 

and 9 were selected from individuals expressing the transgene  for analysis of WEE1 

protein levels and root phenotype. 

 
 
 

5.3.2 WEE1 protein levels in the tobacco lines expressing Arath;WEE1 
 
Representative plants from each transgenic line were selected, and total proteins were 

extracted. These were separated by PAGE and used for Western blotting with the WEE1 

antibody (Fig. 5.2). Levels of proteins differed between the lines although the WEE1 protein 

amount in each of the transgenic genotypes was substantially lower than WT. 
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Figure 5.2 (A) Representative Western blot from duplicate experiments showing WEE1 protein levels of wild 

type, NT-Arath;Wee1#2, NT-Arath;Wee1#7, NT-Arath;Wee1#8 and NT-Arath;Wee1#9. Relative protein levels 

were determined by quantifying the intensity of the bands and expressing as a ratio to the WT level. (B) 

corresponding Coomassie stained gel as a loading control. 

 

 
 
 

5.3.3 Root phenotype in tobacco seedlings expressing Arath; WEE1 grown on Petri 

dishes 

Firstly I analyzed the root phenotype of tobacco seedlings expressing Arath;WEE1 by 

measuring primary root length, number of laterals, number of primordia, meristem length, 

number of epidermal cells in meristem, and cell length in the presence or absence of 

hydroxyurea. 

 
 
 

5.3.3.1 Effect of treatment with HU on primary root growth and production of lateral 

roots 

In tobacco transgenic lines NT-Arath;Wee1#2, NT-Arath;Wee1#8 and NT-Arath;Wee1#9 

plants, the primary root was significantly longer than WT (P< 0.01) (Fig 5.3A, Appendix 

A). However, in the absence of HU treatment, NT-Arath;Wee1#7 did not show any 

significant  difference  in  primary  root  length  compared  to  WT  (P>0.05)  (Fig  5.3A 

Appendix  A).  In  all  of  the  transgenic  lines  tested  the  primary root  length  decreased 
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dramatically with increasing amounts of HU, while this decrease was more gradual for WT 

(Fig. 5.3A, Table 5.1). 

The mean number of lateral roots and primordia in all the transgenic lines tested except 

tobacco NT-Arath;Wee1#7 plants was significantly greater than WT in the –HU treatment 

(Fig. 5.3B, Table 5.2). The mean number of lateral roots and primordia decreased with 

increasing amounts of HU in all lines including WT. However, the decrease in the 

transgenic line +1mM HU in NT-Arath;Wee1 lines was > 2-fold by only 1.4 fold in wild 

type. Hence not withstanding the higher levels of WEE1 protein in all NT-Arath;Wee1#8, 

the transformed lines were hypersensitive to 1 mM HU compared with the untreated 

control. Thereafter there was a more gradated decrease in root elongation in the 2 and 5 

mM HU compared with 1 mM HU treatments (Fig 5.3A). 

I then examined whether primary root elongation was coordinated with number of laterals 

that formed ± HU (Fig 5.3C). In fact other than lines 2 and 9, + 5mM HU, the rates were 

not greatly significantly different either between genotypes or within a genotype± HU 

treatment. All datum points in Fig. 5.3C were then assessed by regression analysis and 

they all conformed to a straight line thereby providing a rate of 0.114 LRP per mm of 

primary for all genotypes ± 1 mM HU. Thus in 21 day old seedlings of all genotypes ± 

1mM HU, the number of primordia+laterals and the length of the primary root do indeed 

alter in a highly coordinated way. For example, 21 day old NT-Arath;WEE1#7-HU formed 

more primordia and showed a longer primary root compared with NT-Arath;WEE1#7+HU 

but ± 1 mM HU they both produced lrp at the same rate per mm of primary. 
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Figure 5.3  (A) Primary root growth in relation to HU concentration (B) Total number of lateral roots and 

primordia (C) the relationship between mean primary root length and mean no. of lateral roots   in the 

genotypes: wild type (WT), and tobacco line NT-Arath;Wee1#2, NT-Arath;Wee1#7, NT-Arath;Wee1#8 and 

NT-Arath;Wee1#9 (expressing Arath;WEE1), in 21 day old tobacco plants grown in 16 h light and 8 h dark 

at 21°C ± 1 mM HU (1HU). ( S.E.) n =20. The regression for all datum points was y=0.114x + 2.29 P 

=0.026. A regression excluding the outlier, (NT-Arath;wee1 #7+1 HU) was 0.190x-0.30 P < 0.001 
 

 
Table 5.1 (a) Levels of significant between primary root length of each transgenic line, and WT, all grown 

on medium without adding HU (b) Level of significant differences in primary root length within genotype, 

for WT and each the transgenic lines ± 1, 2, or 5 mM compared with WT± 1, 2, or 5. 
 

 

 WT NT-Arath;Wee1#2 NT-Arath;Wee1#7 NT-Arath;Wee1#8 NT-Arath;Wee1#9 
WT - *** NS *** *** 

 
 
 Level of significant 

difference + 1mM 
HU 

Level of significant 
difference + 2mM 
HU 

Level of significant 
difference + 5mM 
HU 

% change ±  1mM 
HU compared to WT 

 primary root length primary root length primary root length primary root length 
WT * * * * 
NT-Arath;Wee1#2 *** *** *** *** 
NT-Arath;Wee1#7 *** *** * *** 
NT-Arath;Wee1#8 *** *** NS *** 
NT-Arath;Wee1#9 *** *** * *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
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Table 5.2 (a) Levels of significant between total number of lateral roots and primordia of each transgenic 
line, and WT, all grown on medium without adding HU (b) Level of significant differences in total number 
of lateral roots and primordia within genotype, for WT and each the transgenic lines ± 1, 2, or 5 mM 
compared with WT± 1, 2, or 5. 

 
 WT NT-Arath;Wee1#2 NT-Arath;Wee1#7 NT-Arath;Wee1#8 NT-Arath;Wee1#9 

WT - *** NS *** *** 
 
 

 Level of significant 
difference + 1mM 
HU 

Level of significant 
difference + 2mM 
HU 

Level of significant 
difference + 5mM 
HU 

% change ±  1mM 
HU compared to 
WT 

 Total Number of 
lateral roots and 
primordia 

Total Number of 
lateral roots and 
primordia 

Total Number of 
lateral roots and 
primordia 

Total Number of 
lateral roots and 
primordia 

WT * * * * 
NT-Arath;Wee1#2 ** ** NS * 
NT-Arath;Wee1#7 *** ** * *** 
NT-Arath;Wee1#8 * ** * *** 
NT-Arath;Wee1#9 ** ** * *** 
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 

 

 
 

Table 5.3 Rate of lateral root production mm primary root-1  in the different genotypes of 
21 days old tobacco seedlings obtained by dividing the x by the y coordinates for each 
point plotted in Fig. 5.3. 

 Rate     of     lateral     root 
production   mm   primary 
root-1 

  

 -HU 1mM 2mM 5mM 
WT 0.18 0.16 0.19 0.17 
NT-Arath;Wee1#2 0.22 0.23 0.18 0.29 
NT-Arath;Wee1#7 0.19 0.25 0.20 0.23 
NT-Arath;Wee1#8 0.16 0.12 0.13 0.12 
NT-Arath;Wee1#9 0.23 0.19 0.22 0.27 

 
 
 
 

 
5.3.3.2 Effect of treatment with HU on meristem length 

 
 

The   meristem   length   of   tobacco   NT-Arath;Wee1#   2,   NT-Arath;Wee1#7,   NT- 

Arath;Wee1#8, NT-Arath;Wee1#9 were compared (Fig. 5.5). 
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Figure 5.4 Mean (± SE.) length of the meristem in 21 day old seedlings of various genotypes of tobacco 

lines: WT, NT-Arath;Wee1#2, NT-Arath;Wee1#7, NT-Arath;Wee1#8 and NT-Arath;Wee1#9 (expressing 

Arath;WEE1) grown in daily cycles of 16 h light and 8 h dark at 21 ˚C ± either 1, 2 or 5 mM hydroxyurea 

(HU), n =20 

 
 
 

Table 5.4 (a) Levels of significant between meristem length of each transgenic line, and WT, all grown on 
medium without adding HU (b) Level of significant differences in meristem length within genotype, for WT 
and each the transgenic lines ± 1, 2, or 5 mM compared with WT± 1, 2, or 5. 

 
 WT NT-Arath;Wee1#2 NT-Arath;Wee1#7 NT-Arath;Wee1#8 NT-Arath;Wee1#9 

WT - * ** *** *** 
 
 

 Level of significant 
difference + 1mM 
HU 

Level of significant 
difference + 2mM 
HU 

Level of significant 
difference + 5mM 
HU 

% change ±  1mM 
HU compared to 
WT 

 Meristem length Meristem length Meristem length Meristem length 
WT * * * NS 
NT-Arath;Wee1#2 * * *** ** 
NT-Arath;Wee1#7 *** *** *** *** 
NT-Arath;Wee1#8 * * *** ** 
NT-Arath;Wee1#9 ** *** *** *** 
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
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In the controls, the meristems of NT-Arath;Wee1#7 and NT-Arath;Wee1#9 were 

significantly  longer  than  WT  which  did  not  alter  significantly  in  the  1-5  mM  HU 

treatments (Fig. 5.4, Table 5.4). Treatment with 1mM HU caused only a 1% difference in 

meristem length in the WT. However, the decrease in the transgenic lines with 1, 2 or 5 

mM HU was significantly much  greater:  Indicating that  all the transgenic lines were 

hypersensitive to HU in their reduction of meristem length. 

 
 
 
 

5.3.3.3 Effect of treatment with HU on number of cells along a file of the epidermal 

region in the root meristem 

In the absence of HU, the mean of number of cells in the epidermal file of the RAM, was 

significantly higher in all the NT-Arath;Wee1lines compared with WT. (P< 0.01) (Fig. 5.5, 

Table 5.5). Hence the increased size of the meristem in all the NT-Arath; wee1 lines 

compared to WT ( Fig 5.41, Table 5.4) was positively related to epidermal cell number. 

In WT the mean number of cells in the epidermal lineage decreased  with increasing 

amounts of HU and was significantly different ± 1 mM HU, which again fits with the WT 

meristem length data while in the mutants cell number did not alter significantly ± 1, 2 or 5 

mM HU. 
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Figure 5.5 The relationship between mean ( S.E.) cell number along a file of epidermal region in the 
root apical meristem in different genotypes of tobacco: wild type (WT) , and transgenic tobacco lines NT- 
Arath;Wee1#2, NT-Arath;Wee1#7,  NT-Arath;Wee1#8 and NT-Arath;Wee1#9 (expressing Arath;WEE1) in 
21 day old tobacco plants grown in 16 h light and 8 h dark at 21°C. n =20 

 
 
 
 

Table 5.5 (a) Levels of significant between cell number of each transgenic line, and WT, all grown on 
medium without adding HU (b) Level of significant differences in cell number within genotype, for WT and 
each the transgenic lines ± 1, 2, or 5 mM compared with WT± 1, 2, or 5. 

 
 WT NT-Arath;Wee1#2 NT-Arath;Wee1#7 NT-Arath;Wee1#8 NT-Arath;Wee1#9 

WT - *** *** *** *** 
 
 

 Level of significant 
difference + 1mM 
HU 

Level of significant 
difference + 2mM 
HU 

Level of significant 
difference + 5mM 
HU 

% change ±  1mM 
HU compared to 
WT 

 Cell number Cell number Cell number Cell number 
WT * * * * 
NT-Arath;Wee1#2 NS NS * * 
NT-Arath;Wee1#7 NS NS NS NS 
NT-Arath;Wee1#8 NS NS NS NS 
NT-Arath;Wee1#9 NS NS NS NS 
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
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5.3.3.4 Effect of treatment with HU on epidermal cell length along a file of the root 

apical meristem 

The increased meristem cell number and meristem size in 0 mM HU in the transgenic lines 

compared with WT data would suggest that the cells would be smaller in the RAM of the 

mutant genotypes compared with WT, at all HU concentrations. This hypothesis was tested 

by measuring epidermal cell length in each genotype (Fig. 5.7). 

In all the transgenic lines tested, the mean cell size was indeed smaller in the transgenic 

lines  compared  with  WT–HU,  and  the  buffering  of  cell  number  at  increasing  HU 

molarities was consistent with cell length not altering on 1-5 mM HU. However in WT, the 

mean epidermal cell length increased with increasing amounts of HU (Fig. 5.6, Table 5.6). 

 
 
Figure 5.6 The relationship between mean ( S.E.) cell length of a file of epidermal cells from the root 

apical meristem in different genotypes of tobacco: wild  type (WT), and transgenic tobacco lines NT- 

Arath;Wee1#2, NT-Arath;Wee1#7, NT-Arath;Wee1#8 and NT-tArath;Wee1#9 (expressing Arath;WEE1) in 

21 day old tobacco plants grown in 16 h light and 8 h dark at 21°C. n =20 
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Table 5.6 (a) Levels of significant between cell length in epidermis of each transgenic line, and WT, all 
grown on medium without adding HU (b) Level of significant differences in cell length in epidermis within 
genotype, for WT and each the transgenic lines ± 1, 2, or 5 mM compared with WT± 1, 2, or 5. 

 
 WT NT-Arath;Wee1#2 NT-Arath;Wee1#7 NT-Arath;Wee1#8 NT-Arath;Wee1#9 

WT - *** *** *** *** 
 
 

 Level of significant 
difference + 1mM 
HU 

Level of significant 
difference + 2mM 
HU 

Level of significant 
difference + 5mM 
HU 

% change ±  1mM 
HU compared to 
WT 

 Cell length Cell length Cell length Cell length 
WT * * * ** 
NT-Arath;Wee1#2 NS NS NS NS 
NT-Arath;Wee1#7 NS NS NS NS 
NT-Arath;Wee1#8 NS NS NS NS 
NT-Arath;Wee1#9 NS NS NS NS 
Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 

 

 
 

5.3.3.5 Effects of treatment with zeocin on primary root growth and production of 

lateral roots 

The effects of zeocin on primary root length in the mutants (Fig 5.7 A) were remarkably 

similar to those observed for HU treatment in all of the transgenic lines tested. Notably 

compared with 0 µ M, there was a hypersensitive response in primary root length at 5 µ M 

in all transgenic lines (Table 5.7). However thereafter, primary root length decreased in a 

gradated manner. In the absence of zeocin primary root length was significantly greater 

than WT in lines NT-Arath;wee1#2, 7, and 9 while there was no difference in line 8. 

The mean number of lateral roots and primordia in all the NT-Arath;Wee1 lines except #8 

were also significantly greater than WT in the absence of zeocin confirming the control 

data obtained in the HU treatment experiment (Fig 5.8B, Fig. 5.3B). In response to > 10 

µ M zeocin, the mean number of lateral roots for each genotype wasremarkably similar to 

those of all genotypes treated with HU. However, and unlike WT, 5 µ M zeocin induced a 

hypersensitive response in all transgenic lines. At >10 µ M zeocin, number of primodia/ 

lateral roots in each of the transgenic lines were either fluctuating, or, slowly decreasing. 
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As mentioned above, in WT the data on number of lateral took the form of a gradated 

response from 5 to 50 M zeocin with no indication of a hypersensitive response. 
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Figure 5.7 (a) Primary root growth in relation to zeocin concentration (b) The mean ( S.E.)number of 
total number of lateral root and primordia (c) The relationship between primary root length and total number 
of lateral roots and primordia in 14 day old tobacco NT-Arath;Wee1#2 , NT-Arath;Wee1#7, NT- 
Arath;Wee1#8, NT-Arath;Wee1#9 expressing Arath;WEE1 compared to wild type (WT) ± 5 µ M zeocin, . 
±SE, n=20 
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Table 5.7 Level of significant differences in primary root length within genotype, for WT and each the 
transgenic lines ± 5, 10, 20, or 50 µ M compared with WT± 5, 10, 20, or 50 µ M. 

 
 
 Level of 

significant 
difference + 
5 µM zeocin 

Level of 
significant 
difference + 
10 µM zeocin 

Level of 
significant 
difference + 
20 µM zeocin 

Level of 
significant 
difference + 
50 µM zeocin 

% change ±  5 µM 
zeocin compared 
to WT 

 primary 
root length 

primary root 
length 

primary root 
length 

primary root 
length 

primary root 
length 

WT * * ** *** ** 
NT- 
Arath;Wee1#2 

*** *** *** *** *** 

NT- 
Arath;Wee1#7 

*** *** *** *** *** 

NT- 
Arath;Wee1#8 

*** *** *** *** *** 

NT- 
Arath;Wee1#9 

*** *** *** *** *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 

 
 
 
 

Table 5.8 Level of significant differences in total number of lateral roots and primordia within genotype, 
for WT and each the transgenic lines ± 1, 2, or 5 mM compared with WT± 1, 2, or 5. 

 
 
 Level of 

significant 
difference 
+ 5 µM 
zeocin 

Level of 
significant 
difference + 
10 µM 
zeocin 

Level of 
significant 
difference + 
20 µM zeocin 

Level of 
significant 
difference + 
50 µM zeocin 

% change ±  5 µM 
zeocin compared 
to WT 

 Total 
number of 
lateral 
roots and 
primordia 

Total 
number of 
lateral roots 
and 
primordia 

Total 
number of 
lateral roots 
and 
primordia 

Total number 
of lateral 
roots and 
primordia 

Total number of 
lateral roots and 
primordia 

WT * * ** * ** 
NT-Arath;Wee1#2 *** *** *** *** *** 
NT-Arath;Wee1#7 *** *** *** *** *** 
NT-Arath;Wee1#8 *** *** *** *** *** 
NT-Arath;Wee1#9 *** *** *** *** *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 

 
 
 
 
 
 

All  data  for  each  genotype  ±zeocin  were  then  subjected  to  a  regression  analysis  to 

determine the extent with which the data were linked with growth as opposed to 

development.   The   regression   equation   for   all   genotypes   x   zeocin   treatments   is 
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y=0.18x+0.23, n=24 P <0.001. Hence all data fall on a straight line resulting in a mean rate 

of lrp formation per mm of primary of 0.18. As with the HU data, these data are consistent 

with zeocin affecting growth of the root system. Outliers above the linear regression would 

have indicated a development effect (e.g. more lrp at the same root length); there were 

none in the current data set. Thus in the ± zeocin treatments, the longer the primary root 

length, the more laterals that form in a proportionate manner. 

 

 
 

Table 5.9 Rate of lateral root production mm primary root-1  in the different genotypes of 
21 days old tobacco seedlings obtained by dividing the x by the y coordinates for each 
point plotted in Fig. 5.8. 

 Rate of lateral root production mm primary root-1 

 -zeocin 5µ M 
zeocin 

10µ M 
zeocin 

20µ M 
zeocin 

50µ M 
zeocin 

WT 0.18 0.21 0.2 0.17 0.13 
NT-Arath;Wee1#2 0.21 0.17 0.18 0.22 0.28 
NT-Arath;Wee1#7 0.18 0.14 0.2 0.16 0.33 
NT-Arath;Wee1#8 0.16 0.16 0.12 0.08 0.09 
NT-Arath;Wee1#9 0.20 0.25 0.20 0.25 0.50 

 

 
 

Rate of lateral root production per mm of primary root without zeocin was remarkably 

constant for all genotypes and changed very little with increasing zeocin concentrations ( 

Table 5.9). 

 
 
 

5.3.3.6 Effects of treatment with zeocin on root meristem length 
 

Effects of zeocin on root meristem length ( Fig 5.8, Table 5.10) were very similar to those 

observed in the HU treatments (Fig. 5.4): in all of the transgenic lines tested ± 5 µ M zeocin 

there was a significant and increasing reduction of meristem length with increasing zeocin 

treatment. In contrast WT meristem length remained almost unaffected (Fig. 5.8, Table 

5.10). 
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Figure 5.8  Mean (± SE.) length of the primary root apical meristem in 14 days old seedlings of various 

 
genotypes   of   tobacco   lines:   NT-Arath;Wee1#2,   NT-Arath;Wee1#7,   NT-Arath;Wee1#8   and   NT- 

Arath;Wee1#9 (expressing Arath;WEE1) grown in daily cycles of 16 h light and 8 h dark at 21 ˚C ±, 5, 10, 

20 or 50 µ M zeocin. n=20 
 

 
 
 

Table 5.10 Level of significant differences for root apical meristem in different genotype, of tobacco 
plants expressing Arath;WEE1 WT± 5, 10, 20, or 50 µ M. 

 
 
 Level of 

significant 
difference + 
5 µM zeocin 

Level of 
significant 
difference 
+ 10 µM 
zeocin 

Level of 
significant 
difference 
+ 20 µM 
zeocin 

Level of 
significant 
difference + 
50 µM zeocin 

% change ±  5 µM 
zeocin compared 
to WT 

 Meristem 
length 

Meristem 
length 

Meristem 
length 

Meristem 
length 

Meristem length 

WT NS NS NS NS NS 
NT-Arath;Wee1#2 * *** *** *** *** 
NT-Arath;Wee1#7 *** *** *** *** *** 
NT-Arath;Wee1#8 *** *** *** *** *** 
NT-Arath;Wee1#9 *** *** *** *** *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
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5.3.3.7  Effects  of  treatment  with  zeocin  on  number  of  cells  along  a  file  of  the 

epidermal region in the root meristem 

The effects of zeocin on the number of cells along a file of the epidermal region in the root 

meristem were very similar to those of the HU treatments (see Fig. 5.5): there was a 

significant decrease in the number of cells in WT, whereas there were no significant 

changes in the transgenic lines (Fig. 5.9, Table 5.11). As also seen in the HU experiment, 

the number of cells was much greater in all four transgenic lines compared to WT in the 

absence of zeocin (Fig. 5.9). 
 

 
 

 
Figure 5.9 Mean (± SE.) cell number of root apical meristem in 14 days old seedlings of various 

genotypes of Tobacco lines NtArath;Wee1#2, NtArath;Wee1#7,   NtArath;Wee1#8 and NtArath;Wee1#9 
(expressing Arath;WEE1)grown in daily cycles of 16 h light and 8 h dark at 21 ˚C ± either 0, 5, 10, 20 or 50 
µ M zeocin 
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Table 5.11 Level of significant differences for epidermal cell length in different genotype, of tobacco 
plants expressing Arath;WEE1 WT± 5, 10, 20, or 50 µ M. 

 
 Level of 

significant 
difference + 
5 µM zeocin 

Level of 
significant 
difference 
+ 10 µM 
zeocin 

Level of 
significant 
difference + 
20 µM zeocin 

Level of 
significant 
difference + 
50 µM zeocin 

% change ±  5 µM 
zeocin compared 
to WT 

 Cell 
number 

Cell 
number 

Cell number Cell number Cell number 

WT * * * * * 
NT-Arath;Wee1#2 NS NS NS NS NS 
NT-Arath;Wee1#7 NS NS NS NS NS 
NT-Arath;Wee1#8 NS NS NS NS NS 
NT-Arath;Wee1#9 NS NS NS NS NS 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 
 
 
 

5.3.3.8 Effects of treatment with zeocin on  the length of cells along a file of the 

epidermal region in the root meristem 

Cell length in the transgenic lines was dramatically reduced compared to WT as also found 

in the HU experiment. Treatment with increasing levels of zeocin resulted in a progressive 

reduction in cell size in all four transgenic lines, whereas the opposite effect was seen in 

WT (Fig. 5.10). 
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Figure 5.10   The relationship between mean ( S.E.) cell length of root apical meristem in 14 days old 
seedlings in different genotypes of tobacco: WT, line NT-Arath;Wee1#2, NT-Arath;Wee1#7,   NT- 
Arath;Wee1#8 and NT-Arath;Wee1#9 (expressing Arath;WEE1) grown in daily cycles of 16 h light and 8 h 
dark at 21 ̊ C ± eithe r 0, 5, 10, 20 or 50 µ M zeocin ± 5, 10, 20, and 50 µ M zeocin 

 

 
 
 
 

Table 5.12 Level of significant differences for root apical meristem in different genotype, of tobacco 
plants expressing Arath;Wee1 WT± 5, 10, 20, or 50 µ M zeocin. 

 
 Level of 

significant 
difference + 
5 µM zeocin 

Level of 
significant 
difference 
+ 10 µM 
zeocin 

Level of 
significant 
difference + 
20 µM zeocin 

Level of 
significant 
difference + 
50 µM zeocin 

% change ±  5 µM 
zeocin compared 
to WT 

 Cell length Cell length Cell length Cell length Cell length 
WT ** ** ** ** ** 
NT-Arath;Wee1#2 * * * * * 
NT-Arath;Wee1#7 * * * * * 
NT-Arath;Wee1#8 * * * * * 
NT-Arath;Wee1#9 * * * * * 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
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5.3.4 Arabidopsis seedlings expressing Nicta; WEE1 
 

Two lines expressing Nicta;WEE1 were selected for further analysis. These are denoted 

AT-Nicta;Wee1#3 and AT-Nicta;Wee1#11. In both lines the Nicta;WEE1 was under 

control of a DEX inducible promoter, hence +DEX were compared to –DEX treatments 

and to WT. WEE1 protein levels (-DEX) were determined through western blotting and 

probing with a WEE1 antibody (Fig. 5.11). Both transgenic lines showed significant 

increases in the level of WEE1 protein compared with WT. Hence these data are 

completely opposite to those of genotypes in which the Arabidopsis WEE1 was expressed 

in tobacco. 
 
 
 
 

 
 

 

%100                             %126        % 117 
 
 

 
 

 

Figure 5.11 WEE1 protein levels of wild type, AT-Nicta;Wee1#3 and AT-Nicta;Wee1#11 WEE1. Protein 
levels were determined by western blotting of samples; the intensity of the bands were quantified and expressed 
as a ratio of the control. Below the Western blot is the corresponding Coomassie stain loading control. 
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5.3.4.1 Effect of Nicta;WEE1 expression on primary root length and on the 
production of lateral roots and primordia 

 
 

Expression of Nicta;WEE1 in Arabidopsis induced by DEX resulted in significantly 

longer primary roots (P< 0.01) compared to both –DEX and the wild type in both 

transgenic lines. The DEX treatment did not affect wild type primary root length (Fig. 

5.12, Table 5.13). 
 
 
 
 
 

Both primary root length and total number of lateral roots and primordia in AT- 

Nicta;Wee1#3 and AT-Nicta;Wee1#11 under DEX induction were significantly greater 

(P<0.01) compared with WT or +DEX. However, primary root length and total number of 

lateral roots and primordia in WT was not significantly different ± DEX (Figure 5.11, 

Table 5.14), nor was there a significant difference between WT and transgenic lines – 

DEX in either character. 

 
Figure 5.12 The mean (± SE) number of lateral roots and lateral root primordia as a function of the mean (± 
SE) primary root length for AT-Nicta;Wee1#3, and AT-Nicta;Wee1#11(expressing Nicta;WEE1) with DEX and 
without DEX compared to wild type (n =20), in 10 days old Arabidopsis seedlings 
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Table 5.13 (a) Level of significance between primary root length of each transgenic line, 
and WT, all grown on medium without adding DEX ( b) Level of significant differences in 
primary root length within genotype ± DEX 

 
 WT AT-Nicta;Wee1#3 AT-Nicta;Wee1#11 

WT - ** *** 
 
 
 -DEX +DEX Level of significant 

difference 
 primary root length primary root length primary root length 

WT 31.4 32.98 NS 
AT-Nicta;Wee1#3 28.35 54.43 *** 
AT-Nicta;Wee1#11 29.58 61.98 *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 

 
 

Table 5.14 (a) Level of significance between total number of lateral roots and primordia 
of each transgenic line, and WT, all grown on medium without adding DEX ( b) Level of 
significant differences in total number of lateral roots and primordia   within genotype ± 
DEX 

 
 WT AT-Nicta;Wee1#3 AT-Nicta;Wee1#11 

WT - *** *** 
 
 
 -DEX +DEX Level of significant 

difference 
 Total number of 

lateral roots and 
primordia 

Total number of 
lateral roots and 
primordia 

Total number of 
lateral roots and 
primordia 

WT 5.7 5.5 NS 
AT-Nicta;Wee1#3 5.6 11.73 *** 
AT-Nicta;Wee1#11 5.5 13.89 *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 
 
 
 

Table 5.15 Rate of lateral root production mm primary root-1 in the different genotypes of 
21 days old tobacco seedlings obtained by dividing the x by the y coordinates for each 
point plotted in Fig. 5.13. 
 Rate   of   lateral   root   production   mm 

primary root-1 
 -DEX +DEX 
WT 0.17 0.18 
AT-Nicta;Wee1#3 0.16 0.21 
AT-Nicta;Wee1#11 0.17 0.22 

 
The induction of tobacco WEE1 in AT resulted in very little change in the rate of lateral root 

production per mm of primary root (Table 5.15). Hence it can be concluded that the induction 
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of tobacco WEE1 in AT results in an increase in the growth of the entire root system where 

the number of laterals that formed were coordinated with respect to primary root length. Once 

again, hypothesis that the data are linked to changes in morphogenesis can be rejected. 

 
 
 

5.3.4.2 Effect of Nicta;WEE1 expression on cell number in a file of epidermal cells of the 
 
RAM 

Cell number  was not affected by DEX treatment in WT , while in  the transgenic lines was 

significantly greater than wild type under DEX induction (P<0.01) ( Table 5.16, Fig 5.13). 
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Figure 5. 13 The relationship between mean ( S.E.) cell number in epidermis of RAM in wild type (WT) , 
AT-Nicta;Wee1#3, and AT-Nicta;Wee1#11 with or without DEX in 10 day old Arabidopsis plants transformed 
with Nicta;WEE1 grown in 16 h light and 8 h dark at 21°C. n =20. 



141 

 

 

 

 
 
 
 

Table 5.16  (a) Level of significance between total cell number in file of RAM epidermis 
of each transgenic line, and WT, all grown on medium without adding DEX ( b) Level of 
significant differences in total cell number in file of RAM epidermis within genotype ± 
DEX 

 
 WT AT-Nicta;Wee1#3 AT-Nicta;Wee1#11 

WT - *** *** 
 
 
 -DEX +DEX Level of significant 

difference 
 Total cell 

number in file 
of RAM 
epidermis 

Total cell number in 
file of RAM 
epidermis 

Total cell number in 
file of RAM 
epidermis 

WT 29.65 29.27 NS 
AT-Nicta;Wee1#3 28.35 45.96 *** 
AT-Nicta;Wee1#11 29.58 44.85 *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 
 

5.3.4.3 Effect of Nicta;WEE1 expression on cell length in a file of epidermal cells of 

the RAM 

In the absence of DEX Cell length of RAM epidermal cells in the transgenic lines WT was 

not significantly different to WT cell length reduced was less than wild type (P< 0.01) 

after treating with DEX . In WT, however cell size was unaffected by DEX treatment (Fig 

5.14, Table 5.17). 
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Figure 5.14 .The relationship between mean ( S.E.) cell length in epidermis in different genotypes of: 
wild type (WT) , AT-Nicta;Wee1#3 and AT-Nicta;Wee1#11 with and without DEX treatment in 10 day old 
Arabidopsis plants transformed with Nicta;WEE1 grown in 16 h light and 8 h dark at 21°C. n =20. 

 
 
 
 

Table 5.17 (a) Level of significance for RAM epidermal cell length between each 
transgenic  line,  and  WT,  all  grown  on  medium  without  adding  DEX  (  b)  Level  of 
significant differences for RAM epidermal cell length  within genotype ± DEX 

 
 WT AT-Nicta;Wee1#3 AT-Nicta;Wee1#11 

WT - *** *** 
 
 
 -DEX +DEX Level of significant 

difference 
 RAM epidermal 

cell length 
RAM 
epidermal cell 
length 

RAM epidermal 
cell length 

WT 12.4 12.5 NS 
AT-Nicta;Wee1#3 12.7 7.25 *** 
AT-Nicta;Wee1#11 12.35 6.05 *** 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 

 
 

5.3.4.4 Effect of Nicta;WEE1 expression on root meristem length 
 

In the absence of DEX meristem length was not significantly different between genotypes 

(Fig 5.15, Table 5.18). Meristem length was also unaffected in WT +DEX compared to – 

DEX, also in both transgenic lines treatment with DEX didn’t resulted in a significant 

change in meristem length (Fig. 5.15). 
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Figure 5.15 The relationship between mean ( S.E.) meristem length  in epidermis of RAM in wild type 
(WT) , AT-Nicta;Wee1#3, and AT-Nicta;Wee1#11 with or without DEX in 10 day old Arabidopsis plants 
transformed with Nicta;WEE1 grown in 16 h light and 8 h dark at 21°C. n =20. 

 

 
 
 
 
 

Table 5.18 (a) Level of significance between root meristem length   of each transgenic 
line, and WT, all grown on medium without adding DEX ( b) Level of significant 
differences root meristem length within genotype ± DEX 

 
 WT AT-Nicta;Wee1#3 AT-Nicta;Wee1#11 

WT - *** *** 
 
 
 -DEX +DEX Level of significant 

difference 
 Root meristem length Root meristem length Root meristem length 

WT 368 367 NS 
AT-Nicta;Wee1#3 360 365 NS 
AT-Nicta;Wee1#11 365 360 NS 

Key. *** < 0.001, ** = 0.02-0.001 P, * = 0.02-0.05 P, NS >0.05 
 
 
 
 

 
5.3.4.5 Effect of Nicta;WEE1 expression on the proportion of cells at different stages 

in the cell cycle 

 

Microdensitometry was used to assess the proportion of cells in different stages of the cell 

cycle in the different Arabidopsis genotypes (Fig. 5.16). In the absence of DEX induction, 
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there was no difference in the relative proportions of cells in M, G1, S, G2 between AT- 

Nicta;Wee1#3 and AT-Nicta;Wee1#11 compared to WT . However in both transgenic 

lines +DEX, a doubling of the % cells in M-phase (from 8 to 16) was obtained when 

compared with WT+DEX. If the hypothesis is that the tobacco WEE1 perturbed the host 

WEE1 (at RNA, protein or activity levels) then doubling of the % cells in M phase might 

be because a functional WEE1 is absent at the G2/M transition.  However this hypothesis 

can only be fully tested by data on the duration of each component phase of the cell cycle 

± DEX. 
 

 

 
 
 

Figure 5.16 Percentage frequency of cells in  G1, S, G2 and mitosis in WT± DEX, AT-Nicta;Wee1#3 ± 
 

DEX, and AT-Nicta;Wee1#11 ± DEX, n=14 
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5.4 Discussion 
 

 

In the data reported in this chapter, effects of expression of Arath;WEE1 in tobacco were 

compared to the effects of expression of Nicta;WEE1 in Arabidopsis. 

Expression of Arath;WEE1 in tobacco was analysed first to establish whether it affected 

levels of WEE1 protein. Unexpectedly it seemed that, at least in all the transgenic lines tested, 

there was a reduction in levels of total WEE1 protein. The antibody used recognises both the 

tobacco and Arabidopsis WEE1 protein (Lentz Grønlund et al., 2009) hence the results here 

are taken to represent the total pool of WEE1 protein. Next effects on root phenotype and 

cellular effects on the RAM were investigated. Since Arabidopsis wee1-1 mutants are known 

to be hypersensitive to DNA replication disrupters such as HU (De Schutter et al., 2007), the 

effect of this chemical and also the DNA damaging agent, zeocin was tested on the tobacco 

transgenic lines. My hypothesis was that since WEE1 protein appears to be reduced by 

expression of Arath; WEE1 in tobacco, the effects on phenotype and response to the DNA 

replication/ DNA damage checkpoints might be similar to that seen in Arabidopsis mutants 

that lack a functional WEE1. This would also fit with previous work in the Cardiff lab. 

(Siciliano, 2006) showing an anomalous effect of Arath; WEE1 in tobacco BY2 cell cultures. 

As predicted by my hypothesis, both primary root length and production of lateral roots and 

primordia were increased in the transgenic tobacco lines. Although De Schutter et al. (2007) 

did not report this effect in the wee1-1 mutant, subsequent experiments in the Cardiff lab. 

(Lentz Grønlund, 2007) have shown that wee1-1 mutants do share this root phenotype. This 

would be consistent with a role for WEE1 as a negative regulator of entry into mitosis in the 

normal cell cycle: a reduction in WEE1 might be expected to enable cells to enter mitosis 

prematurely and hence accelerate root growth and production of lateral roots. 

The number of laterals per mm of primary root for each genotype ±HU are presented in Table 
 
5.3. Both within and between treatments, the magnitude of increase/decrease in the rate of 
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lateral root production, was remarkably similar for all genotypes. Indeed the largest difference 

in rate of root production for these genotypes (1.7 fold increase) occurred in the ± 5mM 

treatment, (lines #2 and #9). Real differences in rates would be expected to be at least 2-fold. 

Hence, the differences found between genotypes and within genotype, presented in Fig. 5.3, 

can be attributed to growth and not to development. For example in NT-Arath;Wee1 #7, #9 

#8, the root system was growing significantly faster compared with WT. However, in all 

transgenic lines, growth of the root system was substantially faster -HU compared with + HU, 

within genotype. This was particularly so for NT-Arath;Wee1#7 and # 9, which were 

particularly hypersensitive to HU. Other results in the Cardiff lab, are consistent with over- 

expression of WEE1 leading to a reduced number of lateral roots and a decrease in root 

length. Hence it possible to conclude that in NT-Arath;Wee1 # 7 and 9, the ectopic expression 

of the Arath;WEE1 in a tobacco genetic background –HU allowed faster growth of the root 

system than WT rather than a developmental effect. The latter would have been detected by a 

significant increase in the rate of lateral root formation in the transgenic lines. In other words 

it seems highly likely that these lines are, in effect WEE1 knock downs. Note that the lowest 

amounts of total WEE1 protein were also recorded in lines 7 and 9. So it seems highly likely 

that endogenous WEE1 transcription was perturbed by the expression of the alien WEE1. 

Thus so both of these genotypes, a lack in functional WEE1 (either from the endogenous or 

exogenous source of WEE1), is consistent with the idea that native WEE1 is a suppressor of 

growth, but its removal enabled substantial increases in growth compared with WT. Because 

protein levels were substantially reduced (see Fig. 5.2) it suggests an inhibitory effect of the 

alien Arabidopsis WEE1 at the transcriptional level such that neither Arabidopsis nor tobacco 

WEE1 expression led to wild type levels of WEE1 protein. However it is also possible that 

the expression of Arabidopsis WEE1 interfered with tobacco WEE1 at the translational level. 
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If so, the effect of Arath;WEE1 in tobacco would not be dissimilar to the action of an RNAi 

or an antisense version of WEE1. 

The effects of both HU and zeocin on primary root growth and production of lateral roots was 

consistent with a hypersensitivity of the transgenic lines to these chemicals. This therefore 

confirms my hypothesis that the effect of expression of Arath;WEE1 in tobacco is eliciting a 

down-regulation of WEE1 function, in a similar way to the insertional mutant in Arabidopsis. 

The cell size phenotype is also in agreement with the results of previous studies of over- 

expression of Arath;WEE1 in BY-2 cells (Siciliano, 2006). As previously mentioned, the 

Wee1 protein is a negative regulator of cell division in S. pombe by delaying entry of cells 

into mitosis (Fantes and Nurse, 1977). In general, knock out or deletion of Wee1 function 

leads to a premature entry of cells into mitosis resulting in a small cell size, whereas over- 

expression of Wee1 has the opposite effect leading to a large cell phenotype in fission yeast, 

tobacco and tomato (Russell and Nurse, 1987; Sun et al., 1999; Walter et al., 2000; Sorrell et 

al., 2002; Harvey and Kellogg, 2003). However, the over-expression of Arath;WEE1 in N. 

tabacum BY-2 cells resulted in a shortened G2 phase and small cell phenotypes (Siciliano, 

2006). This phenotype resembles Wee1 loss-of-function mutants in both yeast and animals 
 
(Walter et al., 2000; Harvey and Kellogg, 2003). 

 
 
 
 
The induction of the DNA replication checkpoint in WT, would be consistent with a 

progressive increase in cell size if cells were blocked at a checkpoint but they continued to 

grow. Indeed in Fig. 5.6, in WT, epidermal cell length was positively related to HU 

concentration. Clearly, this was not so in the putative knock down mutants. In the presence 

of HU, cell cycle progression was not blocked presumably because functional WEE1 is 

missing. Hence such cells would be escaping the DNA replication checkpoint.  In the 

absence of functional WEE1, cell size was highly significantly smaller than WT in 0 mM 



148 

 

 

 
 
HU. This also suggests that even in normal conditions, WEE1 is part of a system that 

regulates cell size. These results further suggest a role of WEE1 kinase in determining cell 

size at division. 

 
 
 
Induction of Nicta;WEE1 in Arabidopsis under DEX treatment resulted in an increased level 

of WEE1 protein indicating that in contrast to the expression of Arath;WEE1 in tobacco, the 

effects here may more closely resemble an over-expression of WEE1. However DEX 

induction of these lines resulted in increasing primary root  elongation, more lateral root 

primordia, increased number of epidermal cells in the RAM but smaller cell length. Thus all 

the phenotypic characters were very similar to the expression of Arath;WEE1 in tobacco 

plants and in both cases, the phenotype is similar to that seen in Arabidopsis WEE1 mutants 

such as wee1-1. The cell size phenotype is also in agreement with the results of previous 

studies of over-expression of Arath;WEE1 in BY-2 cells (Siciliano, 2006). 

When Nicta;WEE1 was over-expressed in N. tabacum BY-2 cells its transcription was 

increased during S phase and decreased during M phase (Gonzalez et al., 2004). However 

when Arath;WEE1 was expressed in BY2 cells there was a perturbation of the transcriptional 

pattern of the endogenous Nicta;WEE1 during the cell cycle (Siciliano, 2006). Thus it seems 

that in this case the effects of Arath;WEE1 are through a perturbation in the transcription 

pattern. When levels of WEE1 protein were analysed in BY2 cells expressing Arath;WEE1 

they were found to be increased (Lentz Grønlund, 2007) however in my work WEE1 protein 

levels appeared to be reduced in the tobacco plants when Arath;WEE1 was expressed. Thus it 

is possible that in whole plants the mechanism for the interference of the Arath;WEE1 with 

the endogenous WEE1 is different. In this case, the effects may be due to an overall reduction 

in WEE1 protein and hence activity. However when Nicta;WEE1 was expressed in 

Arabidopsis, WEE1 protein levels were higher than WT, a more similar situation to the 
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expression of Arath;WEE1 in the BY2 cells. The explanation for the apparent WEE1 knock- 

down phenotype may be because despite the higher levels of WEE1 protein, the expression of 

Nicta;WEE1 in some way interferes with endogenous WEE1 function. 

The cell size phenotype would result from a reduction in WEE1 action which results in faster 

transition at the G2 phase to mitosis. Lentz Grønlund (2007) showed that in synchronized 

wild type N. tabacum BY-2 cell culture WEE1 protein level increases during S phase and 

peaks in late S phase; this protein level decreases as the cells progress into mitosis. In 

agreement with decreasing protein levels, WEE1 activity decreased when cells entered 

mitosis (Lentz Grønlund, 2007). However, from the increase in the pool of total WEE1 

protein and WEE1 kinase activity (Lentz Grønlund, 2007) it was concluded that the WEE1 

kinase activity originated from both Arath;WEE1 and Nicta;WEE1. Nevertheless, 

expression of Arath;WEE1 in BY-2 cells does not seem to change the total transcript level 

of WEE1, as shown by Spadafora (2007). 

Results which were obtained from microdensitometry experiments in AT-Nicta;Wee1#3 and 

AT-Nicta;Wee1#11 lines showed a decrease in the number of cells during S phase and an 

increase during M phase; moreover, the proportion of cells in M-phase are approximately 

double in the both transgenic lines +DEX compared with –DEX. The expression of 

Arath;WEE1  in  tobacco  cells  caused  a  delay  in  expression  of  Nicta;WEE1  transcripts 

(Siciliano et al., 2006) and levels of WEE1 kinase were found to mirror entry into mitosis, 

being anticipated  when  Arath;WEE1  expression  was  induced  by DEX (Lentz  Grønlund, 

2007) as a result, cell size is reduced according to the same results I observed in the cell size 

of RAM epidermis cells. Early work in fission yeast showed that loss of function of WEE1 

induces a small cell phenotype (Nurse, 1975); in contrast, over expression of WEE1 delayed 

mitosis and caused larger cells (Russell and Nurse, 1987).These results suggested that WEE1 

is a part of cell size checkpoint by preventing cells to enter into mitosis, and my result is in 



150 

 

 

 
 
agreement with this conclusion. As it was confirmed by Sorrell et al. (2002) over expression 

of Arath; WEE1 in S. pombe resulted in long cells. 

As a result, the phenotypic study of roots as well as microdensitometry data showed that the 

induction of the foreign WEE1 has had a notable impact on the cell cycle. In both DEX 

induced Nicta;WEE1 in Arabidopsis lines and in lines where Arath;WEE1 was expressed in 

tobacco, a dramatic increase was observed in total number of lateral roots and primordia. As 

discussed above, the hypothesis would be that rate of lateral root and primordia production 

results from reducing the WEE1 activity which affects the activity of CDK/Cyclin complexes, 

this result could be because of a delay in the transcription of tobacco WEE1 and a premature 

peak of CDKB activity. The explanation could be that expression of Arath;WEE1 in tobacco, 

perturbed the expression of the endogenous tobacco Nicta;WEE1 or the expression of 

Nicta;WEE1 in Arabidopsis, perturbed the expression of the endogenous Arabidopsis 

Arath;WEE1, which may cause a lower level of WEE1 protein kinase during G2 phase. This 

would then result in the dramatic increase in total number of lateral roots and primordia. 

All in all the phenotypic results of root growth, cellular meristem characters, and response to 

zeocin and HU, This indicate a remarkable similarity with the Arabidopsis knockout of 

insertion  mutant  wee1-1  indicating  presumably  that  differences  in  the  sequences  of  the 

tobacco  and  Arabidopsis  WEE1  open  reading  frames  are  sufficient  to  elicit  a  negative 

response in the transgenic environment effectively shutting down WEE1 activity. Further 

work  will  be  needed  to  unravel  the  key  differences  in  protein  sequence  that  elicit  this 

response and the cellular factors that interact with them. Moreover, albeit not trivial, 

measurements of WEE1 kinase activity should be undertaken. 
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6. General Discussion

Arabidopsis WEE1 was identified in the Cardiff lab. ten years ago (Sorrell et al., 2002)

and the effects of mutation in the Arath;WEE1 gene have also been known for some time

(De Schutter et al., 2007). However a number of issues remain to be resolved relating to

the role of this protein in its interaction with other cellular proteins and this has been the

focus of my thesis.

Previous work in the Cardiff lab. had indicated an interaction of Arabidopsis WEE1 with

various proteins. Notably WEE1 interacted with a sub-set of stress-related proteins, and of

these GSTF9 was one of the strongest interactions (Lentz-Grønlund, 2007). One aim of my

work was to gain a better understanding of Arath;WEE1’s interaction with Arath;GSTF9

by using a genetic approach. Further previous work also showed an interaction between

Arath;WEE1 and the putative checkpoint protein, 14-3-3 (GF14)(Lentz Grønlund et al.,

2009) which  I also aimed to investigate further at a functional level using a genetic

approach.

I investigated these different WEE1 interactions by performing crosses between lines in

which the expression of the candidate interactors was perturbed, and the Arath;WEE1

insertion mutant wee1-1. The effects of these genes in the absence of a functional WEE1

could then be studied in Arabidopsis plants stressed by either hydroxyurea (HU) or zeocin

that induce the DNA replication and DNA damage checkpoints, respectively.

Previous work had also established an unexpected effect of Arath;WEE1 in tobacco BY-2

cells: a reduction of cell size and premature mitosis as opposed to the expected effect of

large cell size and extension of G2 phase (Siciliano, 2006). It was therefore timely for me
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to investigate expression of Arath;WEE1 in whole plants of tobacco and conversely, the

effect of Nicta;WEE1 in Arabidopsis.

6.1 Interaction of Arath;WEE1 with GSTF9

Arath;WEE1 was used as a probe in a 2-hybrid screen to identify a number of interacting

proteins including GSTF9. The interaction was confirmed by BiFC and found to occur in the

nucleus (Lentz Grønlund, 2007, Cardiff Laboratory unpublished data). To investigate the

extent to which these genes might be interacting, a cross was made between gstf9 and wee1-1

knockouts, and subsequently their phenotypes were studied. My starting hypothesis was that

if the genes were operating in the same pathway as suggested by the protein-protein

interaction, then the effect of mutating both genes should be similar to mutating just one of

them.

Both mutant genotypes were hypersensitive to HU and zeocin in that dramatic reductions in

primary root length and total lateral root production, cell length and meristem length were

observed in both the wee1-1 and gstf9 mutants. The phenotype of the Arath;WEE1 mutant in

respect of primary root length in the presence of HU had already been described by De

Schutter et al. (2007), and my results were in agreement with the published data. However

my results also indicated an increase in primary root growth in the absence of HU which was

not reported by De Schutter et al (2007) and also contrasted with the data of Lentz Grønlund

(2007). It is possible that the growth of this mutant in culture is affected by the seed stock and

medium composition, and further work will be needed to resolve this aspect of its phenotype.

However an increase in primary root growth in the absence of a functional WEE1 would be

consistent for a role of WEE1 in negatively regulating G2/M as is well established in animal
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and yeast systems (Walter et al., 2000; Harvey and Kellogg, 2003; Asano et al., 2005) and

hence potentially delaying primary root growth.

I also showed that the wee1-1 mutant was hypersensitive to zeocin, which had not previously

been shown, although De Schutter et al. (2007) showed that zeocin was able to activate

Arath;WEE1 expression. Surprisingly, primary root elongation in the gst9 mutant was also

hypersensitive to HU and zeocin. While the increased sensitivity to abiotic stress treatments

such as salt and N-acetylcysteine of the gstf9 mutant had already been reported (Dixon and

Edwards, 2010), a hypersensitivity to DNA damaging agents and agents that disrupt DNA

replication had not previously been reported. These data suggest that this GST may play an

important role in this checkpoint. However in the presence of a WT copy of Arath;WEE1, but

in the absence of chemical agents that activate the DNA damage/ replication checkpoint,

primary root elongation was not affected by the gstf9 mutation. This suggests that GSTF9 is

not required for normal root elongation. This is consistent with a stress-responsive role for

many  GSTs, but little evidence for their involvement in overall normal plant growth

(Kitamura et al., 2004; Moons, 2005; Dixon et al., 2009).

In the wee1-1 mutant, more lateral roots were produced in the absence of HU or zeocin,

relative to WT, whereas lateral root production was unaffected by the GSTF9 mutation. This

suggests that while Arath;WEE1 is required for the normal rate of lateral root production,

GSTF9 is not. This is in agreement with other data for Arath;WEE1, since over-expression of

this gene results in reduced lateral root production (Lentz Grønlund, 2007). Again the null

effect of GSTF9 mutation confirms a role for this gene in stress response but not in normal

growth and development.
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In both mutant lines cell number was significantly higher and cell length significantly shorter

in the RAM epidermis in the untreated seedlings. In this respect the effects of GSTF9

mutation appeared greater than those of Arath;WEE1 mutation. So both genes appear to affect

meristem cell number and cell size even in the absence of HU or zeocin. The effects on cell

size of Arath;WEE1 fit with a role for this gene in regulating cell size in other organisms. For

example the loss of function swee1 mutant exhibited a small cell size phenotype (Parker et

al., 1993; Tang et al., 1993; Wu and Russell, 1993; Kanoh and Russell, 1998, Harvey et al.,

2003). Also loss of WEE1 function in the fission, yeast wee1-, generated a small size

phenotype (Nurse et al., 1980). However a role for GSTF9 in cell size regulation was

unexpected given its null effect on primary and lateral root growth. This may be related to the

redox control of the cell cycle (Alfenito et al., 1998; Muller et al., 2000; Dixon et al., 2002;

Kilili et al., 2004, Rea, 2007, Dixon et al., 2010), but further work is required to understand

the specific role of this GST at a biochemical level.

The progressive reduction in cell size with increasing HU and zeocin in both mutants

indicates  perhaps an  increasing escape of the cells  into mitosis in  the absence of these

regulators presumably resulting in cells with damaged or incompletely replicated DNA that

leads to the dramatic reduction in root growth under HU or zeocin stress.

Regarding the root length data, I conclude that WEE1 and possibly also GSTF9 have roles

in the DNA replication and damage checkpoints. However the question of whether the two

genes are acting in the same pathway or in different pathways proved to be a complex one.

In some aspects the gene effects were additive indicating independent effects whereas in

others the phenotype of the double mutant resembled most closely that of the wee1-1

single mutant (Table 6.1).



General Discussions

155

Table 6.1 summary of effects of the two genes (Arath;WEE1and GSTF9) on phenotypic
characteristics, and interactions between the two genes

Phenoypic characteristic Interaction between

Arath;WEE1 and GSTF9
Primary root elongation (-HU/ zeocin) slightly additive

Primary root elongation (+HU/ zeocin) slightly additive?

Rate of lateral root production (-HU/ zeocin) Arath;WEE1epistatic

Rate of lateral root production (+HU/ zeocin) additive

RAM epidermal cell length (-HU/ zeocin) additive

RAM epidermal cell length (+HU/ zeocin) additive

Number of RAM epidermal cells in file (-HU/ zeocin) additive

Number of RAM epidermal cells in file (+HU/ zeocin) additive

Meristem size (-HU/ zeocin) Arath;WEE1epistatic

Meristem size (+HU/ zeocin) Arath;WEE1epistatic

From the result of primary root length, total number of lateral roots and primordia, and

meristem length, the double mutant suggests that the two genes are also acting at least in

part, independently. The interaction between these two genes is only slightly additive in

some aspects like primary root length and total number of lateral roots and primordia,

which does not indicate a double effect of the combined mutation of both genes in the

double mutant. However an additive effect was observed on cell length and cell number

of the RAM which shows the double mutant has a stronger response to HU and zeocin

than either of the two single mutants. The similar behaviour of the two mutant lines in

different studies under stress conditions (DNA replication or DNA damage checkpoints),

and the evidence of nuclear interaction of these genes confirms that they are both

required for these checkpoints, however a full genetic interaction cannot be confirmed.

To obtain a better knowledge of the role of Arath;WEE1 and its interaction with GSTF9

what is required is a better understanding of the role of GSTF9 at a molecular level. Is it
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acting to detoxify the damage caused by the activation of the checkpoint or is it binding

to some essential metabolite required for the checkpoint function? Further biochemical

analyses of GST function will be required to resolve this point.

6.2 Interaction of Arath;WEE1 with and GF14



To explore this interaction further GF14ω was over-expressed in Arabidopsis under an

oestradiol-inducible promoter (Cardiff lab unpublished results). The hypothesis was that if

the role  of GF14ω was to stabilise WEE1, as seen in other systems, then an over-

expression of GF14ω would result in a similar phenotype to over-expressing Arath;WEE1.

However problems were encountered previously in obtaining a consistent phenotype from

these transgenic lines (Lentz Grønlund, unpublished results). I was able to overcome this

problem by establishing an interaction between sucrose and oestradiol, and showed for the

first time that over-expression of GF14ω resulted in decrease in the rate of primary root

elongation, and total number of lateral roots and primodia compared with WT in the

presence of oestradiol, which was similar to that seen in the line over-expressing

Arath;WEE1. Also cell length in epidermal RAM cells of GF14ωOE wee1-1 line was even

greater than in the GF14ωOE or the Arath;WEE1 over-expressing line. 14-3-3 proteins are

known to regulate the cell cycle in animal and yeast cells through their interactions with

WEE1 and CDC25 (Forbes et al., 1998; Kumagai and Dunphy, 1999; Lee et al., 2001).

Furthermore GF14ω was the only 14-3-3 protein out of three tested that was able to rescue

the defects in DNA damage and replication in the rad24- yeast mutant (Sorrell et al.,

2003). Thus an effect on cell length and root growth of over-expressing this gene would be

consistent with a role in participating in the transition from G2 to M.
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Because of the similar effect to over expressing Arath;WEE1, to explore the relationship

between GF14ω and Arath;WEE1, I set up the cross between the GF14ω over-expressing line

and the wee1-1 insertion mutant. My hypothesis was that if the phenotype seen in the GF14ω

over-expressor was due to its interaction with Arath;WEE1 then in the absence of a functional

WEE1, this phenotype would be abolished. However this was not the case. The wee1-1

mutant over-expressing Arath;GF14ω showed a similar reduction primary root length and in

the rate of lateral root production, and increase in RAM epidermal cell length as shown by the

over-expression of Arath;GF14ω in the WT genetic background. This suggests that

Arath;WEE1 is not required for the action of GF14ω, and GF14ω acts on root growth and cell

size independently of WEE1. How Arath;GF14ω exerts its regulatory effects on cell size and

root growth thus remains to be determined.

Another way in which the interaction between GF14ω and Arath;WEE1 was explored was

through mutation of a serine residue (S485) in the Arath;WEE1 protein which is putatively

phosphorylated to allow binding of the GF14ω Lentz Grønlund et al., (2009). I began to set

up an experiment and transformed Arabidopsis seedlings with a construct of Arath;WEE1 that

incorporates the S485A mutation. I planned to transform this construct both into WT and the

wee1-1 line to establish whether the mutated Arath;WEE1 could complement the wee1-1

mutation. My hypothesis was that is the S485 mutation abolishes interaction with over-

Arath; GF14ω as indicated by the 2-hybrid analysis Lentz Grønlund et al., (2009), Moreover,

if the interaction with this 14-3-3 protein is important for Arath;WEE1 function then the

mutated Arath;WEE1 would not complement the wee1-1 mutant, and the expression of this

mutated Arath;WEE1 in WT would not induce the over-expression phenotype seen with the

native Arath;WEE1 over-expression. However due to time constraints I was not able to
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complete this work. Further work should be carried out to study the phenotype of the S485A

transgenic plants.

6.3 Regulation of Arath;WEE1 and Nicta;WEE1

Arath; WEE1 expression in Schizosaccharomyces pombe results a longer cell phenotype

compared with WT (Sorrell et al., 2002) as was previously obtained by over expressing the

native cdc2 (Tang et al., 1993; Lundgren et al., 1991; Millar et al., 1991). Expression of

Solly;WEE1 in TBY-2 cells caused a lengthening of the G2 phase (Gonzalez et al., 2007), a

similar result was reported by Spadafora et al. (2009) by over-expression of Nicta;WEE1 in

TBY-2 cells. Synchronization of BY2 cells by Spadafora (2008) demonstrated that when

Nicta;WEE1 expression was induced, G2 was delayed (Table 6.2). However, surprisingly,

Siciliano (2006) showed that the over-expression of Arath;WEE1 in N. tabacum BY-2 cells

resulted in a small cell phenotype which is the opposite of the previous findings in S. pombe

and A. thaliana. This suggested an unexpected interaction between Arath;WEE1 and the

tobacco genomic background which I have further pursued in this part of my PhD (Table 6.2).

In my work, inducible expression of Nicta;WEE1 in Arabidopsis thaliana resulted in

increased primary root growth, more lateral root primordia, increased number of epidermal

cells in the RAM but smaller cell length. In other words, Nicta;WEE1 expressed in an

Arabidopsis genetic background exhibited the converse of a predicted negative effect of

WEE1 over expression in Arabidopsis e.g. reduced root growth, fewer laterals and a large
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Table 6.2 Comparison of pheonotypic characters of the effects of WEE1 expression in Arabidopsis and tobacco

-HU/zeocin -HU/zeocin -HU/zeocin -HU/zeocin -HU/zeocin +HU/zeocin +HU/zeocin +HU/zeocin +HU/zeocin +HU/zeocin Source of data

line Protein
levels

Primary
root

Lateral
roots

Meristem
length

Cell no. in
meristem
cell file

Mersitem
cell
length/cell
size

Primary
root

Lateral
roots

Meristem
length

Cell no. in
meristem
cell file

Mersitem
cell length/
cell size

Arath;WEE1 in
tobacco plants

       H  H  H Reduced
effect

Reduced
effect

My resaerch

Arath;WEE1 in
tobacco BY2 cells

 N/A N/A N/A N/A  N/A N/A N/A ND ND Siciliano, et
al., 2006
Lentz et al.,
2007

Arath;WEE1 in
Arabidopsis plants

ND   ND ND  - - ND ND ND Siciliano, et
al., 2006
Lentz et al.,
2007`

Nicta;WEE1 in
BY2 cells

ND N/A N/A N/A N/A No change N/A N/A N/A N/A ND Lentz et al.,
2007

Nicta;WEE1 in
Arabidopsis plants

      ND ND ND ND ND Siciliano, et
al., 2006
,My resaerch

Arabidopsis
wee1-1 mutant

       H  H  H Reduced
effect

 My research-
Lentz et al.,
2007, De
Schutter et
al.., 2007

N/A = not applicable, ND = not determined, RD= Reduction, H+ Hypersensitive
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cell size phenotype (Gonzalez et al., 2004). Research by Siciliano (2006) confirmed that as

expected, the effect of over-expression of Arath;WEE1 on Arabidopsis root development was

to induce a shorter primary root length and fewer number of lateral roots and primordia. Thus

it was not an effect of over-expression of WEE1 per se that results in the unexpected

phenotype but rather a similar effect to that seen in tobacco BY2 cells when Arath;WEE1 was

expressed, suggesting again an unusual interaction between WEE1 and the cellular machinery

in the alien genetic background. The total levels of protein Arabidopsis expressing

Nicta;WEE1 were higher than WT, which was similar to the result seen when Arath;WEE1

was expressed in tobacco BY2 cells (Lentz Grønlund, 2007) (Table 6.2). This suggests that

the mechanism may be related to post-translational events that result in an inactive kinase

activity although further work is needed to verify this.

To test whether the effects seen in BY2 cells could be confirmed in whole plants, the

phenotype of tobacco seedlings which were transformed with the Arath;WEE1 gene was

investigated. Tobacco seedlings that expressed Arath;WEE1 showed a significantly longer

primary root length, greater number of lateral roots and primordia, and smaller epidermal

cell size compared to wild type seedlings. Hence, expression of Arath;WEE1 in a tobacco

genetic background, resulted in phenotype more easily associated with loss-of-function

wee1 mutants as opposed to plants with an over-abundance of WEE1. In conclusion the

effect of expression of Arath;WEE1 in tobacco seems to be eliciting a down-regulation of

WEE1 function. Note also, however, that the expression of Arath;WEE1 in tobacco BY-2

cells resulted in a delay in the transcriptional peak of native WEE1, from mid S-phase

(Gonzalez et al., 207) to G2 phase (Siciliano, 2006), and this was subsequently confirmed

by Lentz Grønlund (2007). In fact Lentz Grønlund (2007) went further in analysing both

WEE1 protein levels and kinase activity in BY2 cell lines expressing Arath;WEE1 under
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an inducible promoter. She found that there was an increase in total WEE1 protein on

induction of Arath;WEE1 expression ( Table 6.2). From these data she postulated that the

mechanism in these cells that results in a premature mitosis is perhaps a triggering of

premature WEE1 protein destruction by the excessively high levels of protein. This

contrasts with my data where I show that in all the independent transgenic lines analysed,

WEE1 protein levels were reduced compared to WT. This discrepancy could be due to the

different tissues and vectors used but should be verified further. Hence it is possible that

more than one mechanism is operating and that different mechanisms may operate in cell

cultures and whole plants to produce similar effects on cell size.

Root phenotype and cellular effects on the RAM under DNA damaging agents such as

zeocin and DNA replication agent as HU in both Nicta;WEE1 expressed in Arabidopsis

and Arath;WEE1 expressed in tobacco plants were consistent with a down-regulation of

WEE1 resulting in a phenotype which was similar to that seen in the wee1-1 mutants (De

Schutter et al., 2007). This clearly requires further work to confirm that WEE1 activity is

indeed down-regulated but supports the findings of De Schutter et al. (2007) that plant

WEE1 is part of the pathway that blocks the cell cycle under DNA stress.

6.4 Further work

6.4.1 Interaction of AtWEE1 with other cellular proteins: GSTF9 and

GF14



Because of  the mixture of epistatic and additive effects  of Arath;WEE1 and GSTF9 as

revealed by the double mutant in further studies an assay of protein kinase activity would be
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worthwhile. If the function of two genes are additive i.e. acting independently I would expect

in the gstf9 mutant to have WT levels of WEE1 kinase activity. However if the absence of a

functional GSTF9 affects WEE1 function then the protein kinase activity might be reduced in

the gstf9 mutant. The protein kinase activity is more precise determinant for checkpoint

control than WEE1 protein level, as protein level gives the information about the expression

pattern, while kinase activity is about the enzyme’s activity.

Further study  on how GF14ω affects the sub-cellular localization of the Arath; WEE1

(S485A) mutant would be useful, to investigate if S485A mutation of Arath;WEE1 abolishes

GF14ω binding in vivo. Lentz et al. (2009) showed that this was the case by BiFC however

here both proteins are expressed at high levels hence if it were possible it would be useful to

repeat these experiments expressing the two proteins at more physiological levels or using

immunofluorescence to localise the proteins.

In the work presented here the number of cells in each stage of the cell cycle stages and their

mitotic index was measured, but further study on nuclear DNA content in mutant plants using

flow cytometry analysis, and also study the duration of the cell cycle using colchicine, cell

flow and rate of cell production would be useful.

Also it would be interesting to do different crosses between wee1-1 and mutants or over-

expressors of other candidate G2/M regulator genes such as those from the KRP protein

family which have an interaction with CDKBs and which are controlling cell cycle. This

would provide further information using genetic tools on the extent to which WEE1 interacts

with other cell cycle regulators.
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6.4.2 Regulation of Arath;WEE1 and Nicta;WEE1

An obvious missing experiment is the effect of HU or zeocin on root growth and cellular

parameters  of the transgenic Arabidopsis  lines expressing Nicta; WEE1.  This  would

verify my findings that these lines are behaving like WEE1 knockdown lines by testing

whether they show a hypersensitive response to these checkpoint inducing agents.

Two missing transgenic lines that I identified during this work were the over-expression of

Nicta;WEE1 in tobacco plants and an RNAi or antisense based down-regulation of

Nicta;WEE1 in plants and cell cultures. These would be very useful to complete the picture of

the interaction between these two WEE1 genes and their alien transgenic host plant. I tried to

make the gene silenced line to reduce expression of Nicta;WEE1 in wild type tobacco for

better understanding the role of WEE1 based on an RNAi construct developed in the Cardiff

lab, but due to time constraints and infection in some calluses during the transformation

procedure at the end of my PhD I could not carry on this experiment. This method which is

based on RNA interference (RNAi) was successfully used as a system of study on the role of

genes in different organisms before (Tang et al., 2003). Furthermore CDKA and CDKB

kinase activity could also be studied in these transgenic lines to investigate the effect of

Nicta;WEE1 silencing.

Another tool that would be very useful would be specific antibodies for Arath;WEE1 and

Nicat;WEE1. This would enable us to determine the levels of the transgenic and endogenous

proteins in the transgenic lines we already have and would help in the comparison of the

protein levels and their transcription in the transgenic plants compared with the wild type

plants.
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Appendix A 
 

The interaction of Arath;wee1-1 and gstf9 
 
 

 
Sequence of GST9 (At2g30860) 
Black = intergenic sequence, red =UTR, orange = EXON, blue = intron 

 
ataatttttttgattgtatggatttgataataacacacgtttccaccaatcaacaacggaaacgcaacgccacgttccgccacgagtcgcgattctc 
tct 
cactctctctcccatctttctctataaaacttgtgtcgtggacactcttaaaacttcactcaacaaagcttaaccataaactgtgagtaaaaaagag 
aag 
aaagaaaaATGGTGCTAAAGGTGTACGGACCTCACTTTGCTTCACCAAAGAGAGCTTTGGTCACACTGATCGAGAAGGGCGTTGCCTTCGAGACCAT 
CCC 
CGTCGATCTCATGAAAGGAGAACACAAGCAGCCTGCTTATCTCGCTCTACAGgttccttccttcttcttcttcttccttcatcttctctgatttctt 
cct 
tttttctccgattctgatggtttcttgattcttcttcctatgcagCCTTTTGGTACTGTTCCTGCTGTTGTTGACGGTGACTACAAAATCTTCGgta 
aga 
 

T-DNA insertion 
 

tctttaagaaaatttcagtatctgttttgattgtttctataataaggtcaatttcgtcacagaacaaccaagttctgttttaggtcaagttctatag 
tta 
tgatttgtgttggctcatgtttgttttggttgtatgtatctatagtgatgctaagagatggtttttgatcttttgacagAGTCCCGTGCGGTGATGA 
GGT 
ACGTAGCTGAGAAGTACAGGTCACAAGGACCTGATCTTTTGGGGAAAACCGTTGAAGACAGAGGTCAAGTTGAACAATGGCTTGATGTGGAAGCGAC 
CAC 
TTACCACCCACCGCTATTGAACTTAACGCTTCACATAATGTTCGCATCAGTCATGGGATTCCCATCTGATGAGAAGCTGATCAAGGAGAGTGAAGAG 
AAG 
CTTGCGGGTGTTCTTGATGTCTACGAGGCACATCTCTCAAAGAGCAAGTACTTGGCCGGTGACTTCGTGAGCTTGGCTGATTTGGCTCACCTCCCGT 
TCA 
CTGATTACTTGGTTGGTCCGATTGGGAAAGCTTACATGATCAAAGATAGGAAACACGTGAGCGCGTGGTGGGATGATATTAGCAGCCGTCCTGCGTG 
GAA 
GGAGACTGTTGCCAAGTATTCATTCCCAGCTTAAgatgtgttcatcttcttggtgatgtggtttgtgttttatgagaggtttaataaaagtggaact 
aaa 
tgtacctcttaatgtaatgttgccacctctgtgttctctttccttttgtagtttaataagtatctttatggctttgtgaggctttcaattttaagga 
aat 
gatcttttcccctagttctactacttgaatgatttaactagcttaagaaaattaattatgaatgaaaggtcggattagcgcgcgagacgggagacct 
agt 
 
So the T-DNA insertion into this gene is in the second intron. 



Alignment of the gene sequence with the T-DNA insertion sequence to find the insertion point (T-DNA 
sequence was reversed for the alignment) 

 
T-DNA insertion -------------------------------------------------------------------------------- 
1 
at2g30860       ATAATTTTTTTGATTGTATGGATTTGATAATAACACACGTTTCCACCAATCAACAACGGAAACGCAACGCCACGTTCCGC 
80 
 
T-DNA insertion -------------------------------------------------------------------------------- 
1 
at2g30860       CACGAGTCGCGATTCTCTCTCACTCTCTCTCCCATCTTTCTCTATAAAACTTGTGTCGTGGACACTCTTAAAACTTCACT 
160 
 
T-DNA insertion -------------------------------------------------------------------------------- 
1 
at2g30860       CAACAAAGCTTAACCATAAACTGTGAGTAAAAAAGAGAAGAAAGAAAAATGGTGCTAAAGGTGTACGGACCTCACTTTGC 
240 
 
T-DNA insertion -------------------------------------------------------------------------------- 
1 
at2g30860       TTCACCAAAGAGAGCTTTGGTCACACTGATCGAGAAGGGCGTTGCCTTCGAGACCATCCCCGTCGATCTCATGAAAGGAG 
320 
 
T-DNA insertion -------------------------------------------------------------------------------- 
1 
at2g30860       AACACAAGCAGCCTGCTTATCTCGCTCTACAGGTTCCTTCCTTCTTCTTCTTCTTCCTTCATCTTCTCTGATTTCTTCCT 
400 
 
T-DNA insertion -----------------GAAACCATTATTGCGCGTTCAAAAGTCGCCTAAGGTCACTAT--CAGCTA--GCAAATATTTC 
59 
at2g30860       TTTTTCTCCGATTCTGATGGTTTCTTGATTCTTCTTCCTATGCAGCCTTTTGGTACTGTTCCTGCTGTTGTTGACGGTGA 
480 
 
T-DNA insertion TTGTCAAAAATGCTCCACTGACGTTCCATAAATTTCAGTATCTGTTTTGATTGTTTCTATAATAAGGTCAATTTCGTCAC 
139 
at2g30860       CTACAAAATCTTCGGTAAGATCTTTAAGAAAATTTCAGTATCTGTTTTGATTGTTTCTATAATAAGGTCAATTTCGTCAC 
560 
 
T-DNA insertion AGAACAACCAAGTTCTGTTTTAGGTCAAGTTCTAT--------------------------------------------- 
174 
at2g30860       AGAACAACCAAGTTCTGTTTTAGGTCAAGTTCTATAGTTATGATTTGTGTTGGCTCATGTTTGTTTTGGTTGTATGTATC 
640 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       TATAGTGATGCTAAGAGATGGTTTTTGATCTTTTGACAGAGTCCCGTGCGGTGATGAGGTACGTAGCTGAGAAGTACAGG 
720 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       TCACAAGGACCTGATCTTTTGGGGAAAACCGTTGAAGACAGAGGTCAAGTTGAACAATGGCTTGATGTGGAAGCGACCAC 
800 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       TTACCACCCACCGCTATTGAACTTAACGCTTCACATAATGTTCGCATCAGTCATGGGATTCCCATCTGATGAGAAGCTGA 
880 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       TCAAGGAGAGTGAAGAGAAGCTTGCGGGTGTTCTTGATGTCTACGAGGCACATCTCTCAAAGAGCAAGTACTTGGCCGGT 
960 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       GACTTCGTGAGCTTGGCTGATTTGGCTCACCTCCCGTTCACTGATTACTTGGTTGGTCCGATTGGGAAAGCTTACATGAT 
1040 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 



at2g30860       CAAAGATAGGAAACACGTGAGCGCGTGGTGGGATGATATTAGCAGCCGTCCTGCGTGGAAGGAGACTGTTGCCAAGTATT 
1120 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       CATTCCCAGCTTAAGATGTGTTCATCTTCTTGGTGATGTGGTTTGTGTTTTATGAGAGGTTTAATAAAAGTGGAACTAAA 
1200 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       TGTACCTCTTAATGTAATGTTGCCACCTCTGTGTTCTCTTTCCTTTTGTAGTTTAATAAGTATCTTTATGGCTTTGTGAG 
1280 
 
T-DNA insertion -------------------------------------------------------------------------------- 
174 
at2g30860       GCTTTCAATTTTAAGGAAATGATCTTTTCCCCTAGTTCTACTACTTGAATGATTTAACTAGCTTAAGAAAATTAATTATG 
1360 
 
T-DNA insertion ---------------------------------------- 174 
at2g30860       AATGAAAGGTCGGATTAGCGCGCGAGACGGGAGACCTAGT 1400 
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Two-Sample T-Test and CI: WT, wee1-1*gst9 

 

 
 
 
Two-sample T for WT vs wee1-1*gst9 

 
 
 

 N Mean StDev SE Mean 
 

WT 
 

20 
 

32.98 
 

1.18  
 

0.26 
 

wee1-1*gst9 
 

20 
 

48.49 
 

5.08  
 

1.1 
 
 
 
 
 
Difference = mu (WT) - mu (wee1-1*gst9) 

Estimate for difference: -15.51 

95% CI for difference: (-17.94, -13.09) 

 
T-Test of difference = 0 (vs not =): T-Value = -13.32 P-Value = 0.000 DF = 21 

 
 

 
Significant at 0.01 level 



             

             

             

             
             
             
             
             
             
             

             

             

        

Mean 35.29 
StDev 6.182 
N 14 
A D 0.177 
P-Value 0.902 

P
e

rc
e

n
t 

 
 

Appendix B 
 
 
 
 
 

 
T-test for Primary root length in WT and 14-3-3ɯ 
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Normal - 95% CI 
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Probability Plot of 14-3-3? 
Normal - 95% CI 
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Two-Sample T-Test and CI: WT, 14-3-3ɯ 
 
Two-sample T for WT vs 14-3-3ɯ 

 

N Mean StDev SE Mean 
WT      14 35.29 6.18  1.7 
14-3-3ɯ 14 18.79 2.86  0.76 

 
Difference = mu (WT) - mu (14-3-3ɯ) 
Estimate for difference: 16.50 
95% CI for difference: (12.68, 20.32) 
T-Test of difference = 0 (vs not =): T-Value = 9.06 P-Value = 0.000 DF = 18 

 
 
 
 
 

T-test for Primary root length in WT and the cross of wee1*14-3-3ɯ 
 
 
 
 
 

Probability Plot of WT_5 
Normal - 95% CI 
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Probability Plot of Cross 14-3-3 * wee1 OEX_2 
Normal - 95% CI 
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Two-Sample T-Test and CI: WT_5, Cross 14-3-3 * wee1 OEX_2 
 
Two-sample T for WT_5 vs Cross 14-3-3 * wee1 OEX_2 

 

 N Mean StDev SE Mean 
WT_5  14 35.36 5.89  1.6 
Cross 14-3-3 * wee1 OEX_ 14 28.14 5.70  1.5 

 
Difference = mu (WT_5) - mu (Cross 14-3-3 * wee1 OEX_2) 
Estimate for difference: 7.21 
95% CI for difference: (2.70, 11.72) 
T-Test of difference = 0 (vs not =): T-Value = 3.29 P-Value = 0.003 DF = 25 



 

Mean 33.75 
StDev 5.180 
N 20 
A D 0.230 
P-Value 0.778 
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Appendix C 
 

 
 

T-test  for  Primary  root  length  in  WT  and  interaction  of  over 

expression of ARATH;WEE1 in NICOTIANA TABACUM 
 
 
 
 
 
 
 
 

 
Probability Plot of WT 
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Probability Plot of Ntwee1-2 
Normal - 95% CI 
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Two-Sample T-Test and CI: WT, Ntwee1-2 

Two-sample T for WT vs Ntwee1-2 

N 
20 

Mean 
33.75 
41.85 

StDev 
5.18 
8.02 

SE Mean 
1.2 
1.8 

WT 
Ntwee1-2 20 

 

 
 
Difference = mu (WT) - mu (Ntwee1-2) 
Estimate for difference: -8.10 
95% CI for difference: (-12.45, -3.75) 
T-Test of difference = 0 (vs not =): T-Value = -3.79 P-Value = 0.001 DF = 32 
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Probability Plot of WT 
Normal - 95% CI 
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Probability Plot of Ntwee1-8 
Normal - 95% CI 
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Two-Sample T-Test and CI: WT, Ntwee1-8 

Two-sample T for WT vs Ntwee1-8 

N 
20 

Mean 
33.75 
36.60 

StDev 
5.18 
6.65 

SE Mean 
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Difference = mu (WT) - mu (Ntwee1-8) 
Estimate for difference: -2.85 
95% CI for difference: (-6.68, 0.98) 
T-Test of difference = 0 (vs not =): T-Value = -1.51 P-Value = 0.140 DF = 35 
 
 
 
 
 
 
 

 
Probability Plot of WT 

Normal - 95% CI 
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Probability Plot of Ntwee1-7 
Normal - 95% CI 

 

               

               

               

               
               
               
               
               
               
               

               

               

         

Mean 59.7 
StDev 7.760 
N 20 
A D 0.214 
P-Value 0.826 
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Two-Sample T-Test and CI: WT, Ntwee1-7 

Two-sample T for WT vs Ntwee1-7 

N 
20 

Mean 
33.75 
59.70 

StDev 
5.18 
7.76 

SE Mean 
1.2 
1.7 

WT 
Ntwee1-7 20 
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Difference = mu (WT) - mu (Ntwee1-7) 
Estimate for difference: -25.95 
95% CI for difference: (-30.19, -21.71) 
T-Test of difference = 0 (vs not =): T-Value = -12.44 P-Value = 0.000 DF = 33 

 
 
 
 
 
 

Probability Plot of WT_1 
Normal - 95% CI 
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Probability Plot of Ntwee1-9 
Normal - 95% CI 

 

           

           

           

           
           
           
           
           
           
           

           

           

       

Mean 49 
StDev 5.120 
N 20 
A D 0.616 
P-Value 0.094 
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Two-Sample T-Test and CI: WT_1, Ntwee1-9 

 
Two-sample T for WT_1 vs Ntwee1-9 

 

N Mean StDev SE Mean 
WT_1     20 33.75 5.18  1.2 
Ntwee1-9 20 49.00 5.12  1.1 

 
Difference = mu (WT_1) - mu (Ntwee1-9) 
Estimate for difference: -15.25 
95% CI for difference: (-18.55, -11.95) 
T-Test of difference = 0 (vs not =): T-Value = -9.36 P-Value = 0.000 DF = 37 
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